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Abstract

3D object representation learning has broad application prospects including 3D
shape analysis and network analysis. The traditional machine learning approach
attempt to manually define structural feature extraction about information of the
3D object, while a recently arising field named geometric deep earning can achieve
function defined on 3D object learning automatically. In this thesis, we review the
latest developed geometric deep learning technique and proposed a multi-output
approach utilizing such technique to address the challenge of dynamic 3D facial
expression recognition. The proposed model utilize graph convolutional operation
with Chebyshev filtering can perform multi-label classification for both expressions
and emotional states of a given dynamic 3D facial expression.
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1 Introduction

1.1 Overview
1.1.1 3-D Object Representations

Nowadays, deep learning is not an unfamiliar concept. The promise of deep learning
is to discover rich, hierarchical models that represent probability distributions over the
kinds of data encountered in artificial intelligence applications, such as natural images[50],
audio waveforms[69], and symbols in natural language[14]. The deep architectures have
the capacity to learn more complex models, which allow for learning powerful object
representations without the need to hand design features. The term object representation
is defined as ”Some form of visual data that possess some internal representation of the
task and of the data.” People can actually see or capture the characteristic of the object
from the representation.

Figure 1: Examples of object representation

Among different types of representation, 2D images have been considered as vital
objects for machine learning tasks for decades. By utilizing the convolutional neural
network, image processing becomes faster and more accurate. The development of science
and technology results in better information representations can be achieved, while such
representations are called 3D geometric data. This type of data models the target object
more precisely since they are the closest to the object’s realistic existence form. To
work with the 3D geometric data, various deep learning techniques have been attempted
that have produced considerable results on 2D images to work with 3D geometric data.
One approach is to represent the 3D object as an assemblage of range images captured
from diverse views of the object, and features of the 3D object are extracted from range
images by a convolutional neural network architecture for description and recognition
tasks[56, 70]. Another approach is using the probability distribution of binary variable on
3D voxel grid to represent the geometric 3D shape[71]. Alternatively, the depth images
of 2D views projected from 3D objects can assist the retrieval of 3D object by training
with a stacked local convolutional autoencoder[36].

Though considerable results have been obtained by these approaches, treating the ge-
ometric data as Euclidean structure is the main drawback. Since fine details of the 3D
object are tend to be lost by the Euclidean structure such as voxel and depth image, also
the topological structure might be broken. A common requirement in many computer
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Figure 2: Multi-view CNN for 3D shape recognition. At test time a 3D shape is rendered
from 12 different views and are passed thorough CNN1 to extract view based features.
These are then pooled across views and passed through CNN2 to obtain a compact shape
descriptor.[56]

vision tasks is to accomplish shape deformation invariance, while in Euclidean represen-
tation the variation of representation will occur on account of object pose changing or
deformation[43]. Hence, the generalization of 3D object representation learning with deep
models to non-Euclidean domain is crucial and will have great benefit. Such generalization
of deep neural model on non-Euclidean domain is so-called geometric deep learning.

1.1.2 Geometric Deep Learning

Geometric Deep Learning is a field of emerging techniques that attempts to general-
ize deep learning architectures as well as the fundamental mathematical principles to
non-Euclidean domains. Two commonly seen non-Euclidean structures are graph and
manifold, which can represent data arising in numerous applications. In neuroscience,
the anatomical and functional structure of the brain can be represented by graph models.
In social networks, the signals on the vertices of the social graph can model the charac-
teristics of the users[16]. In computer vision tasks, the 3D object can be represented by
Riemannian manifolds or simplified as graphs, and the other visual properties can also be
given by the color texture[70].

To work with the obtained non-Euclidean structures, analyzing functions defined on
the non-Euclidean domain is important. In 2005, the first formulation of neural network
on graphs was presented, which was called graph neural network(GNN).It extended the
recursive neural network due to the ability to process a larger collection of graphs and
being able to apply on node focus problems[44]. In 2009, a graph neural network model
based on information diffusion and relaxation mechanism was presented, which the abil-
ity to work with large scale data was demonstrated[20]. Recently some reformulation
of these approaches was carried out, which utilizing emerging techniques such as neural
message passing[30] and gated recurrent units[75]. The convolution-like operation on non-
Euclidean domain was formulated by Bruna et al.[31], which performed the convolution in
spectral domain by constructing the eigenvectors of the graph Laplacian. The main short-
age of this approach is the high computational complexity arising in explicitly compute
the eigendecomposition of the graph Laplacian. By expressing the spectral filter function
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Figure 3: View-based 2.5D Object Recognition. (1) Illustrates that a depth map is taken
from a physical object in the 3D world. (2) Shows the depth image captured from the
back of the chair. A slice is used for visualization. (3) Shows the profile of the slice and
different types of voxels. The surface voxels of the chair xo are in red, and the occluded
voxels xu are in blue. (4) Shows the recognition and shape completion result, conditioned
on the observed free space and surface. [71]

in terms of simple operations such as matrix multiplications and additions, the filter can
be applied to the graph Laplacian directly without computing the eigendecomposition.
Considerable approaches includes ChebNets[45] which utilizing polynomial functions to
approximate filter and CayleyNets[54] using rational functions for filter parametrization.
Another aspect of graph CNN are spatial methods, which apply on local neighborhoods
on the non-Euclidean domain. Such approaches include making use of locally geodesi-
cally polar chart[32] or learnable Gaussian kernels[43], as well as using B-spline kernel to
replace the Gaussians[68].

In this thesis, we proposed a problem lied in 3D computer vision with geometric deep
learning.

1.2 Background
1.2.1 Facial Expression Classification

Human-computer interaction has been an important topic in artificial intelligence re-
search. Scientists working hard on developing the machine for communicating tasks. In
human communication, facial expression plays a significant role since people inferring the
emotional status of others base on their facial expressions. According to previous surveys,
one-third of human communication is conveyed by the verbal component while two-third
is conveyed by nonverbal components. And in nonverbal components, facial expressions
are one of the main information channels. Facial Expression Recognition is an approach to
recognize expressions on human faces, which basically classifies the expression in certain
categories.

The classification of expression often consists of two procedure: feature extraction
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and decision. In the feature extraction procedure, pixel data were converted into higher
level representation of the properties of the face such as shape, texture, and spatial
configuration[58]. The dimensionality of the input space is reduced by the feature ex-
traction procedure but the essential information was retained. In the decision procedure,
various machine learning techniques were applied for pattern recognition, such as Neural
Network, Support Vector Machine and Adaboost. There are six basic facial expressions:
Happy, Surprise, Disgust, Sad, Fear and Angry[51]. Previous work of facial expression
recognition makes use of facial data in 2D images[73], while the development of 3D sensor
allows us collecting 3D data of human faces, which describes the facial shape and defor-
mation more accurately and avoid the affection of illumination variation[59]. However,
the lack of high resolution 3D facial expression database constrains the improvement in
this research area.

In 2017, a high resolution 3D facial database 4DFAB was published by the iBug group
in Imperial College London, which contains 4D video of posed six basic expressions as
well as spontaneous expressions from 180 participants on 4 sessions spanning over 5 year
period[59]. The classification task performed on 4DFAB database achieves recognition
rate 70.27% for session-1, which make use of PCA and LDA to extract features and
multiclass SVM to classify expression from individual static 3D face mesh.

1.3 Thesis Statement
This thesis seeks to tackle the challenges arising in dynamic 3D facial expression recogni-
tion. With proper algorithm design and architecture construction, geometric deep learning
techniques are adequate for tackling non-Euclidean-structured data for various applica-
tion purpose. We expect that the approach proposed in this thesis will benefit more deep
learning user when solving problems with underlying geometric data, that the geometric
deep learning can work as a nice alternative and might provide better results.

1.4 Contributions
We summarise the major contributions we have made below:

• We introduce some essential knowledge in Euclidean deep learning as preliminaries
for better understanding of the review of geometric deep learning techniques and
the thesis approach later presented.

• We provide a review of the latest developed geometric deep learning approaches
from spectral aspect and spatial aspect as well as introduce their design intuition
and discuss their pros and cons.

• We proposed a multi-output model based on CoMA[55] and LSTM[25] on the prob-
lem of dynamic 3D facial expression recognition, which provides both expression
classification result and emotional state classification result. To our best knowledge,
we are the first multi-output dynamic 3D facial expression recognition architecture
that utilizing geometric deep learning technique.
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2 Deep Learning on Euclidean Domain
In this section, reviews of some essential background knowledge of deep learning on Eu-
clidean domain is constructed for better understanding of the model developed in this
thesis on non-Eulidean domain. A brief review of Convolutional Neural Network includ-
ing convolution operations, pooling operations, activation function, and fully connected
operation will be delivered first. Then the basic review of Recurrent Neural Network will
be conducted which introduce different approaches to process temporal information in
data. The autoencoder will be reviewed as it is a nice tool for low-dimensional feature
extraction. The generative adversarial network will be discussed also.

2.1 Convolutional Neural Network
A convolutional neural network is a list of connected layers that transform the input
object into an output volume for specific tasks(e.g. segmentation label), which employs
a mathematical operation called convolution in place of general matrix multiplication.
The common hidden layers and functions including convolution layer, pooling layer, fully
connected layer and activation functions utilized in CNN architecture are discussed further
in the following subsection.

2.1.1 Convolution layer

Intuition The convolution layer is the major building blocks used in CNN, whose pa-
rameters are formed by learnable filters. Each filter is a small spatial kernel that extend
partially the width and height of the input volume as well as the full depth. The filter
slides across every position of the input over the width and height and produce activation
map that contains the responses of the filter at each position. One of the main target
in CNN training is to train filters in each convolution layer to extract features, which
produce set of activation maps to be stacked along the depth and forms the input of the
next layer.

In a convolutional layer, applying a bank of filters Ω = (ωl,l′), l = 1, . . . , q, l′ = 1, . . . , p
on a p-dimensional input h(x) = (h1(x), . . . , hp(x)) with a point-wise non-linearity σ can
be denote as

zl(x) = σ
( p∑
l′=1

(hl′ ? ωl,l′)(x)
)

(1)

where the
(h ? ω)(x) =

∫
Γ
h(x− x′)ω(x′)dx′ (2)

is the convolution operation.

Weight sharing In a convolutional layer, each parameter(weight) of the filter is used
at every position of the input by sliding over the input(the boundary pixels might be
skipped according to the design decision). Thus instead of learning distinct set of param-
eters for every position, only one set of parameters is learnt, which maintain the runtime
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of forward propagation but dramatically reduce the number of parameters. Due to this
parameter sharing, the convolutional layer is equivariance to translation and the number
of parameter is independent to the input size.

Local connectivity and spatial arrangement For each neuron, instead of getting
input from every part of the input volume, it only receives input from a small local group
of the pixels in the input volume. Thus the inputs that go into a given neuron are actually
close to each other(see figure 4). The output volume of the layer depends on the number
of filter being used, the stride and the padding design. For a size W input, applying a
size F filter with stride S and padding P would results in a size (W − F + 2P )/S + 1
output.

Figure 4: Graphical illustration of convolution operation

2.1.2 Pooling layer

The pooling operation use a summary statistic of the nearby input to replace the input
at a certain position, which helps achieving representation invariance to translation by
aggregating multiple low-level features in the neighborhood. Also, the dimension of the
input can be reduced by pooling operation thus allowing multi-scale analysis of the input
and the computation is less intensive. Common pooling method includes max-pooling
and average-pooling, which the former takes the maximum value in the sliding window
and the latter avarages the value in the window. Examples can be seen in figure 5.

Figure 5: Examples of pooling operations.
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In 2010, Boureau et al proposed a theoretical work that provides guidance for choos-
ing pooling operation in different situations[4], while in 2011 he presented the idea that
pooling features together dynamically is also a feasible method[7]. The Spatial pyramid
pooling(SPP-net) porposed by He et al is a network-structure pooling strategy which is
robust to object deformations.

2.1.3 Activation Function

In order to increase the power of the neural network to learn complex functional map-
ping from data, activation functions are utilized. The activation functions are non-linear
functions that have degree more than one and are differentiable which enabling back-
propogation optimization strategy during training. Several activation function that being
utilized in this project would be introduced here, which includes Sigmoid, Softmax, ReLU,
Leaky ReLU, Tanh activation function.

The sigmoid function is a function of S-shape curve whose range is between 0 and 1.
It usually be applied in a binary classification problem or the task required an output
between 0 and 1. The form of sigmoid function is

σ(x) = 1
1 + exp(−x) . (3)

The softmax function can convert an arbitrary N-dimensional real value vector into an
N-dimensional vector with real values between 0 and 1, and the sum of these real values
results in 1. It preserves the property of the input vector but present in a probabilistic
sense, which makes it usually be applied in multi-class classification tasks as each element
in the vector represents the probability of the input data belongs to certain class. The
form of the softmax function is

σ(x)j = ezj∑K
k−1 e

zk
, for j = 1, . . . , K. (4)

The ReLU refers to the Rectified Linear Units, which has become very popular in
recent years computer vision applications. It returns the value of the input if it is positive,
otherwise returns 0. The non-linearity of the overall network could be increase by adding
ReLU between hidden layers.

ReLU(x) = max(0, x) (5)

The Leaky ReLU is a form of ReLU with the same value for positive input but different
for negative inputs. The ReLU function output 0 for negative input while Leaky ReLU
returns the value itself times 0.01

LeakyReLU(x) =

x x > 0
0.01x otherwise

(6)

which correct the dying ReLU problem by avoiding no gradient flows.
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The Tanh function is also an S-shape curve function which returns values between
-1 to 1 for arbitrary input values. It is a scaled version sigmoid function with stronger
gradient.

Tanh(x) = ex − e−x

ex + e−x
(7)

2.1.4 Fully connected layer

The fully connected layer is usually being utilized when useful low-dimensional features
have been extracted by the convolution operation from the original input volume, where
each neuron in the layer is affected by each of the input element. Multiple fully connected
layer could be stacked together with activation function in between, and the final output
dimension depends on the task requirement(e.g. number of class label).

Figure 6: A multi-layer deep fully connected network.

2.2 Recurrent Neural Network
The recurrent neural network(RNN) is a type of neural network architecture that builds
connections along the input temporal sequence. It has the ability to remember informa-
tion learnt from prior inputs and the decision made by the network is affected by those
information learnt, which allowing temporal dynamic behavior being exhibited. Success-
ful applications of recurrent neural network includes text classification[37, 39], speech
recognition[21] and image generation[22]. Three types of recurrent neural network will
be discussed as well as their pros and cons, which are vanilla RNN, Long Short Term
Memory(LSTM)[25], and Gated Recurrent Unit(GRU)[13].

