
IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Detecting Malware in TLS Traffic
Project Report

Author:
Olivier Roques

Supervisor:
Sergio Maffeis
Co-Supervisor:

Marco Cova

Submitted in partial fulfillment of the requirements for the MSc degree in Computing
Science / Security and Reliability of Imperial College London

September 2019

Abstract

The use of encryption on the Internet has spread rapidly these last years, a trend
encouraged by the growing concerns about online privacy. TLS (Transport Layer
Security), the standard protocol for packet encryption, is now implemented by every
major websites to protect users’ messages, transactions and credentials. However
cybercriminals have started to incorporate TLS into their activities. An increasing
number of malware leverage TLS encryption to hide their communications and to
exfiltrate data to their command server, effectively bypassing traditional detection
platforms.

The goal of this project is to design and implement an effective alternative to the
unpractical method of decrypting TLS packets’ payload before looking for signs of
malware activity. This work presents a highly accurate supervised classifier that can
detect malicious TLS flows in a company’s network traffic based on a set of features
related to TLS, certificates and flow metadata. The classifier was trained on curated
datasets of benign and malware observations, which were extracted from capture
files thanks to a set of tools specially developed for this purpose.

We detail in this report the complete development process, from data collection and
feature extraction to model selection and performance analysis.

ii

Acknowledgments

I would like to particularly thank Marco Cova and Sergio Maffeis, my project su-
pervisors, for their valuable and continuous suggestions and for their constructive
feedbacks on this project.

I would also like to thank the members of the Network Analysis Team at Lastline: Fil-
ippo Anarratone, Luukas Larinkoski, Maurizzio Abba, Alessandro Quaranta, Corrado
Leita, who were always ready to provide me with ideas and answers to the various
issues I encountered.

Finally I must thank all employees of Lastline’s I did not mention for their keenness
to help. It was a pleasure to work and learn in such an environment.

iii

Contents

1 Introduction 1

2 Background 3

2.1 The TLS Protocol . 3

2.1.1 TLSv1.2 . 3

2.1.2 TLSv1.3 . 5

2.1.3 TLS Server Certificate . 6

2.2 Malware’ Use of TLS . 7

2.2.1 TLS-based Threats . 7

2.2.2 Known TLS-based Malware 8

2.3 Overview of TLS Anomaly Detection 10

2.3.1 Traditional Inspection Platform 11

2.3.2 Certificate Analysis . 11

2.3.3 TLS Fingerprinting with JA3 12

2.3.4 Machine Learning Techniques 13

2.4 Legal and Ethical Considerations . 18

3 Design and Implementation 19

3.1 Data Collection . 19

3.1.1 Sources . 19

3.1.2 Date Distribution . 21

3.1.3 Malware Families . 22

3.1.4 Data Extraction and Storage 23

3.2 Feature Selection . 23

3.2.1 Flow Filtering . 24

3.2.2 Differences between Malware and Benign Flows 25

3.2.3 Feature Selection . 28

v

CONTENTS Table of Contents

3.2.4 Robustness of Features . 29

3.3 Classification of TLS flows . 31

3.3.1 Preprocessing . 31

3.3.2 Models . 31

4 Evaluation 35

4.1 Methodology . 35

4.1.1 Testing Datasets . 35

4.1.2 Testing Metrics . 36

4.2 Results . 38

4.2.1 Before Training . 39

4.2.2 Model Performance . 40

4.2.3 Influence of Features . 44

4.2.4 Comparison of Models . 47

4.3 Lastline’s Detector . 48

4.4 Discussion . 50

4.4.1 Related Work . 50

4.4.2 Limitations . 50

4.4.3 Possible Improvements . 52

5 Conclusion 55

A Malware using TLS 57

B Common TLS Destination Ports 59

C TLS Parameters Codes 60

C.1 Ciphersuites . 60

C.2 Extensions . 64

C.3 Elliptic Curve Groups . 64

Bibliography 66

vi

Chapter 1

Introduction

In the space of 20 years, Internet has become an integral part of our lives. We
communicate with friends and colleagues, do shopping, send money and entertain
ourselves online. Guaranteeing that our online activities and the sensitive information
we exchange on a daily basis remain private has become a matter of vital importance.
This concern resulted in the creation of the SSL (Secure Scoket Layer) protocol in
1996 then replaced by the first version of the TLS (Transport Layer Security) protocol
in 1999 [3] which both provide encryption for the application layer.

Today most of the Internet traffic is encrypted with TLS. Gartner has estimated that
by 2019, 80% of global web traffic would be encrypted [27]. Businesses, schools,
governments and individuals all benefit from the privacy encryption provides and the
usage of TLS will certainly continue to grow in the years to come.

However privacy does not guarantee security and malware authors have started
to leverage TLS to hide their malicious activities. Malware have been seen to use
TLS to communicate with their command server, either to receive instructions or to
send back sensitive data collected on the infected machines. Cisco reports that the
percentage of malware samples that used TLS in one way or another has risen from
2.21% in August 2015 to 21.44% in May 2017 [12]. We can expect that figure to
grow, especially given how ubiquitous TLS has become and how cheap and easy it is
nowadays to obtain valid TLS certificates.

Intrusion detection systems that decrypt network packets to apply traditional payload
inspection techniques have proven to be inefficient and directly go against the purpose
of TLS to keep user data confidential. In the light of all this, the goal of this project is
to design and implement a detection system that avoids such shortcomings by using
a machine-learning approach focusing on packets’ metadata rather than on packets’
contents, inspired by the work of a research team from Cisco [13, 15]. In addition,
we are making available a curated set of capture files from malware that use TLS1

and the tool to extract features from them.

We argue that malicious and benign flows do differ and that this separation is reflected
in several parameters related to TLS, certificates or flow metadata. These differences

1https://tinyurl.com/tlsmalware

1

Chapter 1. Introduction

make possible the creation of a highly accurate classifier. The selected model, the
random forest classifier, achieves an accuracy of 99.52% on never-seen before flows,
and a true positive rate of up to 83.44% when limiting the number of false positives
to 1 in 50000 benign TLS flows. The classifier was finally packaged and integrated
into the intrusion detection platform of Lastline, the security company that supported
this project.

This report is organized as follows: the second chapter provides a brief overview of
the TLS protocol, explains how malware can take advantage of TLS and presents the
current state of detection techniques against such malware. The third chapter details
the implementation of the classifier, which includes the collection of data, the choice
of relevant features and a comparison of different classification models. The fourth
chapter presents the results of the system, its limitations and ways that it could be
improved.

2

Chapter 2

Background

2.1 The TLS Protocol

The TLS Protocol is a cryptographic protocol whose primary goal is to "provide privacy
and data integrity between two communicating applications" [3]. The first version of
TLS was released in January 1999 to replace the now-deprecated SSL protocol. As of
May 2019, the most widespread version of TLS is TLSv1.2 released in August 2008.

The TLS protocol sits below the application layer and on top of the transport layer,
primarily TCP (TLS over UDP, DTLS, has been standardized independently [2]). TLS
main use today is to encrypt HTTP traffic with which it forms the HTTPS protocol.
According to Google, in the United States in April 2019 90% of all visited pages were
loaded over HTTPS [32], a figure that keeps growing. However the usage of TLS
is not limited to HTTP only: any application layer protocol can theoretically make
use of TLS. For instance, the SMTP protocol and TLS together constitute SMTPS to
protect emails.

A new version of TLS, TLSv1.3, has been released in August 2018 [5]. It introduces
major changes and performance improvements over TLSv1.2. Browsers and web-
servers are slowly adopting this new version: major browsers such as Chrome, Firefox
or Opera support it already and about 66% of all users would be able to use that
version [55] if web servers would make the transition.

In the next sections, we present a quick description of the TLSv1.2 protocol, the main
changes introduced by TLSv1.3 and a presentation of TLS certificates.

2.1.1 TLSv1.2

TLSv1.2 is currently the most used version of TLS: 95% of webservers support it [39].
It succeeded TLSv1.1 with the main goal of offering new alternatives to the insecure
MD5 and SHA1 algorithms.

A TLS session is established in two round-trips of messages between a client and a
server (figure 2.1) [4, 20]:

3

2.1. THE TLS PROTOCOL Chapter 2. Background

Figure 2.1: TLSv1.2 handshake

1. The client sends a ClientHello message. This message contains:
• a list of ciphersuites supported by the client;
• a list of compression methods;
• a list of extensions that are used by the client to communicate additional

information to the server (for instance to specify the destination hostname,
the elliptic curves supported by the client etc.).

2. The server responds with several messages:
(a) ServerHello: contains the cipher suite and the compression method se-

lected by the server.
(b) Certificate: contains a chain of TLS certificates proving the ownership

of a public key.
(c) ServerKeyExchange: contains information allowing the client to communi-

cate a premaster secret (optional, useful when the server has no certificate
or if its public key is for signing messages only).

(d) ServerHelloDone: informs the client that the server is done sending mes-
sages in this first part of the handshake.

3. The client replies with:
(a) ClientKeyExchange: contains information allowing the server to compute

the final symmetric session key (a session key encrypted with the server’s
public key in most cases)

(b) ChangeCipherSpec: informs the server that all subsequent messages will
be encrypted with the session key.

4

Chapter 2. Background 2.1. THE TLS PROTOCOL

(c) Finished: informs the server that the TLS handshake was successful for
the client.

4. Finally the server ends the negotiation with:
(a) ChangeCipherSpec: informs the client that all subsequent messages will

be encrypted with the session key.
(b) Finished: informs the client that the TLS handshake was successful for

the server.

All messages up until ChangeCipherSpec are sent in clear text since encryption is
possible only when both parties share the symmetric key.

2.1.2 TLSv1.3

TLSv1.3 is the new version of TLS released in August 2018 destined to replace
TLSv1.2. It has been designed for improved security and speed. The main changes
are [5]:

• Obsolete ciphers and hashing algorithms have been removed: SHA1, MD5,
DES...
• The number of messages needed for the handshake has been reduced.
• All messages after ServerHello are now encrypted.

The handshake only requires 3 sets of messages (figure 2.2) [5, 24]:

Figure 2.2: TLSv1.3 handshake

1. The ClientHello message is identical as the one in TLSv1.2 but also carries a
list of public keys.

2. The server replies with several messages:

5

2.1. THE TLS PROTOCOL Chapter 2. Background

(a) ServerHello contains the same information as in TLSv1.2 as well as a
public key. From the client’s public key and the server’s public key, a new
shared key is derived and is used only to encrypt the rest of the handshake.

(b) ChangeCipherSpec has the same purpose as in TLSv1.2.
(c) Wrapper encompasses server messages also present in TLSv1.2: Finished,

Certificate etc.
3. The clients ends the handshake with:

(a) ChangeCipherSpec, which has the same purpose as in TLSv1.2.
(b) Wrapper, which encompasses client messages also present in TLSv1.2:

Finished, optional messages...

It is important to note that all packets following the ChangeCipherSpec messages are
encrypted, including the server certificate. This prevents eavesdroppers to identify the
hostname associated with the server simply by looking at the certificate subject.

A new extension has also been added to TLSv1.3: Encrypted Server Name Indication
(ESNI), which is the encrypted version of the SNI extension found in TLSv1.2, used
by clients to indicate to which particular hostname they are attempting to connect to
[31].

2.1.3 TLS Server Certificate

Server certificates are electronic documents binding a public key to a server, digitally
signed by an entity called the Certificate Authority. Clients receiving a server certificate
during a TLS handshake must verify that it is valid and that is has been signed by
a trusted authority. If the certificate has been signed by an unknown organization,
the client have to go up the chain of certificates until one from a trusted authority is
found, which by construction validates all certificates below it in the chain. When the
legitimacy of the server has finally been verified, the server’s public key can be used
to encrypt and share a symmetric session key.

TLS certificate generally follows the X.509 standard [6]. They contain several fields,
some of them optional. The most notable ones are:

• Issuer: the entity that verified the legitimacy of the server and issued the
certificate (a Certificate Authority in most cases).
• Validity: contains two sub-fields with the date from when the certificate is valid

to the date it expires.
• Subject: the beneficiary of the certificate.
• Subject Public Key Info: contains two sub-fields indicating the server public

key algorithm and the public key itself.
• Extensions (optional): contains several fields stating how the certificate should

be used and additional information about the certificate.
• Certificate Signature Algorithm and Certificate Signature Value: the signa-

ture algorithm and the signature from the issuer of the certificate body.
• Fingerprint (not an actual part of the certificate): the hash of the entire

6

Chapter 2. Background 2.2. MALWARE’ USE OF TLS

certificate (generally SHA256 or SHA1).

However certificates don’t all have the same validation level and browsers display dif-
ferent symbols for each of them: Chrome’s padlocks are shown figure 2.3. Validation

Figure 2.3: Certificate validity levels: SS, DV and OV/EV

levels can be grouped into four categories:

• Self-Signed (SS). This is the lowest level of validation, since it means that
the certificate has been backed up by the certificate recipient itself. Usually
self-signed certificates are used by Certificate Authorities to share their public
key, and browsers are configured to trust these particular certificates (called
root certificates). From entities other than CAs, such certificates provide no
proof of key ownership at all and browsers usually display warnings for them.
• Domain Validation (DV). the CA has only checked the connection between a

public key and a domain name with no further identity checks.
• Organization Validation (OV). The CA has checked the domain name and

some information about the organization before issuing the certificate.
• Extended Validation (EV). the "strongest" certificate, where the CA has con-

ducted a thorough investigation on the organization in addition to verifying the
domain name.

2.2 Malware’ Use of TLS

The ways to take advantage TLS are numerous and we present here some of the tech-
niques malware have been seen to use that involve TLS encryption. We deliberately
do not discuss the exploitation of vulnerabilities in some implementations of TLS
(Heartbleed [45] for instance) since such attacks may not use encryption themselves,
which is the focus of this report.

2.2.1 TLS-based Threats

Payload deposit TLS may be used to hide infection of a machine. For instance,
an employee could visit a malicious website using TLS and a drive-by download
malware would install itself without the user being aware of anything. Since all
communications with the malicious webserver are encrypted, the malware would
evade basic payload inspection set up by the employee’s company.

7

2.2. MALWARE’ USE OF TLS Chapter 2. Background

Data exfiltration Encryption can be used to hide exfiltration of sensitive data: pass-
words, cookies, company data etc. A simple POST request encapsulated by TLS
to port 443 (an usual destination port) of the attacker’s server could leak precious
information while not being blocked by internal firewalls and without raising suspi-
cions. A new covert channel has also been recently discovered using certificates [50]:
attackers use certificate fields such as SubjectKeyIdentifier to embed data, both
for payload deposit to be used at a later time of to exfiltrate data via the sending of
client’s certificate to malicious remote servers.

Command and Control Malware authors are more and more often leveraging TLS
to obfuscate the fetching of C&C commands by infected machines, for the same
reasons as above: encryption allows to bypass the inspection of payload and TLS
traffic to usual ports are often overlooked.

Phishing All means to deceive users and steal sensitive information are worth
exploring for phishing authors and padlocks displayed by Chrome or Firefox are no
exceptions as figure 2.4 shows. According to a survey from November 2018 published
by PhishLabs, 80% of users believe that a green padlock means that the website is
safe or can be trusted, and the fact that 49% of all phishing websites are seemingly
using HTTPS can be interpreted as an exploitation of this misunderstanding [37].

