
IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Efficient Neural Network Verification
via Adaptive Refinement and

Adversarial Search

Author:
Patrick Henriksen

Supervisor:
Alessio Lomuscio

Submitted in partial fulfillment of the requirements for the MSc degree in
Computing (AI) of Imperial College London

September 2019

Abstract

Neural networks have over the last years become an essential technique for solving
regression and classification problems with complex data. While these networks of-
ten achieve impressive results, the empirical methods commonly used to measure
their performance have their limitations. We propose an efficient algorithm based
on symbolic interval propagation for formal verification of large neural networks
with high-dimensional input data. Our approach extends present state-of-the-art
algorithms with three significant novel contributions. We use an adaptive node re-
finement, aiming to split the nodes with the most significant impact on the output
bounds first. Furthermore, we use a gradient descent-based local search around
spurious results produced by the LP-solver to substantially improve our algorithms
ability to find valid counterexamples. Finally, we derive the necessary linear relax-
ations to support s-shaped activation functions such as the Sigmoid and Tanh. We
have implemented the algorithm in a toolkit, VeriNet. Compared to present state-of-
the-art algorithms, VeriNet achieves a speed-up of about an order of magnitude for
safe cases and more than three orders of magnitude for unsafe-cases. 1

1 Prior to this project, I did a literature review of complete verification algorithms as an indepen-
dent study option (ISO) under the supervision of Professor Alessio Lomuscio. Some of the algorithms
covered in the ISO are also covered in the background section of this report. However, the background
section significantly extends the literature review of the ISO with new material, and the presentation
of similar topics is tailored towards the goal of this project. The resulting report differs substantially
from the ISO, and I consider all parts of it to be independent of the ISO. However, for completeness,
we have listed all similar topics in appendix B.

ii

Acknowledgements

Most of all, I would like to express my sincere gratitude to my supervisor Alessio
Lomuscio, for excellent guidance through the project. I would also like to thank my
fellow students at Imperial and the University of Oslo for a great working environ-
ment during the past five years. A special thanks goes to Andreas Zinonos, Kendeas
Theofanous, and Steven Boo at Imperial College and Vemund S. Schøyen and Sejla
Ackar at the University of Oslo for a lot of fun during long hours at the labs. Fi-
nally, I would like to thank Aker Scholarships for the financial aid making this year
at Imperial College possible.

iii

Contents

1 Introduction 1

2 Background 4
2.1 Neural networks . 4
2.2 The verification problem . 5
2.3 Algorithm types . 6
2.4 Traditional solvers . 7

2.4.1 Linear programming (LP) solvers 7
2.4.2 Mixed integer linear programming (MILP) solvers 7
2.4.3 Satisfiability (SAT) solver . 8
2.4.4 Satisfiable modulo theory (SMT) solvers 8

2.5 Important algorithms and concepts 8
2.5.1 Linear relaxation . 8
2.5.2 Interval propagation . 9
2.5.3 Abstract interpretation . 17
2.5.4 Adversarial examples and attacks 18

2.6 State-of-the-art verification algorithms 19
2.6.1 Symbolic interval propagation based algorithms 20
2.6.2 SMT-based algorithms . 21
2.6.3 MILP-based algorithms . 23
2.6.4 Sound but incomplete algorithms 23

2.7 Ethical consideration . 26
2.8 Summary . 27

3 Contribution 28
3.1 Algorithm overview . 28
3.2 Adaptive splitting vs hierarchical splitting 29
3.3 Splitting heuristic . 30
3.4 Local search . 31
3.5 Supported activation functions . 31

3.5.1 S-shaped activation functions 32
3.5.2 Batch normalization . 39

3.6 Sound and complete . 40
3.7 Summary . 43

v

CONTENTS Table of Contents

4 Analysis of algorithmic design choices 44
4.1 Symbolic interval propagation . 44
4.2 Splitting domain . 45

5 Implementation 47
5.1 Overview . 47
5.2 Symbolic interval propagation . 48

5.2.1 Minimising split-calculations 48
5.2.2 Outward rounding . 49
5.2.3 Best bounds matrix . 50

5.3 LP-solver . 50
5.3.1 Verification problem constraints 50
5.3.2 Split constraints . 51

5.4 Local search . 52
5.5 Refinement . 52
5.6 Multiprocessing . 52
5.7 Testing . 53
5.8 Summary . 54

6 Complexity analysis 55
6.1 Symbolic interval propagation . 55

6.1.1 Computational complexity . 55
6.1.2 Memory complexity . 56

6.2 LP-solver . 57
6.3 Local search . 57
6.4 Refinement . 58
6.5 Multiprocessing . 58
6.6 Summary . 58

7 Experimental Results 60
7.1 Choice of experiments . 60
7.2 Experimental setup . 62
7.3 Ground truth . 62
7.4 Changes made to Neurify source code 63
7.5 MNIST Fully connected . 63

7.5.1 48 ReLU node network . 65
7.5.2 100 ReLU node network . 65
7.5.3 1024 ReLU node network . 66

7.6 Convolutional MNIST . 66
7.7 Convolutional Cifar10 . 67
7.8 Sigmoid and Tanh . 67
7.9 Marabou . 68
7.10 Possible experimental weaknesses . 69
7.11 Summary . 71

vi

Table of Contents CONTENTS

8 Conclusion 72
8.1 Improvements introduced by our algorithm 72
8.2 Future work . 73
8.3 Summary . 74

Appendices 78

A User-guide VeriNet 79
A.1 Installation . 79

A.1.1 Environment variables . 80
A.2 Usage . 81

A.2.1 Running the program . 81
A.2.2 Pytorch models . 81
A.2.3 nnet models . 81
A.2.4 The Verification objective . 82
A.2.5 Activation functions . 83
A.2.6 Benchmarking runs . 83

B Independent Study Option (ISO) 84

vii

Chapter 1

Introduction

Neural networks have had an enormous impact in the field of AI over the last years,
and the rapid development has opened up a new world of possibilities in automa-
tion and analysis of complex high-dimensional data. However, the high degree of
non-linearity exhibited by these networks has traditionally limited us to empirical
performance metrics. This, combined with the fact that neural networks have been
proven to be susceptible to adversarial examples (Szegedy et al., 2013), significantly
limits their usefulness, especially in safety-critical applications.

Researchers have recently started focusing on formal verification algorithms for neu-
ral networks, and promising advances have already been made. Several formal ver-
ification tools (Ehlers, 2017; Tjeng et al., 2018; Katz(B) et al., 2017; Katz et al.,
2019; Wang et al., 2018b,a) can prove important safety properties for small feed-
forward networks, such as the ACASXu network (Kochenderfer et al., 2012) de-
signed to avoid aircraft collisions. Other tools (Singh et al., 2018, 2019; Zhang
et al., 2018) are also able to prove safety properties for medium-sized networks with
thousands of ReLU nodes; however, these algorithms are usually incomplete, as dis-
cussed later. Furthermore, the work of (Akintunde et al., 2018, 2019) introduced
verification tools for agent-environment systems, where the agents are controlled by
feed-forward networks and recurrent networks, respectively.

We categorise formal verification algorithms into complete algorithms and sound but
incomplete algorithms. Sound but incomplete methods can usually verify properties
for relatively large networks with high-dimensional input, and several of them can
also handle non-piecewise linear activation functions. Sound algorithms guarantee
that properties verified as safe are actually safe; however, they may overestimate the
number of unsafe properties or be unable to solve problems in a finite amount of
time. Notable algorithms include (Gehr et al., 2018; Zhang et al., 2018; Singh et al.,
2018, 2019).

A complete algorithm can always solve a given verification problem in a finite amount
of time. However, most of these algorithms are in practice limited to either small
networks or low-dimensional inputs due to their computational complexity. Com-
plete algorithms are also limited to piecewise linear activation functions, and most

1

Chapter 1. Introduction

of them only support the ReLU activation function. The algorithm from (Wang et al.,
2018a) stands out among the complete algorithms as the only algorithm proven to
be able to do verification on medium-sized networks with thousands of nodes and
high-dimensional input. Other notable algorithms are (Ehlers, 2017; Katz(B) et al.,
2017; Tjeng et al., 2018; Katz et al., 2019). Complete algorithms are always sound.

Complete verification algorithms can further be divided into three subcategories.
The first category is the SMT-based algorithms, using boolean satisfiability solvers
combined with an LP-solver to support piecewise-linear activation functions. Sec-
ondly, we have the MILP-based algorithms utilising binary and real-valued con-
straints to encode neural networks with piecewise linear activation functions. Fi-
nally, we have the symbolic interval propagation-based algorithms, using interval
arithmetic to bound the behaviour of the individual nodes in the network. We ex-
plore different verification approaches, current state-of-the-art algorithms, and es-
sential concepts and definitions in more detail in chapter 2.

The primary goal of this project was to design a complete verification algorithm able
to verify properties of larger and more realistic neural networks than the current
state-of-the-art algorithms. The main concern was significantly increasing the verifi-
cation speed, so our algorithm can handle networks with tens of thousands of nodes
and high-dimensional input. We used the symbolic interval propagation approach of
(Wang et al., 2018a) as a foundation for our algorithm.

Our work introduces two significant novel techniques to increase the scalability of
our algorithm. We employ a gradient descent based local search around spurious
outputs from the LP-solver to substantially improve our algorithms ability to find
valid counterexamples. Moreover, we use a new adaptive splitting strategy, aiming
to always split the node with the most impact on the output first. Our new splitting
strategy does especially well on the cone-shaped convolutional neural networks of-
ten used in computer vision tasks.

Furthermore, we added support for batch normalisation (Ioffe and Szegedy, 2015)
and s-shaped activation functions such as the Sigmoid and Tanh. To the best of our
knowledge, our approach is the first verification algorithm with iterative refinement
supporting these functions. Our proposed algorithm and novel contributions are
described in detail in chapter 3. Following, chapter 4 discusses some important al-
gorithmic design choices.

We implemented our algorithm as a python toolkit, VeriNet. VeriNet utilises highly
optimised libraries, such as OpenBLAS (OpenBLAS, 2019), to speed-up vectorised
calculations. Furthermore, we exploit the highly parallel nature of our algorithms’
refinement phase using multi-processing to achieve state-of-the-art performance.
The details of VeriNet are discussed in chapter 5, while chapter 6 contains a com-
plexity analysis focusing on computational and memory bottlenecks.

2

Chapter 1. Introduction

We used VeriNet to compare the performance of our proposed algorithm against
present state-of-the-art verification algorithms. The experiments show that VeriNet is
significantly faster than the current state-of-the-art complete verification algorithm,
Neurify (Wang et al., 2018a). We usually see a speed-up between ×5 and ×30 for
non-trivial safe cases. VeriNet also found all cases proven to be unsafe in less than
one second. Neurify timed out after 3600 seconds for several of the unsafe cases,
resulting in a lower bound for the speed-up of ×3977.5. These experiments are de-
scribed in detail in chapter 7, while chapter 8 concludes and outlines possible future
work.

3

Chapter 2

Background

In this chapter, we introduce definitions, concepts, and algorithms important to our
proposed verification algorithm. Furthermore, we have a look at current state-of-the-
art verification algorithms focusing on complete methods. The reader is expected
to have a working knowledge of neural networks and the necessary mathematics,
primarily linear algebra.

2.1 Neural networks

Neural networks come in a wide variety of architectures and designs. This com-
plicates the verification task, and a general verification algorithm for all network
architectures is out of the scope for this project. Most state-of-the-art verification
approaches are designed for feed-forward neural networks, and these networks are
also the focus for our project.

A feed-forward neural network (FFNN) is made up of an input layer, an output
layer, and one or more hidden layers. Each layer has one or more neurons, and
each neuron has an activation function, σi : R → R. All input values to layer i only
depend on output values from previous layers, j with j < i. We use zi to denote the
input to layer i, yi to denote the output, and mi to denote the number of neurons in
layer i. zi and yi are also referred to as the pre- and post-activation values of layer
i.

Feed-forward neural networks include both fully-connected and convolutional net-
works and are extensively used in problems with high-input dimensions, such as
computer vision tasks. The standard definition of FFNN’s mentioned above also in-
cludes networks with skip-connections (He et al., 2016); however, these are not
considered in this project. So, we always assume that the input to one layer is calcu-
lated as a linear combination from the output of only the previous layer. The most
common layer types in FFNN’s are fully-connected layers and convolutional layers.

Definition 2.1.1. A fully connected layer, i, has a weight matrix, W i ∈ Rmi−1×mi,
a bias vector bi ∈ Rmi and an activation function σi : R → R. The output of layer i

4

Chapter 2. Background 2.2. THE VERIFICATION PROBLEM

is yi = σi(zi) with zi = W iyi−1 + bi where σi is applied element-wise. Networks with
only fully connected layers are called fully connected neural networks.

Definition 2.1.2. A convolutional layer, i, has a kernel, Ki ∈ Rk1×k2, a bias vector
bi ∈ Rmi and an activation function σi : R → R. The output of layer i is yi = σ(zi)
with zi = Ki ∗yi−1 + bi, where ∗ is the convolution operator and σi is applied element-
wise. Networks with only convolutional layers are called fully convolutional networks.

Each layer has an activation function used to introduce non-linearities to the net-
work. The most common activation functions are the ReLU, Sigmoid, and Tanh
functions.

ReLU(z) = max(0, z)

Sigmoid(z) =
1

1 + e−z

Tanh(z) =
e2z − 1

e2z + 1

Notice that activation functions are applied element-wise to each zj ∈ z, we omit
the indexing when this is clear from the context. Furthermore, we always assume
that the output layer does not have any activation functions. This is not a huge lim-
itation since activation functions at the output layer often only have a normalising
effect. For example, a classification network using the Softmax at the output, does
not change its predicted class if we remove the Softmax.

In addition to the standard layers and activation functions, our algorithm also sup-
ports batch-normalisation (Ioffe and Szegedy, 2015). These layers are used to nor-
malise the data at different locations in the network to improve gradient flow and
accelerate learning by reducing covariate shifts.

A batch normalisation layer, i, always has the same number of neurons as the
previous layer, i − 1. During evaluation, batch normalisation acts as a linear trans-
formation on the output of the previous layer. So yi = ayi−1 + b for constants a, b.
Note that this is not true during training; the operation is highly non-linear in this
phase; however, we are only interested in the behaviour during evaluation.

Several other architectures, such as RNN’s, and layers, such as Dropout and Pooling,
exist. While it should be possible to add support for most of these in our verification
algorithm, this is out of the scope for this project.

2.2 The verification problem

In this report, we treat verification problems with concrete bounds on the input and
LP-constraints on the output, formally:

Definition 2.2.1. Let f : Rn → Rm be a neural network and X = {x′ ∈ Rn|xli ≤ x′i ≤
xui } be a set of valid inputs for some concrete lower and upper bounds xl,xu ∈ R. Given

5

2.3. ALGORITHM TYPES Chapter 2. Background

a set of linear constraints on the output ψy, let Y = {y|ψy} be the set of outputs that
fulfils ψy. The verification problem is to determine if x′ ∈ X =⇒ f(x′) ∈ Y or find a
counterexample, x′ ∈ X , such that this is not true.

So, given the constraints on the input and output, we either want to prove that no
valid input fulfils the output constraints or find an input that does. If no input ful-
fils the output constraints, we say that the given property is ”safe”, otherwise it is
”unsafe”, and the corresponding input is a counterexample. Most complete algo-
rithms, including (Katz(B) et al., 2017; Ehlers, 2017; Katz et al., 2019), are limited
to verification problems with these types of constraints. However, a few algorithms
support special cases of other constraints on the input, such as (Tjeng et al., 2018)
supporting l1, l2 constraints and (Wang et al., 2018a) supporting l1, l2, brightness and
contrast constraints on the input.

Another key verification problem for neural networks concerns determining the ro-
bustness of classification networks. A classification network is said to robust for an
input, if small perturbations of the input do not lead to misclassification, or more
formally:

Definition 2.2.2. Let x ∈ Rn be an input to a classification neural network f : Rn →
Rm where m > 1 is the number of classes and f(x) = y. Let c be the correct class of
x and let Cx = {x′ ∈ RN |xli ≤ x′i ≤ xui } for some concrete lower and upper bounds
xl,xu. The targeted robustness verification problem for the input x given a target
class t 6= c is to determine if x′ ∈ Cx =⇒ f(x′)c > f(x′)t, or find a x′ such that this
is not true.

Definition 2.2.3. Let x ∈ Rn be an input to a classification neural network f : Rn →
Rm where m > 1 is the number of classes and f(x) = y. Let c be the correct class of
x and let Cx = {x′ ∈ RN |xli ≤ x′i ≤ xui } for some concrete lower and upper bounds
xl,xu. The general robustness verification problem for the input x is to determine
if x′ ∈ Cx =⇒ f(x′)c > f(x′)t for all classes t 6= c, or find a x′ such that this is not
true.

The targeted and general robustness problems determine if changes to an input,
described by xl and xu, can lead to a change in classification to class t, or any other
class, respectively. The targeted robustness problem can be expressed with linear
bounds on the output and is a sub-problem of the general verification problem from
definition 2.2.1. The general robustness problem, on the other hand, can not directly
be encoded with linear constraints. However, this can be solved by treating the
problem as a targeted problem for each output, or by allowing MILP-constraints on
the output.

2.3 Algorithm types

Verification algorithms are usually categorized using the concepts of soundness and
completeness. A complete algorithm, given enough time, always determines if a

6

Chapter 2. Background 2.4. TRADITIONAL SOLVERS

given property is safe or not. A sound but incomplete algorithm only returns that
a property is safe if the property actually is safe; however, it may overestimate the
number of unsafe cases. We are going to define soundness and completeness more
formally, after developing the necessary notation, in section 3.6. We also have the
traditional empirical approaches which are neither sound nor complete; these are
not considered in our report.

This categorisation of verification algorithms does not always provide the full pic-
ture. Most sound but incomplete algorithms for neural network verification perform
a ”one-shot approximation” by implementing a linear approximation of the non-
linearities and using these approximations for verification. Complete algorithms
combine this with an iterative refinement stage by splitting the networks hidden
nodes, providing a better estimation for each split. For piecewise linear activation
functions, this refinement can remove all overestimation in a final number of splits,
resulting in completeness. However, there is also a type of verification algorithms
using a refinement stage to guarantee any arbitrary overestimation > 0 in a finite
number of steps, without being complete. An example of this is (Wang et al., 2018b).
Our algorithm is complete for networks using only piecewise linear activation func-
tions and implements a refinement stage for other networks.

2.4 Traditional solvers

Most state-of-the-art verification algorithms use traditional solvers as part of their
approach. We are going to give a short introduction into some of the most important
solvers; more information can be found in standard textbooks on the subject.

2.4.1 Linear programming (LP) solvers

LP-solvers minimise or maximise a real-valued objective function given some real-
valued linear constraints. Verification algorithms utilising LP-solvers usually make
a satisfiability call without an objective function to find a valid assignment to a set
of variables under linear constraints. However, some methods also use an objec-
tive function for different optimisation purposes. LP-solvers can directly be used to
efficiently solve verification problems for neural networks with only linear layers;
however, they do not support non-linear activation functions.

2.4.2 Mixed integer linear programming (MILP) solvers

MILP solvers extend LP solvers by also supporting integer-valued variables. These
integer variables can be used to encode piecewise linear activation functions, such
as the ReLU. Therefore, networks with only piecewise linear activation functions
can directly be encoded as MILP-systems; however, solving MILP systems with many
integer constraints is computationally expensive. This limits the size of networks
that can directly be verified by MILP solvers.

7

2.5. IMPORTANT ALGORITHMS AND CONCEPTS Chapter 2. Background

2.4.3 Satisfiability (SAT) solver

SAT solvers are used to find valid assignments for boolean expressions. A näıve SAT
solver works by iteratively assigning values to the boolean variables and backtrack-
ing when a conflict is detected. Modern solvers extend this approach with techniques
such as unit propagation and advanced conflict clauses to improve the performance.

2.4.4 Satisfiable modulo theory (SMT) solvers

SMT solvers combine SAT solvers with other theories, such as LP Solvers, to handle
more complex expressions. Encoding verification problems for piecewise linear neu-
ral networks into an SMT problem is usually straightforward; however, this approach
is also typically too computationally expensive for all but the smallest networks.

2.5 Important algorithms and concepts

In this section, we introduce some essential algorithms and concepts used as a foun-
dation for our algorithm.

2.5.1 Linear relaxation

Due to the high degree of non-linearity exhibited by neural networks, complete ver-
ification algorithms often use a simpler initial approximation of the network. In
Ehlers (2017), the authors introduced linear relaxations of piecewise-linear activa-
tion functions to approximate the network. A linear relaxation is a set of linear
constraints on the input and output of a node, such that the valid outputs, with
respect to the linear relaxations, overestimates the real output space.

Definition 2.5.1. Let σ : Z → R be an activation function and ψz,y be a set of linear
constraints on the output variable, y. Furthermore, let Yψz,y = {y ∈ R|ψz,y, z ∈ Z} be
the set of valid outputs. ψz,y is a linear relaxation of σ iff y = σ(z) =⇒ y ∈ Yψz,y for
all z ∈ Z.

