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Abstract

Humans are remarkably well equipped to learn new concepts from only a few examples and to
adapt quickly to unforeseen situations by leveraging experience. Meta-learning, a recent research
field in machine learning, aims to build systems with the same human-inspired ability: Discov-
ering similarities between different tasks and leveraging this knowledge when solving new ones.
However, current meta-learning algorithms lack a systematic approach to select informative tasks
during training. They randomly sample training tasks from a given task distribution. In doing so,
they ignore their experience with previously learned tasks when deciding which task to acquire
next. This algorithmic design renders meta-learning to an inherently inefficient and data-intensive
approach.
This work aims to complement meta-learning with a sample-efficient active task acquisition scheme.
The three main contributions are: First, we propose PATA, a generic framework for the sequen-
tial acquisition of the most informative training tasks. Second, we aim to leverage the inferred
task-specific properties of observed tasks when acquiring new ones. Concretely, we propose an
exploration-by-optimisation mechanism that seeks to find the optimal latent region to exploit.
Lastly, we provide seven different task acquisition tactics, broadly categorised into model-based
and model-free strategies, based on ideas from active learning research and information theory.
Here, we empirically demonstrate strong performances of all tactics across multiple reinforcement
learning benchmark environments outperforming a random baseline.
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Notation

Coloured boxes

A grey-coloured box like this will denote a corollary, definition, lemma, theorem or other
general results.

A blue-coloured box like this will denote an example.

Mathematical notation

The mathematical notation used in this thesis is mostly adopted from (Deisenroth 2010 and Deisen-
roth, Faisal, and Ong 2020).

Symbol Meaning

a, b, c, α, β, γ Scalars are lowercase

x, y, z Vectors are bold lowercase

A,B,C Matrices are bold uppercase

x>,A> Transpose of a vector or matrix

A−1 Invese of a matrix

x>y Dot product of x and y

B = [b1,b2,b3] Matrix of column vectors stacked horizontally

B = {b1,b2,b3} Set of vectors (unordered)

N+ Integers

R Real numbers

Rn n-dimensional vector space of real numbers
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Table of Abbreviations and Acronyms

Abbr. Meaning

CS Configuration space

e.g. Exempli gratia (Latin: for example)

EMC Expected model change

EMOC Expected model output change

GMM Gaussian mixture model

GSCS Greedy sampling of configuration space

GSLS Greedy sampling of latent space

i.e. Id est (Latin: this means)

LC Latent to configuration (space)

LLH Log-likelihood

MB Model-based

MF Model-free

MI Mutual information

ML Meta-learning

MBRL Model-based reinforcement learning

MRL Meta reinforcement learning

PATA Probabilistic Active Task Acquisition

RDN Random

RL Reinforcement learning

RMSE Root mean squared error

SECS Safe exploration of candidate space

VAR Variance
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Chapter 1

Introduction

Imagine you are attending a driving school to get your license. For practical sessions, the school
provides you with minivans with manual transmission. In the beginning, this makes the first
sessions hard for you. Parking the comparatively large vehicle feels tedious and shifting gears
smoothly is not as easy as you imagined. At some point, you ask your teacher why you can’t
practise with a more convenient car. She tells you that after having learned how to handle these
more difficult cars, you can quickly drive any car.

Figure 1.1: A generic minivan, resembling typical driving school cars. Royalty-free graphic taken
from Shutterstock.com.

Now, imagine you were the driving school teacher, and you could choose among several differ-
ent cars for your students’ practical sessions. Assume you would let each student practise with each
car. Your goal is to equip each student with universal driving skills so that a graduate can drive as
many cars as possible in the future. Your decision of which set of vehicles to pick is constrained
by a specific budget, for example, the number of vehicles you can park in the school’s garage. One
strategy could be to choose cars varying lengths, such as a compact sports car, a medium-length
SUV, and finally a minitruck. Alternatively, you could select different vehicle heights, weights or
motorisations. The number of different parameters that potentially change a car’s driving dynam-
ics is large and it is not always obvious which parameters make a difference for a student’s learning
progress. Presumably, the ideal choice takes into account a weighted mix of the above factors.

Intelligent systems have not reached the same level of human’s learning efficiency and versatil-
ity yet. Comparatively, humans are efficient learners and adapt quickly to new tasks by building
upon prior related experience they have learnt over time. In general, a task refers to a broad range
of problems to be solved. Learning refers to attaining the ability to perform the task. For example,
human motorists can learn to drive a new car (the task) they have never driven before in minutes.
Within the machine learning community, end-to-end learning from scratch is highly popular, as it
is an approach that does not require any previous knowledge to solve a task (C. B. Finn 2018).
From the standpoint of how humans learn, that is like asking a human newborn to learn to win the
Monaco Grand Prix 1. To address such inherent learning inefficiencies, meta-learning algorithms
have arisen and received much attention in the last few years.

1The Monaco Grand Prix is one of the most renowned automobile races in the world.
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Meta-learning is an umbrella term for methods that aim to learn new tasks quickly by using knowl-
edge from previously seen tasks (Sæmundsson, Hofmann, and Deisenroth 2018). One technique
that falls into this category is multi-task learning (MTL), i.e., the idea of learning multiple tasks
simultaneously and adapting to new tasks quickly by disentangling global and task-specific prop-
erties. Referring back to our above example, imagine the system aims to learn the dynamics of
different cars. An example of a global property among cars could be that all of them are exposed
to the earth’s gravity, impacting their motion. A task-specific property might be the car’s motorisa-
tion or its number of passengers.

Current meta-learning algorithms lack a systematic approach to aquire tasks and randomly sam-
ple them. To make meta-learning more efficient, this work aims to leverage inferred task-specific
properties to sequentially acquire the most informative tasks.

1.1 Motivation

We briefly touch upon the research fields that lay the foundation for this paper and motivate the
need for it. In autonomous systems, there are usually three key challenges: modelling, predicting
and decision making (Deisenroth 2019a). Starting with decision making, reinforcement learning
(RL) is inherently concerned with sequential decision making - deciding which action to take in
a situation (state) - to maximise a numerical reward signal. It is a goal-directed computational
approach to learning from interactions with an environment. In general, an RL task describes the
problem of finding an optimal policy that captures the actions to take in order to maximise the total
reward an agent that interacts with the environment. Typically, differences between tasks within
the same environment (sometimes referred to as world) are either reward- or dynamics-driven.
The former means that the same actions applied to the same environment can lead to different re-
wards. Differences in dynamics result in the agent arriving at a different new state when applying
the same control in the same previous state among all tasks. As an example from the real world,
researchers formalised autonomous car driving as a reinforcement learning problem (Kendall et al.
2018; Levine 2019), where the reward signal could be the distance travelled by the vehicle without
a human driver intervening.

In general, current RL algorithms usually suffer from data-inefficiency, meaning that the required
number of interactions with the environment is impractically high (Kamthe and Deisenroth 2017).
Model-based reinforcement learning (MBRL) is one way to improve data-efficiency of RL by mod-
elling the transition dynamics of a system. This model can then be used as a surrogate for the real
environment, removing the need for interactions with the real system. Assuming to have trained a
model well, it can then make predictions about the long-term consequences caused by the actions
of an agent. Note that the predictive performance of the model is crucial for planning processes that
aim to produce optimal policies. The faster the model’s predictive performance on the transition
dynamics improves, the quicker a planning algorithm finds optimal policies. When the model is
poorly trained, the planning component is likely to compute a suboptimal policy (Barto 2018).
One suitable class of models for MBRL is the class of probabilistic models that allow for incorpo-
rating uncertainty within their predictions explicitly. These models are equipped to propagate the
uncertainty over time and deal with reasonably limited experience in a principled way (Deisenroth
2010). Research in cognitive sciences has shown that this resembles how humans make decisions
(Körding and Wolpert 2006).

Meta-reinforcement-learning (MRL) models extend the single-tasked MBRL approach to multiple
tasks. The goal is to learn how to adapt a model to new reinforcement learning tasks quickly. In
essence, these models capture two distinct properties; properties that are shared across all tasks
and task-specific properties. Probabilistic MRL approaches infer so-called latent embeddings for
each task in form of random variables. These embeddings lie in a latent space that represents how
the tasks relate to each other. In other words, the model infers which combination of task configu-
ration variables is different among observed tasks and by how much they differ.

In the context of the previous car example: All things equal, assume a race track with two same
cars except for different motorisations leading to a different brake horsepower specification. Now,
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assume a model observing two rides per car, where each ride starts from standing still and the
driver then simply presses full throttle over the whole observation time. In one ride, the driver is
alone in the car, and in the other ride she has a passenger. The configuration space of the tasks
would include the number of passengers, brake horsepower, and many other variables, some of
which have identical values in both cars. Ideally, the model would infer latent embeddings that
look similar to what is shown in Figure (1.2), i.e., they express the above-mentioned configuration
relations between the tasks.

h2<latexit sha1_base64="Rw55uvOSu1cQyqveEntyOOtVEjI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48V7Ye0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3n1BpHssHM0nQj+hQ8pAzaqx0P+rX+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8NrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbRqVe+iWru7rNQf8ziKcAKncA4eXEEdbqEBTWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QP8/o2s</latexit>

h1<latexit sha1_base64="VKytHaI8Woa14unBoIOvgE4QS0A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48V7Ye0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3n1BpHssHM0nQj+hQ8pAzaqx0P+p7/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8Slq1qndRrd1dVuqPeRxFOIFTOAcPrqAOt9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AH7eo2r</latexit>
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Horsepower 240160

Figure 1.2: An illustration of a two-dimensional latent space with four inferred task embeddings.
The actual differences of the observed tasks’ configurations are exemplified in the grey-shaded
boxes. The goal of the model is to infer embeddings that capture these differences in the task
configurations and express them sensibly.

Having yielded latent embeddings of some initial training tasks, how can we exploit this latent
space? We will propose a technique for exploring that space fully automated without any domain
knowledge about the task difficulties at hand. Knowing the configurations of some training tasks,
we can map the latent embeddings to the configuration space. For example, consier the means
of embeddings as inputs and the numerical configuration parameters as outputs. We can fit a
latent-to-configuration space (LC) regression model which we refer to as fLC. The overall procedure
is illustrated in Figure (1.3). With that regression model, we can map any other point in the
latent space to the configuration space. We refer to these points as candidate points. How do
we decide which point to select next? We will suggest a variety of utility functions to score these
candidates and iteratively select the point that has the highest utility. Another problem arising
here is the question of how aggressively one can explore the latent space. Points that are too far
away from the known embeddings might map to invalid configurations, e.g., a negative number
of passengers. However, only considering points that are close to the known embeddings prevents
a proper exploration of the latent space, leading to the acquisition of a set of homogeneous tasks
and ultimately a bad model. How can we tackle the problem of deciding where to draw the line
between points that are should and should not be considered? We will turn this issue of safe
exploration into an optimisation problem to find the optimal latent space region from which tasks
can then be drawn.
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Figure 1.3: An demonstration Pre-PATA’s starting point with initial training tasks before any new
tasks are actively acquired. Firstly, 1.Ride refers to a car with a certain configuration from the
configuration space going for a ride. Secondly, 2.Inference highlights the model inferring task-
specific latent embeddings based on observations. Lastly, 3.Regression points out that one can
map those embeddings, e.g., their means or samples drawn from their distribution, back to the
configuration space with a regression model.
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Figure 1.4: Complementig the previously shown starting point with a 3. Scoring module. Now,
after having inferred some initial training tasks, potential candidates in the latent space are scored,
the corresponding configuration of the most informative task gets acquired and then the training
repeats.

Finally, we will validate PATA’s effectiveness empirically by competing against a random baseline
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on challenging continuous control benchmarks.

1.2 Contributions

The major novel contributions of this work are summarised below:

1. Probabilistic Active Task Acquisition (PATA): A task-agnostic framework for efficient train-
ing of probabilistic model-based meta-reinforcement-learning through active task acqusition

2. Model-based PATA strategies (MB-PATA) which acquire tasks with small computational
overhead but still outperform the random baseline

3. Model-free PATA strategies (MF-PATA) which acquire tasks exploiting the meta-learning
model’s uncertainty and beats the random baseline

4. Safe exploration of candidate space (SECS) by trading off exploration/exploitation for
generation of candidate sets which can be applied with any acquisition method

5. Seven different task acquisition tactics incorporated into the PATA framework allowing to
follow complementary objectives

1.3 Outline

The structure of this thesis is summarised below:

• Chapter 2 will inform the reader about the key ideas behind the overall problem field in
which we are: Reinforcement learning. Also, we will briefly elaborate on the prinicples of
Model-based reinforcement learning (MBRL), the type of RL approach we use later for MRL.

• In Chapter 3, we will introduce probabilistic modelling (PM), one class of modelling tech-
niques that are convenient to use for MBRL. This chapter lays the foundation for many of the
upcoming algorithms: Bayesian inference illustrates how we can fit a probabilistic model to
data, variational inference shows one method to make PM more scalable. Furthermore, we
will introduce the concept of latent variable models that allow us to infer a low-dimensional
latent space we can then explore. Lastly, we touch upon Bayesian optimisation, a concept we
will later use to better explore the latent space.

• Chapter 4 presents concrete probabilistic modelling methods for MBRL. We start with Gaus-
sian Process (GP) regression, touch briefly upon one method that makes GPs more scalable
(variational sparse GP regression) and finally, we will introduce a MRL model as basis for our
framework.

• Before we start to propose our framework, Chapter 5 conducts a brief literature review,
concluding with more motivation for PATA.

• Having guided the reader through the background and related work, we can now convey our
overall framework PATS in Chapter 6. We also describe particular tactics a practitioner can
use right-off-the-bat

• To evaluate our proposed methods, we empirically observe their performance in the context
of RL benchmark tasks in Chapter 7.

• Lastly, we summarise the findings of this project in Chapter 8 and discuss future work.
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Chapter 2

Reinforcement learning

Famous achievements of machine learning in the context of board games (Silver et al. 2018),
e-sports (Vinyals, Vezhnevets, and Silver 2017) as well as real world application areas such as
robotics (Kober, Bagnell, and Peters 2009) or economics (Perolat, Beattie, and Tuyls 2017) orig-
inate from reinforcement learning. To better understand its fundamentals, we start with control
theory, a decades-old field of engineering that aims to find optimal controllers for well-understood
systems. To find an equivalent of controllers in situations where we do not know the underlying
system we interact with (or not completely), we bridge the gap by introducing RL. Lastly, we move
on to model-based RL, one class of RL algorithms that aims to make RL more data-efficient.

2.1 Control theory

In engineering and mathematics, control theory deals with the behaviour of dynamic systems, i.e.,
systems that evolve over time (Dorf and R. H. Bishop 2000). The evolution of the system as a
function of time is measured in states which fully describe the system at a particular point in time.
Control signals are external signals that can modify the current state. Together with the control sig-
nals and equations describing the dynamics, the future state can be determined (deterministically
or stochastically). Closed-loop feedback control systems are systems with an additional measure of
the actual output, capable of comparing it with the desired output response.

Controller Actuator Process

Sensor

Error

Desired 
output 

response

Disturbance

Measurement
noise

Actual
output

Measurement output Feedback

Figure 2.1: Closed-loop feedback system with external disturbances and measurement noise de-
scribed in the book by (Dorf and R. H. Bishop 2000).

Real world example
A car with adaptive cruise control is a modern control system: The system’s sensors measure
the distance between the car’s position and other cars to determine its state, typically with
external disturbances and measurement noise. The software computes control signals to
adjust the car’s acceleration and wheel steering.
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Unsafe
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Figure 2.2: An illustrative closed-loop feedback system of an adaptive cruise control system
as installed in various modern cars.

Control theory example
The cart-pole system (or inverted pendulum) is a classic control theory system which was
was adapted from the earlier work of (Widrow and Smith 1964). It allows to apply hori-
zontal forces (left and right) on the moving cart such that its attached pendulum, the pole,
freely swings around. Depending on its start state, classic tasks are swinging the pole up
from hanging straight down or balancing it around its unstable equilibrium to keeping it
from falling over (Tedrake 2009).
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Figure 2.3: The cart-pole setup as described in (Tedrake 2009). State variables are marked
in red, the control signals in blue and the constants in black. xt, ẋt refer to the horizon-
tal position and velocity of the cart and θt is the anti-clockwise angle of the pendulum
with θ̇t being the corresponding velocity. pm, pl describe the mass and length of the pole,
respectively, cm refers to the mass of the cart and g to gravity.

As described in (Deisenroth 2010), one possible state representation xt of the system as a
function of time t consists of the position x1 of the cart, the velocity ẋ1 of the cart of the
system, the angle θ (measured anti-clockwise from hanging down) and the angular velocity
θ̇, both of the pendulum. In practise, the angle is often represented as a complex number
on the unit circle, such that it is mapped to its sine and cosine. We explain the reasons for
that later. In total, for the simulation the state is internally represented as

x =
[
x1 ẋ1 θ̇ sin θ cos θ

]>
∈ R5. (2.1)

Intuitively, when speaking about the dynamics of a system, we refer to the transition function
f mapping a given state and a control signal to the next state. Here, we typically assume that the
system has the Markov property: The present state captures all relevant information of the history,
such that the sequence of events preceding is irrelevant, i.e., f only depends on the present state.
Furthermore, we consider stochastic dynamical systems which are dynamical systems in which the
equations of motion have an element of randomness to them (Bhattacharya and Majumdar 2003).
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Definition 2.1.1 (Stochastic dynamical system). A stochastic dynamical system consists of
state variables xt ∈ RD and control signals ct ∈ RK where the state follows the Markovian
transition dynamics

xt+1 = f(xt, ct) + ε, (2.2)

with an unknown transition function f , and i.i.d. system noise ε, whereE = diag(σ2
1 , . . . , σ

2
D).

2.2 Reinforcement learning

Classic control theory often assumes that exact mathematical formulations for the system to-be-
controlled are available (Deisenroth 2010). To come up with these formulations, experts have to
obtain a thorough understanding of the system dynamics. Since complex systems can have many
latent parameters leading to severe difficulties for experts aiming to find formal descriptions or
intractable equations (Bertsekas 2019), machine learning methods can provide remedy for auto-
matic control: A learning algorithm can be used to model the dynamics of a system by extracting
structures in observations. Methods that rely on learning algorithms, i.e, approximations of the
a priori unknown environment, to produce sub-optimal controllers are commonly referred to as
reinforcement learning (RL).

RL borrows ideas from control theory, in particular from optimal control of incompletely-known
Markov decision processes (Barto 2018). However, according to (Kaelbling, Littman, and Moore
1996), its focus lies more on finding a balance between exploration of "uncharted territory" and
exploitation of over time acquired experience rather than finding guaranteed-optimal controllers
of a well-understood system for which analytical functions exist that can be hard-coded.

In this work, we do not touch upon all central ideas of RL, especially not the methods for learning
optimal controllers (or policies in RL terminology). This is because we are only interested in mod-
elling the dynamics of a system in an efficient way. However, to motivate the need of modelling the
dynamics, we briefly cover some of the fundamental principles in RL and link them the objective
of this thesis.

In a RL setting, the key objective is to find a policy consisting of control signals π∗ := c∗0, . . . , c
∗
T−1

that minimises the expected long-term cost J of starting in a state x and following π∗. We can
determine the cost J by computing an approximative value function for a given state.

Definition 2.2.1 (Value function). The value function of a state x under a policy π is the
expected cost J (or return R := −J ) when starting in that state and following π thereafter for
a finite horizon of T time steps denoted by

J := V π(x0) = Eτ
[ T∑
t=0

l(xt)
]

=

T∑
t=0

Ext

[
l(xt)

]
, (2.3)

with τ := (x0, . . . , xT ) as the trajectory of states visited and l being a known cost function that
encodes the task objective (Deisenroth 2010).

2.3 Model-based reinforcement learning

To gain knowledge about an environment, a so called agent, an autonomous entity, interacts with
the environment in a trial-and-error fashion. In practise, many trials are required to learn to solve
a real-world task, making many RL approaches time-consuming or expensive.
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One way to improve the data-efficiency is model-based RL, in which models learn the transition
dynamics of a system. These models can then be used as a surrogate for the real environment,
such that policies can be obtained from it without the need for interactions with the real system
(Kamthe and Deisenroth 2017) but by speculating about the system’s long-term behaviour.

model

policy

world

action

state

interaction

(a) The interaction phase aims to refine the model of the
world. The agents interact with the real world: it
applies actions directly to the actual environment.
Then, we can observe how the world changes and
transitions to a new state. This procedure repeats so
that the model can learn over time: it takes the applied
actions and the states of the real world to refines itself.

model

policy

world

actionstate

simulation

(b) The simulation phase aims to refine the policy given a
model of the world. The agent applies actions to the
model and receives states of which the model thinks the
world might be in. Then, the policy determines the next
action according to the state returned by the model and
applies it again. Using this simulated experience, the
policy improves over time.

Figure 2.4: Model-based reinforcement learning in a nutshell. Two alternating phases, interaction
and simulation, improve the model and policy over time, respectively. Green color indicates that
the corresponding component is being refined. Both figures are adopted from (Deisenroth 2010).

One weakness of this approach to obtain optimal policies is model bias. Optimising a policy
based on a biased model of the world leads to sub-optimal policies. The more erroneous the model
is, the worse the policy learned. Probabilistic dynamics model explicitly incorporate uncertainty.
Thereby, long-term planning with probabilistic models benefits from "knowing what they do not
know" (for sure). Details on such approaches are beyond the scope of this work, but we refer the
reader to (Deisenroth 2010) in particular, which is the basis for the meta-learning model presented
in the upcoming chapter which in turn forms the foundation for this work.

To conclude, MBRL is relevant for this thesis due to two reasons: First, PATA aims to reduce model
bias fast by selecting informative tasks. Second, later in this thesis, we will use a model of the real
world to predict short trajectories of candidate tasks .
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Chapter 3

Probabilistic Modelling

3.1 Bayesian inference

In this section, we briefly cover the basics of Bayesian inference that allows us to go from what
is known (what we like to refer to as data or observations) to extrapolate backwards and make
probabilistic statements about its generative processes that generated the observations (Lambert
2018). Think of these parameters as levers that one can pull to change the behaviour of the latent
processes we do not observe but we like to model. In Bayesian inference, probability distributions
are used to express uncertain beliefs (prior knowledge) about the distribution of parameters to be
modelled. These beliefs can be updated in light of new observations to derive more informed,
posterior beliefs. To do so, we use the Bayes’ theorem (also Bayes’ rule or Bayes’ law), defined as
follows.

Definition 3.1.1 (Bayes’ theorem). Consider the observable random variable y and the unob-
served random variable θ. We assume some prior knowledge p(θ) about θ and a relationship
p(y|θ) between θ and y. Having observed y, the Bayes’ theorem allows us to estimate a proba-
bility distribution over θ given the observations such that

p(θ| y)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(y|θ)

prior︷︸︸︷
p(θ)

p(y)︸︷︷︸
evidence

. (3.1)

From a statistics standpoint, the likelihood p(y|θ) tells us the probability of generating a par-
ticular observation if the parameters of our model were equal to θ. The prior p(θ) encapsulates
our subjective knowledge of the unobserved variable before we observe any data, so it needs to
be (carefully) designed by the practitioner. The denominator term p(y) is called the evidence and
represents the probability of yielding y if we assume a particular model and prior; hence, it is
defined by

p(y) :=

∫
p(y|θ)p(y) dθ = Eθ[p(y|θ)]. (3.2)

Finally, our quantity of interest is the posterior probability distribution p(θ| y). It describes our un-
certainty over the values of a parameter vector θ. Intuitively speaking, if the posterior is narrower,
then this indicates greater confidence in our estimates of the parameter’s value (Lambert 2018).
Making the posterior more narrow can be achieved by collecting more data.

