
IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Attention-based Convolutional
Autoencoders for 3D-Variational Data

Assimilation

Author:
Julian Mack

Supervisor:
Dr. Rossella Arcucci

Submitted in partial fulfillment of the requirements for the MSc degree in
Computing (Machine Learning) of Imperial College London

September 2019

Abstract

We propose a ‘Bi-Reduced Space’ approach to solving 3D Variational Data Assimila-
tion (3D-VarDA) using Convolutional Autoencoders (CAEs). We extend the approach
of Parrish et al., 1992 in which a Control Variable Transform (CVT) is used to reduce
the space of the background covariance matrix. We use a CAE to introduce a second
reduced space: a latent representation of this CVT. We find that we can decrease
the size of our representation by O(103) compared with the Parrish et al., method
and, at the same time, increase our data assimilation performance. This method has
considerably lower online computational cost than the traditional 3D-VarDA CVT ap-
proach and we demonstrate this experimentally. In this work, we use data from the
MAGIC project on pollution modelling and the open-source fluid dynamic software
Fluidity.

Contents

1 Introduction 1

2 Background: Data Assimilation 3
2.1 Definitions . 4
2.2 Variational DA, VarDA . 5

2.2.1 Incremental VarDA . 6
2.2.2 Control Variable Transform 7
2.2.3 CVT VarDA Optimisation . 8

2.3 Truncated SVD . 9

3 Background: Autoencoders 10
3.1 Definitions . 12
3.2 Specification . 13
3.3 Comparable Applications . 13

3.3.1 AEs for DA . 13
3.3.2 AEs for Image Compression 15

3.4 Building Blocks . 17
3.4.1 Convolutional Neural Networks 17
3.4.2 Activation Functions . 19
3.4.3 Skip Connections . 22
3.4.4 Parallel Filters . 23
3.4.5 Multi-scale resolution . 24
3.4.6 Attention . 25
3.4.7 Complex Residual Blocks . 27

3.5 State-of-the-art Architectures . 30

4 Contribution 32
4.1 ‘Bi-reduced space’ formulation of DA 32

4.1.1 Proof of equivalence . 36
4.1.2 Advantages over TSVD: Theory 39
4.1.3 Computational Complexity Derivation: Online 41
4.1.4 Computational Complexity: Offline 45

4.2 Architecture Search Framework . 46
4.2.1 Backbone . 47
4.2.2 ResNeXt variant . 49

4.3 Software . 50

iii

CONTENTS Table of Contents

4.3.1 API . 51
4.3.2 Implementation . 51

4.4 Training Configuration . 53
4.4.1 Data . 53
4.4.2 Regularisation . 53
4.4.3 Training Duration . 54
4.4.4 Loss function and evaluation metrics 54
4.4.5 Hyperparameters . 55

5 Experiments 56
5.1 Architecture Search . 56

5.1.1 Residual Block . 58
5.1.2 Activation function . 58
5.1.3 L1 fine tuning . 59
5.1.4 Augmentation . 59
5.1.5 Architecture Summary . 61

5.2 Comparison with TSVD . 62
5.2.1 Performance-speed tradeoff 63

6 Discussion 65

7 Conclusions and Future Work 68

Appendices 79

A KF and VarDA equivalence 80

B Augmentation 82

C Further Comparison 83

D Ethical and Professional Considerations 84

iv

Chapter 1

Introduction

Data Assimilation (DA) is an uncertainty quantification technique that is used to
insert observation data into a forecasting model. Typically this produces predictions
that are more accurate than those that would be attainable if the model or the ob-
servations were used independently. For most real-world applications, the size of
the systems make DA very computationally costly. For example, the Met Office’s DA
procedure runs online in one of the world’s largest supercomputers (1) and is still
only able to assimilate observations once every six hours (2). This results in a steady
increase in prediction error on a six hour time-frame despite the fact that the Met
Office has a network of sensors providing new observations on sub-second intervals.

Depending on the system state size and the compute available, it is often necessary
to solve data assimilation in a reduced space in order to achieve real-time DA. Con-
volutional Autoencoders (CAEs) have had huge successes in computer vision (3) (4)
including in image compression (5) (6). In this work, we use CAEs to compress a
physical domain to a reduced space in which DA can be performed efficiently.
This work utilises the Variational approach to data assimilation – specifically the in-
cremental formulation (7) with a Control Variable Transform (CVT) to factorise the
background error covariance B as B = V V T (8). Many authors use eigenanalysis
techniques such as PCA or TSVD to precondition V by reducing its rank (9). We
propose swapping these eigenanalysis approaches for convolutional autoencoders.

This research is part of the ‘Managing Air for Green Inner Cities’, or MAGIC project
(10), (11) (9) (12): an international collaboration which aims to produce models to
monitor and control pollution in urban areas. One of the project’s stated aims is to
produce: “reduced order models [of inner city fluid flow] that allow rapid calculations
for real time analysis and emergency response”. At the beginning of 2019, MAGIC
authors Arcucci et al. used TSVD in 3D Variational data assimilation (3D-VarDA) as
a step towards realising this aim (9)1. This project builds on the previous work by
replacing TSVD with a CAE. The original authors used a MAGIC test-site location
in South London and synthetic data generated by the open-source finite-element
fluid dynamic software Fluidity (http://fluidityproject.github.io/). We test

1The supervisor of this project, Dr Arcucci, was the lead author in this work.

1

http:// fluidityproject.github.io/

Chapter 1. Introduction

the proposed approach on the same domain and data as used in the original study to
enable a clear comparison between the approaches. We find that our method gives
considerably more accurate predictions and, in most cases, provides them sooner
that the previous approach. In fact, our method is also more accurate (and much
faster) than the Parrish et al., CVT formulation (8) in which the rank of V is not
reduced.

Although our work is specific to the MAGIC project, the proposed approach is non-
intrusive and is therefore applicable to any data assimilation problem in which a
reduced order system is used.

In this paper we make the following contributions:

1. We propose a new ‘Bi-reduced space’ 3D-VarDA formulation that has an on-
line complexity that is independent of the number of assimilated observations
meaning that it can be used with arbitrarily dense sensor networks. We show
that our approach has lower online complexity than that (9) while also proving
that it gives approximately equivalent forecasts.

2. We create and evaluate 3D extensions of a range of state-of-the-art 2D Convo-
lutional Autoencoders for image compression. To our knowledge, we are the
first to extend the image compression network of (12) and image restoration
GRDN of (13) to three-dimensions. We find that Zhou et al.’s attention-based
model (12) performs best, and make some small changes to this system includ-
ing the replacement of vanilla residual blocks (14) with ‘NeXt’ residual blocks
(15) to reduce decoder inference time.

3. This adapted Zhou et al. CAE, in combination with our proposed DA formu-
lation, achieves a substantial relative reduction in DA error of 37% compared
with the Arcucci et al. TSVD approach (9). Depending on the number of as-
similated observations, the proposed method is up x30 faster. We discuss the
speed-accuracy tradeoff at length in section 5.2.

4. We release a well tested open-source Python module VarDACAE that enables
users to easily replicate our experiments, use our model implementations, and
train CAEs for any Variational data assimilation problem. The repository can
be found at https://github.com/julianmack/Data_Assimilation.

The structure of this paper is as follows: in the following chapters 2 and 3 we will
cover the necessary background and related work in the data assimilation and CAE
literature. In the latter chapter we focus on the image compression application as
we believe this is a similar use-case to ours. In chapter 4 we will describe the contri-
butions of this work which we evaluate in chapter 5 and discuss in chapter 6 before
concluding with chapter 7.

2

https://github.com/julianmack/Data_Assimilation

Chapter 2

Background: Data Assimilation

The canonical application of Data Assimilation (DA) (16) (17) is Numerical Weather
Prediction (NWP) (7), (18), (19) but the technique is applicable in any scenario
where both a forecasting model and observational data is available. As such, it has
now been utilised in contexts as diverse as oceanic modelling (20), (21), solar wind
prediction (22) and inner city pollution modelling (9), the latter of which is the
test-case for this work.
Forecasting models introduce uncertainty from numerous sources. These include,
but are not limited to, uncertainty in initial conditions, imperfect representations of
the underlying physical processes and numerical errors. As a result, a model without
access to real-time data will accumulate errors until its predictions no longer corre-
spond to reality (23). Similarly, all observations will have an irreducible uncertainty
as a result of imperfect measuring devices. The key idea in DA is that the overall
uncertainty in a forecast can be reduced by producing a weighed average of model
forecasts and observations. In DA, quantities with lower uncertainty are given a
larger importance and spatial and temporal correlations between data is taken into
account.
Since we approximately know how the system develops (as we have a forecasting
model), DA is an ‘inverse’ problem which can be summarised as:

“what set of initial conditions will seed the models to best predict the
known observations?”(24)

The problem ill-posed so we must introduce a priori information in the form of his-
torical data and knowledge of the underlying physics. Broadly speaking, there are
three methods to approximately solve the data assimilation problem (25):

i Ensemble Kalman Filters (EnKFs). KFs (26) are a Bayesian method of incorpo-
rating multiple sources of Gaussian uncertainty. In DA, they are typically used
in ensembles (EnKF) (20) to generate error statistics.

ii Variational Data Assimilation (VarDA) methods (18), (19). VarDA approaches
involve minimising a cost function to obtain a single maximum likelihood es-

3

2.1. DEFINITIONS Chapter 2. Background: Data Assimilation

timate. In VarDA, errors are also assumed to be Gaussian, but unlike EnKF,
VarDA does not produce uncertainty estimates.

iii Monte-Carlo methods allow assimilation of data from sources with non-Gaussian
uncertainties. The most common type of method is the Particle Filter (PF) (27).

PFs are a generalisation of KFs in which non-Gaussian distributions are represented
with an ensemble of models. While theoretically appealing, PFs suffer from ‘collapse’
in which a single model trajectory is assigned all the weight in the sample (28). As
a result, they require infeasibly large ensembles to give useful predictions although
recent work by Graham et al. may have found a way to scale them by interpolating
between a patchwork of small domains (29). As PFs are not currently in operational
use (25) (30) we will not cover them here but the interested reader should see the
the review of these and other Monte-Carlo methods in (27).

In this work, we use the VarDA approach in order to test our hypothesis rather than
KFs. However, as we are making Gaussian assumptions, we believe the proposed
method is extendable to reduced space KFs.
In the following sections we will briefly summarise the theoretical work relevant
to this project starting with data assimilation definitions in section (2.1). In section
(2.2) we will detail the VarDA variant that we evaluate and extend in this work while
in 2.3 we briefly describe TSVD to enable a comparison between the Arcucci et al.
approach and the proposed method.

2.1 Definitions

We will mostly follow the data assimilation notation given in the review paper (25).

• Let xt represent the state of the model at time t such that:

xt ∈ Rn (2.1)

where n is the number of elements in the state vector. The state for T total
time-steps can be given in a single matrix:

X = [x0,x1, ...,xT] ∈ Rn×T (2.2)

In most practical problems, n is large and of and order ≥ O(106).

• Let yt represent the observation space of the system where:

yt ∈ RM (2.3)

where typically M << n. The Met Office uses M = 0.01n (2).

• Let Ht be an observation operator such that:

Ht[xt] = yt + εt (2.4)

4

Chapter 2. Background: Data Assimilation 2.2. VARIATIONAL DA, VARDA

where εt ∼ N (0,Rt) is the observation error. Often, observations are assumed
to be uncorrelated meaning that Rt is diagonal. When all observations are of
the same type and made with the same device we have:

Rt = σ2
0I (2.5)

• Let Mt−1,t be the forecast model that propagates the system forward from
time-step t− 1 to t such that:

xt = Mt−1,t[xt−1] + ηt (2.6)

where ηt ∼ N (0,Qt) is the model error introduced over this interval.

• Let xbt ∈ Rn be the background state at time-step t. All a priori information
about the system is introduced in the first background state xb0 and the model
Mt−1,t. Future background estimates are then defined according to the free-
running model in which ηt is assumed to be zero and therefore:

xbt = Mt−1,t[x
b
t−1] (2.7)

• Let Bt represent the background state xbt covariance matrix. In theory, it is
found by evaluating:

Bt = (xbt − x∗
t)(x

b
t − x∗

t)
T (2.8)

where x∗
t is the unknown true state of the atmosphere.

In practice, even if the true state were known, this matrix is too large to fit in
memory as it is in n2 which is ≥ O(1012) for most practical problems. There
are many ways of representing Bt with fewer than n2 pieces of information,
including localisation (31), Control Variable Transforms (CVTs) (8) (32) and
CVTs with TSVD (9). In this work we present a novel method of implicitly
representing this matrix using CVTs with Autoencoders.

2.2 Variational DA, VarDA

VarDA involves minimising a cost function in order to find the most likely state values
XDA given the observations yt, model Mt−1,t predictions and their uncertainties.
The problem is to find the initial state xDA0 that satisfies:

xDA0 = arg min
x0

J(x0) (2.9)

where the cost function J(x0) is:

J(x0) =
1

2

∥∥x0 − xb0
∥∥2
B−1

0
+

1

2

T∑
t=0

‖yt −Ht[xt]‖2R−1
t

+
1

2

T∑
t=0

‖xt −Mt−1,t[xt−1]‖2Q−1
t

(2.10)

5

2.2. VARIATIONAL DA, VARDA Chapter 2. Background: Data Assimilation

In VarDA, this cost-function is explicitly differentiated and then approximately solved
by first-order optimisation routines (see section 2.2.3). This formulation has an
equivalent solution to the KF approach. For a proof of this, see Appendix A.

The terms in (2.10) can be interpreted as follows:

• The first term is the background term J b that measures the difference between
our a priori expectation and the initial model state after DA has been per-
formed.

• The second term is the observation term Jo which measures the deviation be-
tween the observations and the model predictions.

• The third term JQ measures the size of the model error.

Note that we are assuming all errors are Gaussian by using this least-squares for-
mulation. This problem specification is known as the ‘weak constraint 4D-Var’ (33)
where:

• ‘4D’ refers to the fact that we are considering three spatial dimensions as well
as one temporal dimension. It is contrasted with 3D-Var in which a single
time-step is assimilated.

• ‘Weak’ refers to the fact that model errors are non-zero and, therefore, we
are not requiring the system to follow the model trajectory exactly. This is
contrasted with strong constraint VarDA in which JQ = 0.

In the current work we are considering the 3D case. As we are only only assimilating
a single time-step, we can drop the t subscripts and the cost function is given as:

J(x) =
1

2

∥∥x− xb∥∥2
B−1 +

1

2
‖y −H[x]‖2R−1 (2.11)

In the 3D case, the distinction between strong and weak VarDA disappears as we do
not use the model to project forward to future time-steps.

2.2.1 Incremental VarDA

The cost functions 2.11 (and 2.10) will be convex if Ht (and Mt−1,t) are linear
which they are not in general. We can approximately linearize these operators about
the background state xb by formulating the problem in terms of perturbations to this
state in a method known as the incremental formulation (7)1:

δx := x− xb (2.12)

1Note: in theory, the perturbations can be made with respect to a general state xg instead of xb

but this is rarely useful in practice.

6

Chapter 2. Background: Data Assimilation 2.2. VARIATIONAL DA, VARDA

The problem statement then becomes:

δxDA = arg min
δx

J(δx)

J(δx) =
1

2
δxTB−1δx+

1

2
‖d−Hδx‖2R−1

(2.13)

where H is the observation operator linearized about the background state and the
‘misfit’ between observation and expected observation is:

d = y −Hxb (2.14)

The more general 4D-Var weak constraint incremental formulation is given in (7)
and reviewed in a modern context in (25).

2.2.2 Control Variable Transform

As discussed, to deal with the fact that B is in O(n2) we must represent it implic-
itly. A common way of doing this is by using the formulation proposed in (8) and
reviewed in (32) which states that:

δx = V w (2.15)

B = V V T (2.16)

In this case the problem can be written as:

wDA = arg min
w

J(w)

J(w) =
1

2
wTw +

1

2
‖d−HV w‖2R−1

(2.17)

Following equation 2.8, we can see that V is theoretically found by stacking a series
of background states Xb and subtracting the true state, x∗:

Vt = (Xb
t − x∗

t) (2.18)

In reality, we do not know x∗ but in the 3D case we can estimate V with a sample
of S model state forecasts Xb that we set aside as ‘background’ such that:

Xb = [xb0,x
b
1, ...,x

b
S] ∈ Rn×S

V = (Xb − xb) ∈ Rn×S (2.19)

where xb is the mean of the sample of background states. In the incremental VarDA
formulation this gives:

V = [δxb0, δx
b
1, ..., δx

b
S] ∈ Rn×S (2.20)

7

2.2. VARIATIONAL DA, VARDA Chapter 2. Background: Data Assimilation

In 4D-Var, if we require flow-dependency in our representation of B, we could pro-
duce Vt from an ensemble of models in the Ensemble Kalman Filter approach. From
equations 2.15 and 2.20 it follows that:

w ∈ RS (2.21)

and since S << n in all practical cases, w is referred to as the ‘reduced space’. V
is therefore an affine transform from the reduced space of size S to the full space of
size n. Hence, the generalised inverse of V (denoted V +) gives the reverse trans-
formation from the full to the reduced space:

V +δx = w (2.22)

Note that as S < n, the implicit matrix B is not full rank and so, as a result of
sampling errors, this method will overestimate the covariance between states that
are spatially distant. This problem is reduced by using localisation methods (31)
in which covariances are attenuated by the distance between states. Localisation
approaches are not used in this work but would be expected to improve the results
found herein.

2.2.3 CVT VarDA Optimisation

There is a large amount of research on VarDA optimisation strategies which we do
not consider deeply here. However, it is necessary to highlight a few findings which
inform our approach:

• The problem in (2.17) is ill-conditioned because, in most practical contexts,
the matrix V has a large condition number2. For an example see (9).

• Conjugate Gradient (CG) methods are successful in minimising poorly condi-
tioned functions (34) and a CG methods ‘L-BFGS’ has been show by a number
of authors (35), (36), (9) to give faster convergence than its counterparts for
problems of the size encountered in DA. However, the rate of convergence is
still dependent on the condition number of the Hessian (36).

• The CVT approach (see equation 2.17), while poorly conditioned, still con-
fers an optimisation advantage over the standard incremental formulation (see
equation 2.13) as the former has the Hessian:

(I + V THTR−1HV) (2.23)

which has a minimum eigenvalue of 1 and is dominated by the condition num-
ber of V while the latter has the Hessian:

(B−1 +HTR−1H) (2.24)

which has a minimum eigenvalue of 0 and is dominated by the condition num-
ber of B. This difference in condition-number and subsequent convergence
rate has been extensively observed in the literature including in (37) and (9).

2The condition number is the ratio of the largest to the smallest eigenvalues.

8

Chapter 2. Background: Data Assimilation 2.3. TRUNCATED SVD

We follow Arcucci et al. in using L-BFGS in the implementation of our approach but,
as our memory requirements are considerably less, there is a sound argument for
investigating other minimisation routines in future work.

2.3 Truncated SVD

One way to precondition V and thereby increase the speed of convergence is to use
an eigenanalysis technique such as SVD (38) (39) or PCA to generate Empirical Or-
thogonal Functions (EOFs) (40)3 and remove low-variance modes from V . We have
implemented 3D-VarDA with TSVD as described in (9) and we evaluate the success
of our proposed approach against this scheme in section 5.2. In order to draw out
the theoretical differences between the methods we briefly summarise TSVD here.

