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Abstract
Federated Machine Learning: A Distributed Approach to Pain Expression

Recognition in Healthcare

by Nicolas TOBIS

Pain-monitoring is an essential task that hospital staff is required to perform on an
ongoing basis. While evidence suggests, however, that improved pain monitoring
yields better patient outcomes, competing demand for nursing staff has put a toll on
the practical implementation of manual routine check-ups. In this work, we, there-
fore, address the problem of automated pain recognition from facial expressions.
Pain recognition from image data is challenging since a classifier relies on very sub-
tle changes in a test subject’s facial expressions. Leveraging the "UNBC-McMaster
shoulder pain expression archive database", a dataset consisting of >48k annotated
video frames, we propose a lightweight CNN architecture that can be learned to
recognize pain from image data to tackle this problem.

Building on this architecture, we show how federated learning, a distributed
approach to machine learning, can be employed to allow multiple clients (e.g., hos-
pitals) to jointly train such a model, without ever sharing their local data. Federated
learning is very beneficial in a healthcare setting, where data regulations are strong,
and data is often sparse.

We finally propose a novel algorithm that adds another level of privacy to the
federated learning algorithm by further reducing the amount of information shared
with a central server. Despite the limited amount of information shared between
clients, our algorithm performs comparably to the standard federated learning algo-
rithm and outperforms purely local models with no information sharing.

HTTPS://WWW.IMPERIAL.AC.UK
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This project involves video data collected from human participants. A team of re-
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Chapter 3 for a more detailed outline). As such, we promise that the data has ex-
clusively been processed for its intended use: Advancing the field of studying pain
recognition from facial expressions. Since the UNBC-McMaster shoulder pain ex-
pression archive database was compiled exclusively for research purposes and is
only available to researchers on request, we do not include it in any publicly avail-
able repositories of our work.

Moreover, we are aware of the growing environmental implications of machine
learning research. Training machine learning models over many hours and days
often require power-hungry GPUs that contribute to a growing demand for electric-
ity worldwide. We therefore carefully designed our code to (a) leverage computing
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Machine Learning

The not-so-recent-anymore rise of machine learning (ML) models has led to unprece-
dented advances in a broad array of fields. In the healthcare space, for example, em-
ploying deep learning has shown promise to increase the accuracy of pathological
diagnoses[66][33]. In defeating Lee Sedol, widely regarded as the world’s best player
of the traditional Chinese game Go, Google’s AlphaGo computer successfully show-
cased that computers powered by deep learning can achieve super-human perfor-
mance[55]. Subsequent experiments with an enhanced algorithm dubbed AlphaGo
Zero that defeated the original algorithm 100-0, and another algorithm defeating hu-
man champions in the highly complex real-time computer game StarCraft, helped
further publicize the potential power of machine learning algorithms as a whole
[56][64]. ML-powered algorithms are also becoming ever more present in our every-
day lives, with voice assistants using speech recognition on mobile phones and in
the home[15], and self-driving cars employing computer vision to guide us - most
of the time - safely to our destination[4].

Today’s popularity of machine learning in research and industry can largely be
attributed to the unprecedented amounts of data people generate daily using their
computers, credit cards, and most recently - mobile phones. According to one study,
the average smartphone user interacts with his or her device a staggering 2,600 times
per day[69], generating valuable data for advertisers [26], developers [32] and even
medical researchers [23] with every tap.

1.1.2 Privacy

However, with billions of computing devices generating new data every day, new
challenges and concerns arise. One example is privacy. Large centralized datasets
that fuel modern ML models present a lucrative target for data breaches. The recent
Facebook/Cambridge Analytica scandal has shown the impact that poorly protected
user data can have [59]. As a consequence, governments have already started to act
and passed legislation to protect their citizens, with GDPR in the European Union,
the Personal Information Security Specification in China and the definitions of focused
collection and data minimization proposed by the 2012 White House report on the pri-
vacy of consumer data in the United States. As a result, clients ordinarily generating
data for an ML model might now object to, or be legally prohibited from providing
even anonymized data to a central entity for data processing. Clients may include
individuals generating data passively through interaction with their devices, as well
as businesses deliberately sharing data with a centralized server for evaluation.
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Moreover, also the practicality of training ML models on large raw datasets is
running into constraints. Datasets are continually increasing in size as - in the case
of mobile devices - millions of users generate information every single day. Compil-
ing such datasets for evaluation requires a massive infrastructure on the server-side
and strong upload capacity on the client-side. Besides, training a classifier on e.g.,
raw image data for a computer-vision algorithm from millions of users in a central-
ized location requires exceptionally high processing power, where even the largest
tech companies such as Google and Facebook run into limitations.

At the same time, data in most industries is siloed. Owing to industry compe-
tition, privacy concerns, and bureaucratic administrative procedures, even data ex-
change within the same company is often heavily constrained. As a consequence, a
new machine learning technique - federated learning (FL) - is gaining in popularity.
First introduced by Google in 2016 [39][28][29], unlike traditional server-side ma-
chine learning models FL models are deployed to distributed devices (e.g. mobile
phones), and learn locally. Since the training data never leaves the device, feder-
ated learning bears great promise for both increased privacy, as well as the distribu-
tion of computationally expensive tasks, increasing the training speed of ML models
trained on large amounts of data.

1.1.3 Healthcare

While the potential applications for federated learning are numerous and highly di-
verse, the promise of a privacy-preserving, less computationally hungry machine
learning approach can be particularly valuable for the healthcare space. Healthcare
patient data are typically among the most strictly regulated with HIPAA[52] in the
US and GDPR[16] in the European Union governing the rules by which such data
can be accessed. At the same time, pooling healthcare data from healthcare facili-
ties, insurance providers, and government agencies on a regional, national or even
global scale holds enormous potential for example for rare diseases research[67] or
treatment best-practices.

Pain

One example, where hospitals could work together to improve the lives of the pa-
tients they treat is the identification of pain. Detecting pain in patients to provide
effective treatment is a critical job that hospital staff needs to perform on an on-
going basis, and the automation of this task has been of interest to researchers for
quite some time [2][36][35]. Shortcomings so far, among other things, have included
a lack of labeled training data for machine learning classifiers. If different hospi-
tals, senior-care facilities, and other healthcare institutions collaborated in training a
shared model for this task, the amount of available data would increase significantly,
likely improving the performance of any classifying algorithm, in the process.

In "RoboChain: A Secure Data-Sharing Framework for Human-Robot Interac-
tion" [10] the authors propose a framework to jointly learn a machine learning model
on private, local data, building upon the latest advances in blockchain technology,
and federated machine learning. Building on their work, this thesis further dis-
cusses the potential of federated learning in general, and as a catalyst for future
breakthroughs in the medical space.
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1.2 Contributions

Our work contributes to the field of pain study by way of monitoring Facial Action
Units, as well as to the field of federated machine learning, by introducing a novel
algorithm we dub federated personalization. More specifically, we:

1. Show that a lightweight CNN architecture can learn to recognize pain from the
facial expressions of individuals.
Based on a data set labeled according to the standard of the "Facial Action
Coding System" introduced in chapter 3 we successfully train a convolutional
neural network to predict when a person is in pain, using a video stream of
that person’s face as an input.

2. Show that the federated learning algorithm is robust even in a "production-
level" setting, learning a challenging data set that changes over time.
Many papers discuss the benefits of federated learning in benchmarking per-
formance on toy-data sets such as MNIST or CIFAR-10[39][12]. In our case, we
experimented with a highly unbalanced dataset, where positive and negative
examples are not easily distinguishable. In our experiments, the underlying
data distribution also evolves, as would be expected if we put the model into
deployment.

3. Introduce a new federated learning algorithm that adds additional privacy
preservation, at only a modest expense of performance.
Our "federated personalization" algorithm only shares some layers with the
central server, but not all, which makes it harder for an adversary to learn pre-
viously unknown information about an "honest" client participating in jointly
learning a model. While these "global" layers are still averaged between par-
ticipants, the "local" layers only continue training on each client’s local dataset.

4. Provide specific directions for future research.
We suggest a more sophisticated validation-set algorithm that leverages more
precise early-stopping for a sparse data set such as the pain data set. We also
recommend implementing a "fallback"-model in a federated setting that kicks
in if an updated global model would likely worsen the performance of a given
client.

1.3 Outcomes

We evaluated 24 different test subjects experiencing pain, split into two groups (group
1 and group 2). Group 1 was used to pre-train a model that we used as a baseline.
Group 2 was used to continue training on the pre-trained model and evaluate model
performance. Table 1.1 shows a summary of our key findings. The table compares
the following methods for classifying the pain data set introduced in chapter 3:

RANDOM: A CNN where weights have been randomly initialized using the glo-
rot uniform distribution [13].

BC-CNN: The Baseline Centralized CNN, a model that was pre-trained on the 12
test subjects of group 1.
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Weighted AVG + STD
Experiment ACC PR-AUC F1

RANDOM 43 ± 14 30 ± 15 31 ± 2
BC-CNN 72 ± 12 54 ± 23 47 ± 24
C-CNN (C) 75 ± 13 57 ± 21 49 ± 21
F-CNN (C) 74 ± 11 59 ± 23 51 ± 25
FP-CNN (C) 76 ± 12 56 ± 21 49 ± 23
FL-CNN (C) 75 ± 13 54 ± 20 47 ± 23

TABLE 1.1: Comparison of aggregated results on group 2 data for all
learning algorithms with centralized pre-training in (%). Standard

deviation is computed between test subjects.

C-CNN (C): The Centralized CNN with Centralized pre-training, a model that was
initialized with the weights of the BC-CNN and trained with centralized learning
and vanilla SGD.

F-CNN (C): The Federated CNN with Centralized pre-training, a model that was
initialized with the weights of the BC-CNN and trained with federated leraning.

FP-CNN (C): The Federated, personalized CNN with Centralized pre-training, a
model that was initialized with the weights of the BC-CNN and trained on the fed-
erated personalized learning algorithm, introduced in chapter 5.

FL-CNN (C): The Federated, local learning CNN with Centralized pre-training, 12
individual models (one for each client), each initialized with the weights of the BC-
CNN and trained separately, with the performance averaged across models.

As we can see from this table, the baseline for accuracy is beaten by every learn-
ing algorithm. When looking at PR-AUC and F1, both measures for identifying how
well the model identifies positive examples, we find that FL-CNN (C) struggles to
beat the baseline, while all other learning algorithms manage to outperform it. F-
CNN (C) performs the best, followed by C-CNN (C) and FP-CNN (C), and finally,
FL-CNN (C).

1.4 Outline

See the following for an outline of the remainder of this thesis:

Chapter 2: Background and related work This chapter introduces the necessary
machine learning preliminaries that this thesis builds on. It explores neural net-
works in general, their strengths and weaknesses, convolutional neural networks,
and finally, the federated learning algorithm.

Chapter 3: Data In this chapter we take a deep-dive into the data, and discuss the
challenges the data set presented, as well as the techniques we used to augment the
data and tackle these challenges.
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Chapter 4: Model Architecture In this chapter, we present the underlying model
architecture we used to assess our different learning algorithms. We show the origi-
nal model architecture we started experimenting with as well as the final architecture
that produced the best results. We also comment on the general viability of com-
monly employed model architectures for image recognition tasks such as ResNet50
and VGG19.

Chapter 5: Experiments This chapter discusses the different learning algorithms
we tested, as well as the experimental settings we designed. It also introduces a
novel algorithm we dub "federated personalized learning" that we designed for ad-
ditional privacy protection.

Chapter 6: Results & Evaluation In this chapter we discuss the results that the
different learning algorithms achieve, and analyze the absolute performance of each
algorithm as well as their relative performance to each other.

Chapter 7: Conclusions & Future Work In the final chapter, we conclude our work
and point to directions that future research can take. Expressly, we point towards
possible advancements of our validation algorithm, as well as the federated person-
alized learning algorithm.
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Chapter 2

Supervised machine learning

2.1 Machine Learning Preliminaries

Machine learning tasks can generally be grouped into two different paradigms: Su-
pervised and Unsupervised Learning. In unsupervised learning, a typically unlabeled
data set is fed to an algorithm, which is designed to detect previously unknown
patterns in the data. Clustering algorithms such as K-Nearest Neighbor, or Gaussian
Mixture Models[47] are examples of unsupervised learning, where unlabeled data is
being grouped based on some shared properties. With supervised learning, on the
other hand, labeled training data fed to an algorithm to learn a function that can
map an input X to an output Y. Such a function can serve to solve a classification task
(e.g., does an image contain a red car or a blue bus), or a regression task where a con-
tinuous variable is predicted (e.g., given X liters of gasoline, we expect a car to be
able to drive for Y kilometers). The federated learning algorithm (described in detail
in section 2.2) advances the field of supervised learning, as it allows multiple clients
to jointly learn such a function. In the following, we will thus focus on supervised
learning.

2.1.1 Multilayer Perceptron

While determining the amount of gasoline required to travel a certain distance could
potentially be solved with a simple linear regression model, image classification
tasks such as the one mentioned above typically require more sophisticated mod-
els. This has led to the increasing popularity of artificial neural networks (ANNs).
Due to the typically much larger number of tunable parameters, ANNs can approxi-
mate significantly more difficult functions, qualifying them well for non-linear tasks
such as speech recognition or object detection.

Multilayer perceptrons (MLP) are a type of feedforward ANN. The perceptron
was first proposed by Rosenblatt in 1957 [49]. A multilayer perceptron consists of
one input layer x, one to many to hidden layers hi and an output layer y. For simplic-
ity, we will assume a variant of the MLP, the single-layer perceptron in the following.
Figure 2.1 shows an example of such an architecture. When training the MLP, we
feed a sample of our training data to the input layer, where each neuron represents
a feature (e.g., one pixel of an image, or one column labeled "age" of a table con-
taining user-data). Each of the input layer (an n-dimensional vector where x ε Rn)
is connected to each neuron of the first hidden layer hi (an m-dimensional vector
where hi ε Rm), which is again connected to the output layer y, a k-dimensional vec-
tor y ε Rk, where k is the number of classes the perceptron is designed to predict.
In a binary case, one neuron (instead of 2) is enough, as that neuron could output
a value closer to 0 for class one and a value closer to 1 for class two. The neurons
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are connected by typically randomly initialized weights w ε Rm for the input layer
to the hidden layer and w ε Rk to the output layer.