From a pure mathematical standpoint, the Bayes’ theorem is a direct consequence of the prod-
uct rule

p(θ, y) = p(θ|y)p(y) = p(y|θ)p(θ) (3.3)

p(θ|y)p(y) = p(y|θ)p(θ) ⇐⇒ p(θ|y) =
p(y|θ)p(θ)

p(y)
. (3.4)
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3.2 Bayesian optimisation

In mathematics, global optimisation is a branch that deals with finding global minima or maxima
of functions. For many practical applications, we do not always know an easy functional form
of the function we like to optimise. We call these functions black-box functions, since we might
not know (exactly) its internal workings but can give it an input and observe an output. This
prevents us from calculating its derivatives and applying other common optimisation techniques
like gradient descent. Also, we might be able to compute the function pointwise but we assume its
evaluation is costly. Additionally, another issue might be that the function lacks special structures
like concavity or linearity that would improve efficiency during optimisation (Frazier 2018). If the
reader is familiar with deep learning, she can think of such an "expensive to evaluate" black-box
function as a deep neural network with many layers, resulting in week-long evaluation times for a
single run, she likes to tune hyper-parameters of such as the number of layers and their sizes.

One solution to find the global optimum of such a function is Bayesian optimisation which builds
a probabilistic surrogate model approximating the objective function f using observed function
evaluations as training data and then optimise that cheap proxy model f̃ to determine where to
evaluate the true objective next (Deisenroth 2019b). More formally, it is a sequential analysis
strategy that aims to find a global optimum of a black-box function f :

x∗ = argmin
x∈A

f(x), (3.5)

where f denotes the expensive-to-evaluate objective function, A is the feasible set of all possible
points that are eligible, e.g. A ⊂ RD and D denotes the dimension with typically D ≤ 20, i.e., not
too many dimensions which would cause difficulties.

An often used probabilistic model to approximate the objective function is a Gaussian process
(GP) which we will cover in the next chapter. A probabilistic model, such as the GP, returns a
probability distribution for each prediction, informing the practitioner about the uncertainty it has
over its prediction. This uncertainty is then used in Bayesian optimisation to trade off exploration
and exploitation during the acquisition of a next point.

Exploration in that context means, that the BO algorithm tries to explore the function at very
uncertain inputs, usually near places it has not evaluated the function yet. Exploration during
optimisation is especially important when the function has many local optima and there is a high
likelihood of having the optimiser being stuck in a non-global optima. On the other hand, exploita-
tion within BO refers to seeking the evaluation of inputs near already known points which have
high/low function values (depending on whether it is an maximisation or minimisation problem,
respectively). The function that decides which point to evaluate next is called acquisition function.
In literature, there exist a couple of closed-form acquisition functions and the research in that field
is active (e.g. Wilson, Hutter, and Deisenroth 2018; Wilson, Moriconi, et al. 2017). Covering these
is beyond the scope of this work but we refer the reader to (Frazier 2018) to learn more about
them.
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Figure 3.2: An illustration of the principle behind Bayesian optimisation. The acquisition function
decides where to acquire the next point; the higher its value, the more it is interested in the
corresponding candidate.

3.3 Variational inference

One of the challenges of applying probabilistic models to the real-world is the computation of the
posterior distribution as in Equation (3.1.1). There exist multiple hurdles that can make the ex-
act evaluation range from difficult to not analytically tractable at all. In our case of model-based
Meta-RL, the probabilistic model is trained on trajectory data of multiple tasks which can quickly
becomes infeasible (which we show later when detailing GPs and their computational complexity
for exact inference). For this reason, we turn to approximate inference schemes which derive ap-
proximate versions of the posterior. These schemes can be broadly categorised into two classes,
stochastic and deterministic approximations (C. M. Bishop 2006). We will now introduce one fam-
ily of deterministic approximations on which our probabilistic meta-learning model is based on
to cope with an increasing number of data points when selecting and then observing new tasks:
Variational inference (VI).

The key idea behind VI is to find an approximation by optimisation: it first posits a parameterised
family of approximating distributions and then aims to find the member of that family that is as
close as possible to the true posterior. The complexity of the family determines the complexity of
the optimisation, i.e., the more complex the distribution, the more complex the optimisation (Blei,
Kucukelbir, and McAuliffe 2017). An example of such a family is the mean-field variational family
where all latent variables are independent of each other (a very simple but naive assumption).
In order to compare the approximating distribution with the true posterior, we need a distance
measure. We make a brief excursion into the world of information theory that equips us with such.

Excursion: Information theory
One fundamental question in information theory is how to quantify the amount of infor-
mation of a probability distribution. A key measure for that is entropy which quantifies the
amount of uncertainty in the values a random variable can have (Cover and J. A. Thomas
2006). Consider the following example: Imperial College London (ICL) is a quite interna-
tional university a and assume you would describe the nationality of a randomly selected
student as a random variable. Now, consider a random variable describing the nationality of
a member of the Austrian Student Society (ASS) at ICL. There might be some non-Austrian
members of that society, for example people that just love Wiener schnitzel, but empirically
speaking, we assume there is less ’uncertainty’ in the nationality of a randomly selected
Austrian-Society-member than of a typical student. We could describe this difference in
uncertainty with entropy and would see that the entropy of a RV modelling all student’s
nationality is higher than the entropy of only considering members of the Austrian student
society.

Definition 3.3.1 (Entropy). The entropy H(X) of a random variable X is a measure of the
amount of information required on the average to describe it (Cover and J. A. Thomas 2006;
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Murphy 2012). Hence, it can be interpreted as a measure of uncertainty. For a discrete random
variable with states x ∈ X , it is defined by

H(X) , −
∑
x∈X

p(x) log p(x), (3.6)

or for the continuous case by

H(X) , −
∫
X
p(x) log p(x). (3.7)

Coming back to the above example, let’s consider the two distributions p(nationality| ICL)
and p(nationality|ASS). Suppose a first-year PhD student, coming from another university
ABC, likes to hang around with a group of people of very different nationalities. This
is because at her former university, the number of students from one country was ap-
proximately equal for all countries and the probability of a randomly selected student’s
nationality was uniformly-distributed as q(nationality| ABC). She considers the options of
joining the Austrian-society which meets at Austrian restaurants or spending more time
with a broader range of ICL students, e.g., at the Union Bar. In order to determine where
she should spend her leisure time, she decides to select the group of people with a lower
relative entropy to her former university’s nationality distribution, i.e., the group which
resembles her previous environment better. She computes the relative entropy between
both q(nationality| ABC) and p(nationality|ASS) as well as between q(nationality| ABC)
and p(nationality| ICL). Assuming adequate distributions for the other two RVs, she would
certainly see that the KL-divergence of the former is higher then the latter and decide to
not join the ASS.

Definition 3.3.2 (Relative entropy). The relative entropy or Kullback-Leibler distance is a
measure of dissimilarity between two probability mass functions p(x), q(x) defined as:

KL(p ‖ q) ,
∑
x∈X

p(x) log
p(x)

q(x)
, (3.8)

and when considering probability density functions of continuous random variables, it is given
by

KL(p ‖ q) ,
∫
X
p(x) log

p(x)

q(x)
. (3.9)

The relative entropy is always non-negative and zero if and only if p = q. Furthermore, it is not
a true distance between distributions since it is not symmetric and does not satisfy the triangle
inequality.

aAccording to the ICL website, 64% of its in 2017/2018 enrolled students were not from the UK.

Now, being aware of the KL-divergence, we want to compare the variational approximation q
and the true posterior p with KL(q(z| v) ‖ p(z|x)) and q(z| v) = p(z|x) ⇐⇒ KL(q(z| v) ‖ p(z|x)) =
0 would be the optimal solution as illustrated in Figure (3.3).
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Figure 3.3: Illustration of the principle behind variational inference: approximation by optimisa-
tion. The black shape demonstrates the family of approximating distributions parameterised by
variational parameters v. We like to find the optimal parameters v∗ in the sense that q(z|v∗) has
the smallest KL divergence (shown in the red term) to the true posterior p(z|x) (blue term) of all
possible parameterisations (all points inside the black-lined surface). The figure is adopted from
(Blei, Ranganath, and Mohamed 2016).

However, the KL divergence is not computable because it requires computing the evidence p(x),
which is also one of the reasons why we approximate inference in the first place. This can be seen
by

KL(q(z|v) ‖ p(z|x)) =

∫
Z
q(z|v) log

q(z|v)

p(z|x)
(3.10)

=

∫
Z
q(z|v) log q(z|v)−

∫
Z
q(z|v) log p(z|x) (3.11)

=

∫
Z
q(z|v) log q(z|v)−

∫
Z
q(z|v) log

p(z, x)

p(x)
(3.12)

=

∫
Z
q(z|v) log q(z|v)−

∫
Z
q(z|v) log p(z, x) +

∫
Z
q(z|v)log p(x) (3.13)

= Eq(z|v)[log q(z|v)]− Eq(z|v)[p(z, x)] + Eq(z|v)[log p(x)]. (3.14)

However, instead of minimising KL(q(z|v) ‖ p(z|x)), equivalently, we can remove the summand
involved with p(x) from the equation, which is a constant with respect to q(z|v), multiply it with
(-1), and maximise that new objective which is called the evidence lower bound (ELBO). Precisely,
the ELBO is the sum of the expected log likelihood of the data and the KL divergence between the
priors p(z) and q(z), given as:

ELBO(q) := Eq(z|v)[p(z, x)]− Eq(z|v)[log q(z|v)]. (3.15)

Its name stems from the fact that it lower bounds the (log of the) evidence:

log p(x) = log

∫
p(x|z)p(z) dz (3.16)

= log

∫
p(x|z)p(z)

q(z)

q(z)
dz (3.17)

= log

∫
p(x|z)

p(z)

q(z)
q(z) dz (3.18)

= logEq(z|v)

[
p(x|z)

p(z)

q(z)

]
(3.19)

≥Eq(z|v)

[
log
(
p(x|z)

p(z)

q(z)

)]
(Jensen’s inequality) (3.20)

= Eq(z|v)[log p(x|z)]− Eq(z|v)

[
log
(q(z|v)

p(z)

)]
(3.21)

= Eq(z|v)[log p(x|z)]−KL(q(z|v) ‖ p(z)), (3.22)
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where the Jensen’s inequality in Equation (3.20) is an result from convex analysis that states that
for concave functions f it holds that: f(E[z]) ≥ E[f(z)] and since logarithms are concave, it holds
that logE[f(z)] ≥ E[log f(z)].

In conclusion, the key takeaway of this subsection is that there exist approximations of poste-
rior distributions that make inference more scalable and applicable to large datasets. We will come
back to this in Section (4.1.7) when we introduce the variational sparse GP we use in this work.

3.4 Latent variable models

This part of the work explains the concept of latent embeddings and how to infer them. After
introducing the idea of dimensionality reduction through a practical example to the reader, we
briefly touch upon the principles behind Gaussian process latent variable models which form the
basis of our probabilistic meta-learning model introduced later.
Data with many dimensions can make its analysis complicated. Dimensionality reduction (DR)
methods aim to exploit the structure of data and output a more compact representation of it, ideally
without loosing (too much) information (Deisenroth, Faisal, and Ong 2020). This works especially
well for data sets who have the property that its points all lie close in some topological space of
much lower dimensionality than the observed one (C. M. Bishop 2006) which possesses redundant
information to some degree. A simple approach for DR is to obtain a linearly uncorrelated data
representation by principal component analysis (PCA) (Hotelling 1936; Pearson 1901).

Example: Principal Component Analysis (PCA)
The following example is adopted from (Ng and Soo 2017) and aims to introduce the reader
to the concept of dimensionality reduction by the example of PCA. Imagine that you are a
nutritionist and you would like to differentiate between food items. You think of different
variables such as macronutrients (e.g. fat) or micronutrients (e.g. vitamin C) to describe
the differences between foods. PCA aims to find underlying variables (i.e. the principal
components) that best differentiate your data points. For this, it finds the dimensions along
which your data-points are most spread out. Mathematically speaking, it projects the a
set of observations onto a lower dimensional space while maximising the variance of that
projected data. That means, the first principal component accounts for as much of the
variability of the data as possible, the second component for the second most data variance,
and so on.

Figure 3.4: A simple food pyramid illustrating the problem of finding reasonable variables
to differentiate food. Figure adopted from (Ng and Soo 2017). Icons taken from flati-
con.com.

To find such a principal component, PCA computes a linear combination of the known
variables. For example, we could only use the level of vitamin C in the food as the single
variable to list our food items which can be seen in the leftmost column in Figure (3.5).
This would result in many items indistinguishably put together because although vitamin
C is present in many vegetables it is absent in meat. In the second attempt, we could try
to spread the meat items out by using fat content as a secondary variable since it is present
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in meat but mostly absent in vegetables. To do so, we need to standardise the vitamin C
and meat levels because they are measured in different units. That means, we compute the
empirical mean and standard deviation for each variable, subtract the mean from its values
and divide it by the standard deviation. We can then combine them by subtracting the
standardised fat variable from the standardised vitamin C variable, as shown in the second
column. To spreading the foods even further, we could add fiber which vegetables have in
varying levels. As a consequence, we would not loose too much information if we would
just use a linear combination of fat and protein as well as fiber and vitamin C to come up
with two principal components and halve the number of variables.
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Figure 3.5: Illustration of how combining the variables changes the sorting of the food
items. Figure adopted from (Ng and Soo 2017).

At this point, a nutritionist might have the feeling, that some variables are correlated, i.e.,
they move in the same direction for most items. When we plot the levels of fat, protein,
fiber (macronutrients) and vitamin C (micronutrient), as shown in Figure (3.6), we can see
that there are some high correlations between fat and protein as well as between fiber and
vitamin C.

Lamb

Pork

Kale

Parsley

Fat Protein Fiber Vitamin C

Figure 3.6: Comparison of nutrition levels in different food items. Figure adopted from (Ng
and Soo 2017).

Instead of defining the linear combination manually, we can use PCA to yield precise
weights with which variables can be combined to best differentiate our items. We call the
principal components in this example h1 and h2 because we refer to the latent random
variables used in this work later with the letter h and aim to make the transition smooth.
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Exemplary, it can be seen that h1 summarises our previous findings by pairing and fat with
protein and fiber with vitamin C and then inversely correlating these two pairs. Thereby,
meat is clearly differentiated form vegetables. h2 further differentiates sub-categories
within meat and vegetables by fat and vitamin C, respectively. For example, seafood items
have lower fat content than some meat items as well as lower vitamin C and fiber levels,
hence, they are located in the bottom left. Here, the space spanned by the two principal
components can be interpreted as latent space.
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Figure 3.7: Plot of food items in a two-dimensional latent space using the top two principal
components. Figure adopted from (Ng and Soo 2017).

A probabilistic framework for dimensionality reduction was introduced by (Neil D Lawrence
2003) named Gaussian process latent variable model (GPLVM), extending the idea of PCA to new
properties such as coming with a likelihood function that can explicitly deal with noisy observations
or being treated as a generative model, which allows to simulate new data (Deisenroth, Faisal, and
Ong 2020). This can be done by introducing a continuous-valued latent variable z ∈ RM , turning
PCA into probabilistic PCA (PPCA), a probabilistic latent variable model (Deisenroth, Faisal, and
Ong 2020). In fact, the classical PCA can be shown to arise as the maximum likelihood solution to
a particular form of a linear-Gaussian latent variable model (C. M. Bishop 2006).

The GPLVM can be seen as unsupervised regression problem (Gal and Wilk 2014). That means
that the inputs are now latent and the mapping f : X 7→ Y,X ∈ RN×Q,Y ∈ RN×D, Q � D from a
latent space to the observation space is inferred at the same time as the inputs. More formally, for
N data points and all its dimensionsD, we modelD independent GPs with the following likelihood
functions

p(Y|X) =

D∏
d=1

p(yd|X), (3.23)

p(yd|x) = N (yd|0,KNN + σ2
nIN ), (3.24)

and a prior over the latent inputs X:

p(X) =

N∏
n=1

N (xn|0, IQ), (3.25)

such that the final joint probability model for the GPLVM is

p(Y,X|θ, σ2
n) = p(Y|X,θ, σ2

n)p(X), (3.26)

where the hyper-parameters of the model are the kernel parameters and the signal variance σ2
n.
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Chapter 4

Modelling transition dynamics

In the following, we will apply probabilistic modelling to (meta) reinforcement learning through
Gaussian Processes. We will start with a simple regression setting, where we aim to find a function
f that maps inputs x ∈ RD to corresponding function values f(x) ∈ R. We assume we observed
a set of trianing inputs X := [x1, . . . , xn] and corresponding noisy observations yn = f(xn) + ε
where ε is an i.i.d. random variable that describes observation noise. We then extend this setting
to multi-dimensional targets. Moreover, GPs suffer from high computational complexity and can
become infeasible as the dataset size grows. Therefore, we introduce variational sparse Gaussian
Processes, a variational-inference-based technqiue to make GP regression more scalable. Lastly,
putting everything together, we introduce the MRL model this work incorporates.

4.1 Gaussian Process regression

4.1.1 Definition

Gaussian processe are useful for non-parametric regression which means that we do not assume a
parameter set φ that imposes a fixed structure upon the latent function we like to model (Deisen-
roth 2010). We assume that the "parameters" of interest are the values of the latent function
itself. This might sound counterintuitive, since we like to model transition dynamics which are
typically defined by a finite number of parameters φ that follow physical laws such as Newton’s
laws of motion. However, aiming to find these exact parameters is very difficult, especially with
real-world dynamical systems and noisy observations, i.e., observations collected by real sensors
and not under idealised circumstances as in computer simulations.

Definition 4.1.1 (Stochastic Process). A Stochastic process (SP) is a collection of random
variables {X(t), t ∈ T}, where for each t ∈ T,X(t) is a random variable taking values in a
common measurable space Ω endowed with an appropriate σ-algebra and T is called the index
set of the process.

A common SP is a temporal stochastic process where the index t refers to the time such that
X(t) can be interpreted as the state of the process at time t. T can also be a set of spatial
coordinates (spatial process) or a set of both (spatio-temporal process).

Definition 4.1.2 (Gaussian Process). A Gaussian process is a stochastic process with a finite
number of random variables which are jointly Gaussian distributed (Carl Edward; Rasmussen
and Williams 2004).

We write a function f that is GP distributed as f ∼ GP, or f(·) ∼ GP(m(·), k(·, ·)) when spec-
ifying the mean and/or covariance function, respectively. One can think of a Gaussian process as
a generalisation of the Gaussian distribution. A Gaussian probability distribution describes ran-
dom variables which are scalars (univariate distribution) or vectors (multivariate distribution).
The Gaussian process framework describes a distribution over functions rather than function val-
ues. Intuitively speaking, one can interpret each of these functions as an infinitely long vector
of function values f(x1), . . . , f(xn) at corresponding input locations x1, . . . , xn (for n ∈ N). In
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comparison, the Gaussian distribution is only defined for finite-dimensional vectors. However,
since we are usually only interested in finite training and test sets, we can partition the set of all
function values into training set f, test set f∗ and all ’other’ infinitely many function values fother.
The marginalisation property of the Gaussian distribution (that every probability distribution has)
allows integrating out fother

p(f, f∗) =

∫
p(f, f∗, fother)dfother = N

([
µf

µ∗

]
,

[
Σff Σf∗
Σ∗f Σ∗∗

])
, (4.1)

such that we obtain a finite joint Gaussian distribution. Similar to a Gaussian distribution, which
is completely specified by a mean vector µ and a covariance matrix Σ, a GP is completely specified
analogously by a mean function m(x) and a covariance function k(xi, xj) of a real-valued process
f(x) as

m(x) := E[f(x)]

k(xi, xj) := E[
(
f(xi)−m(xi)

)(
f(xj)−m(xj)

)
]

= cov[f(xi), f(xj)], (4.2)

with xi, xj ∈ RD. This means, that we place a prior p(f) directly on the space of functions (Deisen-
roth 2010). The mean function specifies a prior mean on the functions (describing how the ’aver-
age’ function is expected to look and the prior covariance function k(·, ·) (or kernel) describes the
covariance between any two function values.

Covariance functions

Intuitively speaking, the covariance function characterises the notion of similarity between two
input points. For instance, these differences can describe the spatial or temporal covariance of a
stochastic process Wackernagel 1998.

This definition is adopted from (Deisenroth, Faisal, and Ong 2020).

Definition 4.1.3. Covariance functions output a Gram matrix K ∈ Rn×n with respect to
{x1, x2, . . . , xn}, where Kij = k(xi, xj) (often referred to as covariance matrix or kernel ma-
trix). They are functions k : X × X 7→ R that characterise the similarity between xi, xj ∈ X ,
for which there exists a Hilbert space H (or feature space) and a feature map φ : X 7→ H such
that

K = k(xi, xj) = 〈φ(xi),φ(xj)〉H, (4.3)

and K is symmetric and positive semi-definite matrices which means that

∀z ∈ RN : z>Kz ≥ 0. (4.4)

This generalisation from an inner product to a kernel function is known as the kernel trick
(Scholkopf and Smola 2001). This trick gives freedom to apply a possibly non-linear map Φ to
change the representation of x into one that is more suitable for a given problem. Consequently, it
allows to use many different similarity measures.

In this work, we consider a prior mean function mf ≡ 0 and the squared exponential kernel
function with automatic relevance determination

kSE(xi, xj) := σ2
f exp(−1

2
(xi − xj)>Λ−1(xi − xj)) + σ2

nδij , (4.5)

where θ = ({Λ}, σ2
f , σ

2
n)> is a vector collecting all hyper-parameters of the latent function f whose

values allow for adjusting the covariance function to the given problem. The relevant hyper-
parameters when using a kSE(·, ·) kernel, as in our work, are:

• σ2
f = σ2(f(x)), the scaling of the amplitude (or signal variance) of the latent function f .
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• σ2
n, not a direct parameter of the GP but a parameter of the likelihood function used for

predictions (Deisenroth, Luo, and Van der Wilk n.d.). It indicates how much measurement
noise the observations contain; i.e., by how much the function values f(x) are corrupted by
independent and identically distributed Gaussian noise with variance σ2

n.

• Λ = diag([`21, . . . , `
2
D]), a diagonal matrix of squared length-scales `i, i = 1, . . . , D. These

hyper-parameters determine how relevant a particular input dimension is. For example, if
the length-scale `2 for dimension i = 2 is very large, the output of kSE(·, ·) will be almost
independent of that input. This can be helpful, if some input features are not relevant for
the problem at hand and need to be ’removed’ for good inference results. On the other side,
longer lengthscales cause long-range correlations (Deisenroth, Luo, and Van der Wilk n.d.).

In the next subsection, we discuss how we can find good values for these hyper-parameters.

The SE kernel assumes that the latent function f is stationary and smooth. Stationary covari-
ance functions are of the form xi − xj ,∀xi, xj ∈ RD, meaning that their value only depends on the
difference between two input values. This property makes the function invariant to translations
in the input space (Carl Edward; Rasmussen and Williams 2004). Smooth functions are infinitely
differentiable, i.e., kSE(xi, xj) is of differentiability class C∞. In literature, there exist a variety
of kernels of which some do not share these two properties but allow for more flexible structures
of the latent function. A good starting point is (Duvenaud 2014; Carl Edward; Rasmussen and
Williams 2004). Kernels can also be combined, e.g., by multiplication or addition.

4.1.2 Training

A GP possesses a set of hyper-parameters, usually denoted by the hyper-parameter vector θ. These
are parameters of the mean and covariance function Ψ (e.g. length-scales ` and signal variance
σ2
f ) and the likelihood parameter noise variance σ2

n (in the case of a Gaussian likelihood). Since
we do not know good values for them a priori, we treat them as latent variables and place a prior
p(θ) on them. To illustrate the motivation of the upcoming estimation of good hyper-parameters
θ̂, we firstly show why we can not simply follow a fully Bayesian approach by integrating them out
(Deisenroth 2010), such that

p(f) =

∫
p(f |θ)p(θ) dθ, (4.6)

p(y|X) =

∫ ∫
p(y|X, f,θ)p(f |θ)p(θ) df dθ (4.7)

=

∫
p(y|X,θ)p(θ) dθ. (4.8)

The above integral required for the normalising constant p(y|X) is intractable and can only be
approximated, e.g. by Markov chain Monte Carlo (MCMC) methods. This can be seen by taking
the log of the marginal likelihood (or evidence) with

p(y|X,θ) =

∫
p(y|X, f,θ)p(f |θ) df, (4.9)

log p(y|X,θ) = −1

2
y>
(
Kθ + σ2

nI
)−1

y− 1

2
log
∣∣Kθ + σ2

nI
∣∣− D

2
log
(
2π
)
, (4.10)

where D is the dimension of the input space, I is the identity matrix and the kernel matrix K de-
pends on the hyper-parameters θ. Therefore, for finding good hyper-parameters θ̂ approximately,
we maximise the marginal likelihood with respect to θ, i.e.,

θ̂ ∈ argmax
θ

log p(y|X,θ), (4.11)

which is also called a type II maximum likelihood estimate (ML-II) of the hyper-parameters. Follow-
ing (Carl Edward; Rasmussen and Williams 2004), we use the partial derivatives of the marginal

28



likelihood w.r.t. θ, such that:

∂ log p(y|X,θ)

∂θi
=

1

2
y>K−1

θ

∂Kθ
∂θi

K−1
θ y− 1

2
tr
(

K−1
θ

∂Kθ
∂θi

)
=

1

2
tr
((
αα> − K−1

θ

)∂Kθ
∂θi

)
where α = K−1

θ y. (4.12)

Important to note here is that computing the log-marginal likelihood in 4.10 requires matrix inver-
sion of the kernel matrix.

