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Abstract

This project provides a comprehensive comparative study of the performance of su-
pervised machine learning models in the natural language processing task of text
classification, specifically in the legal context. We distill a dataset of European Union
legislation for multi-label classification into one for a single-label, multi-class classifi-
cation task. We provide visualisations and analysis of the dataset. We then draw a
distinction between ‘machine learning’ models, including the Naive Bayes classifier, lo-
gistic regression and support vector machines, and more contemporary ‘deep learning’
approaches, such as convolutional neural networks, long short-term memory networks
and the hierarchical attention network. We experiment with traditional count-based
vectorizers for feature embedding with the machine learning models, and pre-trained
word embeddings for the deep learning models. We critically evaluate the performance
of each model on its own, and with those in its group, before proposing a final model.
Finally, we discuss the potential uses of such a classifier in professional legal practice.
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Chapter 1

Introduction

1.1 Motivation

The application of technology to assist legal professionals with the provision of legal
services, a sector known as legal tech, has received tremendous investment and interest
in recent years [29]. In particular, with the recent successes of machine learning meth-
ods in fields such as computer vision and pattern recognition, expectations that these
methods will provide the panacea for the ills of the legal profession, such as repetitive
administrative work, have begun to arise [66].

The broad aim of this project is thus to apply the latest methods used in machine
learning and in natural language processing (NLP) to a dataset in the legal context.
More specifically, the goal will be to experiment with and compare the performance of
several machine learning and deep learning methods for the task of text classification.
Text classification has many potential uses in the legal domain, particularly for cate-
gorising legal documents and cases which can aid the process of legal research, and for
the development of a knowledge management system (for a detailed example of such
an implementation, see [5, 6]).

The task is an interesting one from an academic perspective, for several reasons.
While text classification as an NLP task in general is well-studied, the specific study of
text classification methods in the legal domain has remained relatively under-explored
[28, 67]. Applying text classification methods specifically to the legal context is not
a trivial problem, i.e. simply because a method has proven to be useful in classifying
texts of a general subject matter does not mean that the method will necessarily work
equally well in the legal context. This is because the structure of legal language can be
distinguished from that of ordinary language in terms of vocabulary, syntax, semantics
and other linguistic features [5, 65]. The types of texts used in NLP research tend to
be user reviews, where the language used tends to be colloquial or informal (such as
the IMDB dataset [45]), posts scraped from Twitter (which are a maximum of 280
characters) and other documents of a much shorter length than a legal judgement or
piece of legislation [28].
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1.2 Aims and objectives

The broad aim of this project is to present a framework through which a document
in the English language with legal subject matter can be classified into one of several
predefined classes. Specifically, documents will be drawn from a dataset of European
Union legislation, with each document belonging to one of 20 classes. Concretely, the
goal will be to propose a classification model. Given an unseen legal text document
of length n, X = (x1, s, ..., z,,), where z; is an individual token in the document, the
model will assign X to one of £ classes, where £ = 20 in our case.

This aim will be achieved by fulfilling the following objectives:

e Extracting relevant sections of legal texts from their raw HTML source obtained
from a publicly accessible European Union law repository

e Preprocessing the unstructured data to a structured format

e Analysing the characteristics of the dataset (e.g. distribution of classes)

e Exploring different methods of evaluating the performance of classifiers

e Drawing a distinction between two groups of classifiers, ‘machine learning’ meth-
ods and ‘deep learning” methods, and analysing each group separately, with dif-
ferent methods of feature extraction:

— Classifiers based on various machine learning methods, with count vector-
ization and TF-IDF vectorization:

1.

SEEES ANl

7.

Naive Bayes classifier

Decision tree

Random forest

Logistic regression

Support vector machines (SVMs)
K-nearest neighbours (k-NN)
Multilayer perceptron (MLP)

— Comparing the performance of classifiers based on deep learning methods,
with pre-trained word and sentence embeddings:

1.
2.
3.

4.

Multilayer perceptron
Convolutional neural network (CNN)

Recurrent neural network (RNN) (specifically, uni-directional and bi-
directional long short-term memory networks (LSTM and bi-LSTM))

Hierarchical attention network (HAN)

e Concluding the project by evaluating the utility of such a model in practice
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1.3 Outline

The remainder of this report is organised as follows:

Chapter 2 provides an overview of the theoretical background of the project.
This includes an introduction of the text classification task, the experimental
setup, and the metrics used to evaluate classifiers. It outlines the standard text
classification pipeline and discusses the methods of feature extraction used in
this project. Each model used in this project is then introduced in the context
of the current project.

Chapter 3 provides an analysis of the dataset which will be used in this project,
a distilled form of the EURLEX dataset. It describes the repository from which
the dataset was scraped, steps taken to extract the data from its raw source
and to reshape the data into the form necessary for a single-label, multi-class
classification task. It also discusses the features of the dataset and provides
visualisations of the dataset.

Chapter 4 describes the experiments undertaken in this project. It first discusses
the steps taken to preprocess the data. Evaluation of classifiers is then separated
into ‘machine learning’ and ‘deep learning’ models, with each model considered
individually and also compared against the other classifiers within its group.
The machine learning models are run with count-based vectorizers for feature
extraction, and the deep learning models are run with pre-trained embeddings.

Chapter 5 discusses academic work related to this project. It considers the latest
academic work in NLP, in text classification, and finally, in the legal context.

Chapter 6 concludes this report by summarising its academic contributions. It
then evaluates the effectiveness in practice of a model such as the best performing
model proposed. It then discusses the challenges faced, the ways in which this
project could have been improved on hindsight, and future work which can be
done. Finally, it considers the legal and ethical implications of implementing
this project.

The Appendices contain a completed ethics checklist, and a copy of the readme
which accompanies the code archive.




Chapter 2

Background

2.1 Overview

2.1.1 Text classification

In general, and for present purposes, text classification is a supervised learning task.
The aim in supervised learning is to construct a model which, given a training set of
English language legal documents, learns a function, f, that can map an input, X to
an output, C;:

f:X—=C, feH (2.1)

The function f will be one of multiple possible mapping functions which the model can
learn from the set of all possible functions, H, the hypothesis space. The model finds
this function f by changing the parameters, 6, of the functions within H, and finding
the function which best minimises some expected loss function, L(x; f). The expected
output C; can be binary (one of two possible values, such as ‘positive’ or ‘negative’),
multi-class (only one of several possible values), or multi-label (one or more of several
possible values). The present task is a multi-class classification task.

In the present case, the model takes as input a set of N text documents from a
dataset D, where D = {X;, X5, ..., Xy }. X, is a single document consisting of one or
more sentences. Each sentence is made up of one or more tokens (see Section 2.2).
Each token is made up of one or more characters. Each document X; belongs to one
and only one of k possible classes, C' = {C, (s, ..., Cy}. Having learned the function f
which can map an input, X; € D, to an output, C; € C, the model can then be used
to classify documents, and in particular, unseen documents from a test set.

2.1.2 Training, validation and test sets

In a supervised learning task, the dataset has to be divided into a training set and a
test set. The model will be trained on the training set, the process during which it
learns the mapping function f, and its performance will be evaluated and reported on
the unseen test set. During the training phase, the progress of the model being trained
should also be evaluated, to ensure that the model is not learning patterns specific to
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the training data which cannot be observed in unseen data, a problem called overfit-
ting [64].

However, this evaluation must be done without exposing the model to the test set.
If such exposure has occurred, the test set will no longer be considered unseen data,
and any evaluation on the test set will no longer be accurate, a problem which has
been called data leakage. To avoid this but also achieve the aim of evaluating the
model during training, a subset of the training set is set aside as the wvalidation set
[64]. The validation loss, an estimate of the error rate of the model computed from
the loss function over the validation set, is monitored throughout the training process
(on evaluation metrics, see Section 2.1.5).

While there has been research to estimate the optimum number of documents to be
set aside in a test set and a validation set [24], for simplicity, we follow a rule-of-thumb
and divide our dataset D by an 80:20 split, setting aside 20% of the training set as the
test set. From the 80% training set, we set aside a 20% of the data from the training
set to be used as a validation set. Thus:

number of samples in D = N
number of samples in training set (excluding validation set) = N * (0.8) * (0.8)
number of samples in validation set = N x (0.8) x (0.2)

number of samples in test set = N x (0.2)

2.1.3 Cross validation

Other than to prevent overfitting, the validation set is also used to determine which
hyperparameters of a classifier result in the best performance on the test set (see Section
2.1.4). However, one problem with setting aside a validation set is that the validation
loss may not provide a fair estimate of performance on the test set, depending on
which specific samples are included in the training set and the validation set [34]. One
method to alleviate this is k-fold cross validation, where the dataset is divided into &
subsets of equal size. The divisions are often stratified, i.e. the proportions of samples
belonging to each class are the same in each subset. The first subset is held out as
the validation set, and the model is then fit on the other k-1 subsets. This process
is repeated k times, until all the subsets have each been held out as a validation set.
Thus:

k
1
=1

where F represents the error rate, or any other performance metric being calculated
(discussed in Section 2.1.5). This results in k estimates of the relevant metric £. The
value for F obtained all k folds is then averaged, and this value is taken as an estimate
of the performance on the training set. A common value used is k=10. However,
because the number of samples in our least populated class, Class 20, is only 6 (see

7
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Table 3.4), stratified 10-fold cross validation is not suitable. Thus, stratified 5-fold
cross validation will be used instead.

Thus, k-fold cross validation attempts to reduce any statistical bias which may result
from features unique to the samples in the validation set, affecting the effectiveness of
the validation loss as an estimate of the error rate on the test set [34]. Of course, the
obvious disadvantage is that instead of computation being performed once, it has to
be performed k£ times.

2.1.4 Hyperparameter optimization

As noted above, the ultimate aim of a model is to learn the function f by optimising
parameters, 6, to minimise the loss function L. However, the model itself has certain
hyperparameters, A\, which are specific hyperparameters in the set of all possible hy-
perparameters, the search space A, i.e. A € A. X is chosen before the training of the
model, and is not learned during the training process. The problem of choosing good
values for A is termed hyperparameter optimization [3]. To find the best hyperparame-
ters, the performance of each set of hyperparameters A on the validation sets, averaged
across k-fold cross validation, is measured.

2.1.4.1 Manual search and grid search

There are several methods of finding the best hyperparameters within A. The most
common option is manual search, which is a trial-and-error method. This entails run-
ning classifiers based on manually selected hyperparameters, and choosing the hyper-
parameters which work best across k-fold cross validation. Between the three methods
detailed here, this is perhaps the least rigorous, and as Bergstra and Bengio [3] note,
choosing hyperparameters based on intuition leads to difficulties with reproducing re-
sults. However, due to time and computational constraints, this method is partly used
here.

Another option is grid search, which is effectively an exhaustive search of every pos-
sible value of A through a manually chosen subset of A. This is often combined with
manual search, to identify regions within A that are promising and to perform a brute
force search within those regions. However, Bergstra and Bengio [3] note that while
grid search is reliable in low-dimensional (e.g. 1-D or 2-D) spaces, it suffers from the
curse of dimensionality as the number of possible values grows exponentially with
the number of hyperparameters to be tuned. Thus, a key drawback of grid search
is the amount of computation involved. This is exactly the problem that may be
faced here, given the number of classifiers being experimented with, and the number
of hyperparameters in some of the models.

2.1.4.2 Random search

As an alternative to grid search, Bergstra and Bengio [3] propose random search, which,
in their experimentation, is able to find hyperparameters which are as good as or better

8
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within a much smaller computation time. Instead of an exhaustive search of A, random
values of A\ are sampled and tried. If the search space of possible hyperparameters is
large, this is the method of hyperparameter optimization which will be used here.

2.1.5 Evaluation metrics

2.1.5.1 Classification rate

Once a model has been selected and trained, it is necessary to evaluate how effective
the model is for the purposes of the classification task. Intuitively, one way to evaluate
a model is to calculate the percentage of samples it has classified correctly (i.e. placed
within the correct class). Thus, we can calculate the accuracy or classification rate of
the model:

number of samples correctly classified

classi fication rate = (2.3)

total number of samples

Similarly, we can calculate the classification error as the complement of the classifi-
cation rate. However, the classification rate is not always the most relevant metric,
especially where the dataset is imbalanced [69], as in the current case (see Section
3.3.1). A common example given in the text classification context is where an email
spam-filtering model is designed to classify emails as spam or not-spam, but only 1% of
the samples in the dataset are labelled as spam. In this case, the model would achieve
a classification rate of 99% by simply predicting all unseen samples as not-spam, but it
would have not learned which features are indicative of an unseen sample being spam
or not-spam at all.

2.1.5.2 Confusion matrix

Given the above, a confusion matrix is often used to evaluate a model’s performance
as well. This is a (k x k) matrix, where k is the total number of unique classes the
samples in the dataset belong to. The confusion matrix is a visualisation of the counts
of the predicted class of each sample, compared to their actual class.

For the purposes of illustration, an example of a (4x4) matrix is provided. In this
case, the purpose of the model would be to classify samples into one of four possible
classes. The confusion matrix can be used as a high-level overview of the performance
of a model. The diagonal across the confusion matrix would provide the counts of the
samples the model has labelled correctly (i.e. True Positives, as explained below) for
each class:
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Predicted class

1 2 3 4

Actual class

Table 2.1: Correct classifications in a confusion matrix

Thus the overall classification rate of the model can be calculated by:

S, TP

total number of samples

classi fication rate = (2.4)
recalling that k is the total number of unique classes, and T P; is the count of True Pos-
itives for Class 7. However, as explained above, computing an overall performance of a
model may not always be the most useful metric. Thus, the confusion matrix should
also be used to examine the model’s performance for each specific class. Continuing
with the example above, here the focus is on analysing the model’s performance in
relation to its ability to correctly predict samples belonging to Class 2. Each sample
being classified by the model can fall into one of four possible outcomes:

e True Positive (TP): the label predicted by the model is the same as the actual
label of the sample

e True Negative (TN): the model predicted that sample does not belong to Class
2, and it is true that the sample does not belong to Class 2

e Fulse Positive (FP): the model predicted that the sample belongs to Class 2, but
the sample does not

e False Negative (FN): the model predicted that the sample does not belong Class
2, but the sample belongs to Class 2

Predicted class

Actual class

I VI )

Table 2.2: Example of a confusion matrix (focusing on Class 2)

The four outcomes above allow us to calculate several important metrics, as noted in
the following section. The confusion matrix can also shed light into the specific mis-
classifications by the model, for example, the model may be specifically classifying
samples belonging to Class 4 as those belonging to Class 1. A normalised confusion

10
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matrix can also be provided, where each box reflects the number of predictions as a
fraction of the number of samples labelled as belonging to that class. The confusion
matrix thus provides a useful tool to analyse the performance of a model, and this will
be done for the current project. In the distilled EURLEX dataset, the data is labelled
into one of 20 possible classes (see Section 3.3.1), thus the confusion matrices provided
will be of dimension (20x20).

2.1.5.3 Precision, recall and F-measure

From the confusion matrices, a model’s precision can be calculated:

. TP 2.5
TECISION — —— —— .
p TP+ FP

where a perfect score of 1 indicates that every sample the model identified as belonging
to a specific class did in fact belong to that specific class (but does not reveal how
many other samples also belonging to that class were misclassified by the model).

Similarly, recall can be calculated:

L (2.6)
reca _TP_|_FN .

which represents the model’s ability to detect the presence of samples belonging to a
specific class, i.e. a perfect score of 1 would indicate that the model correctly classified
all the samples belonging to that class (but does not reveal how many samples the
model incorrectly identified as belonging to that class).

In general, the usefulness of precision and recall as metrics is context-dependent, i.e.
in some tasks, having a high precision would be more important, and in others recall
may be more crucial. Models can be tuned for either metric, depending on the use
case, but optimising for one will result in a trade-off in the other. In this project, we
will not choose to optimise models for either precision or recall in particular. As noted
by Manning and Schutze [46], the trade-off between precision and recall may not make
as much sense in some NLP applications as opposed to other contexts.

As such, we will also report the F1l-measure, which is a measure of performance be-
tween 0 and 1 calculated from the harmonic mean of precision and recall (where a
value of 1 indicates perfect precision and recall):

Fo=(1+a) precision x recall

2.7
precision + recall (27)

This is useful insofar as it provides a single number representing both precision and
recall. The a-value can also be varied, where a higher o indicates greater emphasis on
recall.