For a ReLU function with lower and upper bounds on the input, zl, zu, Ehlers (2017)
introduces a linear relaxation with three constraints:

ψz,y = {y ≥ 0, y ≥ z, y ≤ zu(z − zl)
zu − zl

}

These constraints are optimal in the sense that they minimise the overestimation-
area in the xy-plane. This is illustrated in figure 2.1. However, to reduce the com-
putational complexity, a relaxation with two constraints might be the better choice.
The two-constraint relaxation used in (Wang et al., 2018a) is:

ψz,y = {y ≥ zuz

zu − zl
, y ≤ zu(z − zl)

zu − zl
}

8

Chapter 2. Background 2.5. IMPORTANT ALGORITHMS AND CONCEPTS

Figure 2.1: Linear relaxation of ReLU as used in (Ehlers, 2017). The shaded blue area
is the relaxation, zl and zu are the lower and upper bounds on the input respectively.

We refer to the bounding lines of this relaxation as the upper linear relaxation, ru(z),
and lower linear relaxation, rl(z). Notice that both relaxations require a lower and
upper bound on the input, zl, zu. These bounds can be obtained through interval
propagation, covered later in this chapter.

Figure 2.2: The linear relaxation of the ReLU used in (Wang et al., 2018a)

By defining linear relaxations for all non-linearities in a network, we get a linear
approximation of the network. Most sound algorithms use some sort of relaxations
to infer properties of the behaviour of the actual network. Complete algorithms also
use relaxations; however, this is usually combined with a refinement phase, which
iteratively decreases the overestimation introduced by the relaxations.

2.5.2 Interval propagation

In this section, we introduce interval arithmetic and explain how it can be used to
calculate bounds for the nodes in a neural network.

9

2.5. IMPORTANT ALGORITHMS AND CONCEPTS Chapter 2. Background

Näıve interval propagation

Näıve interval propagation uses interval arithmetic to propagate concrete bounds
through a network. The calculated bounds at the output layer can then be used for
verification purposes. The input bounds, zil, z

i
u, to a layer i are calculated from the

output bounds, yi−1
l , yi−1

u , of the previous layer as:

zil = W i+yi−1
l +W i−yi−1

u + bi

ziu = W i−yi−1
l +W i+yi−1

u + bi

Where W i+ is the matrix with all positive elements from the weight matrix W i, and
all other elements set to 0, more formally:

W i+
k,h =

{
W i
k,h W i

k,h > 0

0 else

Analogously W i− is the matrix with the negative elements of W i. The input bounds
to layer i are then propagated through the activation functions, σi : R → R, to get
the output bounds:

yil = σi(zil)

yiu = σi(ziu)

This approach can be visualised as propagating the bounds in the same manner as
in a standard network forward phase, except that we switch the lower and upper
bound each time we multiply by a negative weight. The process is repeated for all
layers until we reach the output layer.

Example 2.5.1. Let our network be as in figure 2.3 with ReLU activations for all hidden
nodes and the input node bounded by [−1, 1]. The input bounds to the first layer are
still [−1, 1] since the weight is 1. Next, we propagate these bounds through the ReLU,
zeroing out the negative lower bound. The input bounds to h21 are the same as the
output bounds from h11. However, for h22 we have to multiply the bounds by the weight,
−1, and switch the lower and upper bound since it is negative. Finally, we propagate
these bounds through the ReLU’s in the second layer, multiply by the weights and sum
the resulting bounds to get bounds on the output.

The näıve interval propagation has one major drawback. The nodes of a neural net-
work usually cannot all reach their minima or maxima at the same time, and these
conditional dependencies are not accounted for. This leads to overestimating inter-
vals, and the problem increases with more complex networks.

Symbolic interval propagation

To reduce the overestimation of näıve interval propagation, (Wang et al., 2018b)
introduced symbolic interval propagation for neural network verification. This sym-
bolic approach propagates linear equations instead of concrete bounds, as illustrated

10

Chapter 2. Background 2.5. IMPORTANT ALGORITHMS AND CONCEPTS

In h11

h21

h22

Out[−1, 1]
1

1

−1

1

1

In = [-1, 1]
out = [0,1]

In = [0, 1]
out = [0,1]

In = [-1, 0]
out = [0,0]

In = [0, 1]

Figure 2.3: Näıve interval propagation a ReLU network

in figure 2.4. These equations can then be minimised and maximised to determine
the concrete lower and upper bounds, respectively. The symbolic lower and upper
input bounds of a fully connected layer i, eqilow,in(x) and eqiup,in(x), are calculated
from the symbolic output bounds of layer i− 1, eqi−1

low,out(x) and eqi−1
up,out(x), using the

formula:

eqilow,in(x) = W i+eqi−1
low,out(x) +W i−eqi−1

up,out(x)

eqiup,in(x) = W i−eqi−1
low,out(x) +W i+eqi−1

up,out(x)

Where W i+ and W i− are the matrices with positive and negative weights respec-
tively, as in näıve interval propagation.

Compared to näıve interval arithmetic, there is one challenge. Propagating the sym-
bolic bounds through the activation functions results in non-linear bounds. This is
solved in (Wang et al., 2018a) by defining a linear relaxation with two constraints,
as explained in section 2.5.1. Instead of propagating the symbolic bounds through
the activation function, the upper bound is propagated through the upper linear re-
laxation, and the lower bound through the lower linear relaxation.

The concrete input bounds for the linear relaxation, zl, zu, are calculated from the
symbolic input bounds. For a linear equation eq(x) =

∑
i aixi where each xi is

bounded by xli ≤ xi ≤ xui the maxima and minima can be calculated as:

zl = min(eq(x)) =
∑
i|ai>0

aix
l
i +

∑
i|ai<0

aix
u
i

zu = max(eq(x)) =
∑
i|ai>0

aix
u
i +

∑
i|ai<0

aix
l
i

Since two equations bound the input to each node, one lower and one upper sym-
bolic bound, this is done twice. The concrete bounds from the lower symbolic bounds

11

2.5. IMPORTANT ALGORITHMS AND CONCEPTS Chapter 2. Background

are used to calculate the lower linear relaxation, rl, and the concrete bounds from
the upper symbolic bound are used to calculate the upper linear relaxation, ru.

Finally, we propagate the symbolic equations through the linear relaxations to cal-
culate the output equations of node k in layer i:

eqilow,out(x)k = ril,k(eq
i
low,in(x)k)

eqiup,out(x)k = riu,k(eq
i
up,in(x)k)

Example 2.5.2. Let our network be as illustrated in figure 2.4 with the input x ∈
[−1, 1] and ReLU activations for all hidden nodes. Since it should be clear from the con-
text, we will skip the layer and node indexing, k and i, for the equations in this example.
The lower and upper input equation to the first node, h11, are x, since the weight is 1.
The concrete lower and upper bounds are still −1 and 1, and the corresponding linear
relaxations are rl(z) = 1/2z and ru(z) = 1/2z + 1/2 respectively. The resulting output
equations for h11 are:

eqlow,out(x) = rl(eqlow,out(x))) = 1/2x

equp,out(x) = ru(equp,out(x))) = 1/2x+ 1/2

The next step is to calculate the input equations for the second hidden layer. For h21, the
weight is 1, and the input equations are the same as the output of h11. Node h22 has a
weight of −1, so we have to multiply the lower and upper output equations of h11 with
−1 and switch the lower and upper bound since the weight is negative.

The input equations to h21 are then used to calculate the corresponding concrete bounds.
Minimising and maximising eqlow,in(x) = 1/2x results in the concrete bounds for the
lower equation, [zll, zlu] = [−1/2, 1/2]. The corresponding linear relaxations are rl(z) =
1/2z. The same calculations for the upper linear relaxation results in [zul, zuu] =
[−1/2, 1] and ru(z) = 2/3z + 1/3. The output equations are:

eqlow,out(x) = rl(eqlow,in(x))) = 1/2(1/2x) = 1/4x

equp,out(x) = ru(equp,in(x))) = 2/3(1/2x+ 1/2) + 1/3 = 1/3x+ 2/3

For the h22 we get the linear relaxations rl(z)) = 1/3z and ru(z) = 1/2z + 1/2 and
output equations eqlow,out(x) = −1/6x− 1/6 and equp,out(x) = −1/4x+ 1/2

Finally, we multiply the output equations of the second hidden layer by their weights
and add them to get the equations at the output layer. The resulting concrete lower
and upper bound at the output layer, −1/4 and 5/4, are calculated by minimising and
maximising the lower and upper equation respectively.

Notice that the output bounds of the previous example are actually worse than the
output bounds from the näıve interval propagation. This can be understood by re-
alizing that the näıve method is a special case of symbolic interval propagation with
constant upper and lower relaxations (Wang et al., 2018a). As we see illustrated
in figure 2.5, the overestimation area of the symbolic linear relaxation is smaller

12

Chapter 2. Background 2.5. IMPORTANT ALGORITHMS AND CONCEPTS

In h11

h21

h22

Out[−1, 1]
1

1

−1

1

1

eqin(x) = [x, x]

[zll, zlu] = [−1, 1]

[zul, zuu] = [−1, 1]

eqout(x) = [1/2x, 1/2x+ 1/2]

eqin(x) = [1/2x, 1/2x+ 1/2]

[zll, zlu] = [−1/2, 1/2]

[zul, zuu] = [−1/2, 1]

eqout(x) = [1/4x, 1/3x+ 2/3]

eqin(x) = [−1/2x− 1/2,−1/2x]

[zll, zlu] = [−1, 1/2]

[zul, zuu] = [−1/2, 1/2]

eqout(x) = [−1/6x− 1/6,−1/4x+ 1/2]

eqin(x) = [−1/12x− 1/6, 1/12x+ 7/6]

[zl, zu] = [−1/4, 5/4]

Figure 2.4: Symbolic interval propagation for a ReLU network

than for the näıve relaxation; yet, the symbolic relaxation is not contained in the
näıve relaxation. For this reason, there is no guarantee that the symbolic interval
propagation results in better bounds than the näıve method. However, in practical
applications, symbolic interval propagation usually has significantly better results for
all but the smallest networks.

Figure 2.5: The relaxation used for the näıve proapagation(red) and symbolic propaga-
tion (blue). (Wang et al., 2018a)

Even though symbolic interval propagation usually is a considerable improvement
over the näıve method, it does not entirely solve the conditional dependency issue.
Calculating the bounds of one node might implicitly use both the lower and upper
relaxation of a preceding node at the same time. The next section introduces a

13

2.5. IMPORTANT ALGORITHMS AND CONCEPTS Chapter 2. Background

method to reduce this problem of untracked conditional dependencies.

Error-based symbolic interval propagation

To address the challenges of symbolic interval propagation, the latest versions of Re-
luVal and Neurify, implementations of Wang et al. (2018b) and Wang et al. (2018a),
use a slight variation of the standard symbolic interval propagation.

The error-based symbolic interval propagation only propagates one equation, in-
stead of one for the lower and one for the upper bound. This equation is always
propagated through the lower linear relaxation. The resulting error from not using
the upper linear relaxations are calculated as concrete values and propagated to-
gether with the equations.

At the input to each layer, i, the errors are represented by a matrix Ei
in ∈ Rmi×m′i

where mi is the number of nodes in layer i, and m′i is the total number of nodes in
all previous layers. An element (Ei

in)k,h represents how much the input equation for
node k in layer i would change if the equation had been propagated through the
upper bound of node h instead of the lower. If eqiin(x) are the input equations to
layer i, the concrete lower and upper bounds to node k, zil,k and ziu,k, are calculated
as:

zil,k = min(eqiin(x)k) +
∑

h| (Ei
in)k,h<0

(Ei
in)k,h

ziu,k = max(eqiin(x)k) +
∑

h| (Ei
in)k,h>0

(Ei
in)k,h

These concrete bounds, zil,k and ziu,k, are used to calculate the nodes lower and upper
linear relaxations, ril,k(z) and riu,k(z). Both the error matrix and the equations are
propagated through the lower linear relaxation:

(Êi
out)k,: = ril,k((E

i+1
in)k,:)

eqiout(x)k = ril,k(eq
i
in(x)k)

The new error introduced from only using the lower relaxation at node k is:

εik = max
zi∈[zl,k,z

i
u,k]

(riu,k(z)− ril,k(z))

The resulting output error matrix is the concatenation of the propagated errors and
the new errors, Ei

out = [(Êi
out), diag(εi)]. Finally, the input errors and equations to

the next layer are calculated by propagating them through the affine layer:

Ei
in = W iEi

out

eqiin(x) = W ieqiout(x) + b

Since each nodes error is tracked separately, we always know if previous nodes had
to operate at the lower or upper relaxation. This is not the case for the standard

14

Chapter 2. Background 2.5. IMPORTANT ALGORITHMS AND CONCEPTS

symbolic interval propagation from the previous section, and nodes might implicitly
have to operate at both relaxations simultaneously to achieve the calculated bounds.

Algorithm 1 Error based symbolic interval propagation

//eqMin(X), and eqMax(X) are functions calculating the min/max values of linear
equations with coefficients stored in X. The variables of the equations are assumed
to be bounded.

m← inputSize

X ← [eye(m),0] // The equation coefficient matrix
E ← matrix(m, 0) // The error matrix
for i in layers do

//Calculate input equations to layer i
X ←Wi ×X
X[:,−1]← X[:,−1] + bi
E ←Wi ×X

//Calculate concrete bounds and relaxations
lowBound← eqMin(X) + sum(E < 0, axis = 1)

upBound← eqMax(X) + sum(E > 0, axis = 1)

al, bl,au, bu ← relaxations(lowBound,upBound)

//Calculate output equations for layer i
X ← X × al //Rows of X times rows (1 element) of al

X[:,−1]← X[:,−1] + bl
ENew ← diag(bu − bl) // Assuming al = au

E ← concatenate(E,ENew)

end for

Example 2.5.3. Let our network be as illustrated in figure 2.6 with the input x ∈
[−1, 1] and ReLU activations for all hidden nodes. Since it should be clear from the con-
text, we will skip the layer and node indexing, k and i, for the equations in this example.
The input to the first node, h11 is the equation x, since the weight is 1. The correspond-
ing lower and upper linear relaxations are rl(z) = 0.5z and ru(z) = 0.5z + 0.5. Propa-
gating the equation through the lower linear relaxation results in the output equation
eqout(x) = 1/2x, and the resulting error is ε11

out = ru(z)− rl(z) = 1/2.

The weight for node h21 is 1 so the input equation and error are the same as the output
of node h11. Minimising eqin(x) = 1/2x results in zl = −1/2. Note that the error, ε11

out is
positive, so it does not affect the lower bound. Maximising the equation results in 1/2,
however this time we have to add the positive error, so zu = 1/2+1/2 = 1. The resulting
lower and upper linear relaxations are rl(z) = 2/3z and ru(z) = 2/3z + 1/3. The error
from this node is ε21

out = ru(z)− rl(z) = 1/3. Finally, we have to propagate the equation
and error from h11 through the linear relaxation to get eqout(x) = rl(eqin(x)) = 1/3x

15

2.5. IMPORTANT ALGORITHMS AND CONCEPTS Chapter 2. Background

and ε11
out = rl(ε

11
in) = 1/3.

For node h22 the input error is ε11
in = −0.5, since the weight is −1. Since the error is neg-

ative we have to add it to the lower concrete input bound and we get zl, zu = −1, 1/2.
The same calculations as before result in eqout(x) = −1/6x, ε11

out = −1/6, and ε22
out = 1/3.

Finally, at the output layer, both weights are 1 so the resulting input errors are ε11
in =

1/3 − 1/6, ε21
in = 1/3, and ε22

in = 1/3. The input equation is eqin(x) = 1/3x − 1/6x =
1/6x. Since all errors are positive, the lower concrete input bound is the minimum of the
equation, zl = −1/6. The upper concrete input bound is the maximum of the equation
plus all positive errors zu = 1/6 + 1/6 + 1/3 + 1/3 = 1

In h11

h21

h22

Out[−1, 1]
1

1

−1

1

1

eqin(x) = x

[zl, zu] = [−1, 1]

ε11out = 0.5

eqout(x) = 1/2x

eqin(x) = 1/2x

ε11in = 0.5

[zl, zu] = [−1/2, 1]

ε11out, ε
21
out = 1/3, 1/3

eqout(x) = 1/3x

eqin(x) = −1/2x

ε11in = −0.5

[zl, zu] = [−1, 1/2]

ε11out, ε
22
out = −1/6, 1/3

eqout(x) = −1/6x

eqin(x) = 1/6z

ε11in, ε
21
inε

22
in = 1/6, 1/3, 1/3

[zl, zu] = [−1/6, 1]

Figure 2.6: Error-based interval propagation for a ReLU network

The calculations for the output layer in the previous example is were we can see the
real advantage of the error-based symbolic interval propagation. Notice that if we
use the upper relaxation for node h11, the value of h21 increases (positive error) and
h22 decreases (negative error). However, these effects do to some degree cancel out
at the output layer, as the errors are summed, and the final error e11

in is positive. This
positive error tells us that using the upper linear relaxation for node h11 increase the
value at the output layer.

In contrast, the standard symbolic interval propagation from the previous chapter
does not provide us with this information. Actually, in example 2.5.2 we used the
lower relaxation of h11 to calculate the upper bound of h22 and the upper relaxation
of h11 to calculate the upper bound h21. Finally, we used the upper relaxations of
both h21 and h22 to calculate the upper bound of the output node. So the calculated

16

Chapter 2. Background 2.5. IMPORTANT ALGORITHMS AND CONCEPTS

upper bound of the output node requires h11 to operate at its lower and upper re-
laxation simultaneously, which clearly is not possible and a conditional dependency
issue.

In summary, the error-based symbolic interval propagation reduces the conditional
dependency issue compared to standard symbolic interval propagation by tracking
an individual error for each node. This comes at the cost of always using paral-
lel lower and upper relaxations, which might result in worse relaxations than the
standard symbolic interval propagation. However, in practice, we usually see signif-
icantly better bounds with the error-based interval propagation.

2.5.3 Abstract interpretation

Abstract interpretation is a technique used in several sound but incomplete verifi-
cation algorithms (Gehr et al., 2018; Singh et al., 2018, 2019). The key idea is to
represent the network vectors in an abstract domain, and each network operation
as an abstract transformer. The abstract transformers are sound, so if the input to
an abstract transformer overestimates the input to its corresponding operation in
the network, the output of the abstract transformer overestimates the output of the
network operation.

Using the notation from (Gehr et al., 2018), the abstract domain, Am, encodes
shapes as logical formulas to describe sets of vectors from the network domain,
P(Rm). An abstraction function, α : P(Rm) → Am, is used to convert sets of vec-
tors from the network domain to the abstract domain. Analogously, a concretisation
function γ : Am → P(Rm) converts abstract elements back to the network domain.
The abstraction and concretisation functions are sound, so for all X ∈ P(Rm), we
have X ⊆ γ(α(X)). Finally, sound abstract transformers, TLi

: Am → An, are defined
for the corresponding layers, Li : P(Rm)→ P(Rn), in the network.

Given a set of valid inputs, X , the abstraction function α is used to calculate the
corresponding abstract element α(X). The abstract set is propagated through the
abstract transformers, calculating the abstract output aȲ . Since all operations are
sound, the final set Ȳ = γ(aȲ)) is a sound approximation of the true output set Y
and can be used for verification purposes. This is illustrated in figure 2.7.

Notice that the interval propagation from the previous section can be considered in
an abstract interpretation framework. The symbolic intervals correspond to the ab-
stract domain, while the linear relaxations correspond to the abstract transformers.
We explore the fact that some of the abstract interpretation based verifiers are very
similar to the symbolic interval propagation-based verifiers in more detail in section
2.6.4.

Example 2.5.4. Let f : R2 → R be a very simple network, with only the input layer,
output layer and both weights equal to 1/2. Let the input set be X = {(0, 1), (1, 2)}.
Since we only have two points, we can calculate the networks true output

17

2.5. IMPORTANT ALGORITHMS AND CONCEPTS Chapter 2. Background

Y = {(0, 1/2), (1/2, 1)}.

For this simple problem, we will use the box-domain where each coordinate in the ab-
stract domain is represented by a upper and lower bound. So an abstract element
a ∈ Am is represented by a = {xl1 ≤ x1 ≤ xu1 , ..., x

l
m ≤ xm ≤ xum}, where xil and xiu

are concrete lower and upper bounds for element i. We use the abstraction function
α(X) = {xl1 ≤ x1 ≤ xu1 , ..., x

l
n ≤ xn ≤ xun}, where xli and xui are the minimum and

maximum i’th element of the vectors in the input set X . For an abstract element a ∈ Am,
the concretisation function calculates the set of valid vectors, γ(a) = {(x1, ..., xn)|xil ≤
xi ≤ xiu∀i ∈ {1, 2...m}}. Finally, the abstract transformer used for the multiplication
f(x) = cx is given by Tf (a) = {cxl1 ≤ x1 ≤ cxu1 , ..., cx

l
m ≤ xm ≤ cxum}.

With this framework we have:

α(X) = {0 ≤ x1 ≤ 1, 1 ≤ xi ≤ 2}
Tf (α(X)) = {0 ≤ x1 ≤ 1/2, 1/2 ≤ xi ≤ 1}

γ(Tf (α(X))) = {(x1, x2)|0 ≤ x1 ≤ 1/2, 1/2 ≤ x2 ≤ 1}
We see that Y ⊂ γ(Tf (α(X))), so the output of the abstract transformer is sound as
expected.

L1

L2

LN

TL1

TL2

TLN

X

L1(X)

LN−1(...L2(L1(X)))

Y ⊂ Ȳ

α(X)

TL1(α(X))

TLN−1(...TL2(TL1(α(X))))

α(Ȳ)

Ȳ = γ(α(Ȳ))

Figure 2.7: Illustration of abstract interpretation for network verification. The left path
illustrates the input set X propagated through the layers of the network, while the right
path illustrates the abstracted input sent through the corresponding abstract transform-
ers. The final output-set of the abstract transformers overestimates the corresponding
output-set of the network.