4.1.3 Predictions

After introducing GPs briefly, we now cover how they make predictions; the main reason why
we use them in the first place. In this thesis, our GP model will deal with trajectory data of
dynamical systems, i.e., it aims to predict the next state, given the current state and a control
signal. There are two types of predictions we will make in the upcoming sections. First, the
multi-step-ahead prediction of a trajectory (a discrete-time series) requires iterative one-step-ahead
predictions where the given inputs are probability distributions (uncertain inputs) themselves. In
other words, we feed the predictive posterior distribution for the state of an individual time step
(except for the last one) back into the model for predicting the next one. Second, later throughout
this thesis, we make one time-step ahead predictions for evaluating the model’s performance by
comparing these predictions with the actual test data (deterministic inputs). In this section, we
start with the theoretical foundations of deterministic inputs first and will then cover uncertain
inputs.

Deterministic inputs

Following Definition (4.1), we can write the joint distribution of observed target values at locations
X and function values at test locations X∗ as

p(f, f∗|X,X∗) = N
([

m(X)

m(X∗)

]
,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
(4.13)

Univariate predictions Inputs x∗ ∈ RD, Outputs y∗ ∈ R
We need to restrict this joint prior distribution to contain only those functions which agree with
the observed data points. This is done by conditioning the joint Gaussian prior distribution on the
observations, i.e., p(f∗|X,X∗, f) = N (mf (x∗), σ2

f (x∗)).

Theorem 4.1.1 (Univariate predictive posterior distribution with deterministic inputs). Ac-
cording to (Carl Edward; Rasmussen and Williams 2004), we obtain the GP posterior predictive
distribution by

µ∗ := mf (x∗) = E[f∗|X, y,X∗] = K(X∗,X)[K(X,X) + σ2
nI]−1y (4.14)

= K(X∗,X)β =

n∑
i=1

βik(xi, x∗), (4.15)

σ2
∗ := σ2

f (x∗) = cov(f∗) = K(X∗,X∗)− K(X∗,X)[K(X,X) + σ2
nI]−1K(X,X∗), (4.16)

where I is the identity matrix and β := (K + σ2
nI)−1y.

Multivariate predictions Inputs x∗ ∈ RD, Outputs y∗ ∈ RE
In this work, we wish to predict target values with multiple dimensions simultaneously. One

approach for this is to train E independent GP models using the same training inputs X =
[x1, . . . , xn], xi ∈ RD but different training targets ya = [ya1 , . . . , y

a
n]>, a = 1, . . . , E. Consequently,

we assume that the function values f1(x), . . . , fE(x) are conditionally independent given an input
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x. However, within the same dimension, the function values are still fully jointly Gaussian (Deisen-
roth 2010). Hence, we can write the predictive posterior distribution of f(x∗) at test input x∗ as a
Gaussian with mean and covariance:

µ∗ := E[f∗|X, y,X∗] =
[
mf1(x∗) . . . mfE (x∗)

]>
, (4.17)

Σ∗ := cov(f∗) = diag
([
σ2
f1 . . . σ2

fE

])
, (4.18)

respectively.

In literature, there also exist other GP methods for modelling vector-valued functions. A good
overview can be found in Álvarez, Rosasco, and Neil D. Lawrence 2012. A simple approach is the
sum of separable kernels, i.e., the sum of the products between a kernel function for the input
space alone and a kernel function that encodes the correlations among the outputs. Linear models
of coregionalisation models follow the form of a sum of separable kernels and can be considered
as generative approaches for valid covariance functions (Goulard and Voltz 1992). Non-separable
kernels can also be constructed from a generative point of view through convolving a base process
with a smooth kernel (Hoef and Barry 1998).

Uncertain inputs

Uncertain inputs arise when we like to predict a function value f(x∗), f : RD 7→ R with x∗ ∼ p(x∗),
i.e., the input x∗ has a probability distribution. One example for this is the multi-step-ahead
prediction of a discrete time series (Carl Edward; Rasmussen and Williams 2004) such as later on
in this thesis when predicting a trajectory. For iterative one-step-ahead predictions, the uncertainty
(i.e. the predictive posterior variance) needs to be propagated forward. In other words, we feed
the predictive posterior distribution for a data point xt for time step t = 0, . . . , T − 1, T ∈ N
back into the model for predicting the next data point xt+1. For both univariate and multivariate
predictions we assume that f ∼ GP(0, kSE(·, ·)). The predictive posterior distribution is obtained
by integrating over x∗ such that

p
(
f
(
x∗
)
|µx∗ ,Σx∗

)
=

∫
p
(
f
(
x∗
)
| x∗,X, y

)
p
(
x∗
)

dx∗, (4.19)

where the on the training data conditioned distribution p(f(x∗)| x∗,X, y) is Gaussian (Girard et al.
2002) but the predictive posterior distribution p(f(x∗)|µx∗ ,Σx∗) is not Gaussian and therefore not
computable. The reason for that is that the mapping of the Gaussian distribution x∗ through a
non-linear function (here, the GP) leads to a ”complicated” non-Gaussian predictive distribution
Deisenroth 2010; Girard et al. 2002. One solution for this intractability is to approximate the
posterior by an analytical Gaussian approximation that possesses the same mean and variance
(Deisenroth 2010; Girard et al. 2002; Kuss 2006; Quinonero-Candela, Girard, and C. Rasmussen
2003).

Univariate predictions Inputs x∗ ∼ N (µ,Σ) ∈ RD, Outputs y∗ ∈ R
The following results are adopted from (Deisenroth 2010). Since we use the SE kernel, we can
compute the approximation of mean µ∗ and variance σ2

∗ in closed-form by using the law of iterated
expectations (Fubini’s theorem). We start with computing the first moment m1of Equation (4.19)
by taking the expectation over the posterior mean (Kuss 2006)

m1 := µ∗ =

∫ ∫
f(x∗)p(f, x∗) d(f, x∗) = Ex∗,f [f(x∗)|µ,Σ] (4.20)

= Ex∗ [Ef(x∗)[f(x∗)|x∗]|µ,Σ] = Ex∗ [mf (x∗)|µ,Σ],

such that we rewrite the predictive mean as a linear combination of the covariance between the
new x∗ and the training inputs,

Ex∗ [mf (x∗)|µ,Σ] =

∫
mf (x∗)N (x∗|µ,Σ) dx∗ (4.21)

=

n∑
j

βj

∫
k(x∗, xj)N (x∗|µ,Σ) dx∗ = β>q, (4.22)

30



where q = [q1, . . . , qn]> ∈ Rn with

qi :=

∫
k(xi, x∗)N (x∗|µ,Σ) dx∗ (4.23)

= σ2
f |ΣΛ−1 + I|− 1

2 exp
(
− 1

2
(xi − µ)>(Σ + Λ)−1(xi − µ)

)
, (4.24)

corresponding to the standard SE kernel k(xi,µ) which has been ”inflated” by Σ (Deisenroth 2010)
and using the integral identity of multiplying two Gaussians. Intuitively speaking, each qi is an
expectation of k(xi, x∗), the covariance between f(xi) and f(x∗), over the probability distribution
x∗. The variance of the predictive distribution σ2

∗, the second central moment, can by decomposed
into three expectations:

σ2
∗ = Vx∗,f [f(x∗)|µ,Σ] = Ex∗ [Vf [f(x∗)|x∗]|µ,Σ] + Vx∗ [Ef [f(x∗)|x∗]|µ,Σ] (4.25)

= Ex∗ [σ
2
f (x∗)|µ,Σ] + Ex∗ [mf (x∗)2|µ,Σ]− Ex∗ [mf (x∗)|µ,Σ]2, (4.26)

where we used mf (x∗) = Ef [f(x∗)|x∗] and σ2
f (x∗) = Vf [f(x∗)|x∗]. Starting with the first expecta-

tion in Equation (4.26), we get

Ex∗ [σ
2
f (x∗)|µ,Σ] =

∫
σ2
f (x∗)N (x∗|µ,Σ) dx∗ (4.27)

= σ2
f −

∫
k(x∗, x∗)>(K + σ2

nI)−1kf (x∗, x∗)N (x∗|µ,Σ) dx∗ (4.28)

= σ2
f − tr

(
(K + σ2

nI)−1L
)
, (4.29)

where the elements of the matrix L ∈ RM×M are given by

Lij =
k(xi, µ)k(xj , µ)√
|2ΣΛ−1 + I|

exp
(

(zij − µ)>(
1

2
Λ + Σ)−1ΣΛ−1(zij − µ)

)
, (4.30)

where we again used the expression for the product of two Gaussians (Quinonero-Candela, Girard,
and C. Rasmussen 2003) and zij := 1

2 (xi + xj) is an arithmetic average of the i-th and j-th input.
The second expectation in Equation (4.26) is obtained by

Ex∗ [mf (x∗)2|µ,Σ] =

∫
(β>k(x∗, x∗))2N (x∗|µ,Σ) dx∗ = β>Lβ, (4.31)

which depends on matrix L as defined in Equation. 4.30. The third term in Equation (4.26) comes
simply in the form of the squared value of the first moment m1 Equation (4.22). Thus, putting all
together, the analytical expression for the variance (the second moment) is

m2 = σ2
f − tr

(
(K + σ2

nI)−1L
)︸ ︷︷ ︸

Ex∗ [Vf [f(x∗)|x∗]|µ,Σ]

+ β>Lβ −m2
1︸ ︷︷ ︸

Vx∗ [Ef [f(x∗)|x∗]|µ,Σ]

. (4.32)

Multivariate predictions Inputs x∗ ∼ N (µ,Σ) ∈ RD, Outputs y∗ ∈ RE
The following results are adopted from (Deisenroth 2010). Since we model all output dimensions
independently, the predictive mean vector µ∗ of p(f(x∗)|µ,Σ) is the collection of all E indepen-
dently predicted means computed according to Equation (4.22):

µ∗|µ,Σ =
[
β>1 q1 . . . β>EqE

]>
, (4.33)

where the vectors qi for all target dimensions i = 1, . . . , E are given by Equation (4.24). In
comparison to the predictions at deterministic inputs, the target dimensions of uncertain input
predictions covary. That means that the predictive covariance matrix

Σ∗| µ,Σ =


Vf,x∗ [f∗1 |µ,Σ] . . . covf,x∗ [f

∗
1 , f

∗
E |µ,Σ]

...
. . .

...
covf,x∗ [f

∗
E , f

∗
1 |µ,Σ] . . . Vf,x∗ [f∗E | µ,Σ]

 (4.34)
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is no longer diagonal, where fa(x∗) abbreviates f∗a , a ∈ {1, . . . , E}. The diagonal variances are
the predictive variances of the individual target dimensions given in Equation (4.32). The cross-
covariances are given by

covf,x∗ [f
∗
a , f

∗
b |µ,Σ] = Ef,x∗ [f∗af∗b | µ,Σ]− µ∗aµ∗b . (4.35)

Plugging in p(x∗) = N (x∗|µ,Σ) we obtain

Ef,x∗ [f∗af∗b |µ,Σ] = Ex∗ [Efa [f∗a | µx]Efb [f∗b |x∗]|µ,Σ] =

∫
ma
f (x∗)mb

f (x∗)p(x∗) dx∗, (4.36)

due to the conditional independence of fa and fb given x∗. Since we can write the mean function
ma
f as

ma
f (x∗) = k(x∗,X) (Ka + σ2

faI)−1ya︸ ︷︷ ︸
=:βa

, (4.37)

according to Equation (4.15), we can then rewrite Equation (4.36) as

Ef,x∗ [f∗af∗b |µ,Σ]
(4.36)

=

∫
ma
h(x∗)mb

f (x∗)p(x∗) dx∗ (4.38)

(4.37)
=

∫
ka(x∗,X)βa︸ ︷︷ ︸

∈R

kb(x,X)βb︸ ︷︷ ︸
∈R

p(x∗) dx∗ (4.39)

= β>a

∫
kaf (x∗,X)>kbf (x∗,X)p(x∗) dx∗︸ ︷︷ ︸

=:Q

βb, (4.40)

by arranging the inner products to pull terms out of the integral that are independent of the test
input x∗. The elements of the matrix Q are given by

Qij = σ2
f,aσ

2
f,b|(Λ−1

a + Λ−1
b )Σ + I|− 1

2

× exp
(
− 1

2
(xi − xj)>(Λa + Λb)

−1(xi − xj)
)

× exp
(
− 1

2
(ẑij − µ)>((Λ−1

a + Λ−1
b )−1 + Σ)−1(ẑij − µ)

)
, (4.41)

ẑij := Λb(Λa + Λb)
−1xi + Λa(Λa + Λb)

−1xj . (4.42)

We can obtain an equivalent but numerically relatively stable expression by defining R := Σ(Λ−1
a +

Λ−1
b ) + I, ζi := (xi − µ) and zij := Λ−1

a ζi + Λ−1
b ζj such that we can rewrite

Qij =
ka(xi,µ)kb(xj ,µ)√

|R|
exp

(1

2
z>ijR

−1Σzij
)

=
exp(n2

ij)√
|R|

, (4.43)

n2
ij = 2(log(σf,a) + log(σf,b))−

ζ>i Λ−1
a ζi + ζ>j Λ−1

b ζj − z>ijR
−1Σzij

2
, (4.44)

where ka = exp(log(ka)) and kb = exp(log(kb)). We emphasise that Q in Equation (4.43) equals L
in Equation (4.30) for identical target dimensions a = b.

In conclusion, following (Deisenroth 2010), the entries of the covariance matrix of the
predictive posterior distribution are

cov[f∗a , f
∗
b |µ,Σ] =

{
β>a Qβb − Ef,x∗ [f∗a |µ,Σ]Ef,x∗ [f∗b |µ,Σ], a 6= b

β>a Qβa − Ef,x∗ [f∗a |µ,Σ]2 + σ2
f − tr

(
(Ka + σ2

nI)−1Q
)
, a = b.

(4.45)

The term σ2
f − tr

(
(Ka+σ2

nI)−1Q
)

equals zero for a 6= b due to the assumption that the target
dimensions a and b are conditionally independent given the input.
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4.1.4 Input-Output Covariance

As seen later in section, we sometimes need to compute the cross-covariance Σx∗,f between a
test input x∗ ∼ N (µ,Σ) and the corresponding predicted function value f(x∗) ∼ N (µ∗,Σ∗). To
illustrate this, according to (Deisenroth 2010), we assume we like to compute the joint distribution
between two given marginal distributions of x∗ and f(x∗) as

p(x∗, f(x∗)|µ,Σ) = N
([

µ

µ∗

]
,

[
Σ Σx∗,f∗

Σ>x∗,f∗ Σ∗

])
, (4.46)

where Σ and Σ∗ is known. The missing piece is the cross-covariance matrix

Σx∗,f∗ := covx∗,f∗ [x∗, fa(x∗)|µ,Σ] (4.47)

= Ex∗,f [x∗f(x∗)>]− Ex∗ [x∗]Ex∗,f [f(x∗)]> = Ex∗,f [x∗f(x∗)>]− µµ>∗ . (4.48)

In the following, we will break down how to compute this matrix. We start with Ex∗,fa [x∗fa(x∗)|µ,Σ]
for each target dimension a = 1, . . . , E as

Ex∗,fa [x∗fa(x∗)|µ,Σ] = Ex∗ [x∗Efa [fa(x∗)|x∗]|µ,Σ] =

∫
x∗ma

f (x∗)p(x∗) dx∗ (4.49)

=

∫
x∗

(
n∑
i=1

βaik
a
f (x∗, xi)

)
p(x∗) dx∗, (4.50)

where the representation of mf (x) is by means of a finite kernel expansion. Eq. () can be rewritten
by pulling all constants (in x∗) out of the integral and swapping summation and integration, such
that

Ex∗,fa [x∗fa(x∗)|µ,Σ] =

n∑
i=1

βai

∫
x∗kaf (x∗, xi)p(x∗) dx∗ (4.51)

=

n∑
i=1

βai

∫
x∗ c1N (x∗|xi,Λa)︸ ︷︷ ︸

=kaf (x∗,xi)

N (x∗|µ,Λ)︸ ︷︷ ︸
p(x∗)

dx∗, (4.52)

with c−1
1 = σ−2

f (2π)−
D
2 |Λa|−

1
2 , (4.53)

such that kaf (x∗, xi) = c1N (x∗| xi,Λa) is a normalised Gaussian distribution in the test input x∗,
where xi, i = 1, . . . , n are the training inputs. The product of the two Gaussians in Equation (4.53)
results in a unnormalised Gaussian c−1

2 N (x∗| ψi,Ψ) with

c−1
2 = (2π)−

D
2 |Λa + Σ|− 1

2 exp
(
− 1

2
(xi − µ)>(Λa + Σ)−1(xi − µ)

)
, (4.54)

Ψ = (Λ−1
a + Σ−1)−1, (4.55)

ψi = Ψ(Λ−1
a xi + Σ−1µ). (4.56)

To obtain the expected value of the product of the two Gaussians, we obtain

Ex∗,fa [x∗fa(x∗)|µ,Σ] =

n∑
i=1

c1c
−1
2 βaiψi, a = 1, . . . , E (4.57)

=

n∑
i=1

c1c
−1
2 βaiψi − µ(µ∗)a, a = 1, . . . , E (4.58)

We can simplify the the covariance in Equation (4.58) by recognising that c1c−1
2 = qai (see Equation

(4.24)) and with ψi = Σ(Σ + Λa)−1xi + Λ(Σ + Λa)−1µ. Moving the term µ(µ∗)a into the sum
and using the first moment from Equation (4.22) for (µ∗)a, we obtain:

Σx∗,f∗ =

n∑
i=1

βaiqai(Σ(Σ + Λa)−1xi + (Λa(Σ + Λa)−1 − I)µ) (4.59)

=

n∑
i=1

βaiqai(Σ(Σ + Λa)−1(xi − µ) + (Λa(Σ + Λa)−1 + Σ(Σ + Λa)−1 − I)µ) (4.60)

=

n∑
i=1

βaiqaiΣ(Σ + Λa)−1(xi − µ), (4.61)
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which together with Equation (4.57) determines the joint distribution p(x∗, f(x∗)|µ,Σ) in Equation
(4.46).

4.1.5 Computational complexity

At the time of writing this thesis, the standard methods for inversion of a matrix X ∈ Rn×n (e.g.
Gauss-Jordan elimination) require O(n3). This assumes that arithmetic with individual elements
has complexity O(1), as is the case with fixed-precision floating-point arithmetic (Knuth 1997).

• Training

– Scalar targets: The kernel matrix K ∈ Rn×n in Equation (4.12) has to be inverted in
each gradient step. Thus, the complexity is simply O(n3).

– Multidimensional targets: Since we model each target dimension as an independent GP,
for E target dimensions this sums up to O(En3) (Deisenroth 2010).

• Predictions

– Deterministic inputs

∗ Univariate targets: Common implementations start with using the Cholesky factori-
sation of the kernel matrix to obtain L := cholesky(K + σ2

nI) and solve

µ∗ = k(x∗, x∗)>L> \ (L \ y) (4.62)

σ2
∗ = k(x∗, x∗)− (L \ k(x∗, x)>k(x∗, x), (4.63)

where solving the triangular systems for each test case prediction takes O(n2) (Carl
Edward; Rasmussen and Williams 2004).

∗ Multivariate targets: O(En2)

– Uncertain inputs

∗ Univariate targets: Computing L ∈ Rm×m in eq (see Equation 4.30) requires a D-
dimensional scalar product per entry, summing up to O(Dn2) computations, where
D is the dimensionality of the training inputs.

∗ Multivariate targets: Q ∈ Rn×n in Equation (4.43) has to be computed for each
entry of the predictive covariance matrix Σ∗ ∈ RE×E , where E is the dimension of
the training targets. O(E2n2D)

4.1.6 Sparse GP regression

Large data sets prohibit the usage of standard GPs due to their computational burden as described
in the last Section (4.1.5) (Deisenroth 2010; Carl Edward; Rasmussen and Williams 2004). To
make GPs more scalable, sparse approximations aim to reduce the computational complexity of
hyper-parameter training. Whereas standard GPs compute the inversion of the full n × n kernel
matrix K, sparse GPs aim to find a reduced-rank approximation of the true covariance matrix K,
often denoted by Q. That means that they the entries in the approximate covariance matrix Q
refer to covariances of inducing inputs X̄m which are either a subset of m training data inputs or a
pseudo-training set of fictitious training data. To obtain a sparse GP method, we need to learn X̄m
and the hyper-parameters θ. X̄m can be seen as extra kernel hyper-parameter that parameterises
the covariance matrix Q. In the GP community, there exist different approximations of X̄m, e.g.
(Bauer, Wilk, and Carl Edward Rasmussen 2016; Lázaro-Gredilla et al. 2010; Quiñonero-Candela
and Carl Edward Rasmussen 2005; Seeger, Williams, and Neil D Lawrence 2003; Titsias 2009).

4.1.7 Variational learning of inducing variables

In this work, we use the variational sparse GP approximation of (Titsias 2009). With this ap-
proach, a distance between the exact GP posterior and a variational approximation is minimised.
That implies that the inducing inputs X̄m become now variational parameters and are learned
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alongside the kernel parameters by maximising the evidence lower bound. We write the predictive
distribution as conditional prior over any finite set of function points f∗ as:

p(f∗|y) =

∫
p(f∗|f)p(f|y) df. (4.64)

and by using the joint distribution p(y|f)p(f∗, fm, f) we write equivalently

p(f∗|y) =

∫
p(f∗|fm, f)p(f|fm, y)p(fm|y) df dfm. (4.65)

We assume that fm is a sufficient statistic for f such that f∗ and f are independent given fm, i.e.,
p(f∗|fm, f) = p(f∗|fm). We can then rewrite the above as

q(f∗) := p(f∗|y) =

∫
p(f∗|fm)p(f|fm)φ(fm) df dfm (4.66)

=

∫
p(f∗|fm)φ(fm) dfm =

∫
q(f∗, fm) dfm, (4.67)

where q(f∗) = p(f∗|y), φ(fm) = p(fm|y). Since y is a noisy observation of f and applying the product
and marginalisation rule to

p(f∗|fm, y) =

∫
p(y|f)p(f∗, fm, f) df∫

p(y|f)p(f∗, fm, f) df df∗
(4.68)

shows that p(f|fm) = p(f|fm, y). By acknowledging the difficulty of finding fm that is sufficient close
to f, we expect q(/vectf∗) to be only an approximation to p(f∗|y). Hence, we can choose φ(fm) to be
a variational Gaussian distribution, where we accept that φ(fm) 6= p(fm|y). This freedom allows us
to choose a mean vector µ and covariance matrix A such that the general form of the approximate
posterior GP distribution is

mq
f (x∗) = k(x∗, X̄m)k−1(X̄m, X̄m)µ (4.69)

kqf (xi, xj) = k(xi, xj)− k(xi, X̄m)k(X̄m, X̄m)−1k(X̄m, xj) + k(xi, X̄m)Bk(X̄m, xj), (4.70)

with B := k(X̄m, X̄m)−1Ak(X̄m, X̄m)−1. This sparse posterior GP is computed in O(nm2). Then,
(Titsias 2009) introduces a variational method to find the optimal φ∗(fm) = N (fm|µ,A) by min-
imising the KL divergence KL(q(f, fm) ‖ p(f, fm, y)) and treating X̄m, φ as variational parameters.
Here, this can be expressed as the maximisation of the following variational lower bound of the
true log marginal likelihood:

log p(y|X, X̄m) =

∫
p(f|fm)φ(fm) log

p(y|f)p(fm)

φ(fm)
df dfm, (4.71)

where the term p(f|fm) inside the log cancels out. Analytically solving for the optimal choice of the
variational distribution φ gives us

log p(y|X, X̄m) = log[N (y|0, σ2
nI + Qnn)]− 1

2σ2
n

tr(Knn −Qnn), (4.72)

= −1

2
log
∣∣Qnn + σ2

nI
∣∣− 1

2
y>(Qnn + σ2

nI)−1y− n

2
log(2π)− 1

2σ2
n

tr(Knn −Qnn),

(4.73)

where Qnn = KnmK−1
mmKmn and 1

2σ2
n

tr(Knn − Qnn) can be interpreted as a regularisation term.
Further maximisation of the ELBO can be achieved by optimising over X̄m by differentiating
log p(y|X, X̄m with respect to φ(fm) without imposing any constraints, such that

φ∗(fm) = N (fm| σ−2KmmΣKmny,KmmΣKmm), (4.74)

with Σ := (Kmm + σ−2KmnKnm)−1. Now, the variational GP is fully specified and predictions can
be made by Equation (4.70).
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4.2 Meta reinforcement learning with latent variable models

In this crucial subsection, we introduce the reader to the meta-learning model fML that lays the
foundation for this work. In the previous section, we have learned that in model-based RL, we
can approximate the dynamics of a system with a model. In our setting of model-based meta rein-
forcement learning, we want to expand the model to learn not just the dynamics of one but several
related systems. Sæmundsson, Hofmann, and Deisenroth 2018 proposed a Meta RL framework
based on a hierarchical latent variable model which infers the relationship between tasks automat-
ically from data. We will now introduce their approach in more detail.