FIGURE 2.1: Multi-layer perceptron

Neuron

As the name suggests, neural networks such as the MLP are made up of many inter-
connected neurons. In the "forward-pass", i.e. when the network is asked to make
a prediction based on some given input, neurons receive n inputs, which are mul-
tiplied by a corresponding weight, and summed up to get a pre-activation value z,
which is then passed to the activation function f , which typically performs a non-
linear transformation on the value (explained more in detail below). This is shown
in figure 2.2 and can be summarized as:

y = f (z) = f (∑
i

wixi) = f (wTx) (2.1)

Activation Function

Activation functions are required to introduce non-linearity to an ANN. If we con-
structed an ANN without activation functions we would simply be chaining a num-
ber of linear neurons of the form y = wTx, the result of which would just be another

FIGURE 2.2: An exemplary neuron in a neural network
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linear function. As discussed at the beginning of section 2.1, this would be inade-
quate for many applications. Some of the most popular activation functions are:

Linear (identity) Does not transform x.

identity(x) = x (2.2)

Sigmoid Compresses the output to the range between 0 and 1. Often used in the
output layer for binary classification tasks[43].

sigmoid(x) =
1

1 + (e−x)
(2.3)

Tanh Adjusts sigmoid such that it ranges between -1 and 1[43].

tanh(x) =
2

1 + (e−2x)
− 1 (2.4)

ReLU Short for "Rectified linear unit". A piece-wise linear function returning x if
x is larger than 0, else returns 0[43].

relu(x) =
{

x if x > 0
0 otherwise

(2.5)

Softmax n-dimensional sigmoid, compressing the sum of the output vector to 1,
often used in the output layer for multi-class classification tasks[43].

so f tmax(zi) =
ezi

∑k ezk
; z ε Rn (2.6)

Loss Function

During the training of the network, once the forward-pass is complete and the net-
work produced some numerical result, this result is then compared to the actual,
known labels, and the error is calculated. For example, in a multi-class classification
task where the model needs to differentiate between cars, planes, and trains, the
model might produce an output vector yielding probabilities of [0.5, 0.2, 0.3] for a
single image. Assuming the image shows a car, the corresponding one-hot encoded
vector will be [1, 0, 0]. These vectors are then passed into a Loss Function, which cal-
culates the prediction error, which is used to update the model weights connecting
the model’s neurons, in a subsequent step discussed in the next paragraph. Com-
mon loss functions are:

Binary Crossentropy This is typically used for binary classification tasks[25].

l(y, ŷ) = − 1
N

N

∑
i=0

(y× log(ŷi) + (1− y)× log(1− ŷi)) (2.7)
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Categorical Crossentropy Similar to binary cross-entropy but N > 2, used for multi-
class classification tasks[25].

L(y, ŷ) = −
M

∑
j=0

N

∑
i=0

(yij × log(ŷij) (2.8)

Mean Squared Error Typically used for regession tasks as it computes the eu-
clidean distances between the prediction vector and the labels vector[25].

L(y, ŷ) =
1
N

N

∑
i0

(yi − ŷi)
2 (2.9)

Gradient Descent

In order to learn a model that can make accurate predictions, we aim to minimize
the loss of the model by adjusting our model’s parameters (or weights). While this
is generally done by optimizing them for the training data, the model is also often
validated on otherwise unused data. In the end, the parameters with the best per-
formance on the validation set are selected.

For minimizing L a large part of machine learning research is dedicated to a
learning algorithm called gradient descent[5].

In gradient descent, we iteratively adjust the model parameters such that in each
iteration the value computed by the loss function is brought closer to a local or global
minimum. An illustration of this technique can be found in figure 2.3, where the
loss (indicated by the arrows) is gradually improved by updating two parameters.
Starting with randomly initialized parameters, we compute the partial derivatives

FIGURE 2.3: A two-dimensional illustration of gradient descent

of the loss function with respect to the model parameters and store the result in a
gradient. The gradient is an indication of the slope of the loss function given the
current values of our parameters, as well as the direction in which the parameters
should be updated. After each parameter wi is updated, this process is repeated,
until a local or global minimum of the function we are trying to approximate is
found. Formally these steps can be defined as:

wi ← wi − η × ∂L
∂wi

, (2.10)
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where η represents the algorithm’s "learning rate", discussed more in-depth below.
In practice, one of two variants of gradient descent is usually used. In Stochastic
Gradient Descent, one data point is used to update the weights of the model, while
in Mini-batch gradient descent small batches of data points are used instead of the
whole data set. These variants are applied since having to iterate through the entire
data set for each step of gradient descent would be too computationally expensive.
SGD works under the assumption that much of training data is similar, and thus ∇̃L
can be called an unbiased estimator of∇L. This property implies that while individ-
ual estimates on a batch might be inaccurate, the randomness will average out over
time and the parameters are updated in the correct direction.

Finally, we need to mention that with gradient descent, we can only guaran-
tee that the model converges to a local optimum. As there are generally few local
optima in high-dimensional spaces, this is seldom a problem in real-world applica-
tions. However, gradient descent can get stuck on a saddle point or a plateau, which
occurs more frequently[7]. While on a saddle point the gradient might be zero in all
directions, there may still be a better point somewhere in the vicinity. See figure 2.4
for an example.

FIGURE 2.4: The stochastic gradient descent algorithm finding a local
optimum

Computational Graph

As eluded to above, the gradient descent algorithm requires calculating partial deriva-
tives. While derivatives for simpler methods like linear or logistic regression are
well described in the literature, deriving the gradient for more complex functions
becomes increasingly difficult. For a neural network with many layers and even
more neurons, setting up a long function that describes the entire network is nearly
impossible.

Computational graphs represent an abstraction that allows machine learning re-
searchers to circumvent this problem. In place of attempting to construct a functional
representation of an entire neural network, of which a derivative can be computed,
the network is broken down into smaller more manageable pieces, such as multi-
plication or the exponential function, where the direct derivative is known. These
smaller functions are connected into a graph where each node represents a function,
and each edge shows how information moves between nodes. An example of this is
shown in figure 2.5.
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FIGURE 2.5: A computational graph of the function f (x, y)

This graph represents the function

f (x, y) = x×√y +
√

y. (2.11)

It also shows how constructing a graph can be more computationally efficient as
the term

√
y only needs to be calculated once. Representing our model as a graph

allows us to employ back-propagation, an algorithm that applies the chain rule of
derivation to find the partial derivative of the loss function with respect to the model
weights. For the last layer in the model before the output layer, this partial derivative
can be described as:

∂L
∂W(L)

=
∂L

∂A(L)
× ∂A(L)

∂Z(L)
× ∂Z(L)

∂W(L)
, (2.12)

where L describes the loss, W the weights, A the activation value and Z the pre-
activation output. For additional layers, we need to add to this function by multi-
plying it with the partial derivatives of the weights of those layers with respect to
the loss.

Overfitting

Overfitting is a common problem with training neural networks[6]. A neural net-
work is an eager learner, meaning that it stores many parameters that were optimized
on an underlying training data set. Overfitting refers to the processes of learning par-
ticular pieces of information about the training data, which do not generalize well
to the overall population. The result is typically a model that yields a low loss when
evaluated on the training data itself, but a much higher loss when evaluated on un-
seen test data. An example can be seen in figure 2.6, where the grey line represents
a model that overfit on a specific set of features and maps the training data distri-
bution very closely whereas the model represented by the green line was trained to
learn more general features.

The opposite problem is "underfitting" when the model is not strong enough to
capture discriminative information on the training data and yields a high training
and test loss. While this can often be addressed by increasing the number of learn-
able parameters in the network and training the model for longer on the training
data, overfitting is more challenging to tackle.

Early Stopping

Neural Networks tend to overfit on the training data when they train on it for too
many iterations (also referred to as "epochs"). To address overfitting, we can apply
early stopping[3]. With early stopping, we split the training data into a training
set and a validation set. After each epoch (a full pass over the training data), the
quality of the model is evaluated on the validation set. If the validation loss does
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FIGURE 2.6: An example of overfitting. The grey line represents a
model that overfits, whereas the green line represents a model that

learnt more general features of the population.

not improve within a specified number of epochs, training is stopped. Typically, the
model weights that yielded the lowest validation loss are then restored at this point.

Regularization Techniques

Dropout Dropout is a regularization technique, whereby each neuron except the
output neurons has a probability p of being ignored during a given training step[60].
During the forward- and backward-pass during this training step, the neuron is shut
off and does not perform any calculations. As a result, the neural network tends to
converge slower, but inter-dependency between neurons across layers is reduced,
allowing the model to generalize better on unseen data. We can see in figure 2.7 how
this process looks in practice. Dropout is only applied during the training stage. At

FIGURE 2.7: An example of dropout for two consecutive training
steps

prediction time, all neurons are active; however, their weights and activations are
typically scaled to the dropout factor as otherwise, the input that a neuron receives
during prediction time would on average be 1

p higher than during training time.

L1 and L2-Regularization L-Regularization combats the issue of model weights
growing out of proportion[41]. In both techniques, the objective function is modified
by adding the model weights to the model loss. In this case, the model Ois penalized
if it achieves a low loss at the cost of large weights. Thus, in order to reduce the
loss, the weights need to be kept small as well. With L1-regularization, the absolute
value of the weight is added to the objective function. The parameter λ indicates
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how much the model should be regularized.

J(W) = L(Y, A) + λ ∑
w
|w| (2.13)

This means that for the update rule in the backward pass, a fixed movement towards
0 is considered.

w← w− η(
∂L
∂w

+ λsign(w)) (2.14)

For L2-regularization, the squared weight w2 is added to the objective function along-
side the loss.

J(W) = L(Y, A) + λ ∑
w

w2 (2.15)

The update rule shows that in L2-regularization the update is now proportional to
the weight itself, indicating that large weights shrink proportionally faster.

w← w− η(
∂L
∂w

+ 2λw) (2.16)

The L1 regularizer tends to produce sparse weights, as most weights are pushed to
0, and consequently only the most useful weights will be non-zero to make predic-
tions. As a result of this sparsity, feature selection occurs, where L1 regularisation
forces each layer to select only a few inputs in order to keep the weights small. By
contrast, with L2 regularization, layers benefit from taking in a combination of fea-
tures, as weights are not pushed as strongly towards 0 when they already have small
values.

Batch normalization Batch Normalization is a normalization technique intro-
duced in 2015 by Sergey Ioffe and Christian Szegedy in their paper ’Batch Normaliza-
tion: Accelerating Deep Network Training by Reducing Internal Covariate Shift’[42] and
today it is used in almost all convolutional neural network architectures (see sec-
tion 2.1.2). According to the original paper, batch normalization helps reduce the
internal covariate shift of the hidden layers of the network. However, in a more re-
cent paper titled "How Does Batch Normalization Help Optimization?"[51], the authors
suggest that batch normalization actually "makes the optimization landscape signif-
icantly smoother." The result is a changed behavior of the gradients, which becomes
more predictive and stable.

Historically, research has focused on uniformly distributing the data fed into the
input layer of the neural network. For example, in a case where the model is trained
to separate cats from dogs, it makes intuitive sense to feed cats and dogs of all shapes
and colors to the model in a given minibatch during training, rather than feeding
black cats and dogs in one mini-batch to the model and brown cats and dogs in the
next because these subsets of data have different distributions.

For the hidden layers, however, this input distribution changes every time there
is a parameter update in the previous layer. This challenge is addressed by batch
normalization. BN replaces the incoming vector of pre-activation values of a given
minibatch in a given layer with its normalized version. Formally this process can
be summarized in four steps (simplified for one layer to limit the number of super-
scripts):
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1. Calculate the mean µ of the mini-batch.

µ =
1
m ∑

i
z(i) (2.17)

2. Calculate the variance σ2 of the mini-batch.

σ2 =
1
m ∑

i
(z(i) − µ)2 (2.18)

3. Calculate the normalized value of z, znorm.

z(i)norm =
z(i) − µ√

σ2
(2.19)

4. Calculate z̃norm by multiplying znorm with a scale γ and adding a shift β and
replace the pre-activation z with z̃norm.

z̃(i)norm = γz(i)norm + β (2.20)

Throughout the experiments conducted in light of this thesis, we experimented
with all of the regularization techniques mentioned above and found batch-normalization
to be the most effective.

2.1.2 Convolutional Neural Networks

Convolutional Neural Networks are another type of feedforward neural network,
typically used for image recognition/computer vision tasks in deep learning[30].
The purpose of employing convolutional layers is to learn useful features from an
input image such as edges (horizontal, vertical, or diagonal) and spatial relation-
ships between elements in an image (a face usually consists of eyes, a nose, ears, and
a mouth). This is done through applying one or more filters to the input image (and
in the case of further hidden convolutional layers applying additional filters on the
outputs from the first convolutional layer).

Filters

In image processing, a filter refers to an operation that transforms an image in a
meaningful way, i.e., by increasing the image’s contrast or grey-scaling an RGB im-
age. This is done by applying a standard, predefined mathematical operation on
each pixel or a group of pixels. To grey-scale an image, for example, a filter would
multiply each pixels’ image channels (Red, Green, and Blue) by 1

3 and sum the re-
sults to output a single channel that held the numerical average of the three color
channels. In this example, the filter is a fixed 3-dimensional vector of shape (1 x 1 x
3), with each dimension holding the value 1

3 . See figure 2.8 for a pictorial description
of this process.

In convolutional NNs, rather than specifying a filter’s values in advance, the
filter’s values are randomly initialized and then learned over consecutive training
iterations. While the last dimension of the filter (the depth, or number of kernels) will
always need to equal the last dimension of the input shape, the height and width of
the filter are hyperparameters that can be freely tuned.
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FIGURE 2.8: Example of applying a filter consecutively to each pixel
of an image to greyscale the image

Usually, a convolutional layer holds more than one filter, each of which learns a
separate feature of the input image (e.g., filter 1 learns horizontal edges, while filter 2
learns round edges. All learned features are subsequently combined in the forward
pass to make a prediction.