Figure 2.4: A pretty convincing phishing website, bearing a green padlock in Firefox

2.2.2 Known TLS-based Malware

There are many known malware that have been reported to use TLS or SSL. Banking
trojans such as Trickbot, Emotet, Dyre make use of TLS to communicate data back to

8

Chapter 2. Background 2.2. MALWARE’ USE OF TLS

their master server. Ransomware too have been using TLS to infect machines and
transfer information, such as Troldesh, Jigsaw, Locky or Petya. Understanding what
makes malware’ use of TLS unique relatively to normal traffic is a key step to the
creation of an efficient classification system, so here we present briefly the behaviors
exhibited by two well-known malware, TorrentLocker and Dridex.

TorrentLocker

TorrentLocker is a ransomware first observed in February 2014 that encrypts a victim’s
disk using AES. It then instructs the target to pay an amount of around 500$ to unlock
the machine. It was generally distributed via localized spam campaigns and drive-by
downloads exploiting Flash and Internet Explorer vulnerabilities [41].

TorrentLocker relies on TLS to communicate with its C&C server via POST requests.
Figure 2.5a shows the TLS parameters send by the infected host. It is quite different
from usual browser handshakes: we can note the low number of extensions and
ciphersuites offered and the obsolete version of TLS used (TLSv1.2 was already out
for 6 years at that time). Figure 2.5b and 2.5c show the actual structure and type of
encrypted messages sent to the C&C server.

(a) ClientHello content

(b) Structure of a query

(c) The different query types

Figure 2.5: TorrentLocker

9

2.3. OVERVIEW OF TLS ANOMALY DETECTION Chapter 2. Background

Dridex

Dridex is a financial trojan first seen in 2014 that targeted individuals in order to steal
their banking credentials. It became in 2015 one of the most active banking trojan.
It spread via spam campaigns sending out a Word document containing a malicious
macro. That macro downloaded and installed Dridex on the victim’s machine, turning
it into a bot and stealing credentials [47].

Dridex uses TLS at different stages. The malware is made of different modules that
can be enabled and disabled at will. A loader module would first download the main
module via TLS, which is responsible for most of Dridex’s features. All subsequent
communications to the C&C server would also be encrypted by TLS. Figure 2.6a
shows a ClientHello packet of a handshake with the C&C server. Nothing seems
particularly abnormal: unlike TorrentLocker, the TLS version is recent and there are
several extensions and ciphersuites offered by the client. But when looking at the
certificate sent by the server figure 2.6b, we see that it is a self-signed certificate,
which is unusual enough to maybe deserve further investigations.

(a) ClientHello content (b) Server certificate

Figure 2.6: Dridex

2.3 Overview of TLS Anomaly Detection

Organizations and companies are becoming increasingly aware of the threats these
new types of malware represent. A study by Ponemon Institute from May 2016 reports
that 68% of the 1023 companies surveyed have expressed concerns that encrypted
malware communications would allow them to bypass their network’s protection.
Among the respondents, at least 33% have already been targeted by an encrypted
attack and 54% expect these attacks to become more frequent in the coming years
[33].

Given the rapid adoption of TLS since May 2016, which went from supporting 55%
of the web traffic in the USA to 90% three years after, in May 2019 [32], we can
extrapolate that malware have also followed this trend and we can better understand
the urgency to address these threats as efficiently as possible. We present in this

10

Chapter 2. Background 2.3. OVERVIEW OF TLS ANOMALY DETECTION

section an overview of the existing solutions to detect such malware, with their
advantages and shortcomings.

2.3.1 Traditional Inspection Platform

A decryption platform is the most common way to deal with TLS communications
in an enterprise setting. It consists of an appliance that intercepts encrypted traffic,
decrypts it on the fly and inspects contents before forwarding the packets inside and
outside the network. That is the method implemented by 38% of companies from the
Ponemon’s survey [33].

However it has several drawbacks:

• This technique is responsible for a large drop in network performance due
to the constant interception and decryption of packets, up to a 92% drop in
performance in average and a 672% increase in latency. 61% of companies
claim that it is one of the main reasons they are turning away from inspection
platforms [33].
• It may not be compliant with today’s privacy standards in some countries and

might even violate employees’ rights. Sensitive information such as employees’
banking credentials and emails have to be specially taken care of to avoid
exposing their contents in clear text, which adds another layer of complexity.
• The platform must keep track of all TLS certificates and keys needed to decrypt

packets, again increasing the overall complexity of such a system.

Even if this technique allows companies to benefit from all existing detection methods
based on payload inspection, the burden of management and the high costs on
performance make this solution not very practical.

2.3.2 Certificate Analysis

The analysis of certificates sent by web servers can also help detect phishing websites
or anomalous connections. Certificates are sent in clear text during the handshake
(see section 2.1.1), so traditional signature-based detection techniques can apply
here. Alerts can be raised when detecting self-signed server certificates or abnormal
strings in the fields of client certificates (uncommon but can be requested by web
servers), which may be an indicator of data exfiltration [50].

However the easiest way of dealing with certificates remains to maintain a blacklist
of certificates known to be from malicious servers and check all incoming certificates
against that list. Suricata [30], a popular open-source intrusion detection system,
implements such blacklists. Public blacklists are also available online, for instance on
SSLBL [7]. This method suffers from the drawbacks common to all blacklist-based
methods, which is the burden of management: blacklists have to be updated regularly
by trusted people to be useful and mistakes resulting in legitimate websites being
blocked can be source of a lot of frustration for users.

11

2.3. OVERVIEW OF TLS ANOMALY DETECTION Chapter 2. Background

2.3.3 TLS Fingerprinting with JA3

The initial ClientHello message, first introduced section 2.1.1 is composed of several
fields all sent in clear text (see figure 2.7). These fields have values that either depend
on the underlying TLS library used to initiate the connection or values that are directly
set by the application, for optimization purposes. For instance, browsers tend to
offer heavier and more secure ciphersuites while mobile applications favor faster and
lighter algorithms. In any case, these values are unique to the application and remain
fixed across sessions.

JA3 [52] is a project from Salesforce to fingerprint TLS sessions that leverages this
property. It extracts five values from the ClientHello message: SSL version, list of
ciphersuites, length of TLS extensions, elliptic curve groups and elliptic curve point
formats, all shown figure 2.7. Values are then concatenated and the resulting string
is hashed with MD5 to obtain the final JA3 fingerprint. An example is shown below:

JA3 string format:
TLSVersion,Cipher,TLSExtension,EllipticCurve,EllipticCurvePointFormat
Example of a JA3 string:
769,47-53-5-10-49161-49162-49171-49172-50-56-19-4,0-10-11,23-24-25,0
Resulting JA3 fingerprint:
ada70206e40642a3e4461f35503241d5

Figure 2.7: The fields used to create the JA3 fingerprint (taken from [11])

JA3 can be used to identify the application that initiated a TLS session by checking
databases of known JA3 fingerprints (the original repository offer such lists [52]).

12

Chapter 2. Background 2.3. OVERVIEW OF TLS ANOMALY DETECTION

This feature makes JA3 particularly interesting for threat detection. Malware often
use custom parameters when communicating via TLS to their C&C server, which
results in an unique JA3 fingerprint. Knowing that, blacklists of malware’ JA3 hashes
can be compiled [7]. Another great benefit of JA3 is that since it extracts information
from the transport layer only, it remains unaffected by traditional evasion methods
targeting the internet layer: Domain Generation Algorithm, change of IP or even the
use of legitimate websites such as Twitter as C&C servers become irrelevant.

However client applications sometimes use the same common libraries or OS sockets
which results in a shared JA3 hash. An extension of JA3, JA3S [52], uses fields from
the ServerHello message. Since that message depends on values from ClientHello,
it cannot be used to fingerprint TLS servers. But an application communicating with
one server will always receive the same JA3S from it. This is useful for example
when a malware uses a common library to connect to a single C&C server: the JA3 is
indistinguishable from a legitimate application using the same library. But the way
the C&C server responds to this malware is unique compared to the response of a
normal webserver. Therefore the combination of JA3 + JA3S is able to detect more
accurately malicious communications.

JA3 is not perfect. It suffers from the same shortcomings of user-agents in HTTP:
nothing prevents an attacker to modify ClientHello’s values to imitate legitimate
applications, and already such evasion techniques have been seen in the wild [8]. The
choice of MD5 in JA3 is also debatable, first because MD5 is now obsolete and second
because a fuzzy hashing algorithm would have made more sense [11]: it would have
allowed the detection of very similar ClientHello messages, likely coming from the
same application, based on their JA3 fingerprint only. Finally, JA3 blacklists suffer
from the same drawbacks common to all blacklists in general, already described in
the previous section. Despite all this, JA3 remains a useful piece of metadata that,
especially when combined with other methods, is certainly very relevant to malware
detection.

2.3.4 Machine Learning Techniques

Anomaly Detection and Machine Learning

The goal of anomaly detection systems is to find behaviors that deviate from a
baseline, the "normal" (and preferably benign) behavior. But first, a model of what
normal behavior looks like must be created. Statistical analysis is a natural solution
to such problems. There are two kinds of approaches here:

• Supervised learning. In this setting, we have access to a set of n observations
with p features for each one. We also have the corresponding n responses which
can be used to train and validate models. The goal is to predict responses of
previously unseen observations.
• Unsupervised learning. In this setting, we only have the set of observations

with their features. The objective is not to predict a response but to discover
interesting relationships between observations, if they can be classified into

13

2.3. OVERVIEW OF TLS ANOMALY DETECTION Chapter 2. Background

subgroups for instance.

This report will focus on supervised learning, because this area is more developed and
understood than unsupervised learning [36]. Supervised learning also suits better
our initial goal which can be described as a classification problem for which labelled
sets can be created or fetched online. Finally, this approach allows to get better
insights on the results obtained, that in return helps analysts understand what exactly
distinguish malware traffic from normal traffic [53].

Supervised machine-learning methods have been applied extensively to anomaly
detection [38, 46, 56]. However not much literature exists on TLS anomaly detection,
probably because the use of TLS was not so prevalent a few years back. Security
companies do advertise their use of machine-learning algorithms against abuse of TLS
[22], but are understandably reluctant to go into details. The main public resources
on this subject come from a Cisco team who published several papers on encrypted
malware detection [12, 13, 14, 15, 44]. We present a summary of their results here.

Characteristics of TLS malware

What exactly distinguish encrypted malware communications from legitimate ones?
Based on a sample of around 26000 malicious TLS flows from 18 different malware
families and benign TLS flows collected in an enterprise setting, the Cisco team
reported these findings:

• From the infected client’s ClientHello packet (figure 2.8, taken from [15]):
– Malware families offer a completely different set of ciphersuites than

normal clients. Furthermore these ciphersuites are often weak or obso-
lete. In comparison, almost all benign applications offer the same set of
ciphersuites.

– Malware rarely offer more than one extension where enterprise clients
advertise up to 9 extensions.

– The client’s public key length varies between malware and normal clients.

Figure 2.8: Differences between normal and infected hosts [15]

• From the malicious server’s ServerHello and Certificate packets (figure 2.9,
taken from [15]):

14

Chapter 2. Background 2.3. OVERVIEW OF TLS ANOMALY DETECTION

– Servers queried by malware select uncommon ciphersuites, as expected
given the restricted size of ciphersuites offered in the first place.

– The same observation applies for extensions chosen by servers.
– Certificates’ period of validity is also discriminant: some specific periods

were used more often than others.
– The number of subjectAltName (SAN) entries in certificates, which allows

a certificate to cover several domain names, differs quite a lot.
– The percentage of malicious servers sending a self-signed certificate is an

order of magnitude higher than for normal servers.

Figure 2.9: Differences between malicious and normal servers [15]

• Finally packet lengths and inter-arrival times are behavioral features that may
be very different between benign and malicious sessions as shown figure 2.10
(taken from [12]). Sizes of packets sent from the client to the server are
represented with upward lines, sizes of packets from the server to the client are
represented with downward lines and the horizontal axis represents time.

Data Features

The choice of relevant features is arguably one of the most important step in the cre-
ation of an efficient model suitable to anomaly detection. Ideally these features should

15

2.3. OVERVIEW OF TLS ANOMALY DETECTION Chapter 2. Background

Figure 2.10: Packet lengths and inter-arrival time of benign and malware sessions [12]

have the following properties to maximize detection while minimizing management
and storage costs [44]:

• Compact: the number of bits needed to store one observation (composed of
multiple features) must be significantly smaller than the original flow size to
ensure that a large number of observations can be stored and re-used later for
training.
• Informative: the features must contain relevant information to the initial

problem and should be as independent as possible from one another.
• Economical: collecting flows and extracting features should not require too

much computing power and time.

Based on the previous observations and a study of TLS parameters [44], the features
selected by Cisco are presented table 2.1. They can be divided into 3 categories:

1. Flow Metadata: features not related to TLS that are observable in any NetFlow.
2. Distributions: features that cannot be directly extracted from packets but are

the results of some kind of frequency analysis on a flow’s packets.
• Sequence of packet lengths. Packet lengths are placed into bins, e.g. packet

of size in range J0 , 150K will go into the first bin etc. A matrix A is then
constructed where each entry A[i, j] counts the number of transitions
between bin i and j. The rows of A are finally normalized to ensure a
proper Markov chain and entries of A are used as features (explanation
from [15]).
• Sequence of packet size. Same as for packet lengths but with packets’

inter-arrival times.
• Byte distribution. A length-256 array that keeps count of each byte value

encountered in the payload of packets.
3. TLS Metadata: features that are extracted from TLS handshake packets (ClientHello,

ServerHello, Certificate).

16

Chapter 2. Background 2.3. OVERVIEW OF TLS ANOMALY DETECTION

Category Feature Type

Flow Metadata

Source port Integer
Destination port Integer
Number of inbound bytes Integer
Number of outbound bytes Integer
Number of inbound packets Integer
Number of outbound packets Integer
Duration of the flow Integer

Distribution
Sequence of packet lengths Stochastic matrix
Sequence of packet times Stochastic matrix
Byte distribution Length-256 Array

TLS Metadata

List of ciphersuites Binary vector
List of TLS extensions Binary vector
Client’s public key length Integer
Selected cipher suite Integer
Selected extensions Binary vector
Number of SAN Integer
Validity (in days) Integer
Certificate self-signed or not Boolean

Table 2.1: Cisco’s features for TLS malware detection

Cisco’s Results

Two models were tested by the Cisco team:

• Logistic regression computes the probability that an observation belongs to a
specific class. It is a highly interpretable algorithm that provides the weights
associated to each feature.
• Random forest returns the averaged output of multiple decision trees. Each

decision tree has been built with a bit of randomness to decrease correlation
between them. Random forest performs especially well on non-linear observa-
tions and are also highly interpretable. This is the algorithm that performed the
best according to a comparison of different models [14].

The models were trained on two large labelled sets of flows: one collected in an
enterprise setting, considered benign, the other composed of malicious flows the
Cisco team have gathered internally. Finally 10-fold cross validation was performed
to estimate the test error. The accuracy when the classifier is only allowed one false
positive for every 10000 benign flows has also been computed. The summary of the
results is reported table 2.2.