The singular value decomposition of matrix V is as follows:

V = UΣW T (2.25)

where U ∈ Rn×S, Σ ∈ RS×S are both orthogonal and W ∈ Rn×S is diagonal and
contains V ’s eigenvalues σi such that:

Σ = diag[σ1, σ2, ..., σS] (2.26)

where the eigenvalues appear in decreasing order:

σ1 > σ2 > ... > σS > 0 (2.27)

To perform TSVD, τ of the modes are retained where 0 < τ < S and the matrix Vτ is
reconstructed such that:

Στ = diag[σ1, ..., στ , 0, ..., 0] (2.28)

Vτ = UΣτW
T (2.29)

This has generalised inverse:
V +
τ = WΣ+

τ U
T (2.30)

where Σ+
τ is the generalised inverse of Στ such that:

Στ = diag
[

1

σ1
, ...,

1

στ
, 0, ..., 0

]
(2.31)

The authors of (9) provide a method for choosing τ which states that the optimal
truncation occurs where στ =

√
σ1. The authors made an algebraic mistake that

undermines this conclusion4 but the heuristic appears to work well in practice so we
have used it as one of a number of options when evaluating TSVD in section 5.2.

3The term EOF is used widely in the DA literature but is absent from the machine learning litera-
ture.

4Specifically, in equation (43), the paper states f(στ) =
στ−1

σ1
+ σ1

στ
= στστ−1+σ1

σ1στ
. This should read

f(στ) =
στ−1

σ1
+ σ1

στ
=

στστ−1+σ
2
1

σ1στ
. This has downstream consequences on their theoretical argument

for the optimal truncation parameter.

9

Chapter 3

Background: Autoencoders

Figure 3.1: An encoder compresses the input (blue) to a smaller latent representation
(red). The decoder reconstructs the input in a lossy process. Image adapted from (41).

Autoencoders are an unsupervised machine learning method first proposed in (42).
AEs are composed of two elements: an encoder which compresses the input to a
small latent representation, and a decoder which reconstructs the input (see Figure
3.1). This is achieved by introducing an ‘information bottleneck’ that forces the AE
to find and exploit redundancies in the training data in order to implicitly model the
data distribution. Although they are rarely thought of in this way, AEs are theoreti-
cally equivalent to a clustering algorithm (43) in the sense that the encoder learns
to map commonly co-occurring inputs to a single internal representation.

As an aside, Variational AutoEncoders, VAEs are a tool for explicitly modelling the
underlying data distribution. They can be used to generate new samples or to simply
impose priors on the data distribution (44). VAEs have had successes in a range of
generative modelling tasks, particularly NLP (45) (46) where this imposed structure

10

Chapter 3. Background: Autoencoders

is helpful. However, as a result of the distribution constraints, VAEs tend to produce
poorer reconstructions than standard AEs as discussed in chapter 20 of (47). As
such, we do not use them in this work nor cover them in detail in this background
chapter but they are used by many authors referenced herein and are a possible
avenue for extensions of this work. The interested reader should refer to the VAE
tutorial in (48) for a comprehensive overview.

Vanilla AEs are useful in any problem in which a latent data representation is needed
for a downstream task but they have also had success as a standalone solution in two
specific applications:

Anomaly detection (49) in which an AE is trained on a set of ‘normal’ examples.
When this system encounters an anomaly, it will reconstruct it poorly as the com-
pression is optimised for the training data-distribution, thereby allowing the user to
identify the unusual sample. For example, as shown in Figure 3.2, an AE trained on
images of healthy brains can be used to locate tumours.

Figure 3.2: The ‘anomaly detection concept at a glance. A simple subtraction of the
reconstructed image from the input reveals lesions in the brain.’ Image and caption from
(50).

Denoising in which the AE is trained on ‘clean’ data and is then able to remove noise
from data at inference (3) (4). The majority of this work has been in imaging, but
Hayou et al. (51) used this approach to remove noise from covariance matrices in
work that is closely related to ours.

When designing our AE architecture, we, like others, are faced with a challenge:
with infinite design permutations available, which regions of the architecture space
should be explored? With limited compute, the only rational answer is to be guided
by similar work. However, while there are many examples of AE uses in DA, we
did not find any in which the AE a) utilises state-of-the-art developments in machine
learning and b) is similar enough to our use-case to be informative. As such, we have
chosen to consider architectures in the image compression literature as, for reasons
discussed in 3.3.2, we felt that this was the most appropriate parallel application.

To explain why we came to this conclusion, it is necessary to provide both a formal
definition of AEs and a design specification which we give in sections 3.1 and 3.2

11

3.1. DEFINITIONS Chapter 3. Background: Autoencoders

respectively. In section 3.3.1 we will briefly discuss AEs used in the data-assimilation
literature, and why they are not applicable to our problem before moving onto to the
reasons why image compression AEs are applicable in section 3.3.2. Having moti-
vated our approach, we will cover the building blocks of AEs for image compression
in section 3.4. Finally, in section 3.5 we will end the chapter with a discussion of AE
architectures that directly influence those proposed and evaluated in later chapters.

3.1 Definitions

AEs consist of an encoder f(x) and decoder g(z) such that:

f(x) = z

g(z) = x̂
(3.1)

where f(·) and g(·) are non-linear neural networks and:

x, x̂ ∈ Rn (3.2)
z ∈ Rm (3.3)
m < n (3.4)

In other words, AEs compress the input data x to find a smaller latent representation
z. Baldi refers to the AE training process as an attempt to find ‘a low rank approxi-
mation to the identity function’ (43). Typically the AEs are trained with the L1 or L2
reconstruction error which are respectively:

J1(x, x̂) =
n∑
i=1

|xi − x̂i| (3.5)

J2(x, x̂) =
n∑
i=1

(xi − x̂i)2 (3.6)

In this work, we used the L2 error J2(x, x̂) to train our AEs as we found that the net-
works produced in this manner performed consistently better for data assimilation
than those trained with J1(x, x̂) (see Section 4.2). We experimented with fine-tuning
our models with the J1(x, x̂) loss as suggested in (52) but, as described in section
5.1.3, this did not provide us with a consistent improvement.

12

Chapter 3. Background: Autoencoders 3.2. SPECIFICATION

3.2 Specification

Our AE has a number of requirements. It must:

i Compress a large state of size n to a latent representation with m components
where m << n, with as small a loss of information loss as possible.

ii Only work well for inputs of a fixed size and scale since in data assimilation,
the state space size is fixed.

iii Utilise the 3D spatial location of points in the input state.

Specification point ii) means that, all other quantities being equal, an AE that is
successful for DA will need to be considerably less powerful than its equivalent for
image compression1. Image compression networks will see a selection of, say cats,
at many different distances from the camera and must be adept at compressing all
of them while in our data assimilation formulation, the AE will always see the same
domain at the same scale. In addition, if the image compression network is trained
on the ImageNet (53) data-set it will also have to contend with images of varying
sizes which our system will not.

3.3 Comparable Applications

3.3.1 AEs for DA

There are many uses of AEs in DA to reduce the space of the system but the majority
of this work is for the task of Reduced Order Modelling (ROM). ROM is a method
of embedding the knowledge of the expensive forecast model Mt−1,t,∀t in a lower
dimensional latent space. The first generation of ROMs used PCA, or in the DA lit-
erature ‘POD’: Proper Orthogonal Decomposition to derive the latent space modes.
There are many examples of POD-based ROMs but Cordier et al.’s work from 2013 is
typical (54). The next generation of systems are hybrid models in which a network
is trained to find approximate versions of these PODs (11) (55). This can reduce
inference latency by many orders of magnitude. However, as these models are still
POD-based, they dispose of a large amount of the forecast model’s knowledge since
POD can only creates modes that are linear combinations of the inputs2.

In comparison, state-of-the-art ROMs obtain their latent representation with an AE
that is trained ‘end-to-end’ to reconstruct the forecast model’s state outputs. This
should achieve a performance boost as well as an operational speed-up. There are
many examples, but the work by Wang et al. and Loh et al. are representative (56)

1Note that ‘all other things’ are not equal here as the input data in our system is three-dimensional
whereas most images are two-dimensional.

2There is a clear parallel in the comparison between the use of AE and POD based ROMs here and
the comparison between CAEs and TSVD to precondition V in section 4.1.2.

13

3.3. COMPARABLE APPLICATIONS Chapter 3. Background: Autoencoders

(57). ROMs are only applicable in 4D-VarDA when an online method of generating
model forecasts is required. Their architecture reflects this: as this is a sequence-
to-sequence problem (58) most modern ROMs use LSTMs or other RNN variants
to make their predictions. Unfortunately, this means these architectures are not di-
rectly relevant in this case. However, if our approach is extended to 4D, the methods
proposed in this paper may have non-trivial interactions with ROMs which we cover
briefly in an aside below.

Separate from ROMs, there are many authors who use deep learning in the DA
literature but these works typically fall into one of two categories:

i The intended use of the neural network is orthogonal to ours. For example,
MAGIC authors Zhu et al. teach a fully connected network to perform DA in the
full space (59). This is used as a method of removing the minimisation routine
but we found that, in our proposed approach, the minimisation accounts for a
small fraction of the execution time (see section 4.1.3).

ii The neural network design does not reflect the state-of-the-art in machine
learning. For example, early this year, Liu et al. and Quilodran et al. used
AEs to perform EnKF in a reduced space for oceanic and seismic modelling
respectively (60) (61). The former used a relatively basic CAE with just three
convolutional layers and no residual connections while the latter neglected the
spatial location of the data entirely and opted to use a fully connected network.
We give a detailed review of convolution, residual blocks and other more com-
plex CAE architectural components in section 3.4.

ROM Aside

There are two ways in which utilising a ROM and our method could potentially
interact if our proposed approach is extended to 4D. The first is that, as a result
of the speed-up achieved through our method, DA can be performed on shorter
intervals. This means that lower quality ROMs will become viable as they will have
to accurately project into the future for a smaller number of time-steps. The second
potential interaction is that the two AEs could be trained end-to-end as a single
system with the same training objective. This may be a fruitful route for future
work.

14

Chapter 3. Background: Autoencoders 3.3. COMPARABLE APPLICATIONS

3.3.2 AEs for Image Compression

Figure 3.3: An example image compression CAE architecture (62). This model was the
winner of CLIC in 2018, and was latterly extended by the authors (show in Figure 3.17)
to create the winning entry in CLIC 2019 (12).

Lossy image compression is a process in which an image is contracted to a more
efficient representation with a small loss of information. In the last two years con-
volutional autoencoders have started to outperform traditional image compression
systems (5) such as JPEG and JPEG 20003. There are a few key differences between
the image compression problem and ours but these systems have CAE variants that
hit all three of our specification criteria.

In addition, unlike DA covariance reduction, this problem has received a great deal
of attention from the machine learning community. For example, there is a competi-
tion called CLIC or ‘Challenges on Learned Image Compression’ that runs as part of
CVPR every year to find the state of the art in lossy image compression. CLIC 2019
was held in June so we have an up-to-date quantitative comparison of the available
approaches. It is primarily as a result of this competition that we decided to focus
on the image compression literature in order to locate a subset of AE architectures
that are likely to be useful for our problem.

We used the papers of the CLIC winners and runners up from 2018-19 as a starting
point and then followed their citations to give a total of approximately 40 rele-
vant papers. This led us to other domains, particularly image segmentation4 which

3In fact, a new lossless CAE-based image compression format L3C was proposed in May this year
that also outperforms traditional lossless methods (63).

4In fact, we considered using segmentation instead of compression for structuring our architecture
review but decided that the compression problem had more obvious parallels with our AE require-
ments.

15

3.3. COMPARABLE APPLICATIONS Chapter 3. Background: Autoencoders

heavily influenced image compression with the proposal of multi-scale learning ap-
proaches (64) as discussed in section 3.4.5. We found that there were a number of
key papers that were notably absent from the CLIC citation chains so, in addition,
we reviewed a further 25 machine learning papers.

The CLIC winner and runners-up this year (12), (65), (66), (67), (52) and (68)
used a variety of architectural components including attention-based models (69),
complex residual blocks (14) and multi-scale learning in order to improve their com-
pression quality. In the subsequent sections, we will describe the basic elements of
these systems and their precursors. We have implemented 3D extensions of the ma-
jority of these models which are detailed in section 4.2 and evaluated in chapter 5.
First of all, we make two remarks about the image compression solutions.

1) Bitstream Generation

The encoder output in an image compression system is a bitstream, while in our case
it is simply a vector of floats (see Figure 3.3). This adds complexity in comparison
with our system in a number of ways:

i Firstly, there is a tradeoff in image compression between the compressed size
and quality so most of these systems are trained with a multi-task loss of bit-
stream entropy and reconstruction error. In our case the latent size is specified
by the user so we can simply train with the reconstruction loss.

ii Secondly, the quantization operation is non-differentiable and therefore the
systems cannot be trained by backpropagation directly. Some authors deal
with this by using an approximate derivative of the quantization operation
(70). Others follow (71) and (6) in realising that the quantization operation
is equivalent to the addition of uniform noise to the latent system (5),(62)
(12) and this addition avoid the need to actually perform quantization during
training. This second approach means that the AEs are in fact VAEs with a
Gaussian likelihood.

iii Finally, in order to achieve an efficient compression, these systems use ‘impor-
tance maps’ (72) which are a form of attention that determine how many bits
should be allocated to each region of the image. This is useful because smooth
areas of an image require fewer encoding bits than areas with large gradients.

These considerations are largely ignored in this paper although there is definitely
scope for future work that uses quantization to to create a more efficient latent rep-
resentation.

2) Alternative Approaches

It is worth noting that there are whole classes of image compression networks that
are not applicable here. LSTM compression networks iteratively reduce the image

16

Chapter 3. Background: Autoencoders 3.4. BUILDING BLOCKS

size by successive down-sampling the input (70), (73) but these networks violate our
second specification point of using just a fixed input size and are also comparatively
slow. More recently, Huang et al. proposed a GAN-based AEs to generate visually
plausible reconstructions (74). There is a lot of work to be done in proving the
‘correctness’ of GAN-generated samples and we were not confident that ‘visually
plausible’ in the image domain would translate to scientifically correct in the 3D
field domain. Nevertheless, this is certainly another route for future work.

3.4 Building Blocks

3.4.1 Convolutional Neural Networks

Figure 3.4: Example convolution for 2D system. 5x5 input (blue) with (white)
padding=1 is convolved with a 3x3 kernel to produce the output feature map (green).
Image and (adapted) caption from (75).

The simplest type of autoencoder is the linear AE in which fully connected layers are
used to down-sample the input to produce a small latent representation (42). Lin-
ear AEs, unlike ‘Convolutional Autoencoders‘, CAEs, do not account for the spatial
location of the data so tend to perform poorly for image processing tasks. The key
insight of neural networks that utilise convolution5, collectively known as CNNs, is
that many features are invariant to their position in the input. A cat is a cat regard-
less of whether is is viewed in the top right or bottom left corner of an image. This
can also be thought of as a prior that input data is locally self-similar and was first
encoded in network in Fukushima’s neocognitron in 1980 (76). The modern CNN
was introduced and used by LeCun et. al in their seminal paper on MNIST hand-
written digit recognition in 1998 (77) but it was not until after the successes of Alex
Krizhevsky et al. on ImageNet (53) classification in 2012 (78) that CNNs became
dominant in computer vision applications.

5Note: As described below, modern CNNs actually utilise the cross-correlation operator rather
than the convolution operator.

17

3.4. BUILDING BLOCKS Chapter 3. Background: Autoencoders

The primary component of a CNN is the discrete cross-correlation operator ? which
for filter F and input I, defined over an infinite one-dimensional domain, is given
as:

(F ? I)(i) =
∞∑

u=−∞

F (u)I(i+ u) (3.7)

In CNNs, this operation is performed over finite input domains. A filter’s ‘kernel’ is
strided across the input and the dot-product is taken between the input patch and
kernel at all stationary locations. This process produces an output feature map as
shown in Figure 3.4. In modern CNNs, a bank of N filters operate in parallel on
the input to each layer (see Figure 3.5). In our application, equation 3.7 can be
generalised to N four-dimensional (three spatial and one channel dimension) filters
operating in parallel (see Figure 3.5) over spatial input dimensions of size (H,W,D):

(F ? I)(i, j, k) =
N∑
n=1

H∑
u=0

W∑
v=0

D∑
w=0

Fn(u, v, w)In(i+ u, j + v, k + w) (3.8)

Figure 3.5: Banks of n convolutional filters operate in parallel on their inputs so that
each ‘channel’ is able to extract a different set of features. Image from (79).

In the context of the CAE framework, a key design decision regards the method of
down-sampling. Historically, down-sampling was achieved with pooling operations,
such as local max pooling see (78) but current best-practice in image compression
is to use strided-convolution so that the network can learn its own down-sampling
routine (80). There are a number of other salient considerations in terms of how
padding, stride and dilation affect output size but these will not be covered here.
The interested reader should consult (75) for a comprehensive discussion.

Another important insight from image compression CAEs, is that the majority of
systems use largely symmetric encoder and decoders with equal number of layers

18

Chapter 3. Background: Autoencoders 3.4. BUILDING BLOCKS

in each. Typically, the encoder’s strided convolutions are replaced by transposed
convolutions for up-sampling by the decoder. This means there are similar numbers
of parameters in f(x) and g(z) so that, when properly trained, neither the encoder
nor decoder is worse at their respective task. The exception to this rule, noted in (5),
is when just one of the encoding or decoding processes is time sensitive at inference.
In this case, the constituent that has tighter latency constraints should be created
with fewer layers and parameters.

3.4.2 Activation Functions

Convolutional and fully connected layers are matrix operations and therefore only
produce affine transformations of their inputs. Activation functions are non-linear
transforms σ(·) that are applied between layers to enable the network to produce ar-
bitrary non-linear combinations of input features. The choice of activation function
can have a large impact on training time and model performance and we have in-
vestigated a range of them in section 5.1.2. In this section we will briefly summarise
the advantages and shortcomings of five activation functions that are used in image
compression networks: sigmoids, ReLUs, Leaky ReLUs, their extension PReLUs and
GDNs.

Figure 3.6: Three common activation functions (black) and their derivatives (red).
a) σsigmoid(x), b) σReLU(x), c) σPReLU/LReLU(x;α = 0.15)

Sigmoid

Sigmoid activation functions σsigmoid(·) (see Figure 3.6a) were suggested as a method
of imitating the response of a neuron in the brain and were in widespread use in
neural networks before 2012:

σsigmoid(x) =
1

1 + e−x
(3.9)

A large disadvantage of σsigmoid(·) activations is that they suffer from the ‘vanishing
gradients problem’ as the derivative of the sigmoid is very close to zero for all values
where |x| > 5. In fully connected layers this means that large magnitude activations
through a neuron will result in zero backpropagated gradient and no weight updates.
This neuron is ‘dead’ because it will no longer learn and hence the model capacity

19

3.4. BUILDING BLOCKS Chapter 3. Background: Autoencoders

has decreased. The same phenomena can be seen in CNNs, except, in this case, a
whole channel may die.

ReLU

In 2010, Hinton et. al proposed Rectified Linear Units σReLU(·) (81), or ReLUs (see
Figure 3.6b) that are considerably faster to train than their sigmoid counterparts and
yet they typically lead to equivalent or superior performance. The ReLU activation
is:

σReLU(x) = max(0,x) (3.10)

The use of ReLUs was a key component to Krizhevsky and Hinton’s success on Im-
ageNet in 2012 (78). Their training speed-up over sigmoid activations is a result
of:

i The high computational complexity of the exponential function.

ii The low complexity of the ReLU gradient calculation since: σ′ReLU(x) =

{
1 x > 0
0 x < 0

}
iii The fact that a smaller proportion of the gradients vanish.