11
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2.1.5.4 Macro vs. micro-averaging

Precision, recall, and F1-measure can be calculated for each individual class, but can
also be averaged across classes to provide a general view of the performance of the clas-
sifier as a whole. Each metric can be reported as a macro-average or micro-average
[17]. The former is an unweighted mean of the metric (calculated individually for each
class, then divided across the number of classes), whereas the latter takes into account
the predictions across all classes together (summing the counts of TP, FN and FP
across all classes, and computing the precision, recall or F1 as a whole).

In the present case, the position taken is that precision and recall should be studied
for each class in order to determine the model’s ability to classify samples in specific
classes. However, in order to report a metric which sums up the overall performance
of a classifier, we report the macro-F1. As the dataset is imbalanced, the macro-F1
is relevant if we consider the ability of a model to identify samples in any of the 20
classes to be equally important.

It should be noted that if the view is that a model should be able to correctly classify
as many samples as possible regardless of its performance on individual classes, then
the focus should be on the micro-F1 score. However, in the specific case of a multi-class
classification task, as is the present case, it should be clear from Table 2.2 that the
sum of FN across all classes will be the same as that of the sum of FP. This effectively
means that the averages of micro-precision, micro-recall and micro-F1 will all be equal
to accuracy [47]. Thus, although we do not report the micro-F1 separately, this is
equal to the average accuracy across all classes, which will be reported.

2.1.5.5 Omne-vs-rest and one-vs-one

There are several ways in which some classifiers can handle multi-class classification
tasks.! A common method, which we will experiment with in logistic regression and
SVMs, is one-vs-rest classification. This means one classifier is fitted per possible class.
For k classes, k binary classifiers will be fitted. For example, when training the first
classifier, all the training samples belonging to Class 1 will be positive samples, and
all the other samples negative. The classifier is fitted on this basis. When used on
the test set, the classifier outputs a confidence score for its decision, denoting whether
each sample in the test set belongs to Class 1 or not. This process is repeated over all
k classes, i.e. k classifiers are trained. On the test set, for a single sample, the con-
fidence score for each of the k classifiers is compared. The classification representing
the class with the highest score is taken as the classification for the purposes of the
‘final’ classifier.

In a one-vs-one scheme, each classifier is trained to distinguish between samples be-
longing to a subset of only two classes out of k classes in the dataset. This means
that w classifiers must be trained; in our case, where k& = 20, this means 190

classifiers, compared to 20 in the one-vs-rest scheme. For the ‘final’ classifier, on the

1 See Scikit-learn documentation at https://scikit-learn.org/stable/modules/multiclass.html

12
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test set, each test sample is tested by all w classifiers. The sample belongs to the

class which the most number of classifiers has predicted [4].

2.1.5.6 McNemar’s test

Where the performance of two models is similar, we can determine whether the differ-
ence between them is statistically significant, i.e., that the difference in their perfor-
mance is not due to chance. Based on the argument in a seminal paper on statistical
tests for comparing the performance of supervised learning models on classification
tasks that it results in the lowest Type I error (an incorrect rejection of a true null
hypothesis) [14], we use a variant of McNemar’s test as amended by Edwards [16] to
compare both classifiers based on statistical significance.?

Classifier 2 | Classifier 2
(correct) (wrong)
Classifier 1 A B
(correct)
Classifier 1 C D
(wrong)

Table 2.3: Contingency table

The test uses a contingency table to compare the exact predictions made by two classi-
fiers on the same test set. For the avoidance of doubt, a ‘correct’ result in the table is
one which is a True Positive, i.e. the label predicted by the classifier matches the ac-
tual label of the sample. Any other output is ‘wrong’. The table is a sample-by-sample
comparison of the predictions of each classifier. Thus “A” is the count of the number of
samples both classifiers predicted correctly, “B” is the count of the number of samples
Classifier 1 predicted correctly but Classifier 2 predicted wrongly, and so on. From
the counts in the table, we can calculate the modified McNemar’s test statistic:

»_ (IB=C|-1)?
X =" ByC (28)

Our null hypothesis, Hy, is: “the performance of both classifiers equal”. The test states
that the critical value at a 95% confidence level is 3.84, thus if x? >3.84, we can reject
Hy. Similarly, we can also compute the p-value for significance testing:

p=2 :iB (?) (0.5)'(1 — 0.5)""" (2.9)

where n = B + C, and 2 indicates a two-tailed test. The critical value at a 95%
confidence level is 0.05. Thus, if p <0.05, we can reject Hy.?

2 See also MIxtend documentation, http://rasbt.github.io/mlztend /user_guide/evaluate /menemar/
3 Formulae from mlxtend documentation, as above.

13
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2.2 Text classification pipeline

As described by Kowsari et al. [38], text classification problems follow a fairly standard
pipeline. This can be summarised in the following steps:

1. Preprocessing: the aim of this first stage is to remove noise from textual data to
improve classification performance. This can involve various steps:

e stopword removal: textual data often contains words which do not aid, and
in fact can hinder the text classification task [38]. For example, articles
such as ‘the’ and ‘a’ can appear multiple times in a given text, but do not
provide a good indicator of the class to which a sample belongs. Similarly,
punctuation and special characters, which may be important for human
understanding, can be detrimental to the performance of classification al-
gorithms [55]. It is common practice to remove these words and characters
[38], and this is the approach taken.

e lowercasing: converting all the words in a dataset to lowercase is desirable
insofar as it makes intuitive sense, e.g. ‘Apple’ (the fruit) which appears
as the first word of a sentence and is thus capitalised is not semantically
different to ‘apple’ in the middle of a sentence, and it reduces the size of the
vocabulary; however, it could lead to negative impact on performance, e.g.
equating ‘apple’ (the fruit) with ‘Apple’ (the company) [7]. Given that it
is common practice [7], and because the use of capitalisation in our dataset
is inconsistent (as we will show), this is the approach taken.

e lemmatisation and stemming: lemmatisation involves converting words to
their basic forms (lemmas) by converting them or removing their inflectional
endings e.g. ‘is’, ‘are’, ‘being’, all result in the lemma ‘be’ Similarly,
stemming involves removing the endings of words, but can lead to non-
words, e.g. ‘admiring’” and ‘admiration’ are stemmed to ‘admir’, instead of
the lemma ‘admire’. Although these are traditionally regarded as standard
preprocessing methods in text classification [71, 51], Camacho-Collados and
Pilehvar [7] note that they are rarely used in neural-based systems, because
they may result in the loss of important syntactic nuances. In addition, the
main purpose of both lemmatisation and stemming is to reduce sparsity or
dimensionality, i.e. to allow similar words to be represented as the same
feature. However, this problem may be avoided through learning word
embeddings in a defined vector space. For these reasons, the approach
taken here is to not apply lemmatisation or stemming at the preprocessing
stage.

e tokenization: informally, each sentence in a document is made up of words.
In linguistics, however, a word can be a type or a token (on the type-token
distinction, see [75]). For present purposes it suffices to state that a token
is a sequence of characters grouped together as a unit for processing [47].
This may or may not be a word, for example, the contraction ‘aren’t’” may
or may not be separated into two tokens, ‘are’ and ‘n’t’, depending on

14



Chapter 2. Background

the tokenizer. In addition, an n-gram is a sequence of n tokens occurring
together. The salient point to note here is that the same tokenizer will be
used throughout this project for consistency.

2. Feature extraction: after preprocessing, the dataset will still consist of samples
of textual data, which is unstructured data that cannot be passed into a classifier
in its raw form. Thus, this step involves converting the textual data to a struc-
tured feature space. Methods of feature extraction are generally count-based
(e.g. count vectorizer or TF-IDF vectorizer), or achieved through learning word
embeddings or using pre-trained word embeddings.

3. Dimensionality reduction (optional): given that the dataset will consist of thou-
sands of unique words, some methods, such as one-hot encoding which represents
each unique word as its own feature, will result in feature representations of huge
dimensions (in case of one-hot encoding, each unique feature results in an addi-
tional dimension) [20]. Such large dimensions can result in a high computational
complexity, so dimensionality reduction techniques, such as principal component
analysis (PCA) can be used if necessary [38]. Other methods, such as word em-
beddings, can map each feature into a defined dense vector space. In our case,
dimensionality reduction is not used with the count and TF-IDF vectorizers.
With word embeddings, each token is represented with a 300-dimension vector,
and in order to preserve the meaning captured within this defined space (as
explained in Section 2.3.3), we do not reduce this further.

4. Model selection: once textual data has been converted into a form which can
be passed into a model, the next step is to define the architecture of the model.
Different classifiers will be discussed, including the Naive Bayes classifier, logistic
regression, support vector machine, multilayer perceptron and neural networks.

5. Evaluation: finally, the performance of each classifier must be assessed. A com-
mon simple metric used is accuracy, but, as Kowsari et al. [38] note, this is
not appropriate for unbalanced datasets [31] (as is the case with the EURLEX
dataset). Other methods which will be explored include the Area Under the Re-
ceiver Operating Characteristic Curve (AUROC), as well as confusion matrices,
F1 score, precision and recall.

2.3 Feature extraction

2.3.1 Count vectorizer

This section is based on the implementation in the popular Scikit-learn package [56],
which we use. The count vectorizer is a bag of words model, i.e. it disregards grammar
or word order, but preserves counts of unique words. For our purposes, the dataset
is first divided into training and test sets in an 80:20 split. The count vectorizer is
then fitted on the samples in the training set. This means that each unique word in
the entire vocabulary of the training set is given a unique integer ID (and thus the
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number of IDs will be equal to the size of the vocabulary of the training set). Once
the count vectorizer has been fitted, using the transform function with any text input
returns an encoded output.

The following example should suffice for the purposes of clarity:

1. The training set consists of one document, with the text “the quick brown fox
jumps over the lazy dog”. An instance of the count vectorizer is fit over the
document.

2. The vectorizer has thus learned the following encoding, with each unique word
being assigned an integer 1D, in alphabetical order:
{‘brown’: 0, ‘dog’: 1, ‘fox’: 2, ‘jumps’: 3, ‘lazy’: 4, ‘over’: 5, ‘quick’ 6, ‘the”

7.

3. A sample text is transformed using the fitted vectorizer. The text is “the quick
dog jumps the sheep”. This results in the encoded vector [0 1010 0 1 2], with
each vector index corresponding to the encoding given above. Thus, the integer
at the first index in the vector, ‘0’, corresponds to the number of times the first
word in the vocabulary, ‘brown’, appears in the sample being transformed. The
word ‘sheep’, which is not in the vocabulary which the vectorizer was fitted on,
is not taken into account in the vector returned.

Where the vectorizer is trained on a large training set, it will have a large vocabulary.
Each sample which is transformed will thus consist of a majority of zeroes representing
each of the words which appear in the training set vocabulary but not in the sample.
In the Scikit-learn library, each sample transformed by the count vectorizer is thus
returned in the form of a sparse matrix for computational efficiency, with counts cor-
responding to each non-zero word index.

The count vectorizer is thus an efficient vectorizer based on the bag of words model,
and the representation it returns takes into account the frequency with which words
appear in a dataset. However, it has various limitations. It does not take the context
or the order in which words appear into account. It also does not take into account n-
grams, considering only the counts of each unique word appearing in isolation. Finally,
it also does not take into account similarities between words, for example, intuitively,
the words ‘man’ and ‘woman’ may be semantically more similar to each other than
the words ‘man’ and ‘table’, but unlike word embeddings, the count vectorizer cannot
account for such similarities.

2.3.2 TF-IDF vectorizer

One problem with the count vectorizer is that even after the removal of common
stopwords, certain tokens in a dataset may appear many times, but may not be use-
ful in determining which class a sample should be classified to. For example, in the
EURLEX dataset, the tokens “shall” and “article” occur multiple times, as shown in
Table 3.5, but these tokens do not provide any clues as to the class a sample belongs to.
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One way to alleviate this is through the use of a vectorizer which takes into account
‘term frequency-inverse document frequency’ (TF-IDF). This was traditionally used in
information retrieval tasks, but has been shown to improve performance in text clas-
sification tasks [35]. Term frequency refers to the number of times each term appears
in a document (which the count vectorizer takes into account). Inverse document
frequency takes into account the frequency with which words appear across the docu-
ments in a dataset, and scales down the importance of the words which appear across
many documents in the dataset, based on the assumption that such words are less
useful for classification than those which appear in fewer samples.

Concretely, given a term ¢ and a document d, where n is the number of documents in
the dataset, and DF(t) is the number of documents in the dataset in which ¢ appears:

n

IDF(t) = lOg(DF(t)

)+1

taking the logarithm, a sub-linear function, thus reflects the fact that the relevance
of a term to a document’s classification does not increase linearly with an increase in
the term’s frequency [62]. 1 is added to the IDF(t) formula to prevent terms which
appear in every document from being ignored (given that log(1)=0). Thus,

TFIDF(t,d) = TF(t,d) - IDF(¢)

In the context of the Scikit-learn library [56], a sample transformed by the TF-IDF
vectorizer is similarly returned as a sparse matrix, with a TF-IDF score instead of a
TF count. Overall, while the TF-IDF vectorizer takes into account the assumption
that words which appear in many documents in a dataset may be less meaningful for a
classification task, it faces many of the same limitations faced by the count vectorizer
noted above.

2.3.3 Word embeddings

Similar to the count and TF-IDF vectorizer, a word embedding is a means of repre-
senting a word as a vector. However, one key difference is that each word or sentence
is embedded into a fixed dimensional space, and represented as a vector within that
space [20]. This is a key benefit, as a one-hot or bag of words model such as the count
vectorizer results in sparse vectors with dimensions equal to the size of the vocabulary,
which can be computationally inefficient to work with.

Another key advantage is that while a bag of words model assigns each word in the
vocabulary some unique integer ID without taking into account similarities between
the meaning of words, word embeddings allow words with similar meaning to be rep-
resented closely in the defined vector space. A famous example was achieved using the
word2vec algorithm [49]:

vector(“King”) — vector(“man”) + vector(“woman”) = vector(“Queen”)
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It is possible to use pre-trained word embeddings in a model. These are word em-
beddings which have already been prepared based on a large training set, and made
available in a library, such as word2vec [49] or GloVe [57]. The vector representations
of word in a dataset can thus be directly obtained from these pre-trained word embed-
dings. However, this also means that any word in the dataset which is not within the
vocabulary of the pre-trained word embeddings will not have a vector representation.
Alternatively, word embeddings can be learned as part of the training of a neural net-
work. An embedding layer will be added to the model, and the vector representation
for each word in the vocabulary will be learned along with the training of the model.

For present purposes, pre-trained word embeddings are used from the spaCy library,*
which maps each word into a 300-dimension vector. Sentence embeddings are also ex-
perimented with, where the vector representation of a sentence is simply the average
of the word embeddings of all the words in a sentence. For our experiments, word
embeddings are used with only the neural network models, to determine if they can be
used to improve performance over the baseline models using bag of words-based vec-
tors. This is because the machine learning classifiers do not work with the dimensions
of the word embeddings, and would require them to be reshaped. However, reshaping
word embeddings would result in the representations of words in the defined vector
space being lost. An alternative approach would be to use a document representation
such as doc2vec,” however, this was not attempted due to time constraints.

2.4 Classifiers

2.4.1 Naive Bayes classifier

The Naive Bayes classifier is commonly used in text classification applications such
as email client spam filtering, and is equally applicable to multi-class classification
problems. The comprehensive overview provided by Raschka [60] is summarised here.
This is the baseline model used by Mencia and Furnkranz [48], who compiled and
experimented with the EURLEX dataset.

The Naive Bayes classifier is a linear classifier based on Bayes’ theorem, which is:

P(B|A) - P(A)

PUAIB) = ==

(2.10)

given two events, A and B, and where P(B) # (. Alternatively, we can define Bayes’
theorem in words:

conditional probability - prior probability

posterior probability = (2.11)

evidence

Extended to the text classification context, Bayes’ theorem can be formulated as such:

4 See https://spacy.io
5 See https://radimrehurek.com,/gensim,/models/doc2vec.html
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P(xilc;) - P(c;)
where x; is the vector obtained after feature extraction from text sample ¢, 7 €

{1,2,...,n}, given n is the total number of samples; and where ¢; denotes class j,
j€C,and C ={1,2,..20} in our case.