Algorithm Total Accuracy 0.01% FP < 0.01% FP
Logistic Regression 99.6% 87.4% ∼ 86.4%
Random forest 99.9% – ∼ 86.8%

Table 2.2: Accuracy for different algorithms and false positive rates [14, 15]

17

2.4. LEGAL AND ETHICAL CONSIDERATIONS Chapter 2. Background

2.4 Legal and Ethical Considerations

The goal of this project is to implement a detection system targeting malware hidden
in encrypted traffic, ideally to be used in an enterprise setting. Traditional techniques
involve intercepting and decrypting all packets coming from outside or inside the
enterprise, which means that employees cannot expect any privacy in their network
activities. Someone having access to such a system could see in clear text all pass-
words, bank details, private messages sent by any employee. The detection system
presented here avoid such privacy breaches by never actually decrypting packets: it
only looks at packet metadata such as ports, flow duration etc. The only potentially
sensitive piece of information the system currently has access to would be the domain
name an employee is connecting to. But we argue that in an enterprise setting, people
already expect that their web history is visible to their employer. Furthermore while
active, the detector never stores the domain name: the detector uses it only to filter
out legitimate flows and discard it afterward.

The classification model requires a dataset composed of benign traffic to be trained
on. That "good" dataset was collected by sniffing traffic regularly for approximately
three weeks from Lastline’s offices, with the permission of the office manager. The
resulting capture files have been saved in an internal storage space to re-train the
classifier if needed, but they are not available to the public and to all employees. The
"bad" dataset, composed of malware traffic, is mainly composed of flows publicly
available on the Internet.

Eventually the classifier has been integrated into Lastline’s internal network analysis
system (Llanta), which is a proprietary software. To do so, an additional module
has been developed that processes and forwards flows received by Llanta to the
trained model. This module is not presented in this report since it depends on many
Lastline’s libraries and cannot function without them. However the classifier itself
can be demonstrated on a testing dataset without requiring any Lastline’s software,
which is how the results presented section 4.2 have been obtained.

Apart from these three points, there are no other legal or ethical considerations
related to the project to report. The scripts all use open-source software and there
are no apparent scenarios where they could be used to do harm.

18

Chapter 3

Design and Implementation

The aim of this project is to design and implement an efficient classifier capable of
labelling TLS flows as either benign or malicious. As stressed by [53], having a good
understanding of the repartition and origins of the available data is a key step towards
the interpretation of results. With that in mind, the chapter is divided into three
sections that go through the development process. The first section presents where
and how the data was collected and pre-processed. The second section provides
insights on how exactly malware and benign TLS flows differ, what features were
selected based on these observations and how robust they are against tampering.
The third and last section looks into the selected classification models and their
implementation.

The project was supervised by Lastline, a cyber security company with offices in North
America and London. The classifier was developed in Lastline’s London office with the
intent of being integrated into their main product, an intrusion detection platform.

3.1 Data Collection

Numerous and relevant observations provide the basis of a supervised machine-
learning model. Since the goal of the present work is to implement a supervised
classifier that would eventually be able to distinguish between benign and malicious
TLS flows, two datasets containing each a large number of samples from both classes
are needed. We call here TLS flow a set of packets representative of a TLS session,
which combine a successful TLS handshake and subsequent encrypted application
data packets. This section presents how the data was collected and where and when
the samples come from.

3.1.1 Sources

In total, 16275 malware flows and 28136 benign flows were collected from May to
June 2019. The repartition of sources are shown figure 3.1.

19

3.1. DATA COLLECTION Chapter 3. Design and Implementation

Figure 3.1: Source of TLS flows

Benign Dataset

The capture of benign TLS flows was straightforward: traffic from Lastline’s offices
was captured over a period of approximately three weeks. Two offices were monitored,
the London office and the Redwood City office in California. There are about 15
employees at London’s office, all software developers, and they all use either Linux
or MacOS as operating system with Chrome or Firefox as browser. They mainly visit
internal or IT related websites. The Redwood City office is primarily composed of
business teams which account for around 30 employees, and they use a mix of MacOS
and Windows machines. The captures can largely be considered benign, because the
shared Internet connection is protected with Lastline’s main product, an intrusion
detection system covering several surface attacks, and because all employees are are
regularly sensitized on online threats given the company’s main activity.

It should be noted that the benign traffic collected comes from an enterprise setting,
more specifically from a medium-sized and IT-oriented office, which may differ a lot
from traffic generated in an university, at home or from a company with a different
activity. The resulting classifier would therefore suits to similar network traffic, but
may not perform well in these other settings. New benign traffic should be captured
for each new context to improve the classifier’s capabilities. Finally, to introduce a bit
more traffic coming from Windows machines, benign captures were also downloaded
from Stratosphere IPS [35]. It represents 821 flows (3% of the total).

20

Chapter 3. Design and Implementation 3.1. DATA COLLECTION

Malware Dataset

A lot of resources dedicated to machine-learning projects are available online [21, 23,
42]. However most of them focus on clear text protocols such as HTTP or DNS. In
addition, the distinction between benign and malware flows in these captures is often
blurry, or the authors only provide .csv files and not original capture files which we
need to take advantage of the full range of TLS parameters.

Therefore only individual capture files have been selected where malware have been
placed in an isolated sandbox before having their traffic captured, which theoretically
ensures that only malicious flows are considered. Samples made of pre-infection
TLS traffic exclusively, for instance users visiting phishing website that have HTTPS
enabled, were ignored and only capture files that mentioned encrypted post-infection
traffic were kept. The malware dataset has been made public on Google Drive1. It
was built using three main sources:

malware-traffic-analysis.net [25] All capture files from January 2014 up until
June 2019 that contained TLS flows were collected. This represents 8080 flows (after
the filtering process explained in the next chapter) across 311 capture files.

Stratosphere IPS [35] Stratosphere IPS provides several long-term captures of
malware that use TLS to communicate. There are fewer captures available here
than on malware-traffic-analysis, but because traffic is collected over a longer period
of time, a lot more flows are present in these captures: 348041 flows from only 31
captures. To avoid an excessive imbalance between benign and malicious flows and
also to avoid an over-representation of some malware families such as Dridex, only
the first 300 flows of each capture were kept, which amounted to 7848 flows in total.

Lastline Lastline saves very short capture files of malware their network sensors
detect. All captures from known TLS malware seen in a two weeks period have been
kept, from April 24, 2019 to May 7, 2019. This represents 347 flows across 101 files:
a small number in comparison to the other two sources, but they have the advantages
of being very recent and representative of actual threats companies encounter on a
weekly basis.

3.1.2 Date Distribution

All benign flows are either from 2019 (Lastline’s traffic) or 2017 (captures from
Stratosphere IPS). Malware flows are spread over 4 years from 2016 to 2019. The
full repartition is presented figure 3.2.

Time can introduce bias, for instance if the time window between good and bad
flows does not overlap. In this case, the classifier may learn to distinguish flows

1https://tinyurl.com/tlsmalware

21

https://drive.google.com/open?id=1TfRz6q65wPaiuB4D9qmyfCxoJ8zEBUQY

3.1. DATA COLLECTION Chapter 3. Design and Implementation

Figure 3.2: Number of flows by year

based on time rather than on the threat they pose [49]. Another type of bias appears
when training the classifier on observations posterior to those present in the testing
set. This leads to artificially improved accuracy as emphasized in [10] and does not
guarantee that the classifier will be robust to time decay [49].

We tried to mitigate this in the datasets: first by collecting some benign flows from
the same periods as malicious ones, second by also testing our classifier on very
recent flows (see next chapter, section 4.1.1). Furthermore, time does not seem to
affect much the malware dataset: in the past three years, malware families generally
have not updated the ciphersuites or extensions they use. For instance figure 3.3
shows that Trickbot still uses the same twelve ciphersuites from 2017 in 2019. It is
likely because from 2016 to 2019, there has not been many changes in the sets of
ciphersuites made available by the TLS protocol. We can expect the classifier to still
be relevant in the months to come.

3.1.3 Malware Families

The malware dataset contains 18502 flows shared among 40 distinct malware families
(if we consider unclassified as a family on its own), shown figure 3.4. However this
distribution should not be entirely trusted. The family label was assigned manually,
based on the name of the downloaded capture file, without checking thoroughly if the
characteristics exhibited in each capture indeed corresponded to the advertised name.
For instance, RIG is an exploit kit that is often used to deliver trojan or ransomware.
It does not make use of TLS in itself, but the malware it has delivered might be.

22

Chapter 3. Design and Implementation 3.2. FEATURE SELECTION

(a) 2017 (b) 2019

Figure 3.3: The identical set of ciphersuites offered by Trickbot in 2017 and 2019

However even if this list is not totally reliable, the scope of this project has been
confined to the classification of TLS flows according to whether or not they are
malicious and not according according to the malware family they may belong to.

Still, we recognise some families that are know to abuse TLS: Dridex, Trickbot,
Upatre, Zeus (also known as Zbot) and ZeuS Panda (a variant of Zeus) are some of
them. A full list of malware that leverage TLS which was used to select only relevant
samples when building the datasets is present in the appendix A.

3.1.4 Data Extraction and Storage

The capture files in .pcap format were parsed into JSON files using Joy [43], an
open-source packet analysis tool. The tool extracts TLS flows along with packet and
byte distributions. Flows from the resulting JSON files are then filtered to remove
unusable flows (more detailed in section 3.2.1). After that, the filtered files are parsed
to extract TLS information used afterwards by the feature extraction tool, like the set
of ciphersuites, extensions and elliptic curve groups seen across all files. This step
serves to reduce the final number of features by only considering what has been found
in the training datasets: for instance the TLS protocol offer 344 valid ciphersuites
[34], but only 145 of them are actually present in the observations. The last step uses
these sets and the filtered JSON files to extract or compute the features, and finally
save them into .csv files. The whole pipeline is presented figure 3.5.

3.2 Feature Selection

This section presents how features were filtered, selected, and formatted. Distinct
characteristics of malware and benign flows are also detailed here with their interpre-
tation.

23

3.2. FEATURE SELECTION Chapter 3. Design and Implementation

Figure 3.4: Number of flows by malware family

3.2.1 Flow Filtering

Before proceeding to feature extraction, TLS flows were first filtered based on three
criteria. First, TLS flows with an incomplete handshake were discarded, as well as
TLS flows that had less than three packets in each direction for the reason exposed in
[57]: since we take into account the sequence of packet lengths and times, a minimal
number of inbound and outbound packets must be defined.

Then are removed all flows that miss key features, such as server certificate or the
list of offered ciphersuites. The mandatory features that all flows must possess have
been kept as small as possible so as not to remove a too large number of flows from
the datasets and for the classifier not to be too selective regarding the flows it can
analyse.

Finally, since there are sometimes artifacts of benign flows in malware captures,
we remove all flows present in malicious captures where a destination hostname is
present that is mentioned in one of the three main top one million websites lists:
Alexa2, Cisco Umbrella3 and Majestic4. This process, as well as the previous one, may

2https://www.alexa.com/topsites
3https://umbrella.cisco.com/
4https://majestic.com/reports/majestic-million

24

https://www.alexa.com/topsites
https://umbrella.cisco.com/blog/2016/12/14/cisco-umbrella-1-million/
https://majestic.com/reports/majestic-million

Chapter 3. Design and Implementation 3.2. FEATURE SELECTION

Figure 3.5: Feature extraction pipeline

remove bad flows: some malware have been seen to use social networks of Google
services to receive their commands or send data. But keeping all such flows would
skew the training process and result in a larger number of false positives.

All capture files are not equal in terms of number of packets and capture duration.
To avoid having too many samples from a very small set of captures which could
introduce bias in the classification, only the first 300 packets of each file were kept.
This step ensures a better distribution of packets and of malware families across all
available captures.

The filtering results are shown 3.1. The vast majority of removed flows comes from
the absence of a mandatory feature, especially from the absence of a server certificate,
and from the filtering based on top websites lists.

Source Before Filtering After Filtering Reduction
malware-traffic-analysis 17442 8080 −53.7%
malware_stratosphere 507175 7848 −98.5%
malware_lastline 2998 347 −88.4%
benign_lastline-london 104728 15688 −85.0%
benign_lastline-redwood 68858 11627 −83.1%
benign_stratosphere 2427 821 −66.2%
Total 738408 44411 −94.0%

Table 3.1: Results of filtering

3.2.2 Differences between Malware and Benign Flows

The selection of features must be motivated by clear differences in the characteristics
of malware and benign observations. If both datasets are very similar in the first
place, trying to classify flows would most certainly fail. This section looks into
the distinguishing features between the labelled flows and argues that a separation
between the two datasets does exist.

Flow Metadata Differences

Malicious communications collected last longer in average than benign ones (fig-
ure 3.6a). This is due to the fact that Lastline’s employees typically use TLS to

25

3.2. FEATURE SELECTION Chapter 3. Design and Implementation

load webpages and download small resources which results in short-lived TLS ses-
sions, whereas malware may tend to send and receive larger amount of data (data
exfiltration, fetching of additional malicious modules remotely...).

The figure 3.6b showing the difference in the average byte entropy is a bit more
surprising. High entropy results from the use of strong encryption and where we
could have expected malware flows to have less entropy due to maybe ignoring
encryption of data packets, it is the contrary that happens. We speculate that this is
correlated to the short flow duration of benign sessions: since the TLS handshake is
not encrypted and account for a larger portion of the benign TLS session, it lowers
the final average entropy.

Finally the destination port (from the client’s point of view, therefore the server’s
listening port) is a good indicator of compromise (figure 3.6c). By default, legitimate
servers listen on specific ports for TLS-related packets (see appendix B for a list of
usual TLS ports), and apart from malware there is no reason for clients to initiate
TLS sessions to other ports. There is also no real advantages for malware to use other
ports than TLS ones since they are more prone to being blocked or detected, so it
may be that authors just wanted to use encryption and did not care about which
ports their server should use. The same goes for source ports figure 3.6d: by default
operating systems assign source ports randomly in the range 49152–65535 [28]. Some
malware do not request a source port from the OS and use a custom one, which make
them stand out among normal connections.

TLS Parameters Differences

The lists of offered ciphersuites and extensions by the client have discriminant power.
Some ciphersuites are completely ignored by malware, others are disproportionally
favored as shown in figure 3.8a. Appendix C.1 can be used to map codes to ciphersuite
names. The most notable ones are:

• TLS_RSA_WITH_RC4_128_MD5 (4 or 0x0004)
• TLS_RSA_WITH_RC4_128_SHA (5 or 0x0005)
• TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA (19 or 0x0013)
• TLS_DHE_DSS_WITH_AES_128_CBC_SHA (50 or 0x0032)
• TLS_DHE_DSS_WITH_AES_256_CBC_SHA (56 or 0x0038)

All five of them are considered weak or insecure according to [51]. The use of such
ciphersuites may be attributed to a lack of awareness from malware authors of what
would be strong choices, to the lack of mechanisms to remotely update malware
with modern ciphersuites once they have been released, or to a lack of concern
with the idea that the strength of ciphersuites does not matter as long as contents
are encrypted. There have been evidences of the latter regarding the choice of an
algorithm: some authors are only concerned about encryption and nothing else, like
the ZeuS authors who explain their reasoning in their FAQ [58] shown figure 3.7.