ReLU is state of the art for many computer vision tasks (82) but can also cause some
neurons or channels to die as negative activations will result in zero gradient.

PReLU and LReLU

To tackle this issue, the Leaking ReLU (83), LReLU and parametized ReLU, PReLU
(see Figure 3.6c) were proposed (84):

σPReLU(x) =

{
x x > 0
αx x ≤ 0

}
(3.11)

where α ∈ (0, 1). In the Leaking ReLU variant, α is fixed at a small value whilst in the
PReLU system, the parameter α is learnt through backpropagation. α can be learnt,
globally, layer-wise or channel-wise. The replacement of ReLUs with PReLUs by He
et al. was the first occasion on which human-level performance was surpassed on
ImageNet classification (84).

GDN Transforms

Finally, Generalised Divisive Normalisation transformations or GDNs were proposed
by Ballé et al. in 2015 (85) specifically in the context of natural image denoising
and compression. The GDN transform normalises and Gaussianizes the data on the
assumption that it is drawn from a very general, implicitly defined probability distri-
bution. The authors used GDNs as activation function for the first time in 2018 in an
image compression CAE (6). This design was used as back the backbone architecture

20

Chapter 3. Background: Autoencoders 3.4. BUILDING BLOCKS

of Zhou et al.’s system which won CLIC 2018 (62) and 2019 (12).

They are very versatile functions defined as:

σGDN(x) = g(x;θ) s.t. g(zi) =
zi(

βi +
∑

j γij|zj|αij
)εi

and z = Hx. (3.12)

The overall parameter vector is θ = {β, ε,H ,α,γ} which, for C input channels,
has a total of 2C + 3C2 parameters. GDNs are a multivariate generalisation of the
sigmoid function (see the similarity between 3.6a and 3.7b) and have an inverse
‘IGDN’ which must be used in the decoder.

Figure 3.7: GDN transforms for a range of hyperparameters θ in one dimension. As
H,α and γ are all matrices, a higher dimensional GDN will exhibit even more varia-
tion than the above. Figure c) is displayed with a symmetric log scale for illustrative
purposes.

Discussion

As of 2019, sigmoid functions are almost never used between layers but find uses
within more complex blocks including LSTMs and CBAMs (see section 3.4.7). ReLUs
are used in the majority of computer vision applications. In fact, there is a curious
bias of modern machine learning practitioners, noted by many including (86), to use
ReLUs without experimenting with PReLUs (or GDNs) despite the fact that the latter
activations are frequently more successful (87) (88). This trend continues: state
of the art on ImageNet classification as of September 2019 (Facebook’s FixResNeXt-
101) uses ReLU activations (82) and yet their paper makes no mention of activation
function tuning6.

In theory, the activations that perform well in classification may differ to those that
are useful in compression. A hypothetical reason for this is that classification requires
that weights produce binary ‘on or off’ activations whilst compression requires fine-
grained control of the output amplitude. The former could favour ReLUs whilst the

6It is very possible that the authors investigated this hyperparameter and did not judge the results
interesting but the wider trend is well documented (82) in any case.

21

3.4. BUILDING BLOCKS Chapter 3. Background: Autoencoders

latter might prefer PReLUs or GDNs.

There has been some research into the best activations for image compression: in
2018, Cheng et al. found that PReLU activations gave better results than ReLUs
(87) while Ma et al. found that GDNs outperformed ReLUs (88) in the same year
but, as far as we are aware, we are the first to compare PReLUs with GDNs for
compression across a range of architectures. We found that PReLUs were generally
more successful than GDNs although this was not true in all cases. For a detailed
discussion of these results see section 5.1.2.

3.4.3 Skip Connections

Figure 3.8: The basic residual block proposed by He et al. in their 2015 ‘ResNet’ paper
(14). The skip connection from the top to the bottom of the image ensures gradient is
able to flow to earlier layers.

As a network gets deeper, the theoretical range of functions it is able to approximate
increases. This comes with a tradeoff: the network will be more difficult to train as
backpropagated gradients may struggle to reach early layers with sufficient magni-
tude for the system to learn. With this problem in mind, He et al. proposed the skip
connection in 2015 in their ResNet paper (14). Skip connections place an identity
shortcut around a matrix operation (or set of matrix operations) F(x) ensuring that,
regardless of what takes place in F(x), gradient will be able to flow to earlier layers
during training (see Figure 3.8). This enabled the training of considerably deeper
networks. Before this paper was published in 2015, the state of the art on Ima-
geNet classification was ‘GoogleLeNet’ (89), which features the ‘Inception’ module
discussed in section 3.4.4. This network has 22 layers while the best performing
ResNet variant chained together 76 of the blocks in Figure 3.8 to create a network
with 152 layers.

Mathematically, the residual block in Figure 3.8 computes:

g(x)res = F(x) + x

22

Chapter 3. Background: Autoencoders 3.4. BUILDING BLOCKS

Note that this requires that F(x) has the same dimensions as input x. There are
many variants on this simple system. For example, the result of F(x) can be con-
catenated with x to give:

g(x)res2 = [F(x),x]

In this case, there is no constraint on the output size of F(x).

Residual blocks (RBs) are exceptionally powerful for image compression and modern
systems almost always use them in one way or another through a range of variations
on the basic g(x)res and g(x)res2 building blocks (5) (70) (90) (91) (62) (12) (52)
(65) (66) (67) (68). In fact, in recent years, these blocks are the unit on which
architectural innovation occurs as repeatable blocks can be more easily transferred
between problems than a macro network structure. In section 3.4.7 we will describe
some of the more exotic variants that have had successes in image compression but
first, it is necessary to describe other components of these systems including the use
of parallel filters, multi-scale resolution and the attention mechanism.

3.4.4 Parallel Filters

1x1 convolutions

3x3 convolutions 5x5 convolutions

Filter
concatenation

Previous layer

3x3 max pooling1x1 convolutions 1x1 convolutions

1x1 convolutions

Figure 3.9: The Inception module pro-
posed in (89). Three convolutional and
one pooling operation, are performed in
parallel and 1x1 filters bottleneck the in-
puts so that the features map size and
number of parameters are reduced.

Figure 3.10: ResNeXt residual block in
which the ‘cardinality’, or width can be
increased to boost the capacity of the net-
work (15). Unlike the Inception module,
the ResNeXt block uses 3x3 filters only.

The problem with the neural network design space is that, choosing whether to em-
ploy even a binary attribute of the form ‘use or do not use x’ doubles the compute
required for a hyperparameter grid-search. As more researches produce more ar-
chitecture variants it becomes computationally unfeasible to search them all, even
if you have Google’s compute. So with this in mind, in 2015, Google researcher
proposed the ‘Inception’ module (89) shown in Figure 3.9 as a method of reducing
the decisions available to researchers. In the Inception module, 1x1, 3x3 and 5x5
convolutions are placed in parallel so that the network can ‘choose’ which combina-
tion of filters is relevant for the task in hand without the need for user input. This is
referred to as the split-transform-merge paradigm. These modules are then stacked
repeatedly in a deep network so that only the number of layers must be tuned.

23

3.4. BUILDING BLOCKS Chapter 3. Background: Autoencoders

1x1 convolutions

Another innovation of the Inception module was the use of 1x1 convolutions to
bottleneck the inputs. This drastically decreases the computational cost by reducing
both the input feature map size and the number of parameters. The ideas here were
extended by others including notably the ‘SqueezeNet’ authors with their proposal of
the Fire module (92) and the ‘ResNeXt’ authors who proposed the block of variable
width shown in Figure 3.10 (15). In section 5.1 we evaluate a number of CAEs from
the ResNeXt family and show that we can reduce the inference latency of our best
network by a factor of x2.5 by using ResNext blocks instead of the vanilla residual
blocks in Figure 3.8.

3x3 convolutions

The work in the Inception paper (89) was part of a wider trend at the time to re-
duce the convolutional kernel width K as computational cost scales in K2 in two-
dimensions and K3 for three-dimensions. The key insight is that two consecutive
3x3 convolutions have the same receptive field as a 5x5 convolution but require just
two thirds of the number of parameters and FLOPS. In three dimensions, two 3x3x3
filters requires just a third of the parameters and FLOPS compared with a single
5x5x5 filter7. In fact, it was shown in the VGG paper (93) that results on ImageNet
were actually improved by replacing larger kernels with stacked 3x3 filters (most
likely because of the additional activation functions) and this was imitated by the
inception authors in their next publication of 2015 (94). In current state of the art
systems in computer vision, kernels of size 3x3 (or lower) are almost always used.

3.4.5 Multi-scale resolution

Convolutional networks with small filters have had many successes but they have a
key limitation: a single filter is only able to extract local patterns within a 3x3 pixel
range. If there are two pixels, or groups of pixels, on opposite side of the image that
have some shared meaning, there will not be a feature map with a receptive field
containing both pixels until very deep in the network and by this point the feature
map is (typically) very low resolution. Therefore, it is almost impossible for the net-
work to make fine-grained decisions about pairs of spatially distant pixels.

In order to tackle this issue in the domain of medical image segmentation, the U-
Net authors proposed8 concatenating high and low-resolution features so that the
network has access to multiple feature-map resolutions simultaneously9. In the U-
Net design, shown in Figure 3.11, high resolution data from the encoder network

7These ratios are approximate as they are dependent on the size of the feature map which can
change between layers.

8To our knowledge, the U-Net (64) authors were the first to propose using multi-scale features in a
machine learning context but there had been a long history of using multiple resolutions in computer
vision and segmentation in particular. The following paper from 2001 is a typical example (95).

9This sits within the residual framework as we are concatenating features after a skip connection
(g(x)res2 in section 3.4.3).

24

Chapter 3. Background: Autoencoders 3.4. BUILDING BLOCKS

Figure 3.11: The U-Net architecture for image segmentation proposed in (64). The
feature maps are successively down-sampled (red arrows) in the encoder to a latent
dimension of 1024 and then up-sampled (green arrows) by the decoder to the original
size. The decoder is provided with high resolution data from the encoder network.

is provided to the decoder network. We note that this design would be ‘cheating’
in a compression setting as higher resolution information cannot be made available
during decoding because the cost of storing this data would negate any gains made
by the compression system. However, the approach can be applied to compression
by making multi-scale paths self-contained within either the encoder or decoder.

Multi-scale approaches have had substantial successes in image compression in re-
cent years (66) (62) including for four of five top finishers in CLIC 2019 (12), (67),
(52), (68). For example, Lu et al. employed the hierarchical decoder shown in
Figure 3.12.

3.4.6 Attention

A shortcoming of the convolutional networks discussed so far is that they assign the
same importance to a particular location or channel of the feature map regardless
of the input. This can make it very difficult to learn complex features. To see why
imagine the possible (but unlikely) case in which an ImageNet classification network
included a channel in which the feature map encoded information about the type of
animal fur in an image as a method of distinguishing between cats and dogs. In a

25

3.4. BUILDING BLOCKS Chapter 3. Background: Autoencoders

Figure 3.12: The decoder of Lu et al.’s fourth place entry to CLIC 2019 (52) in which
features are available at multiple resolutions simultaneous.

network without an attention mechanism, this channel will be given equal impor-
tance in the final classification when the input is a cat as when it is an aeroplane.
Clearly this channel is simply noise in the second case so the model will down-weight
this sometime-useful ‘fur’ feature or, more likely, never learn it in the first place.

The attention mechanism solves this problem by focusing the network’s ‘attention’
on relevant elements of the feature map (69). It was first proposed and used in NLP
to increase the importance of different words in a sentence and has had a raft of
successes in this field, including in Transformers where is is suggested that ‘Attention
is All You Need’ (96). In imaging, there are two types of attention, channel attention
which focuses on relevant channels as in the example above, and spatial attention
which focuses on relevant locations in the image.

There are various types of attention g(x)Att but in all variants there is a ‘trunk’10

T (x) of the same size as the tensor input x and an attention mask M(x) such that:

g(x)Att = T (x) ∗M(x) (3.13)

where ∗ denotes element-wise multiplication. In many cases, T (x) = x meaning
that the attention mask is applied directly to the input. The mask elements Mi(x)
are soft assignments in the range [0, 1] to indicate how much attention should be
given to the corresponding trunk element Ti(x). In theory the mask elements could
also be hard assignments in {0, 1} although, as far as we are aware, this is not used
in practice. The granularity of M(x) is usually one of the following:

i M(x) is a full rank tensor in which each element of Ti(x) has its own mask
value Mi(x).

ii For Cin channel inputs, M(x) has Cin distinct values that are shared on a per-
channel basis.

iii For an input with p pixels M(x) has up to p distinct values but can also have
int
(
p
k

)
distinct values that are shared between neighbouring pixels in an image.

10This terminology is not used by all authors.
11Note that this heat-map is not the spatial attention mask. It is a visualisation of the pixels that

26

Chapter 3. Background: Autoencoders 3.4. BUILDING BLOCKS

Figure 3.13: A visualisation of the effect of attention with CBAM (97) for classification
on ImageNet using the Grad-CAM method (98)11. Image adapted from the CBAM paper
(97).

3.4.7 Complex Residual Blocks

We are now in a position to describe the complex residual blocks that are regularly
used in image compression, with a particular focus on the four blocks that have
featured in successful CLIC entries from the last two years. These can be split into
densely connected blocks and attention based blocks.

Densely Connected Blocks

A problem in deep residual networks like ResNet-152 (14) is that many of the use-
ful features created by early RBs are not directly available to latter RBs meaning
that similar calculations to create these features may occur multiple times in the
same network. Densely connected networks (99) avoid this problem by providing
the features calculated by each RB to all of its successors. This is achieved by con-
catenating each RB’s input and output and providing this tensor as input to the next
RB as shown in Figure 3.14a). Note that this results in a consecutively larger input
from right to left in Figure 3.14a). RDBs, proposed by Zhang et al. place a limit
on this growth by using 1x1 convolutions to return outputs of the same size as the
original input (100). GRDBs or grouped RDBs take this one stage further by stack-
ing multiple RDBs in sequence (13) as shown in Figure 3.14b). RDBs were used by
the second place challenger in CLIC-2018 (91) and GRDBs were used by the second
place finisher this year (65).

Attention-Based Blocks

CBAMs or Convolutional Block Attention Modules are residual blocks that add channel-
wise and spatial attention sequentially (97) as shown in Figure 3.15. Despite their
relatively complex structure, CBAM blocks have a small number of parameters as a

are most relevant to the classification. In the larger Figure from which this is taken, an equivalent
heat-map is given for a vanilla ResNet-50 to demonstrate that it makes less focused use of its input
pixel data.

27

3.4. BUILDING BLOCKS Chapter 3. Background: Autoencoders

Figure 3.14: a) The Residual Dense Block (99), (101) and its extension b) The Grouped
Residual Dense Block (13).

Figure 3.15: The Convolutional Block Attention Module (97). The channel maskMC(x)
and spatial mask Ms(x) are applied sequentially. These masks are broadcast to full
dimensions (N,C,H,W,D) before their element-wise multiplication with the inputs x.
Note that in MC(x), the features from max pooling and average pooling are fed through
the same fully connected network one after the other and the results are then added.
‘conv n1 7x7x7 p333 s111’ represents a convolutional layer with 1 channel, kernel size
= (7, 7, 7), padding = (3,3,3) and stride = (1,1,1) and is specific to our implementation
(although in some cases we found that kernel size = (3, 3, 3) was necessary to enable
efficient training). Our CBAM has just two fully connected layers in MC(x).

Figure 3.16: The Residual Attention Block proposed by (101) and utilised by (12). Note
that unlike CBAMs, the trunk of RABs (yellow background) are not the identity mapping.

28

Chapter 3. Background: Autoencoders 3.4. BUILDING BLOCKS

result of the pooling operations. The authors recommend placing CBAMs after every
traditional RB as a lightweight method of adding attention to a network.

In comparison, RABs or Residual Attention Blocks, shown in Figure 3.16, compute
an individual mask value for every element in the input of size (N,C,H,W,D) (101).
This makes them considerably more expressive than CBAMs but, the tradeoff is that
RABs add considerable overhead. By way of comparison, in our 3D implementations
of these blocks with 64 input channels, CBAMs have just over 2,500 parameters
while RABs have just under 2.5 million parameters. The winner of CLIC this year,
(and our most successful system) used a number of RABs (12) whilst the second
place entry utilised CBAMs (65). In section 5.1 we experiment using both blocks in
tandem but find that the network accuracy is significantly reduced by this combina-
tion.

As an aside, note that the same authors: Zhang et al., proposed both RABs and RDBs
in a four month period.

29

3.5. STATE-OF-THE-ART ARCHITECTURES Chapter 3. Background: Autoencoders

3.5 State-of-the-art Architectures

System details Building Blocks Equivalent model in
Year CLIC pos. Authors/Team Paper GDNs Parallel Filters Multi-scale Attention RDB CBAM RAB section 5.1
2017 - Theis et al. (5) × × × × × × × ∼ Backbone
2018 - Mentzer et al. (90) × × × × × × × ResNeXt3-27-1-vanilla
2018 - Cheng et al. (87) × X × × × × × ResNeXt3-3-N-vanilla§

2018 - Balle et al. (6) X × × × × × × ∼ Tucodec (no RAB)

2018 1st Tucodec (62) X X X × × × × Tucodec (no RAB)
2018 2nd iipTiramisu (91) × × × × X × × RBD3NeXt-8-1-vanilla
2018 2nd AmnesiackLite* - - - - - - - - -
2018 3rd ZTESmartVideo* - - - - - - - - -
2018 4th yfan (66) × X X × × × × ResNeXt3-4-32-vanilla‡

2019 1st Tucodec (12) X X X X × × X Tuocodec
2019 2nd ETRI† (65) × X × X X X × ∼ Backbone + GRDN∇

2019 2nd Joint (67) X X X × × × × Tucodec (no RAB)
2019 3rd NJUVisionPSNR (52) × X X × × × × ∼ Tucodec (no RAB)
2019 4th Vimicro (68) X X X × × × × Tucodec (no RAB)

Table 3.1: Successful CLIC entries and their precursors for 2018 and 2019. CLIC uses
multiple compression metrics (PSNR, MS-SIMM etc) and while success on one metric
generally implies success on another, this is not always true. When there is ambiguity,
we have given the highest positioning a system achieved. In the final column we have
provided the name of the system within the architecture search framework we use in
section 5.1. A ∼ here implies our implemented system is similar but not equivalent.
* To our knowledge, these teams did not produce a publication detailing their approach.
† This system was also the fastest in 2019.
§The original model did not have skip-connections but was otherwise identical.
‡The authors use ‘wide-activated residual blocks’ in which the channel size is increased by a factor of 4 internally within the block. The ResNeXt authors (15)
have shown that this is equivalent to their system with a cardinality of 4.
∇This system was not an end-to-end AE but used the VVC compression standard (102).

A summary of state of the art image compression CAE architectures12 and an overview
of their constituent elements is given in Table 3.1. We have implemented a variant
on all of these systems according to a framework described in section 4.2. In the rest
this section we will briefly describe the CLIC-2019 winner (12) and the runner up
(65).