P(cjle;) =

(2.12)

However, Bayes’ theorem only holds true given the naive assumption, or the con-
ditional independence assumption, that the occurrence of every feature (i.e. in our
case, every word) in a sample is independent of all other features.

This assumption is patently violated in most contexts, hence its characterisation as
a ‘naive’ assumption. It is also violated in most textual datasets, and in particular
in the EURLEX dataset, e.g. the bi-gram ‘European Union’ occurs repeatedly, thus
the frequency of occurrence of the feature representing the word ‘European’ is not
independent of that of ‘Union’. However, we still choose to examine the performance
the classifier as it has been shown to perform well in conditions where the assumption
is violated [61], and even outperforms more complex models where sample sizes are
small [15].

Broadly, this formula can be used for our multi-class text classification task: given
a vector x;, the formula can be used to find the probability of the vector belonging
to the class ¢;. Repeated over all classes of j, j € {1,2,...20}, the class ¢; which the
vector x; belongs to is the class with the highest probability. Thus, we can compute
the posterior probability:

P(cj|x;) = argmax Plwile;) - Ple;)
c;eC P(I‘J
This can be further simplified; given that we are largely concerned with the class ¢; to
which a vector x; belongs, the denominator P(z;) will remain the same for all values
of j, thus merely serving as a scaling factor, and can be ignored for the purposes of
defining our classifier. Thus, we have our simplified decision rule:

(2.13)

P(cj|z;) = argmax(P(x;|c;) - P(cj)) (2.14)

CjEC

Given the above, we can compute the general probability of encountering a particular
class, or the prior probability, simply by finding the number of samples belonging to
the class j as a proportion of the total number of samples, n:

Ne,

P(c;) = (2.15)

n

Next, the conditional probability, P(x;|c;), must be found. We can compute the prob-
ability that we will observe a certain vector x; given that we know that it will belong
to the class ¢;, by multiplying the probability of each feature of that vector occur-
ring in that vector (recalling that this holds because of the conditional independence
assumption). Thus, for a vector z; of dimension d:
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d
P(xile;) = P((z)ile;) - P((wi)ales) - .. - P((ai)ele;) = [ [ P((@i)rles) (2.16)
k=1

Calculating the individual probabilities of each feature in our case entails calculating
the probabilities of each word occurring, by dividing the number of times the word &
appears in the class ¢; by the total number of words in the class ¢;:

N(z) )

Ne;

P((xi)elc;) = (2.17)
where n(z,), ., is the number of times the k-th word of vector z; appears in class c;,
and n,, is the total number of words in the class ¢;. Multiplying all the probabilities
for every word in a vector z; thus returns the conditional probability P(x;|c;), which
is the probability that we will observe a certain vector z;, given that we know that it
will belong to the class c;.

Thus, given all of the above, we can apply the decision rule above to unseen samples,
to find the class that the sample is most likely to belong to based on the application
of this classifier. Where there are words in the test samples which are not seen in the
vocabulary of the training samples, to avoid having zero probabilities, smoothing can
be used. Denoting the value added to both the numerator and denominator of the
posterior probability as «, this is called Laplace smoothing where a = 1, and Lidstone
smoothing where o < 1. Thus, Equation 2.17 becomes:

M(z)y,c; T

s (2.18)
Cj

P((zi)klc;) =
Overall, the Naive Bayes classifier is regarded as a linear classifier [36], and performs
better the more the conditional independence assumption holds true, and the more the
data is linearly separable.

2.4.2 Decision tree

The decision tree classifier is a non-linear classifier which learns a set of decision rules
from training data. Starting with all the training samples at the root of the tree, the
classifier splits the data into smaller subsets based on a decision rule. The aim of the
decision rule is usually to split the data according to the division which will minimise
or maximise some function, such as Gini impurity or information gain [64], both of
which will be experimented with. Each splitting point is termed a node, and branches
emerge from each node with the possible outcomes based on the decision rule at that
node. The process continues until all the data is classified, and at this point, all the
nodes are called leaves.

Gini impurity measures the frequency with which a randomly selected sample from
the set of samples remaining at a node would be labelled incorrectly, if it was labelled
randomly following the distribution of labels in the subset returned by the decision
rule [23]. The decision rule which results in the greatest reduction to gini impurity
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is chosen as the splitting rule. Information gain, on the other hand, is based on an-
other measure, entropy, which effectively measures to what extent the samples in a
set belong to the same class. At each node, the decision rule which then results in the
greatest homogeneity in terms of class distribution of samples in the subset is then
taken to be the most useful decision rule for that node.

Decision trees are prone to the problem of overfitting [64], and to prevent this, we
will aim to tune the hyperparameters of the classifier by setting the maximum depth
of the tree and also the minimum number of samples in each leaf node.

One key advantage of decision trees is that unlike ‘black box’ neural models, deci-
sion trees can be visualised and the exact rules on which splits are determined can
be analysed. Thus, a visualisation of a decision tree will be provided to analyse the
decision rules of the tree, even if the classifier does not perform as well as other models.

2.4.3 Random forest

The random forest is an ensemble machine learning method, i.e. it makes predic-
tions based on a combination of several classifiers which are individually trained, but
whose predictions are combined when classifying unseen samples. The random for-
est is based on multiple decision trees. The process of bootstrap aggregating can be
applied, in which subsets of the training set are sampled with replacement, and indi-
vidual decision trees are fit to these subsets. The intuition is that this should reduce
the likelihood of overfitting. In addition, in each individual decision tree, the random
subspace method is used: only a subset of all the available features are taken into ac-
count in determining the splits at each node, to reduce the correlation between trees.
The predictions of these individual trees are then averaged [40].

As the intuition is that the ensemble should be more accurate than any of the single
classifiers which make up the ensemble model, the expectation is that the random for-
est will result in a better performance than a single decision tree [40]. As with decision
trees, the hyperparameters of a random forest classifier can be tuned, by, among other
things, setting the maximum depths of trees or the maximum number of features to
take into account at each node.

2.4.4 Logistic regression

The next classifier considered is multinomial logistic regression, a log-linear classifier
[36]. A log-linear classifier is considered a generalised linear classifier, because its
outcome depends on the sum of its inputs and parameters [59]. Again, the aim is to
learn, from the training set, the mapping function f which maps an unseen input X,
which is a vector of features, to a class C;. The classifier achieves this by first learning
from the training set a vector of weights, w and a bias, b. This can be represented by
a variable, z, thus:

z=w-X+Db (2.19)
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where each number in the vector w corresponds to a feature in the input sample X,
and represents how important that feature is to the classification decision. The bias b
shifts the function to ensure that it does not necessarily have to intersect the y-axis at
the origin, as the data may not necessarily be best separable by a function that passes
through the origin.

However, our text classification task requires a probability (denoting the likelihood
of a sample belonging to a certain class) as an output. Thus, it is passed through the
softmax function:

e

S e

J

(2.20)

softmax(z) =

where the numerator e is the exponential function applied to each element of the
input vector z, and the denominator normalises all the values to probabilities. Thus,
the function results in a vector output which represents a probability distribution
over j classes, where j = 20 in our case, where all the elements of the vector sum
to 1, and the value of j with the highest probability in the vector is taken to be the
output class for the purposes of the classifier. We denote this predicted output class C..

In order to learn the values for w and b in Equation 2.19, a loss function is mea-
sured, representing the distance between the expected output C; and the predicted
output C;. The aim is to find the weights and biases which minimise the categorical
cross entropy loss function (see Equation 2.23) through the process of gradient descent
over a number of iterations.

2.4.5 Support vector machines

With the vectors obtained from feature extraction from our text samples, we can ob-
tain the mapping of the feature vectors in our feature space. The support vector
machine is a linear classifier which aims to find the optimal hyperplane which can
separate the feature vectors in our multi-dimensional feature space. However, for a
given set of data, there can be many possible hyperplanes that can separate the data,
so the key question is how to define the optimal hyperplane. In other words, we need
a method to find the hyperplane that best classifies the training data, and generalises
best on the unseen test data.

For each separating hyperplane, it is possible to calculate the distance between that
hyperplane, and the data points (i.e. the support vectors) closest to the hyperplane.
The number of support vectors can be chosen. The distance between the support vec-
tors and a hyperplane is the margin. The SVM classifier is thus the classifier that is
based on the hyperplane that results in the maximum distance between the hyperplane
and the support vectors, i.e. the mazimum-margin hyperplane. In a seminal article,
Joachims [35] demonstrated that the linear SVM performs well on text classification
tasks.
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However, as noted above, the SVM is a linear classifier. It is possible to also adapt the
SVM to work as a non-linear classifier, by using a kernel function, as proposed by Aiz-
erman et al. [1]. Crudely summarised, the function is used to project each data point
in a dataset which is not linearly separable to a higher-dimension feature space, in
which it then becomes possible to fit a maximum-margin hyperplane, i.e. in which the
data becomes linearly separable. Some common kernel functions used are the radial
basis function (RBF), the sigmoid function, and the polynomial kernel function. In
the Scikit-learn implementation which we will use, the functions also take a coefficient
which affects how the ‘shape’ of the data is captured.®

We recognise at the outset that, as Hsu et al. [30] note, where there are many fea-
tures in the dataset, as in our present case, the feature space will already have many
dimensions, and mapping the data to a higher dimensional space will not improve
performance.

In our case, the performance of both linear SVM and non-linear SVM with a ker-
nel function chosen by random search are reported, in order to illustrate the difference
between their performance on the EURLEX dataset.

2.4.6 k-Nearest Neighbours

The performance of the k-NN classifier is also reported as it is a popular algorithm for
text classification [72]. Specifically, Trstenjak et al. [72] report results using k-NN with
TF-IDF feature extraction, however, in our case, we report performance on both the
count vectorizer and the TF-IDF vectorizer, with classifications based on the 5-nearest
and 10-nearest neighbours.

Similar to the case of a SVM, we refer to the mapping of the feature vectors in our
feature space. Each feature vector can also be termed a point, and the feature space
can also be termed the Fuclidean space.

Each unseen sample can then be plotted as a point in the Euclidean space. It is
then possible to calculate the Fuclidean distance between the unseen sample point
and its k-nearest points, where k is some positive integer representing the number of
neighbouring points we want to take into consideration for our classification, e.g. 5.

Given two points in a m-dimensional space, A = (z1, xa, ..., T,) and B = (y1, Y2, ---Ym),
the Fuclidean distance between them can be calculated as such:

dist(A, B) = \/221(2 )’ (2.21)

In k-NN classifiers, it is common to use the Euclidean distance to measure the distance
between points in the Fuclidean space, but other measures are possible. We experi-
ment with both uniform distance, where the distance of all neighbouring points to a

6 For detailed explanation, see https://scikit-learn.org/stable/auto_examples/svm/plot_rbf parameters.html
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sample are weighted equally, and inverse distance, where points are weighted by the
inverse of their distance to the sample, thus the closer neighbouring points will have
a greater impact on classification than those points further away.

In addition, it should be noted that the k-NN classifier is a lazy learner, as opposed to
an eager learner such as the Naive Bayes classifier [60]. Thus, as Trstenjak et al. [72]
note, it is not necessary to split a dataset into training and test sets for the purposes
of the k-NN classifier. However, for consistency with the other classifiers, the dataset
is split in a 80:20 proportion, and the accuracy of the k-NN classifier is measured on
the test set.

The performance of the k-NN classifier is specifically included also as it is a non-
linear classifier, and allows a general comparison between the success of linear and
non-linear classifiers on the EURLEX dataset. Further, Trstenjak et al. [72] run their
k-NN model on different sources of text data, from ‘sport’, ‘politics’, ‘finance’, and
‘daily news’, and show that the performance of the classifier can show a fairly large
variation, from 65% to 92% accuracy, depending on the type of textual document.
Thus, given that the EURLEX dataset is specifically a dataset of legal texts, the
performance of the k-NN classifier specifically on texts from legal sources is also of
interest.

2.4.7 Multilayer perceptron
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o e

Hidden Layers

Figure 2.1: Multilayer perceptron, showing fully connected feedforward hidden layers

The MLP is a feedforward neural network, consisting of an input layer, one or more
hidden layers, and an output layer, as shown in Figure 2.1. In general, each neuron
in a layer is fully connected to the neurons in the next layer. Similar to other models,
the model is trained on a labelled training set. The aim is, as per usual, to learn the
mapping function f which maps takes an unseen sample vector X to a predefined class
C;. As with logistic regression, the classifier learns a set of weights and biases in the
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hidden layers, updating them over several iterations with a gradient descent approach
specifically termed backpropagation, by minimising the loss function.

The connections between the layers of a MLP do not form a cycle, unlike in some
other neural network architectures. The input to neurons are also transformed by ac-
tivation functions. Using linear activation functions across hidden layers would mean
that all the layers in the network can simply be reduced to a single linear input and
output mapping, making the network equivalent to a linear perceptron. To allow the
network to learn non-linear relationships in the data, in the present case, for each
hidden layer, the activation function used is the rectified linear unit (reLU). The reLU
function is partly linear and thus called a piecewise linear function, however, the over-
all effect is that it makes the network a non-linear one. Its use as an activation function
in neural networks is popularised by Glorot et al. [19], and is given by:

reLU(x) =z if x>0, else 0 (2.22)

Its popularity partly stems from the fact that it has been shown to avoid the vanishing
gradient problem which the sigmoid activation function may face. Given that the task
is a multi-class classification task, the output layer is a softmax layer, as per Equation
2.20, and categorical cross entropy is used as the loss function, a generalisation of the
cross entropy function:

LX®D, @) = =3~ XPlog(Cy)) (2.23)
k

where C® is the classification given by the model, and X is the input to the model,
and k represents the number of classes (i.e. 20 in our case).

Thus, as the MLP is a basic feedforward neural network, its performance is reported
to facilitate comparisons with other more complex deep learning models.

2.4.8 Convolutional neural networks

CNNs, designed by LeCun et al. [42], have traditionally been used for computer vision,
but have also shown strong results on text classification and other NLP tasks [10, 33].
The overview of CNNs provided by Goodfellow et al. [22] is crudely summarised and
adapted to our context here. CNNs differ from feedforward neural networks in several
ways.

First, it should be noted that convolution refers to the mathematical operation, de-
noted by an asterisk. Thus, given an input, X, and a weighting function or kernel, W,
at time ¢, we can apply the convolution function, to obtain an output, s:

w(t) = (X = W)(t) (2.24)

A layer in a neural network which uses the convolution function can thus be described
as a convolutional layer. In a convolutional layer, neurons are also often connected
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only to a restricted area, the receptive field, of the previous layer, because the kernel
will have sparse weights, i.e. the kernel will be smaller than the input. The result of
applying a convolutional layer is that given an input, X, we can obtain a feature map,
the output w. The practical effect of this is that certain specific features of the input
X are extracted. What exactly is extracted depends on the kernel used, W.

In addition, while in a feedforward network each element of the weights in a layer
are multiplied element-wise to its input to obtain its output, the weights in a convolu-
tional layer are shared or tied, i.e. the weights W are the same across the neurons in
a convolutional layer. As with feedforward networks, a non-linear activation function
is applied to each layer as well. Again, in our case, the function used will be reLU
(Equation 2.22).

Finally, the output from the activation function is also modified further, with a pool-
ing function. The effect of pooling is to downsample, or summarise, certain features
within a region in a feature map. This downsampling can be done through taking
the average of the features within a region in a feature map, in which case it is called
average pooling, or through taking only the maximum of the features in a region, i.e.
max pooling. Further, instead of focusing on a specific region, the pooling operation
can be done on an entire feature map, e.g. global mazx pooling. The purpose of pooling
is to make the network invariant to small changes in the input, so if the values of the
input change by some small amount, the output of the pooling layer will remain the
same.

In practice, perhaps the most common use of CNNs is with image data. Feature
maps are used to extract specific objects or edges (i.e. the outlines of an object) in
an image. Pooling ensures that the network is not sensitive to the particular loca-
tion of an object in an image; for example, if the network has learned the shape of
a dog, it can then detect the presence of a dog in an image, regardless of where in
the image the dog is located, or if a dog in one image looks slightly different to another.

The use of CNNs was extended to the NLP context by Collobert and Weston [10].
In the context of text classification, feature maps are used to focus on specific tokens
which are important to the classification task. In addition, pooling is used with the
same intuition as in images: tokens which provide clues as to the actual label of a
sample remain informative, regardless of where they appear in the sample.