2.2.1 Vanilla RNN

The term valilla RNN refers to the basic RNN structure that process sequences of infor-
mation. Compared to the Multi Layer Perceptron(MLP) who map from input to ourput
vectors, the vanilla RNN can map from the entire history information to output vectors in
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principle. There is an equivalent result to MLP universal approximation theory for RNN,
that is an RNN can approximate any sequence-to-sequence mapping that are measurable
to arbitrary accuracy[27].

Structure A typical RNN can be described in figure 7 on the left, where the graph
on the right shows an unfold-in-time version of RNN. The x = (x1, . . . , xt−1, xt, xt+1, . . . )
denotes sequence of input to the network where t indicates the time step. The st denotes
the hidden state of input x at time t, which is the ’memory’ of the RNN that flows to the
next time step. To compute st, the input x at time t and the state output s at time t− 1
are required

st = f(Uxt +Wst−1) (8)

where the functionf is a nonlinear activation function for instance ReLU or tanh. The
first hidden state s−1 is initialized to all zeros typically. For each time step t, an output
ot is computed by

ot = softmax(V st) (9)

Since the state st captures the previous time steps information, the output ot is computed
based on the memory generated before time t. The weight (U,W, V ) are the same in each
time steps, which reduce the number of parameters to be learnt.

Figure 7: A recurrent neural network and the unfolding in time of the computation.

Backpropagation through time While training, backpropagation through time(BPTT)[72]
algorithm is used to update the weight in the network, which computes the gradient for
each time step by backpropagete the steps before that time step and sum them up. Denote
the input of hidden state st as nett, we have

nett = Uxt +Wst−1 (10)
st−1 = f(nett−1) (11)
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by chain rule we have

∂nett
∂nett−1

= ∂nett
∂st−1

· ∂st−1

∂nett−1
(12)

= Wdiag[f ′(nett−1)] (13)

with equation (12), the error δk at any time step k can be computed by

∇T
k = ∂E

∂netk
(14)

= ∂E

∂nett

∂nett
∂netk

(15)

= ∂E

∂nett

∂nett
∂nett−1

∂nett−1

∂nett−2
. . .

∂netk+1

∂netk
(16)

= ∇T
t Wdiag[f ′(nett−1)]Wdiag[f ′(nett−2)] . . .Wdiag[f ′(netk)] (17)

= ∇T
t

t−1∏
i=k

Wdiag[f ′(neti)] (18)

To backpropagate through time for weight W , the gradient of error E with respect to W
is computed as

nett = Uxt +W (nett−1) (19)
∂nett
∂W

= ∂W

∂W
f(nett−1) +W

∂f(nett−1)
∂W

(20)

∆WE = ∂E

∂W
(21)

= ∂E

∂nett

∂nett
∂W

(22)

= ∇T
t

∂W

∂W
f(nett−1) +∇T

t W
∂f(nett−1)

∂W
(23)

(24)

where

∇T
t

∂W

∂W
f(nett−1) = ∇T

t

∂W

∂W
st−1 (25)

= ∆WtE (26)
(27)

∇T
t W

∂f(nett−1)
∂W

= ∇T
t W

∂f(nett−1)
∂nett−1

∂nett−1

∂W
(28)

= ∇T
t Wf ′(nett−1)∂nett−1

∂W
(29)

= ∇T
t

∂nett
∂nett−1

∂nett−1

∂W
(30)

= ∇T
t−1

∂nett−1

∂W
(31)
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Thus the gradient for updating W can be obtained by

∇WE = ∇WtE +∇T
t−1

∂nett−1

∂W
(32)

= ∇WtE +∇Wt−1E +∇T
t−2

∂nett−2

∂W
(33)

= ∇WtE +∇Wt−1E + . . .+∇W1E (34)

=
t∑

k−1
∇Wk

E (35)

which is the sum of the gradient at every time step. Similarly for U the gradient is
computed by

∇UE =
t∑
i=1
∇UiE (36)

Exploding and vanishing gradients When unfold the RNN overtime, the network is
usually very deep. Thus the exploding and vanishing gradient problem for general deep
neural network could also affects the training of RNN, that the gradient is not able to
backpropagate through a relatively far time steps, which makes the RNN have difficulties
learning long-term dependencies[52]. Solution of this problem have been proposed, which
is the RNN structure being discussed in the following subsection, the Long Short Term
Memory(LSTM).

2.2.2 Long Short Term Memory

The term Long Short Term Memory was first introduced by Hochreiter & Schmidhuber in
1997[25], which is designed to solve the long-term dependency problem explicitly. Similar
to vanilla RNN, the LSTM has the form of a chain of repeating modules of neural network,
but with a different structure in each module.

Structure In stead of having only the hidden state in the RNN hidden layer, the LSTM
has two states: hidden state ht and cell state ct(see figure 8). Thus at time step t the cell
takes three value as input including network input xt, hidden state ht−1 from last time
step and cell state ct−1 from last time step. Then cell state ct and hidden state ht at time
step t will be the output. The core idea of LSTM is to control what information should
be store in ’memory’ to pass to the next state, and what should be ’forget’.

Forward Pass In each cell of LSTM, there are four neural network layers which learn
to control the memory, where each layer is equipped with an activation function(sigmoid
or tanh). To decide what information to be thrown away, the cell look at the hidden state
ht−1 from previous step and the network input xt at current step, and compute the value
for the ’forget gate’ as

ft = sigmoid(Wf · [ht−1, xt] + bf ) (37)

which returns a value between 0 and 1 to indicate ’throw’ or ’keep’. Similarly, to decide
what information to be memorized, another set of weight is utilized to compute the value
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Figure 8: LSTM hidden structures. Left: The unfold LSTM. Right: the neural network
in each cell.

for ’input gate’ as
it = sigmoid(Wi · [ht−1, xt] + bi) (38)

Then, to create a vector C̃t for new candidate values that will be added to the state, the
tanh function is utilized, where

C̃t = tanh(WC · [ht−1, xt] + bC) (39)

And the new cell state is updated by

Ct = ft � Ct−1 + it � C̃t (40)

Where the � denotes the Hadamard(element-wise) product. Finally, to decide what to
be output as the hidden state of current cell, an ’ouput gate’ is computed and apply on
the new cell state

ot = sigmoid(Wo · [ht−1, xt] + bo) (41)
ht = ot � tanh(Ct) (42)

The training of the LSTM is also done by BPTT.

2.2.3 Gated Recurrent Unit

In 2014, Cho et al proposed the Gated Recurrent Unit(GRU) which also solve the gradient
vainishing problem and can be considered as a variation of the LSTM. Without using the
memory unit, the structure of GRU is simpler which results in computationally more
efficient. And the results produced by GRU is equally nice as the LSTM.

Structure In GRU, only two gates are utilized: update gate and reset gate, which
decide the information be passed to the output. They are able to be trained to memorize
information from long ago without removing information that are irrelevant to the tasks.
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Figure 9: Detailed vision of a single GRU.

Forward Pass As receiving network input xt and previous hidden state ht, the update
gate is computed by

zt = sigmoid(Wzxt + Uzht−1) (43)

which decide how much of the information from previous steps should be passed to the
future. The reset gate has the same formula as update gate but with different parameters,
computed by

rt = sigmoid(Wrxt + Urht−1) (44)

To store the relevant information from the previous step into a memory content h′t, the
reset gate is utilized as

h′t = tanh(Wxt + rt � Uht−1) (45)

And the output hiddent state ht will be computed by

ht = zt � ht−1 + (1− zt)� h′t (46)

2.3 Autoencoder
The autoencoder is an artificial neural network that learns to compress(encode) data to
a low-dimensional representation, then reconstruct(decode) the data from this represen-
tation to make it as close to the originial input as possible efficiently, in an unsupervised
way. It reduces the dimension of the input data by learning to ignore the noise in the
data.
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2.3.1 Structure

An autoencoder consists of four parts: encoder, bottleneck, decoder, and reconstruction
loss. The encoder and decoder works as transitions which can be defined as

Encoder γ : X → F (47)
Decoder η : F → X (48)

where X denotes the input space and F denotes the latent space that lies in the bottleneck.
The reconstruction loss is usually computed by the L2 loss between the original input X
and the reconstruction representation:

Loss = ||X − (η ◦ γ)X||2 (49)

In a simplest case of autoencoder with one hidden layer, the encoder ecodes the input
x ∈ X to the latent representation z ∈ F by

z = f(Wx+b) (50)

where the f is an element-wise activation function, and W and b are the weight matrix
and bias vector respectively. In the decoder stage, the latent representation z is decoded
to the reconstruction x′ by

x′ = f ′(W′z+b′) (51)

the output x′ has the same shape as input x and the W’, b’ and f ′ could be different
from the encoder, depending on the design of the autoencoder.

The autoencoder is trained to minimized the reconstruction loss

L(x,x′) = ||x-x′||2 (52)
= ||x− f ′(W′(f(Wx+b)) + b′)||2 (53)

γ, η = arg minL(x,x′) (54)

If the latent space has lower dimension than the input space, the latent vector z can be
regarded as a compressed representation of the input.

2.4 Generative Adversarial Network
The Generative Adversarial Network(GAN)[28] is a promising unsupervised machine
learning methodology proposed by Ian Goodfellow in 2014, which consists of two deep
neural network participating in a zero-sum game against each other. One of them is
called Generator Network G(z), which attempt to fool the discriminator by generating
real-looking images from a noise variable z sampled from a prior distribution Pz(z), where
the other one is the Discriminator Network D(·), that tries to distinguish between real
images x and fake images G(z). The value function V (G,D) of the minimax game is
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Figure 10: The structure of a standard autoencoder.

formulated as:

min
G

max
D

V (D,G) = IEx∼pdata(x)[logD(x)] + IEz∼pz(z)[log(1−D(G(z)))]. (55)

where the Pdata(x) is the data generating distribution. Such construction of architecture
and objective function were criticized due to its prone to mode collapse, thus more vari-
ations of GAN has been proposed later on to address this problem,e.g. WGAN[49] and
BEGAN[9].

2.5 Attention Mechanism
While processing sequences of information with recurrent neural network, most of the
proposed model are designed to encode the input sequence into a fixed length vector[8],
then generate output from this encoded vector. Since all the important information of
the input sequence has been compressed to a fixed-length vector, the model is tend to
lose useful information when dealing with longer input sequence, which has been proved
by Cho et al[11] that the performance of RNN models using fix-length representation
depreciate rapidly as the increment of the input sequence length. To address this problem,
the Attention Mechanism has been proposed.

Intuition The attention mechanism can be regarded as a memory access mechanism,
that it removes the information bottleneck and allows the model accessing not only the
final step output of the RNN. The hidden states of RNN are utilized to make decision
about which information is important at the moment, and the attention weights will be
provided which indicates the importance of each input information regarding to specific
tasks(e.g. how relative does a word in a sentence to a partition of the image).

Formation Denote the input of RNN at time step t as vi, the hidden state of RNN
from previous step as q. The attention weight of input vi is computed by the softmax
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value of a similarity function

weight(vi, q) = softmax(similarity(vi, q)) (56)

While the similarity function can be designed depends on the task, two common ways is
introduced here. The first one is Additive Similarity, which is basically using a neural
network with single layer:

similarity(v, q) = tanh(Wvv +Wqq + bias) (57)

where the activation function can be chosen to use alternatives. Another kind of similarity
funcion is Multiplication Similarity, which is basically dot product between inputs and
hidden states:

similarity(v, q) = v · q (58)

In the case that v and q are both normalized, this is equivalent to cosine similarity.
The advantage of the multiplicative similarity is the speed of calculation, where the dot
product is faster. The output of the attention mechanism is the weighted sum of the
input vi:

attention(v, q) =
∑

(weight(vi, q) · vi) (59)

With the equipment of these background knowledge in Euclidean domain, generalization
of deep learning on non-Euclidean domain will be delivered in next section.
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3 Deep Learning on non-Euclidean Domain
In this section, we are going to discuss the generalization of deep learning on non-Eulidean
domain. We will first introduce some notions and terminologies of the two prototytpical
non-Euclidean objects: graph and manifold. Then we summarize different approaches to
perform convolution on non-Euclidean domain in order to build neural network for repre-
sentation learning tasks. Last, we review some state-of-the-art deep learning approaches
on face analysis while the face object is defined on non-Euclidean domain.

3.1 Graph Theory
3.1.1 Definitions

The term Graph in mathematics refers to a collection of lines and points, where the points
are denoted as vertices and the lines connecting the vertices are denoted as edges. Vari-
ous types of graphs are available for different purpose including multigraph, pseudograph,
oriented graph etc., while this thesis will focus on weighted undirected graph. Under this
assumption, the order of the paired edges does not affect the representation meaning, i.e.
edge Eij is equivalent to Eji. The weight value on the edge of the graph is assumed to be
non-negative, which usually represent the similarity or relation between vertices.

Define a weighted undirected graph G as G = (V , E), which consist of vertices V =
{v1, . . . , vn} and edges E ⊆ V × V . For each connected pair of vertices, the weight of the
edge between them is denoted by wij ≥ 0, where (i, j) ⊆ E . And the vertices that are
joined by an edge are adjacent.

In graph analysis tasks, signals or vertex functions f : V → IR that are defined on the
graph have real value on each vertex, which can be represented by vectors g = (g1, . . . , gn),
where gi is the scalar value(example of signals on graph see figure 11). In the case that
taking two vertices and add them directly is not applicable due to the graph is not a
vector space, researchers treating functions on the vertices as a vector space. Under this
setting, adding two function on the graph is applicable. Define Hilbert spaces L2(V) and
L2(E), where the standard inner product of two functions on vertices and edges of the
graph can be conduct by

< f, g >L2(V) =
∑
i∈V

aifigi (60)

< F,G >L2(E) =
∑
i∈E

wijFijGij (61)

With which performing operations on functions on vertices and edges results in perform-
ing operations on graph. The weight ai and wij are positive values which invariant to
permutation of indices. When these weights taking constant value 1, the inner product is
the standard l2-inner product.

17



Figure 11: Heat diffusion represented by signals on graph. The size and the color of each
vertex indicating the value of signal(temperature) on vertex.[66]

3.1.2 Graph Laplacian and Eigendecomposition

The graph Laplacian is a key construction in the field of spectral graph analysis. To derive
this term, the graph gradient and graph divergence needed to be introduced[40].

Definition 3.1.2.1 The graph gradient is a linear operator denoted as ∇ : L2(V) →
L2(E), which maps vertex functions to edge functions.

(∇f)ij = fi − fj (62)

which satisfies (∇f)ij = −(∇f)ji automatically.