Tucodec

The ‘Tucodec’ team placed first in CLIC-2019 and 2018. Their 2018 design given in
Figure 3.3 was an adaptation of a VAE proposed by Ballé et al. that employed GDN
activations (6). The Tucodec team added a multi-scale path to the Ballé et al. archi-
tecture. In 2019, two of the top-five placing teams, ‘Joint’ (67) and ‘Vimicro’ (72),
used a network that was virtually identical to this 2018 entry but the Tucodec team
improved their design with the addition of RABs to aid encoding and decoding. A
three-dimensional version of their encoder is given in Figure 3.17.

We note that the Tucodec authors assert incorrectly throughout their paper that they
are using non-local attention blocks or ‘RNABs’ instead of the simpler local RABs
(proposed in the same paper by (101)). We have used RABs in our implementation
of their system.

12Specifically, the architectures that comply with our specification in section 3.2.

30

Chapter 3. Background: Autoencoders 3.5. STATE-OF-THE-ART ARCHITECTURES

Figure 3.17: The Tucodec encoder (12). All convolutional values are specific to our 3D
implementation. The decoder is identical except that, like their 2018 entry in Figure 3.3,
it does not have the multi-scale path.

GRDNs

Figure 3.18: The GRDN block (100) in a series of GRDBs (see in Figure 3.14) are used
with a CBAM module.

The authors who proposed GDRBs, suggested that they be used within a Grouped
Residual Dense Network or GRDN, which also includes a CBAM attention module as
shown in Figure 3.18. GRDNs have been used to give state of the art performance
on image denoising (100) and were used by Cho et al. in their second place CLIC
submission this year to remove compression artefacts from the reconstructed image
(65). The remainder of Cho et. al’s compression pipeline was not an AE but rather a
compression standard ‘Versatile Video Compression’ VVC that is being developed to
replace HEVC (102). As such, Cho et al.’s end-to-end solution was not appropriate
in this work but we investigate the effectiveness of the GRDN in section 5.1.

31

Chapter 4

Contribution

In this chapter we will detail the contributions of this paper: in the following section
4.1, we describe our proposed data assimilation formulation including a discussion
of its computational cost. In section 4.2 we describe the framework within which we
searched for a suitable CAE design while in section 4.3 we give a brief overview of
our Python module VarDACAE’s API and design. Finally, in 4.4 we give the details of
our CAE training configuration.

4.1 ‘Bi-reduced space’ formulation of DA

Our data assimilation formulation with AEs involves non-trivial changes to the in-
cremental formulation in equations 2.17. We give its derivation below. A subtlety to
note is that there are two ‘reduced’ spaces in this case: the reduced space of size S
introduced by the CVT and the reduced space of size m introduced by the encoder-
decoder framework. To avoid confusion, we will refer to the AE space as the ‘latent
space’ (denoted with z) and to the CVT space as the ‘reduced space’ (denoted with
w). As our method utilises both of these spaces we refer to it as the ‘Bi-reduced
space’ formulation.

Firstly, our system requires that all data is mean-centred with respect to the historical
mean x̄b which sets xb = 0 for all equations in section 2.2. The AE formulation from
equation 3.1 then has many equivalent representations:

f(δxi) = f(xi − xb) = f(xi) = zi

g(δzi) = g(zi) = xi − xb = xi
(4.1)

Mean-centering the data is necessary to ensure that our formulation is approximately
equivalent to the Parish et al. CVT formulation (8) but has the added benefit of en-
suring that encoder inputs are symmetrically distributed about 0. The true state can
be reconstructed by adding x̄b. In this paper, whenever the success of DA is evalu-
ated, the true state is used.

32

Chapter 4. Contribution 4.1. ‘BI-REDUCED SPACE’ FORMULATION OF DA

In order to give our formulation we will first define the quantities f o, Vl, dl and Rl

where a subscript l implies the matrix or vector has been replaced by its latent-space
equivalent.

Observation Encoder: f o

f o is an operator which maps from the full observation space of sizeM to the reduced
observation space of size Ml such that:

f o := HlfH
+ ∈ RMl×M (4.2)

f o = fH+ ∈ Rm×M (4.3)

whereH+ ∈ Rn×M is the generalised inverse ofH which maps from the observation
space to the full space. This is an under-determined problem so there will be many
equivalent H+ operators.
where Hl ∈ RMl×m is the latent space observation operator which maps from the
latent space of size m to the latent observation space of size Ml. We have implicitly
defined Hl := I which implies Ml = m. Another way of thinking of this is that the
entire latent space is observable to us.

Latent V : Vl

Vl = f(V) =
[
f(δxb0), f(δxb1), ..., f(δxbS)

]
Vl =

[
zb0, zb1, ..., zbS

]
∈ Rm×S (4.4)

Note that we are representing the information in matrix V of size Rn×S in the CVT
formulation in a matrix of size Rn×S. In our implementation m ∼ 0.0001n so this is
an O(103) reduction in the size of our background covariance representation.

Latent d: dl

dl := f od ∈ Rm (4.5)

Latent R: Rl

Recall that R is the covariance matrix of the observation error ε = Hxb − y and as
such, for observations y, it can be calculated as:

R = E[εεT] (4.6)
R = σ2

0I (4.7)

33

4.1. ‘BI-REDUCED SPACE’ FORMULATION OF DA Chapter 4. Contribution

where the second line follows from the assumption that all observations are uncor-
related. We define the latent observation covariance matrix R in the same way:

Rl := E[εlε
T
l] (4.8)

where εl = f oε (4.9)

As the latent observation errors εl are derived from uncorrelated full space errors,
the latent observation errors ε will also be independent of one another giving:

Rl = σ2
l I (4.10)

where σl is the latent observation error standard deviation. We require the result
in 4.10 for the proof below but it is worth noting that the uncorrelated observation
assumption becomes more tenuous as M increases. In this work we consider the
case when M = n which definitely breaks the assumption. However, we can ensure
that 4.10 holds in all cases with the additional assumption that all latent features
are orthonormal to one another.

Orthonormal latent representation

It is worth making a brief comment on the conditions under which this will be true.

i Firstly, to obtain unit length features, batch normalisation could be used. Un-
fortunately, like Chen et al. (91), we found that batch normalisation greatly
hampered the AEs ability to produce good reconstructions and therefore we do
not use it on the backbone network of our models. For this reason, we do not
make statements on the relation between the magnitude of σ0 and σl in the
above section (although in practice we treat them as equal).

ii Secondly, latent dimensions are not orthogonal in the general case but they will
be ‘approximately’ orthogonal. To see why intuitively: if an AE is producing a
good reconstruction, the latent hyperplane must span the majority of the data
distribution manifold. If it is able to do this with a very small number of latent
features then it must be rare for latent features to double-up and span identical
areas of the data distribution. Consider additionally that PCA, which produces
orthogonal latent modes, is a special case of an AE with linear activations,
although admittedly in AEs the orthogonality criteria is relaxed. For a formal
derivation of this equivalence see Baldi et al.’s paper: (103).

iii It is possible, although not explored in this work, to enforce latent orthogonal
features with the use of a Variational Autoencoder (48). As discussed, this
approach was not attempted here as it typically leads to poorer reconstructions
but this is a clear avenue for future work.

Calculation of latent misfit dl

Our mean-centering constraint gives:

dl = f od (4.11)

34

Chapter 4. Contribution 4.1. ‘BI-REDUCED SPACE’ FORMULATION OF DA

dl = f o(y −Hxb) (4.12)
dl = f oy (4.13)

In this work, we are using synthetic data meaning that the full state is available as
observation and we can use:

H = H+ = I (4.14)

which implies:

dl = fH+y

dl ≡ f(y) ≡ f(xobs) ≡ zobs

where y = xobs ∈ Rn

(4.15)

So we can simply use the encoder to obtain our latent misfit. However, to order to
make our scheme useful operationally where not all points are available to observe,
it will be necessary to train a network f o(y) that can estimate the latent misfit dl from
observations. We hypothesise that once you have a trained f , it should not require
much additional effort to create a trained f o by adding an implicit interpolation
network H+ as shown in Figure 4.1.

Figure 4.1: Scheme to create the fo operator. Our hypothesis is that it should be possible
to add the H+ convolutional network and fine-tune the weights of f to create fo.

Proposed 3D-VarDA formulation

Our proposed ‘bi-reduced space’ formulation is:

wDA
l = arg min

wl

J(wl)

J(wl) =
1

2
wT
l wl +

1

2
‖dl − Vlwl‖2R−1

l

(4.16)

Note that, allowing for the different definitions of the latent variables Vl, dl and
Rl, this equation is identical to the mono-reduced space formulation in 2.17. In

35

4.1. ‘BI-REDUCED SPACE’ FORMULATION OF DA Chapter 4. Contribution

fact, when comparing the two methods we were able to use the same cost-function
and gradient implementations. This, coupled with the fact that we used the same
minimisation routine (scipy.optimize.minimize in mode L-BFGS-B) gives us con-
fidence that our comparisons between the execution-times of the two approaches is
not biased towards either method as a result of implementation details.

Transformation to the full-space

Once equation 4.16 has been minimised in the reduced space to find wDA
l , the system

can be restored to the full space in a two-stage transformation:

i Multiplication by Vl to move from the reduced space representation ∈ RS to
the latent space ∈ Rm.

ii Multiplication by Vl to move from the reduced space to the full space ∈ Rn.

Overall this gives:

δxDA = g(Vlw
DA
l) (4.17)

4.1.1 Proof of equivalence

Our proposed formulation is equivalent to the mono-space formulation in 4.16 in
the sense that:

wDA = wDA
l (4.18)

This is true under three assumptions:

i The AE compression is lossless meaning g(f(x)) = x. This will not be exactly
true but highlights the importance of a high-performing autoencoder.

ii All features in the latent representation z are orthonormal as discussed above.

iii The full observation space contains sufficient information to construct a good
approximation of the full space x. Note that if this holds, the ability to create
the f o operator in Figure 4.1 is assured. This assumption is discussed in more
detail in the proof of Lemma 5.

We will state and prove a series of lemmas to produce the result in 4.18.

Lemma 1
The exact solution of wDA = (I + V THTR−1HV)−1V THTR−1d

Lemma 2
The exact solution of wDA

l = (I + V T
l R

−1
l Vl)

−1V T
l R

−1
l dl

36

Chapter 4. Contribution 4.1. ‘BI-REDUCED SPACE’ FORMULATION OF DA

Proof of Lemmas 1 and 2

The proof of both lemmas is the same as their cost functions are mathemat-
ically equivalent except for the fact that each operator in the first case is
replaced by its equivalent latent operator in the second case (and Hl = I).
Recall the reduced space cost function is:

J(w) =
1

2
wTw +

1

2
‖d−HV w‖2R−1

which has gradient:

∇J(w) = w − V THTR−1
(
d−HV w

)
Setting this to zero and solving for w will give the optimal value wDA as
required to complete the proof:

V THTR−1d =
(
I + V THTR−1HV

)
wDA

wDA = (I + V THTR−1HV)−1V THTR−1d

We can write the exact solutions of wDA and wDA
l in the following form:

wDA = (I +A)−1b

wDA = (I +Al)
−1bl

where A = V THTR−1HV

Al = V T
l R

−1
l Vl

b = V THTR−1d

bl = V T
l R

−1
l dl

Lemma 3

A = Al

Lemma 4

b = bl

The overall result 4.18 follows directly from Lemmas 3 and 4 but to prove these we
need two further results.

Lemma 5

Vl = f oHV

37

4.1. ‘BI-REDUCED SPACE’ FORMULATION OF DA Chapter 4. Contribution

Proof of Lemma 5

Vl := fV

Vl ≈ fH+HV

Vl = f oHV

H+H acts is an information bottleneck operator in which only information
contained in the observation locations is propagated from V . Note that
H+H 6= I in general but that fV ≈ fH+HV is a much weaker result
that suggests:

• The observation space of size M contains sufficient information to con-
struct a good approximation of the latent representation. This is equiv-
alent to assumption iii) above because, if the observation space contains
all information in the full space, by assumption i) it should also con-
tain all information in the latent space. To show why this might be true
consider that there must be large redundancies in the full space in order
for the CAE framework to have any success. We argue in the following
section that, in all practical scenarios, m,S < M so if a state of size m
can contain all information of a state of size n it is not implausible that
a state of size M could contain the same information. More concretely,
in section 5.2 we demonstrate that the Arcucci et al. CVT with TSVD
DA method suffers no degradation in accuracy when just 10% of the
total state space is used as observations (M = 0.1n). There is only a
5% degradation when M = 0.01n.

• The reduced space of size S also contains sufficient information to con-
struct the latent representation of size m. This condition is implied by
the lossless compression assumption i) as the reconstruction of the full
state passes through the reduced space and the latent space.

Lemma 6

R−1l = ((f o)T)−1R−1(f o)−1

Proof of Lemma 6

Rl := E[εlε
T
l]

Rl = E[f oεεT (f o)T]

Rl = f o E[εεT] (f o)T

Rl = f o R (f o)T

R−1l = ((f o)T)−1R−1(f o)−1

where the third line follows because the observations are uncorrelated.

38

Chapter 4. Contribution 4.1. ‘BI-REDUCED SPACE’ FORMULATION OF DA

Proof of Lemma 3

We use Lemmas 5 and 6 to give:

Al = V T
l R

−1
l Vl

Al = V THT (f o)T ((f o)T)−1R−1(f o)−1f oHV

Al = A

(4.19)

Proof of Lemma 4

bl = V T
l R

−1
l dl

bl = V THT (f o)T ((f o)T)−1R−1(f o)−1f o(d)

bl = b

(4.20)

This completes the proof that wDA = wDA
l .

4.1.2 Advantages over TSVD: Theory

Eigenanalysis techniques such as PCA and TSVD are alternative methods of produc-
ing reduced space representations of data and, as discussed in previous sections,
have been used canonically in preconditioned 3D-VarDA (9). Having summarised
the key components of our proposed system, it is now possible to detail the theoreti-
cal reasons why our method produces a) higher quality compression and b) is faster
than the traditional methods. For experimental verification of these advantages, see
section 5.2.

Compression quality

For a given compressed size, a good CAE will produce reconstructions of higher qual-
ity than those using TSVD1. Note that we evaluate our systems on data assimilation
performance rather than reconstruction quality but we find that systems that com-
press and decompress the state with a small loss of information perform better in
DA. There are a number of reasons why the CAE approach produces better recon-
structions than the truncated SVD approach:

i Redundancies in the training data distribution can be stored ‘for free’ by the
decoder leaving space in the latent representation to encode the sample varia-
tions.

ii CAEs take location data into account and can therefore use properties like local
smoothness to compress the input more efficiently2.

1To calculate reconstruction quality for TSVD, it is necessary to first create the reconstructed state
increment δ̂x by projecting to the reduced space with V + and then returning to the full space with
V as follows: δ̂x = V V +δx. The reconstruction L1 or L2 loss can then be calculated.

2Note that DA localisation approaches do utilise location information but not in a way that in-
creases compression quality (31).

39

4.1. ‘BI-REDUCED SPACE’ FORMULATION OF DA Chapter 4. Contribution

iii The latent features can be created from non-linear combinations of the inputs
meaning they are likely to be of greater expressive quality than those in SVD
in which linear combinations of the inputs are enforced. This latter approach
is only optimal for compression when the data is drawn from a Gaussian dis-
tribution3.

iv By design, in Truncated SVD, some of the information is intentionally dis-
carded. This is not true in the CAE framework.

DA speed

The second advantage of the proposed method is its lower computational complexity
in an online setting. In this analysis we distinguish between the offline costs and
online costs. Here ‘online costs’ refers to any calculation that must take place when
a new set of observations are made. ‘Offline costs’ are everything else which includes
the TSVD computation and the CAE training.
The online complexities of the Parish et al. reduced space approach Ron (8) and our
bi-reduced space approach Bon are:

Ron = O(I1M
2 + nS) (4.21)

Bon = O(nm) (4.22)

where I1 is the number of iterations in the reduced space VarDA minimisation rou-
tine, M is the number of observations S is the reduced space size (which is equal to
the size of the historical data sample) and m is the latent dimension size in our pro-
posed method. We note that to achieve comparable accuracy with the two methods
we will typically have S > m, (and M > S) so Ron > Bon. We derive these results in
the following sections.

Note that our proposed method’s online complexity Bon is independent of the num-
ber of observations M meaning it is never necessary to arbitrarily reduce the number
of assimilated observations in order to meet the latency requirements of the system.
We also note that the cost of training a CAE is considerably larger than of performing
TSVD but as these operations occur offline they are not of primary importance in the
creation of an operational system that, in the words of the MAGIC project organisers:
“allow rapid calculations for real-time analysis and emergency response”.
We discuss the derivation of the online and offline complexities in turn in the follow-
ing sections but first give the encoder and decoder inference complexities.

f(x) and g(z) complexity

With input of size n and output of size m, the encoder and decoder inference com-
plexities are O(nK) = O(nm) for constant K.

3Another way of thinking of this is that PCA truncated at mode τ gives optimal reconstruction for
all linear models of rank τ .

40

Chapter 4. Contribution 4.1. ‘BI-REDUCED SPACE’ FORMULATION OF DA

In the simplest possible encoder: a single fully connected layer, the complex-
ity of mapping from the full to the latent space would be O(nm) exactly.
The convolutional case is more complex but we think that logical CAE design
choices lead to the same result. The encoder complexity is dominated by the
layer in which the largest number of FLOPS take place so with 3D spatial
inputs the complexity is O(nk3C1C2)

4 where k is the kernel width and C1

and C2 are the input and output channel sizes respectively when the feature
map is at its largest. The choice of K = k3C1C2 is an architectural design
decision but K will never be << m as this would mean the encoder was
introducing the information bottleneck at a location other than the latent
space. Similarly, K should not be >> m as this would negate the compu-
tational benefit of using convolutions over a linear network. This means K
and m are of the same order and the above result follows5. A symmetric
argument gives the decoder complexity as O(nm) too.

4.1.3 Computational Complexity Derivation: Online

There are two steps that contribute to the online-cost:

i The evaluation of the cost function and its gradient during the minimisation
routine.

ii Restoring the calculated wDA to the full space.

Lemma 7
The online complexity of step i) in the Reduced space method is:

O(I1(MS +M2))

where I1 is the number of iterations in the minimisation routine.

In the following sections we use the symbol ‘ · ’ to make clear which operation we
are considering at a given point in time.

Proof of Lemma 7

We repeat the cost function 2.17 here for convenience:

wDA = arg min
w

J(w)

J(w) =
1

2
wTw +

1

2
‖d−HV w‖2R−1

(4.23)

(4.24)

4The provided formula assumes that the largest number of FLOPS takes place in a layer before
down-sampling has occurred which will be true in most systems. The result still follow without this
assumption but including this complexity does not aid clarity.

5By accident, but in service of this point, in our Backbone network in 4.2, we have k = (3, 3, 2),
C1 = 1 and C2 = 16 which gives K = 288 which is the same size as our latent dimension m.

41

4.1. ‘BI-REDUCED SPACE’ FORMULATION OF DA Chapter 4. Contribution

A naive implementation of 4.23 (and its derivative) would be dominated by
the matrix multiplication H · V but, as H and V always appear together,
this quantity can be precomputed and the minimisation complexity is inde-
pendent of n. A single iteration of the VarDA minimisation has complexity
O(MS+M2) where the first term originates fromHV ·w while the second
is from (d−HV w)T · (d−HV w) where we are assuming R is diagonal.
With I1 iterations this gives Lemma 7.

Lemma 8
The online complexity of step i) in our bi-reduced space method is:

O(I2(mS +m2))

where I2 is the number of iterations in the minimisation routine and m is the latent
dimension size.