2.5.4 Adversarial examples and attacks

As already mentioned, neural networks are susceptible to adversarial examples (Szegedy
et al., 2013). An adversarial example is a small perturbation to an input leading to a

18

Chapter 2. Background 2.6. STATE-OF-THE-ART VERIFICATION ALGORITHMS

significant output change. For image-classification networks, this is usually defined
as a perturbation, small enough to be unnoticeable by humans, leading to misclas-
sification. These adversarial examples can be obtained through methods known as
adversarial attacks. Adversarial attacks are usually gradient descent based with a
loss function designed to maximise the output change. An adversarial example ob-
tained by our algorithm is illustrated in figure 2.8.

Figure 2.8: Adversarial example found by our algorithm. The image on the left is
classified as the digit 8. After adding the noise in the middle (scaled x 10 to make it
visible), the image is classified as a 6.

A significant amount of research has been done on adversarial attacks and a detailed
review is out of the scope for this report. However, we are going to introduce a
simple gradient-based adversarial attack, as this is essential for our verification algo-
rithm. The gradient descent is very similar to the back-propagation phase in a neural
network, but instead of updating the network parameters, it updates the input.

Let f : Rn → Rm be a neural network with f(x) = y. Let yi indicate the confidence
for class i. Assume that the network classifies x as class k, meaning yk > yj for all
other classes j. To find a counterexample, x′ a gradient descent is performed on x.
Let l be our target class, so the goal is to find x′ such that f(x′) results in yl > yk.
With x0 = x, x′ = xn, and loss function L(x) = yk − yl, the näıve gradient descent
update is:

xi = xi−1 − γ × d
dx
L(x), i = {0, 1..., n}

This näıve algorithm does work; however, it tends to adjust some pixels a lot more
than others, creating noise noticeable by humans. This can be solved by clipping
the resulting xi vector to predetermined bounds after each gradient update. Several
other more advanced attacks exist, however, we do not cover them in this report.

2.6 State-of-the-art verification algorithms

In this section, we introduce some state-of-the-art verification algorithms. In partic-
ular, we are going to focus on algorithms using symbolic interval propagation since

19

2.6. STATE-OF-THE-ART VERIFICATION ALGORITHMS Chapter 2. Background

our algorithm builds on these approaches. However, for completeness, we are also
going to mention a few other approaches.

2.6.1 Symbolic interval propagation based algorithms

The algorithm from (Wang et al., 2018b) was, to our knowledge, the first algorithm
using symbolic interval propagation for neural network verification. It uses the stan-
dard symbolic interval propagation from section 2.5.2, except that it does not use
linear relaxation for the activation functions. Instead, the algorithm only propa-
gates equations through the ReLU nodes operating in the linear area. For nodes
operating in the non-linear area, it calculates concrete minima and maxima values
from the equations and propagates those values instead, similar to the näıve interval
propagation. The refinement phase is implemented by splitting the input nodes, as
illustrated in figure 2.9. The algorithm uses an interval-based gradient analysis to
determine which input node to split.

In1

In2

h21

h22

Out

[-1, 1]
[-1, 0]
[0, 1]

[-1, 1]

1

2

2
3

−1

1

[-3, 3]
[-3, 2]
[-2, 3]

[-5, 5]
[-5, 3]
[-3, 5]

[-8, 8]
[-7, 6]
[-6, 7]

[-7, 6] ∪ [-6, 7] = [-7, 7]

Figure 2.9: Example of refinement through input bisection with näıve interval propa-
gation. The black intervals are done without bisection, while the red intervals are the
results from bisecting In1. The intersection of the bisection intervals at the output is
tighter than without bisection.

This approach has some challenges compared to other complete verification algo-
rithms. First of all, since the splitting is done in the input domain and not the ReLU
nodes, there is no guarantee that the overestimation ever reaches 0 and the algo-
rithm is technically not complete. However, the authors prove this strategy reaches
an arbitrary overestimation > 0 in a finite number of splits. Secondly, propagating
concrete values instead of equations through ReLU nodes results in lost information
about the conditional dependencies. Finally, the algorithm searches for counterex-
amples by picking random values from the input space and checking if they are valid
counterexamples, this can take a very long time.

20

Chapter 2. Background 2.6. STATE-OF-THE-ART VERIFICATION ALGORITHMS

Symbolic Interval
Propagation

LP-Solver

Refine and
branch

Verification constraints

constraints

Spurious
counterexample

Unsat

Backtrack/Safe

Real counter-
example

Unsafe

split
constraints

timeout

Figure 2.10: The pipeline from (Wang et al., 2018a)

The previous approach is improved upon in (Wang et al., 2018a), which is also
closer to our proposed algorithm described in the next chapter. This method starts
with symbolic interval propagation to calculate bounds on the output nodes. These
bounds, together with the constraints from the verification problem, are then used
as constraints in a satisfiability call to the LP-solver. If the LP-solver returns UNSAT,
no counterexample exists, and the branch is safe. If the LP-solver returns a potential
counterexample, and it is valid, the property is unsafe. However, if it is a spurious
counterexample, the algorithm starts a refinement stage by splitting the input to a
ReLU node at 0 and branching. So, one branch explores the case that the input to the
ReLU node is larger than 0, and the other that the input is smaller than 0. The split-
ting is implemented by adding the relevant split-constraints to the symbolic interval
propagation and the LP-solver. The process repeats until the property is proven to be
safe, unsafe, or a time-out criterion is reached. The pipeline is illustrated in figure
2.10.

This algorithm uses linear relaxations in the symbolic interval propagation phase,
which should result in reduced conditional dependency issues compared to the first
approach. Furthermore, Splitting ReLU nodes ensures that all overestimation is re-
moved in a finite number of branches, which makes the algorithm complete.

Both of the algorithms mentioned above originally used the standard symbolic inter-
val propagation. However, the latest implementations (Wang et al., 2019b,a) have
switched to the error-based symbolic interval propagation described in section 2.5.2.

2.6.2 SMT-based algorithms

SMT-based complete verification algorithms (Ehlers, 2017; Katz(B) et al., 2017; Katz
et al., 2019) use LP-solvers to evaluate the satisfiability of relaxed versions of the ver-
ification problems. If no conclusion can be drawn from the relaxed problems, they

21

2.6. STATE-OF-THE-ART VERIFICATION ALGORITHMS Chapter 2. Background

refine the problem by splitting nodes with piecewise linear activation functions using
an SAT-solver.

The first approach (Ehlers, 2017) relaxes ReLU nodes with the three-constraint lin-
ear relaxation from section 2.5.1. The algorithm also supports the piecewise linear
max-pooling layer using a similar relaxation. These relaxations are used to encode
the problem as an LP-system, and all possible splits resulting in the nodes operating
in linear areas are encoded as a boolean formula in the SAT-solver.

The method starts by linearly relaxing all ReLU and max-pooling nodes operating
in the non-linear area. The algorithm iteratively splits the nodes and branches. For
each branch, there are two possible scenarios. If the resulting constraints are de-
termined to be unsatisfiable by the LP-solver, the algorithm backtracks to another
branch in the SAT-solver. If no more branches exist, there is no valid assignment
to the variables, and the verification-property is proven safe. The second scenario
is that the resulting system is satisfiable, and the algorithm continues the splitting
on a new node. If a valid assignment is found after splitting all nodes, there is no
more overestimation, so the assignment is a valid counterexample, and the property
is unsafe.

This algorithm is combined with several steps to guide the search. Each time a
branch is determined to be unsatisfiable, the algorithm adds a conflict clause to the
SAT-solver, ruling out as many branches as possible with elastic filtering (Chinneck
and Dravnieks, 1991). The approach also utilises the objective function of the LP-
solver to force the outputs of the linear relaxations towards the true ReLU function,
proving satisfiability for several branches at once. Furthermore, naive interval prop-
agation is used to continuously improve the lower and upper input bounds to each
node, reducing overestimation from the relaxations.

The second algorithm, (Katz(B) et al., 2017), extends the Simplex algorithm for solv-
ing linear programs to support non-linear ReLU constraints. The idea is to describe
each ReLU node using two variables, the forward and backward facing variable,
vb and vf , as illustrated in figure 2.11. While running the Simplex algorithm, Re-
luplex treats these two variables as independent variables. After Simplex finds a
valid assignment to the linear system, the algorithm enforces the ReLU constraints,
vf = max(0, vb). This can lead to an invalid assignment for the Simplex equations, in
which case the process is repeated. If a ReLU constraint is enforced too many times,
the algorithm branches by splitting the node. If a valid assignment is found, it is a
counterexample, and the property is unsafe. Otherwise, if the simplex system or the
ReLU constraints are unsatisfiable, the property is proven safe. Similar to (Ehlers,
2017), this algorithm also continuously refines the lower and upper input bounds to
each node.

Finally, (Katz et al., 2019) is a extension of (Katz(B) et al., 2017). Most notably, they
add a divide and conquer step, allowing the algorithm to also split on input nodes,

22

Chapter 2. Background 2.6. STATE-OF-THE-ART VERIFICATION ALGORITHMS

vb vf

Input constraints
Enforced during Simplex phase

Output constraints
Enforced during Simplex phase

vf = max(0, vb)

Enforced during ReLU phase

Figure 2.11: Illustration of the ReLU node split into forward- and backward-facing
variable used in (Katz(B) et al., 2017)

and they add a symbolic interval propagation step used to calculate tighter bounds
improving the performance of the Simplex step.

2.6.3 MILP-based algorithms

(Tjeng et al., 2018) uses a MILP solver to solve verification problems for neural
networks. Piecewise linear functions can be directly encoded as MILP constraints
using real-valued and binary variables. The paper provides MILP encodings for ReLU
functions and max-pooling layers. The 5 constraints used to encode a ReLU node are:

(σ(z) ≥ 0), (σ(z) > z), (σ(z) ≤ a× u), (σ(z) ≤ z − l(1− a)), (a ∈ {0, 1})

Where, z is the input to the node, σ(z) is the output, l, u are the lower and upper
bounds on the input, and a is a binary variable used to encode the non-linear part of
the ReLU. The algorithm uses either näıve interval arithmetic or linear programming,
maximising and minimising each nodes inputs layer-wise to find the lower and upper
bounds on the input nodes.

2.6.4 Sound but incomplete algorithms

Since our algorithm is complete for networks using only piecewise linear functions,
we primarily focus on complete algorithms in this report. However, our algorithm
also supports s-shaped activation functions such as the Sigmoid, at the cost of com-
pleteness. So in this section, we will give an introduction to some state-of-the-art
sound but incomplete algorithms supporting s-shaped activation functions.

The algorithm from (Singh et al., 2018) uses an abstract interpretation based ap-
proach for sound verification of networks using ReLU, Sigmoid, or Tanh activation
functions. The algorithm uses the Zonotope abstractions, where each variable xj of
a vector x is represented by: 1

1Note that the actual algorithm in (Singh et al., 2018) uses intervals instead of concrete values for
all coefficients to achieve soundness with respect to floating-point arithmetic. We have not considered
this here for simplicity.

23

2.6. STATE-OF-THE-ART VERIFICATION ALGORITHMS Chapter 2. Background

x̂j = αj,0 +
m∑
i=1

αj,iεi

αj,0, αj,i,∈ R, εi ∈ [−1, 1]

Assuming that variable xj is bounded by a concrete interval [xlj, x
u
j], we can encode

xj as x̂j = αj,0 +αj,jεj where αj,0 = (xlj + xuj)/2 and αj,j = (xlj − xuj)/2. The next step
is to define abstract transformers for the affine operations of the neural network. For
a fully-connected layer with weight matrix W ∈ Rm×n and bias vector b ∈ Rn, we
can use the exact abstract transformer:

ẑj = T (ŷ)j = (bj +
∑
i

Wj,iαi,) +
n∑
i=1

(
m∑
k=1

Wj,kαk,i)εi

The noise symbols are shared for all input variables, capturing the conditional depen-
dency between variables. Finally, we need abstract transformers for the activation
functions. The transformer used in (Singh et al., 2018) for the ReLU is:

λ =
zu

zu − zl
µ =

zuzl
2(zu − zl)

ŷ = λẑ + µ+ µεnew

Where zl and zy are the lower and upper bounds on the input and εnew is a new
noise variable. Interestingly, by substituting εnew with its minima and maxima, −1
and 1, we get the upper and lower linear relaxation used in the symbolic interval
propagation approach of (Wang et al., 2018a). The abstract transformer for the fully
connected layer is also exactly the same as used in the symbolic interval propagation.

It actually turns out that the approach described in this section is almost equivalent
to the error-based symbolic interval propagation from section 2.5.2. The main differ-
ence is the ReLU transform. The abstract transformation described here is the same
as we would get if we propagated our equation through a line in the middle of the
lower and upper linear relaxation instead of the lower linear relaxation. This would
require us to keep track of a lower and upper error, instead of just an upper error.
The new noise variable, εnew represents this by varying from −1, corresponding to
the lower relaxation, to +1, corresponding to the upper. The second difference is
that the bounds on the input variables to the network are only used when calculat-
ing concrete upper and lower bounds in the symbolic interval propagation. In this
approach, they are directly encoded into the Zonotopes instead. However, both of
these methods should result in precisely the same bounds on the output of the net-
work.

This duality between the Zonotope approach and the symbolic interval propagation
indicates that we can use the abstract transformers for the s-shaped activation func-
tions as inspiration to define linear relaxations. The abstract transformers used for

24

Chapter 2. Background 2.6. STATE-OF-THE-ART VERIFICATION ALGORITHMS

the Sigmoid in (Singh et al., 2018) are equivalent to the lower and upper linear
relaxations:

λ = min(σ′(zl), σ
′(zu))

rl(z) = σ(zl) + λ(z − zl)
ru(z) = σ(zu) + λ(z − zu)

Where zl and zu are the lower and upper input-bounds respectively. The relaxation
is illustrated in figure 2.12. While these relaxations are valid, the large projected
area in the xy-plane indicates that they might not be optimal. This is discussed in
more detail in chapter 3.

Figure 2.12: Zonotope abstraction for Sigmoid with lower and upper input bound −4
and 2 respectively.

The Zonotpe approach of (Singh et al., 2018) was further improved in (Singh et al.,
2019). Most notably, the algorithm introduces a new abstract domain with a lower
and upper bounding equation for each variable. This also opens the possibility for
abstract transformers with non-parallel lower and upper bounds. For Sigmoid ac-
tivation functions with zl < 0 and zu > 0, this algorithm uses almost the same
abstraction as (Singh et al., 2018); except that the lower and upper relaxation are
calculated separately. So the upper relaxation is given by ru(z) = σ(zu)+σ

′(zu)(z−zu)
and the lower relaxation is rl(z) = σ(zl)+σ′(zl)(z−zl). If zl ≥ 0 or zu ≤ 0 the line in-
tercepting σ(zl) and σ(zu) is used for the lower or upper bound respectively instead.
The experimental results show that this approach achieves better precision than the
pointwise zonotopes; however, the runtime is somewhat longer for some networks.

The previous approaches have been further improved for ReLU networks by adding
a refinement step in (Singh et al., 2019). This algorithm uses the abstract transform-
ers from (Singh et al., 2018), but refines the calculated bounds by encoding a few
of the early layers as MILP or LP-systems. Since MILP problems are computation-
ally expensive, the MILP-solver is only used to calculate bounds for some nodes in

25

2.7. ETHICAL CONSIDERATION Chapter 2. Background

early layers. In later layers, an LP-solver is used instead with the linear relaxations
from (Ehlers, 2017). Finally, in the last layers, only abstract interpretation is used.
If the MILP-solver is used for all nodes operating in non-linear areas, the approach
is complete and similar to 2.6.3. The difference is that abstract interpretations are
used to calculate concrete bounds for the MILP constraints instead of interval and
LP analysis.

Finally, the verification algorithm from (Zhang et al., 2018) also supports s-shaped
activation functions. This paper focuses on finding minimal adversarial distances
using a symbolic interval propagation based approach. The minimal adversarial dis-
tance is defined as the minimal ε, such that there are adversarial examples for inputs
in a ball, Bp(x, ε). Since we do not focus on minimal adversarial distances in this re-
port, we wont cover the algorithm here. However, the paper introduces relaxations
for s-shaped activation functions, and we build on this approach in chapter 3.

For the Sigmoid, the paper uses three different relaxations, depending on the lower
and upper input bounds, zl and zu. If zu ≤ 0, the Sigmoid operates in the convex
area, and they use the line intercepting both endpoints, σ(zl) and σ(zu), as an upper
linear relaxation. If zl ≥ 0 the Sigmoid is concave, and any tangent to the Sigmoid
can be used as an upper relaxation. However, the paper does not specify which
tangent they use. Finally, if zl < 0 and zu > 0, they use the line that intercepts σ(zl)
and is a tangent to σ(zt) for some zt > 0. The value of zt is determined using a binary
search. The lower relaxation and the Tanh are done analogously.

2.7 Ethical consideration

Our project is a software project and does not involve any experiments on humans or
animals and does not pose any physical or environmental safety hazards. We do not
collect or use any personal or sensitive data. All data used for experiments are from
large open-source datasets commonly used for benchmarking in machine learning
projects.

We do not see any direct applications for our project in military use. However, the
nature of machine learning algorithms is general in the sense that the same algo-
rithms can be applied to a wide range of problems, also in military use. Our project
could be used to analyse and improve the design and performance of neural net-
works, which again might have military applications. We do, however, not consider
this potential to be larger than for any other machine learning-based research.

Our software uses several open-source libraries. We have made sure to credit the
authors were this applies. We also use Gurobi, which is proprietary software with a
free academic license. We do not distribute any parts of Gurobi with our software;
instead, we have included a guide on how to obtain Gurobi through their website.

26

Chapter 2. Background 2.8. SUMMARY

2.8 Summary

In this chapter, we introduced feed-forward neural networks, a layered neural net-
work design where the pre-activation values of each node are only dependent on
post-activation values from nodes in previous layers. The most common verification
problem for these networks is to prove that the output stays within some bounds,
given concrete lower and upper bounds on the input. We reviewed complete verifica-
tion algorithms based on symbolic interval arithmetic, SMT-solvers, and MILP-solvers
able to solve these types of problems for ReLU networks. Finally, we introduced a
few sound but incomplete algorithms based on abstract interpretation also able to
solve verification problems for networks with Sigmoid and Tanh activation functions.

27

Chapter 3

Contribution

In this chapter, we present our proposed algorithm for efficient verification of neural
networks. The algorithm builds on the error-based symbolic interval propagation
approach, and a complete description is given in the first section. The following sec-
tions describe our novel contributions in detail, and the last section contains proofs
for soundness and completeness.

3.1 Algorithm overview

The algorithm handles the general verification problem from definition 2.2.1, and
we represent this problem as a tuple 〈f,xl,xu, ψy, L〉. f : Rm → Rn is an FFNN,
xl,xu ∈ Rm are concrete lower and upper bounds on the input, and ψy is a set of LP
constraints on the output. L : Rm → R is a loss function used for local search which
we cover in more detail later. If the output constraints, ψy, are proven to be unsatis-
fiable, our algorithm returns ”safe”, if not we return ”unsafe” and a counterexample
x′ such that f(x′) violates ψy.

Given a verification problem, 〈f,xl,xu, ψy, L〉, the algorithm initialises by running
the error-based symbolic interval propagation described in section 2.5.2, producing
bounds on the output, ψy,eq(x). These bounds, the concrete lower and upper inputs,
xl,xu, and the output constraints ψy are used as constraints in a satisfiability call to
the LP-solver. If the solver determines that the problem is unsatisfiable, it is provably
safe for the current branch and the algorithm backtracks. Otherwise, the solution
from the solver, x′, is checked for validity by determining if f(x′) violates any con-
straints in ψy. If the counterexample does not violate any constraint, the property is
proven unsafe, and the algorithm terminates returning x′. Otherwise, a local search
is initiated around the spurious result, x′, as described below. If still no valid coun-
terexample is found, the refinement phase is launched. This phase adaptively splits
the input to the most influential node by adding split-constraints to the LP-solver
and symbolic interval propagation. Finally, both branches are explored by restart-
ing from the symbolic interval propagation. The algorithm terminates when a valid
counterexample is found, all branches have been proven safe, or a timeout crite-
rion is reached. The whole pipeline is illustrated in figure 3.1 and implemented in a

28

Chapter 3. Contribution3.2. ADAPTIVE SPLITTING VS HIERARCHICAL SPLITTING

python library, called VeriNet. The rest of this chapter covers our novel contributions
while the implementation details of the individual steps are covered in chapter 5.

Our algorithm introduces three major changes compared to (Wang et al., 2018a).

• We use an adaptive splitting strategy, always splitting the most influential
node independent of its location in the network. This is in contrast to Neurifys
(Wang et al., 2018a) hierarchical splitting strategy, starting at the first fully-
connected layer, and only moving on to the next layer after splitting all nodes
in the previous.

• We implement a local search phase, using spurious counterexamples from the
LP-solver as a starting point for an adversarial attack in an attempt to find valid
counterexamples.

• We add support for more activation functions. (Wang et al., 2018a) only
supports the ReLU activation function, while we extend our algorithm to also
support s-shaped activation functions and batch normalisation layers.