Definition 3.1.2.2 The graph divergence is a linear operator that does the converse
of gradient: ∇ : L2(E) → L2(V), which maps from functions defined on edges to those
defined on vertices,

(divF )i = 1
ai

∑
j:(i,j)∈E

wijFij. (63)

Definition 3.1.2.3 The graph Laplacian ∆ : L2(V) → L2(V) can be constructed by
these two operators, defined as ∆ = −div∇, can be expressed by a combination of (62)(63)

(∆f)i = 1
ai

∑
(i,j)∈E

wij(fi − fj) (64)

The intuitive geometric interpretation of the graph Laplacian is captured by this formula,
which is taking differences between function on the vertex and its local average around
it. There is an alternative to construct the graph Laplacian(unnormalized), which is

∆ = D−W (65)

The matrix D = diag(∑j:j 6=iwij) is the degree matrix which contains the vertex degree
deg(vi) at the di,j,i=j position. The matrix W = (wij) is an n× n matrix which contains
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the edge weights. For those unconnected vertices (i, j) 6∈ E , wij = 0. Applying the inverse
of the diagonal matrix A = diag(a1, . . . , an) of vertex weights, the normalized graph
Laplacian can be obtained

∆ = A−1(D−W) (66)

If choose A=D, the random walk laplacian can be obtained[67].

Eigendecomposition of Graph Laplacian The graph Laplacian is self-adjoint positive-
semidefinite, which allows performing eigendecomposition that results in a discrete set of
orthonormal eigenfunctions φ0, φ1, . . . . The orthonormality guarantees that for any φi, φj,
< φi, φj >L2(X )= δij . For each eigenfunction, there is a corresponding non-negative real
eigenvalues 0 = λ0 ≤ λ1 ≤ . . . where

∆φi = λiφi, i = 0, 1, . . . (67)

The eigenfunctions are the smoothest functions when considering the Dirichlet energy.

Figure 12: Visualization of the eigenfunction on non-Eulidean domain. The figure show
the first four Laplacian eigenfunctions on Minnesota road graph[5]

The Dirichlet energy is a term that measures how smooth a funcion is. For a function f

on domain F , the Dirchlet energy is calculated by

EDir(f) =
∫
F
||∇f(x)||2TxFdx (68)

=
∫
F
f(x)∇f(x)dx (69)

where the smoothness is assigned according to the variation of the value of the function.
For a function varies significantly, the value of the Dirichlet energy is large, for those that
varies slightly, the value of the Dirichlet energy is small. If achieves zero energy, then the
function is constant. To obtain the k smoothest possible functions(eigenfunctions), we
solve the following optimization problem

min
φ0
EDir(φ0) s.t. ||φ0|| = 1 (70)

min
φi
EDir(φi) s.t. ||φi|| = 1, i = 1, 2, . . . , k − 1 (71)

φi ⊥ span{φ0, . . . , φi−1} (72)
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In practise, the domain is usually sampled at n points, which converts the problem into
formulation under the discrete setting

min
Φk∈IRn×k

trace(Φ>k ∆Φk) s.t. Φ>k Φk = I (73)

where the solution Φk is the collection of the first k eigenfunctions of the graph Laplacian,
Φk = (φ0, . . . , φk−1) satisfying

∆Φk = ΦkΛk (74)

with Λ = diag(λ0, . . . , λk−1) is a diagonal matrix containing the corresponding eigenvalues
of ∆. The eigendecomposition of the Laplacian can be performed in two ways. One way
is to rewrite the (74) as (D−W)Φk = AΦkΛk, which is a generalized eigenproblem that
results in A-orthogonal eigenvectors satisfying Φ>k AΦk = I. An alternative is utilizing
the change of variable method with Ψk = A 1

2 Φk, to transfer the problem to a standard
eigendecomposition probelm A− 1

2 (D−W)A− 1
2 Ψk = ΨkΛk where the eigenvectors are

orthogonal, Ψ>k Ψk = I.

3.1.3 Graph Fourier analysis

Graph Fourier Transform The eigenfunctions of the graph Laplacian can be ex-
plained as generalizing standard Fourier basis to the non-Euclidean domain. Because of
the intrinsic construction of the Laplacian, the Laplacian eigenbasis is intrinsic. In Eu-
clidean case, the discrete Fourier transform is performed by representing a function by
a linear combination of orthogonal vectors, where the coefficient of the linear combina-
tion projects the function on the spaces formed by the orthogonal basis[65, 24]. With
exponential basis, the Fourier decomposition of function s(x) is

s(x) =
∑

cn · ei
2πnx
P (75)

where cn is the coefficient and P is the period of the Fourier series. Replacing the expo-
nential basis by the eigenvectors φk of Laplacian, the Fourier decomposition of a square-
integrable function f on graph X can be obtained

f =
n∑
k=1

< f, φk >L2(X )︸ ︷︷ ︸
f̂k

φk (76)

where the f̂k denotes the discrete set of Fourier coefficients(example see figure 13) and
the inner product is calculated by (60). In the sense of classical signal processing, formula
(76) generalize the forward transform stage on non-Euclidean domain, while the inverse
transform stage can be done by summing up the basis function φk with these coefficients
f̂k. In matrix-vector notation, the orthogonal eigenfunction Φ = {φ1, . . . , φn} can be
obtained by eigendecomposition of the graph Laplacian

∆ = ΦΛΦ> (77)
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Figure 13: Example of function represented by linear combination of Laplacian eigenfunc-
tion on non-Euclidean domain.[6]

where Λ = diag([λ1, . . . , λn]) ∈ IRn×n is the matrix containing ordered real non-negative
eigenvalues. The graph Fourier transform of a function f is performed by f̂ = Φ>f while
the inverse transform is performed by f = Φf̂ [57].

Graph Convolution In classical Euclidean signal processing, the convolution operator
can be diagonalized by Fourier transform, which allows expressing the convolution of two
functions f and g in spectral domain by an element-wise product

( ̂f ? g)(ω) =
∫ ∞
−∞

f(x)e−iωxdx
∫ ∞
−∞

g(x)e−iωxdx (78)

where the
∫∞
−∞ f(x)e−iωxdx and

∫∞
−∞ g(x)e−iωxdx is the Fourier transform of f and g re-

spectively. Due to the structure of non-Euclidean domain, the operation x − x′ cannot
be defined. Thus the generalization of convolution on non-Euclidean domain utilize the
Convolution Theorem as its definition, which is formulated by

(f ? g)(x) =
∑
k≥0

< f, φk >L2(X )< g, φk >L2(X ) φk(x) (79)

where the inner product is obtained by (60). Such construction is lack of shift-invariance,
which can be explained as position-dependent filter in the sense of signal processing. Thus
the spatial representation of the filter at different position of the object can vary dramat-
ically when parametrized in the frequency domain by fixed number of coefficients. Since
the graph Laplacian has n eigenvectors, the sum over i becomes finite. The convolution
f ? g can be expressed in matrix-vector notation

f ? g = Φ((Φ>f)� (Φ>g)) (80)
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where the � is the Hadamard product. The spectral graph filtering is defined as applying
a filter gθ(∆) on a function f

y = gθ(∆)f (81)
= gθ(ΦΛΦ>)f (82)
= Φgθ(Λ)Φ>f (83)

= Φ


gθ(λ1) · · · 0

... . . . ...
0 · · · gθ(λn)

Φ>f (84)

3.1.4 Graph Coarsening

In classical CNN, pooling operation allows gaining computational performance with less
spatial information, as well as less parameters which avoid overfitting. The global view
provided by pooling operation enable obtaining rotation and position invariance. Thus for
graph objects, a nice pooling method that preserve the properties of graph as in classical
CNN would results in a nice hierarchical multi-scale representation, which allow global
context be captured by deeper layers and local context be captured by shallow layers.

The process of reducing number of vertices and edges while preserving intrinsic geo-
metric structure is referred as graph coarsening, which transform a given graph G = {V , E}
into a coersed version of graph G′ = {V ′, E ′}[38]. Since the main graph object we study
in this thesis is 3D face object, which is discretized as polygonal surface models, that is a
form of relatively smoother graph. We introduced a graph coarsening approach utilized
in [55] which focus on surface simplification that produce high quality lower dimensional
approximation to the target graph model.

The pooling of the graph is performed by applying a transform matrix Qd ∈ {0, 1}n×m,
which contains binary indication of whether to keep or discard a certain vertex. For
discarding the q-th vertex, Qd(p, q) = 0,∀p, while for keeping the q-th vertex, Qd(p, q) =
1,∀p. The discipline for choosing vertex to be kept or discarded is minimizing the quadric
error when contracting vertex pairs iteratively[23]. Denote the contraction of vertex pairs
by (v1,v2)→ v̂, which moves both vertices v1 and v2 to the new position v̂ and connect
all the incident edges of v1 and v2 to v̂. In some cases, the new position can simply be
chosen as one of the two paired vertices and the other one will be discarded. The selection
of vertices to be contracted assumes that points should not move long distance from it
original position in a nice approximation, thus an appropriate pair of vertices (v1,v2) to
be considered should satisfy one of the two following criterion:

1.(v1,v2) is an edge
2.||v1 − v2|| < c

where c is a set threshold to allow non-connected vertices to be considered. The simplest
case can set c = 0. For each contraction, a cost is calculated for aiding decision making
of which vertex to be kept. The cost is measured by the error at each vertex, where a
symmetric matrix M ∈ IR4×4 is computed for each vertex v = [vx, vy, vz, 1]>. An error
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Figure 14: Contracting vertex pair (v1,v2)→ v2. Faces of the graph be removed during
contracting.

metric Θ will be constructed based on the M matrix. Consider each vertex v as a solution
of the intersection of the triangular faces around that position, the error Θ(v) of the vertex
with respect to the set of planes containing the faces around it can be defined as the sum
of squared distance to these planes. The plane p is denoted as p = [a, b, c, d] where
ax+ by+ cz + d = 0 is the equation that defines a plane. To guarantee the uniqueness of
the plane, a constrain a2 + b2 + c2 = 1 requires to be satisfied.

Θ(v) = Θ([vx, vy, vz, 1]>) (85)
=

∑
p∈planes(v)

(p>v)2 (86)

=
∑

p∈planes(v)
(v>p)(p>v) (87)

=
∑

p∈planes(v)
v>pp>v (88)

= v>(
∑

p∈planes(v)
Kp)v (89)

(90)

where the Kp is the fundamental error metric that helps to obtain the squared distance
of arbitrary point in space to the plane p.

Kp =


a2 ab ac ad

ab b2 bc bd

ac bc c2 cd

ad bd cd d2

 (91)

The M matrix mentioned before is computed by summing the Kp of each of the plane in
the plane set, M = ∑

p∈planes(v) Kp. Hence, the error of each vertex can be rewritten as

Θ(v) = v>Mv (92)

When considering the contraction, an updating rule M̂ = M1 + M2 for M is computed
for each vertex pair while the resulting value of error Θ(v) will be placed in a heap keyed
on cost. The smaller the cost, the higher it will be placed in the heap. The least cost pair
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(vi,vj) will be removed iteratively from the heap i.e. contracted. The cost of existing pairs
is updated after every contraction. The final contracting decision will be filled into the
transform matrix Qd and the coarsening operation is done by sparse matrix multiplication
Gd = QdG.

3.2 Manifolds
3.2.1 Definition

The manifold in geometric deep learning refers to the continuous topological spaces which
is locally Euclidean. Due to lacking of global vector space structure, performing addition
or subtraction with two points on a manifold is not appropriate, but within a small
local region, the small curvature allows it to be considered as Euclidean space. For each
point x on a r-dimensional manifold X , the neighborhood around x is equivalent to
a r-dimensional Euclidean space topologically, which is referred as tangent space TxX .
The tangent bundle TX = [T1X , . . . , TnX ] is the collection of all tangent space in a
manifold(see figure 15 left). To perform local measurements of geometric structures such
as angles, distances and volumes, the Riemannian metric is defined, which is an inner
product within a tangent space

< ·, · >TxX : TxX × TxX → IR (93)

With the equipment of this metric, a manifold is called Riemannian manifold. By the
Nash Embedding Theorem, any Riemannian manifold that is smooth sufficiently can be
realized in a sufficiently high dimensional Euclidean space[34], where multiple realizations
might be available for one Riemannian metric, called isometries.

In computer vision tasks, the two-dimensional manifolds embedded into IR3 are utilized
to model boundary surfaces of 3D objects, where the ”3D” refers to the embedding space
dimensionality. The fact that isometries do not affect the metric structure of the manifold
when deformation happened results in any quantities expressed in terms of Riemannian
metric being preserved. Such nice property is called intrinsic.

3.2.2 Functions on manifold

To represent the information on manifold as well as perform operations, functions on
manifold need to be defined, in particular: scalar field and vector field. The scalar field
is a smooth real function f : X → IR that assigns real value to points on the manifold,
where the vector field is a mapping F : X → TX that take each point x on the manifold
and assigns a tangent vector F (x) ∈ TxX . Define a standard Hilbert space of functions
on manifolds, denoted by L2(X ) for for scalar field and L2(TX ) for vector field, the inner
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product of these functions expressed as

< f, g >L2(X ) =
∫
X
f(x)g(x)dx (94)

< F,G >L2(TX ) =
∫
X
< F (x), G(x) >TxX dx (95)

where the d-dimensional volume element induced by the Riemannian metric is denoted
by dx.

When analysing functions, the derivative measures the sensitivity of the function
change with an infinitesimal change of the input argument, which is used extensively
when analyzing function behavior. However, since the manifold does not have the vector
space structure, the generalization of derivative on functions on manifold need to work
within the tangent space locally. Define the derivative of f as df : TX → IR, which defines
an operator at every point x as df(x) =< ∇f(x), · >TxX to model the small displacement
around x. When apply on a tangent vector F (x) ∈ TxX , the value change of the function
due to the displacement is given by df(x)F (x) =< ∇f(x), F (x) >TxX . This operator
∇f is called the intrinsic gradient, which is similar to the classical notion of the gradient
except for the steepest change direction is a tangent vector.

Similarly, the divergence operator is defined as L2(TX ) → L2(X ) which is adjoint to
the gradient[62]

< F,∇f >L2(TX )=< ∇∗F, f >L2(X )=< −divF,∇f >L2(X ) (96)

Finally the Laplacian ∆ : L2(X )→ L2(X ) of the manifold is defined as an operator acting
on scalar field as

∆f = −div(∇F ) (97)

which is symmetric.