Proof of Lemma 8

The argument to find the complexity of minimising the bi-reduced space cost
function is almost identical to Lemma 7 above except that we replaceHV ∈
RM×S with Vl ∈ Rm×S in the cost function. Altering these dimensions gives
the required result.

Lemma 9
Restoring the calculated wDA to the full space in the mono-reduced space formulation
is in O(nS).

Proof of Lemma 9

This is dominated by the product V ·wDA which is in O(nS).

Lemma 10
Restoring wDA

l to the full space in the bi-reduced space formulation is in O(nS).

Proof of Lemma 10

This requires computing Vl ·wDA
l followed by g ·VlwDA

l which has complexity
O(mS + nm) = O(nm).

This gives an an overall reduced space online complexity of:

Ron = O(I1(MS +M2) + nS) (4.25)

and a bi-reduced space online complexity of:

Bon = O(I2(mS +m2) + nm) (4.26)

Hence, the key comparison between the online complexity of the two methods is

42

Chapter 4. Contribution 4.1. ‘BI-REDUCED SPACE’ FORMULATION OF DA

down to the relative sizes of variables I1, I2,M, n,m and S. We assert that in most
practical cases:

Ron > Lon (4.27)

As many of these are user-chosen parameters we cannot prove that 4.27 always
holds but we will make concrete arguments about their ranges in practical settings.

Argument 1

I1 > I2 in the majority of cases.

Justification: Argument 1

Following the discussion on optimisation in section 2.2.3 we have good rea-
son to believe that the problem is better conditioned in the bi-reduced space
than in the reduced space as for exactly the same reasons that it is better
conditioned in the reduced space in comparison with the full space. See (37)
for more information.

Argument 2

M > S in the vast majority of cases.

Justification: Argument 2

The Met Office uses M = 0.01n = 107 (2). They employ a combination of
KFs and VarDA approaches (30) but in the VarDA scheme, it is implausible
that they would use anything close to 107 historical background estimates
as this would be a matrix of size 107 · 109 = 1016. We believe the same con-
straints will hold in all practical scenarios even if the number of observations
is relatively small: M ∼ 0.00001n.

Argument 3

S > m for useful systems.

Justification: Argument 3

We found that a value of m that was a factor of x2.5 smaller than S still
gave superior DA accuracy to the traditional method (even when M = n).

43

4.1. ‘BI-REDUCED SPACE’ FORMULATION OF DA Chapter 4. Contribution

Argument 4

Bon = O(nS) in the vast majority of cases.

Justification: Argument 4

According to Argument 3 we have:

Bon = O(I2(mS +m2) + nm)

Bon = O((I2S + n)m)

We found I2 = O(10) meaning I2S << n and hence Bon = O(nm). Con-
cretely, with our values of m = 288 and S = 791 we found that upwards
of 97% of the execution time of the bi-reduced DA procedure was restoring
wDA
l to the full space.

Combining Arguments 2-4, gives the stated results in the previous section:

Ron = O(I1M
2 + nS)

Bon = O(nm)

and since we argue that n < S, Ron is strictly greater than Lon. When M is large
M ≥ O(0.01n) (which is often crucial for good DA accuracy) we can go further than
this:

Argument 5

When M > O(0.05n), Ron = O(I1M
2).

Justification: Argument 5

Clearly the exact values here will vary from one implementation to another
but we found that with M = (0.01n), steps i) and ii) had approximately
equal execution time but when M rose much above this, the minimisation
term dominated as a result of the quadratic complexity.

We investigate the negative effect of using fewer observations on DA accuracy in
section 5.2.

44

Chapter 4. Contribution 4.1. ‘BI-REDUCED SPACE’ FORMULATION OF DA

4.1.4 Computational Complexity: Offline

In comparison, the offline costs are much larger for the proposed method in compar-
ison with the formulation with TSVD:

Reduced space offline cost

Roff = O(nS(M + S)) (4.28)

Bi-reduced space offline cost

Boff = O(nSEm) (4.29)

for E epochs of training. We prove these results below.

Typically, Em > M,S so Roff < Boff. In practice we found that Roff << Boff. Training
a model took something on the order of 10-20 hours on a GPU whilst TSVD required
approximately 10 minutes on the CPU.

Derivation of 4.28

Calculating SVD for V ∈ Rn×S where S < n has complexity of O(S2n)
(104). It is also necessary to precompute H · Vτ which is in O(MnS) =
giving the overall complexity in 4.28.

Derivation of 4.29

In training for E epochs, with S historical samples, the encoder/decoder
must be evaluated ES times giving a complexity of O(SEmn). Before per-
forming DA we must also precompute Vl = f · V which is in O(nmS) but
this is comparatively small so the offline cost is as in equation 4.29.

45

4.2. ARCHITECTURE SEARCH FRAMEWORK Chapter 4. Contribution

4.2 Architecture Search Framework

In our attempt to find a good CAE architecture, we were concerned that the successes
of 2D image compression systems might not always be transferable to 3D spatial in-
puts. As a result, we aimed to minimise this risk by investigating as wide a range of
SOTA architectures as possible. We created a framework within which it was feasi-
ble to systematically search an architecture space that approximately encompasses
the design of every top-5 CLIC finisher (see Table 3.1) from the last two years. In
order to achieve this, it was necessary to make small alterations to some of the orig-
inal systems. As such, although we found that our implementation of the Tucodec
system was vastly superior to our implementations of the other systems, there is a
possibility that our small design variations mean that another system should have
performed even better. We were not unduly worried by this possibility as our aim in
this process was to find systems that performed well rather than make exact com-
parisons between image compression networks.

In our search we enforced the following design constraints:

i All encoder-decoders are symmetric to reduce the design complexity. As a
result, in subsequent sections, we refer to properties of encoders only on the
basis that their decoder counterpart has equivalent mirrored properties6.

ii All systems have a fixed latent dimension size of 288 to enable like-with-like
comparisons between models. A size of 288 (which is a reduction is state size
by approximately three orders of magnitude) was chosen because preliminary
investigations suggested it gave good results.

iii All convolutions have kernel size 3 or less.

iv Convolutional down-sampling parameters are generated by our ConvScheduler
class that has priorities of:

(a) Avoiding addition of padding in later encoder layers as these can intro-
duce artefacts in the reconstructed state.

(b) Avoiding creation of feature maps that are not centred on the input as
these are much harder to reconstruct in the decoder. This is achieved by
refusing stride, s, padding, p and kernel size, k combinations that, when
acting on input of widthW , result in rounding in the floor operation when
calculating the output size =

⌊
W−k+2p

s

⌋
+ 1.

v Batch Normalisation is not used in the down-sampling backbone of the CAE
architectures because preliminary investigation showed that it resulted in re-
constructions of considerably poorer quality7. This finding was also made by
Chen et al. (91).

6The single exception to this is the Tucodec architecture in which the multi-scale path is removed
in the decoder.

46

Chapter 4. Contribution 4.2. ARCHITECTURE SEARCH FRAMEWORK

vi Batch Normalisation is used in the residual blocks of the network. This was
necessary to prevent activation and gradient overflow in deep networks.

For all models we investigate ReLU, GDN and PReLU activations and four types of
RB: vanilla and NeXt RBs each with and without the lightweight CBAM module (see
Figure 4.2). If present, CBAMs are placed after the original RB. Note that vanilla
RBs have considerably more parameters than NeXt RBs: for the 32 channel input
versions shown in Figure 4.2, NeXt blocks have 2k parameters while vanilla blocks
have almost 60k parameters.

We note that a majority of encoders in the systems of Table 3.1 fit into one of two
categories. Either they are very closely based on the design of the Tucodec 2018
entry in Figure 3.17 or they alternate between residual feature extraction and fully
convolutional down-sampling operations. We can capture most of the variation in
the second category with the backbone encoder architecture shown in Figure 4.3. As
we have already described the Tucodec system in detail, in the rest of this section we
describe our Backbone network and its variants.

Figure 4.2: The two basic RBs we evaluated. We also investigated the effect of placing
CBAM blocks after each of these. Note that NeXt RBs use 1x1 convolutions to bottleneck
the inputs.

4.2.1 Backbone

Our backbone design, without any ‘optional blocks’ is a fully convolutional network
with seven layers, the latter five of which down-sample the feature map. It is very
similar to the encoder of Theis et al. from 2017 that was used in the first system
which outperformed JPEG compression (5)8. The design is also relatively similar to
a single path of Cheng et al.’s parallel convolutional filter network (87). The exact

7We hypothesise that this degradation in quality was likely the result of loosing batch-specific
averages that are crucial to reconstruction. In our work this problem was likely exacerbated by the
fact that, as a result of memory pressures created by 3D input data, we were using small batch sizes
of just 16 or 8 meaning the batch statistics have high variance.

8The authors decoder was not symmetric to their encoder and contained fewer layers and also
that they used 5x5 convolutions while we only use 3x3 kernels here.

47

4.2. ARCHITECTURE SEARCH FRAMEWORK Chapter 4. Contribution

Figure 4.3: Backbone encoder architecture. Convolutional parameters are specific to
our input data with dimensions (C, Hx, Hy, Hz) = (1, 91, 85, 32) and latent dimensions
of (32, 3,3,1). For ‘backbone’ models, the optional block is empty. This architecture is
loosely based on that in (5).

number of layers and convolutional parameters given in Figure 4.3 were chosen after
an exploratory phase in which we compared a range of fully convolutional designs
with between 5 and 11 layers9.

The backbone is responsible for down-sampling while the optional blocks can intro-
duce innovative feature extraction mechanisms. We require that any added blocks
do not change the feature map size and are bypassed with a skip connection so that,
at least in theory, they cannot hinder the down-sampling process. By placing a GRDN
withing the first optional block, we can replicate the work in (65). The decision to
placing the second optional block between the 5th and 6th layers creates a network
similar to that in (90) and is compromise between early placement which enables
the blocks to have a larger effect on the system and late placement in which the com-
putational cost is lower as the feature maps are a small fraction

(
approximately 1

20

)
of their original size.

In section 5.1 we evaluate four variants on this backbone that are described in Table
4.1. The RAB-L variant is investigated in an attempt to separate the Tucodec model’s
success from its use of RABs and, as discussed, the GRDN model follows the work of
(65). The ResNeXt variant requires slightly more explanation which is given in the
following section.

Model Name Optional Blocks 1 Optional Blocks 2

ResNeXt-L-N None L ResNeXt layers, cardinality N
RAB-L None L RABs
GRDN 1 GRDN None

Backbone None None

Table 4.1: Variants on the backbone encoder network in Figure 4.3 that are evaluated
in section 5.1.

9We compared approximately 20 candidate architectures created with our ConvScheduler accord-
ing to their L2 reconstruction errors. We set the learning rate by cross-validation and used activation
functions ∈ {relu, leaky relu}. During this phase we found that batch normalisation and dropout both
harmed performance.

48

Chapter 4. Contribution 4.2. ARCHITECTURE SEARCH FRAMEWORK

4.2.2 ResNeXt variant

Figure 4.4: a) A single ResNeXt layer, repeated from Figure 3.10 for clarity (15). The
ResNeXt cardinality describes the number of RBs in each layer, b) three stacked ResNeXt
layers with an extra residual connection, and c) a ResNeXt layer with RDBs instead of
simple RBs. Each ‘RDB3’ has 3 RBs.

Figure 4.5: Our ResNeXt variant in which ResNeXt layers are grouped in threes. The
residual attenuation coefficient in green is applied before leaving the block.

We found that placing a flexible variant of the ResNeXt system (15) within the second
optional block of our backbone was sufficient to describe almost all of the top non-
Tucodec-based CLIC entries. This is true despite the fact that vanilla ResNeXts are
not traditionally viewed as image compression networks. In order to include the
Chen et al. 2018 entry which used RDBs (91), each with three RBs, we extended the
ResNeXt system to allow these building blocks as shown in Figure 4.4c). In order
to make our vanilla ResNeXt variants comparable with these ‘RDB3s’, we added an
extra skip connection over every third ResNeXt layer as in (90).

49

4.3. SOFTWARE Chapter 4. Contribution

Within this system we refer to an architecture as:

‘RBD3NeXt-L-N-RB’ or ‘ResNeXt3-L-N-RB’

for an encoder that consists of the ResNeXt variant in Figure 4.5 with L layers each
of cardinality N arranged in either the ResNeXt3 or the RBD3NeXt structure with
residual blocks of type RB all embedded within the second optional block of our
backbone in Figure 4.3. When the backbone network is included, these encoders
have (L + 7) layers.

In this way, Chen et al.’s encoder can be described as a ‘RBD3NeXt-8-1-vanilla’ (91)
while Mentzer et al.’s is a ‘ResNeXt3-27-1-vanilla’ (90). As an aside, we note that
this latter system, which was also utilised very successfully in (105), has a total of
33 convolutional layers making it almost identical to a ResNet-34 (14) without the
final fully connected layer. This influence is not referenced by the authors which is a
considerable oversight given the ubiquity of ResNets in early 2018.

By placing the CLIC entries within this structure, the landscape between the entries
in Table 3.1 becomes available to search. In section 5.1 we evaluate the grid search
of options within this space and find that 27 layers of width 4 RDB3s blocks (with
CBAMs) perform best. This design is unlike any CLIC entry meaning that we would
not have found it by simply following the examples in the literature. We believe that
this validates our architectural search approach.

Attenuation coefficient

We found that it was difficult to train ResNeXt variants with large cardinality but, as
the backbone trained easily, it was clear that the new residual blocks were interfering
with the backbone’s ability to down-sample the inputs. Therefore we introduced a
residual attenuation coefficient α at the exit to the block shown in 4.5 such that the
computed function is:

g(x) = x + α f(x) (4.30)

α was initialised to 0.05 at the start of training and then updated with the other
network parameters. This down-weights the ResNext block’s importance initially so
that the backbone has time to learn a good compression.

4.3 Software

As part of this work we have produced an open-source, well-tested Python module
VarDACAE which is available on Github at: https://github.com/julianmack/Data_
Assimilation. This module can be used to easily replicate our experiments, load our
trained models or train CAEs for any 3D-Variational DA problem. In the following
section we describe the API before moving onto a discussion of key implementation
details in section 4.3.2.

50

https://github.com/julianmack/Data_Assimilation
https://github.com/julianmack/Data_Assimilation

Chapter 4. Contribution 4.3. SOFTWARE

from VarDACAE import TrainAE, BatchDA
from VarDACAE.settings.models.CLIC import CLIC

model kwargs = {"model name": "Tucodec",
"block type": "NeXt", "Cstd": 32}

settings = CLIC(∗∗model kwargs)
expdir = "experiments/" #d i r to save r e s u l t s / models

trainer = TrainAE(settings , expdir, batch sz=16)
model = trainer.train(num epochs=150)

#e v a l u a t e DA on the t e s t s e t :
results df = BatchDA(settings , AEModel=model).run()

Figure 4.6: Training and evaluating the Tucodec model is very straightforward. ‘Cstd’
sets the number of channels in the main body of the Tucodec model.

4.3.1 API

The software is designed so that a user can define, train and evaluate a CAE for data
assimilation on Fluidity data with just a few lines of code as shown in Figure 4.6.
The API is based around a monolithic settings object that is required to initialise
key classes like TrainAE and BatchDA. A settings instance defines all configuration
parameters including the CAE model, the VarDA constants and the seed. This single
point of truth is used so that an experiment can be repeated exactly by simply load-
ing a pickled settings object.

It is also straightforward for a user to extend our system to use their own data. To
do this they must inherit from the default GetData class and override the get X(..)

method as shown in 4.7. For more information on how to change model definitions,
load trained models or run our experiments, see the repository README.md.

4.3.2 Implementation

VardDACAE comes with a test suite that can be run from the home directory using
pytest or equivalent. As we were always planning to provide an open source ver-
sion of our work, we endeavoured to keep the design modular and create good
documentation for all experiments. VardDACAE has very few external library depen-
dencies: all models are trained in Pytorch and vtk and pyevtk are used to read and
save Fluidity data. We also use scipy and numpy, although the latter is a torch and
scipy dependency.

51

4.3. SOFTWARE Chapter 4. Contribution

from VarDACAE import GetData
from VarDACAE.settings.models.CLIC import CLIC

class NewLoaderClass(GetData):
def get X(self, settings):

"Arguments:
settings: (A settings.Config class)

returns:
np.array of dimensions B x nx x ny x nz "

. . . c a l c u l a t e / load or download X
For an example s e e VarDACAE . data . load . GetData . g e t X ” ” ”
return X

class NewConfig(CLIC):
def init (self, CLIC kwargs , opt kwargs):

super(CLIC, self). init (∗∗CLIC kwargs)
self.n3d = (100, 200, 300) # De f in e input domain s i z e

Thi s i s used by ConvScheduler
self.X FP = "SET IF REQ BY get X"
. . . use opt kwargs as d e s i r e d

CLIC kwargs = {"model name": "Tucodec", "block type": "NeXt",
"Cstd": 64, "loader": NewLoaderClass}
NOTE: do not i n i t i a l i z e NewLoaderClass

settings = NewConfig(CLIC kwargs , opt kwargs)

Figure 4.7: To use your own data, simply define a NewLoaderClass and NewConfig as
shown. If the data does not fit into CPU memory as a numpy array then you should
override NewLoaderClass.get train test loaders(...) to define and return your
own torch DataLoaders.

We adapted open-source implementations of GDN activations by jorge-pessoa (https:
//github.com/jorge-pessoa/pytorch-gdn), CBAM residual blocks by Jongchan
(https://github.com/Jongchan/attention-module/blob/master/MODELS/cbam.py)
and torchvision’s DenseNet (https://github.com/pytorch/vision/blob/master/
torchvision/models/densenet.py). Our alterations meant the the above imple-
mentations could a) accept 3D spatial inputs and b) in the latter two cases, utilise
a range of activation functions and residual blocks in order to facilitate the experi-
ments in section 5.110. VarDACAE is distributed under the MIT License. We defer the

10In addition, we altered the batch normalisation and activation order implemented in the

52

https://github.com/jorge-pessoa/pytorch-gdn
https://github.com/jorge-pessoa/pytorch-gdn
https://github.com/Jongchan/attention-module/blob/master/MODELS/cbam.py
https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py
https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py

Chapter 4. Contribution 4.4. TRAINING CONFIGURATION

ethical considerations of software licensing to Appendix D but note that we found
it necessary to obtain written consent to use the CBAM implementation above as it
was not distributed with a licence.

4.4 Training Configuration

4.4.1 Data

We used simulated data from a single run (988 time-steps) of the open-source, finite-
element, fluid dynamic software Fluidity on a small domain in Elephant and Castle
in South London. This system had 100,040 states spread over a region of size (x, y, z)
= (700m, 650m, 250m). The data was placed in time-step order and the first 80%
was used for the training set11. All of the data was normalised using the training
data statistics. In order to ensure a fair comparison with traditional TSVD methods,
the reduced space Vτ was calculated using the training set only.

Fluidity uses an adaptive unstructured mesh in order to provide high resolution in
regions of interest without requiring this same resolution in locations where there
is very little variation. This is not an appropriate input for a CAE as convolutional
kernels work on the assumption that adjacent states are equally spaced. Therefore,
we used the vtk Python package to interpolate between points in the unstructured
mesh and create a regular 3D grid. We found that keeping the number of points
constant (at 100,040) resulted in a large amount of detail being lost as the regions
of interest were under-sampled. As such, we up-sampled the field by a factor of 2.5
to produce 247,520 evenly spaced points in the shape (91, 85, 32). When evaluating
the reduced space approach, this interpolated input was flattened before use.