The same goes for extensions: malware tend to use a lot less extensions, with an
average of 3 extensions offered by malware against 10 for the normal flows present in

26

Chapter 3. Design and Implementation 3.2. FEATURE SELECTION

(a) Flow Duration (b) Entropy

(c) Destination Port (d) Source Port

Figure 3.6: Differences in flow metadata of benign and malicious flows

the datasets. The proportion of extensions offered by both classes is presented figure
3.8b (appendix C.2 maps codes to extensions). As for ciphersuites, some extensions
are almost never offered by malware:

• status_request (5)
• application_layer_protocol_negotiation (16)
• extended_master_secret (23)
• session_ticket (35)

Normal hosts also favor shorter keys (figure 3.9d): they mainly use 512-bit key (which
is used by the ECDHE_RSA key exchange algorithm) where malware also use 2048-bit
key (DHE_RSA algorithm). This is in accordance with the findings of Cisco in [15].

Certificate Differences

Certificates contain a lot of parameters that are quite different for both types of
observations. As expected, malware tend to rely a lot more on self-signed certificates
(figure 3.9a). They are also more likely to use longer period of validity than legitimate

27

3.2. FEATURE SELECTION Chapter 3. Design and Implementation

Figure 3.7: An entry in the ZeuS malware FAQ regarding the choice of ciphersuites
(translated from Russian)

certificates, which tend to favor shorter periods (figure 3.9b). Reasons behind short
periods are to limit damages from the compromise of certificates and to push system
administrators to automate the renewal process in order for HTTPS to become less
cumbersome to manage [26].

The number of Subject Alternative Names (SAN), which indicates other domains
for which the certificate is valid, stays relatively low for malicious flows. A possible
explanation would be that legitimate certificates from reputable sources are expensive
and companies often own several sub-domains, so there are incentives for them to
put many alternative subjects in a single certificate.

3.2.3 Feature Selection

This section presents the features selected for classification based on the previous
observations. Two different sets of features were extracted. The first one contains all
types of features described in Cisco papers [15, 44] and presented section 2.3.4, plus
a few others. The second set is a subset of the first one and contains only features
present in Lastline’s serialized representation of TLS flows. All features are shown
table 3.2. SPT and SPL stand for Sequence of Packet Lengths and Sequence of Packet
Times respectively.

The full set contains 417 features and the reduced one 208. However the size of
these sets depends on the training set, since features that are absent from all training
observations are removed. This is the case for ciphersuites, extensions, elliptic curve
support groups (column Dynamic in table 3.2). These indicators are useless to the
classifier and do not impact its performance anyway. When extracting features from
testing sets, a special binary feature is set to 1 whenever a never-seen before (because
absent from the training sets or removed) dynamic parameter is encountered in a
flow.

Most of the features have already been described section 2.3.4. The new ones that
are not self-explanatory are:

• Ephemeral source port. Source port is usually chosen randomly by the OS in
the range 49152–65535 [28]. This feature accounts for source ports that are out
of that range.
• Usual TLS destination port. Servers listen on specific ports for TLS connec-

tions, anything out of these few ports can be considered suspicious.
• Elliptic Curve Groups. supported_groups is a TLS extension that informs the

server on the elliptic curves the client supports. This feature has been included
because it is present in the list of TLS parameters used by JA3 to sign TLS

28

Chapter 3. Design and Implementation 3.2. FEATURE SELECTION

Feature Size Dynamic? In reduced set? Type
Ephemeral src port 1 No Yes Boolean
TLS dest port 1 No Yes Boolean
Nb of inbound bytes 1 No No Integer
Nb of outbound bytes 1 No No Integer
Nb of inbound packets 1 No No Integer
Nb of outbound packets 1 No No Integer
Flow duration 1 No No Integer
SPL 100 No No Stochastic matrix
SPT 100 No No Stochastic matrix
Byte dist mean 1 No No Float
Byte dist std 1 No No Float
Byte entropy 1 No No Float
Ciphersuites 146 Yes Yes Binary vector
Extensions 16 Yes Yes Binary vector
Nb of extensions 1 No Yes Integer
Supported Groups 36 Yes Yes Binary vector
Point Formats 4 No Yes Binary vector
Client’s key length 1 No No Integer
Certificate’s validity 1 No Yes Integer
Certificate’s nb of SAN 1 No Yes Integer
Self-signed certificate 1 No Yes Boolean
Total 417 208

Table 3.2: Selected features

session [52], and therefore can be used to identify the client’s application.
• Elliptic Curve Point Formats. point_formats is another TLS extension that

tells the server how elliptic curve points are represented (compact representa-
tion or not). It is also used by JA3.

The selected ciphersuite and extensions by the server have been ignored because they
are strongly correlated to offered ciphersuites and extensions, since the former are
always a subset of the latter.

3.2.4 Robustness of Features

The Pyramid of Pain [19] is an empirical method to evaluate the robustness of
indicators of compromise (IoC): the higher the score for an IoC, the more difficult it
should be for the attacker to find a way around it (figure 3.10). This concept can be
applied to our selection of features. There are not all equals, and those who are the
most useful to determine the threat level of a flow may also be trivial for attackers to
modify as they wish. Following the Pyramid of Pain model, a score is given to each
feature based on their resistance against tampering, from weak to robust:

• 1: little effort is required for any kind of attackers to evade the feature

29

3.2. FEATURE SELECTION Chapter 3. Design and Implementation

• 2: not as trivial but a reasonably advanced adversary can bypass the indicator
• 3: consequent work is needed to evade the indicator, which is reserved for

advanced and determined attackers

Table 3.3 below summarizes the analysis.

Flow Metadata By default on every major OS, source port is chosen randomly [28].
Destination port can be easily configured on the server side. Number of inbound and
outbound bytes, inbound and outbound packets are not directly controlled by the
attacker and depend on the data exchanged between the endpoints which makes it
difficult for attackers to tamper with these parameters.

Distributions All distribution-related features are not directly modifiable but de-
pend on the nature of the data exchanged itself, and are therefore resistant to
spoofing. Entropy is a special case, it is also not controllable by the attacker but
simply encrypting the payload generates high entropy indistinguishable from benign
TLS flows.

TLS Parameters TLS libraries such as OpenSSL and its wrappers (like the ssl
library for Python) allow the customization of ciphersuites and can also provide
strong default lists. Attackers still need to be aware that ciphersuites can be indicators
of compromise and that they should not use obsolete or rarely used ciphers. Mozilla
keeps updated a list of recommended ciphersuites that are widely used in legitimate
traffic [29].

Extensions are also customizable, however not all libraries offer the possibility to do
so (ssl does not). It is arguably harder to change than ciphersuites but is still under
the control of an attacker. The same goes for the number of extensions and elliptic
curves related features.

Finally the client’s key length depends on the key exchange algorithm offered by the
client which can be easily modified.

Certificate Nowadays it has become very easy to obtain a certificate from a legit-
imate source, for instance with Let’s Encrypt5. It solves the problem for malware
authors of having to resort to self-signed certificates. Certificate’s validity can be set
by the subject or imposed by the issuer. In Let’s Encrypt case, duration is fixed to 90
days by default which is commonplace.

Subject Alternative Name is a certificate extension that can be modified as one wishes
during the certificate creation. Some providers also limit the number of SANs (100
for Let’s Encrypt for instance).

5https://letsencrypt.org/

30

letsencrypt.org

Chapter 3. Design and Implementation 3.3. CLASSIFICATION OF TLS FLOWS

Feature Score
Source and Destination ports 1
Bytes in and out 3
Packets in and out 3
Duration 3
Sequence of Packet Lengths 3
Sequence of Packet Times 3
Byte Distribution 3
Entropy 1
Ciphersuites 2
Extensions 2
Number of Extensions 2
Elliptic Curve Groups 2
Elliptic Curve Point Formats 2
Client’s Key Length 1
Certificate’s Validity 1
Certificate’s Number of SAN 1
Self-Signed Certificate 1

Table 3.3: Robustness of features

3.3 Classification of TLS flows

3.3.1 Preprocessing

Raw observations have been processed to obtain more suitable inputs for the models.
First, all two-level categorical variables were transformed into dummy variables
where classes were represented by 0 or 1. This concerns all features of type Boolean
of Binary vector in table 3.2. The observation label, benign of malicious was also
converted in this way.

Then all columns with null variance, meaning columns in which all values were
identical, have been removed since they do not carry any useful information for
classification.

Finally, all non-dummy features were scaled in order to have zero mean and unit
variance which is expected by some models (logistic regression is one of them) and
helps the convergence of the gradient descent algorithm used by several of the models
[9]. Unit variance also ensures that the fitting will not depend on the scale in which
the samples were measured [36].

3.3.2 Models

Five classification models were tested. All models were implemented in Python 3.6
with scikit-learn [48], an open-source machine-learning library.

31

3.3. CLASSIFICATION OF TLS FLOWS Chapter 3. Design and Implementation

Logistic Regression This is a linear model which assumes a linear relationship
between the features and the logarithm of the odds that a sample is malicious. It
has the benefit of being highly interpretable and relatively fast to compute but its
performance suffers if the linearity assumption does not hold.

Random Forest This model, first presented section 2.3.4, does not assume a linear
relationship between the features and the label. It is also highly interpretable but
takes longer to train because of the multiple intermediary decision trees to compute.

K-Nearest Neighbors This is another model that performs well on non-linear
datasets. It labels a flow with the most present class of its K immediate neigh-
bors. It is fast to compute but the parameter K must be chosen carefully and if both
malware and benign datasets are very spatially close to each other, accuracy drops.

Linear Discriminant Analysis Another linear model that basically plugs estimates
of means and variances for the distribution of flows in each class (two in our case,
benign and malware) in another type of classifier, the Bayes classifier [36]. The
Bayes classifier simply assigns to a flow the class for which the probability the flow is
belonging to it is the highest. However LDA assumes that the probability distribution
for each class is known in advance or at least accurately hypothesized, which is often
not the case. It is not an easily interpretable model neither.

Linear Support Vector Classifier Linear SVC works by finding the best separating
(linear) hyperplane with the largest possible margin between the two datasets. How-
ever if datasets cannot be clearly delimited by a linear hyperplane in the first place,
accuracy suffers. This model is also not interpretable.

32

Chapter 3. Design and Implementation 3.3. CLASSIFICATION OF TLS FLOWS

(a) Ciphersuites

(b) Extensions

Figure 3.8: Differences in the set of ciphersuites and extensions offered by the client

33

3.3. CLASSIFICATION OF TLS FLOWS Chapter 3. Design and Implementation

(a) Self-Signed

(b) Certificate’s Validity

(c) Number of SAN (d) Client’s Key Length

Figure 3.9: Differences in the client’s key length and in the certificate of malicious servers

Figure 3.10: The Pyramid of Pain, with examples of IoCs

34

Chapter 4

Evaluation

This chapter presents the results obtained with the random forest classifier. It begins
with details about the methodology used to validate the model, followed by the test
results and a comparison of performances when one changes the model or the set of
features. The chapter ends with a discussion about the limitations of the classifier
and suggestions for future work that could improve the detector.

4.1 Methodology

4.1.1 Testing Datasets

Two sorts of tests were performed to evaluate models. The first tests were done using
Stratified K-Fold cross-validator. With this method, the shuffled dataset comprised
of all malware and benign flows is split into K folds. One of the fold is used as the
testing set while the other K − 1 folds are used to train the model. The process is
repeated K times, with a different fold being selected as the testing set each time.
Finally the average metrics of the K runs is computed.

The K folds are not built randomly but are made by preserving the percentage of
flows in each malware family (benign is considered as a family of its own). This
stratification ensures that a fold does not inadvertently contain a disproportionate
amount of flows from one malware family only, which could bias the model during
training or skew the testing results if that fold is used for validation. The default
value of K was fixed to 10.

The other validation method was to test the classifiers on a fresh dataset that was never
used in the training process. To build the dataset, new samples were collected during
July 2019. They come from the same sources described section 3.1.1. Again, network
traffic from Lastline’s London and Redwood office was collected for approximately
two weeks to build the benign dataset. The malware samples come from capture files
saved by Lastline where malware activity was detected during July 2019, and from
https://www.malware-traffic-analysis.net/index.html for the month of July 2019.

35

malware-traffic-analysis.net

4.1. METHODOLOGY Chapter 4. Evaluation

The source distribution is shown figure 4.1. In total, the test dataset contains 21457
benign flows and 1473 malware flows. Samples of malware that use TLS are harder
to find and represent 6.4% of all test flows. However a low amount is not a bad
thing since the percentage of malware in the testing set should remain close to the
true percentage of malware in the wild. This is to avoid spatial experimental bias in
testing which result in inflated precision, as stressed out by the Tesseract paper [49],
due to the fact that the number of false positives naturally decreases when reducing
the number of benign flows.

Figure 4.1: Source of flows used for validation

4.1.2 Testing Metrics

To evaluate the performances of a model, we use several metrics presented below.

Binary Classification In the rest of this report, Positive (P) refers to malicious flows
and Negative (N) refers to benign flows. The terms True is employed when the
classifier makes a correct prediction and False when it does not. Based on these
definitions, table 4.1 presents the terms employed to evaluate the models. After
running a classifier on the test datasets, all these metrics can be displayed using a
confusion matrix which follows the same structure as table 4.1.

In addition, False Positive Rate (FPR) and True Positive Rate (TPR) are defined as
follows:

FPR =
FP

N
=

FP

FP + TN

36

Chapter 4. Evaluation 4.1. METHODOLOGY

Predicted label
benign malware

True label
benign True Negative (TN) False Positive (FP)

malware False Negative (FN) True Positive (TP)

Table 4.1: Binary classification terms

TPR =
TP

P
=

TP

TP + FN

FPR measures the proportion of benign flows mistakenly labelled as malicious. TPR
measures the proportion of malware flows correctly labelled as such by the classifier.

Accuracy, Precision, Recall, F1-score The main classification metric is the accuracy
which gives the proportion of correctly labelled flows with respect to the total number
of samples in the dataset. It is defined as:

Acc =
TP + TN

N
=

TP + TN

TP + TN + FP + FN

Other metrics that are returned by the classifiers developed for this project are:

• Precision, which gives the proportion of truly malicious flows among all flows
labelled malicious by the classifier: precision = TP

TP+FP
.

• Recall, which gives the proportion of malicious flows correctly found by the
classifier among all truly malicious flows: recall = TP

TP+FN
. Note that this is just

another name for the True Positive Rate.
• F1-score which returns the harmonic mean of the precision and recall:

F1 =
2

1
precision + 1

recall

= 2
precision× recall
precision + recall

The three scores listed above can also be measured for benign samples. For instance,
the precision for legitimate flows is defined as the proportion of truly benign flows
among all samples classified as benign. Running the classifier on a test dataset returns
the metrics for the two classes and the average weighted by the number of samples
in each class. An example of a test run is shown figure 4.2.