Kernel

One filter is typically made up of several kernels. The term kernel refers to a 2D array
of weights, which are the parameters that are being tuned in a convolutional layer.
See figure 2.9 for an example. Here the filter is a (3 x 3 x 3) matrix, meaning that it
consists of 3 kernels of the shape (3 x 3). First, each kernel is applied to one input
channel, without padding (explained below). The three convolutions that are per-
formed result in three channels, each with a size of (3 x 3). These resulting channels
are then summed together, forming one single channel with dimensions (3 x 3 x 1),
which is the result of the convolution.

FIGURE 2.9: An example of a filter consisting of three kernels sliding
through an RGB image translating it into one output channel

Convolution

We can describe a convolution as follows:

S(i, j) = (K ∗ I)(i, j) = ∑
m

∑
n

I(i−m, j− n)K(m, n) (2.21)

The function above describes the process of taking a two-dimensional input image
I as an input, and applying a two-dimensional kernel K on the image. The kernel is
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applied to a region of the image that matches its shape. Then, an element-wise sum-
product is calculated. The kernel is then moved by a predefined number of steps
(called stride), and the operation is repeated. Applying this algorithm has the same
effect as multiplying the input image by a sparse matrix.

Padding

As can be seen in figure 2.9 a filter with kernels of dimensions larger than (1 x 1) re-
duces the size of the input image. If this is not desired, it can be prevented by adding
some padding (pixels with 0 values) around the input image, as seen in figure 2.10.

FIGURE 2.10: Example of padding, where a (2x2) kernel and a (4x4)
input image (green) produce a (4x4) output image (blue)

Pooling

Still, with images larger than 100 x 100 pixels padding only has a negligible impact
on the size of the output. If a reduction in the height and width of the input channels
is desired, we can apply a pooling mechanism, which computes a summary statistic
of a group of adjacent pixels. One of the most common techniques is called max-
pooling. In max-pooling, a pool-size (height and width) is defined, which is then
applied to the output of the convolutional layer. The max-pooling layer selects the
highest activation value from its pool, which then becomes part of the output matrix.
See figure 2.11. Pooling generally makes the network more translation invariant,

FIGURE 2.11: An example of max-pooling with a 2x2 pool-size. Only
the highest activation value in a given 2-by-2 quadrant is added to

the output.
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meaning that a slight rotation or shift in the image will not substantially alter the
model’s prediction.

Parameter Sharing

One final reason why convolutional networks have become increasingly popular for
many deep learning tasks is parameter sharing. In a traditional multilayer percep-
tron as discussed in section 2.1.1 every weight in the model is used exactly once,
when the output of a layer is computed, by multiplying it with one element of the
input. In a convolutional neural net, each member of the kernel (see above), is used
at every input position, except for the boundary pixels, if no padding is used. This
has no impact on the forward propagation run-time, but drastically reduces the spa-
tial requirements of the model as significantly fewer parameters need to be stored.
Also, convolution is dramatically more memory efficient than dense matrix multi-
plication as a result.

2.1.3 Transfer Learning and Domain Adaptation

As mentioned in section 2.1.1, the parameters of a neural network are typically ini-
tialized to random values, when learning a new task. Translating random initializa-
tion to how humans learn would imply completely resetting the brain each time we
learned a new task. Humans, however, have the innate ability to transfer knowledge
about one domain to another related domain. For example, pre-existing knowledge
about how to ride a bike can help when learning how to ride a motorcycle.

Transfer Learning

In deep learning, the idea of applying pre-existing knowledge learned for a specific
task on one data distribution to a new task on another data distribution is referred
to as transfer learning. In computer vision, for example, if the task is to identify
cars in images, initializing a model with the parameters of another model originally
designed to recognize trucks, can speed up training significantly over alternatively
initializing parameters completely randomly. The reasoning behind this approach is
that in computer vision tasks, as discussed in the previous section, objects in images
share low-level features, extracted by the lower levels of the neural network. The
upper layers, - often dense, fully-connected layers - take these extracted features in,
and learn the actual classification task.

Popular deep learning libraries such as Tensorflow and PyTorch allow users via
an API to download popular deep learning architectures such as ResNet50[19] or
VGGNet[57]. Rather than randomly initializing and training these architectures
from scratch, which due to the many millions of trainable parameters would be
cost-prohibitive and results in long training times, they can be initialized with pa-
rameters learned on the Imagenet data set, a dataset containing images of 1,000 dif-
ferent objects[50]. Due to the diversity of the Imagenet data set, these trained model
parameters have been shown to serve as a good starting point for another com-
puter vision task, underscoring the viability of transfer learning[54]. In practice, as
the upper layers are typically fine-tuned for a specific classification task, they are
commonly replaced with randomly initialized layers, when a new task is to be per-
formed. To train the new final layers, the lower, convolutional layers are typically
"frozen", meaning that their parameters do not change during training so that the
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low-level features learned on the Imagenet data set are preserved. Only the final
layers are then freely trained to learn the new classification task.

In transfer learning, however, we are still assuming that our initial training set
distribution is representative of the underlying distribution. I.e., if we initialized
a model architecture such as VGGNet on the trained parameters of the Imagenet
dataset and subsequently trained the final layers to recognize taxi cabs in New York
City, we would expect the model also to recognize taxi cabs in Berlin. However,
while the model might still perform better than the original VGGNet architecture
due to some similarity between New York and Berlin taxi cabs, it would likely still
not perform as well as expected. The reason is that the problem domain changed. In
this particular case, the domain of the input data changed, while the label’s domain
(the task domain) stayed the same. Enter domain adaptation.

Domain Adaptation

Domain adaptation can be considered a sub-field of transfer learning and is em-
ployed when a model trained on a source distribution is put into practice in the
context of a different (but related) target distribution [14]. Generally speaking, the
level of relatedness between the source and the target domain determines how suc-
cessful the domain adaptation will be. Returning to the example of taxi cabs in New
York and Berlin, the next step would require to continue training the modified VG-
GNet model, which has already been trained on images of New York taxi cabs. Two
methods are typically used for continued training: Reweighing the source samples,
which would imply training only on Berlin taxi cabs, or learning a shared space
between the distributions, i.e., training on a joint data set of New York and Berlin
cabs. Either approach, however, would likely decrease training time and yield bet-
ter results faster, compared to randomly initializing the final layers of the original
VGGNet architecture again and training them from scratch.

2.2 Federated Machine Learning

2.2.1 Overview

Federated Machine Learning was first introduced by Google in 2016 [39][28][29].
Different from a centralized setting, in a federated learning setting, multiple devices
e.g., end-user devices such as mobile phones, or business infrastructure such as hos-
pital servers, contribute to learning a machine learning classifier. The classifier can
be a deep neural network, but also a simpler model, with fewer parameters such
as a support vector machine, or a logistic regression model[17]. Federated learn-
ing models are distinct in that the original training data never leaves the respective
local device that collected it. Each device (also dubbed client) maintains a version
of the same model, which is updated with every new observation. The updates to
the model (e.g., the updated weights and bias of neurons in a neural network), not
the observations themselves, are then shared with a central server, which averages
the new models from all participating devices. Once a new version of the model has
been trained, it is pushed back down to all clients. This process repeats continuously
until the model converges.

Figure 2.12 displays a graphical representation of this process. In (A) the server-
side model is pushed down to a mobile phone, which subsequently trains the model
on local data. Training happens on several devices, as depicted in (B). Subsequently,
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the new models are pushed to the cloud (the central server), and averaged, to arrive
at the model in (C). This model is then pushed to all devices, and the process starts
again.

FIGURE 2.12: Federated Machine Learning: Conceptual Architec-
ture[37]

Three primary benefits emerge from this approach, the first of which will be
discussed more in-depth in the remainder of this work:

Privacy: In an FL approach, the central server only aggregates ephemeral parame-
ter updates, meaning model updates that last only long enough to be transmitted to
the central server and incorporated into the central model. This implies that clients
still need to trust the entity aggregating different models enough to receive the in-
dividual parameter deltas, but clients only receive the final trained model for infer-
ence. As a result, the attack surface for gaining access to personal data is limited to
the device only, as opposed to the device and the cloud.

Computing power: Shifting computation down to the devices also significantly
reduces the processing power required in a central location, since the role of the
central entity is merely to average the updates from all participating devices, as op-
posed to continuously retraining a global model on new sets of data. Today’s mobile
devices are becoming increasingly powerful, especially with the emergence of AI
chipsets[24]. Thus, considering that there are billions of mobile devices worldwide,
the accumulated computing power from these devices far-surpasses that of even the
most potent datacenter.

Real-time learning: Finally, since the models are trained locally, updates are in-
stant, enhancing time-to-prediction, and as a consequence, user-experience. More-
over, typical implementations to date have ensured that model updates are only
pushed to and pulled from a central server once a device was idle, plugged into
power and connected to a WiFi connection. Limiting updates to such a setting ad-
dresses the issue of unstable internet connections and ensuring that user-experience
is not affected detrimentally due to power-consuming up- and download processes.[70].
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2.2.2 The Federated Averaging Algorithm

As discussed above, in federated learning, we assume that our data is not centrally
stored, but partitioned over K number of clients. Assume that

• Each partition can be represented as a set of indices Pk of data points that a
given client k holds

• n represents the number of all data points collected by all clients and thus nk
represents the number of data points that the client holds

• nk = |Pk|

If the standard definition of minimizing a loss function is given by

min
θ∈Rd

f (θ) (2.22)

where

f (θ)
de f
=

1
n

n

∑
i=1

fi(θ) (2.23)

and fi(θ) represents the loss for a prediction of one observation (xi, yi given model
parameters θ, this loss function can be rewritten to represent K clients in a federated
setting, such that

f (θ) =
K

∑
k=1

nk

n
Fk(θ) (2.24)

where
Fk(θ) =

1
nk

∑
i∈Pk

fi(θ) (2.25)

.

To break this down: Instead of computing our average loss (e.g. our MSE) as
an average over n number of samples from a centralized data set as 1

n ∑n
i=1 fi(θ),

we compute the average loss Fk(θ) for a specified client k as 1
nk

∑i∈Pk
fi(θ) and then

group the loss of all participating clients K, by computing a weighted average loss
based on the number of data points nk that each client holds.

Analog to computing the loss, we also compute the gradients of the federated
model. Keeping equation (2.10) in mind, in a federated setting each client computes
the average gradient gk on its local data as

gk = ∇Fk(θ) . (2.26)

Then, each client takes a step of gradient descent and updates its parameters accord-
ingly, formalized as

∀k, θk ← θ − ηgk . (2.27)

This step can be repeated multiple times, i.e., for multiple epochs E, until a cen-
tral server then computes the weighted average of these gradients similar to the
weighted average of the loss above as

θ ←
K

∑
k=1

nk

n
θk (2.28)
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to update the model parameters of the overall model, stored on the central server.
This concludes a full round of updates to the global model.

Assuming mini-batch stochastic gradient descent, in such a federated setting the
computational effort for one full update is controlled by three parameters:

1. The fraction C of clients K that participate in a given update round.

2. The number of steps of gradient descent (or epochs) E that each client performs

3. The batch size B used for all client updates

While C impacts the computational power required at the server level (more par-
ticipating clients requires more transfer of data to the server and more effort in ag-
gregating information), E and B impact the computational effort required on the
client-side. The complete pseudo-code for this approach was first proposed by [39]
and is provided for convenience in Algorithm 1.

Algorithm 1 FederatedAveraging. The K clients are indexed by k; B is the local
minibatch size, E is the number of local epochs, and η is the learning rate. w denotes
the model parameters.

procedure SERVER EXECUTES:
initialize w0
for each round t = 1, 2, ... do

m←max(C× K, 1)
St ← (random set of m clients)
for each client k ∈ St in parallel do

wk
t+1 ← CLIENTUPDATE(k, wt)

wt+1 ← ∑K
k=1

nk
n wk

t+1

procedure CLIENTUPDATE(k, w) . Run on client k
B ← (split Pk into batches of size B)
for each local epoch i from 1 to E do

w← w− η∇`(w; b)
return w to server

2.2.3 Applications for Federated Learning

Potential applications for federated learning are vast and differ substantially in ver-
tical and specific use-case, but typically bear three common traits[70]:

1. Task labels do not necessarily need to be provided by humans but can be de-
rived naturally from user interaction.

2. Training data is privacy sensitive

3. Training data is large, and is difficult to be feasibly collected in a central loca-
tion

Not all of these conditions strictly need to hold when applying federated learning,
but it is under these circumstances, that federated learning provides the most sig-
nificant value over other machine learning techniques. To illustrate the potential of
federated learning, in the following, we briefly review some of the recent applica-
tions of FL models in practice.
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Brain Tumor Segmentation Without Sharing Patient Data Computer chip-maker
intel [53] leverages FL to showcase how multiple healthcare institutions can collab-
orate in a privacy-preserving manner, leveraging each institution’s electronic health
records (EHR). The authors argue that while collaboration between institutions could
address the challenge of acquiring sufficient data to train machine learning clas-
sifiers, but the sharing of medical data is heavily regulated and restricted. They
present the first use of an FL classifier for multi-institutional collaboration and find
that they can learn a similarly performant federated semantic segmentation model
(Dice=0.852) compared to that of a model trained on centralized data (Dice=0.862).
This strengthens the hypothesis that FL can lead to breakthroughs in the medical
space without compromising patient privacy.

Improving Firefox Search Bar Results In [18], the author leverages federated learn-
ing in a production level setting using data from 360,000 users to improve the search
results in the Firefox Search Bar, without collecting the users’ actual data. Millions
of URLs are entered into Firefox daily, thus notably improving the auto-complete
feature for users enhances user experiences and can increase customer retention.

Improving Google Keyboard Suggestions Google describes one of the first im-
plementations of federated learning on a large scale, training a global model to "to
improve virtual keyboard search suggestion quality"[70]. In their paper, they ad-
dress many of the technical challenges of coordinating training on millions of de-
vices worldwide. Examples include connectivity issues, the bias of training a model
across different time zones, and minimizing the impact on user experience that train-
ing a machine learning model locally has (e.g., battery-life and device-speed). They
note that future work on privacy still needs to be done and cautiously call their
method "privacy-advantaged", vs. "privacy-preserving".