4.4.2 Regularisation

With a view to increasing model generalisation, we investigated a number of regular-
isation techniques including data augmentation, dropout and weight decay. This is
good practice in all machine learning systems but was particularly important in this
case as we had such a small number of training examples. We found that dropout
harmed performance, even when it was applied channel-wise, and only to latter
layers as recommended in (106). Similarly, preliminary experiments showed that
weight decay resulted in a small degradation in performance.

As such, data augmentation was our only method of regularisation. We did not find
any augmentation strategies for physical fields in the literature and decided that the

DenseNet module so that (BN −→ ReLU −→ conv −→ BN −→ ...) was replaced with BN −→ conv −→
ReLU −→ BN.

11We did not use a validation data-set in this case due to the small number of available samples.
This may result in slight over-fitting during our architecture search but we preferred this to reducing
our training set size.

53

4.4. TRAINING CONFIGURATION Chapter 4. Contribution

only appropriate augmentation strategy was one borrowed from imaging: 3D ‘field-
jitter’ (the 3D mono-channel equivalent of colour-jitter). This involves injection of
normal noise of amplitude pσ at r of the state locations where p, r ∈ [0, 1] and σ is
the state standard deviation. This strategy may result in local violations of mass and
momentum conservation laws but, as shown in Figure 5.3 in section 5.1.4 this did
not appear to affect the DA accuracy. For a description of the values of r and p that
we experimented with, see Appendix B.

We avoided cropping the inputs because, as the state space is of fixed size, there is
no benefit in the CAE learning to compress variable size inputs. Similarly, it was also
not appropriate to flip the inputs horizontally as there are buildings in our domain
which should stay fixed. Finally, we did not use the recommended medical imaging
augmentation technique of plastically deforming the inputs (64) because while this
is appropriate for body tissue, we judged it likely to produce highly non-physical
pressure fields.

4.4.3 Training Duration

Our Backbone architecture takes approximately 15 hours, and 400 epochs to con-
verge on a NVIDIA Tesla K80. Some the more heavyweight models take upwards of
40 hours. In order to conserve our resources and reduce the design iteration time,
we used a maximum of 150 epochs during our architecture search which amounted
to an 6-15 hour period. Most systems had not converged by this point but we found
that, for the sample of models that we trained to convergence, the performance
ordering was almost completely unchanged after 150 epochs (see Figures 5.3 and
5.212). As such, all comparisons between AE architectures in section 5.1 are made
with this constraint and the quoted data assimilation Figures in these sections should
be used for comparative purposes only. We note that this may bias results towards
smaller models that train more quickly but, all things considered, we would prefer a
bias in this direction. We only trained a single model for each configuration so only
large performance differences should be given any importance.

4.4.4 Loss function and evaluation metrics

As discussed in section 3.1, all networks were trained with L2 reconstruction error
rather than L1 loss as our preliminary work suggested these gave models that per-
formed consistently better for DA. We hypothesised that this was because outliers,
which are reduced more with the L2 than the L1 loss, are particularly damaging to
DA. However, we did not investigate this further and there may be alternative rea-
sons for this difference. Following (52), we use the L1 for fine-tuning but found that
it did not confer any benefit.

12Note that the training data-set metrics in these Figures are noisy but that the test-set values are
stable and consistently ordered.

54

Chapter 4. Contribution 4.4. TRAINING CONFIGURATION

When evaluating our systems’ data assimilation performance we follow (9) in using
the following quantity which we refer to as the ‘DA MSE’:

MSE(xDA) =

∥∥xDA − xobs∥∥
2

‖xobs‖2
(4.31)

The equivalent quantity for the background state MSE(xb) is referred to as the ‘ref
MSE’ and is the value of the MSE(·) before DA has taken place. If a DA MSE is
lower than the ref MSE, this implies the approach is performing better than the DA
baseline system. This baseline system predicts that the state is equal to the historical
mean xb regardless of the observations. The average ref MSE over the 197 training
samples is 1.000113. Unless otherwise stated, in all cases in which a single DA MSE
is provided, this is the average over all training examples.

4.4.5 Hyperparameters

We trained our models with the Adam optimiser with the Pytorch default parameters
of β1= 0.9 and β2 = 0.999. We implemented a system in which the learning rate
was set by cross validation according to the lowest MSE after 25 epochs but found
that this systematically overestimated the appropriate learning rate and resulted in
many unstable runs. We eventually concluded that a relatively low fixed learning
rate of 000214 performed relatively well for all systems although even in this case
there were ‘spikes’ of instability in the training cycle as shown in Figure 5.2.
We used He et al. initialization (84) and batch size of 16 for most models as this
was largest multiple of eight at which the fp32 model, gradients and data could fit in
11GB of available GPU memory. One exception to this was the GDRN model which
would only run at batch size 8.

13The fact that this value is close to 1 is coincidental as we undo the normalisation before calculat-
ing this value.

14We note that Adam uses an adaptive step-size strategy so the learning rate is not precisely ‘fixed’.

55

Chapter 5

Experiments

In this chapter we detail validate our proposed approach experimentally. In the first
section 5.2 we report our experiments on the training of a range of CAEs and in
the following section 5.2 we empirically demonstrate the success of our proposed
method over reduced space VarDA with TSVD.

5.1 Architecture Search

Model Best DA MSE
Relative Improvement

Best RB Type Best Activation
over Backbone

Backbone 0.2309 0.00% - PReLU
ResNeXt-L-N 0.1900 17.71% Vanilla + CBAM GDN
RDB3-L-N 0.1865 19.21% Vanilla + CBAM GDN
RAB-L 0.1917 16.98% NeXt PReLU
GRDN 0.1689 26.85% NeXt + CBAM GDN
Tucodec 0.0858 62.86% vanilla PReLU
Ref MSE 1.0001 - - -

Table 5.1: A summary of the data assimilation performance of the best version of each
of the five model variants after 150 epochs of training and the ref MSE for compari-
son. The Tucodec model performed significantly better than the other systems over this
training duration.

In this section we report the results of our investigations into the best architectures
for data assimilation on the data described in section 4.4.1. We did not have com-
pute available for the whole grid-search of options so performed these experiments
sequentially: only accepting a change when it improved on the previous system. We
remind the reader that in this section 5.1, all models are trained for just 150 epochs.
We consider five variants of model in this section: the four backbone variants and the
Tucodec model. We investigate the best activation and residual block (where appro-
priate) for all models in sections 5.1.2 and 5.1.1 respectively. A high-level summary
of these results is given in Table 5.1. We conducted experiments to find the best L
and N values for the ResNeXt-L-N and RAB-L which we briefly describe first. Unless
otherwise stated, we use PReLU activations applied channel-wise.

56

Chapter 5. Experiments 5.1. ARCHITECTURE SEARCH

ResNeXt width and cardinality

Figure 5.1: The DA MSE heatmap for a ResNeXt3-L-N-NeXt models with a range of
cardinalities and layers. All use PReLU activations.

In the first experiment, we investigated the effect of changing cardinality and num-
ber of layers within residual component of our ResNeXt variant. We used NeXt
RBs for these experiments. The results are in Figure 5.1. The best system was
ResNeXt3-27-4-NeXt but there was also an interesting group of models with three
layers on the left of Figure 5.1. We decided to preserve this diversity and take three
models forward to the next stage of experiments. These were ResNeXt3-27-4-NeXt,
ResNeXt3-3-8-NeXt and ResNeXt3-27-1-NeXt1.

RAB-L

Number of RABs DA MSE
Relative Improvement

over Backbone

1 0.2005 13.17%
2 0.2188 5.24%
4 0.1917 16.98%
8 0.2071 10.31%

Table 5.2: The DA performance of the RAB-L architectures.

1This final model did not perform particularly well but is a ResNet-34 with the final linear layer
removed and, as we knew we would be evaluating the systems with vanilla RBs, we thought that in
view of its historical successes, there was a good argument for keeping this architecture.

57

5.1. ARCHITECTURE SEARCH Chapter 5. Experiments

In our second experiment we investigated the effect changing the number of consec-
utive RAB blocks in the backbone network. The results are in Table 5.2. The the best
of these systems with four RABs, gives a 17% improvement relative to the Backbone
but is poor in comparison with the best Tucodec model.

5.1.1 Residual Block

Model Vanilla
Vanilla

NeXt
NeXt Relative Improvement

+ CBAM + CBAM over Backbone

ResNeXt3-27-4 0.2108 0.1998 0.2028 0.1907 17.41%
RDB3-27-4 0.1950 0.1893 0.1964 0.2005 18.02%
ResNeXt3-27-1 0.2031 0.1948 0.2106 0.2110 15.63%
RDB3-27-1 0.2064 0.2167 0.1968 0.2060 14.75%
ResNeXt3-3-8 0.2196 0.2051 0.2174 0.2148 11.16%
RDB3-3-8 0.1958 0.2125 0.2004 0.2013 15.20%
RAB-4 0.2277 0.1970 0.1917 0.1927 16.98%
GRDN 0.2297 0.2204 0.2300 0.1893 18.00%
Tucodec 0.0858 0.3172 0.0890 0.1870 62.86%

Table 5.3: DA MSE variation with residual block in models trained for 150 epochs.

In this experiment we investigated the effect of RB type on our pool of architectures.
We found that no single RB was superior for all systems but, for a given architecture,
there were large variations in model performance with RB. For example, vanilla +
CBAM RBs were better than NeXt blocks in five of six cases within the ResNeXt/RBD
framework. This demonstrates the power of the former given that NeXt blocks were
used when we tuned the vales of L and M .

In comparison, for the Tucodec model, networks with CBAMs performed much worse
than those with without. This may be a result of interference between the coarse-
grained attention mechanism of the CBAM blocks and the highly specific attention
in the RAB blocks.

5.1.2 Activation function

In this experiment we investigated the effect of activation function on the best per-
forming systems from the previous section 5.1.1. As the Tucodec models were per-
forming well, we investigated the effect of the different activations on all four types
of block. Note that, the Tucodec model has three GDN activations in its core encoder
design (as shown in Figure 3.17) which were present throughout all experiments
and we investigated altering its other activations within the RBs and RABs. The re-
sults are shown in Table 5.4.

PReLU activations were superior in a majority of cases although in the ReLU case,
our Backbone-based systems either diverged or did not train when ReLUs were used.
This was true even when we experimented with a large range of learning rates. The

58

Chapter 5. Experiments 5.1. ARCHITECTURE SEARCH

Model PReLU ReLU GDN
Relative Improvement

over Backbone

Backbone 0.2309 0.9857 0.2970 0.00%
ResNeXt3-27-1-vanilla+CBAM 0.1948 1.0058 0.1900 17.71%
RDB3-3-8-vanilla 0.1958 0.9887 0.2027 15.20%
RDB3-27-4-vanilla+CBAM 0.1893 - 0.1865 19.21%
RAB-4-NeXt 0.1917 0.9992 0.2146 16.98%
GRDN-NeXt+CBAM 0.1893 1.0001 0.1689 26.85%
Tucodec-NeXt 0.0890 0.1624 0.1586 61.47%
Tucodec-NeXt+CBAM 0.1870 0.2662 0.2539 19.02%
Tucodec-vanilla 0.0858 0.0939 0.1212 62.86%
Tucodec-vanilla+CBAM 0.3172 0.1788 0.2805 22.56%

Table 5.4: DA MSE variation with activation function in models trained for 150 epochs.

backbone architecture was tuned using LReLUs and PReLUs and we came to the con-
clusion that the network had insufficient capacity to down-sample the inputs when
ReLUs were employed. This is unfortunate as it prevents us from drawing any wider
conclusions on the applicability of PReLUs over ReLUs in this case.

Our findings with regards to GDNs were more concrete. The denominator in the
GDN equation 3.12 was zero, or close to zero, relatively frequently resulting in divi-
sion by zero errors. As an indicator of this, in two of the three cases in 5.4 for which
GDNs performed ‘best’ the models actually produced inf predictions for one of the
197 test set samples. These were dropped from the final statistic calculations. This
process occurred more often earlier in training than later, and with the test data than
with the training data. As GDNs work well in the Tucodec backbone, we reasoned
that they are unstable when the input distribution is unpredictable. Therefore, while
we were not able to utilise them particularly successfully here, we hope future work
will determine the range of scenarios in which GDNs are reliable.

5.1.3 L1 fine tuning

We experimented with the use of L1 fine-tuning late in the training process as rec-
ommended in (52) but found that it did not give an appreciable benefit. In fact,
as shown in Figure 5.2, in our experiments it increased the degree of over fitting
without providing any generalisation advantage.

5.1.4 Augmentation

To quantify what, if any, effect our augmentation technique was having, we retrained
the Tucodec-NeXt model with a range of augmentation strengths as shown in Figure
5.3. We did not observe a large difference between the methods so choose the
strongest augmentation that did not harm performance (augmentation strength 2 in
Table 5.5) when training our models to convergence.

59

5.1. ARCHITECTURE SEARCH Chapter 5. Experiments

Figure 5.2: The MSE DA with L1 fine-tuning from epoch 300 onwards. The training-
set DA MSE decreased but the this was not accompanied with a test-set decrease. We
investigated L1 fine tuning for all models in Table 5.6 but just present a representative
selection here.

Figure 5.3: The training and validation MSE reconstruction errors during training with
different strengths of augmentation detailed in Table 5.5. These graphs have been
smoothed with an exponential moving average with α = 0.4 as the spikes in the training
curves made this diagram too noisy to be illustrative. A non-smoothed version is given
in Appendix B.

Augmentation Jitter Jitter Jitter Amplitude
Strength Amplitude Frequency per Location

0 None None None
1 0.005 0.5 0.0025
2 0.05 0.25 0.0125
3 0.1 0.5 0.0500

Table 5.5: The field-jitter augmentation strengths we investigated. We added Gaus-
sian noise with standard deviation of ‘Jitter Amplitude’ at ‘Jitter Frequency’ of the total
locations in the state.

60

Chapter 5. Experiments 5.1. ARCHITECTURE SEARCH

5.1.5 Architecture Summary

Model DA MSE Execution Time (s) Number of Parameters

Backbone 0.1665 0.0897 0.3M
RDB3-27-4-vanilla+CBAM 0.1594 0.4666 25.6M
ResNeXt3-27-1-vanilla+CBAM 0.1548 0.1693 3.5M
RAB-4-NeXt 0.1723 0.1192 1.3M
GRDN-NeXt+CBAM 0.1241 0.0983 4.7M
Tucodec-vanilla 0.0809 0.1294 10.6M
Tucodec-NeXt 0.0787 0.0537 2.5M

Table 5.6: A comparison of the DA MSE and inference speeds of a selection of our best
models. Note that unlike in previous sections, these systems were trained to conver-
gence.

We trained a selection of our best models to convergence and found that the Tucodec-
NeXt and Tucodec-vanilla models performed best as shown in Table 5.6. The two
models have very similar DA MSE values meaning that it is not appropriate to con-
clude that the NeXt model is ‘better’ at DA (particularly when we aren’t using a
validation data-set). However, the NeXt model is almost x2.5 faster during inference
which gives a very compelling reason for using it instead of the vanilla variant when
making comparisons with reduced space DA in the following section.

61

5.2. COMPARISON WITH TSVD Chapter 5. Experiments

5.2 Comparison with TSVD

Model DA MSE Excecution Time (s)

Ref MSE 1.0001 -

TSVD, τ = 32, M = n 0.1270 1.8597
TSVD, τ = 32, M = 0.1n 0.1270 0.2627
TSVD, τ = 32, M = 0.01n 0.1334 0.0443
TSVD, τ = 32, M = 0.001n 0.1680 0.0390

Tucodec-NeXt 0.0787 0.0537

Table 5.7: Comparison of our best Tucodec model with the Arcucci et al. approach (9)
which sets στ =

√
σ1 = 32. Our DA MSE is 37% lower than the best performing Arcucci

et al. system.

Figure 5.4: Comparison of TSVD (τ = 32, M = n) and AE data assimilation perfor-
mance across sequential Fluidity time-steps. Note in Figure a) that the two methods find
the same states difficult. In Figure b) we give the difference between the DA MSEs of
the two methods for the whole test set. The proposed method performs better (is above
the red line) in the vast majority of cases.

In this section, we compare our system against Reduced space VarDA with TSVD as
described in (9). Our system has superior DA performance when the results are av-
eraged over the test set as shown in Table 5.7. This is not just true on average: our
system is consistently better in both time (see Figure 5.4) and space (see Appendix
C).

Moreover, we show in Figure 5.5 (and Appendix C) that our method has a DA MSE
that is 15% lower than the reduced space approach with M = n even in the limit
in which there is no truncation of V (τ = S) and the method becomes Parish et
al.’s approach. This is surprising: even if our CAE was truly lossless, which it is not,

62

Chapter 5. Experiments 5.2. COMPARISON WITH TSVD

the matrices V and Vl contain the same information (albeit the latter stores it more
efficiently)2. The better performance of our bi-reduced space approach might be
explained by the poor conditioning in the mono-reduced space and the resulting in
numerical errors. This requires further research.

5.2.1 Performance-speed tradeoff

Figure 5.5: Effect of truncation parameter τ on a) DA MSE and b) online time. Tu-
codec DA MSE and CPU execution time are marked with dashed black lines. Note the
logarithmic scale on the y-axis in b).

Figure 5.6: Effect of number of observations M on a) DA MSE and b) execution time.
The fact that the MSE is not monotonically increasing with modes=4 is due to the fact
that we randomly choose a different subset of observations for each experiment.

The reduced space approach in (9) has an acute performance-speed tradeoff occur-
ring along three axes:

i The size of the truncation parameter τ . As this increases, the DA performance
increases but the speed decreases as shown in Figure 5.5.

2As an aside, note that in this case our method is x43 faster than the traditional approach.

63

5.2. COMPARISON WITH TSVD Chapter 5. Experiments

ii The number of observations M . As this increases, the DA performance in-
creases but the speed decreases as shown in Figure 5.6. This is a stronger
effect than with τ . Noting the logarithmic scales in this Figure 5.6b, it is clear
that there is only a small range of M for which our method is slower than
TSVD.

iii The size of the observation variance σ0. We do not consider this here but
Arcucci et al. show that as this parameter increases, performance increases but
speed decreases (9)3. In all experiments here we used σ0 = σl = 0.005.

Our system’s evaluation speed is not sensitive to the number of observations4, nor
the value of σl. There is not a direct equivalent of τ in our system although we ex-
pect that altering the latent dimension size m will likely result in a similar tradeoff.

We show the performance-speed tradeoff for a range of models in Figure 5.7. All
timing measurements were carried out on the Intel Xeon E5-2690 v3 (Haswell) 2.60
GHz CPU and averaged over the test set. The clock was started at the beginning of
the minimisation routine when all relevant data was already in memory.

Figure 5.7: Performance-speed tradeoff for a range of systems.

3The authors make this comparison indirectly via the parameter α: a constant which they intro-
duce to the cost function that is inversely proportional to σ2

0 .
4The performance of our system will be affected by decreasing the number of observations.

64

Chapter 6

Discussion

In this section we briefly cover a range of discussion topics raised by this work.