3.2.3 Discrete Manifold

In practise situation, the manifold is discretized for shape modeling tasks. To guar-
antee the geometrically consistency, a valid approach is to consider not only the sam-
pled points V = {vi}i=1,...,n and connected edges E = {(i, j)}i,j=1,...,n, but also the faces
F ∈ V × V × V , where the continuous manifold is modeled as a polyhedral surface. The
resulting manifold dicretization is referred to as triangular mesh (V , E ,F). The mesh
Laplacian is defined as

(∆f)i = 1
1
3
∑
jk:(i,j,k)∈F aijk

∑
(i,j)∈E

(
−l2ij + l2jk + l2ik

8aijk
+
−l2ij + l2jh + l2ih

8aijh
)(fi − fj) (98)

where the aijk =
√
sijk(sijk − lij)(sijk − ljk)(sijk − lik) is the area of the triangle (i, j, k)

and sijk = 1
2(lij + ljk + lki) is the semi-perimeter. The weights in formula (98) are intrinsic

due to solely expressed in terms of the discrete metric. If infinitely refined the mesh under
certain technical condition, the resulting construction can converge to the continuous
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Laplacian of the manifold[47].

Figure 15: Left: Two-dimensional manifold with tangent space and tangent vectors.
Right: A triangular mesh discretization of a two-dimensional manifold, where the
ai = 1

3
∑
jk:(i,j,k)∈F aijk is the local area element[5].

3.3 Spectral Convolution Operations
In this section, different approaches to generalize convolutional architecture on non-
Euclidean domain are discussed, which, in particular, operating on the spectrum of the
graph weights. The domain being study here are assumed to be fixed.

3.3.1 Spectral CNN

Similar to the classical CNN architecture in Euclidean domain, the spectral CNN consists
of functional layers stacking together(see figure 16)[18]. Due to the special structure of the
input graph, the convolutional operation and pooling operation is different from classical
CNN.

Figure 16: Typical architecture of spectral CNN[18].
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Convolutional Layer The convolutional layer expressed in spectral domain is

gl = ξ

( p∑
l′=1

ΦWl,l′Φ>f l′
)

(99)

where l = 1, . . . , q and l′ = 1, . . . , p indicating the dimension of the input and output
respectively. The input function f of the layer are stored in an n×q matrix F = (f1, . . . , fq)
while the output g are stored in an n × p matrix G = (g1, . . . ,gp), n = |V| indicating
the number of vertices of the graph. The Wl,l′ ∈ IRn×n is a diagonal matrix containing
spectral multipliers that express the convolutional filter in frequency domain. The Φ is the
matrix of eigenvectors of graph Laplacian computed by eigendecomposition ∆ = ΦΛΦ>.
And the ξ represents a nonlinear function applied to each function value, which is the
same as activation function in classical CNN case. According to the intrinsic regularity
of the graph as well as the sample size, a cutoff frequency will be set by using only the
first k eigenvectors, which describes the smooth structure of the graph, usually k << n.

Pooling Layer The pooling operation is done by graph coarsening, which results in a
subset of the vertices of the graph is retained. Denotes the fraction of the left vertices as
α, the relation of the eigenvectors of graph Laplacian Φ ∈ IRn×n of original graph and the
eigenvectors of graph Laplacian Φ̃ ∈ IRαn×αn of the coarsed graph can be expressed by

Φ̃ ≈ PΦ
(

Iαn
0

)
(100)

where the binary matrix P ∈ IRαn×n encodes the position of the i-th vertex of the coarse
graph with respect to the original graph in the i-th row. After each pooling step, the
graph Laplacian eigenvectors need to be recomputed.

Discussion Due to the basis dependency of the spectral filter coefficients, the filter
learned with respect to basis Φk on one domain could have very different result when
applied to another domain with different basis Ψk. And the construction of compatible
orthogonal basis across distinct domain requires the correspondence between domains,
which is a hard problem. Hence, the filter is not able to generalize across different domain.
The number of parameter on each layer is O(n) at least when all the eigenvoectors of
the Laplacian are used. The cost of computing the filter is also high, which is O(n2)
due to multiplication with the dense matrix Φ and Φ> when performing forward and
invese Fourier transform. Also, there is no guarantee of the spatial localization of the
filters since the filter is defined in spectral domain. The reason of attempting to achieve
spatial localization is that filter with this property does not require the input graph to
be homogeneous, i.e. graphs does not need to have same number of vertices and edge
connections, and can process heterogeneous graphs that vary in the number of vertices
and the distribution of edge connections(see figure 17)[63], which has more benefit in real
world applications.
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Figure 17: Left: Homogeneous graphs which only difference between graphs is the vertex
values. Right: Heterogeneous graphs which difference can be structure of edge connection,
number of vertices and vertex values[63].

3.3.2 Smooth spectral filter Spectral CNN

The smooth spectral filter spectral CNN has the same architecture and pooling operation
as spectral CNN, while the only difference is the convolutional filter being utilized. To
introduce the filter construction, the concept of localization and smoothness of the filter
is required to be discussed first.

Localization and Smoothness In the Euclidean setting, to express the spatial locality
in the frequency domain, the moment of a function is related to the derivative of its Fourier
transform, which is the consequence of the Parseval’s identity.

∫ +∞

−∞
|x|2k|f(x)|2dx =

∫ +∞

−∞

∣∣∣∣∣∣∂
kf̂(ω)
∂ωk

∣∣∣∣∣∣
2

dw (101)

To obtain a spatially localized filter, the higher order moments of the function are required
to decay fast, which means that by Parseval’s identity, the higher degrees of derivative of
the Fourier transform should also be small, which essentially means the Fourier transform
for localized signal is smooth. The notion of smoothness assumes some geometric structure
in the spectral domain. In 1-dimensional Euclidean case, the structure comes in the form
of distance between two basis functions, thus the measurement can be simply taking the
absolute value of the difference between two frequencies

d(eiωx, eiω′x) = |ω − ω′| (102)

If work in n-dimensional Euclidean space, taking the norm of the frequency vectors will
be the measurement

d(eiω>x, eiω′>x) = ||ω − ω′|| (103)
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Though in non-Euclidean domain defining the geometric of the spectral domain, the
eigenvectors of the Laplacian can be interpreted as the frquencies, thus the absolute value
of the difference of the eigenvectors can be the measurement

d(φi, φj) = |λi − λj| (104)

where the eigenvalue λ is ordered in increasing order.

Convolutional Filter Parametrize the filter as a smooth transfer function τ(λ), the
application of the filter will amount to applying this transfer function to the Laplacian
∆.

τ(∆)f = Φτ(Λ)Φ>f (105)

The smooth transfer function can be parametrized by small number of parameters, de-
noted by α, where the application of the filter becomes

τ(∆)f = Φ


τ(λ1)

. . .
τ(λn)

Φ>f (106)

= Φ


τα(λ1)

. . .
τα(λn)

Φ>f (107)

A simple way of parametrizing the transfer function is to represent it as a linear combi-
nation of smooth basis functions β1(λ), . . . , βr(λ).(e.g. B-Spline basis[68])

τα(λ) =
r∑
j=1

αjβj(λ) (108)

where the α = (α1, . . . , αr)> is the vector of the parameters of the filter. Written in matrix-
vector form, for eigenvalue λk, τα(λ) = ∑r

j=1 αjβj(λ) = Bα where B = (bkj) = (βj(λk)).
The overall filter is a diagonal matrix W = Diag(Bα).

Discussion Utilizing the parametrized filter, the spatial localization has been guarantee
by virtue of the Parseval’s identity. The number of parameters describing the filter is
small, ideally could be O(1). However, explicit computation of the Fourier transform is
still required, thus the cost of computation stays O(n2).

3.3.3 ChebyNets

To get rid of the costO(n2), approaches that avoid explicit computation of the eigenvectors
has been proposed, which is by representing the spectral transfer function as a polynomial
of order r.

τα(λ) =
r∑
j=0

αjλ
j (109)
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For guarantee the stability under coefficients perturbation, orthogonal basis of polyno-
mials is utilized, in particular, Chebyshev polynomials. The Chebyshev polynomials are
defined recursively as

Tj(λ̃) = 2λ̃Tj−1(λ̃)− Tj−2(λ̃) T0(λ̃) = 1, T1(λ̃) = λ̃ (110)

The λ̃ denotes the scaled frequency between [−1,+1] due to this basis is orthonormal on
L2([−1,+1]) with respect to < f, g >=

∫+1
−1 f(λ̃)g(λ̃) dλ̃√

1−λ̃2
. The reason to do so is that

[−1, 1] is the domain that the Chebyshev polynomial can form an orthonomal basis.

Convolutional Layer The filter parametrized by Chebyshev polynomial is defined as

τα(∆) =
r∑
j=0

αjTj(∆̃) (111)

where the ∆̃ = 2λ−1
n ∆− I is the rescaled Laplacian that map the eigenvalue from [0, λn]

to [−1, 1][45]. Applying filter to the function f on the graph is denoted as f̄ (j) = Tj(∆̃)f
and by recurrent relation (110) we have

f̄ (j) = 2∆̃f (j−1) − f (j−2) (112)
f̄ (0) = f (113)
f̄ (1) = ∆̃f (114)

Pooling Layer The pooling operation of the ChebyNet is the same as spectral CNN
which making use of the graph coarsening technique.

Simplified ChebyNet In 2016, Kips and Welling proposed a simplification construction[35]
to the ChebyNet algorithm, which assumes that the largest value of the eigenvalue λ[n] = 2
and the highest degree of the polynomial is r = 2. In this case, applying convolutional
filter to function f is of the form

τα(f) = α0f + α1(∆− I)f (115)
= α0f − α1D−

1
2 WD−

1
2 f . (116)

By adding a further constrains α = α0 = −α1, a single parameter filter can be obtained
as

τα(f) = α(I + D−
1
2 WD−

1
2 )f (117)

Since the eigenvalues of the matrix I + D−
1
2 WD−

1
2 ranges from 0 and 2, applying the

filter repeatedly can result in numerical instability. To solve this numerical instability, a
renormalization has been applied to the matrix for mapping the eigenvalues into [0, 1], as

τα(f) = αD̃−
1
2 W̃D̃−

1
2 f (118)
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with renormalization W̃ = W + I and D̃ = diag(∑j 6=i ω̃ij). Such construction has been
proved to have nice result on simple graphs such as the CORA citation network[53].

Discussion Under this setting, the number of the parameter of the filter per layer is
O(1) which is fixed. The filter is not only spatially decaying but also guarantee compact
support, specifically, r-hops support. The Laplacian is an local operator that acts on
nearest neighbor around a vertex, thus the r-th power of the Laplacian will affect the
r-neighbors which results in the filter localized to r-neighbors in space. Explicit compu-
tation of the eigenvectors can be avoid and the resulting complexity is O(|E|r) under the
assumption that the graph is sparsely connected. Since the Chebyshev polynomial basis
is orthonormal, the stability under perturbation is guarantee due to the projection on this
basis are stable. For smooth functions, the coefficient decay fast.

A main drawback of the Chebyshev polynomial approximation of the filter is that when
approximate a filter having features in a given scale, the number of Chebyshev coefficients
required is proportional to the scale given. If there is a cluster of the eigenvalues around
one frequency, the filter used to separates the eigenvalues need to have enough features
in scale proportional to the radius of the eigenvalue cluster, which might results in very
high degrees of polynomial[41].

3.3.4 Cayley Net

An alternative of using polynomials to represent filter is the Cayley polynomials[41]. The
Cayley polynomials of order r is defined as

gc(λ) = c0 + 2Re
 r∑
j=1

cj(λ− i)j(λ+ i)−j
 (119)

which is a real-valued function with complex coefficients. The c = (c0, . . . , cr) is a vector
containing one real coefficient and r complex coefficients, and the i is the complex unit.
This polynomial makes use of the Cayley transform C(λ) = λ−i

λ+i which is a smooth bijection
from real number domain IR to the complex unit circle with 1 removed eiIR\{1}. Since
this polynomial works on the unit circle, we have z−1 = z̄ for z ∈ eiIR and 2Re{z} = z+ z̄.
The polynomial can be rewritten as a conjugate-even Laurent polynomial with respect to
C(λ)

gc(λ) = c0 +
r∑
j=1

cjC
j(λ) + c̄jC

−j(λ). (120)

Each C(λ) is a number on complex unit half circle(due to only non-negative frequencies),
which basically is an element of the classical Fourier basis, expressed as C(λ) = eijωλ with
basis frequency ωλ, and the integer multiple of the frequency j. Hence the polynomial
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(120) is essentially a trigonometric polynomial expressed in sin(·) and cos(·)

gc(λ) = c0 +
r∑
j=1

cje
ijωλ + c̄je

−ijωλ (121)

= c0 + 2
r∑
j=1

Re{cj}cos(jωλ)− Im{cj}sin(jωλ) (122)

where the trigonometric polynomial is generally well behave in function representation.
To apply the transfer function to the Laplacian, a scaled factor h is utilized for scaling
Laplacian h∆, which usually called spectral zoom and could achieve non-linear transfor-
mation of the eigenvalues. The spectrum of ∆ is dilated by the multiplication between
∆ and h. By applying the Cayley transform

C(h∆) = (h∆− iI)(h∆ + iI)−1 (123)

the non-negative spectrum is mapped to the complex half-circle. With larger value of h,
more the spectrum of h∆ is spread apart in IR+, which achieves better spacing of the
smaller eigenvalues of C(h∆), while smaller value of h results in better spread apart the
high frequencies(see figure 18). Thus h is also a learnt parameter to find a suitable value

Figure 18: Cayley transform C(h∆) for h=0.1,1,10(from left to right) of the 15-
communities graph Laplacian spectrum[41].

to ‘zoom’ in to specific parts of the spectrum as required.

Convolutional Layer Applying the Cayley filter on a function f is denoted as

gc,h(∆)f = c0f + 2Re
 r∑
j=1

cj(h∆− iI)j(h∆ + iI)−jf
 (124)

which performed in a sequential manner. Denotes the solution of the recurrsive system

y0 = f (h∆ + iI)yj = (h∆− iI)yj−1 j = 1, . . . , r (125)

as yo, . . . ,yr, to avoid the matrix inversion that required O(n3) computational cost, the
Jacobi method is utilized for approximating the solution ỹj ≈ yj. The Jacobi iteration
matrix associated with equation (125) is denote as J = −(Diag(h∆+ iI))−1off(h∆+ iI)
while for unnormalized Laplacian J = (hD+ iI)−1hW. For a given j, the Jacobi iteration
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approximation is of the form

ỹ(k+1)
j = Jỹ(k)

j + bj (126)
bj = (Diag(h∆ + iI))−1(h∆− iI)ỹj−1 (127)

with ỹ(0)
j initialized as bj, the iteration terminated after K iteration and obtain ỹj = ỹ(K)

j .
Denotes ỹ0 = y0, applying the approximate Cayley filter is of the form G̃f = c0ỹ0 +
2Re∑r

j=1 cjỹj ≈ Gf .