2.2.4 Practical Challenges for Federated Learning

Federated Learning is not without its challenges. A few key-properties describe a
typical federated optimization problem:

Non-IID A dataset’s data points are said to be IID if they are independent and
identically distributed. If the IID assumption holds, the underlying mathematical
and statistical techniques can often be simplified. For example, if we draw a suffi-
ciently large sample at random from the overall distribution, we can with a specified
level of confidence state that the sample is representative of the overall population.
In Federated Learning, clients’ datasets will often differ substantially from those of
other clients (e.g., in the case of mobile phones the phone’s dataset is dependent
mostly on the interaction with one particular user). Thus, sampling a client at ran-
dom will likely not yield a dataset that is representative of the global population dis-
tribution. Other sampling techniques, such as stratified sampling, can be employed to
mitigate this problem.

Unbalanced In a similar fashion, clients’ datasets may vary substantially in size.
Again using the example of mobile phones, some people may use their phones sig-
nificantly more than others, creating larger datasets that potentially skew the result-
ing weighted average in their direction, while penalizing users generating less data.
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Limited Communication Mobile phones are frequently offline or are connected to
flaky or expensive internet connections. Healthcare facilities, especially in rural ar-
eas in the United States, often have only slow internet connections [38] or a minimal
number of computers that are linked to the internet. While it is usually cheap to
compute updates locally, since the amount of training data is low, communicating
these results becomes much more time-consuming, making communication-speed
and averaging the bottleneck in federated learning.

Maintaing performance Finally, and perhaps most importantly, since a global fed-
erated model is not trained on the raw data, but rather a proxy (the clients’ pa-
rameters), and only local models have access to this data, care needs to be taken
in achieving similar performance in a federated setting compared to a centralized
machine learning approach. If a model fully preserves the privacy of a client but
produces inaccurate predictions, it can essentially be rendered useless.

In the remainder of this work, we will focus on the issues of handling non-IID
and unbalanced data, as well as maintaining performance, while leaving the issue of
limited communication to future work.
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Chapter 3

Data

3.1 Overview

As eluded to in chapter 2 one of the most promising applications of federated learn-
ing is the healthcare space, where many different entities can jointly learn a model
without sharing sensitive raw data, thereby adhering by privacy regulation such as
GDPR in the EU or HIPAA in the US.

To demonstrate the effectiveness of Federated Learning in a healthcare setting,
we chose to work with the UNBC-McMaster shoulder pain expression archive
database [34], a database comprising of 200 video sequences containing spontaneous
facial expressions of 25 individuals. The videos’ frames are labeled individually
and constitute a data set that could just as well have been gathered outside of an
experimental setting by multiple hospitals cooperating to train a model that recog-
nizes pain in individuals. The importance of regularly checking on a patient’s well-
being is described in Atul Gawande’s "The Checklist Manifesto" [11]. In his work,
he describes the significant improvements that compliance with standardized hy-
giene and a priori checklists yield in intensive care units. Among these compliance-
measures is pain monitoring, where a nurse checks on a patient every four hours
and makes adjustments to medication, if the patient is found to be suffering from
pain.

Although evidence suggests that improved pain monitoring yields better patient
outcomes[68], such measures have been difficult to implement due to the competing
demand for nursing staff[1]. Therefore, automatic pain monitoring could improve
the care environment for patients, positively impact patient outcomes, and relieve
some of the pressure on nursing staff.

3.2 Description

To compile the UNBC-McMaster shoulder pain expression archive database researchers
recruited a total of 129 participants (63 male, 66 female).

The publicly available subset of this database holds a total of 48,106 video frames
from 25 test subjects, each labeled with the test-subject number, the session number,
the video frame number, and the level of pain that an individual is feeling in a given
frame. Each individual participated in a different number of sessions.

3.2.1 FACS coding

The pain level is determined by a professional "Facial Action Coding System" (FACS)
[9] coder. In FACS, facial actions are compartmentalized into 44 individual action
units (AUs). To compile the shoulder-pain database, the researchers only focused on
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the AUs that are known to be most closely associated with pain, including: "brow-
lowering (AU4), cheek-raising (AU6), eyelid tightening (AU7), nose wrinkling (AU9),
upper-lip raising (AU10), oblique lip raising (AU12), horizontal lip stretch (AU20),
lips parting (AU25), jaw dropping (AU26), mouth stretching (AU27) and eye-closure
(AU43)" [34].

3.2.2 Prkachin and Solomon Pain Intensity Scale

According to Prakchin’s article "The consistency of facial expressions of pain: a com-
parison across modalities" [45] from 1992, the bulk of what humans feel as pain, is
expressed by four of the 44 actions determined in FACS coding, namely brow lower-
ing (AU4), orbital tightening (AU6 and AU7), levator contraction (AU9 and AU10)
and eye closure (AU43). In a follow-up paper, Prkachin and Solomon [46] defined
pain as the function of the following parameters:

Pain = AU4 + max(AU6, AU7) + max(AU9, AU10) + AU43. (3.1)

The result is a 16-point scale, where the first three components are measured on a
6-point scale (0 = absent to 5 = maximum intensity), and the final element "eyes
open/closed" is binary.

3.2.3 Distribution

The 200 available sequences are collected from 25 test subjects. As figure 3.1 shows,
this publicly available subset of the pain data holds individuals who are experienc-
ing pain levels ranging from 0 to 9, with nearly 90% of images representing either a
0 or a 1 on the pain intensity scale.
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FIGURE 3.1: Pain Intensity Distribution, UNBC-McMaster shoulder
pain expression archive database

Figure 3.2 shows some examples of different individuals experiencing pain and
paired with a corresponding pain-level. As can be seen in this figure, the differ-
ences in pain levels based on the images are quite nuanced. The evident difficulty
of separating examples of "pain" from one another as well as from examples of "no-
pain", paired with the heavy skewness of the data towards "no-pain" prompted us
to perform the pre-processing and data augmentation steps outlined below.
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FIGURE 3.2: An example of max-pooling with a 2x2 pool-size. Only
the highest activation value in a given 2-by-2 quadrant is added to

the output.

3.3 Pre-Processing

In a first step, we wanted to ensure that the relevant features in a person’s face that
are an indicator of pain are as easily identifiable for a machine learning algorithm as
possible and applied the following pre-processing steps.

3.3.1 Greyscaling

OpenCV’s imread() function provides the option to read in an image with 3 channels
or 1 channel. Selecting 3 channels will load a colored image (provided that the input
image is colored) while selecting 1 channel will automatically greyscale the image.
We chose to greyscale the image in order to reduce the amount of information that is
passed to the network for learning. Color is not relevant to detecting pain using the
FACS system, and so greyscaling can reduce the number of input features passed to
the network by two thirds. An example of the results of this step can be found in
figure 3.3.

FIGURE 3.3: An example of a greyscaled image, using the OpenCV
imread() function
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3.3.2 Histogram equalization

Histogram equalization is a technique that helps enhance the contrast in images[44].
Since the Prkachin and Solomon Pain Intensity Scale is measured by looking at only
a limited number of features in a person’s face, we want the appearance of these
features to be as poignant as possible. Increasing the image’s contrast makes features
like the person’s eyes or eyebrows stand out further. In histogram equalization, we
construct a histogram of the pixel values of a black-and-white image, as seen in
figure 3.4. We then spread out the most frequent intensity values of the image, i.e.,
the intensity range of the image is stretched out, meaning that light pixels become
lighter and dark pixels become darker. As figure 3.4 shows, the intensity of the

FIGURE 3.4: An example of an image where histogram equalization
has been applied

relevant edges that we want our neural network to detect in this test subject’s face
increases by applying histogram equalization.

3.3.3 Normalization

Finally, our images are represented as 2-dimensional arrays holding integer values
from 0-255. To ensure that our neural network does not suffer from the "explod-
ing gradient" problem, we normalize this range to a range of 0-1 by converting all
integers to 32-bit floating-point numbers and dividing these numbers by 255. The
relative distances between features are thereby maintained, but the absolute values
are rescaled, which helps to keep the values of our gradients small during the train-
ing phase.
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3.4 Augmentation and Sampling

As already seen in figure 3.1, the distribution of our training data is heavily skewed.
There are many more examples of test-subjects experiencing no pain rather than
experiencing pain, as it would also be expected in a ’real-world’ example, where
patients may only experience pain sporadically during their hospital visit. If this
unbalanced data were fed to a neural network during training, the network would
be biased towards the images labeled ’0’, since correctly identifying these images
can be one strategy for the network to minimize the loss function.

To deny our model this strategy, since correctly classifying the minority group of
images labeled as "pain" is crucial, we resort to three strategies:

1. Binarize the training data

2. Perform data augmentation to upsample the number of positive training ex-
amples

3. Balance the training data by downsampling the negative training examples

3.4.1 Binarizing the training data

Outside of an experimental setting, it will often not be relevant to identify what exact
level of pain a patient is feeling, but whether a patient is experiencing pain at all. We,
therefore, decided to binarize the training labels by bounding the vector of labels by
a "min" function that returns 0 for all labels smaller than 1, and 1 otherwise. From
here on we will call 0, no pain, "negative example" and 1, pain, "positive example".

ybin = min(yord, 1) (3.2)

This yields the distribution in figure 3.5. For a more detailed picture, see table 3.1,

FIGURE 3.5: Binary pain-label distribution

with test subjects split into groups, as further discussed in chapter 6.

3.4.2 Upsampling and Downsampling

Upsampling

To upsample (i.e., increase) the number of positive examples, we applied two data
augmentation techniques: We first created a flipped copy of all images. We then
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Group 1
Person No Pain Pain % Pain

42 1,895 239 11%
47 1,544 64 3%
49 2,194 524 19%
66 1,947 512 20%
95 304 498 62%
97 3,212 147 4%

103 2,738 824 23%
106 2,281 517 18%
108 2,453 455 15%
121 478 40 7%
123 822 361 30%
124 699 996 58%

Group 2
Person No Pain Pain % Pain

43 1,028 92 8%
48 798 84 9%
52 2,503 106 4%
59 640 133 17%
64 1,394 155 10%
80 896 1,068 54%
92 1,031 471 31%
96 2,175 178 7%

107 1,599 442 21%
109 1,724 179 9%
115 1,184 99 7%
120 1,490 76 4%

TABLE 3.1: Positive and negative examples by test subject and train-
ing group before any up- or downsampling. Test subject 101 was re-
moved from the data altogether, as there were no positive ("Pain")

examples of this test subject at all.

created another copy of all originals and flipped copies, respectively, that was ran-
domly rotated by either 10 degrees to the left or the right. After the rotation, each
image was cropped from 250 x 250 pixels to 215 x 215 pixels in order not to have any
whitespace or artificial filling around the images. To make the input shape consis-
tent across mutations, all images were cropped to 215 x 215 pixels. We underscore
the importance of applying these steps to both positive and negative examples, as
the network might otherwise learn that a specific image mutation always represents
a positive example. Figure 3.6 shows the effect of applying these data augmentation
steps to one exemplary image. This technique is effective because although the un-

FIGURE 3.6: Example of one image being augmented

derlying image is fed to the model 4 times, the model doesn’t recognize it as such,
as the pixel values are shifted to different positions within the 2D array representing
the image.

Downsampling

After upsampling all images, we had compiled a dataset that had four times as many
positive examples as the original data set, but also four times as many negative ex-
amples. Therefore, we generally resorted to downsampling the negative examples.
In downsampling, we sample from the majority class, without replacement, until
enough examples matching the number of the minority class are sampled.

The precise algorithm by which examples were upsampled or downsampled de-
pended on the experimental setting and is described further in detail in chapter 6.
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Chapter 4

Model Architectures

In this chapter, we describe the initial CNN architecture used to classify our dataset,
as well as some variants that led to our final architecture.

4.1 Baseline CNN

Ever since AlexNet [31] helped popularize deep CNNs through winning the Ima-
geNet Challenge [50], convolutional neural networks have become the default for
computer vision tasks. While the general trend has become to make CNNs deeper
and more complex to achieve higher accuracy [58][62][61][20], this often comes at
the expense of speed and hardware requirements.

These large models are often trained and used to make predictions on powerful
cloud-computing infrastructures with many GPUs and large amounts of memory.
In a federated learning setting, however, we cannot make any assumptions concern-
ing the hardware that will power our model. In a healthcare setting, in particular,
we can expect a very heterogeneous landscape of hardware infrastructures. Leading
healthcare facilities would be equipped with modern computers harboring power-
ful CPUs or even GPUs, while facilities in particular in rural areas might only have
access to significantly slower devices.

In part inspired by MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications [22] we decided to start experimenting with a lightweight archi-
tecture that could also be trained for a limited number of epochs on older and slower
computing devices. In Deep Structured Learning for Facial Expression Intensity Estima-
tion [65] the authors propose such a lean CNN structure as part of a more complex
algorithm for working with the Pain Expression Database, among other datasets. Fol-
lowing this architecture, we designed our initial architecture, as seen in table 4.1. For
the initial architecture, we employed a stride of (2, 2) in the convolutional layers and
no max-pooling. We chose this approach under the hypothesis that compared with
a stride of (1, 1) with subsequent max-pooling we can achieve a similar reduction in
the surface area while reducing the computational effort, at the expense of making
our feature extraction slightly coarser. The final convolutional layer is then followed
by a 2x2 max-pooling layer, reducing the number of learnable parameters in the fol-
lowing dense layer by a factor of 4. The model’s final dense layer is followed by a
sigmoid activation function, as commonly used for a binary classification task with
one output neuron, as discussed in chapter 2. This simple initial architecture was
mainly used for quick experiments and tweaking the federated algorithm, early-
stopping mechanisms, and evaluation procedures.
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Layer Type Output Shape Param #

Input (None, 215, 215, 1) 0
Conv2D (None, 106, 106, 32) 832
ReLU (None, 106, 106, 32) 0
Conv2D (None, 51, 51, 64) 51,264
ReLU (None, 51, 51, 64) 0
Conv2D (None, 24, 24, 128) 204,928
ReLU (None, 24, 24, 128) 0
MaxPooling2D (None, 12, 12, 128) 0
Flatten (None, 18432) 0
Dense (None, 128) 2,359,424
BatchNormalization (None, 128) 512
ReLU (None, 128) 0
Dense (None, 1) 129
Sigmoid (None, 1) 0
Total 2,617,089

Optimizer: Stochastic Gradient Descent
Loss Function: Binary Cross Entropy

TABLE 4.1: Initial model architecture. Convolutional layers use
VALID padding and a stride of 2x2. ’None’ is a placeholder parame-

ter for the batch size of the input batch.