Symbolic Interval
Propagation LP-Solver

Local search
Refine and

branch

Verification constraints

constraints

Possible
counterexample

Unsat

Backtrack/Safe

Real counter-
example

Unsafe

split
constraints

No counter-
example

timeout

Figure 3.1: The pipeline for our algorithm. The main difference from (Wang et al.,
2018a) is the local search and the implementation of the refine and branch step.

3.2 Adaptive splitting vs hierarchical splitting

For fully connected networks, Neurify (Wang et al., 2018a) uses a hierarchical split-
ting strategy, starting at the first layer and moving to the next layer after splitting
all nodes in the previous layer. Splitting in the first layers has the advantage of
improving bounds for later nodes, which improves the relaxations for these nodes.
However, there are some significant disadvantages to this approach. First of all,

29

3.3. SPLITTING HEURISTIC Chapter 3. Contribution

there is no guarantee that all nodes operating in the non-linear area have a signif-
icant impact on the output. This may lead to splitting on relatively unimportant
nodes, before reaching nodes with more influence on the output. Furthermore, after
each split the equations for all succeeding nodes change; so the symbolic interval
propagation has to be re-run from the layer where the split happens. So, splitting
nodes in earlier layers is more computationally expensive. Finally, our experiments
indicate that splitting in layers with few nodes is a significant advantage. Many neu-
ral networks, especially convolutional networks, have a non-uniform architecture
with significantly fewer nodes in some layers. Hierarchical splitting might have to
split a significant amount of nodes in larger layers before reaching more impactful
nodes in smaller layers.

To avoid these limitations, our algorithm uses an adaptive splitting strategy instead.
This strategy chooses split-nodes by evaluating their impact on the output, disre-
garding their location in the network, thus solving the limitations of the hierarchical
approach. However, the adaptive method also introduces a new challenge. Dur-
ing hierarchical splitting, we can add and remove the latest split-constraints, safely
assuming that no other constraints are affected. This is not true for adaptive split-
ting, since we already might have split-constraints in layers after the adjusted node,
and the symbolic equations for these constraints change. This requires us to modify
the LP-solver constraints, which is a computationally expensive task. However, even
with this added complexity, we have seen some improvements for networks with
uniform layers and significant improvements for larger cone-shaped convolutional
neural networks. The LP-constraints we use for splitting in our implementation are
described in chapter 5.

3.3 Splitting heuristic

The algorithm from (Wang et al., 2018a) uses a heuristic based on interval gradient
analysis to determine the next split-node. Our approach instead utilizes the error-
matrix calculated in the forward pass to define a heuristic. Remember that if Em

k,h is
the error matrix at the output layer, the bounds for output node k are calculated as:

zil,k = min(eqiin(x)k) +
∑

h| (Ei
in)k,h<0

(Ei
in)k,h

ziu,k = max(eqiin(x)k) +
∑

h| (Ei
in)k,h>0

(Ei
in)k,h

We use this to define an intuitive splitting heuristic. For a classification problem
with correct class c, we either want to increase the lower bound of output node c by
removing negative errors from the error matrix Em

c,h, or decrease the upper bound
of potential counterexample-classes, t, by removing positive errors from Em

t,h. So
for each hidden node h we calculate the impact-score as s(h) = γcmax(Em

c,h, 0) −∑
t6=c γtmin(Em

t,h, 0), where γ is a weighing factor. For classes that have been proven
safe in previous branches, we use γ = 0, for the correct class we use γ = n where n is

30

Chapter 3. Contribution 3.4. LOCAL SEARCH

the number of potential counterexample classes, and for the rest, we use γ = 1. The
reasoning for weighing the correct class more is that increasing the lower bound of
the correct class might help prove all other classes safe. We have not observed very
significant performance differences in our heuristic vs the gradient-based heuristic.
However, our heuristic is less complex since the error-matrix is calculated in the for-
ward pass, while gradient calculations need a separate back-propagation phase.

Notice that both the gradient and the error heuristic have their limitations. Most
noticeably, both of them only measure the direct effect on the output by splitting a
node. They do not account for the fact that splitting a node in earlier layers will also
indirectly improve the output bounds by improving the relaxations of all succeeding
nodes. So, our heuristic undervalues the effect of splitting nodes in the early layers.
Secondly, none of the heuristics take into account that splitting in later layers is
computationally advantageous since we only have to redo interval propagation from
the layer where we split. This effect results in our heuristics undervaluing splits in
later layers. These two effects could to some degree cancel out, however further
research into this area is required.

3.4 Local search

In Wang et al. (2018a), potential counterexamples from the LP-solver, x′, are tested
for validity by calculating y′ = f(x′) and checking if y′ violates any constraints in
ψy. If a counterexample is spurious, this approach skips straight to the refinement
phase. Our algorithm instead introduces a new local search phase before refinement.
The intuition is that a true counterexample may be ”close” to the spurious results.
This is because the LP-constraints are designed to approximate the true behaviour of
the network.

The local search is implemented as a gradient descent with the spurious counterex-
ample as a starting point. The loss function, L(x), depends on the verification prob-
lem and LP-solver output. For classification problems with a correct class c that
potentially can be misclassified as class t, the loss function is L(x) = yc− yt where yc
and yt are the outputs of the correct and potential class respectively. The potential
counterexample classes, t, are the classes having a larger upper bound than the cor-
rect class’s lower bound in the symbolic interval propagation. In the case of multiple
potential counterexample classes, t, the gradient descent is run once for each class.
After each gradient descent step, the result, xi, is clipped to the input bounds. The
gradient descent is terminated if the loss changes less than a given fraction, or after
a specified number of steps.

3.5 Supported activation functions

While (Wang et al., 2018a) only supports ReLU activation functions, our imple-
mentation natively supports the Sigmoid and Tanh activation functions and batch-

31

3.5. SUPPORTED ACTIVATION FUNCTIONS Chapter 3. Contribution

normalisation layers. The only requirement for adding more activation functions is
that we define their linear relaxations. In this section, we define linear relaxations
for all s-shaped activation functions, including the Sigmoid and Tanh. For the ReLU
activation function, we use the same linear relaxation as Wang et al. (2018a), illus-
trated in figure 2.2.

3.5.1 S-shaped activation functions

Most of the activation functions used in neural networks can be divided into two
families. The first family contains the piecewise linear activations such as the ReLU
and MaxPool. Secondly, we have the s-shaped activation functions such as the Sig-
moid and Tanh. 1

Definition 3.5.1. A continuous function σ : R → R is a s-shaped activation function
iff:

1. σ′′(z)


> 0 if z < 0

< 0 if z > 0

= 0 if z = 0

2. σ′(z) ≥ 0 for all z.

3. σ′(z) = σ′(−z) for all z.

4. σ′′(z) is differentiable for all z.

This definition is somewhat more restricted than the usual definition of s-shaped
functions. Notice especially that we require three times differentiability and that the
shift from convex to concave happens at z = 0. The three times differentiability is
important in the calculations of optimal solutions, but not for calculating valid solu-
tions. The condition σ′′(z) = 0 iff z = 0 is only for computational convenience, and
our algorithm can easily be extended to support s-shaped functions with σ′′(z) = 0
at some other z.

S-shaped activation functions are only supported by a few verification algorithms,
most notably in (Zhang et al., 2018; Singh et al., 2018, 2019) as discussed in section
2.6.4. All of these algorithms have defined valid relaxations for both the Sigmoid and
Tanh; however, none of them have focused on finding optimal relaxations, which we
will do in this section. In this report, we only derive the upper linear relaxation; the
lower relaxation is done analogously. Formal definitions of a upper linear relaxation
and optimal upper linear relaxation are given below.

Definition 3.5.2. A linear function, ru : [zl, zu] → R, is a upper linear relaxation of
σ : [zl, zu]→ R iff ru(z) > σ(z)∀z ∈ [zl, zu].

1A few common activation functions do not fit in either family, such as the exponential-linear unit
(ELU). Those functions are not covered in this report; however, they can be implemented by defining
valid linear relaxations.

32

Chapter 3. Contribution 3.5. SUPPORTED ACTIVATION FUNCTIONS

Definition 3.5.3. An upper linear relaxation, ru : [zl, zu] → R of σ : [zl, zu] → R is
optimal iff it is the upper linear relaxation that minimises

∫ zu
zl
r(z)− σ(z)dz.

So, our definition of optimal linear relaxations minimises the projected relaxation
area in the xy-plane. Treating this as a standard optimization problem results in
non-linear constraints because of the s-shaped activation function. Solving a non-
linear optimisation problem for each node in a large neural network is infeasible, so
we have to find another approach. For the rest of this section let σ(z) be an s-shaped
activation function and let zl and zu be the lower and upper bound on the input. We
start by proving two important lemmas for the optimal linear relaxation.

Lemma 3.5.1. Let σ : [zl, zu] → R be an s-shaped activation function. If the line
ru(z) intercepting both endpoints,σ(zl) and σ(zu), is a valid upper linear relaxation, it
is optimal.

Proof. Let l(z) be another line such that
∫ zu
zl
l(z) − σ(z)dz <

∫ zu
zl
r(z) −

σ(z)dz. This requires l(z′) < ru(z
′) for at least one z′ ∈ [zl, zu]. If z′ = zl,

then l(zl) < ru(zl) = σ(zl) and l(z) is not an upper linear relaxation. If
z′ ∈ (zl, zu] and l(zl) ≥ ru(zl) then l′(z) < r′u(z) and l(zu) < r(zu) = σ(zu).
So l(z) can’t be a upper relaxation, and ru(z) is the optimal upper linear
relaxation.

Lemma 3.5.2. Let σ[zl, zu] → R be an s-shaped activation function. If the line ru :
[zl, zu] → R intercepting both endpoints, σ(zl) and σ(zu), is not a valid upper linear
relaxation, then the optimal linear relaxation is a tangent line to σ for a tangent point
z′ ∈ [zl, zu].

Proof. It is obvious that for an optimal upper linear relaxation, ru(z) we
have ru(z′) = σ(z′) for at least one point z′ ∈ [zl, zu]. Since ru(z) ≥ σ(z)
for all z ∈ [zl, zu] we know that z′ is a either tangent point or z′ is one of
the endpoints. If z′ is a tangent point we are done.

Else, assume for contradiction that ru is not a tangent to σ and ru(zu) =
σ(zu). Since ru is a valid upper linear relaxation it can’t intercept σ for any
z ∈ (zl, zu), and it can’t intercept zl from the assumptions. So ru(z) > σ(z)
for all z ∈ [zl, zu). Since ru(z) is strictly larger than σ(z) on [zl, zu), there
is a line l(z) intercepting σ(zu) with σ(z) ≤ l(z) < ru(z). So l(z) is a valid
upper linear relaxation, smaller than ru(z) for all z ∈ [zl, zu) meaning ru
is not be optimal, and we have our contradiction.

If ru(zl) = σ(zl) the proof is analogous.

These two lemmas prove that if the line intercepting both endpoints is a valid upper
linear relaxation, it is the optimal upper linear relaxation. If this line is not valid, the
optimal linear relaxation is a tangent to σ for a tangent point in [zl, zu].

For the rest of the chapter, we split the input domain into three cases and analyse
them separately. Let S+ = {(zl, zu)|zl ≥ 0}, S− = {(zl, zu)|zu ≤ 0}, and S+/− =

33

3.5. SUPPORTED ACTIVATION FUNCTIONS Chapter 3. Contribution

{(zl, zu)|zl < 0, zu > 0}. This is the same segmentation is used in (Zhang et al.,
2018). If zl = zu there is no need for a relaxation, so for the rest of the chapter
assume zl 6= zu.

Negative upper bound, (zl, zu) ∈ S−.

The case where (zl, zu) ∈ S− is simple, σ(z) is convex for z ≤ 0 so the line intercept-
ing both endpoints is a valid upper relaxation and optimal. This is illustrated for the
Sigmoid in figure 3.2a and is the same approach used in (Zhang et al., 2018). In this
case, ru(z) is:

ru(z) =
σ(zu)− σ(zl)

zu − zl
(z − zu) + σ(zu)

Positive lower bound, (zl, zu) ∈ S+.

The line intercepting the both endpoints is not a valid upper relaxation when (zl, zu) ∈
S+. However, since σ(z) is concave for z ≥ 0 we can use any tangent to σ(zt) for
zt ≥ 0 (Zhang et al., 2018). The next theorem provides us with the optimal tangent
point:

Theorem 3.5.1. Let σ : [zl, zu]→ R be an s-shaped activation function. If 0 ≤ zl < zu,
the optimal upper linear relaxation, ru(z) is the tangent at zt =

z2u−z2l
2(zu−zl)

.

Proof. Let A : [zl, zu]→ R be defined by A(zt) =
∫ zu
zl
ru(z)− σ(z)dz. From

theorem 3.5.2, the optimal upper linear relaxation, ru, is a tangent to
σ(z), so ru(z)) = σ′(zt)(z − zt) + σ(zt). To find zt, we find the minimise
A(xt):

A(zt) =

∫ zu

zl

σ′(zt)(z − zt) + σ(zt)dz −
∫ zu

zl

σ(z)dz

=

[
z2

2
σ′(zt)− ztzσ′(zt) + zσ(zt)

]zu
zl

− (Λ(zu)− Λ(zl))

A′(zt) =

[
z2

2
σ′′(zt)− zσ′(zt)− ztzσ′′(zt) + zσ′(zt)

]zu
zl

=
[
zσ′′(zt)(

z

2
− zt)

]zu
zl

= σ′′(zt)(zu(
zu
2
− zt)− zl(

zl
2
− zt)) = 0

This equation has two solutions. Firstly, σ′′(zt) = 0, secondly we have:

zu(
zu
2
− zt)− zl(

zl
2
− zt) = 0 =⇒ zt =

z2
u − z2

l

2(zu − zl)
From the definition of σ, we know that σ′′(zt) = 0 =⇒ zt = 0. Since
zl ≥ 0, and zt ∈ [zl, zu], we know that σ′′(zt) = 0 =⇒ zt = zl.

34

Chapter 3. Contribution 3.5. SUPPORTED ACTIVATION FUNCTIONS

This leaves us with three candidate tangent points for the minima, the
endpoints zl, zu and z2u−z2l

2(zu−zl)
. The derivative at zu is:

A′(zu) = σ′′(zu)(zu(
zu
2
− zu)− zl(

zl
2
− zu))

= σ′′(zu)(
2zlzu − z2

u − z2
l

2
))

= −σ′′(zu)(
(zu − zl)2

2
))

Since σ′′(zu) < 0, we know that A′(zu) > 0 and this can’t be a minima.
Analogously, A′(zl) < 0, so the tangent at zl can’t be a minima either.
Finally, A is defined on a closed interval so it has a minima and the only
remaining candidate is the tangent at zt =

z2u−z2l
2(zu−zl)

.

This solution is illustrated in figure 3.2b.

(a) Upper relaxation intercepting endpoints (b) Tangent as upper relaxation

Mixed positive and negative bounds, (zl, zu) ∈ S+/−.

For (zl, zu) ∈ S+/−, the optimal linear relaxation depends on the exact values of zl
and zu. From lemma 3.5.1 we know that if the line intercepting σ(zl) andσ(zu) is a
valid upper relaxation, it is optimal, and the following theorem provides us with a
test to check if this line is a valid.

Theorem 3.5.2. Let σ : [zl, zu] → R be an s-shaped activation function with zl ≤ 0
and zu > 0. Furthermore, let ru : [zl, zu] → R be the line intercepting σ(zl) and σ(zu).
ru(z) is a valid upper relaxation iff r′u(zu) ≤ σ′(zu).

Proof. First assume that ru is not a valid upper linear relaxation, so ru(z∗) <
σ(z∗) for some z∗ ∈ [zl, zu]. If z∗ ∈ [0, zu] then ru(z) < σ(z) for all z ∈
[z∗, zu] since ru(z) intercepts σ(zu) and we are in the concave part of σ(z).
As ru(z) < σ(z) before zu and intercepts σ(zu) we have r′u(zu) > σ′(zu).
If z∗ ∈ [zl, 0], we also have ru(0) < σ(0) since ru(z) intercepts the lower

35

3.5. SUPPORTED ACTIVATION FUNCTIONS Chapter 3. Contribution

endpoint, σ(zl), and σ′′(z) > 0 for z < 0. This combined with the first
argument shows that r′u(zu) > σ′(zu). So, all invalid linear relaxations
have r′u(zu) > σ′(zu), and ru(z) is valid if r′u(zu) ≤ σ′(zu).

Finally, assume that ru(z) is a valid upper linear relaxation. Then ru(z) ≥
σ(z) for all z ∈ [zl, zu], and since ru(zu) = σ(zu) we have r′u(zu) ≤ σ′(zu).

Theorem 3.5.2 lets us use the condition r′u(zu) ≤ σ′(zl) to check if the line inter-
cepting both endpoints is a valid upper relaxation. If this is not the case, we know
from lemma 3.5.2 that the optimal relaxation is a tangent. From theorem 3.5.1, the
optimal tangent point is:

zt =
z2
u − z2

l

2(zu − zl)
However, this time this tangent is not automatically a valid upper relaxation since
σ is not concave for zl < 0. The next theorem provides a simple test to check if a
tangent is a valid upper relaxation.

Theorem 3.5.3. Let σ : [zl, zu]→ R be an s-shaped activation function with zl ≤ 0 and
zu > 0. Furthermore, let ru(z) be the tangent line at σ(zt) for zt ≥ 0. ru(z) is a valid
upper relaxation iff ru(zl) ≥ σ(zl).

Proof. Assume that ru(zl) ≥ σ(zl). Since ru(z) is a tangent line in the
concave part of σ(z) we know that ru(z) ≥ σ(z) for z ≥ 0. Since σ(z)
is convex for z ≤ 0, ru(zl) > σ(zl) and ru(z) intercepts both σ(zl) and
ru(0) ≥ σ(0) we know that ru(z) > σ(z) for all zl ≤ z ≤ 0 and ru(z) is a
valid upper linear relaxation.

If ru(z) is a valid upper linear relaxation, ru(zl) ≥ σ(zl) follows directly
from the definition.

So, we can use the condition ru(zl) ≥ σ(zl) to test if the optimal tangent line is a
valid upper relaxation. If this is not the case, we have one last possibility.

Theorem 3.5.4. Let σ : [zl, zu] → R be an s-shaped activation function with zl ≤ 0
and zu > 0, and let z∗t be the minimal z such that the tangent at σ(z∗t) is a valid
upper relaxation. Assume that the line intercepting both endpoints and the tangent
from theorem 3.5.1 are not a valid upper relaxation. Then the tangent at σ(z∗t) is the
optimal valid upper relaxation.

Proof. Since the line intercepting both endpoints is not a valid upper re-
laxation, the optimal valid upper relaxation is a tangent. A tangent is a
valid upper relaxation iff z∗t ≤ zt ≤ zu. We have shown that A′(zt) only
has two zeros. The first solution zt = 0 is a maximum and the second
solution is assumed to be an invalid upper relaxation. So A(zt) has no
minima’s for z∗t < zt < zu. This means that the minima is achieved at
either zt = z∗t or zt = zu. In the proof of theorem 3.5.1, we did show that

36

Chapter 3. Contribution 3.5. SUPPORTED ACTIVATION FUNCTIONS

A′(zu) > 0 so zt = zu is not minimal. This only leaves us with A(z∗t) as
minimal.

Figure 3.3: Minimal tangent point z∗t

The minimal tangent point, z∗t is illustrated in figure 3.3. The only thing that remains
is to determine z∗t . Since the tangent at σ(z∗t) intercepts σ(zl). the slope, a, of the
linear relaxation, ru(z), is given by:

a =
σ(z∗t)− σ(zl)

z∗t − zl
Since the slope is equal to the derivative at z∗t we have:

σ(z∗t)− σ(zl)

z∗t − zl
= σ′(z∗t)

Unfortunately, we can’t solve this equation analytically. Instead, we propose an effi-
cient iterative method to find ẑ∗t ≈ z∗t in the next section.

Iterative minimal tangent point approximation

As discussed in the last section, we need a method to find z∗t such that z∗t is the
minimal z where the tangent is a valid upper relaxation. We propose an algorithm
to estimate ẑ∗t ≈ z∗t . We also make sure that z∗t ≤ ẑ∗t ≤ zu, such that the tangent for
σ(z) at ẑ∗t is a valid upper relaxation. We are only interested in z∗t when we cannot
use a line intercepting both endpoints, so assume that zu > z∗t . In the analytical
approach, we tried to find the coordinate z∗t such that the slope of the line from zl to
z∗t is equal to the gradient of σ(z) at z∗t . Instead, we start by setting z0 = zu and find

37

3.5. SUPPORTED ACTIVATION FUNCTIONS Chapter 3. Contribution

the point z1, where the gradient of σ(z) is equal to the slope of the line between zl
and z0. zi can be found by solving:

σ(zi−1)− σ(zl)

zi−1 − zl
= σ′(zi)

We have solved this equation for zi for the Sigmoid and Tanh functions at the end
of this section. Since σ′(z) = σ′(−z) these equation will always have two solutions,
one for zi < 0 and one for zi > 0 corresponding to lower and upper relaxations. The
first step of the algorithm is illustrated in figure 3.4. We will prove that z∗t < zi < zu
for all i, so the tangent at σ(zi) is a valid upper relaxation. Furthermore, we are also
going to prove that zi < zi−1 so zi converges closer to the optimal solution z∗t each
iteration.