ROC curve A Receiver Operating Characteristic curve is a plot which shows the
relation between the FPR and TPR as the classification threshold varies. An example
from scikit-learn’s User Guide [48] is presented figure 4.3. The dotted blue line
represents the ROC of a model that randomly classifies into one of the two classes.
Ideally, the ROC curve should reach the top left corner where the false positive rate
would be null and the true positive rate would reach its maximum for one specific
threshold. Another benefit of this curve is the Area Under the Curve: computing the
integral of the ROC curve returns the probability that a random malicious sample will
have a higher classification score than a random benign one (if high scores indicate
maliciousness) regardless of the threshold chosen [16].

37

4.2. RESULTS Chapter 4. Evaluation

Figure 4.2: An example of the results returned by the LDA classifier on the test dataset

Figure 4.3: A ROC curve

4.2 Results

As mentioned section 3.3.2 and 3.2.3, five different models were tested and two
different sets of features were built. We present here first the results for one model
and one set: the random forest classifier on the reduced set of features.

The choice of the reduced set instead of the full set comes from the fact that ultimately
this project will be merged into Lastline’s intrusion detection platform and must be
compatible with the features made available. The results obtained with the full set of
features are exposed section 3.2.3.

The analysis of the random forest model over another one is motivated by a prior
comparison between models presented section 4.2.4, where random forest classifier
was generally the best performing one. It was also the model of choice in some of the
work from Cisco [12, 14], whose results give us an idea of the performances that are
reachable with this model and can be used as a benchmark against which to compare

38

Chapter 4. Evaluation 4.2. RESULTS

our own classifier.

4.2.1 Before Training

Data Visualization

One way to visualize multi-dimensional data is by performing Principal Components
Analysis. An Introduction to Statistical Learning [36] defines PCA as a way to "summa-
rize a large set of correlated variables with a smaller number of representative variables
that collectively explain most of the variability in the original set". This technique can be
used for data visualization by projecting the scaled training dataset onto two principal
vectors, effectively reducing the dimensions from more than 200 to 2. Figure 4.4
shows the principal components analysis. The resulting projection is not interpretable
but still shows a clear global separation between benign and malware samples. This
is reassuring and legitimises the idea that the two classes are quite different.

Another interesting thing to note is that there are many more malware points in-
distinguishable from benign points than the opposite. We could expect the trained
classifier to be mislead by this phenomenon and to return more false negatives than
false positives.

Figure 4.4: PCA of the training dataset

39

4.2. RESULTS Chapter 4. Evaluation

Choice of the Model Parameter

The random forest classifier is parameterized by N , the number of trees. The model
basically builds N trees with a random subset of features to be used by each one then
finally averages the predictions of all trees, which lowers the overall variance of the
model. However this is not a critical parameter: a high number of trees results in
more computation time but does not lead to overfitting. The number of trees only
serves to smoothen the average output of trees, which in turn increases performances
on never-seen before datasets [36].

Figure 4.5 plots the average accuracy of 100 runs of the random forest classifier on
the testing dataset for different values of N . The graph is quite irregular but there is
a clear tendency for the accuracy to rise alongside the parameter. Based on that plot,
the number of trees was chosen to be 130 for the rest of the project, which offers a
good balance between accuracy and computation time.

Figure 4.5: Accuracy with respect to the number of trees

4.2.2 Model Performance

Cross-Validation

The classifier capabilities were first measured via 10-fold cross validation, see 4.1.1.
The results are displayed figure 4.6. We computed and kept the average weighted
metrics because the two classes are not balanced. The results looks very good: a near
100% accuracy and almost all malware samples were found.

40

Chapter 4. Evaluation 4.2. RESULTS

Figure 4.6: Results of 10-fold cross validation

A likely explanation to such high performances is temporal experimental bias [10, 49].
This bias is caused by the nature of the data: TLS flows are subject to concept drifting
meaning that they become obsolete over time. New malware are introduced, users’
habits change etc. Therefore time does have an impact on the model, however K-fold
cross validation ignores that and may select training flows posterior to testing flows,
which results in a positively biased classifier.

In this first testing phase with cross-validation, the model assumes that flows are
identically distributed in time. The classifier is then trained on folds that include
flows both anterior and posterior to flows in the testing fold: the datasets are time-
homogeneous. Therefore a test flow is more likely to be correctly labelled than in the
case where the two datasets are time-heterogeneous: all training flows are anterior
to test flows. This latter case is often what is available in practice, when the classifier
is being fed newly received or sent data.

Fresh Testing Dataset

Figure 4.7 shows the resulting metrics as well as the corresponding confusion matrix
when testing on the completely fresh dataset, whose construction has been detailed
section 4.1.1. This dataset contains almost exclusively flows posterior to the ones in
the training set.

The scores have slightly dropped from 10-fold cross-validation but are still high.
The confusion matrices also confirm our prediction of section 4.2.1: the classifier
generates more false negatives than false positives which affects the malware recall,
96.13% according to figure 4.7a. This is not surprising, since it is more likely that
a malware would have a TLS configuration looking normal, for instance by using a
standard TLS library with strong defaults, than for a normal client to tweak and use
unusual TLS parameters that would be flagged as suspicious.

False Positive Threshold

High accuracy is nice to have, but a low number of false alarms is arguably a more
important factor for the usability of an intrusion detection system. The two metrics
are not correlated due to the base-rate fallacy [17]: the very high number of benign
flows compared to the very low probability of infection may result in a large amount
of false positives regardless of accuracy. This is undesirable since it can quickly
become a management burden, to the point even legitimate alerts could be ignored.

41

4.2. RESULTS Chapter 4. Evaluation

(a) Scores

(b) Confusion matrix (c) Normalized confusion matrix

Figure 4.7: Results on the fresh dataset

We consider a medium sized network of about 100 hosts. Given that Lastline’s London
office with a daily presence of around 10 employees generates about 5000 TLS flows
per working day, we can extrapolate and say that a network of this size would
generate 50000 TLS flows per day. In the following:

• I denotes the infection event "a TLS flow comes from a malicious source" and Ī is
the complementary event.
• A and Ā relates to the raising or not of an alarm from the detector.

Therefore the key value we want to maximize is P (I | A), the probability that a host
in the network was indeed infected given that an alarm was raised. Using Bayes’
theorem we get:

P (I | A) =
P (A | I) · P (I)

P (A)
=

P (A | I) · P (I)

P (A | I) · P (I) + P (A | Ī) · P (Ī)

• P (A | I), the probability that an alarm is raised when an infection happens, is
given by the true positive rate (TPR) of the classifier.
• P (A | Ī), the probability that an alarm is wrongly raised, is given by the false

positive rate FPR.
• P (I) represents the proportion of malicious TLS flows over all generated flows.

This figure is not known in advance but let’s suppose that a host has 0.5% chance
of being infected anytime during the day and that an infection generates 5 TLS
flows per day. Therefore P (I) = 100 · 5

1000
· 5
50000

= 5 · 10−5, five flows in one
hundred thousand would be malicious for that network.

42

Chapter 4. Evaluation 4.2. RESULTS

• P (Ī) is then derived from P (I) by P (Ī) = 1− P (I).

We can use the ROC curve of the random forest classifier to see how the FPR and
TPR change when the threshold varies. The curve figure 4.8 was computed on the
predictions returned by the model on the fresh dataset and by varying the threshold
above which a sample is labelled as malicious.

Figure 4.8: ROC Curve of fresh dataset

The ROC returns these values:

• For a threshold of 0.10, the TPR is 0.9946 and the FPR is 0.0134.
P (I | A) = 0.0037 (0.37%).
• For a threshold of 0.50, the TPR is 0.9633 and the FPR is 0.0021.
P (I | A) = 0.0234 (2.34%)
• For a threshold of 0.92, the TPR is 0.8344 and the FPR is 0.0002.
P (I | A) = 0.1726 (17.26%)

Keeping the default threshold of 0.5 would result in the low true positive rate of 2.34%.
Even with a high threshold, the probability that there was an infection given an alert
only reaches 17.3%. This figure, which may seem to contradict the good performances
obtained previously, is due to the fact that the ability of the detector to find malicious
flows is completely dominated by the number of benign flows. However this number
must also be put in perspective: setting the threshold to 0.92 results in a false positive
rate of 0.0002, which gives:

FP = FPR ∗N = 0.0002× 50000× (1− 5

100000
) ≈ 10

43

4.2. RESULTS Chapter 4. Evaluation

TP = TPR ∗ P = 0.8344× 50000× 5

100000
≈ 2

There would be about 10 false alerts per day, which remains manageable and would
be bearable if the detector is successful at detecting real threats often enough.

4.2.3 Influence of Features

Best Features

One of the advantages of the random forest classifier is that it is highly interpretable,
meaning that we have access to the criteria on which the classifier bases its predictions.
After training, each feature is given a coefficient indicative of its importance. This
coefficient is computed from the mean decrease across all trees in the error rate (the
Gini index for the random forest classifier) induced by the use of the feature [36].

Figure 4.9 presents the 50 most important features. The classifier was trained one
hundred times and the coefficients shown in the figure are the average across all runs.
The name associated to each code can be found appendix C.1 for ciphersuites, C.2 for
extensions and C.3 for elliptic curve groups.

Figure 4.9: The top 50 features averaged across 100 runs

The most discriminant features are the ciphersuites and the extensions used by both

44

Chapter 4. Evaluation 4.2. RESULTS

classes, which account for 32 and 10 of the top 50 features respectively. The top 4
ciphersuites are:

1. cs_c02f (TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256): a recommended cipher-
suite [51] introduced in TLSv1.2, mostly used by normal TLS flows.

2. cs_c030 (TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384): another recommended
ciphersuite used in benign traffic.

3. cs_0004 (TLS_RSA_WITH_RC4_128_MD5): an insecure ciphersuites due to the use
of the deprecated RC4 algorithm, mainly used by malware.

4. cs_0005 (TLS_RSA_WITH_RC4_128_SHA): an insecure ciphersuites similar to the
previous one.

The top 4 extensions are:

1. ext_23 (extended_master_secret): mostly used by normal flows as seen figure
3.8b.

2. ext_5 (status_request): mainly used by benign flows.
3. ext_16 (application_layer_protocol_negotiation): mainly used by benign

flows.
4. ext_18 (signed_certificate_timestamp): mainly used by benign flows.
5. ext_65535 (unknown): this extension is a placeholder for all extensions seen in

the testing set but absent or ignored from the training set (see section 3.2.3 for
more details). This feature is more representative of benign flows: this is due to
Google Chrome’s GREASE mechanism which inserts random extensions to make
sure webservers ignore unknown values [1].

The features related to TLS parameters dominate the top 50, though some of them
are absent: elliptic curves point formats are far down the full ranking. TLS features
are followed by features related to certificates which are all present in the top list.
Regarding flow metadata, only the destination port is among the 50 bests and the
source port is ranked 68. The bottom of the full list is filled with ciphersuites,
extensions and elliptic curve groups that are equivalently or rarely used by the two
classes.

Figure 4.10 shows how the model performs when considering only a subset of the
features. A greedy approach was taken to built that subset, based on the ranking
presented above: features were selected by group of five starting with the five first
features then by going down the ranking, without considering potential interactions
between features which may have resulted in better accuracy. The plot shows the
average accuracy across 100 runs steadily increasing, reaching its maximum for the
entire set of features. We have used all 208 features in this project, but it may be
interesting to use only a subset of those, if storage is a scarce resource for instance or
if the dataset becomes too large. According to the figure, the 80 top features would
provide good accuracy (0.992) and after that number, accuracy does not increase as
rapidly as before.

45

4.2. RESULTS Chapter 4. Evaluation

Figure 4.10: Accuracy across 100 runs according to the number of features

Reduced and Full Set of Features

All prior and later results were obtained with the reduced set of features. In this
section, we consider the full set. Figure 4.11 shows the differences in accuracy,
precision recall and TPR for FPR = 0.02% between the two.

The results are quasi-identical when looking at accuracy, recall or precision. The main
improvement is a sharp increase in the true positive rate when considering a very low
FPR, which is not negligible as we have seen section 4.2.2.

The top 50 features for that set is presented 4.12. Having access to all 400+ features
for classification is not always possible which is the case for Lastline’s serialized flows.
However if they are available there is no reason they should not be used, at least for
the benefit of an increase in the TPR.

The first 15 best features basically do not change. Features related to the sequence
of packet times and lengths do have an impact, as well as features related to byte
distribution: number of inbound bytes is ranked 17th, entropy is 23rd and number
of outbound bytes is 46th. This confirms that there are indeed differences in the
frequencies of normal and infected clients’ communications with a server. Other
discriminant features are the client’s public key length, which could already be seen
figure 3.9d, and the flow duration (figure 3.6a). The bottom of the full ranking is
filled with features related to the sequence of packet lengths and times. It is not
surprising since these two categories alone account for 200 features, half of the full
set.

46

Chapter 4. Evaluation 4.2. RESULTS

(a) Accuracy (b) Weighted Precision

(c) Weighted Recall (d) TPR for FPR = 0.02%

Figure 4.11: Differences between the full and the reduced set of features

4.2.4 Comparison of Models

Five other classification models were tested, introduced section 3.3.2. The results are
presented figure 4.13.

The results may seem very close to each other, but when considering a dataset of more
than ten thousand flows, even a change in the third decimal covers more than ten
flows. With that in mind, the best overall classifier is the random forest model which
has the highest accuracy, recall and precision among all five models. The K-neighbors
model (with K = 5 here) has a higher true positive rate when considering a FPR
of 0.02% which makes it an interesting alternative to random forest and may be an
evidence of a large spatial gap between the two datasets.

The fact that the two best performing models are not linear, unlike the three others,
supports the idea that a true label cannot be simply derived from a linear combination
of the features. Non-linear approaches are therefore best suited for our goal of
classifying flows defined by many parameters. Even so, all five models still yield
satisfying results which at least go in favor of the hypothesis that the two classes are

47

4.3. LASTLINE’S DETECTOR Chapter 4. Evaluation

Figure 4.12: The top 50 features for the full set

well-separated.

4.3 Lastline’s Detector

The classifier was finally integrated into Lastline’s main product, Lastline Defender.
Lastline Defender is a detection system that collects and analyses the traffic of
customers looking for abnormal or malicious activities. Customers’ traffic is sent to
devices called sensors that pre-process and forward the network data to a service
also hosted on sensors called Llanta, Lastline’s Advanced Network Traffic Analysis.
Llanta is composed of detectors that run periodically and raise alerts whenever an
observation triggers their logic.

The integration took place in four steps:

1. The trained classifier was converted into a Debian package that could be in-
stalled into Llanta and be used by any detector.

2. A Python module was created to convert a raw TLS flow object generated by a
sensor into a TLS vector holding all features used by the classifier.

3. A detector was developed to make the connection between the data from the
sensors and the classifier. It feeds on TLS flows only. How it operates is detailed

48

Chapter 4. Evaluation 4.3. LASTLINE’S DETECTOR

(a) Accuracy (b) Weighted precision

(c) Weighted recall
(d) TPR for FPR = 0.02% (SVC does not provide
FPR and TPR w.r.t threshold)

Figure 4.13: Performances of different models

below.
4. Finally, extensive documentation was written, both in the internal documenta-

tion platform (Confluence) and in the source code. All capture files and datasets
used for testing and training were arranged and saved into Lastline’s data repos-
itory. This step was to make improvements to the project easier to carry out and
to facilitate subsequent trainings of the classifier.