4.2 Revised Architecture

After we were certain that all algorithms worked as expected, we also started mod-
ifying our initial architecture, to achieve the best model performance. We experi-
mented with the following variables:

Regularization We experimented with adding dropout, L1 and L2 regularization
as well as batch regularization to our model architecture, to prevent gradients from
exploding or vanishing. Of these methods, batch normalization was the most ef-
fective. As previously discussed, batch-normalization helps smoothen the training
landscape and tends to increase training speed / allow for larger learning rates.
Adding batch normalization in-between the kernel and the ReLU activation layer
for all convolutional layers yielded the best results.

Padding Changing convolutional layer padding from VALID to SAME was only a
minor change to prevent unwanted shrinkage of the input shape of layers. Using
"SAME" padding resulted in a minor performance improvement.

Stride vs. Max-Pooling We also experimented with swapping a stride of (2, 2) in
convolutional layers with a (2 x 2) max-pooling layer. Stride and 2D-max-pooling
are two very different operations, accomplishing the same goal: Decreasing the di-
mensions of the convolutional layer’s output. Increasing the stride downsamples
the "input features" of a convolutional layer, by letting the kernel "skip" calcula-
tions. Introducing a max-pooling to a convolutional layer downsamples the "output
features", by only taking the maximum value from a given surface area. Thus, em-
ploying max-pooling instead of stride increases the computational effort but also the
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amount of information carried forward into the next layer. In our specific use-case,
however, we found that using a stride of (2, 2) and no max-pooling yielded the best
results.

Additional parameters To increase the number of learnable parameters, we exper-
imented with removing the final max-pooling layer and changing stride to (1, 1) in
the convolutional layer. We also made the model deeper by adding additional dense
and convolutional layers. None of these changes, however, yielded any notable im-
provements, but increased training time, and were thus discarded.

FIGURE 4.1: Final model architecture

The final model architecture which we found to yield the best results is depicted
in table 4.2, and can be seen in figure 4.1. Each convolutional layer uses "SAME"
padding.

4.2.1 Optimizer and learning rate

The optimizer is the algorithm by which the model performs each step of gradient
descent. One example for an optimizer is Stochastic Gradient Descent (SGD), which
was explained in detail in chapter 2. We also experimented with other optimizers,
such as RMSProp [48] and Adam [27]. However, we found that the standard Google
Tensorflow implementation of these optimizers that we used to set our computa-
tional graphs is not suitable for a federated setting. More advanced optimizers such
as RMSProp and Adam store historical information about the weights they optimize,
and use this information to compute the magnitude of the step of gradient descent.
After each communication round, however, the new, averaged model parameters
are completely detached from this information, leading the optimizer to compute
inaccurate values. Since we wanted to focus on optimizing each learning algorithm
in isolation rather than also introducing a "federated optimizer" algorithm, we chose
SGD for our experiments.

This merely required us to set an adequate learning rate for our optimizer. The
learning rate is one of the most important hyper-parameters and needs to be set
carefully. A learning rate that is too large can prevent the model from converging
to an optimal solution, and a learning rate that is too small can make the training
process too slow, time-consuming, and expensive. We experimented with learning
rates ranging from 10e−2 to 10e−5 and finally decided on a learning rate of 10e−4.
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Layer Type Output Shape Param #

Input (None, 215, 215, 1) 0
Conv2D (None, 108, 108, 32) 832
BatchNormalization (None, 108, 108, 32) 128
ReLU (None, 108, 108, 32) 0
Conv2D (None, 54, 54, 64) 51,264
BatchNormalization (None, 54, 54, 64) 256
ReLU (None, 54, 54, 64) 0
Conv2D (None, 27, 27, 128) 204,928
BatchNormalization (None, 27, 27, 128) 512
ReLU (None, 27, 27, 128) 0
MaxPooling2D (None, 13, 13, 128) 0
Flatten (None, 21632) 0
Dense (None, 128) 2,769,024
BatchNormalization (None, 128) 512
ReLU (None, 128) 0
Dense (None, 1) 129
Sigmoid (None, 1) 0
Total 3,027,585

Optimizer: Stochastic Gradient Descent
Loss Function: Binary Cross Entropy

TABLE 4.2: Final model architecture. Convolutional layers use SAME
padding and a stride of 2x2. ’None’ is a placeholder parameter for the

batch size of the input batch.

4.3 A note on ResNet50, VGGNet, and other deep model ar-
chitectures

In trying to identify the best model architecture, we also experimented with common
deep learning architectures that have been found to yield good results in standard
computer vision tasks like the ResNet50 architecture presented in [19] or the VG-
GNet architecture presented in [57]. As commonly done when experimenting with
these architectures, we loaded these models including their parameters which were
pre-trained on the Imagenet [50] data set, discarded the last fully connected layers,
and replaced them with the final fully connected layers as in our CNN architecture
in table 4.2. We then froze all pre-trained layers and only trained the final fully con-
nected layers. This approach follows the transfer-learning methodology introduced
in chapter 2.

As a result, however, we saw training time increase substantially, and model
accuracy remain the same or even decrease vs. our simpler architecture in table
4.2. The decrease in performance is commonly referred to as a "negative-transfer" in
the literature and occurs when the original data distribution is not similar enough
to the new distribution [63]. Concluding that common image recognition model
architectures did not seem to be suitable for our specialized task of recognizing pain,
we decided to focus solely on training our simple CNN model architecture end-to-
end.
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Chapter 5

Federated Personalized Learning

In this chapter, we build on the "privacy-advantaged" nature of the federated learn-
ing algorithm and propose a modified federated learning algorithm we dub fed-
erated personalization, designed to protect further the privacy of all clients that
participate in jointly training a machine learning model.

5.1 Motivation

One motivation for federated learning, as explained in chapter 2, is increased pri-
vacy. Instead of transferring all data to a central server where a central model was
learned, in federated learning, we only push the model parameters to the central
server. Some research has shown, however, that even when only the abstract param-
eters of a model are shared with a central server, an adversary can use a generative
adversarial network (GAN), to iteratively learn new pieces of information about an-
other client’s training data set [21] [40]. The authors of both papers manage to re-
construct prototypical samples of training images by training a GAN on each round
of updates of parameters pushed to the central server. For [21], it must be said that
the authors assume that the entire training corpus for one class belongs to one client
only. They test their method on the MNIST dataset[8], a dataset of black and white
images of handwritten digits from 0-9, and they experiment with each client hold-
ing the data of one digit only. While we are not aware of a real-world setting where
this would be the case, the authors in [40] focus on the more realistic scenario where
the training corpus for a given class is distributed across multiple clients. In both
papers, however, the authors assume that all model parameters are shared with a
central server.

5.2 Intuition

To increase the level of difficulty for an adversary to learn anything meaningful
about other clients in a federated learning setting, we introduce a modified feder-
ated learning algorithm. Our algorithm discriminates which layers will be shared
with a central server, based on a layer’s position in the network.

In this novel approach, only the weights of the lower layers are sent to the central
server for averaging, while the weights of the upper layers stay local. Without access
to all layers in the network, an adversarial misses a critical building block to learn
something about an "honest" participating client, making the federated averaging
algorithm more secure.
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Intuitively, the cost paid in performance for adding this privacy-preserving mea-
sure should be minimal: We know from transfer-learning, that the lower convolu-
tional layers are responsible for extracting general features from the image data. Ap-
plying the federated optimization algorithm to these layers is imperative for train-
ing, to learn general features from as large a population as possible. However, we
also know from transfer-learning that the final upper layers are mostly responsible
for the final classification task. Thus, they do not necessarily need to learn from the
entire population, and could potentially even benefit from learning only a specific
client’s data distribution, as certain details might only generalize well for that client,
but not for the whole population. Putting these ideas into practice, we developed
the following federated personalization algorithm.

5.3 The Federated Personalization Algorithm

The Federated PPersonalization algorithm is depicted in figure 5.1 and applied as
follows:

(0) We initialize all local models to the same set of weights. (1) Each client then
trains a local model, on the local data available for a specified number of epochs. (2)
Once local training is complete, only the weights of the convolutional layers are sent
to the central server for averaging. The weights of the final full-connected layers stay
locally with the client, just like the data. (3) The convolutional weights are averaged
and then used to update each local client model. At this point, however, the con-
volutional layers are "detached" from the fully-connected layers. Immediately using
this updated model, which is a combination of globally averaged and locally tuned
weights would yield poor results. We must, therefore, engage in "local fine-tuning".
(4) Similarly to transfer-learning, we "freeze" the convolutional layers for each client.
(5) We decrease the optimizer’s learning rate for each client by some factor in order
to avoid overshooting, especially for the first couple of steps of gradient descent.
(6) We then train the local models for another specified number of epochs, slowly
"reattaching" the fully-connected layers to the convolutional layers. After the fine-
tuning is complete, we (7) re-increase the learning rate by the same factor as it was
decreased by, and (8) unfreeze the convolutional layers. This approach produces the
modified federated learning algorithm, seen in algorithm 2 for reference.

5.4 Local models

In the extreme case, the number of global layers in federated personalization is zero,
implying that no weights are shared with the central server. To show that there
is a benefit to sharing convolutional layers at all, as opposed to merely initializing
parameters locally and never sending any parameters back to the server, we also
define a benchmark algorithm. In this benchmark, a group of local models that
only share the weight initialization step, and are then separated from one another
is evaluated. In this setting, after the model parameters are initialized, each client
is shut off from the central server. Thus, after model-initialization, there is no more
additional communication between clients, and each client trains its local model in
isolation, exclusively on local data.
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FIGURE 5.1: The Federated Personalization Algorithm

Algorithm 2 FederatedPersonalization. The K clients are indexed by k; B is the
local minibatch size, E is the number of local epochs, F denotes the rounds that the
local model is fine-tuned, and η is the learning rate. wg denotes the global model
parameters, wl denotes the local model parameters.

procedure SERVER EXECUTES:
initialize wg0

initialize wl0
for each round t = 1, 2, ... do

m←max(C× K, 1)
St ← (random set of m clients)
for each client k ∈ St in parallel do

wk
gt+1
← CLIENTUPDATE(k, wgt , wlt )

wgt+1 ← ∑K
k=1

nk
n wk

gt+1

for each client k ∈ St in parallel do
CLIENTFINETUNING(k, wgt , wlt )

procedure CLIENTUPDATE(k, wg, wl) . Run on client k
B ← (split Pk into batches of size B)
for each local epoch i from 1 to E do
{wg ∪ wl} ← {wg ∪ wl} − η∇`({wg ∪ wl}; b) . Update all layers

return wg to server

procedure CLIENTFINETUNING(k, wg, wl) . Run on client k
B ← (split Pk into batches of size B)
for each local epoch i from 1 to F do

wl ← wl − η∇`(wl ; b) . Update local layers only
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Chapter 6

Experiments

6.1 Pre-training

6.1.1 Domain adaptation: Cold Start vs. Warm Start

We were first interested in learning how initializing model parameters differently
would affect the learning process of our models. We experimented with two differ-
ent settings, hereafter referred to as "cold start" and "warm start". For this purpose,
we split our data set into two groups, Group 1 and Group 2. For easy reference, see
a copy of table 3.1 introduced in chapter 3 again below:

Group 1
Person No Pain Pain % Pain

42 1,895 239 11%
47 1,544 64 3%
49 2,194 524 19%
66 1,947 512 20%
95 304 498 62%
97 3,212 147 4%

103 2,738 824 23%
106 2,281 517 18%
108 2,453 455 15%
121 478 40 7%
123 822 361 30%
124 699 996 58%

Group 2
Person No Pain Pain % Pain

43 1,028 92 8%
48 798 84 9%
52 2,503 106 4%
59 640 133 17%
64 1,394 155 10%
80 896 1,068 54%
92 1,031 471 31%
96 2,175 178 7%

107 1,599 442 21%
109 1,724 179 9%
115 1,184 99 7%
120 1,490 76 4%

TABLE 6.1: Positive and negative examples by test subject and train-
ing group before any up- or downsampling. Test subject 101 was re-
moved from the data altogether, as there were no positive ("Pain")

examples of this test subject at all.

Cold Start

A cold start refers to training a model with randomly initialized parameters. Initial
predictions of the model on unseen data are expected to be weak, and only gradually
do they improve over time. In the "cold start" setting, after random initialization
of the model parameters, we always started training and evaluating on Group 2
immediately, ignoring Group 1. In this setting, the model never saw any data from
Group 1.
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Warm Start

For a "warm start", on the other hand, we employed the idea of domain adaptation
introduced in chapter 2. We would first randomly initialize a model, and then train
that model for a specified number of epochs on all test subjects in Group 1. In this
step, Group 1’s positive examples (augmented and original) were included in the
training set in their entirety. The much larger set of negative examples was down-
sampled by sampling as many negative examples as there were positive examples
at random without replacement into a subset, yielding a balanced training set. 20%
of the balanced data set was separated as validation data, while the remaining 80%
were used for training.

In a second step, we initialized a new model that would train on and evalu-
ate Group 2, with the learned parameters of the model that was already trained on
Group 1, rather than randomly, giving it a "warm start". Using the terminology in-
troduced in chapter 2, while the target domain (i.e., predicting pain labels) remained
the same using this approach, the input domain shifted from one group of 12 test
subjects to another related group of 12 test subjects.

In comparing a cold-start with a warm start, we aimed at validating our hypoth-
esis that also for the pain dataset, domain adaptation would produce more accu-
rate predictions more quickly, and especially in early stages of the training process
outperform the same model architecture with randomly initialized parameters, as
illustrated in figure 6.1.

FIGURE 6.1: An exemplary chart showing two hypothetical learning
curves, for learning a model with a warm start and a cold start, i.e.

with and without transfer learning

6.1.2 Centralized vs. Federated Pre-Training

We also experimented with two different types of pre-training. In a centralized set-
ting, the entire set of Group 1 data was shuffled and passed to one model. Put into
a production-level context, this would imply a central entity - e.g., a company pro-
viding machine learning services to healthcare providers - receiving access from its
customers to some available training data. The data would be centrally stored and
trained on, before it would be discarded, with the company shipping the pre-trained
model to its customers. In this setting, we trained the centralized model for a maxi-
mum of 30 epochs, and applied early stopping with a patience of 5. We also chose
to restore the best model weights after early stopping, rather than continuing with
the weights updated by the last epoch before stopping. As mentioned above, when
training on Group 1 we chose to always validate model loss on a random sample of
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20% of the available data.