Pooling Layer The pooling layer of the Cayley Net still utilize the graph coarsening
technique for multiscale graphz transfermation.

Discussion The Cayley filter has the same advantages as in Chebyshev case, which
includes O(1) parameters per layer and exponential spatial decay of the filter. The com-
putational complexity is O(nr) owe to the Jacobi approximation. The big advantage is
that the zoom property allows the filter to better localized in frequency. And because of
the over completeness of the trigonometric polynomial form, richer family of the filters
can be obtained compared to Chebyshev polynomial with the same order.

3.4 Spatial Convolution Operations
An alternative to perform convolution on non-Euclidean domain is the spatial convolution,
which is a class of approaches that does not rely on the spectral information of the
given geometric data. In Euclidean case, when performing the spatial convolution for an
image, a patch operator is utilized to extract local feature for a small partition of the
image each time. Due to shift-invariance, the patch can be passed at each point of the
image and record the correlation between the patch and the subset of the image. To
generalize this concept to non-Euclidean domain, notions of patch is needed. Define a
local system of coordinates on non-Euclidean domain, specifically 2-dimensional manifold,
as a local bijective map ςx : Bρ0(x)→ [0, 1]2 from a metric ball around a point x to a unit
square. Such construction of local coordinate is position dependent. The patch operator
D : L2(X )→ L2([0, 1]2) is a map from functions lives on the entire manifold to the system
of coordinates, denoted by

(D(x)f)(u) = (f ◦ ς−1
x )(u) (128)

where u is the vector of local system of coordinates. Due to the change of the local
coordinates, the patch operator is also position dependent, thus have different mapping
at different position(see figure 19).

The spatial convolution on manifold of function f ∈ L2(X ) with continuous filter
g(u) ∈ L2([0, 1]2) is defined as

(f ? g)(x) =
∫

[0,1]2
g(u)(D(x)f)(u)du (129)

which apply the patch operator D(x) to extract local patch from f and multiplied with
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Figure 19: Patch operator moving on image and manifold.

the filter g, depends on the point x. In the discrete case, the convolution is denoted as

(f ? g)(x) =
J∑
j=1

gj(D(x)f)j (130)

where g = (g1, . . . , gJ) is the discrete filter. In particular, when functions are defined on
graph(i.e. under finite setting), the spatial convolution can be written in matrix-vector
notation as

f ? g = g>(Df) (131)

where Df is an n × J matrix that collects patches at each point in each rows. Several
approaches to construct the patch operator will be introduced in the following subsections,
including their pros and cons.

3.4.1 Geodesic CNN

The Geodesic CNN is proposed by Masci et al[32] in 2015, which making use of the low-
dimensional tangent spaces of the manifold, associated with each point. The geodesic
polar coordinate is constructed within a small radius area around a point x on the mani-
fold, denoted by

ςx : Bρ0(x)→ [0, ρ0]× [0, 2π) (132)

where ρo is the radius of the geodesic disc. The geodesic distances is measured by ρ(x, x′) =
dX (x, x′) between the point x and points x′ around it, which forms the radial coordinate.
And the angular coordinate is constructed by shooting geodesics Γ(x, θ) from x in direction
θ. The radius should be sufficiently small to guarantee the local geodesic disc structure,
empirically ρ0 ≈ 0.01.

Patch Operator The construction of the patch operator in Geodesic CNN can be
regarded as a local weighting

(D(x)f)(ρ, θ) =
∫
X
ωρ(x, x′)ωθ(x, x′)f(x′)dx′ (133)

where ωρ(x, x′) ∝ e−(dX (x,x′)−ρ)2/ρ2
p are weights localized in certain radius and ωθ(x, x′) ∝

e−d
2
X (Γθ(x),x′)/ρ2

θ are weights localized around certain directions. Example of the Geodesic
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patch operator is shown in figure 21.

Convolutional Layer The geodesic convolution is denoted as

(f ? g)(x) =
∫ ρ0

0

∫ 2π

0
(D(x)f)(ρ, θ)g(θ + ∆θ, ρ)dρdθ (134)

where g(θ, ρ) is the filter applied on the patch. To remedy the angular ambiguity, a term
∆θ is added to represent an arbitrary angle that the filter can be rotated. Assume the
input of the convolutional layer is a p-dimentional function f = (f1(x), . . . , fp(x)) applies
on point x, the output of the convolutional layer is obtained by

g∆θ,l(x) = ξ

( p∑
l′=1

(fl′ ? ω∆θ,l,l′)(x)
)

(135)

= ξ

( p∑
l′=1

∫ ρ0

0

∫ 2π

0
wl,l′(ρ, θ + ∆θ)(D(x)fl′)(ρ, θ)dρdθ

)
(136)

where l = 1, . . . , q and l′ = 1, . . . , p. The ∆θ = 2π
Nθ
, . . . , 2π indicates the number of times

the patch is rotated and the wl,l′ = (wl,l′,1, . . . , wl,l′,J) is the collection of spatial filter
coefficients.

Pooling Layer When stacking many of the convolutional layers together, the complex-
ity will explode exponentially. To avoid this situation, the angular max pooling operation
is utilized

gl(x) = max
∆θ

g∆θ,l(x) (137)

which takes the maximum value among the patch rotated output.

Discussion The directional filters can be explicitly represented in such constructions,
and they are spatially localized. The number of parameter per layer is fixed as O(1) that
depends on the number of the weighting functions and independent on the input size.
Since all the operations are local, the computational complexity is O(n). But the angular
max pooling may reduced the discriminativity of the patches i.e. richness of the filters.

3.4.2 Anisotropic CNN

The Anisotropic CNN[10] was proposed in 2016 by Boscaini et al. which construct the
patch operator using the anisotropic heat kernels. The anisotropic heat kernels comes
from the anisotropic diffusion

ft(x) = −div(D(x)∇f(x)) (138)

that the heat conductivity properties are not only position dependent but also direction
dependent(figure ?? left). The tensor D(x) describes such conduction properties that
scales locally the gradient vector(tangent vector) ∇f(x). By applying anisotropic tensor
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of the form Dαθ(x) = Rθ

(
α

1

)
R>θ , the gradient vector is rotated by angle θ with

respect to certain reference direction, scaled by α, and rotate back(figure ?? right). Such
construction defines the anisotropic Laplacian

∆αθf(x) = −div(Dαθ(x)∇f(x)) (139)

where parameter α controls how much the elogation of the scaling and parameter θ controls
the orientation with respect to the max curvature direction. The eigenvectors and eigen-
values of the anisotropic Laplacian are denoted as {φαθi, λαθi}i≥0, while the anisotropic
heat kernel[17] is expressed as

hαθt(x, x′) =
∑
k≥0

e−tλαθkφαθk(x)φαθk(x′). (140)

Figure 20: Left: Anisotropic diffusion compared to isotropic diffusion which the diffusion
depends on the curvature of the manifold. Right: Local tangent space on a 2D manifold
rotated by reference angle θ to compute the anisotropic Laplacian[6]

Convolutional Layer Construct the patch operator by using the anisotropic heat ker-
nel as weighting function and apply such patch operator on functions on manifold is
expressed as

(D(x)f)(θ, t) =< f, hαθt(x, ·) >L2(X ) (141)

For a discrete set of angle constant θj, scales constant αj and anisotropic constant tj,
j = 1, . . . , J .

D(x)f = (< f, hα1,θ1,t1(x, ·) >L2(X ), . . . , < f, hαJ ,θJ ,tJ (x, ·) >L2(X ))> (142)
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Example of the anisotropic patch operator is shown in figure 21. The convolutional layer
expressed in the spatial domain is of the form

gl(x) = ξ

( p∑
l′=1

w>l,l′D(x)f
)

(143)

with l = 1, . . . , q, l′ = 1, . . . , p, and wl,l′ = (wl,l′,1, . . . , wl,l′,J) is the collection of spatial
filter coefficients.

Discussion Same as the geodesic convolution, such construction has obtained direc-
tional filters which is spatially localized. And the number of parameter is O(1) per layer.
The drawback of such approach is the explicit computation of eigendecomposition of the
Laplacian for obtaining the isotropic heat kernel, which is quite expensive since the O(n2)
complexity has to multiplied by the number of orientations.

3.4.3 Mixture Model Network

The Mixture model network[43] proposed by Monti et al. utilize learnable patch operator
to construct the convolution operator. Compared to the previous approaches using fixed
patches, the patch operator is constructed by studying a family of functions represented
as a mixture of Gaussian kernels.

Learnable Patch operator Given a local system of coordinates u(x, x′) around point
x, denote the parametric weighting functions express in this system of coordinates as
wΘ(u), the parametric patch operator is constructed by applying J such weighting func-
tions

(DΘ1,...,ΘJ
(x)f)j =< f,wΘ1(u(x, ·)) >L2(X ) j = 1, . . . , J (144)

Utilizing the Gaussian functions wµ,Σ(u) = e−
1
2 (u−µ)>Σ−1(u−µ) as the parametric functions,

the parametric patch operator will become

(Dµ1,Σ1,...,µJ,ΣJ(x)f)j =< f,wµj,Σj(u(x, ·)) >L2(X ) j = 1, . . . , J (145)

where µ,Σ are the parameters of the Gaussian. Example of the learnable patch operator
is shown in figure 21.

Convolutional Layer The spatial convolution on a point x is denoted as

(f ? g)(x) =
J∑
j=1

gj

∫
X
wµj,Σj(u(x, x′))f(x′)dx′ (146)

by exchanging the order of integration and summation, it can be seen from the formula
that the function f is averaged with some local Gaussian mixture function and then
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integrated on the spatial domain.

(f ? g)(x) =
∫
X

J∑
j=1

gjwµj,Σj(u(x, x′))
︸ ︷︷ ︸

Gaussian mixture g(u(x,x′))

f(x′)dx′ (147)

Hence the convolutional layer expressed in the spatial domain utilizing the parametric
patch operator DΘ(x)f and the non-linearity ξ is of the form

gl(x) = ξ

( p∑
l′=1

w>l,l′DΘ(x)f
)

(148)

In such construction both the local patch operator parameter Γ = (µ1,Σ1, . . . , µJ,ΣJ)
and the spatial coefficients wl,l′ = (wl,l′,1, . . . , wl,l′,J) are learnable.

Discussion In addition to the spatially-localized properties, the learnable patch opera-
tor of the mixture model network gives additional degrees of freedom for processing suffi-
ciently complex tasks. The weighting function could have more complex choices including
additional non-linear transformation of the pseudo-coordinates u or some network-in-a-
network architectures[48]. The number of parameter per layer is O(1).

Figure 21: Representation of the local weighting functions for Geodesic CNN(left),
Anisotropic CNN(middle), and Mixture model network(right)[43].

3.5 Geometric Deep Learning with 3D face analysis
Affected by factors such as sex, age, ethnicity, human faces are highly distinct in shape.
The research area of capturing, reconstruction and tracking 3D faces have raised huge in-
terest in the past decade due to its various applications[61]. Without utilizing geometric
deep learning technique, the existing state-of-the-art 3D face analysis model mostly rely
on linear transformation or higher-order tensor generalization[55], which rarely capture
the non-linear deformation caused by exptreme facial expressions. In the following subsec-
tions, three state-of-the-art approaches for 3D face analysis making use of geometric deep
learning technique has been introduced, which produced considerable result and being
part of the baseline of the model develop in this thesis.
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3.5.1 Convolutional Mesh Autoencoder

The Convolutional Mesh Autoencoder(CoMA)[55] is proposed by Ranjan et al in 2018
which learns 3D representation of human faces. The model is constructed by an autoen-
coder structure consisting of fast localized convolutional filters and mesh downsampling
and upsampling layers(see figure 22). 3D faces are represented by meshes with 5023
vertices and each vertex has 3-dimensional information.

Figure 22: Structure of the Convolutional Mesh Autoencoder. The red arrow represents
the down-sampling operation and the blue arrow represents the up-sampling operation of
the given mesh[55].

Fast Localized Convolutional Filter Define a 3D face mesh as a collection of edges
E and vertices V , F = (V , E), where |V| = n denotes the number of vertices. The edge
connection is represented by a sparse adjacency matrix A ∈ {0, 1}n×n with Aij = 1
denotes connected vertices (i, j) and Aij = 0 denotes no connection. Compute the non-
normalized graph Laplacian by L = D−A where D is a diagonal matrix containing the
degree of each vertex in the diagonal entries, Dii = ∑

j Aij. To avoid explicit computation
of eigendecomposition of the graph Laplacian, CoMA construct the convolution kernel gθ
by Chebyshev polynomial of order K

gθ(L) =
K−1∑
k=0

θkTk(L̃) (149)

where L̃ = 2L/λmax − In denotes the scaled Laplacian, for mapping the function domain
to [−1, 1] to guarantee the orthogonality of the Chebyshev polynomial basis. The θk is the
learnable Chebyshev coefficients and Tk is the Chebyshev polynomial of order k. With
T0 = 1, T1 = L̃, the Chebyshev polynomials can be computed recursively by Tk(L̃) =
2xTk−1(L̃)− Tk−2(L̃). Under such setting, the convolution apply on input xi ∈ IRn×Fin is
defined as

yj =
Fin∑
i=1

gθi,j(L)xi ∈ IRn (150)

where Fin = 3 is the dimension of the input feature.

Down-sampling and Up-sampling Layer The down-sampling of the face mesh is
performed by the graph coarsening technique introduced in section 3.1.4, which construct
a down-sampling matrix Qd by contracting vertex pairs iteratively. An upsampling matrix
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Qu is constructed at the same time, which the point (p, q) has value Qd(p, q) = 1 in down-
sampling matrix would also have Qu(q, p) = 1 in up-sampling matrix. For the point be
removed during down-sampling computation, the weights (wi, wj, wk) that project this
point to the closest triangle (i, j, k) by ṽp = wivi + wjvj + wkvk are recorded in the up-
sampling matrix by Qu(q, i) = wi, Qu(q, j) = wj and Qu(q, k) = wk. The up-sampling
applying on a give graph is formulate as Vu = QuVd.

Training The training of the network is conduct by using stochastic gradient descent to
minimize the L1 loss between input mesh vertices and the reconstruction mesh vertices.
The chebyshev filtering is used with order K = 6.