Assume a setting with a potentially infinite number of dynamical systems that are of the same
type but with different configurations, i.e., a distribution over dynamical systems with samples
fp ∼ p(f) indexed by p = 1, . . . , P is assumed. We model the distribution over systems using latent
embeddings H := {h1, . . . ,hP } and model the global properties of all systems through a shared
function conditioned on the latent embedding

xt+1 = f(xt, ct,hp) + ε, (4.75)

such that the successor state depends on the task-specific latent variable p(hp). In the upcoming
sections, fML denotes the meta-learning GP model on the unknown transition function as defined
in Equation (4.75). The input to this model is a concatenated state x̃ = (xt, ct,hp) ∈ RD+K+Q.
The targets are defined by yt = xt+1−xt. The GP’s mean function is specified by m(x̃t) = 0, which
encodes that a priori the state does not change (Deisenroth, Fox, and Carl Edward Rasmussen
2015). Each dimension of the targets y is modelled by an independent GP. A Gaussian likelihood
is used and defined by

p(yt | x̃t,f(·),θ) = N
(
yt | f(x̃t,E)

)
, (4.76)

where θ = {E, L, σ2
f , Q} are the model hyper-parameters and f(·) =

(
f1(·), . . . , fD(·)

)
denotes a

multi-dimensional function. The authors place a standard-normal prior hp ∼ N (0, I) on the latent
variables hp. Hence, the full specification of the model is

p(Y,H, f(·)|X,C) =

P∏
p=1

p(hp)
Tp∏
t=1

p
(
yt|xt, ct,hp, f(·)

)
p
(
f(·)
)
, (4.77)

where H are the latent variables H concatenated to a matrix. The corresponding graphical model
is given in Figure (4.1).

Given dataset D and model M from training
. Single shot performance

forall test tasks do
for each step in horizon do

—plan—: get control sequence using (3)
—execute—: execute first control in sequence
—inference—: infer the value of h⇤ given
observations so far

end
add observations to D
check if task solved

end
. Meta test

while test tasks not solved do
—update—: train M and infer h given D
forall unsolved test tasks do

for each step in horizon do
—plan—: get control sequence using (3)
—execute—: execute first control in

sequence
end
add observations to D
check if task solved

end
end
Algorithm 2: Model-based Meta RL with MPC (Test)

3.2 INFERENCE

To learn the dynamics model we seek to optimize the
hyperparameters ✓ w.r.t. the log-marginal likelihood,
which involves marginalization of the latent variables
in (6). For predictions of the evolution of a system we
also need to infer the posterior GP and the posterior dis-
tribution of the latent variables H = (h1, ...,hP ). We
approach this problem with approximate variational in-
ference. We posit a variational distribution that assumes
independence between the latent functions of the GP and
the latent task variables

Q(f(·),H) = q(f(·))q(H) (7)

and minimize the Kullback-Leibler divergence between
the approximate and true posterior distributions. Equiv-
alently we can maximize the evidence lower bound

L = EQ(f(·),H)

h
log

p(Y ,H,f(·)|X,C)

Q(f(·),H)

i
, (8)

which lower-bounds the log-marginal likelihood [15].
We parameterize our variational distribution such that we
can compute the lower bound in (8). We then jointly op-
timize L with respect to the model hyperparameters and
the variational parameters.

Sparse Gaussian Processes It is important to account
for the fact that training a GP on a joint data set of

y
t

1
f(·)

xt

ut

hp

t = 1, . . . , Tp

p = 1, . . . , P

Figure 1: Graphical model for our ML-GP model.

x

f
(x

)

Train pred.

Test pred.

True f(x)

Train data

Test data

Figure 2: The figure shows six unknown tasks (toy exam-
ples) with a shared structure (the same function) and task
specific variation (fixed offset). The ML-GP model is
able to disentangle the two automatically given the train-
ing data (black discs) as demonstrated by the training
prediction curves. It also infers a reasonable value for
the offset given a single observations from unseen test
tasks (orange discs) and can use the global structure to
generalize predictive performance on those tasks.

P different systems quickly becomes infeasible due to
the O(T 3

) computational complexity for training and
O(T 2

) for predictions where T is the total number of
observations. To address this we turn to the variational
sparse GP approximation [30] and approximate the pos-
terior GP with a variational distribution q(f(·)) that de-
pends on a small set of M ⌧ T inducing points. We in-
troduce a set of M inducing inputs Z = (z1, . . . , zM ) 2

RM⇥(D+K+Q), which live in the same space as x̃, with
corresponding GP function values U = (u1, . . . ,uM ) 2

RM⇥D. We follow [14] and specify the variational ap-
proximation as a combination of the conditional GP prior
and a variational distribution over the inducing function
values, independent across output dimensions

q(fd
(·)) =

Z
p(fd

(·)|u
d
)q(ud

)dud. (9)

where q(ud
) = N (u

d
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d,Sd
) is a full rank Gaussian.

The integral in (9) can be computed in closed form since
both terms are Gaussian, resulting in a GP with mean and

Figure 4.1: The graphical model of the meta-learning model fML, taken from (Sæmundsson, Hof-
mann, and Deisenroth 2018).

4.2.1 Variational Inference

For training fML and inference of the latent variables H = (h1, . . . ,hP ) for P tasks, we use vari-
ational inference. We will briefly detail the model details in this subsection and refer the reader
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to Section (3.3) for an introduction to VI and to Section (4.1.6) for details on how the variational
sparse GP regression works. Both the global function fML and the latent embeddings hp are learned
by given trajectory observations D = {(x̃, y)P1:T } from a set of training systems, with inputs and
outputs as defined previously. During training of the GP fML and inferring the train task variables
H, the GP hyper-parameters θ and the variational parameters φ = {Z,M{md,Sd}Dd=1, {np,Tp}Pp=1}
are jointly optimised w.r.t the ELBO. For inferring the task variable for a test task, Sæmundsson
et al. only optimise the variational parameters for the latent variables h, i.e., φh = {np,Tp}Pp=1.
In practice, we use a single sample hp ∼ q(hp) drawn from the variational distribution for each
system.

We posit a variational distribution that assumes independence between the latent functions of
the GP and the latent task variables

Q(f(·),H) = q(f(·))q(H). (4.78)

We can now minimise the Kullback-Leibler divergence between the approximate and true posterior
distributions by maximising the ELBO which we denote here with L, i.e.,

L = EQ(f(·),H)

[
log

p(Y,H, f(·) | X,C)

Q(f(·),H)

]
. (4.79)

More over, we turn to a variational sparse GP approximation (see subsection 4.1.6 or Titsias 2009
for more details) and approximate the posterior GP with a variational distribution q(f(·)) that de-
pends on a small set of M � T inducing points, where T is the total number of observed time steps
across all tasks. There is a set of M inducing inputs Z = (z1, . . . , zM ) ∈ RM×(D+K+Q), which live
in the same space as x̃ with corresponding GP function values U = (u1, . . . ,uM ) ∈ RM×D. Fol-
lowing (Hensman, Fusi, and Neil D Lawrence 2013), we specify the variational approximation as
a combination of the conditional GP prior and a variational distribution over the inducing function
values, independent across output dimensions

q(fd(·)) =

∫
p(fd(·) | ud)q(ud) dud, (4.80)

where q(ud) = N (ud | md,Sd) is a full rank Gaussian distribution with covariance matrix Sd. The
above integral can be computed in closed form since both terms are Gaussian and standard results
apply here (e.g., one can find them in Deisenroth, Faisal, and Ong 2020), resulting in a GP with
mean and covariance by

mq(·) = k>Z (·)K−1
ZZmd, (4.81)

kq(·, ·) = k(·, ·)− k>Z (·)K−1
ZZ(KZZ − Sd)K−1

ZZkZ(·), (4.82)

with kZ(·)i = k(·, zi) and KZZ = k(zi, zj).

For the latent variables H, we assume a Gaussian variational posterior

q(H) =

P∏
p=1

N (hp | np,Tp), (4.83)

where Tp is a full rank covariance matrix. In practice, a diagonal covariance matrix is more efficient
for computation of the ELBO, which is why we concatenate the diagonal covariance matrix entries
to the vectors h1, . . . ,hP . In this work, that means that when we refer to an embedding vector h,
that vector fully specifies the embedding’s Gaussian random variable. The ELBO can be shown to
decompose into

L =

P∑
p=1

T∑
t=1

Eq(ft|xt,ct)
[

log p(yt | ft)
]
−KL(q(H) ‖ p(H))−KL(q(U) ‖ p(U)), (4.84)

where the expectation is taken with respect to

q(ft | xt, ct) =

∫
q(ft | xt, ct,hp)q(hp)dhp. (4.85)

This integral is intractable due to the nonlinear dependence on hp. Instead of computing the first
and second moments in closed form, the authors decide to approximately integrate out the latent
variable using Monte Carlo sampling due to smaller computational complexity.
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Chapter 5

Related work

In this chapter, we briefly review related concepts to our approach. Being at the intersection
between active learning and meta reinforcement learning, we will present recent ideas in those
two communities and discuss how they relate to PATA.

5.1 Active learning

An active learning (AL) setting is one in which the learner has the ability to influence or select its
own training data (D. Cohn, Ghahrami, and Jordan 1996). Traditional "passive" learning systems
lead to a hypothesis that explains the given training data. In contrast, an active learning system is
characterised by eagerly developing and testing new hypotheses as part of a continuous learning
process (Settles 2009). Hence, it actively selects which data points to learn. Formally, a mapping
X 7→ Y based on a set of training examples D = {(xi, yi)}mi=1, where xi ∈ X and yi ∈ Y, is an
active learning problem when the learner is allowed to iteratively select new inputs x∗, observe the
resulting output y∗ and incorporate the new examples (x∗, y∗) into its training set.

Generally speaking, the primary question of active learning is which x∗ to query next. The ac-
tive learning community differentiates between multiple scenarios in which the learner may be
able to query data. The to this work similar scenario is pool-based sampling for which large collec-
tions of unlabelled data U can be gathered at once and there is only a small set of labelled data L.
The algorithm then requests labels for points in the pool U .

For this work, we consider the AL literature as reference for utility functions we want to incor-
porate in our framework. Technically speaking, one could frame our generated set of candidate
tasks as a pool (we cover how we generate that set later) and categorise our problem as a pool-
based learning setting. However, the fundamental difference in our setting is that our pool is
dynamic rather than static. After each task acquisition, the inferred relations between the known
tasks can change significantly. This is illustrated by an example later on the thesis. For now, we
ask the reader to keep in mind that the positions of embeddings in the latent space might change
over added tasks. For this work, we borrowed ideas from active learning research; in particular,
closed-form heuristics that compute fast and do not require much experience. We present all the
concepts from the AL community we have included in this work later in the Chapter (6.1). Apart
from these approaches, there have arisen new ideas to tackle typical AL settings. We will quickly
review two of them and elaborate on why we have decided to not include them in our framework.

Learning Active Learning from Data Konyushkova, Sznitman, and Fua 2017 as well as (Bach-
man, Sordoni, and Trischler 2016) suggest a "data-driven approach to active learning". The idea is
to train a regression model on how previously acquired candidates reduced the objective model’s
error in a particular learning state. Thereby, they frame the query selection procedure as a regres-
sion problem. One benefit of this approach is to not rely on AL heuristics but learning a tailored
selection strategy for the particular underlying data distribution. The authors demonstrate that
this approach works well on real data from several different domains.
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Apart from the fact that the paper caters to classification problems rather than regression prob-
lems (this issue might have been solved by some model changes), additional reasons why this
approach is not applicable here are two-fold: Firstly, this approach assumes a static distribution of
the candidate pool it aims to select candidates from. This assumption does not hold in our setting,
as explained above. Secondly, another implication of the dynamic latent space, candidates belong-
ing to configurations similar to those already learned do not improve the model as significantly
as they were previously when they were not solved. That means a model that aims to determine
which structure in candidates is essential for improving another model’s error and which are not,
can not be applied here.

Framing AL as RL problem Following (Fang, Li, and T. Cohn 2017; Konyushkova, Sznitman,
Fua, and Al 2019; Pang et al. 2018), the authors formalise AL with a Markov decision process with
universal state and action spaces as well as a reward function that motivates an agent to minimise
the annotation cost until a certain performance level has been reached. Both papers use deep
neural networks to derive a query criterion that is parameterised by embeddings of the respec-
tive data set. In comparison to our approach, this procedure is very data-hungry. For instance, in
(Konyushkova, Sznitman, Fua, and Al 2019) the RL procedure starts with 100 episodes with ran-
dom actions. Later on, they perform 1000 RL iterations, each of which comprises 10 AL episodes.
In each episode, they actively select 100 data points. In our setting, we consider a new candidate
to be a T steps long observed trajectory of a corresponding task configuration. Hence, we argue
that applying such an RL approach within this work’s scope is infeasible.

5.2 Meta reinforcement learning

Meta reinforcement learning (MRL) has received much attention in recent years. We do not at-
tempt to review MRL techniques in general but to focus on papers in which considerations have
been done regarding the active acquisition of tasks.

Unsupervised Meta-Learning for Reinforcement Learning In (Gupta et al. 2018), the authors
propose a framework for unsupervised meta-learning for reinforcement learning with the promise
of removing the need for manual task design. That means that the paper’s approach is constructing
a distribution over reward functions, i.e., a mapping from a latent variable z ∼ p(z) to a reward
function rz(s, a) : S × A 7→ R, with S denoting to states and A denoting to actions. The authors
present a "general recipe" and finally, show an experimental evaluation with an RL algorithm (not
MRL) that learns from scratch and a meta-RL method that used a hand-designed task distribution.
To the best of our understanding, the concrete suggestions in this paper do not solve our problem.
Firstly, learning a task distribution is not the same as exploring a task distribution efficiently. We
see the need for automatic task distribution construction justified by other reasons such as avoiding
a misspecified one.

Secondly, the authors claimed that during experimental evaluation, automating the design bur-
den of the task design through their method exceeded the performance of a RL model learning to
solve tasks sampled from a manually-designed distribution from scratch. We argue that a more ap-
propriate baseline would have been a MRL-model that samples tasks from the manually-designed
distribution randomly, like in our paper. In fact, such a model had also been evaluated in their
experiments but it was claimed that to compare that model with their approach was a "unfair com-
parison" and it was framed as "upper bound".

Lastly, the paper does not cover task distributions over transition functions. In comparison, we
mostly speak about distributions over transition functions in this work, but in principle, the here
introduced framework is agnostic to the actual type of task distribution as long as reasonable
task embeddings can be inferred. In fact, later on in the experiment section, we demonstrate the
attempt to acquire tasks with different reward functions actively.

A Model-based Approach for Sample-efficient Multi-task Reinforcement Learning To the best
of our knowledge, the paper published by Landolfi, G. Thomas, and Ma 2017 offers insights into
an "active task selection" scheme that is closest to this thesis. The paper’s framework assumes a
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distribution over tasks with different reward functions and attempts to learn a dynamics model
during the meta-training allowing for quick adaptation to new tasks at test time with only few
samples. Interestingly, the paper then mentions task sampling as one of the critical steps within its
sequential multi-task training procedure and suggests some heuristics to choose tasks actively.

Concretely, they suggest two ideas: Firstly, they propose skipping tasks, a concept that assumes
the setting provides a function µ : Ψ 7→ R that rates the difficulty of a task configuration. Ideally,
this function could be used to focus on tasks which are hard and skip tasks that are similar to
already learned ones in terms of their difficulty. However, the authors do neither suggest how such
a function would be defined in practise nor what hard tasks would be. Secondly, rating tasks aims
to compute the difference between a model’s predicted policy reward and the real reward. Later
on, they empirically evaluate this method on one RL environment with "modest" results including
"vanishing gains" when reaching a higher sampling budget. We found these attempts encouraging
to see during our background research but could not adapt any of their methodology to approach
our problem.
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Chapter 6

Active task acquisition

6.1 Introduction

The goal of PATA is to actively acquire tasks through exploring a latent space that describes task
relations. We want to find an efficient way of selecting tasks such that our model generalises fast
to all possible tasks within a given range. In the previous sections, we have become acquainted
with an introduction of the problem space we are in, probabilistic modelling techniques that allow
us to speculate about task dynamics and related work that has not tackled informed task selection
methods yet. Based on these preliminaries, we can now formalise the problem more rigorously.

6.2 Problem formulation

We consider a distribution over dynamical systems with samples fp ∼ p(f) indexed by p = 1, . . . , P ,
where each sample fp has system-specific configurations Ψ ⊂ RE . Let Ψ+ parameterise a family
of admissible configurations that specify the family of admissible transition dynamics fΨ+ : X ×
C 7→ ∆X . Starting from an initial state x0 ∈ RD and applying control signals C ∈ C ⊂ RT×K ,
τ := (x0, . . . , xT ) denotes the trajectory of states visited. Based on N pairs of control signals
C := {C1, . . . ,CN} and observed trajectories T := {τ1, . . . , τN}, let fML simultaneously learn the
transition dynamics for predictions and infer task-specific latent embeddings p(hp) for each task,
with H = {h1, . . . ,hP }. Furthermore, let L(τn, τ̂n) := 1

N

∑N
n=1 `(τn, τ̂n) refer to a loss function of

fML expressing its predictive performance on a test trajectory τ . Using this notation, we define our
objective:

Without domain knowledge available, we aim to actively select Ψ∗ ⊂ Ψ that lead to low
losses L(τn, τ̂n) of predicting trajectories T∗ from all admissible task configurations Ψ+

while minimising |Ψ∗|. Instead of exploring Ψ+ directly, we want to leverage explicit
knowledge about the relations between the previously learned tasks in form of H.
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Table 6.1: Overview of the notation used in the subsequent sections.

ψ ∈ Ψ Task configuration

fψ Transition function of dyn. system configured with ψ

C Set of control signals in matrix form

x State of a dynamical system

τ ∈ T Observed trajectories

h ∈ H Inferred latent embeddings

h∗ ∈ H∗ Set of candidates in latent space

L(τn, τ̂n) Loss function of fML

6.3 High-level perspective

Now that we have formulated the problem, we are ready to present our approach PATA. The
upcoming subsections cover the details of the two main mechanisms within PATA: The generation
of a candidate set (SECS) as well as the latent candidate selection strategies. Let us quickly consider
the steps before and after PATA within the MRL context. Before it starts, step 1 and 2, as noted
in Figure (6.1) provide the starting point as detailed in the next subsection. Post-PATA, i.e., after
a latent candidate has been selected, the corresponding configuration is obtained by mapping
the candidate to configuration space through fLC. In step 6, we observe the trajectory from the
actively acquired task configuration. This step is the "expensive" piece of the procedure. Here,
we apply control signals on the newly configured transition function from the real world. Step 7
denotes the ability to evaluate the model’s performance before repeating. For the sake of brevity,
we left out the stopping criterion in the Figure. Furthermore, we want to inform the reader that
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Optional:
7. Evaluating model on test tasks
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Figure 6.1: The procedure of PATA in a nutshell.
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already inferred embeddings are dynamic. This brings the benefit of always selecting a task based
on information on the current set of learned tasks and their relations. Illustrated in (6.2), the
dynamic embeddings motivate the reason why we do not select multiple tasks at once or use non-
myopic selection strategies. Instead, we greedily select the most informative task at each iteration
and re-train the model and re-infer the embeddings after adding a task.
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(a) The latent embeddings of four different car config-
urations (as stated in the grey-shaded boxes) inferred
by observations.

h2<latexit sha1_base64="Rw55uvOSu1cQyqveEntyOOtVEjI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48V7Ye0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3n1BpHssHM0nQj+hQ8pAzaqx0P+rX+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8NrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbRqVe+iWru7rNQf8ziKcAKncA4eXEEdbqEBTWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QP8/o2s</latexit>

h1<latexit sha1_base64="VKytHaI8Woa14unBoIOvgE4QS0A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48V7Ye0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3n1BpHssHM0nQj+hQ8pAzaqx0P+p7/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8Slq1qndRrd1dVuqPeRxFOIFTOAcPrqAOt9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AH7eo2r</latexit>

Number
of passengers

2

1

Horsepower 2500160 5000

(b) The latent space, i.e., the arrangement of latent
embeddings, after observations of a jet with 5000hp
were added.

Figure 6.2: The inferred latent embeddings are dynamic and can (dramatically) change after ob-
servations of a new task are added. Remember the example from the introduction (1.2), where
the model infers embeddings for different cars. Imagine it observes a small private jet taking off
and adds those observations to the data set. Note the difference in the distances between tasks
assuming that the scale of the fictional graph has not changed. The takeaway here is that the
embedding positions changed significantly after the jet observations were added.
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Figure 6.3: A black-box overview of the both models used in this work with its inputs and outputs.
Since fML can be used in two modes, we show the inputs and outputs for both modes separately.
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Algorithm 1 PATA

1: input: ψ ∈ Ψ+,x0

2: sample random control signals C
3: obtain T = Tinit with C,x0 and fψ . Generate initial trajectories
4: train fML and infer initial latent embeddings H = Hinit
5: while the stopping criterion has not been met do
6: obtain candidates H∗ by optimising latent space region . initialise model
7: select most informative candidate in latent space . depends on selection policy
8: map selected candidate to configuration space to obtain ψ∗
9: apply C to fψ∗ and yield trajectory τ ∗ . expanding dataset

10: retrain model fML with T = T ∪ τ ∗ . update embeddings
11: optional: evaluate on test tasks . depends on stopping criterion
12: end while

6.4 Warm-up

To actively select new tasks, a regressor fLC learns the mapping between latent and configuration
space. Unfortunately, our approach suffers from the cold-start problem: The regression function
fLC requires initial data to output predictions, i.e., points in the latent space and annotations of the
corresponding system configurations.

To obtain these points in latent space, we observe initial trajectories Ttraining from either manu-
ally chosen or randomly sampled configurations from the domain of admissible configurations.
Then, we infer corresponding latent embeddings. Apart from the quantity of required initial tra-
jectories, we emphasise that the corresponding task configurations need to incorporate a certain
degree of diversity. If they are too similar, the meta-learning model fML struggles to infer distinct
embeddings.