In a federated setting, after splitting the Group 1 data into a training and a vali-
dation set, the training set was divided into 12 clients, one client for each test subject
in the training data set. Similarly to centralized pre-training, we trained for a max-
imum of 30 communication rounds, with early stopping and a patience of 5. For
federated pre-training, the validation loss would be computed on the validation set
every time a new global model was available, i.e., just after averaging the parameters
of all 12 clients to form one set of parameters.

The federated pre-training setting would be more akin to the same company only
providing the infrastructure to its customers for participating in a federated machine
learning setting, as well as deploying a randomly initialized model on-site for each
client, but never being entrusted with any data set.

6.2 Training

Knowing that our data set was distributed very unevenly, we created three different
experimental settings with different levels of difficulty. In all three settings Group 1
data served exclusively for model pre-training, and Group 2 data for model training
and evaluation.

6.2.1 Randomized Shards: Balanced Test Data

In the first iteration, we decided to train and test on a balanced data set. This set-up
was designed purely to assess that our model architecture introduced in chapter 4
and the learning algorithms discussed in chapters 2 and 5 were capable of learning
the training data, as well as to identify how much training data our models required
in order to achieve strong performance levels.

We first balanced the entire Group 2 data set to include 50% positive and 50%
negative examples, using the up- and downsampling techniques discussed chapter
3. We then randomly split the data set into 60% train and 40% test data, thereby
ignoring the temporal correlation of the images (i.e., the split into different therapy
sessions). The 60% train data was then further split into cumulative shards of 1%,
5%, 10%, 20%, 30%, 40%, 50%, and 60% of all data, where each shard contained all
images of the next smaller shard. Our models were trained for a maximum of 30
epochs on each shard and evaluated on the 40% of test data after each epoch.

6.2.2 Randomized Shards: Unbalanced Test Data

We also evaluated our learning algorithms on an unbalanced test-set. This setting
was identical to the preceding one, only that we first split the untouched Group 2
data set into 60% train and 40% test data. We then balanced the 60% training data,
yielding the data distribution seen in table 6.2.

No Pain Pain Total % of Pain in Group

Train 7464 7464 14928 50%
Test 6601 1217 7818 16%

TABLE 6.2: Balanced training data for experimental setting Random-
ized Shards
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This setting allowed us to get a better sense of the performance metrics that our
models were able to achieve. Still, as image frames from all therapy sessions and
all clients could be found in both the training and the test set, we considered the
experimental setting as "artificial", because it made three assumptions that do not
hold in a production setting:

1. The model had access to random samples of all training data in advance

2. The model only made predictions for known test subjects

3. All test subjects were present in each training and evaluation round

Conversely, we expect:

1. Training data to only become available sequentially

2. Unknown test subjects to be added to the data set from time to time

3. Test subjects to only participate in some therapy sessions / generate data in
irregular intervals

6.2.3 Sessions

Consequently, we designed a third experimental setting that resembles how we
would expect our models to be used in practice. In this setting, we did not assume
that all data is available upfront, but rather that it is generated sequentially, for ex-
ample, either in a continuous stream of video data taken from a patient’s room or in
regular therapy sessions.

The UNBC-McMaster shoulder pain expression archive database was recorded in ses-
sions, with each test subject attending different sessions. Therefore, we assumed
that each session only becomes available, once the model has been trained on the
previous session. An example for the first two sessions can be seen in figure 6.2.

FIGURE 6.2: An example of training a model on session data. Sessions
are zero-indexed. In (1) the model is tested on session 1. In (2) it is
trained on session 0, using session 1 as a validation set to apply early
stopping. In (3) session 1, the model is tested on session 2. In (4),
session 1 has become part of the training data. The model is trained

on session 0 and 1, and validated on session 2.

Table 6.3 shows that adding this temporal dimension to the experimental setting
further adds to the data imbalance. While in a given session some test subjects might
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have more positive examples than negative examples, others might have no positive
examples at all.

Positive Examples per Session Total
Person 0 1 2 3 4 5 6 7 8 9 # of Sessions Pain No Pain Pain %

43 140 228 9 368 4,112 8%
48 148 188 7 336 3,192 10%
52 72 44 120 188 10 424 10,012 4%
59 532 2 532 2,560 17%
64 244 64 64 248 6 620 5,576 10%
80 1,052 536 484 484 660 792 264 7 4,272 3,584 54%
92 464 696 724 5 1,884 4,124 31%
96 112 512 88 9 712 8,700 8%

107 32 848 60 828 8 1,768 6,396 22%
109 600 116 8 716 6,896 9%
115 60 220 56 60 5 396 4,736 8%
120 116 188 8 304 5,960 5%

TABLE 6.3: Number of positive examples by session and test sub-
ject. Each test subject participated in as many consecutive sessions
as specified in the column # of Sessions, starting with session 0. No
number indicates no positive examples for that session (but negative

examples, if the session index is smaller than # of Sessions).

Consequently, we developed algorithm 3 to ensure that in each session the train-
ing data set for each test subject would be balanced. In essence, for each test subject,
for each session, the algorithm would check if there were positive examples for this
test subject for this or previous sessions. If this were the case, the algorithm would
sample at random 200 positive and 200 negative examples, with replacement, for
this test subject, from all sessions that were available at this point. This approach
would yield a training data set of 400 images per test subject per session, provided
that there had been positive examples for this test subject in a previous session.

As seen in table 6.3, a threshold value of 200 strikes a good balance for most test
subjects between further upsampling and thereby duplicating positive examples in
some sessions, and downsampling and thereby excluding some positive examples
from training in a given session.

6.3 Evaluation

To evaluate the effectiveness of our learning algorithms, we considered three sets
of metrics: Aggregate average model performance, individual test subject perfor-
mance, and performance per session/randomized shard of data.

Aggregate Average Model Performance The first set of metrics, aggregate aver-
age model performance, allowed us to compare different sets of hyper-parameters
for all model architectures, as well as all learning algorithms with one another. How-
ever, while in a standard federated setting, the global model parameters are all av-
eraged, resulting in identical models for all clients after each communication round,
this is not the case for the federated personalization algorithm and the local mod-
els benchmark. Both of these algorithms produce a different model for each client,
which added a layer of complexity to fairly evaluating all learning algorithms rela-
tively to each other.
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Algorithm 3 SessionBalancing. S denotes the current session and is an integer. P
denotes a set of all positive examples. N denotes a set of all negative examples. T
denotes the threshold value, set to 200 in our experiments.

procedure SESSIONBALANCING(S, P, N, T)
A = set()
for each Test Subject C = {43, 48, ..., 120} do

PC = set() . Create two empty sets, for positive and negative examples
NC = set()
while s <= S do

PC.append(PC,s)
NC.append(NC,s)

if len(PC) > 0 then
Psampled,C = set()
Nsampled,C = set()
while len(Psampled,C) < T do

Psampled,C.append(sample(PC, replacement=False)

while len(Nsampled,C) < T do
Nsampled,C.append(sample(PC, replacement=False)

A.append(Psampled,C)
A.append(Nsampled,C)

return shuffle(A)

We, therefore, decided to evaluate each client based on their respective local
model and computed a weighted average of the results of all clients after each com-
munication round. In some sessions, however, there were no positive examples for
certain test subjects, as seen in table 6.3. If we computed a simple weighted aver-
age across all test subjects in these sessions, the average of metrics such as precision,
recall, and F1-Score would be unfairly heavily biased towards 0. Consequently, we
constructed a mask based on table 6.3 and applied this mask on our results to only
included a client in the weighted average calculation for a given session, if there
were some positive examples for that client in that session. Applying this mask
made aggregate performance evaluation metrics comparable across clients, sessions,
hyper-parameters, and learning algorithms.

Individual Client Metrics and Session/Shard Metrics We also evaluated all learn-
ing algorithms on an individual level. We computed training, validation, and test
set metrics for (1) performance for individual test subjects, and (2) performance over
time, i.e., for each session and randomized shard.
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Chapter 7

Results & Evaluation

In this chapter, we discuss the results obtained from the "sessions" experimental
setting introduced in chapter 6.

7.1 Metrics

For evaluation, we focus on three metrics: Accuracy (ACC), Precision-Recall Area
Under the Curve (PR-AUC), and the F1-Score (F1).

ACC Accuracy describes how many examples the model correctly classifies, across
all examples. It is calculated as the number of correctly classified examples, divided
by all examples.

PR-AUC The Area Under the Curve for the Precision-Recall curve is a performance
metric typically used for imbalanced classes such as the pain data set. AUC summa-
rizes the integral - or an approximation - of the area under the precision-recall curve.
Precision refers to the ratio of true positive examples to all examples classified as
positive and is calculated as TP

TP+FP . Recall refers to the ratio of correctly predicted
true positive examples to all positive examples and is calculated as TP

TP+FN . The base-
line for a random classifier for the PR-AUC is the total number of positive examples
in the test set, divided by all examples, i.e., 16% in our case.

F1 The F1-Score is another measure that indicates how well the model classifies
positive examples. It is calculated as 2×precision×recall

precision+recall While PR-AUC represents the
average performance given all possible probability thresholds between 0 and 1, the
F1-Score is computed for a specific threshold, 0.5 in our case. I.e., the F1-Score’s
shown below assume that the model classifies an example as positive if the com-
puted output probability is greater than 0.5.

7.2 Aggregate Results

7.2.1 Test-Set Results

Table 7.1 shows the weighted average performance of all learning algorithms pre-
sented in chapter 6, for the "Sessions" experimental setting, which most closely re-
sembles a "real-world" setting that our learning algorithms would be confronted
with. The values shown in table 7.1 were computed according to the methodology
outlined in section 6.3, and represent and the average of 10 different random seeds,
in the range of 123-132. For an acronym disambiguation please see table 7.2.
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Weighted AVG + STD
Experiment ACC PR-AUC F1

RANDOM 44 ± 15 31 ± 16 32 ± 2
BC-CNN 73 ± 12 54 ± 23 47 ± 24
BF-CNN 74 ± 12 53 ± 23 43 ± 21
C-CNN (N) 69 ± 17 49 ± 23 39 ± 25
C-CNN (C) 75 ± 13 58 ± 21 50 ± 22
F-CNN (N) 66 ± 16 49 ± 23 43 ± 27
F-CNN (C) 75 ± 11 59 ± 23 52 ± 25
F-CNN (F) 76 ± 12 59 ± 23 49 ± 25
FP-CNN (N) 69 ± 18 43 ± 19 34 ± 25
FP-CNN (C) 76 ± 12 56 ± 21 50 ± 24
FP-CNN (F) 76 ± 13 55 ± 22 44 ± 24
FL-CNN (N) 69 ± 18 43 ± 18 34 ± 26
FL-CNN (C) 75 ± 13 55 ± 21 47 ± 23
FL-CNN (F) 75 ± 14 54 ± 21 42 ± 23

TABLE 7.1: Comparison of aggregated results for all learning algo-
rithms in (%). Standard deviation is computed between test subjects.

Best results per metric are boldfaced.

As we can see in table 7.1 we achieve a model accuracy of 66% on the low end
for a randomly initialized model trained with the federated learning algorithm F-
CNN (N) with a standard deviation between test subjects of 16%. On the high end
we achieve a model accuracy of 76% for the same algorithm but initialized with
pre-trained parameters (F-CNN (F)) as well as both pre-trained federated personal-
ization algorithms FP-CNN (C) and FP-CNN (F) with standard deviations of 12%,
12%, and 13%, respectively.

We also observe that all models outperform the randomly initialized, untrained
classifier RANDOM by a wide margin, indicating that we are successfully learning
to classify "pain" in individuals.

Furthermore, the table shows that models that have not been initialized to either
the federated or the centralized baseline model perform significantly worse than
those that have. This difference becomes even more apparent when looking at the
PR-AUC and the F1-Score. Both measures show a clear difference between learning
algorithms labeled (N) and those that are labeled (C) - centralized pre-training - or
(F) - federated pre-training.

This confirms our hypothesis that domain-adaptation can help to build stronger
models faster.

For all the following analyses, we will focus on the models that have been initial-
ized with a centrally pre-trained model (C), which relates to the most likely business
case as well. An aggregate summary and a condensed version of table 7.1 is shown
for reference in table 7.3.

7.2.2 Training & Validation Set Results

Figure 7.1 and figure 7.2 show an example of the development over time of train-
ing/validation accuracy and loss, respectively. All graphs are averaged across seeds,
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Acronym Disambiguation Explanation

RANDOM Random Random model weights, not trained
B Baseline A model trained on group 1, but not on

group 2
C Centralized Vanilla centralized learning algorithm
F Federated Federated learning algorithm
FP Federated Personalized Federated personalized learning algo-

rithm
FL Federated Local Local models trained independently of

each other (performace averaged)
(N) No Pre-training Random parameter initialization
(C) Centralized Pre-Training Parameter initialization from a model

trained with the centralized algorithm on
group 1

(F) Federated Pre-Training Parameter initialization from a model
trained with the federated algorithm on
group 1

TABLE 7.2: Acronym Disambiguation

Weighted AVG + STD
Experiment ACC PR-AUC F1

RANDOM 44 ± 15 31 ± 16 32 ± 2
BC-CNN 73 ± 12 54 ± 23 47 ± 24
C-CNN (C) 75 ± 13 58 ± 21 50 ± 22
F-CNN (C) 75 ± 11 59 ± 23 52 ± 25
FP-CNN (C) 76 ± 12 56 ± 21 50 ± 24
FL-CNN (C) 75 ± 13 55 ± 21 47 ± 23

TABLE 7.3: Comparison of aggregated results for all learning algo-
rithms with centralized pre-training in (%). Standard deviation is
computed between test subjects. Best results per metric are boldfaced.

with the shaded area representing one standard deviation. Each graph is partitioned
into the ten sessions that we used to train and evaluate our models. Sessions differ in
width because depending on the session, the early-stopping mechanism took effect
after a different number of epochs. Standard deviation is only calculated for epochs
where no seed had applied early stopping yet. We make a few observations here:

Training Accuracy and Loss

While generally trending upwards, at the beginning of each session, training accu-
racy dips (and loss spikes) - for some models more strongly than for others. These
dips and spikes occur because the model receives new unseen data at the beginning
of each session. The new data effectively works as a regularizer for the model and
forces it to readjust its parameters.