Discussion experiments showed the performance of COMA is better than traditional
PCA method in reconstruction tasks. But the requirement of input of CoMA is that
the meshes should all share identical topology, thus all face meshes should be aligned
before being used. Also, the latent spaces learnt by CoMA mixing the identity and the
expression, which can only generate faces for certain identities. Such draw back has been
resolved by the later proposed meshGAN[15], which will be introduced in 3.5.2.

3.5.2 MeshGAN

Face generation have various applications including face recognition, emotion prediction
and entertainment. In entertainment aspect, the characters in films and digital games can
be more realistic with the help of face generation. In face recognition aspect, better quality
of synthetic face raise the challenge for the recognition tasks, which would also promote the
development of face recognition techniques. Previously the face generation model making
use of GAN[28] architecture and produced considerable results with face images, but the
generation of 3D faces is still challenging and have difficulties in producing satisfactory
result since the previous approach applied the GAN as 3D convolutional architectures
to discrete volumetric representations of 3D objects. Also for 3D faces, synthesizing
expressions on real faces for different identity still got a lot work to do[60].

Recently, a MeshGAN[15] was proposed which is the first intrinsic GANs architecture
operating on 3D meshed directly. The model is trained with 4DFAB database which can
generate static 3D face mesh with different expression for different identities. The model
ability of generating 3D faces is stronger than the state-of-the-art autoencoder[55] due to
more reasonable details are presented and better modeling of the distribution of the faces.

Approach and Architecture The architecture of meshGAN is desiged based on BEGAN[9]
where the objective is as follows:

LD = L(x)− ktL(G(zD)) for θD
LG = L(G(zG)) for θG
kt+1 = kt + λk(γL(x)− L(G(zG))) for each training step t

(151)

The hyper-parameter kt ∈ [0, 1] can maintain the balance between loss expectation of
generator G and discriminator D, which can control the impact of the fake loss L(G(z))
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on discriminator. When updating kt a learning rate λk is utilized. The term γ is a hyper-
parameter that can decide the diversity of generated face meshes, which is set to be 0.7
empirically to allow more variations. Other terms are the same definition as traditional
GAN network such as L(·) denotes the loss of discriminator,zd represents the latent vector
of generator, and θD, θG are the parameters of the discriminator and generator respectively.

The generator and discriminator network are built according to the decoder and en-
coder network of CoMA(see figure 23), where the chebyshev filtering is also utilized here
to perform graph convolution. The latent space size is enlarged to 64 for allowing for
more representation powers. And skip connections are applied in the discriminator for
encouraging more facial details. One of the difference in data pre-processing for mesh-
GAN is that the facial identity is decoupled from every expression mesh, which is done
by subtracting the neutral face from every expression to obtain the facial deformation.

Figure 23: MeshGAN architecture[15].

Discussion Experiments have shown that though the reconstruction performance of
meshGAN is a bit lower than CoMA, the synthesised faces produced by meshGAN is
more realistic then those produced by CoMA, with lower quantitative errors in both
identity and expression aspects. Also the meshGAN can generate more diversity faces
than CoMA. The decoupling of facial identity and expression results in pure expression
can be learnt by the generator instead of mix of expression and identity.

3.5.3 Joint Texture & Shape Convolutional Mesh Decoders

The above two models are both focus on the shape variation of human face meshes, while
in 2019 a non-linear 3d Morphable Model(3DMM)[79] proposed by Zhou et al is able to
learn not only shape variations but also facial texture. The convolutional operation of
this model is also performed by Chebyshev filtering and the down-sampling up-sampling
operation is also done by iteratively contracting vertex.

Approach and Architecture The architecture of the non-linear 3DMM is shown in
figure 24, where a coloured mesh auto-encoder and a non-linear 3DMM in-the-wild are
trained jointly. The coloured mesh auto-encoder has the similar architecture as CoMA[55]
with an embedding size 256 × 1, which is trained with controlled face mesh data. The
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non-linear 3DMM shares the same mesh decoder with the coloured mesh auto-encoder
and is trained with large scale face images with landmarks. The embedding vector fSA of
the auto-encoder represents the 3D shape and texture regression produced by the image
encoder EI(I; θI) in the non-linear 3DMM model, where the I is the original image. The
mesh decoder D(fSA; θD) will decode this embedding representation and the resulting
coloured mesh will be projected onto the image plane Î by a differentiable renderer Î =
P(D(fSA); m) with rendering parameter m = [c>, l>], where c> denotes the perspective
transformation parameters and l> denotes the illumination parameters. The loss of the
jointly training is defined as the sum of loss between reconstruction meshes D(fSA; θD)
and original meshes as well as loss between produced renderered images Î and the original
images I.

Loss= Lreconstruction + λLrender (152)

Where λ is a hyperparameter being increased gradually during training.

Figure 24: Architecture of the non-linear 3DMM. [79].

Discussion Experiments have shown that the proposed non-linear 3DMM has bet-
ter performance in 3D face alignment tasks compared to the state-of-the-art methods
3DDFA[80] and N-3DMM[42], with more compact model size and more efficient compu-
tational time, though due to the complexity of model the performance is slightly worse
than PRNet[76]. For 3D face reconstruction tasks, the non-linear 3DMM is able to pro-
duce high-quality reconstruction even the texture information is hairy, and the output
results are more smooth due to directly modeling the shape and texture of vertices. It is
the first non-linear 3DMM using directly mesh convolutions.

In next section, we will present the model developed in this thesis which also tack-
ling 3D face analysis task utilizing geometric deep learning techniques introduced in this
section.
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4 3D Facial Motion Classification
Over the past few years, various works has been conducted to study face recognition.
Most of the work involves 2D images or 2D videos which are typically affected by the
illumination variation as well as the limited vision of the camera that can only capture
part of the face deformation. To address this problem, 3D face recognition has raise heavy
interest, which use 3-dimensional geometric of the human face to avoid ambiguity caused
by lighting, make up, and face orientaion.

In this thesis, we seek to apply geometric deep learning techniques to facial expression
recognition tasks, which not only study the static 3D facial deformation but also the
dynamic motion of the whole expression. The reason to study the whole dynamic motion
is that watching the whole process of expression should capture emotional information
better than just looking at the momentary expression, as this is the case when people
communicate in real world. The study is based on the 4DFAB database[59]. We start
by defining the problem to show the tasks we performed and the dataset we used. Then
we introduce the approach we use to deal with this problem. Finally, we present the
experiment conducted to indicate the progress being made until a good result has been
achieved. To our best knowledge, we are the first to build a multi-output 3D dynamic
facial expression recognition system.

4.1 Problem Definition
Given sequences of 3D face meshes from 4DFAB database with each sequence represent
the whole facial motion of a person performing one of six facial expressions. Our tasks
is to classify which expression category that the sequence from person not shown in the
training set belongs to, as well as classifying what is the emotional state of each frame.
The emotional state contains 4 categories: neutral, onset apex, offset, which represent
the evolution of expression from the start to the end(detailed definition for emotional
state will be provided in section 4.2.2). We use data from Session1 of 4DFAB dataset(the
4DFAB dataset contains 4 sessions recording facial motion performed by same participants
spanning a period of 5 years),which consists of facial expressions performance of 175
participants. Each participant provides 4 to 6 basic expressions, including anger, disgust,
fear, happiness, sadness, and surprise(example see figure 25), resulting in a total of 1018
distinct sequences of expressions. The number of expression sequences in each class is
roughly balance in both training set and testing set. The model has been divided to two
part: In the first part we trained a convolutional mesh autoencoder for extracting low
dimensional representation of the face mesh; In the second part we use the produced low
dimensional representation of face meshes to perform classification tasks.

4DFAB Database The 4DFAB database formulate the face meshes by using a Python
mesh manipulating and visualizing package menpo[82] as menpo.TriMesh. The meshes
were aligned to avoid intra-class variability such as pose and perspective transformation[26].
The main attributes we use include:
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Figure 25: Examples of 6 basic expressions of one participant. The upper row are the
visualization of 3D data in 4DFAB database while the data we use are the cropped version
which only the face area are included, the hair and neck segments are ignored. The lower
row are the image showing the participant’s performance during capturing these 3D object.

• points. For each mesh this attribute contains 3D Cartesian coordinates with shape
[28431, 3], with 28431 denotes the number of vertices.

• label. For each mesh a label is set to represent which expression categories it
belongs to, the label is range from [1, 6].

For easy manipulation of the mesh, the vertices information were stored in numpy arrays,
and the class label were converted to one-hot representation.

4.2 Data Preprocessing
4.2.1 Data Clean

To guarantee the quality of the training data as the corrupted data would affect the
model’s performance, we went through the whole dataset and visualize each of the mesh
by matplotlib qt toolkit. We excluded these corrupted meshes(example see figure 26)
from training data and results in 24,147 face meshes left in total. For sequences of face
mesh, we also excluded the sequence that contains corrupted meshes or misses some frames
of the face motion as this may affect the integrity of the temporal information of facial
expression, which results in 956 sequences of facial expressions remained in total. All the
experiment in this thesis are performed with cleaned dataset unless explicit statement.

4.2.2 Data Annotation

As a multi-output supervised learning tasks, two types of label are required to train the
model. For the expression category classification output, labels that indicating which ex-
pression the sequence represents is needed, which is already provided by 4DFAB database.
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Figure 26: An example of corrupt mesh in 4DFAB database(viewed from three different
orientation).

For the emotional state classification output, labels that indicating the state of each frame
is needed, which not yet provided by 4DFAB database. Thus manually annotation of each
frame of the sequence for emotional state is required to be performed. We define the emo-
tional state as below:

• Neutral Neutral is defined as the face status that the person has no expression at
all, only blink motion is allowed.

• Onset The occurrence of the first visible face deformation action unit will be the
start of onset, and the evolution of facial motion before achieving apex are all belongs
to onset.

• Apex Apex is when facial motion reaches the peak i.e. the highest intensity.

• Offset The occurrence of the weaken of the peak facial motion will be the start
of offset, and the evolution of facial motion before return to neutral status are all
belongs to offset.

Examples of emotional states in sequences are shown in figure 27.
The annotation strategy is as follows: we arrange two people to go through the whole

cleaned dataset individually, during which they looked at each frame of the sequence and
marked them as one of the 4 states. The result of their annotations will be compared to
see whether they agree with each other for the same frame. For those frames receiving
different decisions, a third person will have a look at the frame and a decision will be
made by the majority vote among the three people. The final decision of the annotation
are stored in an Excel file and later be converted to .npy file with one-hot representation.
A snapshot of the annotation result for several sequences is shown in figure 28.
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Figure 27: Examples of emotional states in sequences of 3D face. The occur timing and
length of each state may vary.

Figure 28: Examples of annotation result of the 4DFAB database session1 data for several
sequences. The identity contains the participant number(P001), the session(S1), and the
expression category(FE indicates ”fear”). The three-digit number in the states column
indicate the frames number that belong to certain state.
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4.3 Approach
In this section, we present the detail of our approach as well as the final architecture(see
figure 29) that produce the current state-of-the-art result on this problem based on our
experiments. We report the exploration to reach the final structure step by step. The
model is constructed by two part: Feature extraction model and classification model.
The feature extraction model making use of the graph convolution and graph coarsening
to obtain low-dimensional representation of the face mesh, while the classification model
utilize the sequence of low-dimensional representation as input to perform classification
tasks.
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Figure 29: Final architecture.
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4.3.1 Notations

The face mesh data in this thesis are formulated as signals defined on undirected connected
graph G = (V , E), where the finite set of vertices is represented by V with |V| = n. The
E denotes the collection of edges. Functions on graphs are defined as f , and the graph
Laplacian computed by the graph is denoted as ∆ = D−W with degree matrix D and
adjacency matrix W.

4.3.2 Weight Initialization

We initialize the weight matrix and the bias with random number sampled from truncated
normal distribution, that values more than two standard deviations from the mean are
discarded and re-drawn. The chosen value of mean is 0 and standard deviation is 0.1.

4.3.3 Chebyshev Convolution

We approximate the convolutional filter by Chebyshev polynomials and construct it by

τα(∆) =
r∑
j=0

αjTj(∆̃) (153)

with ∆̃ = 2λ−1
n ∆− I the scaled Laplacian. The polynomials are constructed recursively

by Tj(∆̃) = 2∆̃Tj−1(∆̃)− Tj−2(∆̃) where T0(∆̃) = I, T1(∆̃) = ∆̃. The convolutional op-
eration is performed by multiplying the chebyshev polynomials with the function, denoted
by τα(∆)f .

4.3.4 Graph Coarsening

The graph coarsening is the technique that utilized in the pooling layer. The technique
is introduced in section 3.1.4 and how it work in this case has been introduced in section
3.5.1 in the Down-sampling and Up-sampling layer part.

4.3.5 Long Short Term Memory

The long-short-term memory is used to extract temporal information from give sequence,
in this case the given input to the LSTM network would be the low-dimensional feature
extracted by the convolution operation. Denote the sequence of low-dimensional feature
as x = (x0, . . . , xt), where xt denotes the input at time step t. The new candidate vector
C̃t for the current time step is computed by

C̃t = tanh(WC · [ht−1, xt] + bC) (154)
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with weight matrix WC and bias bC . The ht−1 is the hidden state from previous time
step. The forget gate zf , input gate zi, output gate zo are computed by

zf = σ(Wf · [ht−1, xt] + bf ) (155)
zi = σ(Wi · [ht−1, xt] + bi) (156)
zo = σ(Wo · [ht−1, xt] + bo) (157)

to control the output cell state Ct and hidden state ht of the current cell

Ct = zf ◦ Ct−1 + zi + C̃t (158)
ht = zo ◦ tanh(Ct) (159)

(160)

where h = (h0, . . . , ht) is the matrix collecting hidden states for each time step of the
LSTM network.

4.3.6 Batch Normalization

To accelerate the training of deep network by reducing internal covariate shift, the batch
normalization is used each time before the activation function be applied[29]. For each
batch, denotes the input of the batch normalization layer by g, the mean µB and variance
σ2
B of the batch is calculated by

µµµB = 1
m

m∑
i=1

gi (161)

σσσ2
B = 1

m

m∑
i=1

(xi − µB)2 (162)

where m is the number of sample in each batch. The normalization of the input is
computed by

ḡi = gi − µµµB√
σσσ2
B + ε

· γ + β (163)

The parameter γ and β are learned during the training of the network.

4.3.7 Attention Mechanism

It can be seen from figure 28 that the length of the input sequence are vary, and the
rate of expression change are highly variable. For arbitrary length input, even the LSTM
network might not be able to capture long terms dependencies. In 2016 Bahdanau et
al found that the performance of the LSTM become worse when the sequence length
increases from about 30[8]. To address this problem, the attention mechanism is used,
which is able to focus on certain input time step for an input sequence of arbitrary length.