This was taken further by Kim [37], based on the idea of n-grams. In NLP, an n-
gram is simply a contiguous sequence of n tokens appearing in a text: a l-gram or
uni-gram is a single token, a 2-gram or bi-gram could be e.g. ‘European Union’, and so
on. The idea is that applying layers with varying n-sized filters will be able to capture
the most important n-grams for the purposes of the classification task. In our case,
we will experiment with a basic CNN as well as a CNN based on Kim’s architecture,
with tri-gram, 4-gram and 5-gram filters.
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Figure 2.2: Diagram of a CNN with 1D convolutional layer, showing filters and strides

Concretely, we can summarise the vector transformations in a CNN. The following
explanation is based on Goldberg [20], adapted to our context. We have attempted to
represent this diagramatically in Figure 2.2. As usual, our input X is a sequence of n
tokens, thus X = {1, xs,...z,}. Each token z; € X has a word embedding, a vector
v(x;). Next, we have a 1D convolutional layer of size k, which has some number of
filters. We move each filter across the sample; how much we move it by is called its
stride; thus a filter of size k = 2 and stride length 1 will capture (v(z1),v(x2)), then
(v(x2),v(x3)) and so on, up to v(x,). The effect of the filter, applying convolutions
(Equation 2.24), is to transform the & tokens into a d-dimensional vector, w;, which
has focused on the important properties of the tokens in that window. To each output
w; we apply our network’s weights W and biases b (which are updated as usual with
backpropagation), and the non-linear activation function. We denote the output of
this transformation p;. Hence:

pi = reLU(w;W + b) (2.25)

where, if we slide the window over the sample m times, we get m vectors (p1, pa, ...Pm)-
We then apply a max pooling layer to each of the m vectors, obtaining m vectors
(c1,ca,...c,) of a reduced dimension, which are then concatenated to form a single
vector c:

¢ = max p;[j] (2.26)

1<i<m

where p;[j] is a component j in the vector p;, i.e. a specific region of the window.
Alternatively, after a convolutional layer, we can apply a global max pooling layer
instead, which samples the entire vector p; instead of some region j, hence:

¢ = max p; (2.27)

1<i<m

In our case, we use both max pooling and global max pooling layers after convolutional
layers. Lastly, again, the final layer for our task is a softmax layer, and the loss function
is the categorical cross entropy loss function.
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2.4.9 Recurrent neural networks

RNNs are generally used to process data in the form of a sequential input (x1, zo, ...x,).
Of course, textual data is sequential in nature: words are formed from a series of alpha-
bets, sentences from words, and documents from sentences; thus, RNNs are a natural
candidate for NLP tasks. The following summary of RNNs is based on Olah [54].

The intuition behind the RNN is that a traditional feedforward network does not
have persistent memory. This problem is relevant to us: it means that a network can-
not use what it has learned in a certain section of a sample, e.g. in the introduction
of a sample of legal text, where the subject matter may be introduced in context,
to inform its learning about a later part of the sample. RNNs aim to alleviate this
problem. Specifically, where neurons in a feedforward network only have connections
to the next layer, i.e. they only ‘feed forward’, neurons in RNNs have loops.

However, in a basic RNN architecture, if the point at which relevant information ap-
pears is very far away in a document to the point at which the information is needed,
i.e. the network needs to learn a long-term dependency [26], the RNN may not be
able to connect the information. Specifically, Bengio et al. [2] explain that there are
problems when training such a network with gradient descent, such as the vanishing
gradient problem. Again, this problem is specifically relevant to us, given the length
of legal documents as compared to e.g. an IMDB or Twitter dataset. However, a
specific kind of RNN, a long short-term memory network (LSTM), first designed by
Hochreiter and Schmidhuber [25], can be used to avoid this problem.

Broadly, LSTMs are made up of units, each of which has a cell and has gates. A
cell has a state which can be regulated by a gate. There are several types of gates,
such as a forget gate which uses a sigmoid function (resulting in an output between
0 and 1) to describe how much input is let through the gate (where 0 means ‘forget
everything’). Once some portion of the information has been let through, it passes
through another sigmoid layer, the input gate, which decides which weights are up-
dated. Finally, the output can also be passed through a tanh layer, the output gate,
which serves as another form of filter.
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Figure 2.3: Diagram showing difference between LSTM and bi-LSTM (Figure 3, [50])

Thus, in effect, the LSTM cell’s state preserves useful information from input that
has passed through it. But one possible shortcoming of this is that it only preserves
information from the past with reference to a specific point in time, i.e. for a given
sample X of n tokens, X = (x1, s, ...x,), the inputs are passed into the network in
the order z, followed by x5, and so on. As a result, e.g. at time t = 2 the cell
state only has information about x;, and so on. To allow the cell state to also preserve
information from the future at a certain point in time, another LSTM layer is added to
the network, but running in the opposite direction, as shown in Figure 2.3. The input
X is passed into this additional LSTM in the opposite order, i.e. (z,,z,_1,...x1). This
allows the network to obtain information from the past and future simultaneously, thus
at time t = 2, the network will have information about both z; and x,,. The intuition
is that this will allow the network to better determine which information to retain in
memory. For our purposes, we experiment with both a uni-directional LSTM, as well
as a bi-directional LSTM to determine if the latter will improve performance.

2.4.10 Hierarchical attention network

Finally, the last classifier we will consider is the HAN, developed by Yang et al. [76].
This section is informed by Krankel and Lee [39]. The HAN is based on two broad
ideas: first, that documents have an underlying hierarchical structure; words form
sentences, and sentences put together form a document. Thus, we should not only
work with word embeddings or sentence embeddings, but find a means to capture this
hierarchical structure. Second, each word and sentence in a document is useful to a
network in performing its task to a different extent. Thus, the network should pay
more attention to some words and sentences than others.

As we are working with word embeddings and sentence embeddings individually, we
decided to implement a HAN to determine if it would in fact improve on the perfor-
mance of using word or sentence embeddings on their own. In addition, Yang et al. [76]
develop their HAN for a document classification task, making it particularly relevant
for our present case.
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Figure 2.4: Structure of a HAN, with 4 hierarchical layers (Figure 2, [76])

The HAN is broadly comprised of 4 parts (excluding the standard softmax output
layer), in the following order: the word encoder, word attention layer, sentence en-
coder, sentence attention layer. Its structure is shown above, in Figure 2.4. The word
and sentence encoders are bi-directional gated recurrent units, which are a variant of
LSTMs with only two gates, an reset gate (which effectively performs the functions
of an input gate and a forget gate) and an update gate. Therefore, crudely put, the
encoders are simplified bi-LSTMs. Their aim is to summarise the contextual informa-
tion of the words or sentences passed into the network as input, and return a vector
representation of what it has learned from each word or sentence, by concatenating
the states of the forward GRU and the backward GRU.

This vector output, which is a summary of the input sample, is then passed to an
attention layer. This consists of two parts: a multilayer perceptron with one hidden
layer using a tanh activation and randomly initialised weights and biases; and a soft-
max function which serves to normalise the vector. The point of this layer is to capture
the most important information to the task at hand from the vector.

Having discussed the constituent parts of the HAN, we can summarise its pipeline.
A raw text sample, X, a document consisting of several sentences, is passed into the
network. The input is split, sentence-wise, by a sentencizer. Each sentence is then split
into individual tokens by the word encoder, which vectorises each token, and passes it
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to the word attention layer, which modifies the vector by passing it through a one-layer
MLP. The word vectors of all the words forming a single sentence are concatenated to
form a sentence vector, and passed in to the sentence encoder. The same process is
repeated at the sentence level, and the output of multiple modified sentence vectors is
concatenated to form a document vector. We can then pass each document vector to
the usual output layer, a softmax layer, to obtain a classification.

It should in particular be noted that for the previous models discussed, we pass in
pre-trained word or sentence embeddings into the model in each case. However, in the
case of the HAN, the raw text is passed in as input. The point of the encoder is to
capture the most important contextual information from a given input, thus it returns
a vector representation for each word or sentence passed in, i.e. a word or sentence
embedding.
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Chapter 3
The EURLEX Dataset

3.1 Structure of the EUR-Lex database

The dataset used for the purposes of this project was compiled by Mencia and Furnkranz
[48] (the ‘EURLEX dataset’)”, and was compiled from the publicly available EUR-Lex
portal®. European Union law in general can be divided into, among other things, pri-
mary and secondary legislation. The former refers to the documents which relate to
the formation of the European Union itself, such as the EU treaties, while the latter
consists of the documents which affect the citizens of the EU more directly. The EUR-
Lex portal consists of both primary and secondary legislation. These are divided into
three sections: ‘EU law’, ‘EU case law’, and ‘National law and case law’. Within ‘EU
law’, there are 8 sub-classes, as shown in Figure 3.1. The EURLEX dataset consists
specifically of texts from ‘Legal acts’, a form of secondary legislation.

EUR-LEX
Portal
|
| | 1
National law
EU law EU case law and case law
[ | I T T T I |

Treaties Legal acts Consolidated International Preparatory EFTA Lawmaking Summaries of
& texts agreements documents documents procedures EU legislation

Figure 3.1: Structure of the EUR-Lex portal, with ‘legal acts’ boxed in red

3.2 The EUR-Lex paper

Although the task for this project has been modified to be slightly different to that of
Mencia and Furnkranz [48], the approach taken in their paper will be briefly discussed.
They first retrieved the HTML documents by scraping the EUR-Lex portal for all the

" The full repository is available at http://www.ke.tu-darmstadt.de/resources/eurlex
8 See https://eur-lex.europa.eu/homepage.html
Data reused with permission. (‘© European Union, https://eur-lex.europa.eu, 1998-2019’)
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legal acts available at the time of publication of their paper (2010).°

Each of these documents have been labelled by the European Union in three dif-
ferent ways: EuroVoc descriptor!?, subject matter and directory code (as in Figure
3.2). Each document has at least one label from each of the three categories, but can
have multiple labels. This resulted in a total of 4,558 possible classes. Thus, Mencia
and Furnkranz [48] termed their task an ‘eztreme multi-label multi-class text classifi-
cation’ task, given the objective of classifying documents according to 4,558 possible
classes.

Title and reference
Council Directive 91/250/EEC of 14 May 1991 on the legal protection of
computer programs

Classifications

EUROVOC descriptor
— data-processing law, computer piracy, copyright, software, approxima-
tion of laws
Directory code
— 17.20.00.00 Law relating to undertakings / Intellectual property law
Subject matter
— Internal market, Industrial and commercial property

Text

COUNCIL DIRECTIVE of 14 May 1991 on the legal protection of computer
programs (91/250/EEC)

THE COUNCIL OF THE EUROPEAN COMMUNITIES,

Having regard to the Treaty establishing the European Economic Community
and in particular Article 100a thereof,

Having regard to the proposal from the Commission (1),

In cooperation with the European Parliament (2),

Figure 3.2: Example of raw HTML document [48]

For ease of reference, an example of a HTML document provided by the authors is
reproduced here. From the HTML documents, the authors extracted the ‘Text’ sec-
tion of the documents. Each HTML document has its own CELEX ID, the EUR-Lex
portal’s internal ID system. However, the authors numbered the documents according
to the alphabetic ordering of the CELEX IDs. They then removed from the dataset
those documents which were not in English, contained error messages, or were empty,
resulting in 19,348 samples. They provide a file containing the mappings of each doc-

9 Available at http://www.ke.tu-darmstadt.de/files/resources/eurlex/eurlex-download-.EN_-NOT.sh.gz
10 For the full EuroVoc thesaurus, see https://eur-lex. europa.eu/browse/eurovoc. html
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ument to the different classifications extracted from the HTML documents.!!

Once this was done, they could then proceed with the standard text classification
pipeline described in Section 2.2, i.e. preprocessing. They transformed each text to
lower case, removed stop words from a common English stop word list,!? and then
applied the Porter stemming algorithm.

Mencia and Furnkranz [48] then proceed with the next steps as per the pipeline in
Section 2.2, feature extraction and model selection. For feature extraction, they use
TF-IDF vectorization. As a baseline model, they use the multinomial Naive Bayes
classifier, and they compare its performance with the multilayer perceptron. All of
these methods will be considered in this project (see Section 2.4), although they train
a multilabel variant of the perceptron, which will not used (as will be noted below,
the current project will not be a multilabel task). They report performance of these
classifiers on several metrics: the ‘is-error loss’, ‘one-error loss’, ‘ranking loss’ and av-
erage precision. Only the latter metric will be used in this project, as the others relate
only to the multilabel task.

3.3 Filtering the dataset

Having described the approach of the authors who compiled the EUR-Lex dataset,
the focus will now be on the methods used in the current project. Our starting point
is the full set of raw HTML documents scraped from the EUR-Lex portal by Mencia
and Furnkranz [48].3

Although each document is classified in three different ways, the label of interest for
this project is the directory code. Directory codes are organised in a 4-tier hierarchical
structure, with 20 classes at the highest level, up to a maximum of 401 different classes
at the lowest level. Each document must have at least one (and can have more than
one) directory code at the highest tier, but may or may not have directory codes at
the lower tiers.

11 Available at http://www.ke.tu-darmstadt.de/files /resources/eurlex/eurlex_id2class.zip
12 For their full list see http://www.ke.tu-darmstadt.de/files /resources/eurlex/english.stop

13 Available at http://www.ke.tu-darmstadt.de/files /resources/eurlex /eurlex_download_EN_NOT.sh.gz
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A Python script is first written based on the BeautifulSoup parsing library to parse
the body text of each raw HTML document based on their HTML tags.'* Each doc-
ument is then matched with its directory code(s), but only at the highest tier. For
the avoidance of doubt, the relevant sections of each raw HTML document have been
highlighted in Figure 3.3, and the rest of the information is ignored. Similar to the
approach taken by Mencia and Furnkranz [48], the documents not containing text,

Title and reference
Council Directive 91/250/EEC of 14 May 1991 on the legal protection of
computer programs

Classifications

EUROVOC descriptor
— data-processing law, computer piracy, copyright, software, approxima-
tion of laws
Directory code
- 20.00.00 Law relating to undertakings / Intellectual property law
Subject matter
— Internal market, Industrial and commercial property

Text

COUNCIL DIRECTIVE of 14 May 1991 on the legal protection of computer
programs (91/250/EEC)

THE COUNCIL OF THE EUROPEAN COMMUNITIES,

Having regard to the Treaty establishing the European Economic Community
and in particular Article 100a thereof,

Having regard to the proposal from the Commission (1),

In cooperation with the European Parliament (2),

Figure 3.3: Specific sections extracted from raw HTML document

containing corrigendums, or not in English are filtered out and discarded.

At this stage, each document has at least one highest-level directory code, but may
have more than one such code. The documents are sorted according to the number
of directory codes each document is labelled with, and the counts are summarised in

Table 3.1.

Number of classes | Count
1 16169
2 2968

3 187

4 12

Table 3.1: Summary of number of classes per sample

14 See extract.py
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Datasets of documents with multiple labels are appropriate for multi-label multi-class
classification tasks. However, the aim of this project is to examine a single-label,
multi-class classification task (as noted in Section 2.1.1, this means each sample has
only one of several possible labels). While it would have been possible to re-categorise
documents having more than one label to any one of those labels, whether arbitrarily
chosen or based on contextual knowledge of the legal subject matter, this was not
considered an appropriate choice. A model may classify an unseen sample (which has
had one or more of its class labels removed) to a certain class based on the features
that sample has, which would have been a correct classification if not for that label
having been removed. This would cause problems with assessing the performance of
the model, and may even affect the mapping learned by the model. Thus, while it is
not ideal to reduce the size of the dataset, all the documents having more than one
label are discarded, and 16,169 samples remain. The data is then prepared and saved
in a format which can easily be loaded into a ‘pandas’ dataframe for analysis.'> We
refer to this modified dataset as the ‘distilled EURLEX dataset’.

3.3.1 Distribution of the distilled EURLEX dataset

Each sample thus has one of 20 possible labels from the classes in the EUR-Lex di-
rectory of legal acts.'® Table 3.2 shows the distribution of samples in each class with
their counts, together with the class descriptions. Figure 3.4 charts the distribution
of samples across the 20 classes.

It is crucial to note at the outset that the dataset is imbalanced, as should be clear
from the following figures. This will greatly affect the choice and analysis of perfor-
mance metrics when critically evaluating models; for example, accuracy may not be
the most useful metric in the case of an imbalanced dataset [69] (as noted in Section
2.1.5). In our case, samples in classes 3 and 11 form approximately 53% of the dataset,
thus any model which can only accurately classify samples in those classes can already
achieve 53% accuracy.