6.5 Safe exploration of candidate space (SECS)

To generate task candidates, we use the latent embeddings of the previous step and make assump-
tions about the infinite latent space. Note that in theory, we can map all possible task configurations
(the whole task distribution) to that latent space by inference. The other way around is possible
too: given some observed task configurations, we can map then inferred embeddings back to the
configuration space.

In this work, we explore that space by selecting points out of a grid discretisation of aH-dimensional
region I = I1 × · · · × IH resulting in a finite set of candidates U ∈ RH . Given that the embeddings
come in the form of random variables rather than point estimates, one way to yield U is to span
a grid over the means of the latent embeddings M := {µ1, . . . ,µP } where P is the number of
learned embeddings so far. Alternatively, one could draw samples from these distributions and
span a grid over these.

To determine reasonable endpoints of the grid, one could take the minimum and maximum of
the set of known embedding means M for each dimension. However, given the nature of the
embeddings, this might limit the task exploration to only considering tasks in-between the known
task configurations. A naive solution could be to define the endpoints after gaining some empirical
knowledge manually. A more principled approach is to borrow the idea of slack variables from
support vector machines and add constant values ξ ∈ RH×2 to the endpoints of each axis to al-
low to increase the distance from known embeddings. One can understand these parameters as a
heuristic the practitioner can use to specify the degree of aggressiveness to explore.

Points that lie too distant from the known ones lead to mappings in the configuration space that
refer to inadmissible task configurations. Intuitively, the problem of finding good endpoints for the
region to be discretised can be interpreted as a classic exploration vs. exploitation problem. The
region should be large enough to allow for exploration of new admissible configurations but only
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select safe ones, hence, exploiting the gained knowledge about known embeddings. Here, we relax
the condition of having only points that map to admissible points and allow for invalid points, i.e.,
points mapping to infeasible task configurations, within the multi-dimensional region spanned by
the grid intervals. However, for a set of endpoints, we compute the mapped configurations for all
points in the grid with fLC and then filter points out that have invalid configurations. That said, we
still should aim to find a region for which we do not have to reject too many points from member-
ship of the candidate set. Otherwise, we waste many points and lose much of the grid’s resolution.

Furthermore, not all mapped, non-rejected task configurations are of ’high quality’. Especially
when the regression model fLC is supposed to output configurations for candidate points in latent
regions, it has not gained much experience with (i.e., high distance to known task embeddings)
yet. It might output points that lie within the admissible configuration boundaries but are some-
how degenerate. For example, it outputs the same values plus some noise for every input in a
certain region.

For the mapping fLC, we can use a standard GP with an squared exponential kernel, modelling
each target dimension independently. We use its predictive variance Σ∗ to speculate about the
quality of its predicted configurations. One heuristic is to compute the mean of the predictive vari-
ance for all predicted configurations and reject the ones for which its predictive variance is higher
than on average.

To find a good solution for the endpoints, we frame this trade-off as an optimisation problem
and turn to Bayesian optimisation as defined in (3.2). This optimisation technique is convenient
because we treat the rejection mechanism as a black-box function. An alternative approach to
avoid infeasible mappings could be to warp the learned mapping around the admissible config-
uration region, e.g. by the usage of a warped GP (Lázaro-Gredilla 2012; Rios and Tobar 2019;
Snelson, Ghahramani, and Carl E Rasmussen 2004).
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(a) A naive approach: The means of the latent embed-
dings specify the endpoints of the region to be discre-
tised.
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(b) Adding slack variables to the endpoints (red ar-
rows) to expand the region of the discretised region,
leading to a more diverse candidate pool by accepting
points outside of the known embeddings.

Figure 6.4: Different approaches for discretising the latent space. The green dots denote the latent
embedding means.

6.5.1 Bayesian optimisation of slack parameters

Let M := {µ1, . . . ,µP } be the set of means of random variables h ∈ H ⊂ RH and I :=
{µmin,µmax} with I ⊂ RH two vectors whose entries are the minimum and maximum value
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of M in each of its elements dimensions. Furthermore, consider the set of two slack variables
Ξ := {ξmin, ξmax} that are added to I in order to expand the region in latent space to be discre-
tised. Let X ⊂ RH be the set discretised region whose endpoints are determined by I. Analogously,
let X ′ ⊂ RH be the by the slack variables expanded region whose endpoints are determined by
I ′ := {µmin + ξmin,µmax + ξmax}.

For the sake of brevity and with some abuse of mathematical formalism, we define the function
r : RH×2 7→ N that takes an region interval as input, specified by endpoints such as I, I ′, and
returns the number of feasible points within that region, where a feasible point is a point that
maps to an admissible task configuration. In other words, this black-box function incorporates the
rejection mechanism. Now, we formalise the optimisation problem of finding slack parameters that
have maximum absolute-value (L1) norms

argmax
Ξ

1

N∑
n=1

D∑
d=1

|ξ|n,d (6.1)

1 :=


1 if r(X

′)
r(X ) > α,

0 if r(X
′)

r(X ) <= α,
(6.2)

with an indicator function 1 and a threshold hyper-parameter α ∈ [0, 1]. The threshold hyper-
parameter allows to influence how wide the boundaries of the space are. Choosing a low value
leads to more rejected points but more aggressive exploration. A high value makes the region
small.

6.6 Selection of task candidate

There are two classes of selection strategies we introduce in this work: Model-based (MB) and
model-free (MF) tactics. For each of them, we cover concrete tactics that are active-learning-inspired
ideas to derive utility functions. An utility function is a function u(h∗) : RD 7→ R that scores a
candidate. In general, given an objective, the better the candidate, the higher the score. We start
with the model-free strategy because it is conceptually simpler to understand. After the reader
became acquainted with the fundamental principles of acquiring tasks, we move on to the more
complex model-based strategy.

6.6.1 Strategy 1: Model-free tactics

They key idea of model-free policies is to select the most informative latent points based on their
feature characteristics, independent of the model fML. That means, we do not touch the model
at all when deciding which task to select next. This approach breaks down to ranking all points
within the candidate set by either comparing them to each other or using the inferred random
variables of known tasks. The fundamental idea of these policies has also been applied to typical
active learning settings, see (Yu and Kim 2010).

The main advantage of not requiring any predictions or other interactions with fML while scor-
ing the candidates is lower computational costs than with a model-based policy. Also, due to its
conceptual simplicity, its theoretical background is fairly easy to understand. Note that in princi-
ple, when applied in typical pool-based AL settings, model-free selection policies would allow us
to spend our whole selection budget b ∈ N+ at once. One could formalise the selection of the best
set of candidates as a combinatorial optimisation problem since we do not need any information
from the model. However, since the latent embeddings of known tasks can change after adding
task trajectories from new configurations, we need to sequentially generate new candidates after
adding a new task trajectory to our dataset (as described in (6.5)). Therefore, the typical benefit
of the unnecessity of updating the model when passively selecting data points does not apply here.
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Algorithm 2 PATA with model-free tactics

1: input: ψ ∈ Ψ+,x0, α, . this is a comment
2: sample random control signals C
3: obtain T = Tinit with C,x0 and fψ . Generate initial trajectories
4: train fML and infer initial latent embeddings H = Hinit
5: S = ∅
6: while the stopping criterion has not been met do
7: find candidates H∗ by optimising latent space region
8: for all h∗ ∈ H∗ do
9: compute utility u(h∗) and add score to S

10: end for
11: select best candidate h∗ = argmaxh∗ S
12: apply C to fψ∗ and yield trajectory τ ∗ . expanding dataset
13: add τ ∗ to dataset T = T ∪ τ ∗
14: retrain model fML with T = T ∪ τ ∗ . update embeddings
15: optional: evaluate on test tasks . depends on stopping criterion
16: end while

In the following, we touch upon two different types of utility functions within the model-free
strategy. We distinguish them by the nature of how they compute the utility score for a candidate.

Tactic 1.1: Geometric utility functions

We denote geometric utility functions as functions that compute the pairwise distance between
candidates and select the point with the highest distance to all other candidates in either latent
or configuration space. In geometry, there exist various distance functions, such as the Chebyshev,
Euclidean, Manhattan, or Minkowski distance (M. M. Deza and E. Deza 2009). We derive two
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(a) The selected point with highest Euclidean dis-
tance to any other candidate.
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(b) The selected point with highest Manhattan
distance to any other candidate.

Figure 6.5: Two exemplary distance functions illustrating how the selection of the point with the
highest distance works.

methods from this idea: (a) greedy sampling the latent space (GSLS) and (b) greedy sampling the
configuration space (GSCS) (for typical AL-situations, this idea has been used in the past, e.g., see
Wu, Lin, and Huang 2019).

GSLS: Assume we have K embeddings and N candidate points in each iteration, where we
select one candidate in an iteration, as described in algorithm (3). Intuitively, the process of
GSLS is threefold: (1) We start with computing the distances between each candidate and
each known embedding’s mean, (2) for each candidate, we compute the shortest distance
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to any embedding’s mean, (3) we select the candidate with the maximum shortest distance.
Hence, the utility function a candidate h∗ is defined as

uGSLS(h∗) := min
hk

‖h∗ − µ(hk)‖ , (6.3)

with k = 1, . . . ,K indexing the known task embeddings.

The idea behind GSCS is very similar with the only difference that we map the candidates into
the configuration space and compute the distances between them and the known configurations.

uGSCS(h∗) := min
ψk

‖fLC(h∗)−ψk‖ , (6.4)

with k = 1, . . . ,K indexing the known task configurations.

Arguably, one criticism about this tactic might be that it does not need the task embeddings
in the first place. If we were to maximise the distances between configurations, why do we not
simply discretise the configuration space and greedily sample the most distant points from that
set? However, for the sake of good order, we include this tactic as well and let the reader decide in
which scenario GSCS could be appropriate to use. Note, that this argument does not hold for GSLS:
In practice, we might not know which configuration parameters are essential to consider when
learning the relations between tasks. By the usage of fML, we infer these latent parameters, and by
greedily sampling the latent space, we exclusively focus on them, i.e., the most critical variables.

Tactic 1.2: Probabilistic utility functions

Given that the task random variables H have a probability distribution, we refer to an probabilistic
utility function one that considers the full distribution to score the candidates. In comparison, in
the previous tactic, we only considered the mean of the embeddings.

One approach is to treat the collection of Gaussian distributed latent embeddings as a Gaussian
mixture model and choose the candidate that is most unlikely to be sampled from that model
1. Consider N latent embeddings H := {h1, . . . ,hN}, where each h has a mean and variance
(in practise, we would concatenate the mean and the diagonal entries of the variance, see ()).
Each of these task random variables constitutes a mixture component and we equally weight all
components. Then, the likelihood of the GMM for a candidate point h∗ is defined by

uGMM := p(h∗|θ) =

N∑
n

πnN (h∗|µn,Σn), (6.5)

πn =
1

N
,∀n ∈ {1, . . . , N}, (6.6)

where we denote the collection of all model parameters as θ := {µn,Σn, πn : n =
1, . . . , N}.

6.6.2 Strategy 2: Model-based policies

Model-based policies use the predictive posterior distribution of the model fML to score candidates.
They use the model to evaluate the quality of a candidate instead of only using the candidates’
characteristics as a proxy. In theory, this allows for better-informed decision making than in the
model-free strategy: we directly "ask" the to-be-improved model which task trajectories it prefers,

1I thank Dr. Marc Peter Deisenroth for pointing this idea out.

48



x2<latexit sha1_base64="Ilt3tNfXfm11YyR9AgTD7cNE4Zc=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fjw4rGi/ZA2lM120i7dbMLuRiyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtR1Sax/LejBP0IzqQPOSMGivdPfWqvVLZrbgzkGXi5aQMOeq90le3H7M0QmmYoFp3PDcxfkaV4UzgpNhNNSaUjegAO5ZKGqH2s9mpE3JqlT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtO0YbgLb68TJrVindeqd5elGsPeRwFOIYTOAMPLqEGN1CHBjAYwDO8wpsjnBfn3fmYt644+cwR/IHz+QMVbY28</latexit>

x1<latexit sha1_base64="V6v5O2rO7qz+rOyVtgCufBOZ8as=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fjw4rGi/ZA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR9dRvPXJtRKzucZxwP6IDJULBKFrp7qnn9Uplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8MrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxTuvVG8vyrWHPI4CHMMJnIEHl1CDG6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AET6Y27</latexit>

(a) A Gaussian mixture model with K = 3 components
fitted to a two-dimensional dataset. Figure is adapted
from (Deisenroth, Faisal, and Ong 2020).
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(b) Three latent embeddings treated as GMM with
equal-weighted components. The green grid refers to
all feasible latent points, the red grid denotes the in-
feasible candidates.

Figure 6.6: Illustration of Gaussian mixture models for density estimation in Figure (6.6a) and
candidate selection in fig (6.6b).

where the preference criterion depends on the tactic. To yield information from the model about a
candidate, it needs to be in the same shape as the inputs of the training set.

x̃t :=
[
xt ct h∗

]>
∈ RD+K+Q, (6.7)

where h∗ is the candidate point in latent space. We assume the same start state x0 for all trajectories
regardless of the task configuration and we assume that we can apply the same control signals
from the initial training tasks to generate a trajectory. Naively, we could just put together one
input vector for each candidate point with

x̃∗,t :=
[
x0 c0 h∗

]>
, with t = 0, (6.8)

but this would ignore the how the states evolve over time and how uncertain the model is about
the transitions. We hypothesise that letting the model select h∗ simply by x̃∗,0 would lead to a
selection mechanism that would prefer candidates most distant to the already inferred ones. Note
that we have not thoroughly investigated this further. Instead of the most distant candidate, an ap-
proach that would resemble a model-free policy, we want to take into account the configurations’
state evolution over time. Thereby, ranking a candidate by taking a trajectory with a small number
of steps T > 10 into account seems more appropriate. Nonetheless, we have not actually realised
any state observations over time, i.e., we miss the states xt for t > 0.

In theory, we could obtain this short trajectory from the actual dynamical system and still justify
this procedure’s data efficiency by the relatively small interaction time we would need. However,
especially in real world applications, we want to minimise the number of any interactions with a
specifically-configured environment since we would assume that this would cause overhead costs
like the initial setup or post-interaction dismantling. Hence, we refrain from generating trajecto-
ries by interacting with the real system.

Predicting candidate trajectories 2 Remember from (4.1.2) that a GP dynamics model gives us
a distribution over all plausible dynamics models that could have generated observations (Deisen-
roth 2010). Our meta-learning model fML is such a dynamics model with the extension of task-
specific conditioning. Thus, the model is capable of propagating uncertainty about unobserved
states forward through time. We can take advantage of that by predicting a short trajectory co-
herently with the model’s uncertainty instead of simply interpolating previous observations. For

2I thank Steindor Sæmundsson for pointing this idea out.
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a D-dimension state space, we use D independent GPs and denote fd as the function that maps
the input x̃t to the dth dimension of the successor state. For predicting a multi-step trajectory,
we cascade one-step predictions yielding predictive state distributions p(x1), . . . , p(xT ) given by
(Deisenroth 2010):

p(xt) =

∫ ∫
p(xt| xt−1, ct−1)p(ct−1|xt−1) dxt−1 dct−1, t = 1, . . . , T, (6.9)

where the mean and the variance of the Gaussian successor state distribution p(fd(x∗, c∗,h∗)) for
a deterministically given triplet of state, action and task variable x̃∗ := (x∗, c∗,h∗) are given by

Ef [fd(x̃∗)|x̃∗] = x∗d + Ef [∆x∗d|x̃∗], (6.10)

varf [fd(x̃∗)|x̃∗] = varf [∆x∗d|x̃∗], (6.11)

∆xid := fd(xi, ci,h∗)− xid, d = 1, . . . , D, i = 1, . . . , n, (6.12)

respectively, with d = 1, . . . , D being the dth dimension of the successor state and ∆xid refers
to differences between the input state and the next time step, i.e., the targets, for the dth target
dimension. We can write the full predictive distribution p(f(x̃∗)|x̃∗) for all D dimensions

N



Ef [f1(x̃∗)|x̃∗]

...
Ef [fD(x̃∗)|x̃∗]

 ,


varf [f1(x̃∗)|x̃∗] . . . 0
...

. . .
...

0 . . . varf [fD(x̃∗)|x̃∗]


 , (6.13)

with diagonal covariance. Here the deterministically given triplet of state, action and task variable
consists of the start state x0, the first control signal c0 and the candidate point h∗.

Algorithm 3 PATA with model-based policies

1: input: ψ ∈ Ψ+,x0, α, . this is a comment
2: sample random control signals C
3: obtain T = Tinit with C,x0 and fψ . Generate initial trajectories
4: train fML and infer initial latent embeddings H = Hinit
5: S = ∅
6: while the stopping criterion has not been met do
7: find candidates H∗ by optimising latent space region
8: for all h∗ ∈ H∗ do
9: cascade one-step predictions p(xt), t = 1, . . . , T

10: concatenate candidate points x̃∗,t :=
[
µ(p(xt)) ct h∗

]>
11: compute utility u(x̃t) for each t = 1, . . . , T

12: add sum of utilities over all time steps S = S ∪∑T
t=1 u(x̃t)

13: end for
14: select best candidate h∗ = argmaxh∗ S
15: apply C to fψ∗ and yield trajectory τ ∗ . expanding dataset
16: add τ ∗ to dataset T = T ∪ τ ∗
17: retrain model fML with T = T ∪ τ ∗ . update embeddings
18: optional: evaluate on test tasks . depends on stopping criterion
19: end while

After predicting the distribution of the state for a time step p(xt), we concatenate the mean of
it µ(p(xt)), the respective control signal ct for transitioning into the next state and the candidate
point in latent space h∗ to obtain a candidate point x̃∗ we can now score. For each candidate in
latent space h∗, we will compute this score for each time step of the predicted trajectory and then
sum up all scores. In the end, we will select the candidate h∗ with the highest sum of scores.

In the following, we discuss different tactics to score candidates and define their respective util-
ity functions u : RD+K+H 7→ R that take an input x̃∗,t and return a score, where t = 1, . . . , T .
When we will speak about a candidate or an input point, we will refer to x̃∗,t rather than the whole
trajectory or only the candidate in latent space h∗.
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Tactic 2.1: Uncertainty sampling

The idea behind uncertainty sampling is to select the input the model is currently most uncertain
about. Since fML is a GP which gives us a predictive distribution for each prediction, the integration
of this tactic is straight-forward: The utility function is simply the predictive variance σ2

∗(x∗), as it
has been defined in section (4.1.3).

uVAR := σ2
fML

(h∗) (6.14)

An inherent weakness of this approach is that it will always select the boundary values, al-
though, it may be better to do something different, e.g. choosing equally spaced points (Krause
2010). This is illustrated in Figure (6.7).
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Figure 6.7: Uncertainty sampling with a Gaussian Process. The blue function denotes the mean of
the function samples drawn from the posterior distribution. The shaded area represents the model
uncertainty, captured by the standard deviation (

√
σ2∗). The blue crosses denote training points,

the red plus-symbols the selected candidates.

Tactic 2.2: Expected model change maximisation

Expected model change (EMC) is a framework that aims to select the input that will result in the
maximum change of the model parameters (Cai, Zhang, and Zhou 2013). This approach is inspired
by the stochastic gradient descent (SGD) update rule which estimates the gradient of the loss func-
tion with respect to a mini-batch of randomly sampled training examples. Here, we approximate
the gradient of the loss function at the candidate inputs.

According to the authors (Cai, Zhang, and Zhou 2013), the theoretical justification of EMC is
three-fold:

1. During the active learning phase, the model’s capacity can be changed if and only if its
parameters are changed.

2. The candidates that change the model parameter’s fastest are expected to result in faster
convergence to the latent function.

3. Negative effects of selecting outlier inputs are limited. In our context, an outlier input might
consist of an abnormal state or an unallowed control signal. Since outliers are rare by defi-
nition, if an outlier was selected it is likely that the subsequently chosen input is a represen-
tative one, compensating the confusion caused by the outlier candidate quickly.

To derive the framework, we start by introducing SGD as described in (Deisenroth, Faisal, and Ong
2020; Goodfellow, Bengio, and Courville 2016). Given a loss function L(x̃, y,θ), where θ are the
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model’s parameters, an estimate of the gradient of the loss function with respect to a mini-batch
of examples B := {x̃1, . . . , x̃m} of size M is given by

1

m

M∑
m=1

(
∇θL(x̃i, yi,θ)

)>
. (6.15)

In order to search for optimal model parameters θ∗, SGD updates θ iteratively according to that
estimated gradient

θnew = θold − γ
1

m

M∑
m=1

(
∇θL(x̃i, yi,θ)

)>
, (6.16)

where γ is the step-size (or learning rate) parameter. With that in mind, we can formulate the
model change Cθ(x̃∗) as an approximation of the gradient of the loss function at a candidate
instance as:

Cθ(x̃∗) = ∆θ ≈ γ
(
∇θL(x̃∗, y,θ)

)>
. (6.17)

Having demonstrated the general case, we can apply this candidate selection criterion to our
model as follows: After converting the already observed trajectories to a N -sized data set D =
{(x̃1, y1), . . . , (x̃N , yN )} with targets y as the change of the input state after applying the control
signal, we can define the overall empirical generalisation error of our model fML as

ε̂D =

N∑
i=1

E∑
e=1

L
(
fML(x̃i), yi,e

)
, (6.18)

where we sum up the losses for each of the E target dimensions we model independently and L
can be any loss function suitable for regression problems. Adding a candidate instance consisting
of input-output pair (x̃∗, y∗) to the data set D′ = D ∪ (x̃∗, y∗) would update the empirical error to

ε̂D′ =

N∑
i=1

E∑
e=1

L
(
f(x̃i), yi

)
+

E∑
e=1

L
(
fML(x̃∗), y∗,e

)
. (6.19)

Since fML is a GP, we can use its predictive mean and formulate the model’s parameters of the
training set β as well as an updated version βx̃∗ after adding the candidate x̃∗.

Lemma 6.6.1 (Closed-form model parameters update of GP). Given GP model parameters
β, we can formulate the model parameters βx̃∗ after adding a new input x̃∗:

β := (K(X,X) + σ2
nI)−1y, (6.20)

βx̃∗ :=

[
K(X,X) + σ2

nI K(X, x̃∗)
K(x̃∗,X) K(x̃∗, x̃∗)

]−1 [
y
y∗,e

]
(6.21)

=

[
β

0

]
+

1

σ2∗ + σ2
n

[
(K(X,X) + σ2

nI)−1K(X, x̃∗)
−1

](
K(x̃∗,X)>β − y∗,e

)
, (6.22)

=

[
β

0

]
+
µ∗ − y∗
σ2∗ + σ2

n

[
K(X,X)−1K(x̃∗, x̃∗)

−1

]
. (6.23)

for all target dimensions e = 1, . . . , E, respectively.

Proof. The following proof is adapted from (Freytag et al. 2013a) a. We define K :=
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k(X,X), k∗ := k(X, x̃∗), k∗∗ := k(x̃∗, x̃∗).