The detector instantiates a TLS vector from each raw TLS flow it receives from the
sensors. It then forwards the vector to the classifier which returns its prediction for
that flow. When the detector has seen more than a certain number of flows labelled
as malicious originating from a single host, an alert is raised. That count threshold,
by default equal to five flows, is there to limit the number of false alerts and can
be modified by the customer. A different threshold, the classification threshold, is
used to classify a flow as malicious. It has been set by default to 0.92 for the reasons
explained section 4.2.2. Unfortunately the detector was not yet fully deployed when
the project was drawing to a close, so the results of the classifier in real conditions

49

4.4. DISCUSSION Chapter 4. Evaluation

cannot be presented in this report.

4.4 Discussion

4.4.1 Related Work

The interest on the detection of TLS malware is relatively recent: some companies
and individuals have just started to advertise their work on the subject [18, 54]. But
as of August 2019, the most comprehensive (and public) study still comes from Cisco.
They have published their results for several models [14, 12] including the random
forest classifier with 125 trees. Table 4.2 summarizes the malware recall obtained by
our classifier and Cisco’s, based on the scores they have released in [12].

Reduced set Full set
0.5 0.9 0.5 0.9

Cisco 97.67% 80.76% 99.35% 85.80%
Lastline 96.13% 83.44% 97.11% 94.64%

Table 4.2: Malware recall of Lastline’s and Cisco’s classifier

The sets of features between our classifier and Cisco’s, both reduced and full, differ.
In particular, reduced set for Cisco refers to the full set they uses without SPL and SPT
features. The features they have selected to train their models have been presented
section 2.3.4.

Overall the results are quite similar. Our classifier seems to perform better for the full
set of features with a threshold of 0.9, but this kind of differences can be attributed to
a lot of factors: the choice of features, the size of the training dataset, its contents, the
number of trees used... There is no clearly better detector, however this comparison
shows the performances a classifier targeting malicious TLS flows can expect to
achieve.

4.4.2 Limitations

On Datasets

The performance of the classifier depends a lot on the quality of the training data.
The malware dataset can be common to all usages since it has been built such that
every malware using TLS is included in it indiscriminately. However it should be kept
up to date with new malware samples while older ones should be removed regularly
so that the classifier is able to detect recent threats. Finding malware samples is not
an easy task since it is difficult to be sure that a flow is malicious in the first place
and because manually collecting traffic from sandboxed malware is time-consuming
and requires someone familiar with the procedure.

50

Chapter 4. Evaluation 4.4. DISCUSSION

As a result of all this, the classifier is not suited to discover completely new threats
since it has been trained on known malware only and because the usefulness of the
malware dataset is limited in time. Malware come and go for periods spanning from
weeks to years so the current dataset may only be valid for some months or a couple
of years at best.

Benign flows should be easier to collect, however the dataset must be built from
scratch for each different setting. Indeed, the nature of the traffic as well as operating
systems clients are running impact a lot the performances of classifiers. To demon-
strate this, figure 4.14 shows the normalized classification matrices of the random
forest classifier in two scenarios:

1. In figure 4.14a, the training benign dataset was composed of flows from Last-
line’s London and Redwood offices and the model was tested on benign flows
coming from Lastline’s Redwood office only. London’s office only has Linux and
MacOS machines whereas in Redwood, the main OS is Windows with some
machines running MacOS.

2. In figure 4.14b, the training benign dataset was from the London office only
and the model was tested on the Redwood office.

(a) Training on London and Redwood datasets (b) Training on London dataset only

Figure 4.14: Differences introduced by the change of the training dataset

We can see a sharp rise in the number of false positives in the second scenario. This
is due to the fact that all machines in London’s office are running Linux or MacOS,
whereas the malware dataset contains a lot of traffic from Windows machines. It is
very likely that in this scenario the classifier learns to distinguish between different
operating systems rather than malware from normal traffic. Then, since the Redwood
office is composed of a majority of Windows machines, the false positive rate increases.

On Classification

The classifier can be tricked. Section 3.2.4 details the robustness of each feature and
from the table 3.3, we see that all features in the reduced set can be modified by a

51

4.4. DISCUSSION Chapter 4. Evaluation

determined malware author so that communications would be almost indistinguish-
able from normal ones. One way to make this task harder for attackers would be to
keep the list of features secret, or to use the full list of features (see table 3.2) which
incorporates indicators harder to tamper with.

Another issue to mention is that it is quite difficult to validate results manually,
without having prior access to the true labels. This is a direct consequence of the
complexity of the original problem: isolating a TLS flow and classifying it as bad or
not is a hard task for humans. This is also why the set of features is large (more than
200 at least), because there is no single parameter that is a sure sign of infection.
This means that false alerts are particularly unwelcome since analysts responsible for
checking on alerts would have to spend a lot of time on each of these false positives.

That is why the training phase and the choice of classification parameters should
be given a lot of care. False positives cannot be avoided, however the classification
threshold should be set so that there are as few as possible, as mentioned in section
4.2.2. The number of false positives is directly linked to the size of the network:
more traffic generates more TLS flows, thus a bigger number of flows unintentionally
labelled as malicious which can become unmanageable after a certain point. The best
threshold is therefore unique to each setting. High thresholds might well result in
more false negatives, but usability and trust in the results are also important factors
to consider especially in a commercialized product. And there are still other detectors
present to potentially intercept these false negatives using different methods.

4.4.3 Possible Improvements

On the Construction of Datasets

The capture files were collected manually which took a significant part of the time
spent on the project. That process could be automated in the future. The benign
dataset on which to train the classifier could be rebuilt periodically to ensure the
freshness of the data. The difficulty lies in the fact that it is practically impossible
to be certain that the whole capture is benign. One solution would be to collect
traffic from a few trusted and well-protected hosts representative of the company’s
traffic that would be considered clean. Another idea would be to make use of other
detectors to filter out as many bad flows as possible from capture files.

Collecting malware samples was a lengthy process, worsened by the lack of informa-
tion from online providers on whether or not a malware actually uses TLS. A way to
improve that phase would be to build and regularly update a collection of samples of
malware that are known to abuse TLS. When a malicious flow would be detected,
either by signature checking, by another detector or by the classifier itself (and after
an analyst would have confirmed that the sample is indeed malicious), it would be
saved and reused in future trainings. Such a database would also ease the search
online for samples similar to malware families already present in the collection, which
would in turn contribute to the growth of the database.

52

Chapter 4. Evaluation 4.4. DISCUSSION

On the Classifier’s Performances

Alone, the detector may raise a lot of false positives, especially if the decision threshold
and the classifier’s parameters are not carefully chosen (sections 4.2.2,4.4.2). A way
to limit that phenomenon would be to combine the TLS detector with other detectors
which also look into TLS flows. For instance, Lastline has developed a Domain
Generation Algorithm detector which picks up random-looking domain names hinting
at the presence of malware. This detector could be used on the SNI (Server Name
Indication) TLS extension which is not currently used by the classifier except to filter
out flows (section 3.2.1).

Another detector developed within the scope of this project, not mentioned in this
report to avoid going off-topic, is a JA3 profiling detector. The detector extracts JA3
(section 2.3.3) from TLS flows and builds a profile of typical JA3 hashes for each host
in the network. Then after that training period, new JA3 hashes absent from a host’s
profile and its neighbors’ are flagged as suspicious. Combining other detectors with
the classifier would serve to improve precision and lower the false positive rate.

Robustness against determined attackers, discussed section 3.2.4, also contributes to
the usefulness of an intrusion detection system. To improve robustness, the classifier
could take into account features from other types of flows rather than limit itself to
TLS. This has been done in another paper from Cisco [13]. In this paper, DNS queries
made prior to the TLS handshake as well as headers from "HTTP flows originating
from the same source IP address within a 5 minute window" were used as features. The
paper includes a top 10 features indicative of malware which is reported figure 4.15.

Figure 4.15: Top 10 features from different protocols (taken from [13])

These contextual features improve robustness by including hard-to-spoof features,

53

4.4. DISCUSSION Chapter 4. Evaluation

such as whether or not the domain queried is present in Alexa top 1 million list. The
accuracy does not improve significantly compared to results of section 4.2.2, but the
TPR when considering a very low FPR increases greatly: from 77.88% (83.44% for
our classifier as a reference) to 99.98%. Therefore expanding the set of features given
as inputs to the classifier would prove very beneficial in all aspects.

Finally, the classifier currently only knows to distinguish between "good" and "bad"
flows, ignoring the malware family a flow would belong to. Modifying the classifier
so that it is able to assign a malware family to a malicious flow would help a lot the
response phase. Indeed, knowing what type of malware has infected a machine is very
valuable to contain it and to understand what may have been compromised. However
this refinement in classification is only possible if the training data is correctly labelled
in the first place, which requires a lot more care and verification when collecting
malware samples.

54

Chapter 5

Conclusion

In the past decade our online presence has increased drastically. From this evolution
has risen the need of a fast and resilient protocol to protect users’ privacy. TLS
aims to fulfill that role and TLS version 1.2 has quickly become the standard of web
encryption. But these last years we have seen the emergence of new kinds of malware
leveraging TLS to hide their malicious communications among normal traffic. Such
behavior in malicious applications is on the rise and we can expect it to grow even
more in the years to come.

However we have seen that malware authors often overlook the configuration of their
TLS servers and malware, such that they present several characteristics that make
them stand out from normal traffic. While these dissimilarities are not easy to detect
for humans, they make possible the creation of a classifier which, once trained, can
reliably detect malicious flows.

This project’s contributions to the current landscape of intrusion detection systems
can be summed in three points:

1. The construction of a curated dataset of capture files from malware known to use
TLS to hide their communications (section 3.1). This dataset has furthermore
been arranged by dates, malware families and sources to facilitate any use that
might be made of it. It can be found on Google Drive1.

2. The development of a pipeline that can process and filter capture files in order
to extract relevant classification features. This pipeline takes the form of several
scripts packaged together, each with its own purpose detailed section 3.1.4.

3. The creation of a classifier capable of detecting, with high accuracy, malicious
TLS flows in a company’s network traffic. The classifier was later combined
with a detector integrated into Lastline’s intrusion detection platform.

The random forest classifier presented in this project takes advantage of the net
separation between bad and good datasets. It achieves 99.5% accuracy on never-seen
before flows. When limiting the number of false positives is the main concern, which
is often the case in large networks, the model reaches a true positive rate of 83.44%
when allowing one flow in 5000 benign ones to potentially raise a false alert.

1https://tinyurl.com/tlsmalware

55

https://drive.google.com/open?id=1TfRz6q65wPaiuB4D9qmyfCxoJ8zEBUQY

Chapter 5. Conclusion

The classifier does have limitations, and could be reworked to improve robustness
and to reduce even more the false positive rate. However it still has the significant
advantage over traditional detection techniques that it does not require the decryption
of each packet to perform analysis. This results in a valuable speed gain while
respecting the privacy of users. Security companies such as Lastline have become
aware of the adoption of TLS by malware and are turning to machine-learning based
detection systems for these kind of benefits.

However the fight against malware is not going to end anytime soon. While detection
capabilities improve and awareness of the threats posed by malware spreads, hostile
agents adapt and responds by advancing their tools and techniques. Some malware
abusing TLS have already been spotted tampering TLS parameters to evade a basic
detection technique based on JA3 hashes [8] and we can expect future TLS malware
to become even more stealthy.

The rise of the new version of TLS, TLSv1.3, is also to take into account. At the
moment, no malware samples using TLSv1.3 were found and TLSv1.3 adoption
still remains low. The classifier developed in this project was trained exclusively on
TLSv1.2 samples and will probably stay relevant for the months to come. But abuse of
this new version will without a doubt happen anytime soon and, along other intrusion
detection systems, the classifier will have to be adapted and retrained to stay useful.

56

Appendix A

Malware using TLS

Table A.1 presents the list that was used to collect malware samples online and from
Lastline’s repositories. It was built using Cisco’s papers, various reports found online
about TLS malware detection and MITRE ATT&CK database1. Type might not be
accurate.

1https://attack.mitre.org/software/

57

https://attack.mitre.org/software/

Chapter A. Malware using TLS

Name Type
adwind RAT
ammyy RAT
andromeda Trojan
auditcred Malicious DDL
badcall RAT
bbsrat RAT
bebloh Trojan
bergat Trojan
bestafera Trojan
bisonal Trojan
briba Trojan
bunitu Trojan
carbanak Trojan
comnie RAT
cryptowall Ransomware
deshacop Trojan
dragonfly RAT
dridex Trojan
dynamer Trojan
dyre Trojan
dyreza Trojan
emotet Trojan
felixroot RAT
gamarue Trojan
geodo Trojan
gh0st RAT
gootkit Trojan
gozi Trojan
hardrain Trojan
hizor RAT
jbifrost RAT
jigsaw Ransomware
kazy Trojan
kelihos Trojan
keymarble Trojan
kins Trojan
locky Ransomware
lowball Trojan
misdat Trojan
miuref Trojan

Name Type
naid Trojan
necurs Trojan
nidiran RAT
njrat RAT
parite Worm
pasam RAT
petya Ransomware
powerduke RAT
powerton RAT
proxysvc Trojan
qadars Trojan
ratankba RAT
razy Trojan
redyms Trojan
rerdom Trojan
retefe Trojan
sality Virus
shylock Virus
skeeyah Trojan
spambot Trojan
stype RAT
symmi Trojan
tescrypt Ransomware
teslacrypt Ransomware
tinba Trojan
tofsee RAT
toga Trojan
torrentlocker Ransomware
trickbot Trojan
troldesh Ransomware
typeframe Trojan
uboat Trojan
upatre Trojan
urlzone Trojan
virlock Ransomware
virtob Ransomware
yakes Trojan
zbot Trojan
zusy Trojan

Table A.1: Malware using TLS

58

Appendix B

Common TLS Destination Ports

Table B.1 was built using the Wikipedia list of usual ports [40]. The list is used to
generate the destination port feature. If the destination port of a flow is present in the
table, the feature is set to 1, otherwise 0.

Port Description
443 HTTPS (HTTP over TLS)
465 SMTPS (SMTP over TLS)
563 NNTPS (NNTP over TLS)
636 LDAPS (LDAP over TLS)
853 DNS over TLS
989 FTPS (data) (FTP over TLS)
990 FTPS (control) (FTP over TLS)
992 Telnet over TLS
993 IMAPS (IMAP over TLS)
995 POP3S (POP version 3 over TLS)

Table B.1: TLS destination ports

59

Appendix C

TLS Parameters Codes

The tables list TLS parameters extracted from the training datasets. It does not
encompass all available options: for instance only 145 ciphersuites out of 344 were
present in the training dataset.

C.1 Ciphersuites

Table C.1 lists all ciphersuites extracted from the training dataset, which represents
145 distinct ciphersuites. Their robustness can be evaluated on ciphersuite.info [51].