15 See data.csv
16 For the full list, see https://eur-lex.europa.eu/browse/directories/legislation.html
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Class | Count | Description

1 698 General, financial and institutional matters

2 599 Customs Union and free movement of goods

3 4798 Agriculture

4 486 Fisheries

5 298 Freedom of movement for workers and social policy

6 156 Right of establishment and freedom to provide services
7 429 Transport policy

8 1227 Competition policy

9 200 Taxation

10 267 Economic and monetary policy and free movement of capital
11 3743 External relations

12 197 Energy

13 997 Industrial policy and internal market

14 432 Regional policy and coordination of structural instruments
15 617 Environment, consumers and health protection

16 154 Science, information, education and culture

17 64 Law relating to undertakings

18 415 Common Foreign and Security Policy

19 386 Area of freedom, security and justice

20 6 People’s Europe

Total | 16169 | Total number of samples

Table 3.2: Distribution of samples and class descriptions
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Figure 3.4: Chart showing distribution of samples

3.4 Analysis of the distilled EURLEX dataset

In this section, some further analysis of the dataset is provided, such as the most com-
monly occurring tokens in each class, and the average number of tokens and sentences
per sample.!” The aim of this is to provide information which can later be used in
analysis, especially when providing hypotheses to explain the performance of ‘black
box’ neural network models. As noted in Section 1.1, these characteristics of legal doc-
uments are particularly important, as they differentiate the task of text classification
from that of analysis of an IMDB or Twitter dataset.

For the avoidance of doubt, an explanation of the calculation of these counts fol-
lows. Each sample in the dataset is preprocessed (for the detailed steps, see Section
4.2). Each sample can be split into sentences using the spaCy sentencizer. Each sam-
ple or sentence can also be split into tokens using the spaCy tokenizer. From this, the
following calculations are provided, rounded off to the nearest integer:

total number of tokens in Class C;

average token count per sample in Class C; = -
g b P total number of samples in Class C;

17 See dataset.py
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total number of sentences in Class C;

average sentence count per sample in Class C; =
I b b total number of samples in Class C;

total number of tokens in Class C;

average token count per sentence in Class C; =
g b ' total number of sentences in Class C;

Class | Tokens per sample | Sentences per sample | Tokens per sentence
1 1835 326 6
2 1015 127 8
3 851 121 7
4 852 121 7
5 1438 147 10
6 2468 235 10
7 1720 216 8
8 4466 442 10
9 767 75 10
10 1108 112 10
11 1176 146 8
12 922 105 9
13 2184 334 7
14 1532 172 9
15 1496 253 6
16 885 79 11
17 1969 194 10
18 714 84 9
19 1172 133 9
20 620 56 11

Table 3.3: Summary of average counts of samples in each class

Thus, while there is some variation in the numbers of tokens and sentences per sample
across classes, it is not clear that a classifier will be able to accurately classify samples
to certain classes simply based on the length of a sample, perhaps with the exception
of samples from Class 8. In addition, to provide an overview of the vocabulary across
the samples in the dataset, the top 20 most commonly occurring tokens in each class
are compiled in Table 3.5. At first blush, it is also clear that the samples across classes
share many tokens. We provide a few additional counts in Table 3.4, which we will
refer to later.
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Statistics from the entire dataset
Average tokens per sample 1441
Number of tokens in longest sample 281204
Number of unique tokens in training set | 261737
Number of unique tokens in test set 223842

Table 3.4: Additional information measured from the entire dataset

Class 20 most common tokens in each class

shall, article, 1, european, commission, 2, appropriation, 3, council, member, regulation, decision, commitment, payment, financial, community, committee, p.m., 4, p.

article, shall, 1, regulation, 2, good, community, product, custom, use, 3, member, commission, authority, annex, code, tariff, eec, import, apply

article, shall, 1, regulation, 2, commission, member, community, 3, product, directive, 1, p., 0j, annex, ec, decision, states, animal, 4

shall, regulation, article, 1, vessel, fishing, member, commission, ec, 2, community, 3, states, catch, annex, fishery, oj, p., state, I

shall, member, article, 1, 2, regulation, benefit, state, person, institution, work, social, worker, 3, states, legislation, european, commission, employment, provision

shall, member, article, directive, state, authority, 1, undertaking, states, 2, competent, provide, provision, information, 3, institution, insurance, service, commission, contract

0v

shall, article, 1, member, 2, commission, regulation, ship, state, 3, use, states, service, provide, directive, community, system, authority, transport, x

market, commission, aid, article, price, 1, state, agreement, product, company, party, decision, case, member, provide, million, service, cost, regard, measure

O OO U x| W=

article, member, shall, 1, directive, tax, states, 2, good, community, council, state, 3, commission, person, supply, duty, apply, regard, value

10 article, shall, member, council, 1, european, states, economic, euro, programme, gdp, rate, market, 2, policy, commission, government, deficit, 3, regulation

11 shall, article, agreement, community, 1, product, 2, european, regulation, commission, council, annex, decision, 3, party, I, member, import, p., 0j

12 shall, article, commission, energy, 1, member, 2, community, material, treaty, nuclear, states, european, party, 3, report, decision, use, state, measure

13 shall, 1, directive, 2, article, test, use, member, type, annex, 3, vehicle, product, commission, 4, european, (c), states, 5, approval

14 article, regulation, shall, commission, project, 1, community, member, state, assistance, financial, 2, eec, decision, expenditure, document, 3, single, programming, measure
15 shall, article, 1, member, directive, commission, community, 2, states, e, use, n, product, 3, annex, regulation, information, european, council

16 european, community, member, council, programme, commission, states, action, information, education, shall, article, 1, training, decision, 2, cultural, cooperation, development, activity
17 shall, article, 1, member, mark, community, 2, trade, office, application, 3, right, company, directive, states, audit, state, regulation, provide, registration

18 shall, article, european, 1, council, union, 2, member, regulation, eu, 3, operation, states, commission, action, decision, security, staff, annex, republic

19 shall, member, article, state, states, 1, european, 2, convention, council, decision, national, 3, authority, visa, information, (c), accordance, person, union

20 member, state, european, national, passport, article, states, 1, shall, community, union, page, candidate, right, residence, vote, citizen, 2, stand, people

Table 3.5: Top 20 most commonly occurring tokens in each class (ordered by frequency).
This is provided for an overview of some common examples of words which may occur in each class.
We can observe that many tokens appear in most or all of the classes,
thus TF-IDF vectorization may prove to be an effective form of feature representation.
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3.5 Dataset visualisation

Here, we provide visualisations of the distilled EURLEX dataset.!® As the count vec-
torizer and TF-IDF vectorizers result in different features, visualisations for both are
provided. To generate these visualisations, we fit and transform the vectorizers on all
the samples in the dataset. This resulted in a dimensionality of 261,737 (the size of
the vocabulary of the entire dataset). Next, we apply latent semantic analysis (LSA)
to reduce the dimensionality to 50D, using the TruncatedSVD tool provided in Scikit-
learn, which works particularly well with sparse vectors, as is the current case. We
then further reduce the dimensionality to 2D, using t-distributed Stochastic Neighbor
Embedding (t-SNE). With the samples in 2D, we produced the visualisations. We use
this two-step dimensionality reduction method as it is the recommended approach for

our case.

From a brief empirical observation of the visualisations which follow, we can observe
some clusters in the data, with, for example, Classes 3 (green) and 11 (blue) being more
prominent, and with Classes 8 and 18 (shades of grey). It should be noted, however,
that most of these are classes with the highest sample counts, per Figure 3.4, thus they
are bound to dominate the visualisation; further, it should also be noted that Class 13
is a similar shade of green, and Class 1 a similar shade of blue (despite experimenting
with multiple colour palettes, it was difficult to choose one which had 20 completely
distinct colours). We note that this is not meant to be an exact representation of the
data in any way, given that the dimensionality has been reduced from 261,737 to 2 (an
over 100,000-fold dimensionality reduction). Rather, the visualisations are provided
merely as a form of reference.

18 See dataset.py
19 See Scikit-learn documentation at
https://scikit-learn.orqg/stable/modules/generated /sklearn.manifold. TSNE.html
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Visualisation of full dataset set with count vectorizer
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Figure 3.5: Visualisation of entire dataset with Count vectorizer for feature representation, with dimensions reduced to 2D with LSA
and t-SNE. Each point on the plot represents a sample. Each sample’s class label is denoted by its colour. There is some evidence of
clustering in samples belonging to the same class.
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Visualisation of full dataset set with tfidf vectorizer
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Figure 3.6: Visualisation of entire dataset with TF-IDF vectorizer. The aim is to show the difference in feature representation which
could result from using a count or TF-IDF vectorizer.



Chapter 4

Experiments

4.1 Overview

In this chapter, we draw a distinction between non-deep learning models and deep
learning models. We refer to the former as ‘machine learning’ models (see Section
2.4.1 to Section 2.4.7) and the latter as ‘deep learning’ models (see Section 2.4.8 to
Section 2.4.10), although by definition all the models considered in this project can be
described as machine learning models. We provide summaries of performance of the
models in both sections separately, as the approach taken to feature representation in
each section differs (count-based vectorizers vs. word embeddings). All models will be
described and evaluated in line with the pipeline described in Section 2.2.

At the risk of repetition, we recall that we denote the dataset D = {X1, Xo, ..., Xn},
where N is the total number of samples, X; is a single sample consisting of one or
more sentences, each sentence consists of one or more tokens, and each token consists
of one or more characters. Each sample X; belongs to only one of k£ possible classes,

Ci € C, where C = {01,02, ,Ck}

4.2 Preprocessing

The first step in the text classification pipeline is preprocessing. For consistency, the
preprocessing steps taken for text input to all models will be the same, unless other-
wise stated. First, each character in each sample X; is lowercased. As noted above,
this is a common standard step in preprocessing in text classification tasks, since it is
assumed that the meaning of a word does not change simply because it is uppercased
or lowercased [73]. In the legal context, however, it must be recognised that capitalised
words in the middle of a sentence may indeed carry a different meaning. For exam-
ple, legislation may appear in the middle of a sentence, such as “Article 100a”. This
refers to a specific Article in legislation, and thus carries a special meaning. However,
looking back to Figure 3.3, we can see that capitalisation is not used consistently in
the EURLEX dataset. Some words in the preamble are completely capitalised, e.g.
“COUNCIL DIRECTIVE”, when they would not be semantically different to ‘Council
Directive’. Similarly, whole phrases in the preamble also tend to be capitalised, such
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as “THE COUNCIL OF THE EUROPEAN COMMUNITIES”, although they may
semantically carry the same meaning when not capitalised. Thus, for consistency, we
employ lowercasing to all text in our preprocessing stage.

Next, the tokens which are stopwords and punctuation marks are removed using the
spaCy library and stopword list, another standard preprocessing step in NLP [73].2° In
addition, we remove three commonly occurring non-English special characters, since
we are concerned with an English dataset in this project. An exception to punctuation
removal is in the case of sentence embeddings, because we need the punctuation marks
to determine the beginning and ending of sentences; this is explained in Section 4.6.

Finally, we do not stem or lemmatise, based on research that word normalisation
can have a negative impact on English text classification [70, 73]. Although these are
limited studies only on specific datasets, we take the view that many of the words
occurring in the dataset are best left in their original lexical form, given the fragility
of meaning that words can have in a legal context. We then tokenise each sample, and
thus, each sample X; then consists of a list of tokens.

4.3 Machine learning models

For the machine learning models, all implementation is achieved through the Scikit-
learn library [56] in Python.?! Each sample in D is vectorized using a count vectorizer
or TF-IDF vectorizer. D is then split into training and test sets in an 80:20 split. The
training set is then split into 5 equal sets, with one set held out as a validation set and
the remainder used for training. This is done until each of the 5 sets have been used as
a validation set, following the 5-fold cross validation process. Either a manual search
or a random search is conducted for hyperparameter optimization, and the validation
loss is monitored throughout this process. With the best hyperparameters for each
classifier, we then report the performance of each classifier on various metrics on the
test set.

20 For the full list see https://github.com/explosion/spaCy/blob/master/spacy/lang/en/stop_words.py
21 See machine_learning-models.py
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4.4 Summary of results

Classifier Accuracy/Micro-F1 | Macro-F1
Vectorizer Count | TF-IDF Count | TF-IDF
Naive Bayes 0.887 0.903 0.780 0.811
Decision tree 0.838 0.839 0.671 0.665
Random forest 0.845 0.846 0.693 0.700
Logistic regression | 0.935 0.918 0.888 0.801
k-NN 0.888 0.925 0.829 0.885
SVM (linear) 0.929 0.956 0.880 0.930
SVM (non-linear) | 0.712 | 0.945 0.477 | 0.859
MLP 0.953 | 0.953 0.921 | 0.920

Table 4.1: Summary of performance of machine learning models.
The MLP shows the best performance with the count vectorizer,
and linear SVM is the best classifier with the TF-IDF vectorizer.

4.5 Analysis of results

4.5.1 Naive Bayes classifier

Smoothing Laplace (o« =1) | None (a =0)
Vectorizer Count | TF-IDF | Count | TF-IDF
Accuracy/Micro-F1 | 0.840 0.581 0.887 0.903
Macro-F1 0.657 0.174 0.780 0.811

Table 4.2: Performance of multinomial Naive Bayes,
also showing the effect of Laplace smoothing.

As noted above, the multinomial Naive Bayes classifier is often used in text classifi-
cation [60], and a variant for the multilabel case is also the baseline classifier used by
Mencia and Furnkranz [48]. Based on a manual search, the hyperparameters of the
classifiers were tuned.

We note an interesting observation that the use of Laplace smoothing, as per Equation
2.18, very severely worsens the performance of the classifier where the TF-IDF vector-
izer is used, despite the fact that it is generally used to improve the performance of
the model by avoiding zero probabilities. The impact is reflected in Table 4.2 above.
We note that an accuracy of 58.1% is especially poor given, as noted in Section 3.3.1,
53% of the entire dataset consists of samples from only 2 out of the 20 classes.

In order to explain this anomaly, we have to examine the exact workings of the vec-
torizers as described in Sections 2.3.1 and 2.3.2. For clarity, the following is an exact
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representation of the first sample in the training set, vectorized with the count and
TF-IDF vectorizers and returned as sparse vectors:

Count TF-IDF

( ), 1| (0, 1089), 0.004123345451722612
( ), 1] (0, 1872), 0.004562543389171481
( ), 2 | (0, 4843), 0.0031717298187008036
( ), 2| (0, 5654), 0.003371296518197432
(0, 6532), 1 | (0, 6532), 0.0015712004553782516
( ), 2| (0, 7320), 0.00381386999440877
( ), 3| (0, 7913), 0.005850604591265597
( ), 3| (0, 8455), 0.005649215635463998
( ), 1| (0, 8656), 0.004747057644849401

Table 4.3: Feature representations of first sample in training set

This means that the sample has 1 count of unique token number 1089 in the vocabulary,
and its corresponding TF-IDF value is 0.00412..., and so on. However, we can see that
the TF-IDF counts are extremely small. The probability in Equation 2.17 is based
on the calculation of conditional probability in Equation 2.16, which is calculated
from the probability of each feature of a vectorized sample occurring in that vector.
The probability of each feature occuring in a vector is computed by taking the TF-
IDF of each individual feature as a proportion of the total TF-IDF counts in that
vector. Thus, given that the TF-IDF values for each feature are so small because the
total dataset vocabulary is huge, as shown above, it is perhaps the case that Laplace
smoothing, which adds a = 1 to the posterior probability, skews the probabilities by
far too much.