In out model we chose additive similarity of input v and hidden state q to compute
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the weight for each time step

weight(v, q) = softmax(tanh(Wvv +Wqq + b)) (164)

where the matrix Wv, Wq, and vector b are learnable parameters. The attension output
is computed by the weighted sum of the input v

attention(v, q) =
∑

(weight(v, q) · v) (165)

4.4 Training
In this section we present the training detail of our models. The training strategy for the
feature extraction model and the classification model are distinct and we will discuss it
separately.

4.4.1 Loss function

Feature Extraction Since the baseline for the feature extraction model is an autoen-
coder, the target of such model is to reconstruct from the low-dimensional representation
to make it as close as possible to the original input. The loss function in this case is
defined as the L1 loss between functions f on the original input graph G and functions f̂
on the reconstruction graph Ĝ

loss = |f − f̂ | (166)

Classification For multi-class classification tasks, the cross entropy loss is the general
choice. Since the label we use are not sparse, there is no necessity to consider specifying
the weight. For predicted value Ỹ and label Y, the cross entropy is calculated by

loss(Ỹ,Y) = 1
N

N∑
i=1

li(ỹ, y) (167)

li(ỹ, y) = −ylog(ỹ) (168)

4.4.2 Optimizer

Feature Extraction The autoencoder uses the stochastic gradient descent with a mo-
mentum of 0.9, where the initial learning rate is 8e-3 and the learning rate decay is set to
be multiplying with 0.99 every epoch.

Classification The classification model uses the Adam optimizer with initial learning
rate 0.0001.
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4.4.3 Regularization

To address overfitting problem, which is a common issue occur in deep neural network
training, we add L2 regularization to create less complex (parsimonious) model.

Cost function = loss(Ỹ,Y) + λ
∑
j

θ2
j (169)

where λ = 0.00001 is the regularization coefficient and θj represents the parameter in the
network.

4.5 Experiments
In this section, we will described the exploration and experiments conducted to obtain
the final architecture step by step.

4.5.1 Experiment I: Feature Extraction

The first step of our experiment is to train an autoencoder for feature extraction, which
obtained low-dimensional representation of the face meshes. We make use of the state-
of-the-art convolutional mesh autoencoder(CoMA)[55] proposed by Ranjan et al as our
base model and modify the structure of it to make it compatible with the mesh data
in 4DFAB database, since the original CoMA can only process face meshes with 5023
vertices. We add a convolutional layer to each side of the CoMA, and a down-sampling
layer to the encoder as well as an up-sampling layer to the decoder. We enlarge the size
of the latent space to IR18 in order to improve the capacity of the autoencoder by using
more parameters for better representation of the face mesh, since the face mesh contains
much more vertices which mean more information. The structure of the modified version
of CoMA is shown in figure 30.

Figure 30: The architecture of the modified CoMA which is compatible with 4DFAB face
mesh. The table on the left is the structure of the encoder while the table on the right is
the structure of the decoder.

In order to train the autoencoder being able to produce valid low-dimensional repre-
sentation for arbitrary expression, we use all frames in the clean dataset as our training
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set, no matter what expression the frame belongs to and what identity it is. We shuffle
the training set and split the training set as train set and validation set with ratio 9:1.
When reproducing the original CoMA experiments, for a trained CoMA model that re-
constructs 72.6% of the vertices within a Euclidean error of 1 mm, the average validation
loss is 2.56e-01. Hence we try to train the modified CoMA to achieve a lower validation
loss in order to guarantee the quality of the reconstruction. After training for 32 epochs
with the 24,147 meshes, the validation loss achieves 1.93e-01. To check the quality of
the autoencoder, we encoded all the meshes to the latent space as z and computed the
mean µµµz and covariance ΣΣΣz. We sampled 100 latent representations from the estimated
multivariate Gaussian distribution N (µµµz,ΣΣΣz) then decoded and visualized them to see
the performance of the autoencoder. Several examples of the sampled mesh has shown in
figure 31, from which we can have a general feeling that they are from different identity
and expressing distinct emotion, which shows that the autoencoder has achieved a con-
siderable quality.

Figure 31: Examples of the face mesh produced by decoding the sampled latent vectors.

Therefore, we will use the encoder of this autoencoder as our feature extraction model
to compute low-dimensional representation of the face mesh. To construct the training
set for the classification tasks, the order of the face mesh has to be taken care of, which
should follow its appearance order. Due to the length of sequences are vary, each se-
quence are encoded separately from F = (F1, . . . , Ft) ∈ IRt×28431×3 into low-dimensional
vectors f = (f1, . . . , ft) ∈ IRt×18, where t denotes the number of frames in a sequence
and Fi and fi denote the individual original mesh and individual latent representation
respectively, which results in 956 such sequence of latent vectors. The input of the clas-
sification is formed by concatenate all sequences of latent vectors together while each of
them has been padded with zero vectors to a sequence of length=350 frames and reshaped
as f̂i ∈ IR1×350×18, and the input is of shape (956, 350, 18). The choice of 350 is made by
looking through all the lengths of sequence and observed that 91% of them are below 350
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while the rest of them has got a length over 350 frames. For those longer sequences, we
take the 350 very middle frames and discard t−350 frames from the start of the sequence
and the end of the sequence.

The label for classification tasks are also constructed at this stage. For both expression
classification purpose and emotional state classification purpose, labels are constructed in
one-hot representation. Details of the label numbering is presented in table 1 and table
2.

Expression Label number
Angry 0
Disgust 1

Fear 2
Happy 3

Sad 4
Surprise 5

Table 1: Expression classification label
numbering

Emotional state Label number
Neutral 0
Onset 1
Apex 2
Offset 3

None of them 4

Table 2: Emotional state classification label
numbering

Noticing that the emotional state has a class ”None of them” which indicates those
zero padding frames formed due to concatenate purpose. The shape of the expression
class label is (956, 6) and shape of the emotional state label is (956, 350, 5).

4.5.2 Experiment II: Classification Model Architecture Tuning(Expression
Network Depth)

From experiment II we are going to present the exploration of the classification model.
Inspired by [78], we proposed a model using LSTM working with attention mechanism to
process length-varying sequences of data. The initial design of the architecture is shown in
figure 32. The input sequence of low-dimensional representation f = (f1, . . . , ft) ∈ IRt×18

will be processed by the one layer LSTM network with hidden size=8, which results in
LSTM output y = (y1, . . . , yt) ∈ IRt×8. In this thesis value of t is chosen to be 350.
This LSTM output will goes to two different fully connected networks, where one is for
emotional state classification purpose(State Network), another is for expression classifi-
cation purpose(Expression Network). We fix the State network to be a fully connected
neural network with 3 hidden layer followed by ReLU activation functions and a softmax
function at the output layer, and tune the architecture of the Expression network first.
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Figure 32: Initial architecture of the classification model.

The attention mechanism is applied before the Expression network, which is a two
layer neural network computes weights (α1, . . . , αt) by calculate the similarity between
input f and LSTM output y, where the attention output will be the weighted sum A =∑
i αifi ∈ IR1×attentionsize(see figure 33). The attention size is chosen to be 8 in this thesis,

for consistency with the followed fully connected network. We start with a 5 layers fully
connected network following the attention mechanism, where each layer is equipped with
8 neurons, and gradually add 2 layers each time to the network until 15 layers to see how
they work. Due to equal number of neuron in each layer we call such network ”Straight”.
The attempted fully connected architectures are shown in figure 34.

Figure 33: Illustration of the attention mechanism where the output is computed by
weighted average of latent vectors.
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Figure 34: Sub-architecture tried for expression network architecture tuning(depth tun-
ing). The leaky ReLU activation function is applied between layers.

To see the limit of the capacity of the model, we set the training epoch to be 15,000
and decided to stop when an obvious trend occur in the training log thus might not finish
the whole 15,000 epochs. We split the dataset into training set and validation set with
ratio 9:1 results in 856 sequences in the training set and 101 sequences in the validation
set. We plot the loss and accuracy of both training and validation set for observing the
behaviour of the network. Results of the plot are shown in figure 36.

Figure 35: Plots of expression classification loss for training and validation set produced
by fully connected networks with 5 layers.
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Figure 36: Plots of expression classification accuracy for training and validation set pro-
duced by fully connected networks with number of layers=5, 7, 9, 11, 13, 15.

Discussion From plots of the train loss and validation loss(figure 35), we can observe
a steep drop of the value of loss at the first several epochs of training, which shows the
benefit brought by Adam optimizer, that is robust and well-suited to a wide range of
non-convex optimization problems. Due to the scale of the plotting graph, the further
progress on loss is not obvious but can be observed through the plot of accuracy. The
loss plot for other architecture looks in the same trend. It can be seen from figure 36 that
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networks with 5-layers, 7-layers and 9-layers can achieve validation accuracy above 50%
within 15000 epochs while the 5-layer can achieve such accuracy the earliest, at around
1300 epochs. It takes about 2000 epochs for 7-layer network achieves such accuracy and
about 9800 epochs for 9-layer network to achieve, but the trend of the accuracy of the
9-layers network is still increasing. The accuracy plots of the validation set shows more
obvious perturbation than the train set which is due to the size of the validation set is
relatively small. But the plot for 7 layer network shows stronger perturbation than the
other.

For network with number of layers=11,13,15, the average validation accuracy that
stabilised within set epochs is around 30−35% though the 15-layers network has achieved
39% accuracy at around 3900 epochs. The case that more layers results in lower accuracy
is due to the optimization difficulty caused by deeper architecture since the train accuracy
is increased slowly. The stabilisation of the accuracy is caused by adding regularization
to avoid overfitting, which is the case that overfitting is happening due to the capacity
of the model is larger than desired. The lack of number of training sequence of data
is also the reason that deeper network is hard to train since there are more parameters
thus requires more information, while out training set contains only 861 sequences. We
present the test accuracy for each architecture in table 3, from which we can observe
the accuracy of individual expression category. The expression with highest accuracy has
been highlighted while the majority of architectures achieves highest accuracy for ”happy”
expression, which is the case that this expression is relatively unique and obvious due to
its extreme face deformation and less ambiguity compared to other expressions. The
lowest accuracy of expression for different architectures are vary.

Hence, we choose number of layers=5,7,9 to proceed our next step tuning experiments.

5-layers 7-layers 9-layers 11-layers 13-layers 15-layers
Angry 35% 35% 45% 20% 45% 20%
Disgust 40% 27% 33% 47% 40% 33%
Fear 59% 24% 41% 29% 18% 29%
Happy 67% 89% 94% 67% 78% 33%
Sad 33% 42% 58% 33% 67 42%
Surprise 58% 79% 47% 16% 53% 63%
Overall 49.47% 51.48% 55.44% 29.47% 47.52% 36.84%

Table 3: Expression classification accuracy for each architecture(depth tuning).

4.5.3 Experiment III: Classification Model Architecture Tuning(Expression
Network Shape)

In this experiment, we aim at tuning the network architecture by fixing the depth of
network but varying the width of each layer. Empirically, the design of the network is
tend to be a ”cone” shape which the closer to the output layer, the narrower the width
of the layer. Such design can naturally drop some useless information while desperately
trying to keep as much relevant information as possible as the number of neuron is less
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than previous layer. From previous experiments, we have found that depth of 5,7,9 is
relatively suitable for this tasks, so we use these depth but increase the width of each
layer gradually from the output layer to the input(See figure 37). We plot the accuracy
of these architecture on performing classification tasks and compare to those ”straight”
networks that have the same depths but equal neurons in each layer. Results have been
shown in figure 38.

Figure 37: Sub-architecture tried for expression network architecture tuning(shape tun-
ing).

Discussion From the plots we can see that the highest accuracy of both shapes archi-
tecture is roughly 50% while in the case when number of layers is 5 and 7 the straight
network achieves such accuracy earlier than the cone network. But in the case when
number of layers is 9 the cone network achieves 50% accuracy at around 1900 epochs and
proceed to overfitting in the later epochs while the straight network reaches such level
of accuracy at around 10000 epochs. The trend of the straight networks still shows an
increasing behaviour after reaching 50% though not obvious but the trend of the cone
networks is stabilized even some slight decreasing. The accuracy of architecture for in-
dividual expression is shown in table 4, in which the ”happy” expression still earn the
highest accuracy in all cases, while the cone shape architectures can also distinguish ”sad”
expression quite well.

In this case, increasing the width of the layer to form a cone shape does increase
the capacity of the network, but the result in both shapes are roughly the same, while
cone shape network has more parameters. The performance increase by using cone shape
network is not worth the increased cost.

Hence we choose the straight shape network to proceed our next step tuning experi-
ments.
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5-layers 5-layers 7-layers 7-layers 9-layers 9-layers
(straight) (cone) (straight) (cone) (straight) (cone)

Angry 35% 55% 35% 50% 45% 55%
Disgust 40% 27% 27% 40% 33% 20%
Fear 59% 35% 24% 41% 41% 41%
Happy 67% 83% 89% 67% 94% 67%
Sad 33% 58% 42% 67% 58% 67%
Surprise 58% 47% 79% 37% 47% 37%
Overall 49.47% 51.48% 51.48% 49.50% 55.44% 47.52%

Table 4: Expression classification accuracy for each architecture(shape tuning).

5-layers 5-layers 7-layers 7-layers 9-layers 9-layers
(straight) (cone) (straight) (cone) (straight) (cone)

Number of parameters 304 1584 432 4912 560 11312

Table 5: Number of parameters of architectures in expression network shape tuning.
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Figure 38: Plots of expression classification accuracy and loss for training and validation
set produced by fully connected networks with number of layers=5, 7, 9 but different
shapes. The left figure show the plot of the straight shape network while the right show
the plot of the cone shape network.
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4.5.4 Experiment IV: Classification Model Architecture Tuning(Attention
output)

In this experiment, we focus on the computation of the attention output. There are two
ways of computing the attention output, where one is to calculate the weighted sum of the
input latent vectors by ∑t

i=1αααifi, another is to calculate the weighted sum of the LSTM
output by ∑t

i=1αααiyi(see figure 39). For more convincing measure of performance, we still
tried straight network with depth of 5, 7, and 9 with different computation of attention
output. Results of the accuracy plot is shown in figure 40 .

Figure 39: Different choice of attention mechanism output computation.