Table C.1: TLS ciphersuites

TLS Ciphersuites
Hex. Dec. Description

3 3 TLS_RSA_EXPORT_WITH_RC4_40_MD5
4 4 TLS_RSA_WITH_RC4_128_MD5
5 5 TLS_RSA_WITH_RC4_128_SHA
6 6 TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5
7 7 TLS_RSA_WITH_IDEA_CBC_SHA
8 8 TLS_RSA_EXPORT_WITH_DES40_CBC_SHA
9 9 TLS_RSA_WITH_DES_CBC_SHA
a 10 TLS_RSA_WITH_3DES_EDE_CBC_SHA
d 13 TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA

10 16 TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA
11 17 TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
12 18 TLS_DHE_DSS_WITH_DES_CBC_SHA
13 19 TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
14 20 TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
15 21 TLS_DHE_RSA_WITH_DES_CBC_SHA
16 22 TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
2f 47 TLS_RSA_WITH_AES_128_CBC_SHA
30 48 TLS_DH_DSS_WITH_AES_128_CBC_SHA

60

https://ciphersuite.info/

Chapter C. TLS Parameters Codes C.1. CIPHERSUITES

TLS Ciphersuites (continued)
Hex. Dec. Description

31 49 TLS_DH_RSA_WITH_AES_128_CBC_SHA
32 50 TLS_DHE_DSS_WITH_AES_128_CBC_SHA
33 51 TLS_DHE_RSA_WITH_AES_128_CBC_SHA
35 53 TLS_RSA_WITH_AES_256_CBC_SHA
36 54 TLS_DH_DSS_WITH_AES_256_CBC_SHA
37 55 TLS_DH_RSA_WITH_AES_256_CBC_SHA
38 56 TLS_DHE_DSS_WITH_AES_256_CBC_SHA
39 57 TLS_DHE_RSA_WITH_AES_256_CBC_SHA
3c 60 TLS_RSA_WITH_AES_128_CBC_SHA256
3d 61 TLS_RSA_WITH_AES_256_CBC_SHA256
3e 62 TLS_DH_DSS_WITH_AES_128_CBC_SHA256
3f 63 TLS_DH_RSA_WITH_AES_128_CBC_SHA256
40 64 TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
41 65 TLS_RSA_WITH_CAMELLIA_128_CBC_SHA
42 66 TLS_DH_DSS_WITH_CAMELLIA_128_CBC_SHA
43 67 TLS_DH_RSA_WITH_CAMELLIA_128_CBC_SHA
44 68 TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA
45 69 TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA
67 103 TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
68 104 TLS_DH_DSS_WITH_AES_256_CBC_SHA256
69 105 TLS_DH_RSA_WITH_AES_256_CBC_SHA256
6a 106 TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
6b 107 TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
84 132 TLS_RSA_WITH_CAMELLIA_256_CBC_SHA
85 133 TLS_DH_DSS_WITH_CAMELLIA_256_CBC_SHA
86 134 TLS_DH_RSA_WITH_CAMELLIA_256_CBC_SHA
87 135 TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA
88 136 TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA
96 150 TLS_RSA_WITH_SEED_CBC_SHA
97 151 TLS_DH_DSS_WITH_SEED_CBC_SHA
98 152 TLS_DH_RSA_WITH_SEED_CBC_SHA
99 153 TLS_DHE_DSS_WITH_SEED_CBC_SHA
9a 154 TLS_DHE_RSA_WITH_SEED_CBC_SHA
9c 156 TLS_RSA_WITH_AES_128_GCM_SHA256
9d 157 TLS_RSA_WITH_AES_256_GCM_SHA384
9e 158 TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
9f 159 TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
a0 160 TLS_DH_RSA_WITH_AES_128_GCM_SHA256
a1 161 TLS_DH_RSA_WITH_AES_256_GCM_SHA384
a2 162 TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
a3 163 TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
a4 164 TLS_DH_DSS_WITH_AES_128_GCM_SHA256
a5 165 TLS_DH_DSS_WITH_AES_256_GCM_SHA384

61

C.1. CIPHERSUITES Chapter C. TLS Parameters Codes

TLS Ciphersuites (continued)
Hex. Dec. Description

ba 186 TLS_RSA_WITH_CAMELLIA_128_CBC_SHA256
bd 189 TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA256
be 190 TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256
c0 192 TLS_RSA_WITH_CAMELLIA_256_CBC_SHA256
c3 195 TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA256
c4 196 TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256
ff 255 TLS_EMPTY_RENEGOTIATION_INFO_SCSV

1301 4865 TLS_AES_128_GCM_SHA256
1302 4866 TLS_AES_256_GCM_SHA384
1303 4867 TLS_CHACHA20_POLY1305_SHA256
1304 4868 TLS_AES_128_CCM_SHA256
c002 49154 TLS_ECDH_ECDSA_WITH_RC4_128_SHA
c003 49155 TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
c004 49156 TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
c005 49157 TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
c007 49159 TLS_ECDHE_ECDSA_WITH_RC4_128_SHA
c008 49160 TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
c009 49161 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
c00a 49162 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
c00c 49164 TLS_ECDH_RSA_WITH_RC4_128_SHA
c00d 49165 TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
c00e 49166 TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
c00f 49167 TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
c011 49169 TLS_ECDHE_RSA_WITH_RC4_128_SHA
c012 49170 TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
c013 49171 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
c014 49172 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
c016 49174 TLS_ECDH_anon_WITH_RC4_128_SHA
c017 49175 TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA
c018 49176 TLS_ECDH_anon_WITH_AES_128_CBC_SHA
c019 49177 TLS_ECDH_anon_WITH_AES_256_CBC_SHA
c023 49187 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
c024 49188 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
c025 49189 TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
c026 49190 TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
c027 49191 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
c028 49192 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
c029 49193 TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
c02a 49194 TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
c02b 49195 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
c02c 49196 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
c02d 49197 TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
c02e 49198 TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384

62

Chapter C. TLS Parameters Codes C.1. CIPHERSUITES

TLS Ciphersuites (continued)
Hex. Dec. Description
c02f 49199 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
c030 49200 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
c031 49201 TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
c032 49202 TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
c050 49232 TLS_RSA_WITH_ARIA_128_GCM_SHA256
c051 49233 TLS_RSA_WITH_ARIA_256_GCM_SHA384
c052 49234 TLS_DHE_RSA_WITH_ARIA_128_GCM_SHA256
c053 49235 TLS_DHE_RSA_WITH_ARIA_256_GCM_SHA384
c056 49238 TLS_DHE_DSS_WITH_ARIA_128_GCM_SHA256
c057 49239 TLS_DHE_DSS_WITH_ARIA_256_GCM_SHA384
c05c 49244 TLS_ECDHE_ECDSA_WITH_ARIA_128_GCM_SHA256
c05d 49245 TLS_ECDHE_ECDSA_WITH_ARIA_256_GCM_SHA384
c060 49248 TLS_ECDHE_RSA_WITH_ARIA_128_GCM_SHA256
c061 49249 TLS_ECDHE_RSA_WITH_ARIA_256_GCM_SHA384
c072 49266 TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_CBC_SHA256
c073 49267 TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_CBC_SHA384
c076 49270 TLS_ECDHE_RSA_WITH_CAMELLIA_128_CBC_SHA256
c077 49271 TLS_ECDHE_RSA_WITH_CAMELLIA_256_CBC_SHA384
c07a 49274 TLS_RSA_WITH_CAMELLIA_128_GCM_SHA256
c07b 49275 TLS_RSA_WITH_CAMELLIA_256_GCM_SHA384
c07c 49276 TLS_DHE_RSA_WITH_CAMELLIA_128_GCM_SHA256
c07d 49277 TLS_DHE_RSA_WITH_CAMELLIA_256_GCM_SHA384
c086 49286 TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_GCM_SHA256
c087 49287 TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_GCM_SHA384
c08a 49290 TLS_ECDHE_RSA_WITH_CAMELLIA_128_GCM_SHA256
c08b 49291 TLS_ECDHE_RSA_WITH_CAMELLIA_256_GCM_SHA384
c09c 49308 TLS_RSA_WITH_AES_128_CCM
c09d 49309 TLS_RSA_WITH_AES_256_CCM
c09e 49310 TLS_DHE_RSA_WITH_AES_128_CCM
c09f 49311 TLS_DHE_RSA_WITH_AES_256_CCM
c0a0 49312 TLS_RSA_WITH_AES_128_CCM_8
c0a1 49313 TLS_RSA_WITH_AES_256_CCM_8
c0a2 49314 TLS_DHE_RSA_WITH_AES_128_CCM_8
c0a3 49315 TLS_DHE_RSA_WITH_AES_256_CCM_8
c0ac 49324 TLS_ECDHE_ECDSA_WITH_AES_128_CCM
c0ad 49325 TLS_ECDHE_ECDSA_WITH_AES_256_CCM
c0ae 49326 TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8
c0af 49327 TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8
cca8 52392 TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
cca9 52393 TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256
ccaa 52394 TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256

End of Table

63

C.2. EXTENSIONS Chapter C. TLS Parameters Codes

C.2 Extensions

Table C.2 lists all extensions seen in the training dataset. It represents 15 out of 44
extensions.

Hex. Dec. Description
0 0 server_name
5 5 status_request
a 10 supported_groups
b 11 ec_point_formats
d 13 signature_algorithms
f 15 heartbeat

10 16 application_layer_protocol_negotiation
11 17 status_request_v2
12 18 signed_certificate_timestamp
15 21 padding
16 22 encrypt_then_mac
17 23 extended_master_secret
18 24 token_binding
23 35 session_ticket

ff01 65281 renegotiation_info

Table C.2: TLS extensions

C.3 Elliptic Curve Groups

Table C.3 lists all elliptic curve groups seen in the training dataset. It represents 35
out of 47 groups.

64

Chapter C. TLS Parameters Codes C.3. ELLIPTIC CURVE GROUPS

Hex. Decimal Description
1 1 sect163k1
2 2 sect163r1
3 3 sect163r2
4 4 sect193r1
5 5 sect193r2
6 6 sect233k1
7 7 sect233r1
8 8 sect239k1
9 9 sect283k1
a 10 sect283r1
b 11 sect409k1
c 12 sect409r1
d 13 sect571k1
e 14 sect571r1
f 15 secp160k1

10 16 secp160r1
11 17 secp160r2
12 18 secp192k1

Hex. Dec. Description
13 19 secp192r1
14 20 secp224k1
15 21 secp224r1
16 22 secp256k1
17 23 secp256r1
18 24 secp384r1
19 25 secp521r1
1a 26 brainpoolP256r1
1b 27 brainpoolP384r1
1c 28 brainpoolP512r1
1d 29 x25519
1e 30 x448

100 256 ffdhe2048
101 257 ffdhe3072
102 258 ffdhe4096
103 259 ffdhe6144
104 260 ffdhe8192

Table C.3: TLS elliptic curve groups

65

Bibliography

[1] Internet Engineering Task Force (IETF), ed. Applying GREASE to TLS Exten-
sibility. Jan. 2019. URL: https://tools.ietf.org/html/draft-ietf-tls-
grease-02 (visited on 08/12/2019).

[2] Internet Engineering Task Force (IETF), ed. The DTLS Protocol – Version
1.2. Jan. 2012. URL: https://tools.ietf.org/html/rfc6347 (visited on
05/02/2019).

[3] Internet Engineering Task Force (IETF), ed. The TLS Protocol – Version 1.0.
Jan. 1999. URL: https : / / tools . ietf . org / html / rfc2246 (visited on
05/02/2019).

[4] Internet Engineering Task Force (IETF), ed. The TLS Protocol – Version 1.2.
Aug. 2009. URL: https : / / tools . ietf . org / html / rfc5246 (visited on
04/29/2019).

[5] Internet Engineering Task Force (IETF), ed. The TLS Protocol – Version 1.3.
Aug. 2018. URL: https : / / tools . ietf . org / html / rfc8446 (visited on
04/29/2019).

[6] International Telecommunications Union (ITU), ed. Internet X.509 Public Key
Infrastructure Certificate. May 2008. URL: https://tools.ietf.org/html/
rfc5280 (visited on 05/03/2019).

[7] abuse.ch. SSL Blacklist. 2019. URL: https://sslbl.abuse.ch/ (visited on
05/12/2019).

[8] Akamai. Bots Tampering With TLS to Avoid Detection. May 2019. URL: https:
//blogs.akamai.com/sitr/2019/05/bots-tampering-with-tls-to-avoid-
detection.html (visited on 05/16/2019).

[9] Selim Aksoy and Robert M. Haralick. “Feature Normalization and Likelihood-
based Similarity Measures for Image Retrieval”. In: Pattern Recogn. Lett. (2001),
pp. 563–582. DOI: 10.1016/S0167-8655(00)00112-4.

[10] Kevin Allix et al. “Are Your Training Datasets Yet Relevant?” In: Engineering
Secure Software and Systems. 2015, pp. 51–67. ISBN: 978-3-319-15618-7.

[11] John Althouse. TLS Fingerprinting with JA3 and JA3S. Jan. 2019. URL: https:
//engineering.salesforce.com/tls- fingerprinting- with- ja3- and-
ja3s-247362855967 (visited on 04/29/2019).

66

https://tools.ietf.org/html/draft-ietf-tls-grease-02
https://tools.ietf.org/html/draft-ietf-tls-grease-02
https://tools.ietf.org/html/rfc6347
https://tools.ietf.org/html/rfc2246
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://sslbl.abuse.ch/
https://blogs.akamai.com/sitr/2019/05/bots-tampering-with-tls-to-avoid-detection.html
https://blogs.akamai.com/sitr/2019/05/bots-tampering-with-tls-to-avoid-detection.html
https://blogs.akamai.com/sitr/2019/05/bots-tampering-with-tls-to-avoid-detection.html
https://doi.org/10.1016/S0167-8655(00)00112-4
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967

BIBLIOGRAPHY BIBLIOGRAPHY

[12] Blake Anderson. Detecting Encrypted Malware Traffic (Without Decryption). June
2017. URL: https://blogs.cisco.com/security/detecting-encrypted-
malware-traffic-without-decryption (visited on 04/29/2019).

[13] Blake Anderson and David McGrew. “Identifying Encrypted Malware Traffic
with Contextual Flow Data”. In: Proceedings of the 2016 ACM Workshop on
Artificial Intelligence and Security. 2016, pp. 35–46. DOI: 10.1145/2996758.
2996768.

[14] Blake Anderson and David McGrew. “Machine Learning for Encrypted Malware
Traffic Classification: Accounting for Noisy Labels and Non-Stationarity”. In:
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 2017, pp. 1723–1732. DOI: 10.1145/3097983.
3098163.

[15] Blake Anderson, Subharthi Paul, and David McGrew. “Deciphering Malware’s
use of TLS (without Decryption)”. In: (2016). arXiv: 1607.01639. URL: http:
//arxiv.org/abs/1607.01639.

[16] Area under the curve. July 2019. URL: https://en.wikipedia.org/wiki/
Receiver_operating_characteristic#Area_under_the_curve (visited on
08/01/2019).

[17] Stefan Axelsson. “The Base-rate Fallacy and the Difficulty of Intrusion Detec-
tion”. In: ACM Trans. Inf. Syst. Secur. (2000), pp. 186–205. DOI: 10.1145/
357830.357849.