1 epoch 2 epochs 5 epochs 10 epochs
FC MLNB BR MMP DCMLPP BR MMP DCMLPP BR MMP DCMLPP BR MMP DCMLPP
ISERR x 100 99.58  99.47 65.99 55.70 51.38 58.78 51.96  44.07 53.42 4277 38.23 50.19 40.22  36.34
T SONEERR X100 | 77.83  98.68 35.71 30.58  22.78 27.13  27.09 17.29 22.69 18.38  13.49 20.64 1597 1255
: % RANKLOSS 12.89  8.885 17.38 2.303  1.064 13.89 2520 0.911 11.58 2.091 0.796 9.752  1.85  0.762
% & MaRrcIN 40.16  25.04 62.31 10.11  4.316 52.28 11.22  3.757 44.77  9.366  3.337 3845 8.177 3.214
AvcP 22.57 1191 59.33 74.01 78.68 66.07 76.95 82.73 70.69 82.10 85.64 73.30 83.75  86.52
. ISErRr x100 91.51  99.34 52.80 47.68  36.55 46.26  40.01  32.38 40.76  33.28  29.22 37.55 31.39  28.30
5 o ONEERR X100 | 90.13  99.04 44.40 40.85 28.22 37.38 3299 24.42 31.48 25.79 21.41 28.1 23.9 20.65
E E RANKLOSS 14.17  7.446 19.40 2.383  0.972 15.09 2.058  0.863 11.69 1.874 0.824 9.876 1.529  0.815
S MARGIN 68.33  34.44 96.43 14.18 5.626 77.32 1218  5.045 6148 10.95 4.831 5294 8.947 4.785
AvGP 18.98  6.714 57.10 68.70  77.89 63.68 74.90 80.87 68.75 79.84  82.87 71.61 81.30 83.38
O ISErr x100 99.82  99.82 99.25 99.14  98.20 98.70 98.00  96.75 97.46  96.14 97.06  95.13
S ONEERR x100 | 93.52  99.58 53.11 78.98  34.76 44.93  56.88  28.01 36.69 39.46 33.84 3499
S RANKLOSS 12.97  22.34 39.78 3.669  2.692 35.25 4.091  2.398 30.93 4.573 28.59  4.509
S MARGIN 1357.10 1623.72 | 3218.12 562.81 426.28 | 3040.01 670.65 387.51 | 2846.47 757.01 2716.63 740.12
R AveP 5.504  1.060 25.55 27.04 46.79 30.71 38.42 52.72 35.95 47.65 38.31  50.71

Figure 4.1: Reproduction of results from Table 3 in Mencia and Furnkranz [48]

This may be interesting in light of the performance of the multilabel variant of the
multinomial Naive Bayes classifier (‘MLNB’, as highlighted) used by Mencia and
Furnkranz [48], who represent each sample using a TF-IDF vectorizer throughout
their paper. From a table of their results reproduced in Figure 4.1, we can see that
their MLNB baseline had a precision of a paltry 6.714%, compared to much higher
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scores for all the other classifiers. Unfortunately, from their paper, it is not clear if
they used Laplace smoothing, which could explain the low precision score.

Regrettably, a direct comparison cannot be made between their paper and the current
project, because their task is an extreme multi-label classification task. Even for clas-
sifications according to directory code, there are over 500 possible classes, compared to
20 in the current case. However, the especially poor performance of the Naive Bayes
classifier in their task was highlighted, as it seemed to be interesting in light of the
effect of Laplace smoothing on the TF-IDF vectorization.

Overall, the performance of the Naive Bayes classifier in the present case with TF-IDF
vectorization but without smoothing, with 90.3% accuracy, prima facie suggests two
things: first, that the conditional independence assumption that the occurrence of ev-
ery feature in a sample is independent of other features partly holds true; and second,
that the feature vectors of the test set are to a considerable degree linearly separable,
given that the Naive Bayes classifier is a linear classifier, as noted in Section 2.4.1.

4.5.2 Decision tree

Count | TF-IDF

Accuracy/Micro-F1 0.838 | 0.839
Macro-F1 0.671 0.665
Split criterion Gini Gini
Min. samples per leaf | 1 1

Min. samples per split | 2 2

Node count 2709 2409
Leaves count 1355 1205
Tree depth 53 61

Table 4.4: Similar performance with both methods of feature representation with
decision trees

First, decision trees with both the count and TF-IDF vectorizer were ran. The cri-
terion for splitting at each node, gini impurity and information gain, as defined in
Section 2.4.2, were experimented with. In both vectorizers, the trees achieved better
performance splitting based on gini impurity. Based on a manual search with refer-
ence to the initial trees, the hyperparameters of the decision tree were tuned, such as
setting the maximum depth of the tree, the minimum number of samples in each split,
and the minimum number of samples in each leaf. The intuition was that this would
be especially important since, as noted above, decision trees are prone to overfitting.
However, setting the maximum depth of the tree to various manually selected values,
such as 50, 45, and 40, i.e. pre-pruning the tree, did not improve the performance of
the classifier, and in fact marginally worsened it. In addition, using a count or TF-IDF
vectorizer also does not greatly affect the performance of a decision tree classifier.
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Table 4.4 summarises the characteristics of the decision trees with both the count
vectorizer and TF-IDF vectorizer. A visualisation of the complete count vectorizer-
based tree, which is marginally the better-performing tree in terms of macro-F1, is
also provided.?? As the complete tree is far too large to be analysed, a few levels of
the tree, up to a depth of 5, where leaf nodes begin to appear in some branches, have
been reproduced in Figure 4.2. For the avoidance of doubt, this is the decision tree
of depth 53 with most of the branches of the tree cut off, not a tree with a maximum
depth of 5. The visualisation provides an index referring to a token in the vocabulary
of the count vectorizer, the gini impurity at each split, and the number of samples
remaining in total and in each class, at each node. For ease of explanation, a corre-
sponding figure with each of the exact features on which the splits were determined
is also provided in Figure 4.3. The colours of the nodes reflect the distribution of the
classes of the samples remaining at that node, thus, for example, the greater the pro-
portion of samples belonging to Class 3 in a node, the yellower the colour of that node.

It can be seen from Figure 4.3 that the token ‘agreement’ is at the root of the de-
cision tree. Thus, the decision rule “Does the token ‘agreement’ appear in the sample
less than twice?” results in the greatest reduction in gini impurity. Relating this to
Table 3.5, we can see that the token ‘agreement’ is the third-most common token in
Class 11. This makes sense when read with Figure 4.2, which shows that the response
‘False’ to the decision rule only reduces the number of samples remaining in Class 11
from 2994 to 2508. In other words, the token ‘agreement’ appears more than twice in
2508 samples in Class 11. It should thus be clear that one of the key advantages of a
decision tree is that each and every decision rule can be examined.

Overall, the decision tree classifier is not as effective as other classifiers, as shown
by its accuracy and macro-F1. This is to be expected, given that the decision tree is
generally regarded as an unstable classifier. This means that small differences between
the training samples and the test samples may cause dramatically large changes in
the decision tree’s classification rules [43]. As noted in Table 3.3, the samples in the
dataset in each class are of varying length. Even though the test set was split from
the complete dataset with stratified sampling, i.e. the proportion of samples belonging
to each class in the test set remains the same as that of the training set, it should
be noted that even within each individual class, each sample may also be of varying
lengths and features. This is likely to affect the performance of an unstable classifier
such as the decision tree. Thus, a random forest classifier was tested next to determine
if this would improve the performance of the decision tree.

22 See decision_tree.pdf
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Figure 4.2: Partial visualisation of decision tree with the count vectorizer used for feature representation. Each box is a node. Leaf

nodes begin to appear at a depth of 5. Each node contains the decision rule which refers to the counts of a specific vocabulary index

in the vectorizer (e.g. X46138 <= 1.5), gini impurity at that node, number of samples remaining in total, and number of samples per
class remaining in that node.
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4.5.3 Random forest

Count TF-IDF
Accuracy /Micro-F1 0.845 0.846
Macro-F1 0.693 0.700
Split criterion Gini Gini
Min. samples per leaf 1 1
Min. samples per split 1 1
Bootstrap aggregating False False
Max depth None None
Number of trees 100 100
treaty, committee,
economic, | treaty,
5 most important tokens | decide, agreement,
agreement, | measure,
hereinafter | follows

Table 4.5: Similar performance with both methods of feature representation with
random forest. Statistical testing confirmed that there was no significant difference
between the performance of the decision tree and random forest.

As noted in Section 2.4.3, the random forest is an ensemble based on multiple decision
trees. Thus, the expectation is that it will outperform the single decision tree. As
there were many hyperparameters to be tuned, a random search within a manually
defined search space was conducted for hyperparameter tuning. The best hyperpa-
rameters chosen are summarised above. As expected, as with the decision tree, splits
were determined on gini impurity rather than information gain. It should also be
noted, however, that on a random search, not using bootstrap aggregating provided
better results, thus every sample in the training set was used to train each tree. This
goes against the intuition stated above that bootstrap aggregating would stabilise the
decision tree.

A visualisation of a randomly selected decision tree out of the 100 trees, with samples
vectorized with the TF-IDF vectorizer as input, is provided.?® Due to its similarity
with the decision tree visualised in Section 4.5.2, it is not reproduced here.

Overall, the random forest classifier only marginally outperforms the single decision
tree, regardless of whether samples are vectorized with the count vectorizer or TF-IDF
vectorizer. Comparing the case of the classifiers with the TF-IDF vectorizer, we see
that the decision tree resulted in an accuracy of 0.839, compared to that of the random
forest with 0.846. Because at first glance this seems to be a very similar performance,
and given that a random forest is generated with the random subspace method, i.e.
each time the algorithm is run could result in slightly different results, we perform
a McNemar’s test (as explained in Section 2.1.5.6), to determine if the difference in

23 See random_forest.pdf
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performance between the random forest and decision tree is statistically significant or
not. This will allow us to decide if the random forest outperforms the decision tree.

Random forest | Random forest
(correct) (wrong)
Decision tree 2462 273
(correct) [“A”] [“B”]
Decision tree 240 259
(wrong) O D7)

Table 4.6: Contingency table of decision tree and random forest

The contingency table for the test is outlined above. For clarity, at risk of repetition
we recall that a ‘correct’ result in the table is one which is a True Positive, i.e. the label
predicted by the classifier matches the actual label of the sample, any other output is
‘wrong’. For clarity, each box above has been alphabetically labelled, just as in Table
2.3.

Our null hypothesis, Hy, is: “the performance of both classifiers is equal”. Computing
McNemar’s test statistic per Equation 2.8, we obtain a y? value of 1.996. Following a
rule-of-thumb, we set the significance level, & = 0.05, thus y? <3.84, and we cannot
reject Hy. Further, following a two-tailed test per Equation 2.9, we obtain a p-value of
0.158. Thus, as p > «, we again have 95% confidence that we cannot reject Hy. This
leads us to the perhaps surprising conclusion that the random forest classifier does not
outperform the decision tree.

From this, we note at this point that the performance of the Naive Bayes classifier, a

linear classifier, has outperformed that of the decision tree and random forest, which
are non-linear classifiers.

4.5.4 Logistic regression

Count TF-IDF
Accuracy/Micro-F1 0.935 0.918
Macro-F1 0.888 0.801
Solver L-BFGS L-BFGS
Max iterations 1,000 1,000
Classifier One-vs-rest One-vs-rest
Penalty L2 regularization | L2 regularization
Inverse regularization strength | 1.0 1.0

Table 4.7: Summary of logistic regression
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As noted in Equation 2.19, the logistic regression classifier learns a vector of weights
and biases to be applied to an input vector X. Thus, the equation can be expanded
to:

z = (wy, wa, ..., w;) - (1,22, ....,z;) + b (4.1)

Each term in the vector of weights thus corresponds to a term in the input vector X,
which is a vector in which each element represents the counts of a unique token in the
vocabulary of the training set. This means that when the classifier has been trained,
we can find the exact weights applied to each feature (i.e. each token) in the vocabu-
lary, by examining each element of the vector w. By sorting the vector and finding its
argmax and argmin, and we can easily find out the individual tokens which the classi-
fier places the greatest weight on, and those that the classifier places the least weight
on, for the purposes of classification for each class. The 5 highest-weighted tokens and
lowest-weighted tokens for each class, along with the corresponding coefficient values,
are provided in Tables 4.8 and 4.9.

The highest-weighted tokens are of interest because they are the tokens which serve
as the best indicator of a sample belonging to a certain class. For example, if the
token ‘fishery’ appears in a sample, it is then very likely that the sample in which it
appears belongs to Class 4. Similarly, however, the lowest-weighted tokens are also
important, because they tell us the converse, which is also useful for classification: for
example, if the token ‘tariff’ appears in a sample, then it is very likely that the sample
does not belong to Class 4. Concretely, we can hypothesise that the classes with many
heavily-weighted tokens are likely to have many True Positives, and are likely to have
a high accuracy, and those with many lowly-weighted tokens are likely to have many
True Negatives.

From a cursory observation of the descriptions and the most important tokens of
each class, it appears clear that there is some similarity between the two. Taking
Class 5 as an example, the most heavily weighted tokens in the ‘Freedom of movement
for workers and social policy’ class are ‘social’, ‘worker’, ‘labour’, ‘employment’, and
‘administrative’; all of which relate to the class description. Similarly, the numbers
which appear also tend to refer to important articles related to the subject matter of
the classes. For example, Class 8 refers to ‘Competition policy’, and one of the most
important tokens is ‘85" Article 85 of the EEC Treaty is a key piece of legislation in
European competition law 4. Other tokens which may not appear meaningful at first
glance may also be related to the subject matter of the class on closer examination.
For example, in Class 3 which is ‘Agriculture’, two of the heaviest-weighted tokens
are ‘franz’ and ‘fischler’, both of which have a coefficient weight of 0.648. With some
background research, we can find out that Franz Fischler was in fact the European
Union’s Commissioner for Agriculture.

In addition, Figure 4.6 below shows, for each class, the distribution of the logistic

24 For the full text, see
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:12002E081&from=EN
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regression weights. Each point on the bubble plot is a single weight (i.e. coefficient) in
relation to a feature. From the top-end and bottom-end tails of the plots of the weights
for each class, it can be seen that most of the classes have several tokens which are
particularly important for the purposes of classification. The 5 points at the top-end
and tail-end of each class are the tokens listed in Tables 4.8 and 4.9.

We can relate Figure 4.6 to the normalised confusion matrix in Figure 4.5. Tak-
ing Class 17 as an example, in Figure 4.6, we can see that the plot does not show a
wide distribution compared to the other classes; it has short top-ends and tail-ends.
This correlates with the normalised confusion matrix, which shows that the classifier
only has a 0.538 classification rate in Class 17.

Thus, analysing the figures provided in this manner hopefully explains to a certain
extent the effectiveness of the logistic regression classifier, despite the fact that each
text sample is simply represented by a count-based vectorizer which merely counts the
frequency of occurrences of each token, but does not take into account the contexts
in which each token occurs, or provide a representation which reflects the linguistic
meaning of each word (unlike word embeddings). Although many of the same tokens
occur in all of the classes, as noted in Table 3.5, the subject matter of each class is
sufficiently distinct such that tokens occurring in certain contexts, such as fishing, are
unlikely to appear in the context of any of the other classes, making logistic regression
with a count-based vectorizer an effective option for many of the classes.