βx̃∗ =

[
K k∗
k>∗ k∗∗ + σ2

n

]−1 [
y
y∗

]
(6.24)

=


(

K− 1
k∗∗+σ2

n
k∗k
>
∗
)−1

−
(

K− 1
k∗∗+σ2

n
k∗k
>
∗
)−1

1
k∗∗+σ2

n
k∗

−
(
k∗∗ + Σ2

n − k>∗ K−1k∗
)−1

k>∗ K−1
(
k∗∗ + Σ2

n − k>∗ K−1k∗
)−1

[ y
y∗

]
(6.25)

=

K−1 + K−1k∗
(
k∗∗ + σ2

n − k>∗ K−1k∗
)−1

k>∗ K−1

−
(
k∗∗ + σ2

n − k>∗ K−1k∗
)−1

k>∗ K−1


COLUMN 1

(6.26)

−
(

K−1 + K−1k∗
(
k∗∗ + σ2

n − k>∗ K−1k∗
)−1

k>∗ K−1
)

1
k∗∗+σ2

n
k∗(

k∗∗ + σ2
n − k>∗ K−1k∗

)−1


COLUMN 2

[
y
y

]

=

[
β + K−1k∗ 1

σ2
∗+σ

2
n

k>∗ β −
(
K−1 + K−1k∗ 1

σ2
∗+σ

2
n

k>∗ K−1
)

y∗
k∗∗+σ2

n
k∗

− 1
σ2
∗+σ

2
n

k>∗ β + y∗
σ2
∗+σ

2
n

]
(6.27)

=

[
β

0

]
+

K−1k∗ 1
σ2
∗+σ

2
n

k>∗ β − y∗
k∗∗+σ2

n

(
K−1 + K−1k∗ 1

σ2
∗+σ

2
n

k>∗ K−1
)

k∗

− 1
σ2
∗+σ

2
n

k>∗ β + y∗
σ2
∗+σ

2
n

 (6.28)

=

[
β

0

]
+

K−1k∗ 1
σ2
∗+σ

2
n

k>∗ β − y∗
k∗∗+σ2

n

(
K−1 + K−1k∗ 1

σ2
∗+σ

2
n

k>∗ K−1
)

k∗
1

σ2
∗+σ

2
n

(
y∗ − k>∗ β

)  (6.29)

=

[
β

0

]
+

K−1k∗ 1
σ2
∗+σ

2
n

k>∗ β − y∗
k∗∗+σ2

n

(
K−1k∗ + K−1k∗ 1

σ2
∗+σ

2
n

k>∗ K−1k∗
)

1
σ2
∗+σ

2
n

(
y∗ − k>∗ β

)  (6.30)

=

[
β

0

]
+

K−1k∗
(

1
σ2
∗+σ

2
n

k>∗ β − y∗
k∗∗+σ2

n

(
1 + 1

σ2
∗+σ

2
n

k>∗ K−1k∗
)

1
σ2
∗+σ

2
n

(
y∗ − k>∗ β

)  (6.31)

=

[
β

0

]
+

K−1k∗

(
1

σ2
∗+σ

2
n

k∗β − y∗
k∗∗+σ2

n

(
1 +

k∗∗−σ2
∗

σ2
∗+σ

2
n

))
1

σ2
∗+σ

2
n

(
y∗ − k>∗ β

)
 (6.32)

=

[
β

0

]
+

K−1k∗

(
1

σ2
∗+σ

2
n

k>∗ β − y∗
k∗∗+σ2

n

(
σ2
∗+σ

2
n

σ2
∗+σ

2
n

+
k∗∗−σ2

∗
σ2
∗+σ

2
n

))
1

σ2
∗+σ

2
n

(
y∗ − k>∗ β

)
 (6.33)

=

[
β

0

]
+

K−1k∗
(

1
σ2
∗+σ

2
n

k>∗ β − y∗
σ2
∗+σ

2
n

)
1

σ2
∗+σ

2
n

(
y∗ − k>∗ β

)  (6.34)

=

[
β

0

]
+

1

σ2∗ + σ2
n

K−1k∗
(

k>∗ β − y∗
)(

y∗ − k>∗ β
)  (6.35)

=

[
β

0

]
+

k>∗ − y∗
σ2∗ + σ2

n

[
K−1k∗
−1

]
(6.36)

=

[
β

0

]
+
µ∗ − y∗
σ2∗

[
K−1k∗
−1

]
(6.37)

aI thank Dr. Alexander Freytag for answering my questions, in particular, regarding this proof.
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We can now formulate the model change ∆βx̃∗ as difference between the two above:

∆βx̃∗ :=

[
β

0

]
− β∗ =

�
�
��

[
β

0

]
−

�
�
��

[
β

0

]
+

1

σ2∗ + σ2
n︸ ︷︷ ︸

〈1〉

[
(K(X,X) + σ2

nI)−1K(X, x̃∗)
−1

]
︸ ︷︷ ︸

〈2〉

(
K(x̃∗,X)>β − y∗,e

)
︸ ︷︷ ︸

〈3〉

,

(6.38)

=
K(x̃∗,X)>β − y∗,e

σ2∗ + σ2
n

[
(K(X,X) + σ2

nI)−1K(X, x̃∗)
−1

]
. (6.39)

According to (Freytag et al. 2013b), the three factors in (6.38) can be interpreted as follows: 〈1〉
penalises outliers by enforcing small values of ∆βx̃∗ for large predictive variances. 〈2〉, similarly,
can be understood as a weighted Parzen estimate. 〈3〉 avoids redundant information to be added,
i.e., when the error of the prediction of the target is small, the model change will be small too.

The missing piece to compute ∆βx̃∗ is the target y∗ which we will estimate in the following. We
can decompose the former into a factor depending on y∗ and a vector g(x̃∗) independent of the
target:

∆βx̃∗ = g(x̃∗)(K(x̃∗,X)>β − y∗), (6.40)

with g(x̃∗) :=
1

σ2∗ + σ2
n

[
(K(X,X) + σ2

nI)−1K(X, x̃∗)
−1

]
. (6.41)

Rewriting the definition of the predictive mean of fML as,

µ∗ = [k(X, ·), k(x̃∗, ·)]>β, (6.42)

we can formulate the expectation of change of the predictive mean (not the model parameters) for
a new candidate x̃∗ as ∆fML(x̃∗) := Ex̃Ey∗|x̃∗LP

(
fML(x̃), fML(x̃∗)

)
, where we consider any general

P -normed loss function LP
(
fML(x̃), fML(x̃∗)

)
=
∥∥(fML(x̃), fML(x̃∗)

)∥∥
P

. Instead of taking the expec-
tation over all training inputs, we can compute the expectation of change given a single training
example x̃ with respect to the unknown target y∗ as:

∆fML(x̃∗, x̃) = Ey∗|x̃∗
∥∥[k(X, ·), k(x̃∗, ·)]>g(x̃∗)

(
[k(X, ·), k(x̃∗, ·)]>β − y∗

)∥∥
P

(6.43)

=

∥∥∥∥∥∥[k(X, ·), k(x̃∗, ·)]>g(x̃∗)︸ ︷︷ ︸
v

∥∥∥∥∥∥
P

· Ey∗|x̃∗

∥∥∥∥∥∥[k(X, ·), k(x̃∗, ·)]>β︸ ︷︷ ︸
c

−y∗

∥∥∥∥∥∥
P

, (6.44)

where the terms v and c are independent of y∗ and · denotes a placeholder for an argument of
the kernel function. For the expected model change, we are not interested in the change of the
model output and we can ignore the constant term [k(X, ·), k(x̃∗, ·)]> within v. Leaving that out,
summarising the second factor by z := y∗ − c and writing the expectation as the general case in
form of the Lebesgue integral over all y∗ ∈ Y brings:

∆βx̃∗ = ‖g(x̃∗)‖P
∫
Y
‖z‖P p(z + c|x̃∗) dz, (6.45)

where p(z+ c|x∗) is the GP posterior distribution of y∗ = z+ c given x̃∗. Rewriting the posterior as
a Gaussian distribution with (predictive) mean µ∗(x̃∗) and variance σ2

∗(x̃∗) at the candidate input
leads to

∆βx̃∗ = ‖g(x̃∗)‖P
∫
Y
‖z‖P N

(
z + c| µ(x̃∗), σ2

∗(x̃∗)
)

dz (6.46)

= ‖g(x̃∗)‖P
∫
Y
‖z‖P N

(
z| µ̃(x̃∗), σ2

∗(x̃∗)
)

dz (6.47)

= ‖g(x̃∗)‖P E[‖z‖]P , (6.48)

where we introduced µ̃(x̃∗) := µ(x̃∗) − c for convenience. The P th-moment for a Gaussian distri-
bution can be expressed by involving the Kummer’s confluent hypergeometric function of the first
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kind 1F1(α; γ; z):

E
[
‖z‖

]
P

= σ2
∗(x̃∗) · 2

P
2 · Γ( 1+P

2 )
2
√
π
· 1F1

(
− P

2
,

1

2
,−1

2

(
µ̃(x̃∗)
σ2∗(x̃∗)

)2
)
, (6.49)

with P being the norm to apply, Γ(·) a gamma function and 1F1(α, γ, ; z) defined as

1F1(α; γ; z) ,
∞∑
n=0

αn̄

γn̄
zn

n!
, (6.50)

with αn̄, γn̄ being rising factorials, i.e. xn̄ = x(x + 1)(x + 2) . . . (x + n − 1) =
∏n
k+1(x + k −

1). To compute the confluent hypergeometric function in practise, we use an alternative integral
representation:

1F1(α; γ; z) =
Γ(b)

Γ(b− a)Γ(a)
·
∫ 1

0

exp(zt) ta−1(1− t)b−a−1dt. (6.51)

Putting everything together, we can now formulate the parameters change in closed-form. We will
denote this as a corollary because the next tactic we will introduce will fall back on it.

Corollary 6.6.1.1 (Closed-form model parameters change of GP). Based on the above re-
sults, the model parameters change Cθ(x̃∗) of the GP-based model fML after adding x̃∗ to the
data set can be computed in closed-form:

uEMC(x̃∗) := ∆βx̃∗ =
1

σ2∗ + σ2
n

[
(K(X,X) + σ2

nI)−1K(X, x̃∗)
−1

]

· σ2
∗(x̃∗) · 2

P
2 · Γ( 1+P

2 )
2
√
π
· 1F1

(
− P

2
,

1

2
,−1

2

(
µ̃(x̃∗)
σ2∗(x̃∗)

)2
)

(6.52)

Tactic 2.3: Expected model output change maximisation

Expected model output change (EMOC) aims to select candidates that will result in the maximum
change of the model outputs (Käding and Mothes 2018). This approach is closely related to the
previously introduced tactic (6.6.2) of expected model change with the difference that EMOC does
not measure the difference between model parameters but the change of model outputs. The
authors (Käding and Mothes 2018) describe the intuition behind that strategy as selecting the can-
didate that ’shakes the current view on the world the most’.

As previously seen when we derived EMC, we can compute the expectation of change given a
single training example x̃ with respect to the unknown target y∗ as:

∆fML(x̃∗, x̃) = Ey∗|x̃∗
∥∥[k(X, ·), k(x̃∗, ·)]>g(x̃∗)

(
[k(X, ·), k(x̃∗, ·)]>β − y∗

)∥∥
P

(6.53)

=

∥∥∥∥∥∥[k(X, ·), k(x̃∗, ·)]>g(x̃∗)︸ ︷︷ ︸
v

∥∥∥∥∥∥
P

· Ey∗|x̃∗

∥∥∥∥∥∥[k(X, ·), k(x̃∗, ·)]>β︸ ︷︷ ︸
c

−y∗

∥∥∥∥∥∥
P

, (6.54)

where the terms v and c are independent of y∗ and · denotes a placeholder for an argument of the
kernel function. 7However, previously, we ignored the with the candidate input extended kernel
values [K(X, ·),K(x̃∗, ·)]>. Here, we use corollary (6.6.1.1) and multiply it with [K(X, ·),K(x̃∗, ·)]>
such that we arrive at
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uEMOC(x̃∗) := ∆fML(x̃∗, x̃) =
[K(X, ·),K(x̃∗, ·)]>

σ2∗ + σ2
n

[
(K(X,X) + σ2

nI)−1K(X, x̃∗)
−1

]

· σ2
∗(x̃∗) · 2

P
2 · Γ( 1+P

2 )
2
√
π
· 1F1

(
− P

2
,

1

2
,−1

2

(
µ̃(x̃∗)
σ2∗(x̃∗)

)2
)

(6.55)

Tactic 2.4: Mutual information maximisation

This tactic follows the idea of selecting an input that possesses the highest mutual information
between itself, the remaining candidates and all training inputs. It is inspired by the paper ’Near-
Optimal Sensor Placements in Gaussian Processes’ from (Krause, Singh, and Guestrin 2008) who
uses the same criterion to place sensors for monitoring spatial phenomena.

We start with introducing mutual information, a measure of the amount of information that one
random variable contains about another one (Cover and J. A. Thomas 2006). The reader might
be aware of the Pearson correlation coefficient (PCC): it shares the same motivation but the PCC
is only captures linear correlations. Mutual information is a more general measure (e.g. allows
discrete random variables) and captures non-linear relationships between two random variables.

We start with introducing the formal definition of mutual information. We then show an ap-
proximation algorithm for the maximisation of mutual information based on results from (Krause,
Singh, and Guestrin 2008). To arrive at this approximation, we establish a link between mutual in-
formation and (conditional) entropy and use a standard result of the latter for Gaussian distributed
random variables. We then end up with an intuitive utility function.

Definition 6.6.1 (Mutual information). Consider two discrete random variables X and Y
with marginal probability mass functions p(x), p(y) as well as the joint probability mass func-
tion p(x, y). The mutual information I(X;Y ) is the relative entropy between the joint distri-
bution p(x, y) and the factored distribution p(X)p(Y ):

I(X;Y ) , KL(p(X,Y ) ‖ p(X)p(Y )) =
∑
x ∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(6.56)

Consider candidate input points x̃∗ ∈ X̃∗ and training inputs x̃ ∈ X̃ , as described in (6.6.2).
Although we want to find an utility function for a single candidate point, imagine we had a budget
of b ∈ N+ points we were to select and X̃ ∗∗ ⊂ X̃∗ is the optimal set of candidate points with |X̃ ∗∗ | = b.
We refer to X̃− := (X̃ ∪X̃∗)\X̃ ∗∗ as the union of training inputs and candidate inputs with exception
of the optimal candidates. The goal is to find X̃∗ that captures most of the information over the
remaining points X̃−, i.e., argmaxx̃∗ I(X̃ ∗∗ ; X̃−). Intuitively, the reader might notice that this feels
equivalent to selecting points X̃ ∗∗ that maximally reduce uncertainty over the rest of the space. We
can formalise this by

argmax
X̃∗∗

H(X̃−)−H(X̃−|X̃ ∗∗ ), (6.57)

where H(X̃−|X̃ ∗∗ ) is the conditional entropy of X̃− given the candidates X̃ ∗∗ . We now prove that
assumed relationship between entropy and mutual information.

The following results are adapted from (Cover and J. A. Thomas 2006).

Definition 6.6.2 (Conditional entropy). Consider two discrete random variables X and Y
with marginal probability mass functions p(x), p(y) as well as the joint probability mass func-
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tion p(x, y). The conditional entropy H(Y |X) is defined as

H(Y |X) ,
∑
x∈X

p(x)H(Y |X) (6.58)

= −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x) (6.59)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x) (6.60)

(6.61)

Theorem 6.6.2 (Relationship between entropy and mutual information). Consider two dis-
crete random variables X and Y with marginal probability mass functions p(x), p(y) as well
as the joint probability mass function p(x, y). The mutual information I(X;Y ) is a symmetric
measure that can be equivalently expressed with entropies as:

I(X;Y ) = H(Y )−H(Y |X) = H(X)−H(X|Y ). (6.62)

Proof.

I(X;Y ) =
∑
x ∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(6.63)

=
∑
x ∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)
−
∑
x ∈X

∑
y∈Y

p(x, y) log p(y) (6.64)

=
∑
x ∈X

∑
y∈Y

p(x)p(y|x) log p(y|x)−
∑
x ∈X

∑
y∈Y

p(x, y) log p(y) (6.65)

=
∑
x ∈X

p(x)
(∑
y∈Y

p(y|x) log p(y|x)
)
−
∑
y∈Y

( ∑
x ∈X

p(x, y)
)

log p(y) (6.66)

=
∑
x ∈X

p(x)H(Y |X)−
∑
y∈Y

p(y) log p(y) (6.67)

= −H(Y |X) + H(Y ) = H(Y )−H(Y |X). (6.68)

The above holds analogously for I(X;Y ) = H(X)−H(X|Y ).

Now, since we like to arrive at an utility function for one single candidate (due to our greedy
selection requirement), we take the above (6.57) and pretend that we have already chosen some
candidates, collected as X̃ ∗∗ with |X̃ ∗∗ | < b and we would like to add the next candidate x̃∗. Hence,
we like to maximise

argmax
x̃∗

I(X̃ ∗∗ ∪ x̃∗; X̃−)− I(X̃ ∗∗ ; X̃−) (6.69)

= H(X̃ ∗∗ ∪ x̃∗)−H(X̃ ∗∗ ∪ x̃∗|X̃ ∗−)−H(X̃ ∗∗ ) + H(X̃ ∗∗ |X̃−) (6.70)

= H(X̃ ∗∗ ∪ x̃∗)����−H(X̃ ) + H(X̃ ∗−)����−H(X̃ ∗∗ )����+H(X̃ )����
+H(X̃ ∗∗ ) (6.71)

= H(x̃∗|X̃ ∗∗ )−H(x̃∗|X̃ ∗−), (6.72)

where X̃ ∗− := X̃− \ x̃∗ excludes the candidate under consideration. Now, linking this derivation
back to our goal to select one single candidate, we just set X̃ ∗∗ = ∅ and pretend we aim to select
the first initial candidate. That brings us

argmax
x̃∗

H(x̃∗)−H(x̃∗|X̃ \ x̃∗). (6.73)

After translating our objective into the difference of two entropies, we can use the following stan-
dard result of the entropy of a Gaussian variable Y conditioned on a set of random variables X :

H(Y |A) =
1

2
log(2πeσ2

Y |X ), (6.74)
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where for GPs, we can interpret σ2
Y |X as the predictive posterior variance, resulting in a closed-

form solution. Note that the conditional entropy is a monotonic function of its variance (due to
the log). Also, mathematically speaking, the difference of two entropies, as in our objective (6.73),
results in the difference of two log functions which can be rewritten as the log of the fraction of its
arguments, i.e. log(A) − log(B) = log A

B . Exploiting these both properties, we compute the score
of a candidate by

uMI(x̃∗) :=
K(x̃∗, x̃∗)

K(x̃∗, x̃∗)− K(x̃∗, X̃ \ x̃∗)K(X̃ \ x̃∗, X̃ \ x̃∗)−1K(X̃ \ x̃∗, x̃∗)
. (6.75)

6.7 Stopping criteria

Lastly, we propose stopping criteria that determine when the PATA algorithm stops. In the context
of meta-learning algorithms, the test time usually starts then. In general, determining when to
stop to acquire more information and make a decision is called the stopping problem. Research in
mathematics offers theories of optimal stopping. A famous example of optimal stopping theory is
the secretary problem in which an administrator wants to hire the best secretary out of sequentially
interviewed secretaries (in random order) but can only decide once for each candidate immediately
after an interview was conducted (Bearden 2006). Note, that this does not imply that the more
information the administrator gathers, the worse she gets in deciding. The problem is more about
efficiency and opportunity costs. Similarly, it it is unlikely (but possible) that a badly-selected task
decreases the predictive performance on test tasks. In information theory, there even exists an
"information never hurts" theorem (Krause, Singh, and Guestrin 2008), implying that more having
information is always better. This theorem does not directly apply here, but without theoretical
justification, we argue that the more tasks the model learned the dynamics of, the better. Hence,
the motivations for stopping criteria stems from the question of when to put the training model
in production (or to test time) instead of requesting more trajectories of new tasks which can be
costly and time-consuming. We will now propose three criteria that determine stopping:

• Task budget: A manually defined task budget is best if it makes no difference if the learner
stops prematurely so as not to consume the entire budget. For instance, situations in which
the user pays the "price" for interaction time or the number of tasks to acquire upfront are
suitable to declare a task budget of b ∈ N∗ for PATA.

• Prediction error: In theory, the model can predict a trajectory of some test tasks every
time after it acquired a new task and feed the prediction error back. This "reward signal"
informs the user how well the model advanced over an increasing number of observations.
Straightforwardly, a user can incorporate such an error metric into the model so that it stops
to learn after it provides a decent enough performance. However, note that this criterion
seems more suitable in academic settings rather than in real-world environments - since we
assume a set of test tasks is given on which we test model. In real-world environments, we
typically do not know the tasks the system will face in production.

• Predictive variance: In (6.6.2), we introduced model-based selection policies that use the
predictive posterior distribution of our meta-learning model fML to score a candidate. In
particular, in variance-based uncertainty sampling (6.14), we derive the model’s uncertainty
about a candidate task by its posterior variance. One naive approach to determine whether
the model has acquired enough tasks could be to define a numeric threshold for the candi-
dates’ variances. For instance, we could compute the scores for all tasks and if the maximum
value, the mean or the sum of the scores is above the threshold, we acquire another task.
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Chapter 7

Experiments

Previously, we derived a framework for actively acquiring tasks. Knowing how to explore the can-
didate space safely (SECS) as well as being aware of individual tactics falling into model-based or
model-free strategies, we will validate these techniques on three continuous control tasks with in-
creasing difficulty: Cart-pole, Cart-double-pole, Cart-triple-pole. Furthermore, we detail multiple
limitations we experienced during the experiments to thoroughly prepare a prospect practitioner
and propose ideas for future work.

To make the upcoming examinations more applicable to real-world situations, we incorporate the
following assumptions into the experimental setup. We do not have domain knowledge nor a task
distribution we sample from at hand. However, we know the ranges of possible configurations. We
can then "request" a transition function from the real environment specified with the setting we
define. We solely focus on exploring the latent space (not directly the configuration space) with
the only additional ability to reject infeasible task configurations. We reject a task configuration
if its parameter values lie outside the range of feasibility. For instance, an infeasible task is the
pendulum with negative values defining its length. However, the system does not know which
configuration variables are task-specific and infers that by itself. These assumptions are crucial to
ensure transferability to systems with more complex, high-dimensional configuration spaces. Be-
fore we start with numerical comparisons, let us formalise three critical questions to evaluate the
proposed methodology’s performance:

1. What is the quality of the tasks acquired? Does PATA significantly outperform a random
baseline that samples tasks from the latent space randomly?

2. How crucial is SECS in practice when exploring the latent space? Does it find reasonable
regions within the latent space?

3. What are limitations a MRL practitioner has to consider when using PATA?

So that the reader keeps the overview, we include a table of all introduced and evaluated tactics
abbreviations:
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Table 7.1: Overview of the notation used in the subsequent sections.

Abbr. Tactic Strategy Reference

EMC Expected model change MB 6.52

EMOC Expected model output change MB 6.55

GMM Gaussian mixture model MF 6.6

GSCS Greedy sampling of configuration space MF 6.4

GSLS Greedy sampling of latent space MF 6.3

MI Mutual information MB 6.75

RDN Random baseline

VAR Variance sampling MB 6.14

7.1 Quality of tasks acquired

This experiment attempts to answer the question of which quality the tasks our methods acquire
are. The quality of a task describes by how much the model’s prediction error on test tasks de-
creases. In all experiments, we will start with two randomly sampled configurations and corre-
sponding embeddings. Then, we evaluate how the meta-learning model fML performs over an
increasing number of tasks acquired.

7.1.1 Evaluation metrics

To quantify the prediction errors, we use the root mean squared error (RMSE) and the log-
likelihood (LLH) which we defined below. RMSE is a common error metric but since we use
probabilistic models, we argue, that the LLH is even more meaningful and should receive special
attention. It is not unusual to model standardised data that is centered around 0 with a GP that
assumes zero mean. Thas bares the risk of overestimating the model’s performance: Even if your
GP has no meaningful predictions but is "falling back to the prior", i.e., returning a predictive mean
around that zero mean prior, the RMSE could look better than the situation actually is 1. However,
the LLH accounts for this since it considers the predictive variance which would be high in case the
model does not know what to predict.

Definition 7.1.1 (Root mean squared error). The root mean squared error is a measure of the
performance of a model on a test set. It describes the differences between the model’s predictions
and the observed values by the square root of the Euclidean distance between the predictions
and the targets:

RMSE(ŷ, y) :=
1

n

N∑
n=1

√
‖ŷ− y‖22, (7.1)

with N being the size of the test set.

Definition 7.1.2 (Log-likelihood). The likelihood models the model’s uncertainty of the data,
i.e., its probability for the observed values. It depends on the model parameter’s θ and tells
us how likely a particular setting of θ is for the observations x (Deisenroth, Faisal, and Ong
2020):

L(θ) :=
1

n

N∑
n=1

log p(yn|xn,θ), (7.2)

with N being the size of the test set and y being a single-dimensional target.