[18] Barac. Encrypted Traffic Visibility. 2017. URL: https://barac.io (visited on
08/10/2019).

[19] David Bianco. Pyramid of Pain. Mar. 2013. URL: http://detect-respond.
blogspot.com/2013/03/the-pyramid-of-pain.html (visited on 07/03/2019).

[20] Álvaro Castro-Castilla. Traffic Analysis of an SSL/TLS Session. Dec. 2014. URL:
http://blog.fourthbit.com/2014/12/23/traffic-analysis-of-an-ssl-
slash-tls-session (visited on 04/29/2019).

[21] Canadian Institute for Cybersecurity. Datasets. URL: https://www.unb.ca/
cic/datasets/index.html (visited on 06/25/2019).

[22] Darktrace. Beyond the hash: How unsupervised machine learning unlocks the
true power of JA3. June 2018. URL: https://www.darktrace.com/en/blog/
beyond-the-hash-how-unsupervised-machine-learning-unlocks-the-
true-power-of-ja-3/ (visited on 04/29/2019).

[23] Brendan Dolan-Gavitt. Reproducible Malware Analyses for All. Dec. 2014. URL:
http://moyix.blogspot.com/2014/12/reproducible-malware-analyses-
for-all.html (visited on 06/25/2019).

[24] Michael Driscoll. The New Illustrated TLS Connection. Mar. 2019. URL: https:
//tls13.ulfheim.net/ (visited on 05/02/2019).

[25] Brad Duncan. malware-traffic-analysis. URL: https://www.malware-traffic-
analysis.net/ (visited on 06/25/2019).

67

https://blogs.cisco.com/security/detecting-encrypted-malware-traffic-without-decryption
https://blogs.cisco.com/security/detecting-encrypted-malware-traffic-without-decryption
https://doi.org/10.1145/2996758.2996768
https://doi.org/10.1145/2996758.2996768
https://doi.org/10.1145/3097983.3098163
https://doi.org/10.1145/3097983.3098163
https://arxiv.org/abs/1607.01639
http://arxiv.org/abs/1607.01639
http://arxiv.org/abs/1607.01639
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve
https://doi.org/10.1145/357830.357849
https://doi.org/10.1145/357830.357849
https://barac.io
http://detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.html
http://detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.html
http://blog.fourthbit.com/2014/12/23/traffic-analysis-of-an-ssl-slash-tls-session
http://blog.fourthbit.com/2014/12/23/traffic-analysis-of-an-ssl-slash-tls-session
https://www.unb.ca/cic/datasets/index.html
https://www.unb.ca/cic/datasets/index.html
https://www.darktrace.com/en/blog/beyond-the-hash-how-unsupervised-machine-learning-unlocks-the-true-power-of-ja-3/
https://www.darktrace.com/en/blog/beyond-the-hash-how-unsupervised-machine-learning-unlocks-the-true-power-of-ja-3/
https://www.darktrace.com/en/blog/beyond-the-hash-how-unsupervised-machine-learning-unlocks-the-true-power-of-ja-3/
http://moyix.blogspot.com/2014/12/reproducible-malware-analyses-for-all.html
http://moyix.blogspot.com/2014/12/reproducible-malware-analyses-for-all.html
https://tls13.ulfheim.net/
https://tls13.ulfheim.net/
https://www.malware-traffic-analysis.net/
https://www.malware-traffic-analysis.net/

BIBLIOGRAPHY BIBLIOGRAPHY

[26] Let’s Encrypt. Why ninety-day lifetimes for certificates? Nov. 2015. URL: https://
letsencrypt.org/2015/11/09/why-90-days.html (visited on 07/18/2019).

[27] Encrypted Traffic Analytics. White paper. Cisco, Jan. 2019. URL: https://
www.cisco.com/c/en/us/solutions/enterprise-networks/enterprise-
network-security/eta.html (visited on 04/29/2019).

[28] Ephemeral Port. Jan. 2018. URL: https://en.wikipedia.org/wiki/Ephemeral_
port (visited on 07/09/2019).

[29] Mozilla Foundation. Security/Server Side TLS. July 2019. URL: https://wiki.
mozilla.org/Security/Server_Side_TLS (visited on 07/03/2019).

[30] Open Information Security Foundation. Suricata. July 2010. URL: https://
suricata-ids.org/ (visited on 05/13/2019).

[31] Alessandro Ghedini. Encrypt it or lose it: how encrypted SNI works. Sept.
2018. URL: https://blog.cloudflare.com/encrypted- sni/ (visited on
04/29/2019).

[32] Google. HTTPS encryption on the web. Jan. 2019. URL: https://transparencyreport.
google.com/https/overview (visited on 04/29/2019).

[33] Hidden Threats in Encrypted Traffic. Research report. Ponemon Institute, May
2016. URL: https://www.ponemon.org/library/hidden- threats- in-
encrypted-traffic-a-study-of-north-america-emea (visited on 04/28/2019).

[34] IANA. TLS Cipher Suites. 2005. URL: https://www.iana.org/assignments/
tls - parameters / tls - parameters . xml # tls - parameters - 4 (visited on
06/27/2019).

[35] Stratosphere IPS. Malware Capture Facility Project. URL: https://www.stratosphereips.
org/datasets-malware (visited on 06/25/2019).

[36] Gareth James et al. An Introduction to Statistical Learning: With Applications in
R. Springer, 2014. ISBN: 1461471370.

[37] Brian Krebs. Half of all Phishing Sites Now Have the Padlock. Nov. 2018. URL:
https://krebsonsecurity.com/2018/11/half-of-all-phishing-sites-
now-have-the-padlock/ (visited on 05/08/2019).

[38] Christopher Kruegel and Giovanni Vigna. “Anomaly Detection of Web-based
Attacks”. In: Proceedings of the 10th ACM Conference on Computer and Commu-
nications Security. 2003, pp. 251–261. DOI: 10.1145/948109.948144.

[39] SSL Labs. SSL Pulse. Apr. 2019. URL: https://www.ssllabs.com/ssl-pulse/
(visited on 05/02/2019).

[40] List of TCP and UDP port numbers. Aug. 2019. URL: https://en.wikipedia.
org/wiki/List_of_TCP_and_UDP_port_numbers (visited on 08/23/2019).

[41] Marc-Etienne M.Léveillé. TorrentLocker. White paper. ESET, Dec. 2014. URL:
https : / / www . welivesecurity . com / wp - content / uploads / 2014 / 12 /
torrent_locker.pdf (visited on 05/09/2019).

68

https://letsencrypt.org/2015/11/09/why-90-days.html
https://letsencrypt.org/2015/11/09/why-90-days.html
https://www.cisco.com/c/en/us/solutions/enterprise-networks/enterprise-network-security/eta.html
https://www.cisco.com/c/en/us/solutions/enterprise-networks/enterprise-network-security/eta.html
https://www.cisco.com/c/en/us/solutions/enterprise-networks/enterprise-network-security/eta.html
https://en.wikipedia.org/wiki/Ephemeral_port
https://en.wikipedia.org/wiki/Ephemeral_port
https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS
https://suricata-ids.org/
https://suricata-ids.org/
https://blog.cloudflare.com/encrypted-sni/
https://transparencyreport.google.com/https/overview
https://transparencyreport.google.com/https/overview
https://www.ponemon.org/library/hidden-threats-in-encrypted-traffic-a-study-of-north-america-emea
https://www.ponemon.org/library/hidden-threats-in-encrypted-traffic-a-study-of-north-america-emea
https://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-4
https://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-4
https://www.stratosphereips.org/datasets-malware
https://www.stratosphereips.org/datasets-malware
https://krebsonsecurity.com/2018/11/half-of-all-phishing-sites-now-have-the-padlock/
https://krebsonsecurity.com/2018/11/half-of-all-phishing-sites-now-have-the-padlock/
https://doi.org/10.1145/948109.948144
https://www.ssllabs.com/ssl-pulse/
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://www.welivesecurity.com/wp-content/uploads/2014/12/torrent_locker.pdf
https://www.welivesecurity.com/wp-content/uploads/2014/12/torrent_locker.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[42] Gabriel Maciá-Fernández et al. “UGR‘16: A new dataset for the evaluation of
cyclostationarity-based network IDSs”. In: (2018). DOI: https://doi.org/10.
1016/j.cose.2017.11.004. URL: http://www.sciencedirect.com/science/
article/pii/S0167404817302353.

[43] D. McGrew and B. Anderson. Joy. 2016. URL: https://github.com/cisco/joy
(visited on 06/26/2019).

[44] David McGrew and Blake Anderson. “Enhanced telemetry for encrypted threat
analytics”. In: Proceedings of the 2016 IEEE 24th International Conference on
Network Protocols (ICNP). 2016, pp. 1–6. DOI: 10.1109/ICNP.2016.7785325.

[45] Neel Mehta. The Heartbleed Bug. Apr. 2014. URL: http://heartbleed.com/
(visited on 08/20/2019).

[46] T. T. T. Nguyen and G. Armitage. “A survey of techniques for internet traf-
fic classification using machine learning”. In: IEEE Communications Surveys
Tutorials (2008), pp. 56–76. DOI: 10.1109/SURV.2008.080406.

[47] Dick O’Brien. Dridex. White paper. Symantec, Feb. 2016. URL: https://www.
symantec.com/content/en/us/enterprise/media/security_response/
whitepapers/dridex-financial-trojan.pdf (visited on 05/09/2019).

[48] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research (2011).

[49] Feargus Pendlebury et al. “TESSERACT: Eliminating Experimental Bias in
Malware Classification across Space and Time”. In: 28th USENIX Security
Symposium. 2019.

[50] Sam Richman. This New Covert Channel Uses SSL/TLS Handshakes. Feb. 2018.
URL: https://www.extrahop.com/company/blog/2018/stop- ssl- tls-
exfil/ (visited on 04/29/2019).

[51] Hans Christian Rudolph and Nils Grundmann. Security of Cipher Suites. 2019.
URL: https://ciphersuite.info/cs/ (visited on 07/09/2019).

[52] Salesforce. JA3 – A method for profiling SSL/TLS Clients. June 2017. URL:
https://github.com/salesforce/ja3 (visited on 04/29/2019).

[53] Robin Sommer and Vern Paxson. “Outside the Closed World: On Using Machine
Learning for Network Intrusion Detection”. In: Proceedings of the 2010 IEEE
Symposium on Security and Privacy. 2010, pp. 305–316. DOI: 10.1109/SP.
2010.25.

[54] Aragorn Tseng. Malicious Encrypted Traffic Detection. Jan. 2019. URL: https://
data.hackinn.com/ppt/HITCON2018/day1/Malicious-Encrypted-Traffic-
Detection.pdf (visited on 08/10/2019).

[55] Can I Use. TLSv1.3 Browser Support. May 2019. URL: https://caniuse.com/
#feat=tls1-3 (visited on 05/02/2019).

[56] Nigel Williams, Sebastian Zander, and Grenville Armitage. “A Preliminary
Performance Comparison of Five Machine Learning Algorithms for Practical IP
Traffic Flow Classification”. In: SIGCOMM Comput. Commun. Rev. (Oct. 2006),
pp. 5–16. DOI: 10.1145/1163593.1163596.

69

https://doi.org/https://doi.org/10.1016/j.cose.2017.11.004
https://doi.org/https://doi.org/10.1016/j.cose.2017.11.004
http://www.sciencedirect.com/science/article/pii/S0167404817302353
http://www.sciencedirect.com/science/article/pii/S0167404817302353
https://github.com/cisco/joy
https://doi.org/10.1109/ICNP.2016.7785325
http://heartbleed.com/
https://doi.org/10.1109/SURV.2008.080406
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/dridex-financial-trojan.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/dridex-financial-trojan.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/dridex-financial-trojan.pdf
https://www.extrahop.com/company/blog/2018/stop-ssl-tls-exfil/
https://www.extrahop.com/company/blog/2018/stop-ssl-tls-exfil/
https://ciphersuite.info/cs/
https://github.com/salesforce/ja3
https://doi.org/10.1109/SP.2010.25
https://doi.org/10.1109/SP.2010.25
https://data.hackinn.com/ppt/HITCON2018/day1/Malicious-Encrypted-Traffic-Detection.pdf
https://data.hackinn.com/ppt/HITCON2018/day1/Malicious-Encrypted-Traffic-Detection.pdf
https://data.hackinn.com/ppt/HITCON2018/day1/Malicious-Encrypted-Traffic-Detection.pdf
https://caniuse.com/#feat=tls1-3
https://caniuse.com/#feat=tls1-3
https://doi.org/10.1145/1163593.1163596

BIBLIOGRAPHY BIBLIOGRAPHY

[57] Sebastian Zander, Thuy Nguyen, and Grenville Armitage. “Automated Traf-
fic Classification and Application Identification Using Machine Learning”. In:
Proceedings of the The IEEE Conference on Local Computer Networks 30th An-
niversary. 2005, pp. 250–257. DOI: 10.1109/LCN.2005.35.

[58] ZeuS trojan FAQ. 2011. URL: https://github.com/Visgean/Zeus/blob/
c55a9fa8c8564ec196604a59111708fa8415f020/manual_en.html#L778 (vis-
ited on 07/09/2019).

70

https://doi.org/10.1109/LCN.2005.35
https://github.com/Visgean/Zeus/blob/c55a9fa8c8564ec196604a59111708fa8415f020/manual_en.html#L778
https://github.com/Visgean/Zeus/blob/c55a9fa8c8564ec196604a59111708fa8415f020/manual_en.html#L778

	1 Introduction
	2 Background
	2.1 The TLS Protocol
	2.1.1 TLSv1.2
	2.1.2 TLSv1.3
	2.1.3 TLS Server Certificate

	2.2 Malware' Use of TLS
	2.2.1 TLS-based Threats
	2.2.2 Known TLS-based Malware

	2.3 Overview of TLS Anomaly Detection
	2.3.1 Traditional Inspection Platform
	2.3.2 Certificate Analysis
	2.3.3 TLS Fingerprinting with JA3
	2.3.4 Machine Learning Techniques

	2.4 Legal and Ethical Considerations

	3 Design and Implementation
	3.1 Data Collection
	3.1.1 Sources
	3.1.2 Date Distribution
	3.1.3 Malware Families
	3.1.4 Data Extraction and Storage

	3.2 Feature Selection
	3.2.1 Flow Filtering
	3.2.2 Differences between Malware and Benign Flows
	3.2.3 Feature Selection
	3.2.4 Robustness of Features

	3.3 Classification of TLS flows
	3.3.1 Preprocessing
	3.3.2 Models

	4 Evaluation
	4.1 Methodology
	4.1.1 Testing Datasets
	4.1.2 Testing Metrics

	4.2 Results
	4.2.1 Before Training
	4.2.2 Model Performance
	4.2.3 Influence of Features
	4.2.4 Comparison of Models

	4.3 Lastline's Detector
	4.4 Discussion
	4.4.1 Related Work
	4.4.2 Limitations
	4.4.3 Possible Improvements

	5 Conclusion
	A Malware using TLS
	B Common TLS Destination Ports
	C TLS Parameters Codes
	C.1 Ciphersuites
	C.2 Extensions
	C.3 Elliptic Curve Groups

	Bibliography