Further, we note that, as stated above in Section 2.4.4, the logistic regression classifier
can be considered a linear model [59]. Thus, we observe that the linear models, the
Naive Bayes classifier and logistic regression, have so far outperformed the non-linear
models, the decision tree and random forest.
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Confusion Matrix
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True label

Normalised Confusion Matrix
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Class | Description 5 greatest and least weighted tokens (and corresponding weights)
euratom appoint | rules ecsc gender
1 General, financial and institutional matters 9'981 0769 0'554. . 0499 0'45.1
joint common | assoclation | agreement latvia
-0.647 -0.604 -0.482 -0.481 -0.471
customs iceland transit 113 administration
2 Customs Union and free movement of goods 0'5.62 0-511 0'4.93 0490 0463
union conclude | fruit management | programme
-0.608 -0.467 -0.463 -0.426 -0.425
standing | fruit franz fischler veterinary
3 At 1.387 0.721 0.648 0.648 0.640
2092 joint government | foodstuff 936
-0.821 -0.709 -0.625 -0.615 -0.568
fishery fishing fisheries 515 83
4 Fisheries 1.146 0.679 0.612 0.370 0.346
tariff health clean protocol 493
-0.261 -0.252 -0.242 -0.239 -0.227
social worker labour employment | administrative
5 Freedom of movement for workers and social policy 0.627 01586 0.544 0-502 0:467
purpose 0j 2002 common aid
-0.302 -0.279 -0.255 -0.248 -0.243
statement | tourism respect entity insurance
. . . . 0.525 0.459 0.393 0.372 0.351
6 Right of establishment and freedom to provide services umion decide con 1088 1999
-0.282 -0.239 -0.230 -0.227 -0.224
carriage road shipping transport drive
7 Transport policy 0.708 0.596 0.547 0.525 0.454
agreement | price animal health trade
-0.349 -0.340 -0.321 -0.296 -0.287
treaty 1962 85 17 notify
oy . 0.460 0.394 0.354 0.344 0.299
8 Competition policy :
council vessel transport annex apply
-0.256 -0.241 -0.223 -0.214 -0.210
excise 388 latvia tax sixth
. 0.699 0.442 0.410 0.394 0.381
9 Taxation . .
estonia czech aid european concern
-0.359 -0.311 -0.263 -0.258 -0.216
monetary | economic | deficit investment issue
10 Economic and monetary policy and free movement of capital Il)r(gj do g.ilrlgftive ?cfr?tg (e)gf)lloyment ?);"?:)?‘)uicol
-0.271 -0.247 -0.222 -0.212 -0.202

Table 4.8: 5 greatest and least weighted tokens (and corresponding

coefficients) in each class
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Class | Description 5 greatest and least weighted tokens (and corresponding weights)
quantitative textile eea 384 3906

11 External relations 0'8034 0.627 0'6(.)3 0'5.78 0.578
transit cfsp spain fruit salad
-0.681 -0.677 -0.663 -0.586 -0.578
energy euratom research crude transit

12 Energy 0.680 0.505 0.377 0.371 0.336
bradwell eec data ec 18
-0.543 -0.455 -0.358 -0.354 -0.339
approximation | foodstuff | trans representatives | approval

13 Industrial policy and internal market ?ﬁ?}fgrt lgrii?;elb ?If}gging 29446 gﬁ?jes
-0.422 -0.412 -0.408 -0.339 -0.332
structural funds 1260 objective specific

14 Regional policy and coordination of structural instruments 0.438 0'.433 . 0-393 0349 : 0'329. -
country directive agreement financial condition
-0.227 -0.220 -0.211 -0.200 -0.199
2092 2037 environment | pollution waste

15 Environment, consumers and health protection 0.758 : 0'568. Q‘.553 0'522. . 0'5.04
education veterinary | joint condition residue
-0.453 -0.426 -0.421 -0.384 -0.366
culture cultural education archive schools

16 Science, information, education and culture 0'?46 0.575 0.521 : 0435 0335 :
union health republic agreement regulation
-0.315 -0.311 -0.300 -0.287 -0.250
560 mark protection da 40

. . 0.278 0.261 0.256 0.250 0.243

17 RO A U DT G 2 S 2004 use institution committee information
-0.195 -0.182 -0.177 -0.172 -0.168
cfsp union position 2368 entity

18 Common Foreign and Security Policy (CFSP) 0-913 0.652 0'4.8$ 0.462 9'389
november eec opinion product ii
-0.382 -0.376 -0.319 -0.263 -0.254
europol sch schengen asylum vi

19 Area of freedom, security and justice 0.641 0.568 0.534 : 0.422 : 0381 —
eec cfsp comunity economic commission
-0.496 -0.449 -0.421 -0.411 -0.314
passport resolution | 1981 june citizen

20 People’s Europe 0.344 . 0.269 0.218 0.209 . Q.178 .
commission agreement | shall regulation information
-0.178 -0.106 -0.094 -0.086 -0.080

Table 4.9: 5 greatest and least weighted tokens (and corresponding coefficients) in each class (continued)
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Value of Coefficient Weights

Distribution of Logistic Regression Coefficient Weights
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Figure 4.6: Visualisation of distribution of logistic regression coefficients, where the weight of a single token is a bubble on the plot.
This shows the importance of each token in each class to the classifier. The classifier performs better in classes with longer top-ends
and tail- ends. Heavily weighted tokens provide a strong indicator that a sample belongs to a certain class.
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4.5.5 k-NN

Count | TF-IDF
Accuracy/
Micro-F1 0.888 0.925
Macro-F1 0.829 0.885
k-neighbours 1 3
Distance weighting - Inverse

Table 4.10: Summary of k-NN performance. Surprisingly, with a count vectorizer,

considering the sole nearest neighbour yields the best results.

As noted above, the k-NN classifier is a non-linear classifier based on Euclidean dis-
tance. We conducted a manual search for hyperparameter tuning to find the value for
k producing the best results, as summarised above. Specifically, we ran the classifier
for values of k from 1 to 15, and experimented with uniform and inverse distance
weighting, the latter of which resulted in better performance. It should be noted that
where only the single nearest neighbour is used (k=1), prioritising nearer neighbours
with inverse distance weighting is not applicable, since there is only one neighbour

being considered.

Summary of k-NN performance

0.90

Accuracy/Micro-F1

—e— Count (uniform)
~—e— TF-IDF (uniform)
—o— Count (inverse, )
—e— TF-IDF (inverse)

14

—e— Count (uniform)
—— TF-IDF (uniform)
—&— Count (inverse)
—— TF-IDF (inverse)

8
k-value (number of nearest neighbours)

10

Figure 4.7: Performance of k-NN for k=1 to k=15

The figure above shows an interesting observation: that with a uniform distance
weighting, with both the count and TF-IDF vectorizer, performance almost consis-
tently decreases at a constant rate as k increases, with the exception of k=3. In both
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cases, k=1, i.e. classifying an unseen sample based on the single nearest neighbour,
yielded the best accuracy. This might tell us that many test and training samples
belonging to the same class have similar counts of certain tokens, so the nearest neigh-
bour is enough for a classification in many cases. The figure also shows that using
inverse-weighted distances stabilises the performance of the classifier, so the decrease
in performance is not as stark, but the general trend is still a decrease in performance
as k increases.

Overall, TF-IDF vectorization with inverse distance weighting (in red in Figure 4.7)
resulted in the best performance in all experiments. This is perhaps reflects the intu-
ition that inverse distance weighting naturally works well with feature representation
also based on inverse document frequency.

We provide a visualisation of the classifier for the best performing model, k=3 with
TF-IDF vectorization and inverse distance weighting. This is only for the purposes of
visualisation.?® The visualisation is based on the decision boundaries learned on the
training set. We note again that we employ a twofold dimensionality reduction method
with LSA and t-SNE to provide a 2D visualisation, so these decision boundaries are
very different from the classifier for which the performance is reported above, which
has sparse vectors of dimension 223,842 (the vocabulary size of the training set) as its
input.

Overall, the k-NN classifier with TF-IDF vectorization shows performance compa-
rable to logistic regression, and considering the 3 nearest neighboura to a test sample
is enough to result in accuracy of 92%.

5 . . . . .
25 See decision_boundary_visualisation.py
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k-NN decision boundary visualisation, k=1
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Figure 4.8: k-NN decision boundaries for the classifier where k=3 with inverse distance weighting. Each sample is a point on the
visualisation and has a colour as per the legend, which indicates its class. The classifier labels all points within a colour boundary to
the class associated with that colour.
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4.5.6 Linear SVM

Count TF-IDF
Accuracy/Micro-F1 | 0.929 0.956
Macro-F1 0.880 0.930
Loss function L2-loss L2-loss
Max iterations 1,000 1,000
Classifier One-vs-rest One-vs-rest
Penalty L2 regularization | L2 regularization

Table 4.11: Summary of linear SVM. A one-vs-rest SVM with TF-IDF vectorization
is the best performing machine learning model.

From Table 4.1, it can be seen that the linear SVM shows one of the best performances
across all of the machine learning classifiers, in terms of both accuracy and macro-F1.
We perform a random search with the loss function and the classification strategy, with
the best hyperparameters summarised above. In particular, the one-vs-rest classifica-
tion strategy, which was the better performer, was explained above (in Section 2.1.5.5).

Our focus will be on the SVM classifier with TF-IDF vectorization, which was the
best performing classifier in our random search. Given a high accuracy of 95.6% and
Macro-F1 of 93.0%, we examine the performance of the classifier in each class more
closely. We provide a complete breakdown of metrics per class, as well as confusion
matrices.

First, from the normalised confusion matrix and Table 4.13, we note that the classifier
has precision, recall, and F1 of 1.00 for Class 20. However, on closer examination, we
can see from Table 4.13 that Class 20 has only one sample in the test set (and only
6 in the entire dataset). In general, we report the macro-average F1, as explained in
Section 2.1.5.4, because it takes an average of the Fl-score computed for each class
separately, and our intuition is that this provides us with a fairer overview of the per-
formance of the classifier, compared to a micro-average where the performance on the
majority classes will dominate. However, in the case of Class 20, our reporting on the
macro-F1 may have had the converse effect: classifying only one sample correctly in
Class 20 pushes up the overall macro-average.

Secondly, we note that the classifier has the poorest performance in Class 17 from the
confusion matrices. This is also the case with logistic regression, as per the normalised
confusion matrix in Figure 4.5, and is also reflected by the fact that the coefficients
for Class 17 have the smallest spread, as seen in Figure 2.4.4. However, we recognise
again that Class 17 has the second-fewest number of samples, with only 13 samples
in the test set out of a total of 64. In addition, the classifier has a precision of 1.000
for Class 17, and a recall of 0.692. From Equations 2.5 and 2.6, we know this means
that each time the model identified a sample as Class 17, this was indeed the case (i.e.
no False Positives). But the model has a much lower recall, with 4 False Negatives,
thus it has missed 4 out of the 13 samples. This may be due to the subject matter
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of the classes, for example, it classified one of the samples to Class 15, concerning
‘Environment, consumers, and health protection’, whereas one of the tokens with the
greatest weights in Class 17 in logistic regression is ‘protection’. Overall, the small
sample size for Class 17 creates the opposite problem to that of Class 20: despite the
fact that there were only 4 misclassifications, the average performance of the classifier
is reduced greatly.

Thirdly, we can see that on the classes that form the majority of samples, Class 3
and Class 11, the model has an Fl-score of 0.976 and 0.970 respectively. This does
prop up the overall performance of the model, but is also a good sign that the model
is in fact performing well on the test set.

Finally, we can compare the logistic regression confusion matrix (Figure 4.4) with
the linear SVM confusion matrix (Figure 4.9). For Class 2, the SVM has 106 True
Positives, only one less than logistic regression with 107. For Classes 5, 14, 16, 18
and 20, both classifiers have the exact same number of True Positives. In all other
classes, the SVM outperforms logistic regression. Thus, apart from the one additional
sample in Class 2 that the SVM misclassified, the SVM equals or outperforms logistic
regression on all classes. From this we can perhaps state that the linear SVM performs
better than logistic regression based on the test set.

Linear SVM | Linear SVM
(correct) (wrong)
Logistic regression 3001 91
(correct) [“A”] [“B”]
Logistic regression 23 119
(wrong) 7] D)

Table 4.12: Contingency table of logistic regression and linear SVM

However, as with the decision tree and random forest, we should determine if the dif-
ference in performance between the two classifiers is statistically significant. Following
the tests and the contingency table, we find that 2 = 39.377, and p = 3.494 * 10~ 1°.
Thus, x? >3.84 and p <0.05, and we can reject Hy. The difference in performance is
statistically significant.

Overall, based solely on accuracy and macro-F1, the linear SVM is the best classi-
fier of all considered so far. The performance of the linear SVM thus coheres with that
of the seminal paper on text classification by Joachims [35], and also sits well with our
observation so far that the linear models perform well on the test set.
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Metric
Class Num. of
Precision | Recall | F1 samples
(test set)
1 0.928 0.914 | 0.921 140
2 0.906 0.883 | 0.895 120
3 0.964 0.989 | 0.976 960
4 0.979 0.959 | 0.969 97
5 0.964 0.883 | 0.922 60
6 0.963 0.839 | 0.897 31
7 0.926 0.872 | 0.898 86
8 0.980 0.984 | 0.982 246
9 1.000 0.975 | 0.987 40
10 0.942 0.925 | 0.933 53
11 0.966 0.975 | 0.970 749
12 0.865 0.821 | 0.842 39
13 0.939 0.930 | 0.934 199
14 1.000 0.953 | 0.976 86
15 0.903 0.911 | 0.907 123
16 0.893 0.806 | 0.847 31
17 1.000 0.692 | 0.818 13
18 0.963 0.952 | 0.958 83
19 0.928 1.000 | 0.963 7
20 1.000 1.000 | 1.000 1
Micro-avg 0.956 0.956 | 0.956 3234
Macro-avg 0.950 0.913 | 0.930 | (Total)

Table 4.13: Summary of linear SVM performance (TF-IDF vectorizer) per class
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Confusion Matrix (Linear SVM with TF-IDF vectorizer)
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Figure 4.9: Linear SVM (TF-IDF vectorizer) confusion matrix
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True label

Normalised Confusion Matrix (Linear SVM with TF-IDF vectorizer)
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Figure 4.10: Linear SVM (TF-IDF vectorizer) normalised confusion matrix
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4.5.7 Non-linear SVM

Count | TF-IDF
Accuracy/
Micro-F1 0.712 0.945
Macro-F1 0.477 0.859
Kernel RBF Sigmoid
Kernel coeff. | ‘scale’ ‘scale’

Table 4.14: Summary of non-linear SVM

Next, we consider the performance of a non-linear SVM. We perform a random search
to determine which non-linear kernel function (and which corresponding coefficient)
works best. At the outset, comparing Tables 4.13 and 4.16, we note that the per-
formance of the non-linear SVM with TF-IDF vectorization is similar to (although
slightly worse than) that of the linear SVM, with an accuracy of 94.5%. We note that
Macro-F1 is worse at 0.859, compared to 0.930, but this is largely due to slight differ-
ences in classifying a small number of samples in Classes 17 and 20, which have very
small sample sizes, dragging down the macro average. We note that the non-linear
SVM actually performs better on Class 8, with the same recall but slightly higher
precision at 0.988 vs. 0.980. We may perhaps conclude from this the features of the
samples in Class 8 would be more linearly separable if mapped into a higher dimen-
sional space, but this does not work for the samples in other classes.

The similar performance is expected. Again, as noted above, the non-linear kernel
works by mapping non-linearly separable features into a higher dimensional space
where they can then be linearly separable. As Hsu et al. [30] argue, where the features
in the dataset have many dimensions (as is the current scenario), mapping features to
a higher dimensional space will not improve performance. However, it is not expected
to worsen performance; the features which are linearly separable remain so, and are
not mapped to a lower-dimensional feature space.

Non-linear SVM | Non-linear SVM
(correct) (wrong)
Linear SVM 2035 920
(correct)
Linear SVM 57 199
(wrong)

Table 4.15: Contingency table of linear and non-linear SVM

Again, we perform significance testing to compare the two models. We find that
x? = 16.831, and p = 4.086 * 107°. As x? > 3.84 and p < 0.05, and we can reject
Hy, and conclude that there is in fact a statistically significant difference between the
performance of the linear and non-linear SVM.
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It should be noted that the non-linear SVM performs much worse when feature rep-
resentation is achieved through the count vectorizer. Since features which are linearly
separable should simply remain so, the reason for the inconsistency is unclear.

Metric
Class Num. of
Precision | Recall | F1 samples
(test set)
1 0.864 0.907 | 0.885 140
2 0.935 0.833 | 0.881 120
3 0.959 0.988 | 0.973 960
4 0.978 0.918 | 0.947 97
5 0.964 0.883 | 0.922 60
6 0.923 0.774 | 0.842 31
7 0.902 0.860 | 0.881 86
8 0.988 0.984 | 0.986 246
9 1.000 0.950 | 0.974 40
10 0.922 0.887 | 0.904 53
11 0.944 0.972 | 0.958 749
12 0.861 0.795 | 0.827 39
13 0.902 0.930 | 0.916 199
14 0.988 0.942 | 0.964 86
15 0.912 0.837 | 0.873 123
16 0.880 0.710 | 0.786 31
17 0.889 0.615 | 0.727 13
18 0.988 0.952 | 0.969 83
19 0.927 0.987 | 0.956 7
20 0.000 0.000 | 0.000 1
Micro-avg 0.944 0.945 | 0.944 3234
Macro-avg 0.886 0.836 | 0.859 | (Total)

Table 4.16: Summary of non-linear SVM performance (TF-IDF vectorizer) per class
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4.5.8 MLP

Count | TF-IDF
Accuracy/
Micro-F1 0.953 0.953
Macro-F1 0.921 0.920
No. hidden layers 3 3
Neurons per layer 128 128
Activation function | ReLLU ReLU
Optimizer Adam Adam
Regularization L2 L2

Table 4.17: Summary of MLP, which performs comparably to or better than all other
machine learning models.