Figure 3.4: First step of the iterative optimal tangent coordinate algorithm. Calculate
the line r0(z) intercepting zl and z0 = zu. Find the tangent at σ(zt) with the same slope
as r0(z) and set z1 = zt

Theorem 3.5.5. Let σ : [zl, zu] → R be an s-shaped activation function with zl ≤ 0

and zu > 0 and let zi be the positive solution of σ(zi−1)−σ(zl)
zi−1−zl

= σ′(zi). Furthermore, let
z∗t be the minimal z such that the tangent line at σ(z∗t) is a valid upper relaxation and
let zi−1 > z∗t , then zi ∈ (z∗t , zi−1).

Proof sketch. Since the line intercepting both endpoints, l : R → R, is
not a valid upper relaxation, the line has to be smaller than σ(z) at some
points in the concave area, z > 0. This combined with the fact that
the line intercepts σ(zi−1) means that l(z) < σ(z) right before zi−1 and
l(z) > σ(z) right after. So the derivative of the line, a, is larger than

38

Chapter 3. Contribution 3.5. SUPPORTED ACTIVATION FUNCTIONS

σ′(zi). Since zi−1 is in the concave area of σ(z), we know that zi, where
σ′(zi) = a, has to be smaller than zi−1. So zi < zi−1.

Finally, from the definition of z∗t , the derivative, a, has to be smaller than
σ′(z∗t). Since z∗t also is in the concave area of σ(z), we know that the point
zi > 0 where σ′(zi) = a has to be larger than z∗t . So zi ∈ (z∗t , zi−1).

This theorem proves that with z0 = zu, the tangent at zi is a valid upper relaxation
since zi ≥ z∗t , and that it is a better upper relaxation than the tangent at zu since
zi < zu. We usually got acceptable results in very few steps, and we use a maximum
of 2 iterations in our implementation.

The relaxations presented in this section are optimal in the sense that they minimise
the area between them in the xy-plane. However, our error-based symbolic interval
propagation does not take full advantage of this. The concrete error is always calcu-
lated as the maximal distance between the relaxations, so for our algorithm, there
might be better performing parallel relaxations. Even so, the relaxations proposed
here performed significantly better than näıve solutions, as evident by the experi-
ments in the end of this report.

Sigmoid update rule:

σ(zi−1)− σ(zl)

zi−1 − zl
= σ(zi)(1− σ(zi))

σ(zi) =
1±

√
1− 4(σ(zi−1)− σ(zl))/(zi−1 − zl)

2
zi = − log(1/σ(zi)− 1)

Tanh update rule:

σ(zi−1)− σ(zl)

zi−1 − zl
= 1− σ(zi)

2

σ(zi) = ±
√

1− (σ(zi−1)− σ(zl))/(zi−1 − zl)

zi =
1

2
log

(
1 + σ(zi)

1− σ(zi)

)

3.5.2 Batch normalization

Batch normalisation layers perform a normalisation of the input by subtracting a
running mean and dividing with a running standard deviation. This technique is
used to reduce covariate shift, enabling us to train deeper networks. The running
mean and standard deviation are updated during the networks training phase using
the batch variance and mean per-dimension. Usually, batch normalisation also in-
cludes two learnable parameters, γ, and β. If layer i is a batch normalisation layer,
and µB and σ2

B are the running mean and variance respectively, the output of the
batch normalisation during evaluation is:

39

3.6. SOUND AND COMPLETE Chapter 3. Contribution

ŷi =
yi−1 − µB√
σ2
B + ε

yi = γiŷi + βi

Since the running mean and variance do not change during evaluation, this is a lin-
ear transformation and implementing it is trivial; we just add the transformation to
the symbolic interval propagation phase.

Similar to batch normalisation, dropout layers also operate linearly during the eval-
uation phase. Our current implementation does not support dropout; however, we
could implement it the same way as batch normalisation.

3.6 Sound and complete

In this section, we prove that the algorithm proposed in this chapter is sound for
all networks, and complete for ReLU networks. We start by formalizing the notions
of soundness and completeness. Remember that our verification problem is repre-
sented by a tuple 〈f,xl,xu, ψy, L〉, where f : Rm → Rn is an FFNN, xl,xu ∈ Rm are
concrete lower and upper bounds on the input, and ψy is a set of LP constraints on
the output.

Definition 3.6.1. Let v ∈ 〈f,xl,xu, ψy, L〉 be our verification problem, X = {x ∈
Rm| xl,i ≤ xi ≤ xu,i}, and Y = f(X). A verification algorithm A : 〈f,xl,xu, ψy, L〉 →
{”safe”, ”unsafe”} is sound iff A(v) = ”safe” =⇒ Y ∩ {y|ψy} = ∅

Definition 3.6.2. Let v ∈ 〈f,xl,xu, ψy, L〉 be our verification problem, X = {x ∈
Rm| xl,i ≤ xi ≤ xu,i}, and Y = f(X). A verification algorithm A : 〈f,xl,xu, ψy, L〉 →
{”safe”, ”unsafe”} is complete iff it is sound and Y ∩ {y|ψy} = ∅ =⇒ A(v) =
”unsafe”.

So, an algorithm is sound if it only returns ”safe” when no valid input leads to an
output fulfilling the constraints ψy. Furthermore, it is complete if also all unsafe
cases are identified correctly. To prove soundness for our algorithm, we first have
to prove that the output bounds calculated by the symbolic interval propagation are
overestimating. Proving this requires some preliminary results. Remember that the
error-based symbolic interval propagation always propagates equations through the
lower linear relaxations. The following lemma tells us how a nodes input equa-
tion would change if we used the upper linear relaxation instead of the lower for a
previous node.

Lemma 3.6.1. Let f : Rn → Rm be a neural network with parallel linear relaxations,
rl, ru : R → R, for each node. Furthermore, let eqiin(x)k be the input equation and
(Ei

in)k,h be the error for node k in layer i as calculated by the error-based symbolic
interval propagation. If we were to use the upper linear relaxation instead of the lower
for one node, h, in layer j < i, the resulting equation of the error-based symbolic
interval propagation at node k in layer i would be ̂eqiin(x)k = eqiin(x)k + (Ei

in)k,h.

40

Chapter 3. Contribution 3.6. SOUND AND COMPLETE

Proof sketch. Assume that this theorem holds for all nodes up to layer i−1
an let h be in layer j < i − 1. From the inductive hypothesis, the input
equation to a node s in layer i − 1 is eqi−1

in (x)s + (Ei−1
out)s,h. Applying the

lower linear relaxation results in the output equation:

̂eqi−1
out (x)s = ri−1

l,s (eqi−1
in (x)s + (Ei−1

in)k,h)

The input equations to layer i are calculated by performing the layers
affine transformation on the outputs of layer i− 1. Let W ∈ Rmi−1×mi be
the weight matrix, bi ∈ Rm

i be the bias.

̂eqiin(x)k = Wk,:
̂eqi−1
out (x) + bik

= Wk,:r
i−1
l,k (eqi−1

in (x) +
∑
k

(Ei−1
in)k,h)) + bik

= Wk,:r
i−1
l,k (eqi−1

in (x)) + bik

+Wk,:r
i−1
l,k (

∑
k

(Ei−1
in)k,h)))

= eqiin(x)k + (Ei
in)k,h

Where eqiin(x)k and (Ei
in)k,h are as defined in the error-based symbolic

interval propagation, proving that the theorem holds for j < i − 1. For
the next part let node h be node number t in layer i− 1. Since the linear
relaxations are parallel, we have:

(Ei−1
out)t,h = max

x
(ri−1
u,t (eqi−1

in (x)t))− ri−1
l,t (eqi−1

in (x)t)))

= ri−1
u,t (eqi−1

in (x)t))− ri−1
l,t (eqi−1

in (x)t)) ∀x

The output equation of node t in layer i − 1 from using the upper linear
relaxation is:

̂eqiout(x)t = ri−1
u (eqi−1

in (x)t)

= ri−1
l (eqi−1

in (x)t) + ri−1
u (eqi−1

in (x)t)− ri−1
l (eqi−1

in (x)t)

= ri−1
l (eqi−1

in (x)t) + (Ei−1
out)t,h

Applying the affine transform to this equation results in eqiin(x)k+(Ei
in)k,h,

proving the theorem.

The previous lemma requires parallel linear relaxations, and we have not explicitly
restricted our relaxations to be parallel. However, we use the maximum distance
between the relaxations, which implicitly is the same as using parallel relaxations.
The next corollary states that the effect of using the upper relaxation for more than
one node.

Corollary 3.6.1. Let f : Rn → Rm be a neural network with parallel linear relaxations,
rl, ru : R → R, for each node. Furthermore, let eqiin(x)k be the input equation and
(Ei

in)k,h be the error for node k in layer i as calculated by the error-based symbolic
interval propagation. If we were to use the upper linear relaxation instead of the lower

41

3.6. SOUND AND COMPLETE Chapter 3. Contribution

for all nodes in a set H, the resulting input equation at node k in layer i would be
eqiin(x)k + (

∑
h∈H

Ei
out)k,h.

Proof sketch. Can be proven inductively from lemma 3.6.1.

Using this corollary, we can prove that the error-based symbolic interval produces
overestimating bounds.

Theorem 3.6.1. Let f : Rm → Rn be an FFNN, and let lik, u
i
k be the true lower and

upper bound of node k in layer i given input X , so lik ≤ zik(x) ≤ uik for all x ∈ X .
If eqi(x)k is the nodes equation and Ei

k,: the errors, as calculated by the error-based
symbolic interval propagation, then:

lik ≥ min
x

(eqi(x)k) +
∑

k| Ei
k,h<0

Ei
k,h

uik ≤ max
x

(eqi(x)k) +
∑

h| Ei
k,h>0

Ei
k,h

Proof sketch. Since each linear relaxation is overestimating, it is clear that
propagating an equation through the network and always choosing the
lower or upper relaxation depending on which maximises the equation at
node k in layer i produces a valid upper bounding equation at this node.
It follows directly from Corollary 3.6.1, that the equation from always
choosing the maximising relaxation is eqi(x)k+

∑
h| Ei

k,h>0E
i
k,h. The lower

bound is analogous, by always choosing the minimising equation.

With the previous theorem, the soundness and completeness of our proposed algo-
rithm follows. We assume that the LP-solver is sound.

Theorem 3.6.2. The algorithm proposed in this chapter, A : 〈f,xl,xu, ψy〉 →
{”safe”, ”unsafe”}, is sound.

Proof sketch. Let X = {x ∈ Rm| xl,i ≤ xi ≤ xu,i} and Y = f(X). Let
Ŷ be the valid outputs given the bounding equations on the output from
the error-based symbolic interval arithmetic. From theorem 3.6.1, these
bounding equations are overestimating, so Y ⊆ Ŷ.

A(v) = ”safe” only happens if a satisfiability call to the LP-solver with the
constraints {y ∈ Ŷ , ψy} is unsatisfiable, or equivalently {Ŷ ∩ {y|ψy} = ∅.
Since Y ⊆ Ŷ, we also have Y ∩ {y|ψi} = ∅. This combined with the fact
that the branching exhaustively explores all possibilities proves that our
algorithm is sound.

Finally, we have completeness for ReLU networks.

Theorem 3.6.3. The algorithm proposed in this chapter, A : 〈f,xl,xu, ψy〉 →
{”safe”, ”unsafe”}, is complete for networks using only ReLU activation functions.

42

Chapter 3. Contribution 3.7. SUMMARY

Proof sketch. This follows from theorem 3.6.2 and the fact that after split-
ting a ReLU node, it operates linearly in each branch, removing all over-
estimation for that node. In a network with no overestimation, the output
bounds produced by the symbolic interval propagation are clearly exact,
so the problem is solved by exploring a maximum of 2N branches where
N is the number of nodes.

3.7 Summary

In this chapter, we proposed an efficient algorithm for verification of neural net-
works based on the symbolic interval propagation approach of (Wang et al., 2018a).
The novel local search phase uses an adversarial attack-based technique to find valid
counterexamples from the LP-solvers spurious counterexamples. We also employ
an adaptive splitting strategy, compared to the hierarchical strategy used in (Wang
et al., 2018a). The adaptive approach prioritizes refinement of the most significant
nodes, generalizing better to the non-uniform architectures commonly seen in con-
volutional networks. Finally, we derived the necessary theory for optimal relaxations
of s-shaped activation functions and proved that our algorithm is sound for all net-
works, and complete for ReLU networks.

43

Chapter 4

Analysis of algorithmic design choices

State-of-the-art complete verification algorithms are characterised by their choice of
underlying solver and splitting domain. In this chapter, we discuss our choice of the
symbolic interval propagation approach compared to SMT and MILP-based meth-
ods. Furthermore, we analyse the implications of splitting nodes during refinement
instead of the input domain.

4.1 Symbolic interval propagation

Symbolic interval propagation has several advantages over SMT and MILP-based
approaches for complete verification. First of all, the symbolic interval propagation-
based approaches of (Wang et al., 2018b) and (Wang et al., 2018a) are currently the
only complete verification algorithms with a proven ability to verify problems with
large neural networks and high input dimensionality. Furthermore, the computation-
ally expensive parts of the algorithm are mostly standard linear algebra operations,
so their implementations can benefit from one of several highly optimised linear
algebra libraries. Finally, as shown in chapter 3, symbolic interval propagation gen-
eralises well to non-piecewise linear activation functions.

However, there is one major challenge with symbolic interval propagation. The
coefficient matrices require a significant amount of memory. This problem is further
aggravated since we store most intermediate calculations for efficient branching. As
our experiments at the end of this report show, both our implementation and Neurify
(Wang et al., 2018a) are memory-bound for large neural networks. We address
this challenge in more detail in chapter 6. Current algorithms based on SMT and
MILP solvers, don’t seem to face the same memory requirements, and with future
computational optimisation they might scale better to larger networks. However, at
this point, the advantages of symbolic interval propagation seem to outweigh the
disadvantages.

44

Chapter 4. Analysis of algorithmic design choices 4.2. SPLITTING DOMAIN

4.2 Splitting domain

Refinement phases of verification algorithms are usually implemented by splitting
either the input domain or the networks hidden nodes. The first modern complete
verification algorithms (Ehlers, 2017; Katz(B) et al., 2017) used node-splitting. This
strategy has the advantage that piecewise linear activation functions can be split into
linear sub-domains in a finite number of branches, resulting in completeness.

Later, ReluVal (Wang et al., 2018b) introduced splitting on the input domain instead
of the node domain. ReluVal has a substantial speed-up over Reluplex on the most
popular benchmark networks, the ACAS-Xu (Kochenderfer et al., 2012) neural net-
works. This approach was again improved in Neurify (Wang et al., 2018a). The
paper returned the focus to splitting on ReLU nodes and managed to verify proper-
ties of significantly larger high-dimensional input networks than before. However,
the implementation used for experiments on ACAS Xu did still split the input do-
main, and it is very similar to the algorithm used by ReluVal. Finally, Marabou
(Katz et al., 2019) was introduced as an improvement of Reluplex. The maybe most
notable improvement is the divide-and-conquer part of the algorithm introducing
input-domain splitting in addition to ReLU splitting. Marabou achieves speeds on
the ACAS Xu networks comparable to ReluVal.

It seems like algorithms have moved more towards splitting the input domain, or a
combination of input and nodes, instead of just splitting the node domain. Judg-
ing solely on the improvements for the ACAS Xu networks, this might seem like the
correct choice. However, we believe that the ACAS Xu dataset does not necessarily
provide a good indication of the performance with other network architectures and
datasets. This would make the current trend of ACAS Xu being overrepresented in
experiments unfortunate.

Our experiments indicate that splitting nodes in small layers is significantly more
efficient than splitting in larger layers. Following this intuition, it is reasonable to
assume that if the dimension of the input layer is small, it might be more efficient to
split the input domain than the nodes. The input of the ACAS Xu networks is only
six-dimensional, much smaller than the 50-node hidden layers. This could explain
why the input-domain splitting algorithms have the best performance on this dataset.

However, one of the main strengths of neural networks is their ability to handle high-
dimensional data, such as images, and none of the algorithms splitting on the input
domain have achieved notable results on this kind of data with the usual l∞ based
verification problems. The networks used for processing high-dimensional data usu-
ally have several layers with significantly fewer nodes than the input dimension. We
believe that splitting in these smaller layers is essential for efficient verification and
our algorithm achieves state-of-the-art performance on these kinds of problems, sup-
porting the assumption.

From the discussion so far, it might seem like we should split the input domain

45

4.2. SPLITTING DOMAIN Chapter 4. Analysis of algorithmic design choices

for networks with relatively small input dimensions and on the node domain else.
However, it’s not that simple. The choice of splitting domain also depends on the ver-
ification problem. Most of the verification algorithms focus on problems where each
input has a concrete upper and lower bound, and can vary independently within
those bounds. However, Neurify also handles verification problems based on con-
trast and brightness changes in images. Given a γ, the brightness problem is to find
an |ε| ≤ γ such that for an input, x, x + ε is misclassified, or prove that no such
ε exists. The contrast problem is exactly the same, but with xε instead of x + ε.
Since each input pixel changes by the same amount (or factor for contrast), we can
actually split more than one input at a time. Neurify splits all inputs in the middle
of their current valid interval at each branch. We have not found any experiments
comparing this approach with splitting on the nodes; however, it is reasonable to as-
sume that splitting all inputs at once in each branch is a huge advantage compared
to splitting one node at a time.

In summary, the splitting domain problem is complex, depending on the input data,
network architecture, and verification problem. A lot more research is required to
determine optimal splitting strategies. However, the main goal of this project was
to solve verification problems for high dimensional input data with concrete upper
and lower bounds on the inputs. Current research seems to indicate that splitting
the node domain is the best strategy for these types of problems.

46

Chapter 5

Implementation

The large computational and memory demands for our algorithm requires some
carefully considered implementations choices. In this chapter, we first present an
overview of the implementation, and then discuss some important design choices,
focusing on choices we made to reduce the impact of computational and memory
intensive parts of the code.

5.1 Overview

We implemented the algorithm presented in this paper as a Python toolkit, VeriNet.
VeriNet takes as input a neural network, input bounds, and a verification objective
containing the output constraints and the loss function for the local search. The
resulting output is either ”unsafe” together with a counterexample, or ”safe” if the
system is proven to have no counterexamples. A counterexample is defined as an
input within the given input bounds, resulting in an output violating the given out-
put constraints. Due to floating point precision, ”underflow” may also be returned,
indicating that no counterexample was found, and the system was not proven safe
after splitting all nodes. Since our code has to handle several different network ar-
chitectures, we have focused on writing modular, object-oriented code. A sketch of
the class dependencies is illustrated in figure 5.1.

The VeriNet class contains the multiprocessing functionality and spawns a pool of
VeriNetWorkers running our algorithms main verification loop. Each VeriNetWorker
depends on an NNBounds object, which contains the functionality related to the
symbolic interval propagation. The linear relaxations used for this phase are repre-
sented by the abstract class ActivationFunctionAbstraction.

Furthermore, the workers also depend on a verification problem, represented by
the abstract class VerificationFunctionAbstraction. This class contains the verifica-
tion problem-specific logic, including the loss function for gradient descent, and the
LP-solver constraints dependent on the verification problem. Finally, Branch objects
store information about unexplored branches, and the LP-solver class functions as a
wrapper around Gurobi.

47

5.2. SYMBOLIC INTERVAL PROPAGATION Chapter 5. Implementation

VeriNet VeriNetWorker

NNBounds

LP-Solver

Verification
ObjectiveAbstraction

Branch

Activation
FunctionAbstraction

Gurobi

Figure 5.1: The class dependencies of VeriNet

VeriNet has several third-party dependencies including, Numpy (Numpy, 2019) with
the OpenBLAS-backend-(OpenBLAS, 2019) for vectorised calculations, Numba (Numba,
2019) for jit-compilation, Pytorch (PyTorch, 2019) for neural network computations,
and Gurobi (Gurobi Optimization, 2019) for the LP-solver phase. Furthermore, our
algorithm uses Pythons multiprocessing module for parallelisation.

5.2 Symbolic interval propagation

This phase is mostly a straightforward vectorized implementation of the error-based
symbolic interval propagation from section 2.5.2. However, this is the most time-
consuming part of our algorithm, so we cover some essential aspects in detail. First,
we discuss how to minimise the number of calculations after each split, followed by a
look at rounding errors and how to reduce this problem through outward rounding.
Finally, we are going to see how we can store all the information necessary for
branching in a memory-efficient way.

5.2.1 Minimising split-calculations

This part should be apparent from the algorithm description and is essential for an
efficient implementation. After each split, we do not need to recalculate all symbolic
bounds. Since we are working with feed-forward neural networks, only the symbolic
bounds of the node we split, and nodes in later layers are affected. Our algorithm
tends to split in later layers, especially for the cone-shaped networks typically seen
in deep convolutional networks.

Almost the same is true when back-tracking; however, at this stage, we might re-
move more than one split constraint. So, we have to recalculate the bounds from

48

Chapter 5. Implementation 5.2. SYMBOLIC INTERVAL PROPAGATION

the node in the earliest layers where we removed a split-constraint.

During our experiments, we clearly saw how important this part is. For our largest
network, exploring the first branch usually took more than 60 seconds. If we recal-
culated all bounds at every branch, each process should only be able to explore a
maximum of 360 branches within the one-hour time-out. However, in practice, each
process was able to explore closer to 6000 branches.

5.2.2 Outward rounding

Interval arithmetic on a computer is prone to rounding errors, which can lead to in-
valid bounds. Technically this problem can be solved by outward rounding, adding
and subtracting the maximal rounding error for each floating-point operation to the
upper and lower bound. However, this approach is problematic in practice due to
two reasons.