Discussion For 5 layers straight network, there is no obvious advantage on accuracy
when using LSTM output to compute the attention output, while the training takes more
epochs to reach the same accuracy as network using latent vectors to compute the atten-
tion output. But for 7 and 9 layers straight network, using the LSTM output to compute
the attention output has raise the accuracy to 60% level, especially for 9 layers network,
that the accuracy is stabilized as around 60% while the 7 layers network’s accuracy ex-
perienced some perturbation and decrease to 50% level. The time taken to reach such
accuracy level is much less than using the latent vector for attention computation, where
the 7 layer network takes roughly 3000 epochs and 9 layer network takes about 4000
epochs. The reasion of such situation might caused by the richness in filtered information
of the LSTM output, that by passing through the LSTM network all the hidden state
has contain useful information from all previous states and discard those useless features,
which results in the important feature has been emphasize more times. The table of ac-
curacy shown in table 6 indicates that the architecture using LSTM output to compute
attention can achieve accuracy for individual expression at least as high as architectures
using input f with equal depth generally.
Hence, we decide to construct the expression network by 9 layers straight network with
LSTM output as attention computation.
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5-layers 5-layers 7-layers 7-layers 9-layers 9-layers
(input f) (LSTM output) (input f) (LSTM output) (input f) (LSTM output)

Angry 35% 50% 35% 40% 45% 65%
Disgust 40% 47% 27% 40% 33% 47%
Fear 59% 35% 24% 41% 41% 53%
Happy 67% 78% 89% 89% 94% 94%
Sad 33% 50% 42% 67% 58% 50%
Surprise 58% 74% 79% 74% 47% 58%
Overall 49.47% 56.43% 51.48% 57.42% 55.44% 62.37%

Table 6: Expression classification accuracy for each architecture(Attention output).
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Figure 40: Plots of expression classification accuracy and loss for training and validation
set produced by fully connected networks with number of layers=5, 7, 9 but different
attension output computation. The left figure show the plot of attention network using
input low-dimensional representation f to compute the attention output. while the right
show the plot of attention network using LSTM output y to compute the attention output.
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4.5.5 Experiment V: Classification Model Architecture Tuning(State Net-
work)

In experiment V, we aim at tuning the architecture for the state network, which classify
the emotional state for each frame. We use the same tuning strategy as expression network
tuning which tune the depth first then the shape of the network. The input of this sub-
network is also the LSTM output y = (y1, . . . , yt) ∈ IRt×8, which is reshaped as a tensor
with size (t ∗ 8, ) where t = 350 in this thesis. Then the reshaped input will be pass
through a stack of fully connected layer with different depth to see how it work. Before
applying the softmax function, the tensor is reshaped to size (350, 5) and thus the softmax
function is apply on the last dimension of the tensor to decide which of the 5 classes it
belongs to. We start with one layer network which convert the LSTM output to the shape
of predicted label straightly, and gradually add one layer with number of neuron =350 ∗ 8
each time until five layers. The attempt architecture is shown in figure 41 where ReLU
activation function is applied between layers. The resulting accuracy of state classification
is shown in figure 43.

Figure 41: Sub-architecture tried for state network architecture tuning(depth tuning).
The ReLU activation function is applied between layers.

Also, to tune the shape of the architecture, we tried cone shape networks(see figure
42) with the same depth as straight networks as in the case of expression classification
architecture tuning, and compared the result to the straight network. The accuracy
comparison of these networks is shown in figure 44.
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Figure 42: Sub-architecture tried for state network architecture tuning(shape tuning).
The ReLU activation function is applied between layers.

Figure 43: Plots of emotional state classification accuracy for training and validation set
produced by fully connected networks with number of layers=1, 2, 3, 4, 5.
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Figure 44: Plots of emotional state classification accuracy for training and validation set
produced by fully connected networks with number of layers=2, 3, 4, 5 but different shape.
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1-layer 2-layers 3-layers 4-layers 5-layers
Neutral 50% 52% 44% 46% 51%
Onset 65% 62% 58% 62% 59%
Apex 88% 84% 80% 79% 78%
Offset 39% 41% 45% 45% 50%
None 100% 100% 99%% 97% 98%
Overall 82.97% 82.02% 79.73% 79.34% 80.17%
Exclude padding 67.77% 66.2% 63.01% 63.49% 64.58%

Table 7: State classification accuracy for each architecture(depth tuning).

2-layers 2-layers 3-layers 3-layers 4-layers 4-layers 5-layers 5-layers
(cone) (cone) (cone) (cone)

Neutral 52% 60% 44% 49% 46% 50% 51% 52%
Onset 62% 63% 58% 61% 62% 62% 59% 61%
Apex 84% 76% 80% 74% 79% 78% 78% 83%
Offset 41% 47% 45% 49% 45% 44% 50% 46%
None 100% 99% 99%% 99% 97% 99% 98% 98%
Overall 82.02% 81.24% 79.73% 79.59% 79.34% 80.44% 80.17% 81.71%
Exclude padding 66.20% 65.40% 63.01% 62.38% 63.49% 63.63% 64.58% 66.63%

Table 8: State classification accuracy for each architecture(shape tuning).

Discussion In figure 43 a basic trend of the network accuracy is that the majority of
them has achieved 80% except for the 4 layers network who remains at 78% level. The one
layer network achieves such accuracy fast but the train accuracy also stayed at this level
without increasing, which is the case that the network is too shallow thus the capacity
of the model is not large enough, i.e. under-fitting. By adding layers to the network, we
observed a further increment to the train accuracy but the validation accuracy stabilized
at around 80% with slightly oscillation. Also, the training of the state network takes much
less epochs to reach a considerable classification quality than the expression network, for
number of layers=1,2 the network can achieve 80% within 50 epochs while for 3 layers
network it takes about 200 epochs. In table 10 the state classification accuracy of each
state for these attempted architectures is presented. Since we define a class named ”None”
which indicates the padding frames, the overall accuracy also counts this part of the
information while it is actually not the most relevant classification detail we need. So we
also calculate the accuracy of classification excluding the padding frames and presented in
the last row in the table, with heading ”Exclude Padding”. It can be seen from the table
that the state network is good at distinguishing padding frames, which achieved accuracy
over 97% in all case we tried, especially for one and two layers network that achieves
100%. Except for the ”None” class, the network achieves highest accuracy with the class
”Apex”, which gain an average accuracy of 81.1% among the five attempted architecture.
The classification performance of the ”Onset” frames are usually better then the ”Offset”
frames though they have similar face deformation at individual frame.
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When comparing the shape of the network, similar case happened that the validation
accuracy does not have obvious increment when using cone shapes architecture. In the
case of 2 to 4 layers architectures the cone shape network gained relatively lower accuracy
of the classification of ”Apex” class but slightly higher accuracy in ”Neutral”, ”Onset”,
”Offset” classes, while in the 5 layers architecture case the cone shape network ”wins”
in ”Neutral”, ”Onset”, ”Apex” classes and gained slightly less accuracy in ”Offset” class.
Overall, the best three performance is obtained by 1 and 2 layers straight network as
well as the 5 layers cone network. We calculate the number of parameter for these three
architectures and present in table 9, from which we can see that with a slightly higher
accuracy, the 5 layers network required a lot more parameters to be train, which results
in more expensive computational cost. Hence, we choose the 2 layers network as out state
network architectures, since the 1 layer network shows an underfitting behaviour that we
want to equip a bit more capacity to the network.

1-layer 2-layers 5-layers(cone)
Number of parameters 4,900,000 12,740,000 193,060,000

Table 9: Number of parameter for state network architectures.

4.5.6 Experiment VII: Final Architecture Testing

In this experiment we aim at training the chosen architectures all together and observe
the performance of the final model on both clean and corrupt data set. We take the
corrupt sequences of face mesh and labeled them using the same strategy as in 4.2 to
construct a test set with corrupt sequences i.e. frames missing sequence or corrupt mesh
in some individual frame. We use the same dataset split setting as before, and we decide
to train the final architecture with clean dataset and see the performance on both clean
test set and corrupt test set, in order to see the ability of the model when processing
corrupt data, as in practical application the new coming data required to be processed is
usually less ideal than the training data. It can be seen from previous experiments, the
quality of the trained model can be determined within 8000 epochs. Thus we decided to
train the final architecture for 8000 epochs.

Discussion We plot the expression classification accuracy for training set, clean valida-
tion set and corrupt validation set in figure 45, from which we can found that the value of
the clean validation accuracy and corrupt validation accuracy is around 50% after 7000
epochs, while the clean validation accuracy is usually slightly higher than the corrupt
validation accuracy. The increment of the accuracy for clean dataset is slightly faster
than the corrupt validation accuracy as the former achieves 50% accuracy at around 1000
epoch while the latter takes about 2000 epochs to reach the same level. The oscillation
of the accuracies might caused by the size of the validation set is too small, since the
accuracy of the training set is relatively more stable.

Figure 46 shows the accuracy of training set, clean validation set and corrupt validation
set for emotional state classification. The accuracy of clean validation set gets stable at
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around 81% while the accuracy of corrupt validation set gets stable at around 74%. The
rate of increment of both validation sets are roughly the same as they both achieved
their stabilized accuracies after around 800 epochs. Here the calculation of accuracy treat
individual frame as a sample instead of the whole sequence as sample, so the size of the
validation set is much bigger than the case in expression classification. Thus the resulting
accuracy is more stable which further proves the explanation for oscillation in expression
classification accuracies.

To explicitly see the performance for each class in both tasks for clean dataset and
corrupt dataset, we compute the normalized confusion matrix for the above 4 cases and
presented in figure 47-50. For expression classification with clean dataset, the highest
accuracy is achieved by class ”happy” with value 72% while the lowest accuracie oc-
curred in class ”angry” and ”fear” with value 40% and 41% respectively. For expression
classification with corrupt dataset, the highest accuracy is achieved by class ”sad” with
value 70% while the lowest occurred in class ”fear” with value 15%. When observing
the miss-classified situation for both case, the ”fear” faces are mostly miss-classified as
”angry” face and ”surprise” face, which might due to the case that these expression it
self is hard to distinguish since they all contain facial deformation such as eyes wide open
and mouth open. And the ”angry” faces are mostly miss-classified as ”disgust” and ”sad”
faces which might because of they all contains frown and mouth pursed. Such similar
trend of face deformation increase the difficulty of classification. For the emotional state
classification, the lowest accuracy occurred in ”offset” class and those ”offset” frames are
usually miss-classified as ”neutral” and ”apex”. Interestingly, none of the ”offset” frame
is miss-classified as ”onset” frame though they actually has same trend of deformation,
which proves the effect of the LSTM does affect the decision making of the classification
since the temporal element is also being considered, that the frame after ”apex” frame
cannot be the ”onset” frame.

Clean data Corrupt data
Exclude padding 66.46% 58.02%

Table 10: State classification accuracy for final architecture.
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Figure 45: Plots of expression classification accuracy for training and validation set pro-
duced by final architecture.

Figure 46: Plots of emotional state classification accuracy for training and validation set
produced by final architecture.
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Figure 47: Confusion matrix of expression classification result for clean dataset produced
by final architecture.

Figure 48: Confusion matrix of expression classification result for corrupt dataset pro-
duced by final architecture.

72



Figure 49: Confusion matrix of emotional state classification result for clean dataset
produced by final architecture.

Figure 50: Confusion matrix of emotional state classification result for corrupt dataset
produced by final architecture.
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4.5.7 Conclusion

In this section, we present the architecture we developed and the exploration to achieve
the final architecture. We have found that in practical tasks, for limited number of data,
the too deep or too wide neural network architecture may have worse performance than
the shallower and narrower design, since the limited amount of information is not enough
to train an architecture with large capacity. And for the final architecture we achieved, the
expression classification performance does not affected seriously by the corrupt data while
the emotional state classification result is affected bit more obvious(57.42% and 52.50%
for clean and corrupt data respectively in expression classification tasks, and 81.68% and
74.35% for clean and corrupt data respectively in emotional state classification tasks).
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5 Conclusion and Future Direction
Geometric Deep Learning is a recently emerging field in machine learning that generalized
deep learning to non-Euclidean domains, where the prototypical objects are graphs and
manifolds. Various applications of this field include network analysis, particle physics,
computer vision and computer graphics. Owing to the intrinsic property of geometric
deep neural network, invariance to shape deformation can be achieved, which have great
benefit in 3D object representation learning. As one of the most common 3D object, the
human face has raised heavy interest due to its function of individual identification and
social communication. The high complexity of deformation of the human face has brought
challenges to extreme deformations capturing and non-linear expressions modeling of 3D
faces. By utilizing geometric deep learning technique, the shortage caused by using mod-
ern deep learning approach can be resolved such as topological structure breaking and
fine details losing. In this thesis, we attempt to address an arising challenge in computer
vision for decades utilizing geometric deep learning, which is the dynamic 3D facial ex-
pression recognition. The dynamic 3D faces are modeled by sequences of manifolds and
were discretized as graphs. We hope the methods proposed in this thesis could contribute
to applications in other domains.

In this thesis, we started with providing basic deep learning definitions and methodolo-
gies on Euclidean domain in chapter 2, which are essential knowledge for understanding
advanced designed intuition of the methodology on non-Euclidean domain reviewed in
chapter 3, as well as the approach we proposed in chapter 4. In chapter 3, two proto-
typical types of non-Euclidean domain were introduced and the construction of function
analysis on these domains was described. As the vital element in deep learning, convolu-
tion operations on non-Euclidean domain including spectral and spatial approaches were
presented and their performance was discussed. Three geometric deep learning approaches
tackling 3D face analysis tasks were reviewed at the end of chapter 3, which work as part
of the inspiration of our proposed approach where the Chebyshev Convolution operation
is utilized.

In chapter 4, we designed a multi-output approach utilizing graph convolutional net-
work and LSTM to recognize dynamic 3D facial expressions, where the model not only
produce the expression classification of the given dynamic face sequence but also the emo-
tional state of each individual frame. To our best knowledge, we are the first to bring
geometric deep learning in dynamic 3D facial expression recognition. The experiments
details are provided in this chapter which described each step of our progress being made
during the exploration.

Future Direction

• Efficient graph pooling strategy. The contracting-vertex-iteratively graph coars-
ening strategy utilized in this thesis is graph specific i.e. the transform matrices for
up-sampling and down-sampling are required to be computed for each mesh indi-
vidually in train dataset, and needed to be stored during the whole training process.
For extreme large-scale data, the memory required and computational costs will be
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high and is time-consuming. An efficient graph pooling strategy that can be gener-
alized over different graphs would accelerate the training process as well as reduce
the cost.

• Synthesis dynamic 3D objects. The arising MeshGAN has produced consider-
able results in 3D objects generation assisted by the geometric deep learning tech-
nique. Exploring 3D generative models that generates dynamic 3D objects would
have great benefit in various real world applications involving time-varying domain.
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