Optimal τ and M

Considering the Figure 5.7 in the previous chapter 5.7 it appears that, for the com-
binations of τ and M that we investigate here, the pairing that is most successful in
the performance-speed tradeoff if τ = 791 (i.e. no truncation) and M = 4096. It is
worth making a few observations on this result:

i There was no way to know that this combination was the best in advance as
they will vary from one data-set to another. It took something on the order of
60 CPU hours to calculate the DA MSE on the test-set for the range of τ and M
displayed in Figure 5.7. We note that this value could be reduced by a more
intelligent search method, but draw the reader’s attention to the fact that this
is of the same order as the 15 hours required to train a Tucodec-NeXt model to
convergence on a GPU.

ii This result is still 30% slower and 20% less accurate for DA than the Tucodec-
Next model.

Hardware Accelerators

All timing comparisons were made on the CPU as we did not have a GPU imple-
mentation of Arcucci et al.’s routine. Using a K80 GPU with our method provided
a speed-up of approximately 40% for our method. This was with a very poor im-
plementation in which the data was transferred from the CPU to the GPU and back
again. We would expect an optimised implementation of our system on a modern
accelerator to achieve a much larger relative speed-up over the Figures here than
the equivalent optimised version of Arcucci et al.’s method. To give a comprehensive
argument for why we believe this to be the case would require an extra chapter here.
Instead we briefly sketch our our argument in a single paragraph.

Recall that the bottleneck in our system is a fully convolutional decoder while, in
the Arcucci et al. routine, the cost is dominated by large matrix multiplications and

65

Chapter 6. Discussion

vector dot-products. The convolutional kernel parameters are used many times in a
forward pass but there is almost no data reuse in the Arcucci et al. case. As such,
the latter will be bandwidth-limited on every hardware platform we can imagine but
the former will enter the compute-bound domain in some cases1. Historically, it has
proven easier to accelerate compute-bound processes than memory bound ones and
there is reason to believe that this will continue, not least because there is a whole
industry built-around the design of systems that specifically accelerate convolutional
inference workloads. We will not attempt to review the hardware options here but
if the Graphcore ‘IPU’, which is set to ship early in 2020, delivers on its marketing
promises (107), it would speed up our inference by up to three order of magnitude.
There are also lower-cost, lower-power options such as FPGAs (108).

As such, we believe the quoted timing Figures underestimate the advantage of our
approach.

Other Acceleration Options

During our architecture search, we optimised for DA performance rather than infer-
ence latency. Had we been focusing for the latter, there are a number of techniques
separate to hardware acceleration that could be used to achieve this. Firstly, a thin-
ner decoder could be used as suggested in (5) since only the decoder is evaluated
in the online setting. Secondly, the existing network could be quantized (109) or
pruned (110) (111) or both (112) to provide a substantial speed-increase. Addition-
ally, convolutional acceleration approaches such as Pixel Shuffle (113) or factorised
convolutions (114) could be employed to reduce the number of FLOPs in the for-
ward decoder pass. Finally, there are innumerable small architectural changes that
could be made: the replacement of vanilla blocks in the original Tucodec model with
NeXt RBs being one such example.

None of the above strategies are available to traditional VarDA approaches. We note
that some of these techniques will reduce the performance of our system but, as our
approach has a considerable performance cushion over traditional approaches in its
current form, this may be acceptable in some settings.

Importance of Architecture

The results in this paper demonstrate the central importance of using good CAE
architectures. This field is moving exceptionally fast: our Backbone network, was
state-of-the-art for image compression in 2017 (5) but gives a DA MSE that is a) dou-
ble that of the Tucodec models and b) considerably poorer for DA than the Arcucci
et. al. approach with τ = 32 and M = 0.012.

1Convolution may be memory-bound depending on channel size and dimensions of the feature
map.

2Unlike for τ = 791, M = 4096, these parameters would be some of the first investigated under
the Arcucci et al. approach and are therefore not subject to the ∼ 60 hour search penalty.

66

Chapter 6. Discussion

On a related note, we found that it was non-trivial to extend many architectures
to three spatial input dimensions and it required a large amount of manual tuning
of the channel sizes so as not to create unreasonably large 4D feature maps (three
spatial dimensions and one channel). In particular, our implementation of the GDRN
(13) had extreme computational requirements in 3D which meant that it took almost
three times longer to train than any other network. This was despite its modest
number of parameters (see 5.6).

67

Chapter 7

Conclusions and Future Work

We present a new Bi-reduced space 3D-VarDA formulation and show that, in combi-
nation with the Zhou et al. or ‘Tucodec’ image compression CAE, this method gives
superior data assimilation performance in comparison with Reduced space VarDA
regardless of the parameters used in the latter case. We have demonstrated that
our method is also faster in the majority of scenarios. On the theoretical side, we
show that our method produces approximately equivalent solutions to the traditional
method at lower computational complexity. Unlike the previous approach which is
in O(M2) for large M , our method does not penalize the collection of more observa-
tion data. We have released our work in a well tested Python module VarDACAE.

There were many extensions to this work which we would have liked to explore fur-
ther. We feel that the most important of these is the validation of our hypothesis that
is possible to create an observation encoder network f o to calculate the latent misfits
dl. We would also have liked to apply our approach to 4D-VarDA, validate it on other
data sets and investigate alternatives to the L-BFGS minimization routine. A more
substantial extension would involve integrating our method with CAE-based ROM
approaches to produce a single end-to-end network for reduced space data assimi-
lation and we believe this would be complemented by the use of data assimilation
localization techniques (31).

Other directions for future work include a systematic evaluation of activation func-
tions for compression including an investigation of the conditions under which GDNs
are suitable. On the modelling side, there is potential for the use of VAEs to enforce
orthogonality in the latent dimension or the use of GAN-CAEs. There are also many
architectural variants and implementation details, some of which were discussed in
the previous section, that might provide a considerable speed or accuracy increase
relative to the system we present in this work.

68

Bibliography

[1] Met. Office, “The Cray XC40 supercomputer,” 2019. pages 1

[2] Met. Office, “Data Assimilation Methods,” 2019. pages 1, 4, 43

[3] P. Vincent, H. Larochelle, Y. Bengio, and P. A. Manzagol, “Extracting and
composing robust features with denoising autoencoders,” in Proceedings of
the 25th International Conference on Machine Learning, no. April, pp. 1096–
1103, 2008. pages 1, 11

[4] K. G. Lore, A. Akintayo, and S. Sarkar, “LLNet: A deep autoencoder ap-
proach to natural low-light image enhancement,” Pattern Recognition, vol. 61,
pp. 650–662, 2017. pages 1, 11

[5] L. Theis, W. Shi, A. Cunningham, and F. Huszár, “Lossy Image Compression
with Compressive Autoencoders,” pp. 1–19, 2017. pages 1, 15, 16, 19, 23,
30, 47, 48, 66

[6] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Variational
image compression with a scale hyperprior,” 2018. pages 1, 16, 20, 30

[7] P. Courtier, J.-N. Thépaut, and A. Hollingsworth, “A strategy for operational
implementation of 4D-Var, using an incremental approach,” Quarterly Journal
of the Royal Meteorological Society, vol. 120, no. 519, pp. 1367–1387, 1994.
pages 1, 3, 6, 7

[8] D. Parrish and J. Derber, “The National Meteorological Center’s Spectral
Statistical-Interpolation Analysis System.pdf,” 1992. pages 1, 2, 5, 7, 32,
40

[9] R. Arcucci, L. Mottet, C. Pain, and Y. K. Guo, “Optimal reduced space for
Variational Data Assimilation,” Journal of Computational Physics, vol. 379,
pp. 51–69, 2019. pages 1, 2, 3, 5, 8, 9, 39, 55, 62, 63, 64

[10] J. Song, S. Fan, W. Lin, L. Mottet, H. Woodward, M. Davies Wykes, R. Arcucci,
D. Xiao, J. E. Debay, H. ApSimon, E. Aristodemou, D. Birch, M. Carpentieri,
F. Fang, M. Herzog, G. R. Hunt, R. L. Jones, C. Pain, D. Pavlidis, A. G. Robins,
C. A. Short, and P. F. Linden, “Natural ventilation in cities: the implications of
fluid mechanics,” Building Research and Information, vol. 46, no. 8, pp. 809–
828, 2018. pages 1

69

BIBLIOGRAPHY BIBLIOGRAPHY

[11] Z. Wang, D. Xiao, F. Fang, and C. Pain, “Model identification of reduced order
fluid dynamics systems using deep learning Model identification of reduced
order fluid dynamics systems using deep learning,” no. October, 2017. pages
1, 13

[12] L. Zhou, Z. Sun, X. Wu, and J. Wu, “End-to-end Optimized Image Compres-
sion with Attention Mechanism,” 2019. pages 1, 2, 15, 16, 21, 23, 25, 28, 29,
30, 31

[13] D.-W. Kim, J. R. Chung, and S.-W. Jung, “GRDN:Grouped Residual Dense Net-
work for Real Image Denoising and GAN-based Real-world Noise Modeling,”
2019. pages 2, 27, 28, 67

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” Proceedings of the IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition, vol. 2016-Decem, pp. 770–778, 2016. pages 2,
16, 22, 27, 50

[15] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual trans-
formations for deep neural networks,” Proceedings - 30th IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-Janua,
pp. 5987–5995, 2017. pages 2, 23, 24, 30, 49

[16] A. C. Lorenc, “Analysis methods of numerical weather prediction,” Quarterly
Journal of the Royal Meteorological Society, vol. 112, no. 474, pp. 1177–1194,
1986. pages 3

[17] A. C. Lorenc, “Optimal Nonlinear objective analysis,” Quarterly Journal of the
Royal Meteorological Society, vol. 114, no. 479, pp. 205–240, 1988. pages 3

[18] P. Courtier, E. Anderson, W. Heckley, D. Vasiljevec, M. Hamrud,
A. Hollingsworth, F. Rabier, M. Fisher, and J. Pailleux, “The ECMWF imple-
mentation of three-dimensional variational assimilation (3D-Var). I: Formula-
tion,” Quarterly Journal of the Royal Meteorological Society, vol. 124, no. 550,
pp. 1783–1807, 1998. pages 3

[19] W. Huang, A. J. Bourgeois, Q. N. Xiao, D. M. Barker, and Y.-R. Guo, “A Three-
Dimensional Variational Data Assimilation System for MM5: Implementation
and Initial Results,” Monthly Weather Review, vol. 132, no. 4, pp. 897–914,
2004. pages 3

[20] G. Evensen, “The Ensemble Kalman Filter: Theoretical formulation and prac-
tical implementation,” Ocean Dynamics, vol. 53, no. 4, pp. 343–367, 2003.
pages 3

[21] S. Dobricic and N. Pinardi, “An oceanographic three-dimensional variational
data assimilation scheme,” Ocean Modelling, vol. 22, no. 3-4, pp. 89–105,
2008. pages 3

70

BIBLIOGRAPHY BIBLIOGRAPHY

[22] M. Lang and M. J. Owens, “A Variational Approach to Data Assimilation in
the Solar Wind,” Space Weather, vol. 17, no. 1, pp. 59–83, 2019. pages 3

[23] J. Tribbia and D. P. Baumhefner, “Scale Interactions and Atmospheric Pre-
dictability: An Updated Perspective,” Monthly Weather Review, vol. 132, no. 3,
pp. 703–713, 2004. pages 3

[24] R. N. Bannister, “Elementary 4d-VAR: DARC Technical Report No. 2,” DARC
Technical Report No. 2, no. 2, pp. 1–16, 2001. pages 3

[25] R. N. Bannister, “A review of operational methods of variational and
ensemble-variational data assimilation,” Quarterly Journal of the Royal Me-
teorological Society, vol. 143, no. 703, pp. 607–633, 2017. pages 3, 4, 7

[26] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,”
ASME–Journal of Basic Engineering, vol. 82, no. Series D, pp. 35–45, 1960.
pages 3, 80

[27] P. J. van Leeuwen, “Particle Filtering in Geophysical Systems,” Monthly
Weather Review, vol. 137, no. 12, pp. 4089–4114, 2009. pages 4

[28] M. Morzfeld, D. Hodyss, and C. Snyder, “What the collapse of the ensemble
Kalman filter tells us about particle filters,” Tellus, Series A: Dynamic Meteo-
rology and Oceanography, vol. 69, no. 1, pp. 1–15, 2017. pages 4

[29] M. M. Graham and A. H. Thiery, “A scalable optimal-transport based local
particle filter,” 2019. pages 4

[30] A. C. Lorenc and M. Jardak, “A comparison of hybrid variational data assimi-
lation methods for global NWP,” Quarterly Journal of the Royal Meteorological
Society, vol. 144, no. 717, pp. 2748–2760, 2018. pages 4, 43

[31] T. Montmerle, Y. Michel, É. Arbogast, B. Ménétrier, and P. Brousseau, “A 3D
ensemble variational data assimilation scheme for the limited-area AROME
model: Formulation and preliminary results,” Quarterly Journal of the Royal
Meteorological Society, vol. 144, no. 716, pp. 2196–2215, 2018. pages 5, 8,
39, 68

[32] R. N. Bannister, “A review of forecast error covariance statistics inatmo-
spheric variational data assimilation. II: Modelling the forecast error covari-
ance statistics,” vol. 1996, no. November, p. 496, 2008. pages 5, 7

[33] D. Zupanski, “A General Weak Constraint Applicable to Operational 4DVAR
Data Assimilation Systems,” Monthly Weather Review, vol. 125, no. 9,
pp. 2274–2292, 2002. pages 6

[34] L. D. Navon, I. M., “Conjugate Gradient Methods for Large-Scale Minimization
in Meteorology,” 1987. pages 8

71

BIBLIOGRAPHY BIBLIOGRAPHY

[35] A. K. Alekseev, I. M. Navon, and J. L. Steward, “Comparison of advanced
large-scale minimization algorithms for the solution of inverse ill-posed prob-
lems,” Optimization Methods and Software, vol. 24, no. 1, pp. 63–87, 2009.
pages 8

[36] J. Nocedal and D. C. Liu, “On the limited memory BFGS method for large
scale optimization,” Mathematical Programming, vol. 45, pp. 503–528, 1989.
pages 8

[37] P. C. Hansen, J. G. Nagy, and D. P. O’Leary, “Deblurrinq Images: Matrices,
Spectra and Filtering,” Matrices, Spectra, and Filtering, pp. 1–145, 2006.
pages 8, 43

[38] T. Chai, G. R. Carmichael, Y. Tang, A. Sandu, M. Hardesty, P. Pilewskie,
S. Whitlow, E. V. Browell, M. A. Avery, P. Nédélec, J. T. Merrill, A. M.
Thompson, and E. Williams, “Four-dimensional data assimilation experiments
with International Consortium for Atmospheric Research on Transport and
Transformation ozone measurements,” Journal of Geophysical Research Atmo-
spheres, vol. 112, no. 12, pp. 1–18, 2007. pages 9

[39] H. Cheng, M. Jardak, M. Alexe, and A. Sandu, “A hybrid approach to es-
timating error covariances in variational data assimilation,” Tellus, Series A:
Dynamic Meteorology and Oceanography, vol. 62, no. 3, pp. 1–18, 2010. pages
9

[40] E. N. Lorenz, “Empirical Orthogonal Functions and Statistical Weather Pre-
diction,” 1956. pages 9

[41] A. Dertat, “Applied Deep Learning - Part 3: Autoencoders,” 2017. pages 10

[42] D. E. Rumelhart, G. Hinton, and R. J. Williams, “Learning Internal Represen-
tations by Error Propagation,” Cognitive Science, no. V, 1986. pages 10, 17

[43] P. Baldi, “Autoencoders, Unsupervised Learning, and Deep Architectures,”
pp. 37–50, 2012. pages 10, 12

[44] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” no. Ml,
pp. 1–14, 2013. pages 10

[45] M. J. Kusner, B. Paige, and J. M. Hemández-Lobato, “Grammar variational
autoencoder,” 34th International Conference on Machine Learning, ICML 2017,
vol. 4, pp. 3072–3084, 2017. pages 10

[46] Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin, “Variational
autoencoder for deep learning of images, labels and captions,” Advances in
Neural Information Processing Systems, no. Nips, pp. 2360–2368, 2016. pages
10

[47] I. Goodfellow, “Deep Learning,” The Brain & Neural Networks, vol. 24, no. 1,
pp. 1–2, 2017. pages 11

72

BIBLIOGRAPHY BIBLIOGRAPHY

[48] C. Doersch, “Tutorial on Variational Autoencoders,” pp. 1–23, 2016. pages
11, 34

[49] M. Sakurada and T. Yairi, “Anomaly detection using autoencoders with non-
linear dimensionality reduction,” ACM International Conference Proceeding Se-
ries, vol. 02-Decembe, pp. 4–11, 2014. pages 11

[50] C. Baur, B. Wiestler, S. Albarqouni, and N. Navab, “Deep autoencoding models
for unsupervised anomaly segmentation in brain MR images,” Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 11383 LNCS, pp. 161–169, 2019.
pages 11

[51] S. Hayou, “Cleaning the correlation matrix with a denoising autoencoder,”
pp. 1–11, 2017. pages 11

[52] M. Lu, T. Chen, H. Liu, and Z. Ma, “Learned Image Restoration for VVC Intra
Coding,” pp. 2–5, 2019. pages 12, 16, 23, 25, 26, 30, 54, 59

[53] J. Deng, W. Dong, R. Socher, L.-j. Li, K. Li, and L. Fei-fei, “ImageNet : a Large-
Scale Hierarchical Image Database ImageNet : A Large-Scale Hierarchical
Image Database,” no. May 2014, 2009. pages 13, 17

[54] L. Cordier, B. R. Noack, G. Tissot, G. Lehnasch, J. Delville, M. Balajewicz,
G. Daviller, and R. K. Niven, “Identification strategies for model-based control
Topics in Flow Control. Guest editors J.P. Bonnet and L. Cattafesta,” Experi-
ments in Fluids, vol. 54, no. 8, 2013. pages 13

[55] R. van der Merwe, T. K. Leen, Z. Lu, S. Frolov, and A. M. Baptista, “Fast
neural network surrogates for very high dimensional physics-based models in
computational oceanography,” Neural Networks, vol. 20, no. 4, pp. 462–478,
2007. pages 13

[56] M. Wang, H. X. Li, X. Chen, and Y. Chen, “Deep Learning-Based Model Reduc-
tion for Distributed Parameter Systems,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, vol. 46, no. 12, pp. 1664–1674, 2016. pages 13

[57] K. Loh, P. S. Omrani, and R. van der Linden, “Deep Learning and Data As-
similation for Real-Time Production Prediction in Natural Gas Wells,” 2018.
pages 14

[58] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with
neural networks,” Advances in Neural Information Processing Systems, vol. 4,
no. January, pp. 3104–3112, 2014. pages 14

[59] J. Zhu, S. Hu, R. Arcucci, C. Xu, J. Zhu, and Y.-k. Guo, “Model error correction
in data assimilation by integrating neural networks,” Big Data Mining and
Analytics, vol. 2, no. 2, pp. 83–91, 2019. pages 14

73

BIBLIOGRAPHY BIBLIOGRAPHY

[60] M. Liu and D. Grana, “Ensemble-based seismic history matching with data re-
parameterization using convolutional autoencoder,” 2018 SEG International
Exposition and Annual Meeting, SEG 2018, no. August, pp. 3156–3160, 2019.
pages 14

[61] C. A. Quilodran Casas, N. Sparks, and R. Toumi, “Fast ocean data assimila-
tion using a neural-network reduced-space regional ocean model of the North
Brazil Current,” Progress in Oceanography, 2019. pages 14