Each model’s training learning curve also follows a slightly different trajectory.
The centralized model C-CNN (C) is training directly on all test subjects available,
and in each session gets close to 100% training accuracy when early stopping takes
effect and prevents the model from overfitting too strongly. The federated learning
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FIGURE 7.1: Mean Training/Validation Accuracy for Seeds 123-132,
with 1 Standard Deviation

model F-CNN (C)’s training accuracy improves gradually, but on a lower level than
the C-CNN (C). In their original paper [39] the authors conjecture that federated
averaging can have a similar regularization effect to dropout, which seems to be
the case here. As all 12 clients’ local model’s parameters are averaged after each
communication round, the average parameters are not specifically fit on any test
subject’s data. Averaging seems to help to learn the underlying task better, however,
explaining the best performance out of all models as seen in table 7.1.

The training accuracy curves for FP-CNN (C) and FL-CNN(C) remain very close
to 100% for each session throughout the entire training process. Since for both meth-
ods the final fully-connected layers are not shared and averaged (and thereby not
regularized as well), and are only learned on one test subject, this may hint at a case
of overfitting the fully-connected layers on that test subject. A better regularization
method might add value in this case.

Validation Accuracy and Loss

For all models validation loss spikes substantially in session 5. In session 5, the share
of pain level "1" - the lowest pain level on the 16 point scale introduced in chapter 3,
of all examples labeled with a pain level greater than 0 is very high, as can be seen
in figure 7.3. Pain level "1" is very hard to separate from pain level "0" as a look at
the bottom row in figure 3.2 showed.

Validation loss also drops close to 0 in session 7. Looking at table 6.3, we find
that there are no positive examples in session 7. The drop thus indicates that the
model is very good at identifying true negative examples.

We also observe that for federated approaches, the validation accuracy is less
volatile compared to the centralized approach. Less volatility is another indicator
that the federated learning algorithm likely works as a regularization mechanism
and leads to less "overshooting" local minima compared vanilla SGD.
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FIGURE 7.2: Mean Training/Validation Loss for Seeds 123-132, with
1 Standard Deviation

7.3 Individual Test Subject Results

Table 7.4 shows average performance across sessions, per test-subject. As outlined
in section 6.3, for each test subject, a session was only included in the average, if
there were positive examples for that subject in that session, as otherwise the PR-
AUC and the F1-Score would be heavily biased towards 0, and not reflective of the
true performance of the model.

7.3.1 Models

BC-CNN Table 7.4 shows that across test subjects the baseline is mostly outper-
formed, which again indicates that there is a benefit to applying domain adaptation
and that an already learned classifier can still benefit from training on data that is
more specific to the task. However, this does not hold for subject 120, as well as
for most models and metrics for subject 52, where accuracy drops below the base-
line initializer BC-CNN for most models. Dropping below the baseline that weights
were initialized on is referred to as a negative transfer and is one of the limitations
of the current implementation of our learning algorithms addressed in section 8.2.2.

C-CNN(C) vs. F-CNN(C) When comparing centralized learning with federated
learning across test subjects, we can see that for some test subjects, the federated
learning algorithm has an exceedingly positive impact, beating centralized learning
by a wide margin. For others, however, federated learning performs much worse,
so that on average, these effects even out. These differences are the largest for the
F1-Score. If we consider a difference of ≥ 5% as significant, federated learning out-
performs centralized learning significantly for test subjects 52, 80, 92, and 109, and
performs worse for test subjects 43, 64, and 115. This difference in performance
could be related to the number of positive and negative examples per client that are
fed to the models. While test subjects 80, 92 and 109 hold 3 of the four largest sets of
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FIGURE 7.3: Share of pain level "1" of all positive examples, per ses-
sion

positive examples to sample from for training, the number of positive examples for
clients 43, 64, and 115 are all in the bottom half of our overall training population.
We speculate that while a centralized model might retain some specific information
about a test subject even if limited data is available, in a federated setting, clients
with a less narrow data distribution generate more significant updates. These up-
dates would nudge the federated averaging algorithm in their direction. While this
can lead to better overall generalization (as seen by the overall model performance of
F-CNN (C)), it may come at the expense of performing worse for some individuals.

F-CNN (C) vs. FP-CNN (C) When adding the additional privacy measure of only
sending the convolutional layers to the central server, PR-AUC, and F1-Scores slightly
worsen or stay the same for most test subjects, while accuracy improves. Due to the
high class-imbalance of significantly less positive than negative examples, this hints
at the fact that the model defaults more often to "negative" in its prediction. This can
be an indicator of a decrease in knowledge about how a positive example looks like
and a slower learning process overall as less information is shared between models.

FL-CNN (C) This observation is reinforced when looking at local model learning.
Both PR-AUC and F1-Score are the worst out of all federated learning algorithms for
almost all test subjects while overall accuracy improves for half of the test subjects.
This indicates that there seems to be is a clear benefit to jointly learning a model in
a federated setting, versus only deploying a pre-trained model, and only continuing
to train on a local data set.

7.3.2 Selected Test subjects

48 While accuracy is above average for test subject 48, it performs significantly
worse on PR-AUC and F1-Score than other test subjects, indicating that the model
has difficulties identifying the test subject’s positive examples. A look at figure 7.4
reveals why: All of test subject 48’s examples of pain are labeled "1", the lowest
pain value on the pain scale, which is very difficult from "0", i.e., "no-pain". The
RANDOM classifier actually outperforms all learned classifiers for this test subject
on F1-Score.
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ACC (%) 43 48 52 59 64 80 92 96 107 109 115 120 wt. Mean ± SD

RANDOM 44 44 38 46 37 49 53 41 49 41 38 45 44 ± 15
BC-CNN 70 78 92 48 90 57 68 79 64 76 70 72 73 ± 12
C-CNN (C) 79 78 81 48 91 62 72 84 68 77 88 67 75 ± 13
F-CNN (C) 71 78 91 48 92 61 72 84 69 71 74 66 75 ± 11
FP-CNN (C) 82 78 87 48 91 62 78 84 67 77 90 73 76 ± 12
FL-CNN (C) 83 78 86 48 92 61 66 84 68 77 90 71 75 ± 13

PR-AUC (%) 43 48 52 59 64 80 92 96 107 109 115 120 wt. Mean ± SD

RANDOM 36 21 8 36 12 49 64 24 46 29 12 36 31 ± 16
BC-CNN 70 27 39 62 39 65 80 47 67 42 55 70 54 ± 23
C-CNN (C) 74 26 39 62 46 70 85 52 74 48 55 65 58 ± 21
F-CNN (C) 75 28 46 62 46 70 85 54 79 44 52 65 59 ± 23
FP-CNN (C) 79 27 40 62 42 64 87 49 78 45 53 65 56 ± 21
FL-CNN (C) 78 26 39 62 41 63 83 48 77 46 49 62 55 ± 21

F1 (%) 43 48 52 59 64 80 92 96 107 109 115 120 wt. Mean ± SD

RANDOM 35 24 10 37 14 44 51 25 42 31 15 36 32 ± 2
BC-CNN 24 5 32 56 25 60 79 8 59 30 35 65 47 ± 24
C-CNN (C) 64 7 30 56 39 53 67 45 62 32 46 61 50 ± 22
F-CNN (C) 27 7 44 56 25 58 81 46 63 42 35 62 52 ± 25
FP-CNN (C) 72 7 36 56 37 52 76 35 68 29 47 48 50 ± 24
FL-CNN (C) 75 7 35 56 34 49 53 37 68 33 42 46 47 ± 23

TABLE 7.4: Accuracy, Precision-Recall AUC, and F1-Score in (%) by
test subject. Best model for each test subject is highlighted in bold.

59 Test subject 59 achieves an identical accuracy, PR-AUC, and F1 score across all
models. This can be attributed to the fact that it only appears in session 1. When
testing on session 1, all models’ parameters are identical, since they were just ini-
tialized with the centrally pre-trained model parameters, thus yielding identical test
scores for all models for this session.

92 Test subject 92 yields the best PR-AUC and F1 scores for our model. Again,
looking at figure 7.4 shows why this is likely the case. All of test subject 92’s positive
examples are higher than "1" on the pain scale. This allows the models to differenti-
ate more easily between positive and negative examples for this test subject.
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FIGURE 7.4: Share of pain level "1" of all positive examples, per test
subject
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ACC 1 2 3 4 5 6 7 8 9 wt. Mean ± SD

RANDOM 47 43 44 45 44 44 NA 37 39 44 ± 20
BC-CNN 68 63 77 72 68 69 NA 89 96 73 ± 16
C-CNN (C) 68 74 82 78 64 79 NA 81 81 75 ± 17
F-CNN (C) 68 73 78 74 61 80 NA 88 96 75 ± 15
FP-CNN (C) 68 76 83 78 65 80 NA 85 89 76 ± 16
FL-CNN (C) 68 74 84 75 64 79 NA 84 88 75 ± 17

PR-AUC 1 2 3 4 5 6 7 8 9 wt. Mean ± SD

RANDOM 41 34 26 36 35 28 NA 7 10 31 ± 22
BC-CNN 53 56 51 73 39 48 NA 10 80 54 ± 20
C-CNN (C) 53 68 56 78 38 48 NA 14 79 58 ± 19
F-CNN (C) 53 65 60 79 39 56 NA 12 91 59 ± 19
FP-CNN (C) 53 62 63 76 37 42 NA 13 78 56 ± 19
FL-CNN (C) 53 60 61 74 37 40 NA 13 77 55 ± 19

F1 1 2 3 4 5 6 7 8 9 wt. Mean ± SD

RANDOM 40 34 28 36 35 29 NA 9 13 32 ± 6
BC-CNN 49 50 49 66 12 36 NA 3 75 47 ± 28
C-CNN (C) 49 56 50 66 5 29 NA 28 50 50 ± 23
F-CNN (C) 49 54 51 68 24 41 NA 15 80 52 ± 26
FP-CNN (C) 49 55 56 69 5 25 NA 26 60 50 ± 24
FL-CNN (C) 49 48 54 62 8 26 NA 26 58 47 ± 24

TABLE 7.5: Accuracy, Precision-Recall AUC, and F1-Score in (%) by
session. Best model for each session is highlighted in bold.

7.3.3 Ranking by person

Table 7.6 displays another view at the data and shows again that the federated per-
sonalization algorithm can achieve comparable results to the federated learning al-
gorithm while adding additional privacy measures. In this table, each number is the
cumulative count of models that the given model outperformed for all test subjects.
This table is computed by assigning a rank from 0 (worst) to 5 (best) to a model for
a given test subject (e.g., 43), based on a performance metric, (e.g., accuracy). This is
done for all test subjects, and the rank is then summed across test subjects.

7.4 Session Results

Table 7.5 slices the data by session rather than by test subject. As sessions reflect
the temporal dimension of our data, it would be desirable that model performance
improves by session over time for each learning algorithm.

7.4.1 Session Trends

Session 1 As detailed in section 7.3.2, all models are initialized to the baseline
model weights prior to testing on session one. Consequently, all learning algorithms
perform equally well on session 1 data.
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Weighted AVG + STD
Experiment ACC PR-AUC F1

RANDOM 0 0 7
BC-CNN 21 20 21
C-CNN (C) 27 33 30
F-CNN (C) 26 37 36
FP-CNN (C) 34 34 30
FL-CNN (C) 30 23 28

TABLE 7.6: Comparison of model ranking by test subject. Best results
per metric are boldfaced.

Session 2 From session 1 to session 2, the performance for all learning algorithms
improves, across metrics. Once again, this indicates that domain adaptation can be
very beneficial to training a machine learning classifier. Since the baseline BC-CNN
performs equally well for sessions 1 and 2 we can also conclude that this uptick in
model performance for all other models is not merely due to session 2 containing
data that is easier to classify, reinforcing the previous statement. Anticipating a lit-
tle, in session four we see a significant performance uptick across models in terms
of PR-AUC and F1-Score, for example, but also baseline performance increases sub-
stantially, hinting instead at a more easily classifiable data distribution rather than a
substantial improvement in model performance.

Session 3 Session 3 only contains 9% positive examples, explaining the general in-
crease in accuracy, as negative examples are generally easier for the model to iden-
tify. Looking at individual model performance and PR-AUC/F1, we notice that FP-
CNN (C) and FL-CNN (C) see slight improvements in correctly identifying positive
examples, while performance for C-CNN (C) and F-CNN (C) worsens. A critical dif-
ference between the two groups is that the former does not share the fully-connected
layers with other models, while the latter does. We speculate that the data added to
the training set in session two, which contains a large amount of pain level "1" data
as seen in figure 7.3, does not help the models generalize very well. Instead, it is
"test subject-specific" leading to the diverging performance for both model groups.

Session 4 As eluded to in paragraph 2, the uptick in performance across all mod-
els in session 4 for PR-AUC and F1 is likely due to an easier test set since baseline
performance also increases significantly. The low amount of level "1" pain examples
(28%) and the high absolute number of positive examples (2,860, the highest out of
all sessions) smoothing out "random error" point in that direction.

Session 5 Session 5 sees by far the sharpest drop in performance for PR-AUC and
F1 scores. As discussed above, 90% of positive examples in session 5 are level "1"
pain, which is exceedingly difficult to classify reliably. When comparing to the base-
line, we see that also continued training only leads to modest performance improve-
ments for this class.

Session 6 In session 6, we can observe the limitations of the current implementa-
tion of FP-CNN (C), as well as of the local model approach FL-CNN(C). For both
algorithms, performance drops substantially below the baseline. Session 6 contains
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test subjects 52, 80, and 96. All models have seen only seen 72 positive examples
of test subject 52 until this point. It is, therefore misclassified by all models. How-
ever, session 6 only contains 44 additional examples for test subject 52, limiting its
impact on the session average. Test subject 96 is classified comparatively well by all
algorithms as its pain levels are mostly higher than "1" (see table 7.4).