1I thank Steindór Sæmundsson for making me aware of this.
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Remark 7.1.1 (Gaussian log-likelihood). The log-likelihood of a Gaussian distribution
(Deisenroth, Faisal, and Ong 2020), such as the predictive distribution our fML yields for
an input x̃, can be written as

L(θ) = −
N∑
n=1

log p(yn|xn,θ) = −
N∑
n=1

logN (yn|x>n θ, σ2) (7.3)

= −
N∑
n=1

log
1√

2πσ2
exp

(
− (yn − x>n θ)2

2σ2

)
(7.4)

= −
N∑
n=1

log exp
(
− −(yn − x>n θ)2

2σ2

)
−

N∑
n=1

1√
2πσ2

(7.5)

=
1

2σ2

N∑
n=1

(yn − x>n θ)2 −
N∑
n=1

log
1√

2πσ2
. (7.6)

As one can see, the log-likelihood of a Gaussian resembles the RMSE measure but additionally,
it considers the likelihood’s variance.

7.1.2 Experimental setup

To analyse the applicability of PATA in common RL benchmarks, we adopted the overall experi-
mental setup from the model-based RL experiment in (Galashov et al. 2019). In particular, the
authors propose a distribution over tasks by uniformly sampling the pole mass pm ∼ U [0.01, 1.0]
and cart mass cm ∼ U [0.1, 3.0]. We modified their setup with three tweaks to increase the difficulty
in learning the dynamics. Firstly, we empirically noticed that changing the cart mass across tasks
is not as impactful in dynamics differences as changing the pole length or pole mass, so we inter-
changed the cart mass variable with the pole length variable and hold the cart mass constant for
all experiments. Furthermore, the authors use the time discretisation parameter ∆t = 0.01 which
makes the transitions very smooth and easy to learn 2. In comparison, we used ∆t = 0.2 for the
same cart-pole task and ∆t = 0.15 for cart-double-pole as well as cart-triple-pole. Lastly, we in-
creased the range of possible configurations and chose [0.3, 3.5] for both pole mass and pole length.

To give the reader a better feeling of the experimental setup, i.e., how we observed the model’s
behaviour over time, we include an exemplary task acquisition sequence in Figure (7.2).

t RMSE LLH Latent space

0
Pole mass

0.5 1.0 1.5 2.0 2.5 3.0 3.5 Pole length

.5 11.522.533.5

RM
SE

0
.05
.1
.15
.2
.25
.3
.35
.4

Pole mass

0.5 1.0 1.5 2.0 2.5 3.0 3.5 Pole length

.5 11.522.533.5

LL
H

-400
-350
-300
-250
-200
-150
-100
-50
0

3 2 1 0 1 2 3
h1

3

2

1

0

1

2

3

h 2

m=0.47, l=0.92
m=0.78, l=0.58

1
Pole mass

0.5 1.0 1.5 2.0 2.5 3.0 3.5 Pole length

.5 11.522.533.5

RM
SE

0
.05
.1
.15
.2
.25
.3
.35
.4

Pole mass

0.5 1.0 1.5 2.0 2.5 3.0 3.5 Pole length

.5 11.522.533.5

LL
H

-400
-350
-300
-250
-200
-150
-100
-50
0

3 2 1 0 1 2 3
h1

3

2

1

0

1

2

3

h 2

m=0.47, l=0.92
m=0.78, l=0.58
m=0.30, l=0.33

2This parameter is not mentioned in the paper, but I thank the author Jonathan Schwarz who gave me this information
on request.
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Pole mass
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m=0.33, l=0.62

Table 7.2: An illustration of our experimental setup. Here, GSLS acquires 4 tasks for the cart-pole
environment. We can measure the RMSE and LLH on the test tasks in each iteration. Furthermore,
after the model observed a new task, the latent space changes, including positions of the previously
known tasks. Note that the axes of the latent space figures are static.

7.1.3 Continous control environments

Before diving into the results, we briefly introduce the three control task environments. In all
experiments, PATA followed the high-level algorithm described in Algorithm (1).

Cart-pole In Section (2.3), we introduced the cart-pole task as an example of a typical dynamical
system. It is an under-actuated system with a freely swinging pendulum mounted on cart (Kamthe
and Deisenroth 2017). The position of the cart is x1, the velocity of the cart is ẋ1, the angle of the
pendulum, measured anti-clockwise from hanging down, is θ and the angular velocity is θ̇.
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(a) The cart-pole setup as described in (Deisenroth 2010). State
variables are marked in red, the control signal in blue and
the constants in black.

x =


x1

ẋ1

θ̇

sin θ

cos θ

 ∈ R5. (7.7)

(b) The state representation of
the cart-double-pole system.
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Cart-double-pole The cart-double-pole setup is similar to the cart-pole system with the only
difference of having an attached double pendlum instead of a single pendulum. Modelling this
system is challenging since the under-actuated dynamic system is inherently unstable and the
dynamics are chaotic (Deisenroth 2010).
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<latexit sha1_base64="wCV5s57QjzEpr8o87AetF4dA2Ho="></latexit>

g
<latexit sha1_base64="FaT02xI1S55hqLDOlf4I0Kj9UbE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2FZpQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMTqPqAaBZfYMtwIvE8U0igQ2AnGNzO/84RK81jemUmCfkSHkoecUWOl5rBfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWl/pDHUYQTOIVz8OAK6nALDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f1K6NBg==</latexit>

p(1)
m

<latexit sha1_base64="+L2VC4wGCIZp+ikAUjknChZBJNQ=">AAAB8HicbVDLSgMxFL3js9ZX1aWbYBHqpsxUQZcFNy4r2Ie0Y8mkmTY0yYQkI5ShX+HGhSJu/Qq/wZ1/Y/pYaOuBC4dz7uXeeyLFmbG+/+2trK6tb2zmtvLbO7t7+4WDw4ZJUk1onSQ80a0IG8qZpHXLLKctpSkWEafNaHg98ZuPVBuWyDs7UjQUuC9ZzAi2TrpXD1kpOBt3RbdQ9Mv+FGiZBHNShDlq3cJXp5eQVFBpCcfGtANf2TDD2jLC6TjfSQ1VmAxxn7YdlVhQE2bTg8fo1Ck9FCfalbRoqv6eyLAwZiQi1ymwHZhFbyL+57VTG1+FGZMqtVSS2aI45cgmaPI96jFNieUjRzDRzN2KyABrTKzLKO9CCBZfXiaNSjk4L1duL4rV6HMWRw6O4QRKEMAlVOEGalAHAgKe4AVePe09e2/e+6x1xZtHeAR/4H38AFKdkMw=</latexit>

p(2)
m

<latexit sha1_base64="KqHIo9z27J9cHKBVrbo9/c2acDM=">AAAB8HicbVDJSgNBEK1xjXGLevTSGIR4CTNR0GPAi8cIZpFkDD2dnqRJL0N3jxCGfIUXD4p49Sv8Bm/+jZ3loIkPCh7vVVFVL0o4M9b3v72V1bX1jc3cVn57Z3dvv3Bw2DAq1YTWieJKtyJsKGeS1i2znLYSTbGIOG1Gw+uJ33yk2jAl7+wooaHAfcliRrB10n3ykJUqZ+Ou6BaKftmfAi2TYE6KMEetW/jq9BRJBZWWcGxMO/ATG2ZYW0Y4Hec7qaEJJkPcp21HJRbUhNn04DE6dUoPxUq7khZN1d8TGRbGjETkOgW2A7PoTcT/vHZq46swYzJJLZVktihOObIKTb5HPaYpsXzkCCaauVsRGWCNiXUZ5V0IweLLy6RRKQfn5crtRbEafc7iyMExnEAJAriEKtxADepAQMATvMCrp71n7817n7WuePMIj+APvI8fVCWQzQ==</latexit>

p
(2)
l

<latexit sha1_base64="AlpWNNFrBmUCiXNCTAA1EItPxno=">AAAB8HicbVDJSgNBEK1xjXGLevTSGIR4CTNR0GPAi8cIZpFkDD2dnqRJL0N3jxCGfIUXD4p49Sv8Bm/+jZ3loIkPCh7vVVFVL0o4M9b3v72V1bX1jc3cVn57Z3dvv3Bw2DAq1YTWieJKtyJsKGeS1i2znLYSTbGIOG1Gw+uJ33yk2jAl7+wooaHAfcliRrB10n3ykJUqZ+Mu7xaKftmfAi2TYE6KMEetW/jq9BRJBZWWcGxMO/ATG2ZYW0Y4Hec7qaEJJkPcp21HJRbUhNn04DE6dUoPxUq7khZN1d8TGRbGjETkOgW2A7PoTcT/vHZq46swYzJJLZVktihOObIKTb5HPaYpsXzkCCaauVsRGWCNiXUZ5V0IweLLy6RRKQfn5crtRbEafc7iyMExnEAJAriEKtxADepAQMATvMCrp71n7817n7WuePMIj+APvI8fUqGQzA==</latexit>

p
(1)
l

<latexit sha1_base64="yzZjgKpFk0+dsL8aKKqNbGiGBo0=">AAAB8HicbVDLSgMxFL3js9ZX1aWbYBHqpsxUQZcFNy4r2Ie0Y8mkmTY0yYQkI5ShX+HGhSJu/Qq/wZ1/Y/pYaOuBC4dz7uXeeyLFmbG+/+2trK6tb2zmtvLbO7t7+4WDw4ZJUk1onSQ80a0IG8qZpHXLLKctpSkWEafNaHg98ZuPVBuWyDs7UjQUuC9ZzAi2TrpXD1kpOBt3ebdQ9Mv+FGiZBHNShDlq3cJXp5eQVFBpCcfGtANf2TDD2jLC6TjfSQ1VmAxxn7YdlVhQE2bTg8fo1Ck9FCfalbRoqv6eyLAwZiQi1ymwHZhFbyL+57VTG1+FGZMqtVSS2aI45cgmaPI96jFNieUjRzDRzN2KyABrTKzLKO9CCBZfXiaNSjk4L1duL4rV6HMWRw6O4QRKEMAlVOEGalAHAgKe4AVePe09e2/e+6x1xZtHeAR/4H38AFEZkMs=</latexit>

✓
(2)
t , ✓̇

(2)
t

<latexit sha1_base64="9K3exj3xjOJS4bHEO+HtJi9Q4A0=">AAACC3icdZDLSgMxGIUz9VbrbdSlm9AiVJAyrYIuC25cVrAXaMchk2ba0ExmSP4RytC9G1/FjQtFXLjxBdz5NqYXofVyIHA458/t82PBNTjOp5VZWl5ZXcuu5zY2t7Z37N29ho4SRVmdRiJSLZ9oJrhkdeAgWCtWjIS+YE1/cDHum7dMaR7JaxjGzA1JT/KAUwIm8ux8B/oMyE1arByNPDjudCPAi5lnF8olZyLs/DLfVQHNVPPsD3MKTUImgQqidbvsxOCmRAGngo1ynUSzmNAB6bG2sZKETLvp5C8jfGiSLg4iZZYEPEnnd6Qk1HoY+mYyJNDXP7tx+FfXTiA4d1Mu4wSYpNOLgkRgiPAYDO5yxSiIoTGEKm7eimmfKELB4MvNQ/jfNCql8kmpcnVaqPpvUxxZdIDyqIjK6AxV0SWqoTqi6A49oCf0bN1bj9aL9TodzVgzhPtoQdb7F/MJmw8=</latexit>

✓
(1)
t , ✓̇

(1)
t

<latexit sha1_base64="lT+CeGuir5hgqpJr/KqiD32mcGI=">AAACC3icdZDLSgMxGIUz9VbrbdSlm9AiVJAyUwVdFty4rGAv0NYhk2ba0ExmSP4RytC9G1/FjQtFXLjxBdz5NqYXofVyIHA458/t82PBNTjOp5VZWl5ZXcuu5zY2t7Z37N29uo4SRVmNRiJSTZ9oJrhkNeAgWDNWjIS+YA1/cDHuG7dMaR7JaxjGrBOSnuQBpwRM5Nn5NvQZkJu06B6NPDhudyPAi5lnF9ySMxF2fpnvqoBmqnr2hzmFJiGTQAXRuuU6MXRSooBTwUa5dqJZTOiA9FjLWElCpjvp5C8jfGiSLg4iZZYEPEnnd6Qk1HoY+mYyJNDXP7tx+FfXSiA476RcxgkwSacXBYnAEOExGNzlilEQQ2MIVdy8FdM+UYSCwZebh/C/qZdL7kmpfHVaqPhvUxxZdIDyqIhcdIYq6BJVUQ1RdIce0BN6tu6tR+vFep2OZqwZwn20IOv9C+/lmw0=</latexit>

(a) The cart-double-pole setup as described in (Deisenroth 2010). State
variables are marked in red, the control signal in blue and the
constants in black.
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
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ẋ1

θ̇(1)

θ̇(2)

sin θ(1)

cos θ(1)

sin θ(2)

cos θ(2)


∈ R8. (7.8)

(b) The state representation of
the cart-double-pole system.

Cart-triple-pole Analogously, the cart-triple-pole setup consists of three poles that are serially
connected.
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(a) The cart-triple-pole setup with three poles connected serially. State
variables are marked in red, the control signal in blue and the
constants in black.
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7.1.4 Experiment 1: Cart-pole

Table 7.3: The experimental setup for the cart-pole environment.

Evaluation parameters

Training trajectory length 30 steps / 4.5s

Test trajectory length 30 steps / 4.5s

Number of different seeds 5

Initial configurations 2, Random

Dynamical configurations

Time discretisation ∆t = 0.2s / 5 Hz

Mass of the cart cm = 1

Mass of the pendulum pm ∈ [0.3, 3.5]

Length of the pendulum pl ∈ [0.3, 3.5]

Test tasks 7× 7 = 49

State space dim(S) = 4

Action space dim(A) = 1

Observation space dim(O) = 5

Model

Dimensions of latent space H = 2

Inducing points 350

Training steps 7, 000

Inference steps on test tasks 200

Optimisation

Optimiser Adam (Kingma and Ba 2014)

Learning rate 0.02

β1
3 β1 = 0.9

β2 β2 = 0.999

PATA

Candidate grid size 4 k = 40× 40 = 1600

Candidate rejection ratio α = 0.5

Variance rejection ratio σMAX = µ(σ2
h∗) + σ(σ2

h∗)

Maximum slack value ξMAX = 6

Greedy Sampling distance function Euclidean distance

BO initial trials 10

BO function evaluations 20

3β1 and β2 are the exponential decay rate for the 1st and 2nd moment estimates, respectively. For more information,
see (Kingma and Ba 2014).

4Except for mutual information, where we used 25 per dimension, i.e., k = 25×25 = 625, due to the high computational
complexity.
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Table 7.4: Root mean squared error (RMSE) of predicting test tasks with the cart-pole environment
across all tactics compared with the random baseline (RDN). The error bars illustrate the standard
deviation from the mean while running the experiment with 5 different random seeds. The lower
the values, the better the respective tactic performed.
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Table 7.5: Log-likelihood (LLH) of predicting test tasks with the cart-pole environment across all
tactics compared with the random baseline (RDN). The error bars illustrate the standard deviation
from the mean while running the experiment with 5 different random seeds. The higher the values,
the better the respective tactic performed.
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Discussion First of all, we note that the performance of the random baseline (RDN) varies signif-
icantly across different seeds. We interpret this as hit-or-miss behaviour: It is not impossible that
RDN selects informative tasks and performs reasonable, but its performance is volatile. In practice,
we would not trust that the tasks it picks cover a wide range of dynamics. Considering only the
mean across all seeds after 8 acquired tasks, it significantly performs worse than all the proposed
tactics as can be seen in the graph plotting the RMSE and LLH of all tactics. The second worst
error stems from uncertainty sampling (VAR), which shows a ∼ 87× improved LLH and roughly 2×
better RMSE. The median improvement, as defined by the comparison of RDN with the tactic whose
performance is the median over all tactics, is ∼ 683× better in terms of LLH (VAR) and ∼ 3× better
in terms of RMSE (EMOC).

Furthermore, as we can see in both RMSE and LLH metrics, all methods, including RDN improve
over time. In theory, we expect RDN and all other methods to converge at some point. This event
has not happened here during our limited task budget of 8 tasks. Next, we observe decreas-
ing gains of performance improvement over time until all tactics converge to a fairly similar low
error. This concavity of the model improvement as a function of tasks added is a desirable ob-
servation since it validates each utility function’s effectiveness in general. At the same time, the
variance of the acquisition tactics across different seeds is fairly low - indicating a very stable be-
haviour.Interestingly, the model-agnostic tactic GMM is the "winner" without even touching the
model’s posterior. Remember that tactics from this strategy require low computational overhead.
However, the differences across all tactics overall are not high 5.

Table 7.6: The RMSE and LLH mean of all tactics averaged across 5 different seeds after 8 acquired
tasks on predicting the transition dynamics of 49 evenly distributed test tasks of the cart-pole
system.

Tactic RMSE LLH

RDN 0.1096 −2735.85

EMC 0.0331 −14.51

EMOC 0.0286 −5.76

GMM 0.0191 −0.49

GSCS 0.0295 −3.77

GSLS 0.0215 −1.40

MI 0.0205 −4.37

VAR 0.0344 −31.60

5This outcome is not surprising to us since we aimed to research in an agile fashion: We often tried out a tactic as
fast as possible, and if it produced promising results, we stuck to it and looked deeper into the theory behind it. Multiple
other tactics did not make it into this thesis. Detailing their ideas and investigating potential reasons for their inferior
performance is beyond the scope of this report.
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7.1.5 Experiment 2: Cart-double-pole

Table 7.7: The experimental setup for the cart-double-pole environment.

Evaluation parameters

Training trajectory length 30 steps / 4.5s

Test trajectory length 30 steps / 4.5s

Number of different seeds 5

Initial configurations 2, Random

Dynamical configurations

Time discretisation ∆t = 0.15s / 6.6̄ Hz

Mass of the cart cm = 1

Mass of the pendulum pm ∈ [0.3, 3.5]

Length of the pendulum pl ∈ [0.3, 3.5]

Test tasks 7× 7 = 49

State space dim(S) = 6

Action space dim(A) = 1

Observation space dim(O) = 8

Model

Dimensions of latent space H = 2

Inducing points 350

Training steps 9, 000

Inference steps on test tasks 200

Optimisation

Optimiser Adam (Kingma and Ba 2014)

Learning rate 0.02

β1
6 β1 = 0.9

β2 β2 = 0.999

PATA

Candidate grid size 7 k = 40× 40 = 1600

Candidate rejection ratio α = 0.5

Variance rejection ratio σMAX = µ(σ2
h∗) + σ(σ2

h∗)

Maximum slack value ξMAX = 6

Greedy Sampling distance function Euclidean distance

BO initial trials 10

BO function evaluations 20

6β1 and β2 are the exponential decay rate for the 1st and 2nd moment estimates, respectively. For more information,
see (Kingma and Ba 2014).

7Except for mutual information, where we used 25 per dimension, i.e., k = 25×25 = 625, due to the high computational
complexity.
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Table 7.8: Root mean squared error (RMSE) of predicting test tasks with the cart-double-pole
environment across all tactics compared with the random baseline (RDN). The error bars illustrate
the deviation from the average of running the experiment with 5 different seeds. The lower the
values, the better the respective tactic performed.
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Table 7.9: Log-likelihood (LLH) of predicting test tasks with the cart-double-pole environment
across all tactics compared with the random baseline (RDN). The error bars illustrate the deviation
from the average of running the experiment with 5 different seeds. The higher the values, the
better the respective tactic performed.
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Discussion The results of this experiment share multiple similarities with the previous one, such
as the large variance of RDN’s performance across different seeds. However, the overall perfor-
mance improvement has slightly changed, with the median improvement only being ∼ 0.88×
better in terms of RMSE (EMOC) and ∼ 9180× higher LLH (GMM). Again, GMM performed quite well
and to give the reader an insight into its behaviour, why we included a direct comparison between
GMM’s and RDN’s inferred latent space at the end of the PATA procedure. We also added labels, mark-
ing the corresponding configuration of each latent embedding.
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Figure 7.4: An illustrative comparison of the latent spaces of RDN with GMM after the task budget is
used up.

Table 7.10: The RMSE and LLH mean of all tactics averaged across 5 different seeds after 8 acquired
tasks on predicting the transition dynamics of 49 evenly distributed test tasks of the cart-double-
pole system.

Tactic RMSE LLH

RDN 0.1359 −2020.02

EMC 0.0679 −7.15

EMOC 0.0720 −15.08

GMM 0.0753 0.22

GSCS 0.0693 −44.54

GSLS 0.0723 −2.22

MI 0.0976 −333.95

VAR 0.0681 −10.80
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7.1.6 Experiment 3: Cart-triple-pole

Table 7.11: The experimental setup for the cart-triple-pole environment.

Evaluation parameters

Training trajectory length 30 steps / 4.5s

Test trajectory length 30 steps / 4.5s

Number of different seeds 5

Initial configurations 2, Random

Dynamical configurations

Time discretisation ∆t = 0.15s / 6.6̄ Hz

Mass of the cart cm = 1

Mass of the pendulum pm ∈ [0.3, 3.5]

Length of the pendulum pl ∈ [0.3, 3.5]

Test tasks 7× 7 = 49

State space dim(S) = 8

Action space dim(A) = 1

Observation space dim(O) = 11

Model

Dimensions of latent space H = 2

Inducing points 350

Training steps 12, 000

Inference steps on test tasks 200

Optimisation

Optimiser Adam (Kingma and Ba 2014)

Learning rate 0.02

β1
8 β1 = 0.9

β2 β2 = 0.999

PATA

Candidate grid size 9 k = 40× 40 = 1600

Candidate rejection ratio α = 0.5

Variance rejection ratio σMAX = µ(σ2
h∗) + σ(σ2

h∗)

Maximum slack value ξMAX = 6

Greedy Sampling distance function Euclidean distance

BO initial trials 10

BO function evaluations 20

8β1 and β2 are the exponential decay rate for the 1st and 2nd moment estimates, respectively. For more information,
see (Kingma and Ba 2014).

9Except for mutual information, where we used 25 per dimension, i.e., k = 25×25 = 625, due to the high computational
complexity.
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Table 7.12: Root mean squared error (RMSE) of predicting test tasks with the cart-triple-pole
environment across all tactics compared with the random baseline (RDN). The error bars illustrate
the deviation from the average of running the experiment with 5 different seeds. The lower the
values, the better the respective tactic performed.
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Table 7.13: Log-likelihood (LLH) of predicting test tasks with the cart-triple-pole environment
across all tactics compared with the random baseline (RDN). The error bars illustrate the deviation
from the average of running the experiment with 5 different seeds. The higher the values, the
better the respective tactic performed.
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Remark Before we discuss the results, we want to inform the reader that we had severe difficul-
ties to conduct this experiment due to numerical instabilities. We hypothesise that the cause is the
inherent unstable system, even more unstable than Cart-double-pole, but we have not investigated
this problem further. Many times, computing the Cholesky decomposition during calculating the
GP’s kernel matrix was not successful. In the end, we tried many different seeds until we had 5
runs with each method. Note that the used seeds are not consistent across the tactics. Therefore,
the initial errors of the runs at 0 added tasks, vary slightly.

Discussion Firstly, the performance differences between RDN and the other approaches have be-
come much smaller. It seems that RDN is still the worst performing method but this time, the
median improvement is only ∼ 0.34 × lower RMSE (GSLS) and ∼ 12× higher LLH (GSCS). the
variance of the tactics’ performances across different seeds is high in comparison to the previous
experiments. On average, it is still smaller than RDN’s variance. Secondly, there is not so much a
drop in the error at the beginning of the task selection as previously seen. For instance, whereas
the improvements of GMM are mostly flat after having acquired the first task, in this experiment,
this flatness sets in around the fourth acquired task.

Table 7.14: The RMSE and LLH mean of all tactics averaged across 5 different seeds after 8 acquired
tasks on predicting the transition dynamics of 49 evenly distributed test tasks of the cart-triple-pole
system.