[62] L. Zhou, C. Cai, Y. Gao, S. Su, and J. Wu, “Variational Autoencoder for Low
Bit-rate Image Compression,” IEEE International Conference on Computer Vi-
sion and Pattern Recognition, pp. 2617–2620, 2018. pages 15, 16, 21, 23, 25,
30

[63] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. Van Gool, “Prac-
tical Full Resolution Learned Lossless Image Compression,” pp. 1–14, 2018.
pages 15

[64] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), vol. 9351, pp. 234–241, 2015. pages 16, 24, 25, 54

[65] S. Cho, J. Lee, J. Kim, Y. Kim, D.-w. Kim, J. R. Chung, and S.-w. Jung, “Low
Bit-rate Image Compression based on Post-processing with Grouped Residual
Dense Network,” pp. 1–5, 2019. pages 16, 23, 27, 29, 30, 31, 48

[66] Y. Fan, J. Yu, and T. S. Huang, “Wide-activated Deep Residual Networks based
Restoration for BPG-compressed Images,” Cvpr2018, pp. 2621–2624, 2018.
pages 16, 23, 25, 30

[67] J. Zhou, S. Wen, A. Nakagawa, K. Kazui, and Z. Tan, “Multi-scale and Context-
adaptive Entropy Model for Image Compression,” tech. rep., 2019. pages 16,
23, 25, 30

[68] M. Li, C. Xia, J. Hu, Z. Huang, Y. Zhang, D. Chen, J. Zan, G. Li, and J. Nie,
“VimicroABCnet: An Image Coder Combining A Better Color Space Conver-
sion Algorithm and A Post Enhancing Network,” pp. 2–6, 2019. pages 16, 23,
25, 30

[69] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly
Learning to Align and Translate,” pp. 1–15, 2014. pages 16, 26

[70] G. Toderici, S. M. O’Malley, S. J. Hwang, D. Vincent, D. Minnen, S. Baluja,
M. Covell, and R. Sukthankar, “Variable Rate Image Compression with Recur-
rent Neural Networks,” pp. 1–12, 2016. pages 16, 17, 23

[71] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimization of nonlin-
ear transform codes for perceptual quality,” 2016 Picture Coding Symposium,
PCS 2016, no. 1, 2017. pages 16

74

BIBLIOGRAPHY BIBLIOGRAPHY

[72] M. Li, W. Zuo, S. Gu, D. Zhao, and D. Zhang, “Learning Convolutional Net-
works for Content-Weighted Image Compression,” Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
pp. 3214–3223, 2018. pages 16, 30

[73] G. Toderici, D. Vincent, N. Johnston, S. J. Hwang, D. Minnen, J. Shor, and
M. Covell, “Full resolution image compression with recurrent neural net-
works,” Proceedings - 30th IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, vol. 2017-Janua, pp. 5435–5443, 2017. pages 17

[74] C. Huang, H. Liu, T. Chen, S. Pu, Q. Shen, and Z. Ma, “Extreme Image Com-
pression via Multiscale Autoencoders With Generative Adversarial Optimiza-
tion,” pp. 0–4, 2019. pages 17

[75] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learn-
ing,” pp. 1–31, 2018. pages 17, 18

[76] K. Fukushima, “Neocognitron: A Self-organizing Neural Network Model for
a Mechanism of Pattern Recognition Unaffected by Shift in Position,” Biol.
Cybernetics, vol. 202, pp. 193–202, 1980. pages 17

[77] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based Learning
Applied to Document Recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998. pages 17

[78] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with
Deep Convolutional Neural Networks Alex,” pp. 60–1–60–16, 2012. pages
17, 18, 20

[79] A. Lucas, M. Iliadis, R. Molina, and A. K. Katsaggelos, “Using Deep Neural
Networks for Inverse Problems in Imaging: Beyond Analytical Methods,” IEEE
Signal Processing Magazine, vol. 35, no. 1, pp. 20–36, 2018. pages 18

[80] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for
Simplicity: the All Convolutional Net,” pp. 1–14, 2015. pages 18

[81] G. Hinton and V. Nair, “Rectified Linear Units Improve Restricted Boltzmann
Machines,” Proceeding ICML’10 Proceedings of the 27th International Confer-
ence on International Conference on Machine Learning, pp. 807–814, 2010.
pages 20

[82] H. Touvron, A. Vedaldi, M. Douze, and H. Jégou, “Fixing the train-test reso-
lution discrepancy,” 2019. pages 20, 21

[83] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier Nonlinearities Improve
Neural Network Acoustic Models,” vol. 28, 2013. pages 20

[84] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers : Surpassing
Human-Level Performance on ImageNet Classification,” 2015. pages 20, 55

75

BIBLIOGRAPHY BIBLIOGRAPHY

[85] J. Ballé, V. Laparra, and E. P. Simoncelli, “Density Modeling of Images using
a Generalized Normalization Transformation,” pp. 1–14, 2015. pages 20

[86] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation Functions:
Comparison of trends in Practice and Research for Deep Learning,” pp. 1–20,
2018. pages 21

[87] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto, “Deep Convolutional
AutoEncoder-based Lossy Image Compression,” 2018 Picture Coding Sympo-
sium, PCS 2018 - Proceedings, pp. 253–257, 2018. pages 21, 22, 30, 47

[88] K. Ma, W. Liu, K. Zhang, Z. Duanmu, Z. Wang, and W. Zuo, “End-To-end blind
image quality assessment using deep neural networks,” IEEE Transactions on
Image Processing, vol. 27, no. 3, pp. 1202–1213, 2018. pages 21, 22

[89] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, vol. 07-12-June, pp. 1–9, 2015. pages 22, 23, 24

[90] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. V. Gool, “Con-
ditional Probability Models for Deep Image Compression,” Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pp. 4394–4402, 2018. pages 23, 30, 48, 49, 50

[91] Z. Chen, Y. Li, F. Liu, Z. Liu, X. Pan, W. Sun, Y. Wang, Y. Zhou, H. Zhu, and
S. Liu, “CNN-Optimized Image Compression with Uncertainty based Resource
Allocation,” pp. 2559–2562, 2018. pages 23, 27, 30, 34, 46, 49, 50

[92] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,
“SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and<0.5MB
model size,” pp. 1–13, 2016. pages 24

[93] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-
Scale Image Recognition,” pp. 1–14, 2015. pages 24

[94] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” 32nd International Conference
on Machine Learning, ICML 2015, vol. 1, pp. 448–456, 2015. pages 24

[95] W. J.Z., L. I. J., G. R.M., and W. G., “Unsupervised Multiresolution Segmenta-
tion for Images with Low Depth of Field,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 23, no. 1, pp. 85–90, 2001. pages 24

[96] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in Neural
Information Processing Systems, vol. 2017-Decem, no. Nips, pp. 5999–6009,
2017. pages 26

76

BIBLIOGRAPHY BIBLIOGRAPHY

[97] S. Woo, J. Park, J.-y. Lee, and I. S. Kweon, “CBAM: Convolutional Block At-
tention Module,” pages 27, 28

[98] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Ba-
tra, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based
Localization,” Proceedings of the IEEE International Conference on Computer
Vision, vol. 2017-Octob, pp. 618–626, 2017. pages 27

[99] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely con-
nected convolutional networks,” Proceedings - 30th IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 2261–
2269, 2017. pages 27, 28

[100] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, “Residual Dense Network for
Image Restoration,” vol. 13, no. 9, pp. 1–14, 2018. pages 27, 31

[101] Y. Zhang, K. Li, K. Li, B. Zhong, and Y. Fu, “Residual Non-local Attention
Networks for Image Restoration,” pp. 1–18, 2019. pages 28, 29, 30

[102] “Versatile video coding reference software version 4.0 (VTM-4.0).” pages 30,
31

[103] P. Baldi and K. Hornik, “Neural networks and principal component analy-
sis: Learning from examples without local minima,” Neural Networks, vol. 2,
no. 1, pp. 53–58, 1989. pages 34

[104] A. Cline and I. Dhillon, “Computation of the Singular Value Decomposition,”
pp. 1027–1039, 2013. pages 45

[105] D. Alexandre, C.-P. Chang, W.-H. Peng, and H.-M. Hang, “An Autoencoder-
based Learned Image Compressor: Description of Challenge Proposal by
NCTU,” no. Clic, pp. 0–3, 2019. pages 50

[106] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler, “Efficient object
localization using Convolutional Networks,” Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, vol. 07-12-
June, pp. 648–656, 2015. pages 53

[107] D. Lacey, “Graphcore: PRELIMINARY IPU BENCHMARKS,” 2018. pages 66

[108] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing FPGA-
based accelerator design for deep convolutional neural networks,” FPGA 2015
- 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Ar-
rays, pp. 161–170, 2015. pages 66

[109] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and
D. Kalenichenko, “Quantization and Training of Neural Networks for Efficient
Integer-Arithmetic-Only Inference,” Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pp. 2704–2713, 2018.
pages 66

77

BIBLIOGRAPHY BIBLIOGRAPHY

[110] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning Filters for
Efficient ConvNets,” no. 2016, pp. 1–13, 2016. pages 66

[111] G. Bellec, D. Kappel, W. Maass, and R. Legenstein, “Deep Rewiring: Training
very sparse deep networks,” pp. 1–24, 2017. pages 66

[112] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing Deep
Neural Networks with Pruning, Trained Quantization and Huffman Coding,”
pp. 1–14, 2015. pages 66

[113] W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken, R. Bishop, D. Rueck-
ert, and Z. Wang, “Real-Time Single Image and Video Super-Resolution Us-
ing an Efficient Sub-Pixel Convolutional Neural Network,” Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
vol. 2016-Decem, pp. 1874–1883, 2016. pages 66

[114] M. Wang, B. Liu, and H. Foroosh, “Factorized Convolutional Neural Net-
works,” Proceedings - 2017 IEEE International Conference on Computer Vision
Workshops, ICCVW 2017, vol. 2018-Janua, pp. 545–553, 2018. pages 66

[115] A. Lacey and N. Thacker, “Tutorial: The Kalman filter,” Imaging Science and
Biomedical . . . , pp. 133–140, 1998. pages 80

[116] K. B. Petersen and M. S. Pedersen, “The Matrix Cookbook,” Book, vol. 16,
no. 4, pp. 1–16, 2012. pages 81

78

Appendices

79

Appendix A

KF and VarDA equivalence

In this Appendix we prove that the Variational Data Assimilation and Kalman Filter
approaches are equivalent under the assumption that:

i The observation operator is linear H[x] = Hx.

The KF approach states that:

x = xb +K(y −Hxb) (A.1)

where K = BHT
(
HBHT +R

)−1 (A.2)

Note that we are considering a single assimilated state x here to make the compar-
ison with 3D-VarDA but the KF method is an iterative process in which the previous
estimate becomes the new prior xb. The reader should consult the original 1960
paper (26) for the details of this formulation. Alternatively, Lacey et al. give a good
tutorial on KFs that contains most, but not all, of the proof below (115).

Proof of equivalence

Recall that the 3D-VarDA cost from equation 2.11 is:

J(x) =
1

2

∥∥x− xb∥∥2
B−1 +

1

2
‖y −H[x]‖2R−1 (A.3)

Under the linear operator assumption this becomes:

J(x) =
1

2

∥∥x− xb∥∥2
B−1 +

1

2
‖y −Hx‖2R−1

In VarDA this is solved by a minimisation routine but the exact solution can
be obtained by differentiating and setting to zero. The resulting expression
can be rearranged to give the KF formulation:

B−1(x− xb)−HTR−1(y −Hx) = 0

B−1(x− xb) = HTR−1y −HTR−1Hx

80

Chapter A. KF and VarDA equivalence

B−1(x− xb) = HTR−1y −HTR−1Hx

+HTR−1Hxb −HTR−1Hxb

B−1(x− xb) = HTR−1y −HTR−1H(x− xb)
−HTR−1Hxb

(B−1 +HTR−1H)(x− xb) = HTR−1(y −Hxb)
(HTR−1)−1(B−1 +HTR−1H)(x− xb) = y −Hxb(

R(HT)−1B−1 +H
)
(x− xb) = y −Hxb(

R+HBHT
)
(BHT)−1(x− xb) = y −Hxb(

BHT (R+HBHT)−1
)−1

(x− xb) = y −Hxb

x = xb +BHT
(
HBHT +R

)−1
(y −Hxb)

which proves the equivalence. Use of the Woodbury Identity (see (116))
gives this result much more directly.

81

Appendix B

Augmentation

Figure B.1: A repetition of Figure 5.3 without exponential moving average smoothing.
The augmentation strengths are repeated in Table B.1 below for reference.

Augmentation Jitter Jitter Jitter Amplitude
Strength Amplitude Frequency per Location

0 None None None
1 0.005 0.5 0.0025
2 0.05 0.25 0.0125
3 0.1 0.5 0.0500

Table B.1: The augmentation strengths used in Figures 5.3 and B.1. We added Gaus-
sian noise with standard deviation of ‘Jitter Amplitude’ at ‘Jitter Frequency’ of the total
locations in the state.

82

Appendix C

Further Comparison

In this Appendix we provide two graphs that would have been repetitious in the full
text but provide useful context to the comparison between reduced space VarDA and
bi-reduced space VarDA.

Figure C.1: DA MSE across a slice of the spatial domain averaged over all test-set time-
steps. We show a) the reduced-space variant with TSVD (τ = 32 and M = n) and b)
Bi-reduced space variant with the Tucodec-Next model.

Figure C.2: Repetition of Figure 5.4 with τ = 791 (i.e. no truncation) instead of τ = 32
and M = n as before. Although the performance is more similar in this case, our
method still performs better on average. We also note that, in order to achieve this level
performance, the reduced space method takes 2.5s, or x43 longer than our approach.

83

Appendix D

Ethical and Professional
Considerations

In this appendix we consider the legal and ethical implication of this work. See Table
D.1 on the next page for a completed Imperial College ethics checklist. We will cover
the single case which we believe is relevant here.

Copyright Licensing Implications

We have released our VarDACAE Python module open-source. We used the MIT Li-
cence and this should be visible on Github. As discussed in section 4.3.2, we used a
number of third-party libraries and code so a key ethical consideration is in making
sure this is all correctly licensed and attributed. We encountered a challenge in this
regard as the CBAM implementation at https://github.com/Jongchan/attention-module/
blob/master/MODELS/cbam.py did not have a license attached. Therefore, we wrote
to the individual and obtained written consent to use the code. We see that, since
then, they have uploaded a licence to this repository.

84

https://github.com/Jongchan/attention-module/blob/master/MODELS/cbam.py
https://github.com/Jongchan/attention-module/blob/master/MODELS/cbam.py

Chapter D. Ethical and Professional Considerations

Yes or no
Section 1: HUMAN EMBRYOS/FOETUSES

Does your project involve Human Embryonic Stem Cells? ×
Does your project involve the use of human embryos? ×
Does your project involve the use of human foetal tissues / cells? ×

Section 2: HUMANS

Does your project involve human participants? ×

Section 3: HUMAN CELLS / TISSUES

Does your project involve human cells or tissues? (Other than from “Human Embryos/Foetuses”
i.e. Section 1)?

×

Section 4: PROTECTION OF PERSONAL DATA

Does your project involve personal data collection and/or processing? ×
Does it involve the collection and/or processing of sensitive personal data (e.g. health, sexual
lifestyle, ethnicity, political opinion, religious or philosophical conviction)?

×

Does it involve processing of genetic information? ×
Does it involve tracking or observation of participants? It should be noted that this issue is not
limited to surveillance or localization data. It also applies to Wan data such as IP address, MACs,
cookies etc.

×

Does your project involve further processing of previously collected personal data (secondary use)?
For example Does your project involve merging existing data sets?

×

Section 5: ANIMALS

Does your project involve animals? ×

Section 6: DEVELOPING COUNTRIES

Does your project involve developing countries? ×
If your project involves low and/or lower-middle income countries, are any benefit-sharing actions
planned?

×

Could the situation in the country put the individuals taking part in the project at risk? ×

Section 7: ENVIRONMENTAL PROTECTION AND SAFETY

Does your project involve the use of elements that may cause harm to the environment, animals or
plants?

×

Does your project deal with endangered fauna and/or flora /protected areas? ×
Does your project involve the use of elements that may cause harm to humans, including project
staff?

×

Does your project involve other harmful materials or equipment, e.g. high-powered laser systems? ×

Section 8: DUAL USE

Does your project have the potential for military applications? ×
Does your project have an exclusive civilian application focus? ×
Will your project use or produce goods or information that will require export licenses in accor-
dance with legislation on dual use items?

×

Does your project affect current standards in military ethics – e.g., global ban on weapons of mass
destruction, issues of proportionality, discrimination of combatants and accountability in drone
and autonomous robotics developments, incendiary or laser weapons?

×

Section 9: MISUSE

Does your project have the potential for malevolent/criminal/terrorist abuse? ×
Does your project involve information on/or the use of biological-, chemical-, nuclear/radiological-
security sensitive materials and explosives, and means of their delivery?

×

Does your project involve the development of technologies or the creation of information that
could have severe negative impacts on human rights standards (e.g. privacy, stigmatization, dis-
crimination), if misapplied?

×

Does your project have the potential for terrorist or criminal abuse e.g. infrastructural vulnerability
studies, cybersecurity related project?

×

SECTION 10: LEGAL ISSUES

Will your project use or produce software for which there are copyright licensing implications? X
Will your project use or produce goods or information for which there are data protection, or other
legal implications?

×

SECTION 11: OTHER ETHICS ISSUES

Are there any other ethics issues that should be taken into consideration? ×

Table D.1: Imperial College Ethics Checklist.

85

	1 Introduction
	2 Background: Data Assimilation
	2.1 Definitions
	2.2 Variational DA, VarDA
	2.2.1 Incremental VarDA
	2.2.2 Control Variable Transform
	2.2.3 CVT VarDA Optimisation

	2.3 Truncated SVD

	3 Background: Autoencoders
	3.1 Definitions
	3.2 Specification
	3.3 Comparable Applications
	3.3.1 AEs for DA
	3.3.2 AEs for Image Compression

	3.4 Building Blocks
	3.4.1 Convolutional Neural Networks
	3.4.2 Activation Functions
	3.4.3 Skip Connections
	3.4.4 Parallel Filters
	3.4.5 Multi-scale resolution
	3.4.6 Attention
	3.4.7 Complex Residual Blocks

	3.5 State-of-the-art Architectures

	4 Contribution
	4.1 `Bi-reduced space' formulation of DA
	4.1.1 Proof of equivalence
	4.1.2 Advantages over TSVD: Theory
	4.1.3 Computational Complexity Derivation: Online
	4.1.4 Computational Complexity: Offline

	4.2 Architecture Search Framework
	4.2.1 Backbone
	4.2.2 ResNeXt variant

	4.3 Software
	4.3.1 API
	4.3.2 Implementation

	4.4 Training Configuration
	4.4.1 Data
	4.4.2 Regularisation
	4.4.3 Training Duration
	4.4.4 Loss function and evaluation metrics
	4.4.5 Hyperparameters

	5 Experiments
	5.1 Architecture Search
	5.1.1 Residual Block
	5.1.2 Activation function
	5.1.3 L1 fine tuning
	5.1.4 Augmentation
	5.1.5 Architecture Summary

	5.2 Comparison with TSVD
	5.2.1 Performance-speed tradeoff

	6 Discussion
	7 Conclusions and Future Work
	Appendices
	A KF and VarDA equivalence
	B Augmentation
	C Further Comparison
	D Ethical and Professional Considerations