Test subject 80’s 264 positive examples, however, are misclassified entirely by
FP-CNN (C) and FL-CNN (C). F-CNN (C) does significantly better here, correctly
classifying 52 examples on average across seeds. While for other test subjects the
reduction in shared information between clients only has a limited impact, client
80, holding the test subject that is most difficult to classify due to a large number
of pain-level "1" examples, evidently benefits from receiving additional information
from other clients for the last fully-connected layers.

Sessions 7-9 Sessions 7 to 9 hold very few positive examples compared to all other
sessions (zero in session 7) and only barely contribute to the overall weighted mean
and standard deviation. Moreover, the number of test subjects that participated in
sessions 8 and 9 is 3 and 1, respectively, which limits the interpretability of average
results for these sessions.

7.4.2 Ranking by session

"Ranking by session" works equivalently to "ranking by person", only that models
are compared across sessions. While federated personalization still outperforms all
other models on accuracy across sessions, it comes in a clear third after federated
learning and centralized learning on PR-AUC and F1-Score.

Weighted AVG + STD
Experiment ACC PR-AUC F1

RANDOM 0 0 7
BC-CNN 18 15 15
C-CNN (C) 17 24 17
F-CNN (C) 19 27 24
FP-CNN (C) 25 20 20
FL-CNN (C) 20 15 14

TABLE 7.7: Comparison of model ranking by session. Best results per
metric are boldfaced.

7.5 Additional Findings

7.5.1 Improving individual update quality

With federated learning we are introducing one more hyper-parameter: Instead of
only choosing a global number of communication rounds or epochs to run through,
we can also tweak the local number of epochs that each client iterates over. We
found early on that tweaking this parameter can have a positive impact on training.
Increasing the number of local training steps is a purely heuristic method. There
are no formal guarantees that increasing this number will ultimately yield better
results, but in [39] McMahan et al. show in some simulations that it can improve
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convergence. On average we found that increasing the number of local epochs from
1 to 5 adds 2̃% to model accuracy.

In a production setting, adding local epochs would also not come at a high cost,
since each client only possesses little data compared to the overall data volumes that
are fed to the model.

7.5.2 Adding early stopping

Adding early stopping also dramatically improved convergence. We initially started
training our models for a fixed number of 30 epochs on each session, without using
a validation set. In doing so, the model tended to overfit on the given session data
and would often perform poorly on the next session, and sometimes drop signifi-
cantly below the baseline. Once we implemented early stopping with a patience of
5 epochs (i.e., training would stop if there were no improvements in validation loss
after 5 epochs), and the feature of restoring the best model weights for this round of
training, convergence improved significantly.

While for centralized training, we were able to leverage the Tensorflow Keras
API, we designed a custom early stopping mechanism for federated learning. This
custom mechanism would compute a weighted average loss for all clients, and stop
training and restore each client’s best model for the given training round, if the
weighted loss across all clients stopped improving.

7.5.3 Flipping Group 1 and Group 2

Throughout this work, we always used test subjects in group 1 for pre-training and
test subjects in group 2 for continued training, validation, and testing. In order to
cross-validate that our findings were not dependent on this specific data distribu-
tion, we also flipped the groups and evaluated our learning algorithms on these
new data distributions. First experiments indicated that the relative performance
between models is not affected by changing the underlying data distribution.
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Chapter 8

Conclusions and Future Work

8.1 Conclusion

In this work, we show that we can learn a light-weight convolutional neural net-
work to recognize pain in facial expressions in individuals. Irrespective of the learn-
ing algorithm our trained network substantially outperforms a random classifier
on average. We also show that domain adaptation can be immensely helpful in
accelerating convergence and improving test results compared to building a classi-
fier from the ground up. Furthermore, we show that federated learning, conceived
by Google in 2016, can be as effective as vanilla centralized learning in learning a
well-performing classifier. Federated learning also tends to produce a more stable
learning curve, likely since model averaging has a similar effect as common regu-
larization techniques such as dropout. Our findings on whether standard federated
learning can yield substantially better results compared to centralized learning for
a majority of clients are inconclusive. However, based on our results, we conjecture
that in a federated setting, clients with better data nudge the average model more
strongly in their favour.

Moreover, we present an evolution of the federated averaging algorithm, which
we dub federated personalization. Our algorithm adds one more layer of privacy
preservation to the federated learning algorithm, by only allowing a fixed subset
of model parameters to be shared with a central server. We propose that in a neural
network, these parameters should be part of the lower levels of the network, which
typically extract the input data’s general features. The upper levels are kept on local
devices exclusively, to prevent the curious client from learning anything meaningful
about other honest clients that participate in learning a federated model.

We show that even in limiting the number of shared model parameters in such
a deterministic manner, we can still learn a strong model that is only modestly out-
performed by the original federated learning algorithm.

Finally, we show that federated learning yields better results than a group of
jointly initialized models that are subsequently shut off from one another to only
learn on their respective local data sets.

8.2 Future Work

8.2.1 Painful data and model architectures

The painful data set is a difficult data set to learn. Especially the difference between
lower levels of pain and images where test subjects do not experience any pain is
very nuanced. Moreover, the data set is very imbalanced. To improve the baseline
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for all our proposed learning algorithms, we suggest future research to continue ex-
perimenting with different neural network architectures, as well as other types of
classifiers. For this work, we focused on a lightweight CNN, but due to the tempo-
ral correlation of the video data, an LSTM architecture could help improve perfor-
mance. Due to the binary nature of our classification task, also a simpler classifier
like a support vector machine might be worth investigating. To address the strong
imbalance of the dataset, implementing a different loss function such as hinge loss,
or weighted binary crossentropy might yield performance improvements. Finally, in
"Deep Structured Learning for Facial Action Unit Intensity Estimation" the authors
propose a novel Copula CNN architecture to account for the structural dependence
of the facial action units used to determine the aggregate pain score[65]. Applying
the federated learning and federated personalization algorithm to this architecture
is another direction for future research that we propose.

8.2.2 Algorithmic modifications

We also suggest evolving further the federated personalization algorithm proposed
in this work. In some sessions, some individuals experienced a decrease in per-
formance compared to the pre-trained baseline. This performance decrease can be
attributed to the new information that the models were trained on, commonly re-
ferred to as a negative transfer. To prevent the negative transfer, we suggest a few
alterations to the federated algorithms with which we experimented.

Random layer sampling and additional privacy measures

While our extension of the federated learning algorithm, federated personalization,
offers additional practical privacy benefits, changing the deterministic way by which
the averaging layers are chosen for a random approach is an exciting direction for
future research. Moreover, adding more formal privacy guarantees, such as differ-
ential privacy to our federated algorithms, is another direction for future work.

Validation Buffer

As explained in section 7.5.2, we compute a global weighted average validation loss
based on which we decide which set of weights will be pushed from the central
server to the clients in order to instate the new local model. However, if a given
test subject is included in the training session, but not in the validation session, the
average validation loss will not be specific to that test subject. A solution could be
to instate a validation buffer, where a test subject’s data remains in the validation
set until new data for that test subject is generated. Only at this point, the new data
becomes part of the validation data, and the old data is moved into the training data
set. Implementing this validation buffer also means that clients who only participate
in one session never contribute to training the model. This makes sense, as for these
clients, we could imagine a scenario where a patient enters the hospital and leaves
again after one day. In these cases, the model does not need to learn anything specific
about this test subject, but rather be able to identify the patient’s pain level once he
or she enters the hospital for the first time.

Fallback models

In federated learning, we have the advantage of different clients being able to store
different versions of the same model. We think it is worth harnessing this advantage
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and experimenting with storing two models locally. Initially, a global model could
be initialized and distributed to all clients. During training, after the global aver-
aging step, the updated model would then be pushed to all clients, but instead of
replacing the old model, a second model would be created. Both models would then
be benchmarked against the local validation set. As long as the new model from
the server does not outperform the old local model, the local model is not replaced.
Only once the new global model leads to improved performance on the local valida-
tion set, the local model is replaced. This would ensure that each local model never
drops in performance below the baseline architecture, and thus negative transfer is
prevented.
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Appendix A

Running the code

A.1 federated-machine-learning

Clone this project from:

git clone https://github.com/ntobis/federated-machine-learning.git

Go into the directory federated-machine-learning. I recommend to create a
virtual environment.

virtualenv venv
source venv/bin/activate

To install all dependencies run:

pip install -r requirements.txt

If you have the UNBC-McMaster shoulder pain expression archive database,
which is required to run this code out-of-the-box, create the following folders

• Data

• Data/Raw Data/

• Data/Preprocessed Data/

• Data/Augmented Data/

and move the images into the Raw Data folder.
Alternatively, you should be able to run the following commands from the project’s

root directory:

mkdir Data
cd Data/
mkdir Raw\ Data
mkdir Preprocessed\ Data
mkdir Augmented\ Data
mv -r [folder where UNBC database is on your computer] Raw\ Data/

A.1.1 How to run the code

Data Pre-Processing

First, the image data will need to be pre-processed

1. Navigate to federated-machine-learning/Notebooks and run the notebook Data
Pre-Processing.ipynb

2. "Run All", and the pre-processing steps "histogram equalization" and "image
flipping", and "image rotation/cropping" will be applied.
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Running Experiments

Shell scripts There are 2 shell scripts that can be executed out-of-the-box.

./execute_local.sh

./execute_GCP.sh

execute_local.sh is recommended when running an experiment on an ordinary
machine. execute_GCP.sh includes 2 sets of additional parameters: If you run this
code on the Google Cloud Platform, you can specify

--project [your GCP project, e.g., centered-flash-251417]
--zone [your GCP VM zone, e.g., us-west1-b]
--instance [your GCP instance, e.g., tensorflow-1-vm]

and the instance will automatically be stopped once your experiment is completed.
If you have a Twilio account (see more under www.twilio.com), you can also pro-
vide your account credentials, as well as a receiver phone number, to receive a text
message once training is completed, or if an error occurs.

--sms_acc [your Twilio account, typically of the format ACeabXXXXXXXXXXXXX]
--sms_pw [your Twilio password, typically of the format eab57930XXXXXXXXXX]
--sender [your Twilio sender number, typically of the format +4418XXXXXXXX]
--receiver [your personal phone number, e.g., +4477XXXXXXXX]

Most important functions

Experiments.py Experiments.py contains the functions responsible for running
all experimental settings. See below for a description of the most important func-
tions:

main(seed=123, shards_unbalanced=False, shards_balanced=False, sessions=False,
evaluate=False, dest_folder_name=”, args=None) The main() function initializes
the tensorflow optimizer, loss function, and metrics to track. It also executes ex-
periment_pain(), which runs all experiments. We also specify the shards for the
“randomized shards” experiment in the main function, all at the top.

The main function then contains 4 blocks, all of which can be controlled with
the function parameters. The first three blocks run the experimental settings “ran-
domized shards, unbalanced test data”, “randomized shards, balanced test data”,
and “sessions” respectively. Each experimental block runs the experiment_pain()
function 11 times, once for each experimental setting. The final block executes the
evaluate_baseline() function.

experiment_pain(algorithm=‘centralized’, dataset=‘PAIN’, experiment=‘placeholder’,
setting=None, rounds=30, shards=None, balance_test_set=False, model_path=None,
pretraining=None, cumulative=True, optimizer=None, loss=None, metrics=None,
local_epochs=1, model_type=‘CNN’, pain_gap=(), individual_validation=True, lo-
cal_operation=‘global_averaging’) The experiment_pain() function allows to fine
tune each experimental setting. It defines if a given experiment should be central-
ized or federated, which type of federated algorithm should be run. It defines if
pre-training should be applied, as well as how many global and local epochs should
be run.
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It is recommended to limit changes to the code to the parameters of this func-
tion, if the general features should be maintained and only different experimental
settings (optimizers, number of epochs, etc.) are expected to be tried.

run_pretraining(dataset, experiment, local_epochs, optimizer, loss, metrics, model_path,
model_type, pretraining, rounds, pain_gap) run_pretraining() returns one of 4
models depending on the arguments provided: A Tensorflow model loaded from
file, a model that was pre-trained with the centralized algorithm, a model that was
pre-trained with the federated algorithm, or a randomly initialized model.

run_shards(algorithm, cumulative, dataset, experiment, local_epochs, model,
model_type, rounds, shards, pain_gap, individual_validation, local_operation, bal-
ance_test) run_shards() runs the randomized shards experiment. It follows the
algorithm described in chapter 5 of the thesis.

run_sessions(algorithm, dataset, experiment, local_epochs, model, model_type,
rounds, pain_gap, individual_validation, local_operation) run_shards() runs the
sessions experiment. It follows the algorithm described in chapter 5 of the thesis.

Model_Training.py Model_Training.py contains the different learning algorithms
described in chapter 5 of the thesis. The two most important functions are:

federated_learning(model, global_epochs, train_data, train_labels, train_people,
val_data, val_labels, val_people, val_all_labels, clients, local_epochs, individual_validation,
local_operation, weights_accountant) The federated_learning() function gov-
erns all federated algorithms. It iterates over a specified number of communication
rounds, and after each round computes the custom training and validation met-
rics, based on the algorithm it is currently running. It also implements a custom
EarlyStopping class, that monitors average validation loss across clients and re-
stores the best model weights, once training has ended.

train_cnn(algorithm, model, epochs, train_data, train_labels, val_data, val_labels,
val_people, val_all_labels, individual_validation) train_cnn() is the central train-
ing function. It implements early stopping if the algorithm is centralized, (for fed-
erated algorithms this is handled by federated_learning() and allows to individ-
ually track training and validation metrics for clients with custom callbacks.

Weights_Accountant.py Finally, the WeightsAccountant tracks the weights of all
clients in a federated setting. It performs the Federated Averaging algorithm as well
as the Federated Personalization algorithm. It also tracks all weights in the Local
Model experimental setting.

A.1.2 Evaluation

Two notebooks are helpful for results evaluation. The Notebook "Table Preparation"
serves to quickly generate an overview of the results achieved by the experiments
stored in the folder "Results". The Notebook "MSc Thesis Visualizations" generates
the majority of tables and figures seen in the thesis. Simply "Run All" to generate all
figures and tables.
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