Tactic RMSE LLH

RDN 0.1858 −677.12

EMC 0.1415 −89.63

EMOC 0.1220 −28.95

GMM 0.0753 −15.94

GSCS 0.1383 −52.78

GSLS 0.1386 −4.34

MI 0.1541 −184.27

VAR 0.1453 −232.62
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7.1.7 Reacher

In this experiment, instead of specifying the task distribution by different transition dynamics, we
specified it by different reward functions. The ReacherEnv environment (Tassa et al. 2018) is a
two-link planar reacher that aims to reach a target. The coordinates of the target state are defined
as follows:

xtarget = r · sin(θ) ytarget = r · cos(θ) (7.9)

The reward function is the distance between the finger and the target surface

R =

∥∥∥∥∥
[
xtarget

ytarget

]
−
[
xfinger

yfinger

]∥∥∥∥∥ . (7.10)

During our experiments, all configuration ranges of the reward function we tried were ’too easy’
for the model to learn. As one can see in Figure (7.5), the error distribution of different target
locations is mostly flat. All tasks have almost the same errors. Furthermore, we noticed that these
errors decrease almost equally for all tasks, regardless of which task was acquired. For the sake
of brevity, we do not list all experimental parameters explicitly except for ∆t = 0.2 instead of the
default 0.02 (Tassa et al. 2018), an attempt to make the learning more challenging.
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Figure 7.5: The attempt to actively learn different reward functions instead of different dynamics
with the reacher environment.
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7.2 SECS case study

In Section (6.5), we introduced our proposed technique Safe exploration of candidate space (SECS).
Now, we want to see whether its proposed regions satisfy the exploration/exploitation trade-off
reasonably: They should start large so that the used tactic can explore very different tasks from
the beginning. Assuming that the latent space is then well explored, in theory, the optimised slack
variable values should get smaller over time. This behaviour is equivalent to noticing the distances
between the proposed region edges to the latent embeddings getting smaller. Indeed, we can
observe this behaviour in the following experiment.

Table 7.15: GMM actively acquiring cart-pole tasks with α = 0.5, ξMAX = 6.0. SECS proposes the
green-shaded area to draw tasks from. The green-shaded area must fulfill the rejection ratio α:
more than 50% of the latent candidates in the area’s discretisatied set must map to feasible tasks.
For the sake of brevity, the rejected tasks are not shown.

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
h1

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

h
2

Iteration 0

m=2.89, l=1.38

m=2.73, l=3.14

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
h1

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

h
2

Iteration 1

m=2.89, l=1.38

m=2.73, l=3.14

m=0.99, l=2.29

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
h1

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

h
2

Iteration 2

m=2.89, l=1.38

m=2.73, l=3.14

m=0.99, l=2.29

m=2.06, l=2.13

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
h1

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

h
2

Iteration 3

m=2.89, l=1.38

m=2.73, l=3.14

m=0.99, l=2.29

m=2.06, l=2.13

m=2.81, l=3.11

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
h1

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

h
2

Iteration 4

m=2.89, l=1.38

m=2.73, l=3.14

m=0.99, l=2.29

m=2.06, l=2.13

m=2.81, l=3.11

m=0.61, l=0.83

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
h1

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

h
2

Iteration 5

m=2.89, l=1.38

m=2.73, l=3.14

m=0.99, l=2.29

m=2.06, l=2.13

m=2.81, l=3.11

m=0.61, l=0.83

m=2.03, l=3.46

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
h1

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

h
2

Iteration 6

m=2.89, l=1.38

m=2.73, l=3.14

m=0.99, l=2.29

m=2.06, l=2.13

m=2.81, l=3.11

m=0.61, l=0.83

m=2.03, l=3.46

m=1.04, l=0.33

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
h1

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

h
2

Iteration 7

m=2.89, l=1.38

m=2.73, l=3.14

m=0.99, l=2.29

m=2.06, l=2.13

m=2.81, l=3.11

m=0.61, l=0.83

m=2.03, l=3.46

m=1.04, l=0.33

m=1.44, l=0.68

77



7.3 Limitations

After running a variety of experiments, we observed multiple hurdles. In the following we will
detail the most common issues we faced, especially with the goal in mind to prepare the reader for
her own experiments.

1. Degenerate latent to configuration space mappings
The most frequent issue we had observed was yielding degenerate outputs by the regressor
fLC. That means that the outputted task configuration was disadvantageous for improving
the model performance, e.g., when it returns a configuration that is very close to a previously
learned one (or even the same). We assume that two drivers cause this kind of problem.

Firstly, the latent candidate who is the input into fLC is too distant to previously learned
points in latent space on which fLC is trained on. An illustration of this issue can be seen in
Table (7.16). The regression model is then confused and returns the known configuration
(its annotation) of the latent point which is closest to the test input.

Secondly, we observed that embeddings are degenerate themselves, in the sense that they
do not represent the underlying task configurations of the observed trajectories reasonably.
This problem might co-occur with unlearnable dynamics, described at Point 3 (3), but here,
we want to emphasise the lack of informational value of the embeddings due to task indis-
tinguishability. For instance, fML may yield the (almost) same embedding for different task
configurations. Another example is that they only partly capture the degrees of freedom of
the dynamics, i.e., only a fraction of the variations of configurations so that they ignore other
axes. Assume two latent dimensions H = 2 and tasks that only differ in one axis of variation.
This setting results in latent embeddings whose means lie in a horizontal or vertical line.
On the other hand, it can happen that fML has not learned a decoupled latent space even
though the number of latent dimensions is the same as the degree of freedom among the
tasks. For example, when the model observes trajectories of the cart-pole task, where only
the mass and length of the pendulum changed, ideally, the inferrend latent dimensions do di-
rectly correspond to each of the configuration variable, respectively. However, it can happen
that some dimensions of the configuration space do not correspond directly to dimensions in
latent space but instead to a combination of them.

h1 h2 ψ1 ψ2

0.65 −2.26 0.71 0.97
 training configurations

1.00 −0.25 0.86 0.57

0.92 0.51 0.84 0.40

−2.76 −0.17 0.44 0.48

−2.96 −0.17 0.42 0.48
 predicted configurations

−3.76 −0.17 0.42 0.48

−3.56 −0.17 0.42 0.48

−3.76 −0.17 0.42 0.48

Table 7.16: Illustration of degenerate outputs caused by latent candidates too distant to known
annotations.

2. Initial settings with low prediction errors In the previous experiments, we deliberately
chose challenging settings. That includes that there is still an uneven distribution of task
difficulty after having learned some initial tasks. With the here chosen environments, tasks
closer to previously learned ones are easier, task configurations with higher euclidean dis-
tance to previously learned tasks are generally more difficult. This can also be seen at Table
(7.17). Too good initial settings are settings in which the errors of predicting test tasks are
already very low and there is not much room of improvement. For example, consider the
cart-pole task with a setting with an initial error µRMSE < 0.1 in iteration 0, where µRMSE
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is the mean of the root mean squared error across all test tasks. The model can still im-
prove, but the efficiency boots through PATA are marginal. Although we have not observed
overfitting, i.e., an obvious worsening of the errors with an increasing number of tasks, we
observed that the task selection policies do not noticeably outperform random in those sce-
narios. Moreover, the evolution of the errors over the number of tasks added is quite arbitrary.

We observed two drivers of too ’good’ initial settings: Firstly, the range of admissible tasks is
a decisive factor since a too small range does not allow for meaningful discoveries of other
configurations. Secondly, a short period ∆t can lead to almost linear transitions between two
states, depending on the task configuration range. Intuitively, one can imagine that ’it does
not change much’ between two events that are temporally very close.

3. Unlearnable dynamics In some settings with high initial error on predicting some test tasks,
we could not improve that error or even worsened it after adding new trajectories. We ob-
served the causes for this behaviour are threefold: Firstly, chaotic systems can be complicated
to learn (Deisenroth 2010; Kellert 1993). These systems are inherently unstable, and their
behaviour over time depends heavily on its initial conditions. Even rounding errors due to too
low float-arithmetical precision can render long-term predictions impossible. Secondly, we
noticed that a long period ∆t combined with an inadequate task configuration space could
lead to unlearnable dynamics due to too disorderly behaviour between time-steps. Imagine
a pendulum with a very small mass and a low temporal frequency: Between each time-step,
the pendulum might have already swung twice around its own axis before the next obser-
vation is realised, leading to confusion of the model and high unpredictability of exact next
state. Lastly, an adverse sequence of control signals might generate a hard-to-learn trajec-
tory, independent of the actual system configuration. We observed that when initialising the
model, there can exist significant differences in how well the model fits the initial trajectories
among randomly sampled control signals. An indicator for that is how low the ELBO gets
during model training.
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Table 7.17: An illustration of the model-based task selection with EMOC utility function attempting
to learn unlearnable dynamics. The dynamics stem from the cart-double-pole environment with
∆t = 0.2 with 30 time steps per trajectory. We highlight that EMOC aims to select tasks near
pm = 0.4 (left side of the RMSE graph) and scores candidates at this region comparatively high to
learn their dynamics but gets stuck. This results in repeatedly sampling proximate points from the
same region.

80



Chapter 8

Conclusion and Future Directions

Motivated by the lack of a systematic way to select training tasks in meta-learning research, we de-
veloped PATA, a probabilistic active task acquisition framework. We tailored the scope of this work’s
tasks to the context of reinforcement learning (RL) problems, in which an agent aims to learn a
policy from interactions that maximises rewards. Since finding an optimal policy is a lengthy trial-
and-error procedure that typically requires many interactions with the environment, we informed
the reader about the concept of model-based RL that reduces the amount of interacting with the
real environment by simulating it through a model. To lay the theoretical foundation for such a
model class, we elaborated on well-established ideas from Bayesian statistics up to statistical ma-
chine learning, so that we ultimately arrived at Gaussian Processes (GP). Having demonstrated the
standard supervised learning GP setting, we guided the reader through a more scalable approxi-
mate inference GP model, enabling us to deal with with larger data sets. To initiate with the idea
of inferring unobserved variables, we introduced GPLVMs and then, moved forward to a state-
of-the-art meta-reinforcement learning model. Before we looked at the novel contributions, we
conducted a brief literature review and concluded that there is no notion of active task acquisition
for RL tasks in related work (active learning) as well as in the immediate problem space (MRL).

Finally, we proposed PATA to combat the ineffiency shortcoming: By exploiting the meta-learning
model’s knowledge of the relations between previously learned tasks, we proposed concrete strate-
gies to sample tasks that are dissimilar to previous ones. Conceptually, we suggested two types
of acquisition strategies, model-based and model-free, and shortly discussed the pros and cons of
them. Next, we recommended concrete tactics one can use off-the-shelf, making PATA a practical
framework. We provided experimental evidence that sampling tasks from the latent space system-
atically outperformed a random baseline. Now that we have gone through the past and arrived in
the present, we now look to the future.

8.1 Future work

We believe there are numerous promising opportunities for future work that we want to work on
and ideally, see others tackling. We break down future work into short-term and longer-term plans.
Short-term plans are incremental improvements on PATA. Hereby, we can incorporate the learnings
we have gained during this project. Based on experienced shortcomings, we derive goals we would
have immediately continuned to work on if we were given more time. Concretely, short-term future
work is summarised below:

1. Apply PATA to higher-dimensional continuous control tasks: We would run experiments
with well-known physical environments that have high-dimensional observation spaces. Ex-
amples include tasks from the dm_control environment (Tassa et al. 2018), such as Cheetah
(dim(O)=17), Fish (dim(O)=24), or Humanoid (dim(O)=67).

2. Incorporate planning: With respect to model-based RL, this work is following the assump-
tion that an incorrect model leads to sub-optimal policies (Barto 2018). Hence, PATA aims to
improve the model actively. For the sake of brevity, we neglected the planning component
and focused our efforts on exclusively improving the model’s performance on predicting test
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trajectories rather than actually solving any tasks by learning policies. It would be interest-
ing to validate that assumption by putting a planning algorithm on top in place. Hereby, we
could go back to (Sæmundsson, Hofmann, and Deisenroth 2018)’s approach, again.

3. Combining PATA with other probabilistic ML models: Until now, we have only considered
(Sæmundsson, Hofmann, and Deisenroth 2018)’s model as foundation for PATA. However,
we assume that with some tweaks we could combine it with other meta-learning models that
are also suitable for MRL. Examples are models that are proposed or mentioned in: Galashov
et al. 2019; Gordon et al. 2018; Petangoda et al. 2019; Rakelly et al. 2019; Springenberg
et al. 2018; Zintgraf, Igl, et al. 2019.

4. Extending depth and breath of tactics: Regarding the tactics that can be used interchange-
ably within PATA’s strategies, there are two questions worth to explore: First, how can we
match a tactic to the learning setting we face at hand? Note that this mapping might not
only take the underlying task environment into account but also other factors. Second, what
are shortcomings of the current tactics we could combat by deriving new ones? Also, there
might be other interesting ideas in related research fields we could explore.

Longer-term plans aim to go beyond what is reliably known, i.e., they are non-trivial and lasting
unsolved in the future. Meta-learning is an actively evolving research field. These plans implicitly
consider the uncertainty of change in the overall research scheme. Specifically, we propose three
areas to explore:

1. Non-probabilistic active task acquisition So far, we focused on model-based meta rein-
forcement learning (MB-MRL) where the model is a probabilistic one. Recently, researchers
proposed neural-network based MB-MRL approaches (Nagabandi et al. 2018), related to
gradient-based and recurrence-based meta-learning models. There are no inferred task-
specific properties one could explore. One benefit of these models is a potentially higher
model capacity due to the computational complexity of GPs. Again, the authors randomly
sample training tasks from a given task distribution. We think it is worthwhile to incorporate
an active task acquisition functionality in these models as well.

2. Active task acquisition within model-free MRL: Hitherto, we aimed to improve the perfor-
mance of an MB-MRL algorithm’s model. In literature, there exist also model-free MRL ap-
proaches. For example, in (Zintgraf, Shiarlis, et al. 2019), the authors suggested a fast context
adaptation via meta-learning (CAVIA) model, an extension to model-agnostic meta-learning,
(C. Finn, Abbeel, and Levine 2017). This approach uses neural networks and partitions the
model parameters into context parameters and shared parameters. Furthermore, the CAVIA
for RL algorithm samples training tasks randomly. There might be a way to select tasks such
that the policy gradient methods can converge to an optimal parameterised policy faster.

3. Applying active task acquisition to fundamentally different task domains Up to now,
we were concerned with the domain of physical systems. How would one explore task em-
beddings in visual or hierarchical task domains? For example, in (Mnih et al. 2015), rein-
forcement learning agents reach human-level performance on video games by just observing
pixels and game scores as model inputs.
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Appendix A

User Guide

A.1 Dependencies

We listed all requirements in the file requirements.txt. We quickly enumerate some of the crucial
libraries and explain their function.

• Gaussian Processes: GPflow is used to implement the meta-learning model fML. The original
code is available here. Furthermore, a vanilla GP regression model from GPy implements fLC.
Lastly, we use GPyTorch to be compatible with the Bayesian optimisation library BoTorch
and the experimental design library ax-platform.

• Automatic differentiation: Both GP libraries GPflow and GPyTorch use automatic differen-
tiation libraries; here, Tensorflow 1 and PyTorch, respectively.

• Continuous control tasks: To simulate the physical systems, we use dm_control which
in turn uses MuJoCo. Note that MuJoCo is not a python library, but an advanced physics
simulation engine built with C/C++ API. This website provides its download. Furthermore,
MuJoCo requires an activivation key which is provided to licensed users. More information
can be found on its License page.

A.2 Packages

In the following, we want to familiarise the reader with the structure of our code basis. Thereby,
we quickly explain the functionality of each package.

• models: Meta-learning model training, inference, predictions

• models.mrl: fML

• rl: Wrapper methods for interacting with continuous control task enviroments and trajectory
observation from dynamical systems

• tactics: Parent package of all tactics

• tactics.mb: Model-based tactic utility functions

• tactics.mf: Model-free tactic utility functions

• utils: Helper functions

The overall PATA algorithm is implemented in run.py in the parent package PATA.
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A.3 Experimental parameters

To run the experiments, the user needs to set experimental parameters, as demonstrated in the
experimental setup tables in chapter 7. All necessary parameters to-be-set are parsed from the
command line.

Table A.1: This table contains the arguments to set the experimental parameters.

Argument Type Default value

–env str "CartPoleDMEnv"

–model_name str "MLSVGP"

–seed int 4

–control_signals str "fixed"

–evaluation bool True

–tactic str "GMM"

–candidate_grid_size int 40

–evaluation_task_grid_size int 7

–slack_min_const_dim_1 float -3

–slack_max_const_dim_1 float 3

–slack_min_const_dim_2 float -3

–slack_max_const_dim_2 float 3

–alpha float .5

–conf_space_dim int 2

–eval_lower_bound_dim_1 float .3

–eval_upper_bound_dim_1 float 3.5

–eval_lower_bound_dim_2 float .3

–eval_upper_bound_dim_2 float 3.5

–latent_space_filtering str "opt"

–task_budget int 8

–n_train_envs str 2

–train_envs_rdn bool True

–train_envs list [[1.0, 0.5],[0.5, 1.0]]

–episode_length int 30

–draw_plots bool True

–pred_traj_length int 5

–dim_h int 2

–n_inducing int 180

–model_train_steps int 7000

–model_infer_steps int 100

–BO_init_trials int 10

–BO_trials int 20

Non-obvious options to set the parameters correctly are:

• –env: "CartPoleDMEnv", "TwoPolesEnv", "ThreePolesEnv", "ReacherEnv"

• –latent_space_filtering: "opt" for using SECS, otherwise it will just add the specified
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slack constants without optimising

• –tactic: "EMC", "EMOC", "GMM", "GSCS", "GSLS", "MI", "RDN", "VAR"

• –train_envs_rdn and –train_envs: if –train_envs_rdn is set to True, initial training tasks
are randomly sampled, otherwise, the in –train_envs specified configurations are used

• –draw_plots: if set to True, plots are automatically shown and saved. Since we use mplot3d
for the 3D plots which is not compatibile with all operating systems, this parameters, if set
to False, saves all results numerically, the user then can plot by herself

A.4 Examples

For reproducing results and running experiments in general, please run commands like the follow-
ing examples from the command line:

Listing A.1: Examples to run experiments from the command line.

python3 −− t a c t i c="GMM" −−env=" ThreePolesEnv " −−eva lua t ion t rue −−alpha=0.2
−−task_budget=12 −−model_ t ra in_s teps=10000 −−B O _ i n i t _ t r i a l s=5 −−BO_ t r i a l s=5
−−seed=1

python3 −− t a c t i c="MI " −−env=" CartPoleDMEnv " cand ida t e_g r id_ s i z e=25 −−eva lua t ion
f a l s e −−alpha=0.5 −−task_budget=8 −−model_ t ra in_s teps=7000
−−B O _ i n i t _ t r i a l s=10 −−BO_ t r i a l s=20 −−seed=5

python3 −− t a c t i c="RDN" −−env=" TwoPolesEnv " −−cand ida t e_g r id_ s i z e=25
−−eval_lower_bound_dim_1=0 −−eval_upper_bound_dim_1=6
−−eval_lower_bound_dim_2=0.01 −−eval_upper_bound_dim_2=0.2 −−eva lua t ion

f a l s e −−alpha=0.5 −−task_budget=8 −−model_ t ra in_s teps=2000 −−seed=5
−−B O _ i n i t _ t r i a l s=10 −−BO_ t r i a l s=20
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Appendix B

Ethical considerations

Autonomous systems (AS) will undoubtedly lead to many paradigm changes across a variety of
areas like education, healthcare, politics, renewable resources, transportation, and work. We will
not look at the ethical implications of AS in general within this report. However, we will focus on
two concerns: a) Has the conduction of this work been ethically considerate and b) how does it
affect others?

Firstly, among other things, this work’s research procedure included the incorporation of software
from others and the computation of multiple experiments. Starting with the former, all incorpo-
rated software code stems exclusively from open-source libraries, marked as such and cited. For
instance, GPflow and dm_control are two crucial external packages used in this work’s system.
Both are licensed under the Apache License 2.0, a permissive license that allows academic use,
modification and distribution. Furthermore, the usage of computational resources for conducting
experiments required electricity. Some ways of energy generation can damage the environment. In
our case, we computed all experiments on the Google Cloud Plattform, a cloud service that states
to use renewable energy exclusively (during the time of our usage) 1. Accordingly, we aimed to
reduce this work’s environmental impact by the usage of sustainable resources.

Secondly, to assess how this work affects others, we will briefly touch upon job automation, mil-
itary spheres and again, energy consumption. Reinforcement learning (RL) agents can perform
many complex tasks, certainly including such that automate jobs currently performed by humans.
On the other side, we believe that we will see many positive consequences of in-production rein-
forcement learning systems, including the creation of new jobs and better resource management
(Mao et al. 2016). Moreover, we have not developed the methods in this work with military appli-
cations in mind. However, to the extent that the military benefits from more efficient meta-learning
algorithms to train their agents, the contributions in this work may benefit military applications as
well. Lastly, we want to emphasise that the key success metric of this work is data-efficiency. We
proposed techniques to make meta-learning more efficient, in terms of fewer data collected (task
trajectories) as well as the resulting shorter computation time. Both effects directly lead to less
energy consumption.

1For more information, we refer the reader to Google Cloud’s renewable energy page.
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Appendix C

Legal and Ethics Checklist

Section 1: HUMAN EMBRYOS/FOETUSES Yes No

Does your project involve Human Embryonic Stem Cells? 7

Does your project involve the use of human embryos? 7

Does your project involve the use of human foetal tissues / cells? 7

Section 2: HUMANS Yes No

Does your project involve human participants? 7

Section 3: HUMAN CELLS / TISSUES Yes No

Does your project involve human cells or tissues? (Other than from “Human Em-
bryos/Foetuses” i.e. Section 1)?

7

Section 4: PROTECTION OF PERSONAL DATA Yes No

Does your project involve personal data collection and/or processing? 7

Does it involve the collection and/or processing of sensitive personal data (e.g. health,
sexual lifestyle, ethnicity, political opinion, religious or philosophical conviction)?

7

Does it involve processing of genetic information? 7

Does it involve tracking or observation of participants? It should be noted that this
issue is not limited to surveillance or localization data. It also applies to Wan data
such as IP address, MACs, cookies etc.

7

Does your project involve further processing of previously collected personal data
(secondary use)? For example Does your project involve merging existing data sets?

7

Section 5: ANIMALS Yes No

Does your project involve animals? 7

Section 6: DEVELOPING COUNTRIES Yes No

Does your project involve developing countries? 7
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If your project involves low and/or lower-middle income countries, are any benefit-
sharing actions planned?

7

Could the situation in the country put the individuals taking part in the project at
risk?

7

Section 7: ENVIRONMENTAL PROTECTION AND SAFETY Yes No

Does your project involve the use of elements that may cause harm to the environ-
ment, animals or plants?

7

Does your project deal with endangered fauna and/or flora /protected areas? 7

Does your project involve the use of elements that may cause harm to humans, in-
cluding project staff?

7

Does your project involve other harmful materials or equipment, e.g. high-powered
laser systems?

7

Section 8: DUAL USE Yes No

Does your project have the potential for military applications? 7

Does your project have an exclusive civilian application focus? 7

Will your project use or produce goods or information that will require export licenses
in accordance with legislation on dual use items?

7

Does your project affect current standards in military ethics – e.g., global ban on
weapons of mass destruction, issues of proportionality, discrimination of combatants
and accountability in drone and autonomous robotics developments, incendiary or
laser weapons?

7

Section 9: MISUSE Yes No

Does your project have the potential for malevolent/criminal/terrorist abuse? 7

Does your project involve information on/or the use of biological-, chemical-,
nuclear/radiological-security sensitive materials and explosives, and means of their
delivery?

7

Does your project involve the development of technologies or the creation of informa-
tion that could have severe negative impacts on human rights standards (e.g. privacy,
stigmatization, discrimination), if misapplied?

7

Does your project have the potential for terrorist or criminal abuse e.g. infrastructural
vulnerability studies, cybersecurity related project?

7

SECTION 10: LEGAL ISSUES Yes No

Will your project use or produce software for which there are copyright licensing
implications?

7

Will your project use or produce goods or information for which there are data pro-
tection, or other legal implications?

7
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SECTION 11: OTHER ETHICS ISSUES Yes No

Are there any other ethics issues that should be taken into consideration? 7
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