First of all, the worst-case scenario is much worse than what can be expected in re-
ality. In one of our experiments, we use a network with two fully connected layers
of size 512 and an input of dimension 784. The symbolic equations for the output of
layer 1 are represented by a 512×784 matrix. This matrix is multiplied by a 512×512
weight matrix. So, this operation alone requires 512 × 512 × 784 ≈ 200 million
floating-point multiplications. Even if each worst-case rounding error is in the 10−8

range, the outward rounding is around 2 for the lower and upper bound. Moreover,
this is only for one operation in one of several layers. So in practice, many problems
may be unsolvable with this approach.

Secondly, the maximal errors depend on the values of the floating-point numbers
used in the calculations. Numbers with larger magnitudes have a potential for larger
rounding errors. So in practice, each floating-point operation has to be considered
separately. Most verification algorithms rely on efficient libraries for significant com-
putational speed-up. Our algorithm and Neurify (Wang et al., 2018a) use OpenBLAS
to speed up matrix calculations. These libraries do usually not support this kind of
outward rounding.

Neurify (Wang et al., 2018a) has the option to do outward rounding when calcu-
lating concrete bounds from the symbolic equations. This approach does not give
any guarantee of correctness since several floating-point operations, such as matrix
multiplication, are performed without outward rounding. However, in most pro-
gramming languages, rounding is implemented in such a way that the expected
rounding error of floating-point operations is 0. This makes it reasonable to assume
that performing outward rounding on this subset of operations solves a significant
part of the problem. We have also implemented this approach as an option.

49

5.3. LP-SOLVER Chapter 5. Implementation

5.2.3 Best bounds matrix

In the forward propagation phase, we keep track of a matrix containing the best
known concrete upper and lower bounds for each node. This includes bounds cal-
culated in previous branches and bounds resulting from splits. When calculating the
concrete bounds in the forward phase, we always use the best bounds from the cal-
culated values or this matrix. This matrix is the only information we need to restart
symbolic interval propagation from a given branch, and it is a very memory efficient
way of doing this since we only need two concrete values for each node.

5.3 LP-solver

VeriNet uses the the Gurobi (Gurobi Optimization, 2019) solver for the LP phase.
Gurobi is a MILP solver; however, for our implementation we only use linear con-
straints. The solver is used to find possible counterexamples, so the constraints are
formulated such that if the solver returns ”UNSAT”, the current branch is safe. The
following sections cover the encodings we use for the verification problem and the
split-constraints.

5.3.1 Verification problem constraints

In this section, we cover the encodings used for classification networks, and the
general robustness adversarial verification problem from definition 2.2.3. A coun-
terexample for this problem is a valid input such that the output of the correct class
is smaller than the output of at least one other class. This can directly be encoded as
a MILP problem with binary variables, and since Gurobi is a MILP solver we could
use this encoding. Assuming we have N classes, eqc(x) is the symbolic equation of
the correct class, eqt(x) for all t 6= c are the equations for the potential target classes,
ycmax is the concrete maximal value of the correct output, and E is the error matrix
at the output layer, a MILP encoding is:

(1− bt)ycmax + bt ∗

eqt(x) +
∑

{i|Et,i>0}

Et,i

 ≥
eqc(x) +

∑
{i|Ec,i<0}

Ec,i


t ∈ {0, 1..., N} | t 6= c

bi ∈ {0, 1}∑
i 6=c

bi ≥ 1

This works reasonably well, however, there is also another formulation we can use.
Instead of using a MILP problem, we can encode this as N − 1 LP-constraints. Each
constraint is on the form:

50

Chapter 5. Implementation 5.3. LP-SOLVER

eqt(x) +
∑

{i|Et,i>0}

Et,i

 ≥
eqc(x) +

∑
{i|Ec,i<0}

Ec,i



The runtime for all N − 1 equations on this form is somewhat slower than the MILP
encoding. However, this encoding has one huge advantage. Whenever one of these
N − 1 problems is determined to be unsatisfiable for a class t, we know that class t
has no counterexample in any succeeding branches. So, we do not have to re-run
the LP-solver for this class in any of the later branches. The MILP encoding does not
provide us with this information and we noticed a substantial speed-up using this
encoding over the MILP.

For the targeted robustness verification problem from definition 2.2.2, we use exactly
the same approach. The only difference is that we end up with only one LP-equation.

We can also use MILP constraints on the input variables. However, the current im-
plementation of the symbolic interval propagation only utilises concrete upper and
lower bounds on the input when calculating concrete bounds from the symbolic
bounds. The resulting concrete bounds are going to be wider than necessary, result-
ing in sub-optimal linear relaxations, making the problem difficult to solve.

5.3.2 Split constraints

Each split adds split-constraints to the LP-solver constraining the lower and upper
symbolic bound to be larger and smaller than the split-value, respectively. If we had
the exact input equation to the split node, we would simply constrain this equation
to be larger than a split value s. However, we also need to take the errors into
account, so our split constraints are:

eqi(x) +
∑

k|Ei,k>0

Ei,k ≥ s

eqi(x) +
∑

k|Ei,k<0

Ei,k ≤ s

Since the ReLU is linear on either side of 0, we use the split-value s = 0. For Sigmoid
and Tanh activation functions, σ, we use the value, s, where σ(s) is in the middle
of the upper and lower output. So if xl, xu are the lower and upper bounds on the
input to σ, s is found by solving:

σ(s) =
σ(xu) + σ(xl)

2

51

5.4. LOCAL SEARCH Chapter 5. Implementation

Adding and removing split-constraints to the LP-solver is a computationally expen-
sive operation. Similarly to how we minimised the calculations of symbolic bounds
after splits in section 5.2.1, we make sure only to modify the relevant split con-
straints during branching and backtracking. Each time we split a node, we have to
add the split constraints for that node and modify the constraints for all nodes in
later layers since the symbolic equations might change. Analogously, on backtrack,
we update the split constraints for all nodes after the earliest layer where we had to
remove a split.

5.4 Local search

The local search implementation is a straightforward implementation of the algo-
rithm described in section 3.4. We use the ADAM (Kingma and Ba, 2014) optimiser
from PyTorch to do a gradient descent on the input parameters. Updating the input
parameters, instead of the weight parameters is natively supported in PyTorch. At
each branch, we do a maximum of five iterations of gradient descent, with a rela-
tively large step-size of 0.1, compared to 0.001 in the original paper.

This part of the algorithm turned out to be extremely efficient; almost all counterex-
amples were found without branching in less than five iterations of gradient descent.
However, it does not help at all for safe cases and to reduce the computational de-
mand of this step, we only run it every fifth branch.

5.5 Refinement

The branching part of the algorithm has a natural interpretation as a recursive im-
plementation, and this is how Neurify (Wang et al., 2018a) implements it. However,
we noticed that the memory requirements of the algorithm call for a more memory
efficient implementation. To achieve this, we instead implement branching with a
queue structure. The queue stores unexplored branches represented by a matrix
with the current best concrete bounds for each node, and the node-splits done so
far. As we mentioned in section 5.2.1, we only recalculate the symbolic bounds and
update the LP-solver constraints for nodes after the node we split.

5.6 Multiprocessing

The tree structure from the branching makes our algorithm highly parallelizable,
and we use multiprocessing to take advantage of this. Our algorithm starts by doing
one run without branching in the main process. For many verification problems, a
large amount of the data-points can be verified without branching, and performing
this one run in the main process saves us the overhead of initialising child-processes.
If the same main process is used for several data-points, we also only have to do the

52

Chapter 5. Implementation 5.7. TESTING

jit-compiling once.

If the first run is undecided, the main process spawns a pool of child-processes. Typi-
cally, we found 2 times the number of processor cores to work well. However, for the
largest networks, we had to limit the number of processes to not run out of memory.
Each process then picks branches out of a multiprocessing branch-queue. When a
process picks a new branch from the queue, it has no information about previous
symbolic bounds, and it has to recalculate all symbolic bounds and add all LP-solver
constraints. These are very time-consuming calculations, so we want to limit the
number of times processes have to get branches from the multiprocessing queue.

To reduce the number of times processes have to fetch new branches from the multi-
processing queue, we follow a few rules:

• When a process sends a branch to the multiprocessing queue, it is always the
branch with the smallest depth. The reasoning is that shallow branches, which
have not been explored much are probably harder and require a longer run-
time.

• A process only sends branches to the multiprocessing queue if the depth dif-
ference between the current branch and the local branch with the smallest
depth is more than a given number. The standard difference is 10. Again, the
reasoning is to avoid sending easy branches that can be solved quickly.

• A process only sends branches if the multiprocessing queue has fewer branches
than a fraction of the maximal processes. As long as all processes are working,
it is better to keep the branches locally, since it is cheaper to backtrack to a
local branch than fetching a new branch from the multiprocessing queue. The
standard setting for this fraction is 0.2.

We tried some alternative implementations, among them an implementation where
processes were spawned in a tree structure by children processes when needed. This
approach is theoretically more efficient since we do not spawn any unnecessary pro-
cesses; however, with a one-hour time-out, the relative time used to spawn processes
is minimal. Our implementation is simpler and seems to have a near-linear speed-up
in the number of processes for difficult problems, so it is close to optimal.

5.7 Testing

Ensuring that machine learning algorithms work as expected is notoriously difficult,
and verification algorithms are no exception. To make sure that our implementation
is correct, we wrote unit-tests for low-level functionality such symbolic bound con-
cretisation, propagation functionality and more. However, unit-tests are best suited
for testing of small functions that run independently of the rest of the program.

53

5.8. SUMMARY Chapter 5. Implementation

To test the higher-level functionality of the symbolic error propagation, we imple-
mented some brute-force tests for very simple networks. These tests are imple-
mented by calculating lower and upper bounds for the output, and running a wide
range of possible inputs through the actual networks checking that all outputs stay
within the bounds.

Our local search phase also turned out to provide us with a good sanity check. After
running the algorithm with local search, we can disable it and make sure that none
of the data points verified as unsafe with the local search are now verified as safe.
This helped us identify several bugs during early development.

The main testing was done comparing our implementation to other state-of-the-art
verification algorithms. First of all, the calculated bounds of our implementation
and Neurify (Wang et al., 2018a) are identical before splitting, indicating that this
phase is implemented correctly. Furthermore, our final verification results agreed
with other algorithms for all tests. We ran a total of 1350 tests against Neurify
(Wang et al., 2018a), 500 test with Marabou (Katz et al., 2019), and 600 tests with
DeepPoly (Singh et al., 2019).

5.8 Summary

VeriNet is a modular, object-oriented, implementation of our algorithm. In this chap-
ter, we have discussed some design choices important for an efficient and correct
implementation. We discussed how we efficiently store branching information in a
queue, how we minimise inter-process communication by keeping as much infor-
mation as possible local in the processes, and generally how we avoid unnecessary
calculations. Finally, we also looked at how we reduce the problem of rounding
errors by implementing outward rounding.

54

Chapter 6

Complexity analysis

Complete verification of neural networks is still infeasible for the largest modern
architectures. The computational and memory complexity of our algorithm grows
asymptotically faster than standard operations of a neural network. In this chapter,
we look at the bottlenecks and explain some of our implementation choices in view
of this. Our analysis focuses on bottlenecks we found in practice and to a lesser
degree on theoretical worst-case complexity.

6.1 Symbolic interval propagation

The symbolic interval propagation is currently the bottleneck for very large and deep
neural networks. In this section, we do an isolated analysis of one interval propaga-
tion instance. Later in this chapter, we analyse the bigger picture when combining
this with branching and multiple processes.

6.1.1 Computational complexity

The computational complexity of a standard forward phase in a neural network is
dominated by the multiplication of the weight matrix and the output from the pre-
vious layer. Assuming we have two layers of size N, we are multiplying a N × N
matrix with a vector of size N . With näıve matrix multiplication; the computational
complexity is O(N2).

With symbolic interval propagation, we multiply the weight matrices by a matrix
containing the coefficients of the symbolic equations instead. If the input dimension
is M , each symbolic equation has M + 1 coefficients. So we are multiplying a N ×N
matrix with a N × (M + 1) matrix. Each of these operations has a complexity of
O(N2M) and since we are working with high-dimensional data M is large, for many
layers much larger than N .

Furthermore, we have to multiply the weight and error matrix for each layer. If K is
the number of nodes before and including layer i, and layer i is of size N , the error
matrix is N × K. If also layer i + 1 is of size N the weight matrix is N × N , and

55

6.1. SYMBOLIC INTERVAL PROPAGATION Chapter 6. Complexity analysis

the complexity of the weight-error multiplications is O(KN2). For the later layers,
K can be very large. Fortunately, this operation is not so bad in practice for two
reasons. Firstly, many networks have a cone-shape where later layers are smaller. So
for early layers when N is large, K is small, and for later layers when K is large, N
is small. Secondly, for networks with ReLU nodes, nodes operating only in the linear
area do not require relaxation and thus do not have an error. In practice, we do
not add these nodes to the error matrix, since this would lead to columns with only
zeros. So the actual number of columns in the error matrix is usually significantly
smaller than K.

Finally, we have one more computationally expensive operation. Calculating con-
crete upper and lower bounds from the symbolic equations requires one multiplica-
tion and addition for each coefficient in each equation. For a layer of size N and
input of size M , the computational complexity is O(NM). While this does not seem
like a problem compared to the previous complexities, in practice it dominates the
run-time for some networks. The reason is that we have to perform an if-test for
each coefficient, checking if it is positive or negative. This determines if we multiply
the coefficient by the inputs lower or upper bound. The if-test makes the operation
unsuitable for direct vectorization. Since our implementation is in python, this is a
huge challenge. Pythons loops are far too inefficient to do this the näıve way. We
have found two solutions to this problem.

The first solution is a vectorized approach where we make two copies of the coef-
ficient matrix. In the first copy, we set all negative values to 0, and in the second,
we set all positive values to zero. These matrices are then multiplied by the lower
and upper input bound vectors. The main challenge of this approach is that creating
copies of large matrices is expensive. The second approach, which is the currently
implemented approach, is to use a python jit (just-in-time) compiler. This approach
works reasonably well; however, this means that we do not get the extra speed up
from highly optimised linear algebra libraries such as OpenBLAS (the back-end we
use for numpy).

In summary, the computational time is in practice dominated by the weight-coefficient
matrix multiplication and calculating concrete values from symbolic bounds. The
first operation has in practice a cubic complexity with respect to the layer size.
The second one is slow since an efficient implementation is difficult. The computa-
tional complexity of this phase shows the importance of only re-calculating necessary
bounds after branching, as explained in section 5.2.1.

6.1.2 Memory complexity

Our current implementation saves all intermediate information calculated during
the forward phase, including symbolic bounds, concrete bounds, linear relaxations,
and more for each layer. This simplifies recalculating symbolic bounds for only parts
of the network after a split; however it significantly increases the memory complex-

56

Chapter 6. Complexity analysis 6.2. LP-SOLVER

ity. The complexity is dominated by the coefficient matrices storing the symbolic
bounds, and the error matrices.

For a layer with size N and an input dimension of M , the memory complexity for
storing the symbolic bounds is O(NM). Furthermore, If K is the total number of
nodes up to and including a layer of size N , the complexity for storing the error
matrix is O(NK). For smaller networks, such as the fully connected MNIST-digit
networks we use in our experiments, the memory consumption is neglectable. How-
ever, for larger networks, such as the Cifar10 network from our experiments, we
have a total of ≈ 55000 nodes, with ≈ 35000 nodes in the first layer. This, combined
with an input dimension of ≈ 3000, results in significant memory usage. With 32-bit
float, the memory required for storing the symbolic bounds of the first layer alone
can be several hundred megabytes.

We might be able to reduce this problem in future implementations by discarding
intermediate results from layers where we are unlikely to split. Since the largest
layers also the least likely split-layers, this might have a significant impact. However,
this comes at the cost of increased computational complexity if we were to split in
those layers.

6.2 LP-solver

The LP-solver phase is relatively time-consuming for smaller networks but less signif-
icant for larger networks. In our implementation, we are using the Gurobi LP-solver
with the Simplex algorithm. The Simplex algorithm has exponential complexity;
however, it is usually much faster in practice. The actual runtime for solving LP-
systems was generally quite low compared to the total runtime of the algorithm.
Profiling usually revealed that less than 10% of the time was spent on solving these
systems. The memory usage should also be small compared to symbolic interval
propagation.

In practice, the most time-consuming part of the LP-solver was not solving, but
adding and removing constraints. In some cases, we even observed close to 40%
of the run-time was spent on adding and removing constraints; however, this num-
ber was much smaller for the larger convolutional networks. This operation should
theoretically be fast since we are only adding and removing parameters from a con-
straints matrix. The overhead is probably because Gurobi repeatedly has to call its
c-backend from python to change these constraints.

6.3 Local search

The local search is implemented through gradient descent, and the complexity for
each step is the same as a standard back-propagation step during neural network
training. Since we fixed the number of steps at five, and only ran local search every

57

6.4. REFINEMENT Chapter 6. Complexity analysis

five depths of branching, this part of the algorithm is relatively fast. During our
experiments, only a few percents of the run-time was spent on the local search.
The computational complexity is dominated by calculating the gradients from the
matrix-multiplications, which has a quadratic complexity in the layer size. Again the
memory usage is unnoticeable compared to symbolic interval propagation.

6.4 Refinement

The refinement stage is done by branching, and this introduces exponential com-
plexity to our algorithm. While experimenting, we noticed that even small changes
to the branching heuristic resulted in considerable changes in performance. Choos-
ing the correct node for branching by using a good branching strategy and heuristic
might be the most important part of an efficient implementation. This combined
with only recalculating the necessary bounds and LP-constraints at each branch sig-
nificantly reduces the average runtime.

Another important consideration is that a näıve implementation of branching can
result in exponential memory usage. To reduce the memory requirements, we use an
efficient queue structure with each branch storing a minimal amount of information,
as explained in section 5.2.3. This significantly reduces the memory requirements
compared to the näıve solution of storing all symbolic bounds for each branch.

6.5 Multiprocessing

The implemented multiprocessing solution has a close to linear speed-up in the num-
ber of processes for difficult verification problems. However, there is some initialisa-
tion and communication overhead, leading to a speed-up less than linear. First of all,
as explained in 5.6, there is some initialisation delay before all processes get assigned
branches. Secondly, each time a process gets a new branch from the multiprocessing
queue, it has to recalculate all symbolic intervals and LP-solver constraints instead
of just modifying a few.

For larger networks, the main challenge of full CPU-utilisation is the increased mem-
ory consumption. The memory requirements do also scale close to linearly with
the number of processes. As explained in section 6.1, the memory requirements of
the symbolic interval propagation are significant. For the largest networks used in
our experiments, we had to limit the number of processes to avoid out of memory
exceptions.

6.6 Summary

The symbolic interval propagation phase as an asymptotically larger computational
and memory-complexity than standard forward propagation in neural networks.

58

Chapter 6. Complexity analysis 6.6. SUMMARY

This, combined with the fact that branching introduces an exponential complex-
ity, underlines the importance of an efficient implementation.

For smaller networks, our algorithm is currently CPU-bound. Fortunately, the worst-
case computational behaviour is rarely seen in practice. First of all, through smart
branching strategies, and since many nodes often only operate in the linear area, we
often only have to branch on a few nodes. Secondly, we do not have to recalculate
the whole interval-propagation phase for each branch.

For larger networks, our algorithm is memory-bound. Most of the memory-consumption
is a result of storing all intermediate calculations in the symbolic interval propaga-
tion phase. It might be possible to significantly improve this situation in the future
by not storing intermediate results for layers where we usually do not split nodes,
such as large layers.

59

Chapter 7

Experimental Results

In this chapter, we present the experimental results of our algorithm. Most of our
comparisons are made against Neurify (Wang et al., 2018a) since this is the only
complete verification algorithm that has proven verification results on large net-
works with high-dimensional inputs. Neurify only supports ReLU activation func-
tions, so we use the sound but incomplete DeepPoly (Singh et al., 2019) algorithm
for comparisons with Sigmoid and Tanh activation functions.

7.1 Choice of experiments

Since this project focuses on verification of neural networks with high-dimensional
input, we have chosen networks trained on image datasets for our experiments. The
first dataset is the MNIST-digit dataset (LECUN). This set contains one-channel im-
ages of hand-written digits from 0 to 9. Each image has 28× 28 pixels, so the input
dimension is 784.

Figure 7.1: Examples of MNIST-digit images

For our MNIST experiments, we used the same networks as in (Wang et al., 2018a).
Three of these networks are fully connected, with two layers each and 24, 50, and
512 nodes in each layer for the three networks, respectively. Furthermore, they also
used a convolutional network with two convolutional layers and two fully-connected

60

Chapter 7. Experimental Results 7.1. CHOICE OF EXPERIMENTS

layers. The first convolutional layer has 16 kernels, and the second has 32 kernels,
both of size (4, 4). The following fully-connected layers have 100 and 10 nodes. The
total number of ReLU nodes in the convolutional network is 4804.

To the best of our knowledge, these networks have been trained without regulari-
sation. Also, no modern techniques such as batch-normalisation, dropout, or skip-
connections have been used.

In addition to the MNIST experiments, we trained a new network on the Cifar10
(Krizhevsky et al., 2014) dataset. The Cifar10 dataset is a dataset of 32 × 32 3-
channel colour images and each image belongs to one of ten classes.

Figure 7.2: Examples of Cifar10 images with classes.
https://www.cs.toronto.edu/ kriz/cifar.html

This dataset is considerably more challenging than the MNIST dataset. State of the
art networks achieve 95-96% accuracy; however, they often have millions of nodes.

We trained a medium-sized network, with seven convolutional layers, six batch nor-
malisation layers, and a total of 55616 ReLU nodes. We used a small l1 regularisa-
tion of 2∗10−6 and a learning rate scheduler with step-sizes 10−2, 10−3, 10−4, 10−5 for
20, 80, 30 and 20 epochs respectively. Furthermore, we used data augmentation with
random flips, cropping, rotation, brightness, and contrast changes. The training was
done with the ADAM optimiser (Kingma and Ba, 2014) and our final test set accu-
racy is 85.56%.

61

7.2. EXPERIMENTAL SETUP Chapter 7. Experimental Results

To our knowledge, this is the largest network ever used for experiments with com-
plete verification algorithms. The second-largest image classification network is the
convolutional MNIST network with 4 layers and 4804 ReLU nodes previously men-
tioned. The same paper also did experiments with a 10 276-node convolutional
network trained on the DAVE dataset. However, the DAVE dataset is a dataset of
images used for steering self-driving cars, not image classification.

7.2 Experimental setup

We ran all experiments with the MNIST fully connected networks on a server with
Intel Core i9 9900X 3.5 GHz 10-core CPU and 128 GB ram. Due to the extended
run-time of the experiments, we used a second server with a Ryzen 3700X 3.6 GHz
8-core CPU and 64 GB ram for the rest of the experiments.

Both our implementation and Neurify use OpenBLAS as a back-end for linear algebra
operations. Neurify has limited OpenBLAS to 1 thread, so we did the same for our
implementation. For Neurify, we did not see a significant change in runtime with
more threads, and our implementation was actually slower with more OpenBLAS
threads.

All experiments are done with l∞ ≤ ε bounds on the input, verifying that the pre-
dicted class does not change for any input within those bounds. The timeout is set
to 3600-seconds.

7.3 Ground truth

For most of our experiments, we have decided not to use the ground truth targets
from the datasets. Instead, we run all inputs through our trained networks, and use
the network output as the correct class when doing the verification. We have two
reasons for this, first of all, this is how it is done in Neurify (Wang et al., 2018a) and
we wanted to do as few changes as possible to Neurify’s source code for our com-
parisons. Secondly, if we use the ground truth labels, we would have to discard all
inputs misclassified by the network since finding a counterexample for these inputs
would be trivial, we could just return the input as it is already a counterexample.

The exception is for the Sigmoid/ Tanh experiments, where we compare against
DeepPoly (Singh et al., 2019). For these experiments, we use the ground-truth labels
from the dataset and skip images misclassified by the network.

62

Chapter 7. Experimental Results7.4. CHANGES MADE TO NEURIFY SOURCE CODE

7.4 Changes made to Neurify source code

We made some small changes to the Neurify source code. Most of these changes
are made for convenience, such as commenting out excessive printing during bench-
marking. However, we made two changes affecting the results.

First of all, Neurify adds the split constraints: eqi(x) > 0 and eqi(x) < 0 for the upper
and lower branch respectively. This is correct for the fully connected networks since
Neurify always splits from the first layers. However, for the convolutional network,
Neurify skips the first convolutional layers, so the error from the error-based sym-
bolic interval propagation is not 0 at the split nodes. The correct split constraints in
this case should be: eqi(x) +

∑
i|εi>0 εi ≥ s and eqi(x) +

∑
i|εi≤s εi < 0. No official fix

for this has been published at the time of writing; however, we have made our best
effort to implement this fix into Neurify. Secondly, the timer in Neurify resets after
doing the first phase of symbolic interval propagation. We commented out the line
resetting the timer.

All changes are well-documented in our repo. At the relevant places in the source
code, we have added a comment: ”//Changed code:”, explaining the changes
and why they are done.

7.5 MNIST Fully connected

The MNIST fully connected experiments are done on the same networks used in
(Wang et al., 2018a). We tested all three networks with 100 images from the test-
set with l∞ ≤ ε and ε ∈ {1, 2, 5, 10, 15}, except for the largest network where we
only used 50 images for ε = {5, 10, 15}. The results for each experiment are given
in tables at the end of this section. In figure 7.3, we have plotted the time spent
on verification for data points verified before timeout by either Neurify or VeriNet.
Neurify failed to terminate after timeout for 6/1350 images; these images have not
been included.

The MNIST fully-connected experiments clearly illustrate the advantage of the local
search. VeriNet found all unsafe cases Neurify found, and more. Also, VeriNet found
all but one of the unsafe cases without branching. The last case was found at depth
5. For our 1344 test cases, VeriNet found a total of 454 unsafe cases with a total
runtime of 9.66 seconds. Neurify found 444 unsafe cases in 6022.68 seconds. One
of the unsafe cases Neurify did not find reported underflow, the other 9 timed-out.
Since the timeout was 3600 seconds, the minimum time it would take Neurify to find
the same unsafe cases is 38422.68 seconds. So the lower bound on the speed-up is
×3977.5. Since VeriNet only branched once, almost all of this speed-up is due to the
local search.

The effect of adaptive splitting is more ambiguous for these experiments. While it
seems like VeriNet finds most cases that require splitting faster, we also have four

63

7.5. MNIST FULLY CONNECTED Chapter 7. Experimental Results

Figure 7.3: Time spent on verification for VeriNet vs. Neurify on the MNIST FC net-
works. The left plot is of the images verified as safe (808), and the right plot is of the
images verified as unsafe (454). Notice the log-scale on the axes. The ”line” patterns
seen for the images verified quickly are due to our time-resolution of 1/100 seconds.

difficult cases where Neurify is faster and three of these cases timed-out in VeriNet.
It is also challenging to determine how much of the time difference is due to the
splitting strategy compared to other factors. However, the real advantage of adap-
tive splitting becomes evident in the convolutional experiments.

It is interesting to notice that all four outliers have a long runtime. As we explained
in section 3.3, our splitting heuristic might underestimate the value of splitting nodes
in the early layers, while Neurify always splits from the first layer. However, we ex-
pected this effect to be more evenly distributed among data points with different
runtimes. Our best guess is that almost all ReLU nodes operating in the non-linear
area have to be split for most branches in these difficult problems. If this is the case,
splitting from the first layer has the advantage that it improves the bounds of the
nodes in the second layer, which might lead to more nodes operating in the linear
area without the need for splitting.

For all experiments, VeriNet was able to verify at least as many cases as Neurify
and usually more. In the tables below, we measured the average speed-up for all
cases were neither VeriNet nor Neurify timed out. For the simplest problems with
ε ∈ {1, 2}, all 100 datapoints were solved within a few seconds. In these experi-
ments, the algorithm usually did not have to branch, and the speed-up is mainly due
to smaller initialisation overhead, not algorithmic differences. For the 48 and 100
ReLU node networks with ε ∈ {5, 10, 15}, VeriNet was usually significantly faster,
with a speed-up of ×12−29. The one exception is the 100 Node ReLU network, with
a speed-up of 1.65×. For the largest network, most cases are either solved trivially
in << 1 second or timed-out.

64

Chapter 7. Experimental Results 7.5. MNIST FULLY CONNECTED

7.5.1 48 ReLU node network

VeriNet Neurify
ε Total Safe Unsafe Undec time Safe Unsafe Undec time speed-up
1 100 95 5 0 1.21s 95 5 0 2.02s ×1.67
2 100 90 10 0 1.32s 90 9 1* 3.45s ×2.61
5 100 73 27 0 13.88s 73 27 0 167.56s ×12.07

10 100 24 76 0 21.36s 24 76 0 606.57s ×28.40
15 100 8 92 0 72.38s 8 92 0 1977.83 s ×27.32

The time meassurements are for datapoints where neither VeriNet nor Neurify timed-out
*) Neurify reported underflow for image 13, probably due to numerical precision.

The results for the 48-ReLU node network are as expected. The most straightforward
cases with ε ∈ {1, 2} are almost all solved without branching by both algorithms.
The speed-up for these experiments is mainly due to a somewhat lower initialisation
overhead for our implementation. For the more difficult problems, we achieve a
significant speed-up. Most of this is due to the local search of VeriNet finding all
unsafe cases without branching; however, we also have a speed-up for all non-trivial
safe cases. Neurify returned underflow for one image, determined to be unsafe by
VeriNet. This is most likely due to floating-point precision and might have been
avoided by using 64-bit floating-point numbers instead of 32-bit.

7.5.2 100 ReLU node network

VeriNet Neurify
ε Total Safe Unsafe Undec time Safe Unsafe Undec time speed-up
1 100 97 3 0 1.33s 97 3 0 1.5s ×1.13
2 100 93 7 0 1.91s 93 7 0 4.96s ×2.60
5 100 78 22 0 243.33s 78 22 0 3490.83s ×14.35

10 99* 25 71 3 340.11s 27 69 5 5096.92s ×14.99
15 99* 4 89 6 2605.69s** 4 86 9 4303.44s ×1.65**

The time meassurements are for datapoints where neither VeriNet nor Neurify timed-out
*) Neurify didn’t terminate after time-out for at least one image. These images have not
been included.
**) VeriNets runtime is dominated by one image running for 2589 seconds. The same
image is solved in 1066.18s by Neurify.

The results for the 100-ReLU node network follow much the same pattern as the
48-ReLU node experiments. However, there is one interesting difference. For ε = 15
we have a speed-up of only 1.65. VeriNet’s runtime is dominated by a single data
point, running for 2589 out of 2606 seconds. Neurify spends 1066.18 seconds on
the same data point. This illustrates a weakness of using the average speed-up as
a metric. Especially for the difficult problems, the runtime might be dominated by
very few, or even one data point.

65

7.6. CONVOLUTIONAL MNIST Chapter 7. Experimental Results

7.5.3 1024 ReLU node network

VeriNet Neurify
ε Total Safe Unsafe Undec time Safe Unsafe Undec time speed-up
1 100 98 2 0 6.11s 98 2 0 11.75s ×1.92
2 100 95 5 0 3.37s 95 5 0 5.34s ×1.61
5 47* 26 6 15 27.03s 27 5 15 155.1s ×5.74

10 49* 0 14 35 0.77s** 0 14 35 2.60s** ×3.38**
15 49* 0 24 25 2.12s** 0 22 27 3.92s** ×1.85**

The time meassurements are for datapoints where neither VeriNet nor Neurify timed-out
With epsilon 10 and 15 we had to reduce the number of threads for neurify to 7 and 4
respectively, to not run out of memory.
*) Neurify didn’t terminate after time-out for at least one image. These images have not
been included.
**) All cases were solved trivially in << 1 second or at least one of the solvers timed-out.

The results for the largest MNIST fully-connected network are less interesting. For
ε = {1, 2, 10, 15} all data points were either solved trivially in << 1 second, or
they timed out. The results with ε = 5 are somewhat more interesting; however, the
average time is still dominated by very few data points. A fully connected network of
this size would probably see a relatively large gain from using l1 or l2 regularisation
during training. This could also make verification easier since smaller weights would
lead to tighter bounds and less overestimation in the linear relaxations.

7.6 Convolutional MNIST

Similar to the fully-connected experiments, we ran experiments with l∞ < ε bounds
on the input and ε ∈ {1, 2, 5, 10, 15}. We used 50 images for each ε value. The results
are presented in the table below.

With this network, Neurify starts splitting at the first fully connected layer, skipping
both convolutional layers. Since the convolutional nodes are never split, Neurify is
not complete for this network, and unable to solve several cases. Neurify reports
”underflow” when no solution can be found after splitting all nodes.

The speed-up for these experiments is not very interesting. For simple problems
where the solution is found without branching, VeriNet finds the solution in ≈ 0.15
seconds, while Neurify solves it in ≈ 1 second. Since symbolic interval propagation
is the most time-consuming part for large networks, much of the speed-up can be
explained solely by our more efficient implementation.

The most interesting part of these experiments is the number of undecided cases.
Since Neurify does not split in the convolutional layers, it can not solve the more
difficult cases. All of Neurifies unsolved cases are due to underflow. VeriNet is
complete and solves several non-trivial cases.

66

Chapter 7. Experimental Results 7.7. CONVOLUTIONAL CIFAR10

VeriNet Neurify
ε Total Safe Unsafe Undec time Safe Unsafe Undec time speed-up
1 50 49 1 0 5.41s 49 1 0 30.45s ×5.63
2 50 49 1 0 5.96s 49 1 0 42.81s ×7.18
5 50 43 2 5 4.61s 37 2 11* 102.94s ×22.33

10 50 1 6 43 3.57s 1 4 45* 42.08s ×11.79
15 50 0 19 31 1.89s 0 12 38* 30.3s ×16

*) All of Neurifiy’s undecided images reported underflow; none reached timeout.

7.7 Convolutional Cifar10

The Cifar10 network, as described in section 7.1, is, to the best of our knowledge,
the largest network ever used in completed verification. However, we still managed
to verify several non-trivial properties of the network, as shown in the table below.
All unsafe properties were determined without the need for branching. The Cifar10
network was much more prone to adversarial examples than the MNIST networks.
Already with a very-small epsilon of 0.05, we found unsafe datapoints.

For the Cifar10 experiments, our solver was memory-bound, compared to CPU-
bound for all other experiments. We had to reduce the maximum number of pro-
cesses to 6 to avoid out-of-memory exceptions. The reason for this is discussed
in chapter 6, and these experiments indicate that improving memory performance
might be essential in the future.

ε Total Safe Unsafe Undec
0.05 50 49 1 0
0.1 50 43 5 2
0.2 50 37 9 4
0.5 50 0 13 37
1 50 0 23 27

Results for the 55616- ReLU node Cifar10 classification network.

7.8 Sigmoid and Tanh

To the best of our knowledge, there are no other verification algorithms with an it-
erative refinement step for the Sigmoid and Tanh activation function. Instead, we
compare against DeepPoly (Singh et al., 2019), a sound but incomplete algorithm.
Since DeepPoly does not find counterexamples, we only compare the number of
cases determined to be safe. We ran the experiments on the same network and im-
ages as used in the original paper. The networks are trained with PGD (Dong et al.,
2018) adversarial training.

67

7.9. MARABOU Chapter 7. Experimental Results

Figure 7.4: Cases verified as safe by VeriNet and DeepPoly

VeriNet determines a significantly larger amount of safe-cases, even without branch-
ing. For cases where our algorithm did not have to branch, it used at most 0.28
seconds, and usually 0.17-0.18 seconds. DeepPoly used more than 8 seconds for all
cases. However, DeepPoly is sound with respect to floating-point arithmetic, and as
we discussed in section 5.2.2, our algorithm is not.

Many of the extra safe-cases we found compared to DeepPoly can probably be ex-
plained by our improved linear relaxations from section 3.5.1. However, the floating-
point soundness of DeepPoly also factors in here, and it is difficult to say how much.

We also compared our improved relaxations with the näıve relaxations introduced in
(Singh et al., 2018), as explained in section 2.6.4. We ran VeriNet without branching
for both relaxations and plotted the results in figure 7.5. VeriNet manages to verify
significantly more cases with our improved relaxation. For ε = 0.03 the näıve relax-
ation can only verify 23 out of 97 cases, while the improved relaxation verifies 95
cases. Moreover, the improved version is also only marginally slower, usually using
0.17-0.18 seconds for each case, while the näıve method uses 0.16-0.17 seconds.

7.9 Marabou

During our project, a new verification framework, Marabou (Katz et al., 2019) was
published. All of the experiments in their paper are done on networks with low-
dimensional input. Marabou achieved significantly better results than Planet (Ehlers,

68

Chapter 7. Experimental Results 7.10. POSSIBLE EXPERIMENTAL WEAKNESSES

Figure 7.5: Cases verified by VeriNet with the näıve and improved Sigmoid relaxations

2017) and Reluplex (Katz(B) et al., 2017), and comparable results to ReluVal (Wang
et al., 2018b). However, they did not test against Neurify, so we decided to do some
experiments against Marabou on the MNIST networks. Marabou has two distinct
modes, a standard single-threaded mode, and a parallel divide-and-conquer mode,
as explained in section 2.6.2. We ran it with both modes and the results are plotted
in figure 7.6. Marabou only supports linear constraints on the output, and as dis-
cussed in section 2.2 the general robustness verification problem can not be encoded
as linear constraints. We solved this by running the algorithm once for each output.
VeriNet and Neurify implement this verification problem natively; however, in the
background both algorithms employ a similar process.

The current version of Marabou does not seem to scale well with the robustness
verification problem and high-dimensional input networks, and Marabou timed out
for several images with ε = 15 in the standard mode and ε = 5 in the divide- and-
conquer mode. Since Neurify was clearly faster than Marabou for these networks,
we decided not to continue the experiments with Marabou.

The current implementation seems to focus on low-dimensional inputs, and the
framework stands out as a very well-designed foundation for future improvements.
Optimizations for high-dimensional input networks might significantly improve these
results in the near future.

7.10 Possible experimental weaknesses

We have done our best to design experiments reflecting the true performance of our
solver, and resulting in fair comparisons. However, we have to keep in mind that this

69

7.10. POSSIBLE EXPERIMENTAL WEAKNESSES Chapter 7. Experimental Results

Figure 7.6: Comparing the time spent verifying 100 images on the 48-ReLU node MNIST
network for VeriNet, Neurify and Marabou

field of research is new, and there doesn’t seem to be a consensus on what kind of
experiments should be used for benchmarking. For our experiments, several factors
should be taken into account.

First of all, neural networks come in a wide variety of architectures. There is no guar-
antee that verification algorithms doing well on classification networks also perform
well on other networks. Unfortunately, the long runtime for the experiments limits
the number of networks we can use.

Our experiments also indicate that a vast majority of properties are either solved
trivially in << 1 second or time-out. Using average speed-up as a metric in com-
parisons can lead to a few data points dominating the timing results. Significantly
increasing the number of data points to avoid this problem is unrealistic due to the
extended runtime.

Furthermore, many neural networks used in verification experiments are designed
and trained without modern techniques such as batch-normalisation, dropout, and
skip-connections. Experimental results for these networks do not necessarily trans-
fer well to neural networks used in practice. This simple network design seems to
be used for two reasons. First, complete verification research of neural networks
is still in its beginning stages. Implementing support for modern techniques does
currently not seem to be prioritised in this research. Moreover, comparing differ-
ent algorithms is simpler when most networks are trained with similar techniques.
However, we still believe this is a challenge and have tried to improve on this by

70

Chapter 7. Experimental Results 7.11. SUMMARY

introducing the Cifar10 network trained with more realistic techniques.

7.11 Summary

Our experiments show that VeriNet can verify more cases within an hour time-out
than the present state-of-the-art toolkit, Neurify (Wang et al., 2018a). For images
verified by at least one of the two toolkits, we achieve a speed-up around an order
of magnitude for non-trivial safe cases and three orders of magnitude for the unsafe
cases. Our implementation also generalises better to convolutional networks due to
the novel adaptive splitting strategy.

Furthermore, we have been able to do meaningful verification on a large convo-
lutional network trained on the Cifar-10 dataset. This network was trained using
modern regularisation techniques and has significantly more nodes than the largest
network used for complete verification before this project.

Finally, our experiments on networks using the Sigmoid and Tanh activation func-
tions show that our algorithm generalises well to networks using non-linear activa-
tion functions.

71

Chapter 8

Conclusion

In this project, we have designed a complete verification algorithm for neural net-
works with high-dimensional inputs and implemented it in a Python library, VeriNet.
Our algorithm extends the symbolic interval propagation approach of (Wang et al.,
2018b,a) with several novel contributions. The experimental results show a speed-
up of about an order of magnitude for most difficult verification problems, and at
least 3-orders of magnitude for unsafe cases, compared to the current state-of-the-art
verification tool. We have also proven that VeriNet can do meaningful verification
with significantly larger and more complex networks than previously verified net-
works.

8.1 Improvements introduced by our algorithm

Our project extends previous algorithms by adding several novel contributions, most
importantly:

• We have shown that the local search step results in a speed-up of several thou-
sand times for finding counterexample over the current state-of-the-art imple-
mentation, Neurify (Wang et al., 2018a). For all unsafe cases, except 1, our
algorithm found a counterexample without branching, while Neurify timed-out
for several of those data points after one hour.

• The adaptive splitting strategy makes our algorithm more general than Neurify
in the sense that we can handle any supported network architecture without
manually choosing which layer we want to start splitting. With our splitting
strategy, VeriNet is also complete for all ReLU networks, while Neurify (Wang
et al., 2018a) is only complete when we choose to split from the first layer.

• We have added support for the Sigmoid and Tanh activation functions and
batch-normalisation layers. The same approach can also be extended to other
activation functions and layers, as long as we can define a linear relaxation for
those functions.

• Finally, we tested our algorithm on a realistically trained and designed network
used for classification on the Cifar10 network with 55616 ReLU nodes. We

72

Chapter 8. Conclusion 8.2. FUTURE WORK

managed to verify several interesting properties of this network, within the
one-hour timeout. To the best of our knowledge, the largest network used for
experiments with complete verification algorithms so far was in (Wang et al.,
2018a), where they used a convolutional network with 10 276 ReLU nodes.

8.2 Future work

Even though we have made much progress during this project, we believe there is
still room for significant improvements. We have listed a few of the most interesting
areas for future research below. This is a long list, but in no way exhaustive, so we
expect to see some exciting research over the coming years.

• As we discussed in chapter 6, for the largest networks, our algorithm is cur-
rently memory-bound not CPU-bound. The symbolic interval propagation is
the main bottleneck for memory consumption. Our current implementation
stores a significant amount of intermediate calculations for efficient recalcu-
lations after splitting. Much of this information could probably be discarded,
without significant impact on computational performance. One example is that
for larger cone-shaped networks, our algorithm performs most splits in later
layers. So, the intermediate calculations for the first layers could be discarded
since we rarely split in those layers. This comes at the cost of recalculating
more symbolic bounds if we were to split in those layers.

• Currently, our algorithm only has comparable good results on networks with
high-dimensional input. An interesting topic for future research is to attempt
to extend this algorithm to work efficiently with low-dimensional input. As
discussed in section 4.2, the most promising way to go is to also split on the
input domain. The main challenge of this is to design a good splitting heuristic
able to compare the value of splitting an input node and an activation node.

• Our adaptive splitting strategy is not exclusively better than Neurify’s (Wang
et al., 2018a) hierarchical. For some cases in the MNIST fully-connected ex-
periments, Neurify had a speed-up over VeriNet. While we expected that this
might happen, we did not expect to see it happen only for the most challenging
cases. Further research into precisely what triggers this behaviour could lead
to better splitting heuristics.

• We have extended our algorithm to support new activation functions and batch-
normalisation layers. However, there are still several modern techniques, such
as Dropout, skip-connections and RNN architectures that are not supported by
our current implementation, which could be a goal for future implementations.

• Both VeriNet and Neurify use an LP-solver as part of the algorithm. Other
complete verification algorithms, such as Reluplex (Katz(B) et al., 2017) and
Marabou (Katz et al., 2019) have designed LP-solvers with support for ReLU

73

8.3. SUMMARY Chapter 8. Conclusion

activation functions. It would be interesting to look at the possibility of com-
bining the advantages of the different approaches by using one of those solvers,
instead of standard LP-solvers.

• As discussed in 5.2.2, we have little knowledge about the effect of rounding
errors on symbolic interval propagation. Both our algorithm and Neurify have
the option to perform outward rounding when calculating concrete bounds,
which guarantees that this operation does not result in invalid bounds. How-
ever, several other operations have not been accounted for, including repeated
matrix multiplications, which theoretically can lead to significant rounding er-
rors. Future research should look into the necessary conditions to avoid invalid
bounds due to rounding errors in practical applications.

• Our local search via adversarial attacks has significantly improved the perfor-
mance of our algorithm for finding counterexamples. However, we have not
looked at how our algorithm compares to more specialised adversarial attack
algorithms. It might be possible to further increase the performance of the
local search by including more advanced adversarial attacks.

• Finally, our algorithm is still limited in the types of verification problems we can
handle. Neurify supports a broader range of verification problems, including
l1, brightness, and contrast based constraints. We believe that we can use many
of the techniques from Neurify to add support for these constraints in VeriNet.

8.3 Summary

The main goal of this project was to design an algorithm able to do verification on
larger networks, and a broader range of network architectures, than current state-of-
the-art algorithms. We feel that we achieved this goal in an excellent way. However,
the long list of potential research topics we discovered while working on this project
shows that the work in this field has barely started. We believe that research along
the paths listed in the previous section, and others, will lead to massive improve-
ments in formal verification of neural networks over the coming years.

74

Bibliography

Akintunde, M., Lomuscio, A., Maganti, L., and Pirovano, E. (2018). Reachability
analysis for neural agent-environment systems. In Sixteenth International Confer-
ence on Principles of Knowledge Representation and Reasoning. pages 1

Akintunde, M. E., Kevorchian, A., Lomuscio, A., and Pirovano, E. (2019). Verification
of rnn-based neural agent-environment systems. In Proceedings of the 33th AAAI
Conference on Artificial Intelligence (AAAI19). Honolulu, HI, USA. AAAI Press. To
appear. pages 1

Chinneck, J. W. and Dravnieks, E. W. (1991). Locating minimal infeasible constraint
sets in linear programs. INFORMS Journal on Computing, 3(2):157–168. pages 22

Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., and Li, J. (2018). Boosting adver-
sarial attacks with momentum. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 9185–9193. pages 67

Ehlers, R. (2017). Formal verification of piece-wise linear feed-forward neural net-
works. In Deepak D’Souza and K. Narayan Kumar, editors, Automated Technology
for Verification and Analysis, Springer International Publishing. ISBN 978-3-319-
68167-2:269–286. pages 1, 2, 6, 8, 9, 21, 22, 26, 45, 68, 84

Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., and Vechev,
M. (2018). Ai2: Safety and robustness certification of neural networks with ab-
stract interpretation. In 2018 IEEE Symposium on Security and Privacy (SP), pages
3–18. pages 1, 17

Gurobi Optimization, I. (2019). Gurobi optimizer reference manual.
http://www.gurobi.com. pages 48, 50

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778. pages 4

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.
pages 2, 5

Katz, G., Huang, D. A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P., Thakoor,
S., Wu, H., Zeljić, A., Dill, D. L., Kochenderfer, M. J., and Barrett, C. (2019).

75

BIBLIOGRAPHY BIBLIOGRAPHY

The marabou framework for verification and analysis of deep neural networks.
In Dillig, I. and Tasiran, S., editors, Computer Aided Verification, pages 443–452,
Cham. Springer International Publishing. pages 1, 2, 6, 21, 22, 45, 54, 68, 73, 84

Katz(B), G., Barrett, C., Dill, D. L., Julian, K., and Kochenderfer, M. J. (2017). Relu-
plex: An efficient smt solver for verifying deep neural networks. In Proc. CAV17,
97–117. pages 1, 2, 6, 21, 22, 23, 45, 69, 73

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980. pages 52, 61

Kochenderfer, M. J., Holland, J. E., and Chryssanthacopoulos, J. P. (2012). Next-
generation airborne collision avoidance system. Technical report, Massachusetts
Institute of Technology-Lincoln Laboratory Lexington United States. pages 1, 45

Krizhevsky, A., Nair, V., and Hinton, G. (2014). The cifar-10 dataset. online:
http://www. cs. toronto. edu/kriz/cifar. html, 55. pages 61

LECUN, Y. The mnist database of handwritten digits.
http://yann.lecun.com/exdb/mnist/. pages 60

Numba (2019). Numpy. http://numba.pydata.org. pages 48

Numpy (2019). Numpy. http://www.numpy.org. pages 48

OpenBLAS (2019). Openblas. https://www.openblas.net. pages 2, 48

PyTorch (2019). Pytorch. https://pytorch.org. pages 48

Singh, G., Gehr, T., Mirman, M., Püschel, M., and Vechev, M. (2018). Fast and effec-
tive robustness certification. In Bengio, S., Wallach, H., Larochelle, H., Grauman,
K., Cesa-Bianchi, N., and Garnett, R., editors, Advances in Neural Information Pro-
cessing Systems 31, pages 10802–10813. Curran Associates, Inc. pages 1, 17, 23,
24, 25, 32, 68

Singh, G., Gehr, T., Püschel, M., and Vechev, M. (2019). An abstract domain for cer-
tifying neural networks. Proc. ACM Program. Lang., 3(POPL):41:1–41:30. pages
1, 17, 25, 32, 54, 60, 62, 67

Singh, G., Gehr, T., Püschel, M., and Vechev, M. (2019). Boosting robustness cer-
tification of neural networks. In 2019 ICLR Seventh International Conference on
Learning Representations. pages 25

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. J.,
and Fergus, R. (2013). Intriguing properties of neural networks. CoRR,
abs/1312.6199. pages 1, 18

Tjeng, V., Xiao, K., and Tedrake, R. (2018). Evaluating robustness of neural networks
with mixed integer programming. arXiv preprint arXiv:1711.07356. pages 1, 2, 6,
23

76

BIBLIOGRAPHY BIBLIOGRAPHY

Wang, S., Pei, K., Justin, W., Yang, J., and Jana, S. (2019a). Neurify.
https://github.com/tcwangshiqi-columbia/Neurify. pages 21

Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana, S. (2018a). Efficient formal
safety analysis of neural networks. In NeurIPS. pages 1, 2, 3, 6, 8, 9, 11, 12, 13,
14, 21, 24, 29, 30, 31, 32, 43, 44, 45, 49, 52, 54, 60, 62, 63, 71, 72, 73, 84

Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana, S. (2018b). Formal security
analysis of neural networks using symbolic intervals. In Proceedings of the 27th
USENIX Conference on Security Symposium, SEC’18, pages 1599–1614, Berkeley,
CA, USA. USENIX Association. pages 1, 7, 10, 14, 20, 44, 45, 69, 72

Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana, S. (2019b). Reluval.
https://github.com/tcwangshiqi-columbia/ReluVal. pages 21

Zhang, H., Weng, T.-W., Chen, P.-Y., Hsieh, C.-J., and Daniel, L. (2018). Efficient neu-
ral network robustness certification with general activation functions. In Bengio,
S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R.,
editors, Advances in Neural Information Processing Systems 31, pages 4939–4948.
Curran Associates, Inc. pages 1, 32, 34

77

Appendices

78

Appendix A

User-guide VeriNet

A.1 Installation

VeriNet is dependent on several libraries, and we have used pipenv to manage most
of our dependencies.

Installing pipenv and dependencies:

$ sudo apt−get i n s t a l l python−pip
$ pip i n s t a l l pipenv
$ cd <your ve r ine t pa th >/Ver iNet / s r c
$ pipenv i n s t a l l

If the last command fails, try: ”$ pipenv install torch==1.1.0” and rerun: ”$ pipenv
install”

Two dependencies cannot be installed through pipenv. First of all, we are using the
Gurobi LP-solver. Gurobi requires a license; however, they have free licenses for
academic use. Secondly, compiling Numpy from source with OpenBLAS might sig-
nificantly improve the performance.

Installing Gurobi

1. Go to https://www.gurobi.com, download gurobi and get the license.

2. Follow the install instructions from http://abelsiqueira.github.io/blog/installing-
gurobi-7-on-linux/

3. Activate pipenv by changing directory to your VeriNet/src folder and typing:
$ pipenv shell

4. Find your python directory by running:
$which python

5. Change directory to your Gurobi installation and run:
$ <your python directory> setup.py install

79

https://www.gurobi.com
http://abelsiqueira.github.io/blog/installing-gurobi-7-on-linux/
http://abelsiqueira.github.io/blog/installing-gurobi-7-on-linux/

A.1. INSTALLATION Chapter A. User-guide VeriNet

Compilling Numpy with OpenBLAS

Numpy should use the OpenBLAS backend for our project. Using other backends
might work but might also create problems with our multi-processing implementa-
tion. Even if your operating system has a version of OpenBLAS pre-installed, we
recommend compiling Numpy from source with an updated OpenBLAS version. We
have noticed a speed-up on important Numpy functionality of an order of magnitude
in some systems. Instructions for compiling Numpy with OpenBLAS can be found at:

https://hunseblog.wordpress.com/2014/09/15/installing-numpy-and-openblas/

We have created a small script that can be used as an indication of the Numpy speed.
The script can be found in ”VeriNet/src/scripts/test numpy.py”. Our test-values on a
Ubuntu 18.04 system with a AMD Ryzen 3700x processor are:

dotted two (1000, 1000) matrices in 45.1 ms
dotted two (4000) vectors in 2.40 us
SVD of (2000, 1000) matrix in 0.668 s
Eigendecomp of (1500, 1500) matrix in 2.340 s

Adding VeriNet to Pythonpath

Make sure that VeriNet is visible to python; this can be done using the command:

$ export PYTHONPATH=”$PYTHONPATH:<your verinet path>”

This line can also be added to ∼/.bashrc.

A.1.1 Environment variables

To make sure that our library runs as expected, we need to set some environment
variables. First of all, pythons multiprocessing doesn’t work well Cuda. To make
sure that no library activates Cuda, we hide all Cuda devices. Secondly, our program
performs best with one OpenBLAS thread; this is also controlled by an environment
variable.

Both variables are set automatically when using our pipenv environment, and can
be found in ”VeriNet/src/.env”. If you are not using pipenv, you need to set them
manually with:

$ export OMP NUM THREADS=1
$ export CUDA DEVICE ORDER = ”PCI BUS ID”
$ export CUDA VISIBLE DEVICES = ””

80

https://hunseblog.wordpress.com/2014/09/15/installing-numpy-and-openblas/

Chapter A. User-guide VeriNet A.2. USAGE

A.2 Usage

A.2.1 Running the program

Example-runs for the arbitrary, targeted and bounded verification problems using
nnet files can be found in the VeriNet/examples/examples.py file. The file also con-
tains a simple example of how to manually define a neural network instead of using
the nnet files. Scripts for all of our benchmarking runs can be found in VeriNet/sr-
c/scripts/.

Several hyper-parameters can be specified when initialising VeriNet and calling the
verify method. More information can be found in the doc-strings.

A.2.2 Pytorch models

VeriNet uses Pytorch to represent neural networks. Networks should be created by
sub-classing the VeriNetNN model found in src.neural networks.verinet nn. Each
layer of the network is represented by a torch.nn.Sequential object. Each sequential
object should contain a layer, and optionally an activation function. The sequential
objects are stored as a list in the class parameter ”self.layers”. It is important not to
overwrite VeriNetNN’s forward method.

Currently supported activation functions are: torch.nn.Sigmoid, torch.nn.Tanh, and
torch.nn.Relu. Supported layers are torch.nn.modules.linear.Linear, torch.nn.Conv2d,
and torch.nn.BatchNorm2d.

An example of this can be found in src/neural networks/cifar10.py.

A.2.3 nnet models

The ”.nnet” is a human-readable format for storing neural networks and has been
used by several verification algorithms before us. It was first introduced for the
ACAS Xu network, https://github.com/sisl/NNet. We do also support the nnet for-
mat; however, we had to make some minor modifications since the original version
does not support convolutional or batch-normalisation layers. The documentation
for our nnet format can be found in the readme in /src/data loader.

The NNET class from src.data loader.nnet is used to handle all functionality for the
nnet format. The class defines five public methods:

i n i t n n e t f r o m f i l e (path : s t r)
i n i t n n e t f r o m v e r i n e t n n (model : VeriNetNN ,

input shape : np . array ,
min values : np . array ,
max values : np . array ,
input mean : np . array ,

81

https://github.com/sisl/NNet

A.2. USAGE Chapter A. User-guide VeriNet

input range : np . ar ray)
f rom nne t to ve r ine t nn ()
w r i t e n n e t t o f i l e (f i l e p a t h : s t r)
normal ize input (x : np . ar ray)

The first method is used to load a NNET model from a file. The second method is
used to create a NNET model from a Pytorch model. The third converts the NNET
model to a Pytorch model, and the fourth saves the NNET model to a file. Notice
that when creating a NNET model from a Pytorch model, we have to specify several
parameters. These parameters are meant to be used for normalisation, and our last
method uses these parameters to normalise a given input. More details can be found
in the methods doc-strings.

A.2.4 The Verification objective

Before running VeriNet we have to define the verification objective. We have im-
plemented support for three different verification tasks, each represented by a class.
The classes can be found in src.algorithm.verification objective.

A r b i t r a r y A d v e r s a r i a l O b j e c t i v e (c o r r e c t c l a s s : int ,
input bounds : np . array ,
output bounds : np . ar ray=None ,
o u t p u t s i z e : in t=None
)

Ta rg e t Ad ve r sa r i a l Ob j e c t i v e (c o r r e c t c l a s s : int ,
t a r g e t c l a s s : int ,
input bounds : np . array ,
output bounds : np . ar ray=None ,
o u t p u t s i z e : in t=None
)

BoundedOutputObjective (input bounds : np . array ,
output bounds : np . ar ray=None ,
o u t p u t s i z e : in t = None
)

The first, ArbitraryAdversarialObjective, is used for classification problems checking
that a input within some given concrete bounds is never misclassified. The second,
TargetAdversarialObjective, is the same; however we only check that the output for
the given target class is never larger than the correct class. Finally, BoundedOut-
putObjective, checks that the output stays within given concrete bounds. The given
input-bounds should be in the same shape as the input of the neural network, with
one added axis at the end of size 2. Index 0 of the last axis should contain the lower
bounds, index 1 should contain the upper bounds. More details can be found in the
classes doc-strings.

New verification objectives can be added by sub-classing the abstract class Verifica-
tionObjective in src.algorithm.verification objective.

82

Chapter A. User-guide VeriNet A.2. USAGE

A.2.5 Activation functions

The activation functions are defined in src.algorithm.activation function abstractions.
New activation functions can be added by sub-classing ActivationFunctionAbstrac-
tion, defining all abstract methods (most notably the linear relaxation) and updating
the activation map dictionary returned by
ActivationFunctionAbstraction.get activation mapping dict().

A.2.6 Benchmarking runs

We have made python scripts to run all the benchmarks from this report. The scripts
can be found in /src/scripts.

83

Appendix B

Independent Study Option (ISO)

Prior to this project, I did a literature review of complete verification algorithms for
neural networks as an ISO. We cover some of the same algorithms in the background
section; however, the presentation significantly differs as we have tailored it towards
our application. For full disclosure, I’ll still give a detailed account of the individual
chapters that contain some thematic overlap here.

Section 2.1 and 2.2 provide some background information on neural networks and
the verification problem, which were also relevant to the ISO. However, there is no
overlap in the presentation. In the ISO, I used a completely different graph-based
notation for neural networks and did not cover convolutional layers, Sigmoid, Tanh
and batch normalisation. The definition of the general verification problem in 2.2
differs in that we require concrete lower and upper bounds for the input, and linear
constraints for the output while the ISO handles a more general verification prob-
lem. The robustness verification problems are also new to this report.

The first paragraph in section 2.3 informally explains the difference between com-
plete and sound algorithms and a similar distinction was made in the ISO. Section
2.4 provides a brief recap of traditional solvers, which we also did in the ISO.

The ISO briefly covered both linear relaxations presented in section 2.5.1 together
with their associated algorithms (Ehlers, 2017; Wang et al., 2018a). We have ex-
tended on this by adding a general definition for linear relaxations. We also explain
in more detail why relaxations are used, compared to the ISO only focusing on how
they are used in their respective algorithms.

The näıve and symbolic linear relaxations from section 2.5.2 are also both mentioned
in the ISO. However, my coverage here is significantly more detailed, we provide all
necessary formulas for propagation, and we added examples and illustrations. The
error-based symbolic interval propagation was not mentioned at all in the ISO.

The complete algorithms from section 2.6.1 to 2.6.3, except (Katz et al., 2019), were
covered in detail in the ISO. The presentation here is much more concise and tar-
geted more towards our use.

84

Chapter B. Independent Study Option (ISO)

The rest of the report does not have any similarities with the ISO.

85

	1 Introduction
	2 Background
	2.1 Neural networks
	2.2 The verification problem
	2.3 Algorithm types
	2.4 Traditional solvers
	2.4.1 Linear programming (LP) solvers
	2.4.2 Mixed integer linear programming (MILP) solvers
	2.4.3 Satisfiability (SAT) solver
	2.4.4 Satisfiable modulo theory (SMT) solvers

	2.5 Important algorithms and concepts
	2.5.1 Linear relaxation
	2.5.2 Interval propagation
	2.5.3 Abstract interpretation
	2.5.4 Adversarial examples and attacks

	2.6 State-of-the-art verification algorithms
	2.6.1 Symbolic interval propagation based algorithms
	2.6.2 SMT-based algorithms
	2.6.3 MILP-based algorithms
	2.6.4 Sound but incomplete algorithms

	2.7 Ethical consideration
	2.8 Summary

	3 Contribution
	3.1 Algorithm overview
	3.2 Adaptive splitting vs hierarchical splitting
	3.3 Splitting heuristic
	3.4 Local search
	3.5 Supported activation functions
	3.5.1 S-shaped activation functions
	3.5.2 Batch normalization

	3.6 Sound and complete
	3.7 Summary

	4 Analysis of algorithmic design choices
	4.1 Symbolic interval propagation
	4.2 Splitting domain

	5 Implementation
	5.1 Overview
	5.2 Symbolic interval propagation
	5.2.1 Minimising split-calculations
	5.2.2 Outward rounding
	5.2.3 Best bounds matrix

	5.3 LP-solver
	5.3.1 Verification problem constraints
	5.3.2 Split constraints

	5.4 Local search
	5.5 Refinement
	5.6 Multiprocessing
	5.7 Testing
	5.8 Summary

	6 Complexity analysis
	6.1 Symbolic interval propagation
	6.1.1 Computational complexity
	6.1.2 Memory complexity

	6.2 LP-solver
	6.3 Local search
	6.4 Refinement
	6.5 Multiprocessing
	6.6 Summary

	7 Experimental Results
	7.1 Choice of experiments
	7.2 Experimental setup
	7.3 Ground truth
	7.4 Changes made to Neurify source code
	7.5 MNIST Fully connected
	7.5.1 48 ReLU node network
	7.5.2 100 ReLU node network
	7.5.3 1024 ReLU node network

	7.6 Convolutional MNIST
	7.7 Convolutional Cifar10
	7.8 Sigmoid and Tanh
	7.9 Marabou
	7.10 Possible experimental weaknesses
	7.11 Summary

	8 Conclusion
	8.1 Improvements introduced by our algorithm
	8.2 Future work
	8.3 Summary

	Appendices
	A User-guide VeriNet
	A.1 Installation
	A.1.1 Environment variables

	A.2 Usage
	A.2.1 Running the program
	A.2.2 Pytorch models
	A.2.3 nnet models
	A.2.4 The Verification objective
	A.2.5 Activation functions
	A.2.6 Benchmarking runs

	B Independent Study Option (ISO)