We perform a grid search for hyperparameter tuning within a manually defined search
space; we only vary the number of hidden layers (from 1 to 3) and the number of
neurons (64, 128, 256, 512) in each hidden layer. We use reLLU activation functions
across all hidden layers and the popular ‘Adam’ optimiser with L2 regularization. The
general trend is that performance increases as the number of layers and number of
neurons increases, but only up to 128 neurons per layer, with 3 hidden layers. We can
also see that the network has almost no performance difference with count or TF-IDF
vectorization for feature representation.

From the overall summary in Table 4.1, it can be observed that the MLP is the
best performing model of all models on the test set when used with the count vector-
izer, and is the second-best performing model when used with the TF-IDF vectorizer.

Again, we run significance tests on these results:

Count vectorizer

Logistic
regression
(correct)
Logistic
regression
(wrong)

MLP MLP
(correct) | (wrong)
2976 94

48 116

TF-IDF vectorizer

MLP MLP
(correct) | (wrong)
Linear SVM 2043 49
(correct)
Linear SVM 19 100
(wrong)

Compared to logistic regression, we obtain the values x? = 14.261, and p = 1.592x107%,
thus x? > 3.84 and p < 0.05. Thus, we can reject Hy and conclude that the MLP
does outperform logistic regression. Compared to the non-linear SVM, y? = 0.396,
and p = 0.529, thus x? < 3.84 and p > 0.05, and we cannot reject Hy, and we cannot

Table 4.18: Contingency tables for significance tests of MLP against other models

conclude that the linear SVM outperforms the MLP.
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From this, we may argue that the MLP performs better than or comparably to all
other models we have considered on the test set, with both the count and TF-IDF
vectorizers for feature extraction. Thus, the MLP results confirm the effectiveness of
the feedforward artificial neural network. This provides us with a good starting point
from which we can determine if more complex neural network architectures will result
in a better performance, as we will do in the next section.

4.5.9 Preliminary conclusions

At this stage, we can conclude that where features are extracted from samples with the
count vectorizer, the samples in the test set seem to be linearly separable to a large de-
gree. Linear models (logistic regression and linear SVM) outperform non-linear models
(Naive Bayes, decision tree, random forest, k-NN, and SVM with a non-linear kernel),
with the exception of the MLP. This relationship is less clear when the TF-IDF vec-
torizer is used, although the linear SVM and MLP still perform very well.

With this in mind, we can now proceed to consider whether using word embeddings
and deep learning models will result in better performance than the models evaluated
above.

4.6 Deep learning models

The implementation in this section is also done in Python with the Keras library,2%
using a Tensorflow backend.?” For consistency, the preprocessing steps (stopword and
punctuation removal and lowercasing) remain the same. The exception is in the case
of sentence embeddings, where we first lowercase the text samples, without removing
punctuation. The punctuation marks allow the spaCy sentencizer to determine the
points on which to split each text sample into sentences; once this is complete, the
punctuation marks are removed.

For pre-trained word embeddings, we use the spaCy library, which returns a vec-
tor of dimension 300 for each word.?® Sentence embeddings are also from spaCy; to
obtain a sentence embedding, the individual word embeddings of each word in a sen-
tence are summed, and then divided by the number of words in that sentence. We
use pre-trained embeddings from spaCy, as opposed to other popular options such as
GloVe [57], word2vec [49] or fastText??, because these have been extensively used in
NLP research, thus it was thought that experimenting and reporting performance with
spaCy would provide more of an academic contribution.

26 For documentation, see https://keras.io/
27 See deep_learning_-models.py

28 For documentation, see https://spacy.io
29 See https://fasttext.cc/
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To show how spaCy represents words in a defined vector space, we provide a visu-
alisation of 25 commonly occuring words in the dataset in Figure 4.11. We obtain
the 300-dimension embeddings from spaCy, and reduce the dimensions to 2D using t-
SNE. Colours have been added to different tokens in the plot for the purposes of clarity.
We can clearly see that words having greater semantic similarity are embedded closer
to each other, despite the fact that the dimensions have been reduced from 300D to 2D.

Regrettably, we were unable to work with the word embeddings for the full sam-
ples in the dataset due to hardware constraints. This is because while there was an
average of 1,441 tokens per sample in the dataset across all classes, as shown in Table
3.4, the longest sample had 281,204 tokens. In most cases each sample to be passed
as input into the neural network has to have the same dimensions, thus, samples of
different dimensions have to be padded (i.e. zeros are appended to those samples) for
the dimensions to match. Padding all the samples to the length of the longest sample
would result in dimensions of (281204, 300) per sample, which was not possible with
the hardware available.

Thus, we first ran our experiments by shortening each sample to a maximum of 300
tokens, then obtaining the word embeddings for those tokens, and padding the sam-
ples shorter than 300 tokens. Thus, each sample was of dimensions (300, 300). This
approach already required approximately 45GB to be loaded into memory. For sen-
tence embeddings, where each sentence is represented with a 300-dimension vector, we
again limited the maximum length of each sample to 300 sentences and padded where
necessary, thus each sample was also of dimensions (300, 300). Lastly, we managed to

increase the number of tokens per sample to 1,000, thus each sample was of dimensions
(1000, 300).

We were fully aware that this approach would drastically affect the performance of the
models tested, and would result in an unfair comparison between the performance of
word embeddings and count-based feature representation, because each model would
only have access to a limited portion of each sample. However, the silver lining to this
is that we ultimately report that increasing the number of tokens per sample from 300
to 1,000 does not actually improve performance.

In addition, due to time constraints and the longer running time of more complex
models, we perform hyperparameter tuning in this section with a manual search, as
opposed to a random search or grid search. We use reLLU layers for the MLP and
CNNs (the LSTMs and HAN have sigmoid and tanh layers as part of their architec-
ture), and in all models we use a softmax output layer for our task as expected. We
run all models over 50 epochs with early stopping with a patience of 5 epochs, i.e. if
the validation loss does not decrease after 5 epochs, training of the model stops. As
before, we report accuracy and macro-F1.
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Visualisation of spaCy word embeddings with TSNE dimensionality reduction of 25 common words in dataset
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Figure 4.11: Visualisation of spaCy word embeddings for 25 common words in the dataset.
300-dimension embeddings have been reduced to 2D by t-SNE dimensionality reduction.
Words with greater semantic similarity are embedded close together, as shown in the clusters.
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4.7 Summary of results

Classifier Accuracy/Micro-F1 Macro-F1
Word Word Sentence Word Word Sentence
Embeddings embeddings | embeddings embeddings | embeddings | embeddings | embeddings
(300) (1000) (300) (300) (1000) (300)
MLP 0.793 0.728 0.459 0.595 0.508 0.215
CNN 0.920 0.915 0.557 0.791 0.791 0.300
CNN (n-gram) 0.900 0.870 0.552 0.740 0.684 0.291
RNN (LSTM) 0.882 0.868 0.512 0.718 0.673 0.274
RNN (bi-LSTM) | 0.899 0.872 0.535 0.747 0.689 0.307
HAN 0.908 0.746

Table 4.19: Summary of deep learning models. The CNN is the best performing
model with pre-trained embeddings in almost all cases.

4.7.1 General trend

The table above perhaps shows an interesting observation: that performance of all the
deep learning classifiers, in terms of both accuracy and macro-F1, does not increase as
the length of the text passed as input increased from 300 to 1,000 tokens (excluding the
HAN, which does not use pre-trained embeddings). In fact, providing the network with
more information slightly worsens performance. From this we can perhaps make a very
broad conjecture: that a lot of the key information in our texts which is indicative
of the class to which a sample belongs is contained in the first 300 tokens of each
sample, and that the next 700 tokens in fact contain some superfluous information
which dampens performance. If this were true, then the approach we took to shorten
samples due to hardware limitations may not be that drastic after all.

4.7.2 Sentence embeddings

At the outset, we note that the performance of all classifiers when used with sentence
embeddings is particularly poor. In order to understand this, we examine the workings
of the spaCy sentencizer and how the sentence embeddings are obtained more closely.
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TITLE I

[FREE MOVEMENT OF GOODS |

1. Chapter I, Section I, and Chapter II of this Title shall apply: |

(a) to goods produced in the Community or in Turkey, including those wholly or partially obtained or
produced from products coming from third countries which are in free circulation in the Community

or in Turkex;[

I(b) to goods coming from third countries and in free circulation in the Community or in Turkey.l

. Products coming from third countries shall be considered to be in free circulation in the

ommunity or in Turkey if the import formalities have been complied with and any customs duties or

harges having equivalent effect which are payable have been levied in the Community or in Turkey,
d if they have not benefited from a total or partial drawback of such duties or charges.

3. Goods imported from third countries into the Community or into Turkey and accorded special
customs treatment by reason of their country of origin or of exportation, shall not be considered to be
in free circulation in the territory of one Contracting Party if they are re-exported to the other
Contracting Party.|The Council of Association may, however, make exceptions to this rule under |
onditions which it shall lay down.|

Figure 4.12: Splitting of a sample into sentences by the spaCy sentencizer

The figure above shows a section of a specific text sample from the dataset. Here we
show a raw text sample only to show how the sentencizer works, although in the model
the text would have been preprocessed and lowercased. The text sample is passed into
the sentencizer, which then splits the sample into individual sentences based on punc-
tuation and paragraphing. Each individual sentence, as determined by the sentencizer,
has been boxed in red. From this, we can observe that lines which may ordinarily not
be viewed as complete sentences, such as headings like ‘TITLE I') ‘FREE MOVE-
MENT OF GOODS’, and ‘Article 2’; are regarded as complete sentences. Similarly,
the preamble to certain paragraphs, such as “Chapter I...shall apply:” is regarded as a
sentence on its own, as are individual clauses (such as (a) and (b) in the example given).

We may not ordinarily regard these as complete sentences; indeed, the question of
what should constitute a proper sentence for the purposes of sentencization is itself a
matter for debate. The salient point to note is that a sentence embedding is the aver-
age of the word embeddings of each token in a sentence. Thus, a single 300-dimension
vector is used to represent the features in “TITLE I'; as well as that of a much longer
sentence such as the whole of clause 2 in the example above. Intuitively, this would
not lead to reliable results, and we can surmise that this is the reason for the uniformly
poor performance of deep learning models with sentence embeddings. It would have
been possible to experiment with a different approach to sentence embeddings, or a
trainable embedding layer, but this has not been attempted due to time constraints.

However, the poor performance with sentence embeddings also led us to experiment
with a HAN for our final model, which obtains vector representations of both words
and sentences using the word encoder and sentence encoder, as introduced in Section
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2.4.10 and as discussed below.

4.8 Analysis of results

4.8.1 MLP
Word Word Sentence
embeddings | embeddings | embeddings
(300) (1000) (300)
Accuracy/
Micro-F1 0.793 0.728 0.459
Macro-F1 0.595 0.508 0.215
No. hidden layers 3 3 3
Neurons per layer 128 128 128

Table 4.20: MLP does not perform as well as before with word embeddings

The first classifier we consider is the MLP, which, as we noted above performs better
than or comparably to all other machine learning classifiers considered. However, the
basic feedforward network does not perform well in our experimentation with word
embeddings. We can surmise that it was easier for the network to learn relationships
between the sparse feature representations of a count-based vectorizer, as compared to
word embeddings. With this in mind, we proceeded to consider more complex models.

4.8.2 CNN
Word Word Sentence
embeddings embeddings embeddings
(300) (1000) (300)
CNN R CNN . CNN Ok
(n-gram) (n-gram) (n-gram)
Accuracy/
Micro-F1 0.920 0.900 0.915 0.870 0.557 0.552
Macro-F1 0.791 0.740 0.791 0.684 0.300 0.291
No. conv. layers 2 3 2 3 2 3
Filters per layer | 256, 512 100 256, 512 100 256, 512 100
Filter sizes 3 3,4, 5 3 3,4, 5 3 3,4,5
Stride length 1 1 1 1 1 1

Table 4.21: Summary of CNN architecture. The n-gram approach was not as
effective on our dataset.
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Training and validation accuracy CNN, 50 epochs with early stopping Training and validation loss
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Figure 4.13: Training and validation accuracy and loss over epochs for the best
performing CNN model, with word embeddings for the first 300 words.

In general, we experimented with CNNs with a convolutional layer with a max pooling
layer, and another convolutional layer, with global max pooling. We tuned hyperpa-
rameters within this setup, including varying the number of filters and the size of the
filter window, and report the most promising results. We do not change the stride
length, as it was our understanding that a stride length of 1 was a sensible one in our
context, i.e. the windows slide over each token in the sample, one token at a time. Ul-
timately, the CNN the best performance of all the deep learning models experimented
with in almost all cases.

As explained above, we note that to ensure that the inputs are of equal length, the
samples which are of a shorter length than the maximum length chosen (e.g. 300
words per sample) have to be padded to that length with zeros. Ideally, when running
the network, we would add a masking layer which allows the network to ignore these
padded zeros during training. Unfortunately, masking with 1D convolutional layers is
not supported by the Keras API, and due to time constraints and technical difficulty,
we did not implement masking with the convolutional layers. However, we can state
that we were able to use a masking layer with the LSTMs, and this did not improve
performance significantly.

In addition, we experiment with a CNN of the architecture used by Kim [37], a highly
influential approach in the text classification literature which showed promising results
when published. As noted in Section 2.4.8, the idea is to use convolution layers with
filters of several sizes to capture information relating to different n-grams. The original
model pairs convolutional layers with a 1D max pooling layer, and concatenates these
layers. Thus, each convolutional layer has 100 filters with a certain window size (3, 4 or
5 for tri-grams, 4-grams and 5-grams), and is then connected a 1D max pooling layer,
which is connected to the next convolutional layer, and so on. We experimented with
this and different filter window sizes of 2, 3 and 4, but the original model showed a
better performance. The original model also used a fully connected layer and dropout
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between layers. We experimented with removing these layers, but this did not improve
accuracy.

Finally, we note that the original model by Kim was used for sentence classifica-
tion, where capturing tri-grams, 4-grams or 5-grams makes more sense. For example,
if there is a specific tri-gram, 4-gram, or even 5-gram within a sample of a single sen-
tence, that information is perhaps a good indicator of the class to which that sentence
belongs. On the other hand, our task is document classification, and the documents
can be of great length, so the presence of certain n-grams may not be that strong an
indicator that the sample belongs to a certain class. The same n-grams may appear
across many documents. We can surmise that due to the length of our documents, the
CNN with layers of 256 and 512 filters performed slightly better.

4.8.3 LSTM
Word Word Sentence
embeddings embeddings embeddings
(300) (1000) (300)
Bi- Bi- Bi-
LSTM LSTM LSTM LSTM LSTM LSTM
Accuracy/
Micro-F1 0.882 0.899 0.868 0.872 0.512 0.535
Macro-F1 0.718 0.747 0.673 0.689 0.274 0.307

Table 4.22: Summary of LSTM performance. Using a bidirectional LSTM improves
performance to some extent.
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Figure 4.14: Training and validation accuracy and loss over epochs for the single

layer LSTM, with word embeddings for the first 300 words.
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As noted above, we tried using LSTMs because other networks may not have persistent
memory, and given that our documents can be particularly long, as shown in Table
3.3, a vanilla RNN may not be able to learn long-term dependencies [26]. We thus
experimented first with a single layer LSTM, varying the number of units for hyper-
parameter tuning, from 128, 256 and 512. In all cases, the 256 units produced the
best results. We attempted to stack LSTMs (multiple layers in the same direction),
but this led to poor performance, thus we ultimately report performance on a single
layer. We then experimented with adding a layer with inputs read in from the opposite
direction, as explained above, a bi-LSTM. The intuition is that this should allow the
LSTM’s cell state to preserve not only information in the past (with reference to a
certain point in time), but also in the future. This led to a slight improvement in
performance.

4.8.4 HAN
Hierarchical Attention Network (HAN)

Accuracy/

Micro-F1 0.908

Macro-F1 0.746

Max sentences 300

Max tokens per 300

sentence

Table 4.23: Summary of our HAN set-up, which shows a good performance but does
not outperform a CNN.
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Figure 4.15: Training and validation accuracy and loss over epochs for the HAN.

As shown in Figure 2.4, the HAN has four layers (excluding the softmax output layer):
a word encoder, word attention layer, sentence encoder, and sentence attention layer.
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The point of the encoding layers is for it to capture the most important information
from the text input in the form of word embeddings. Thus, the approach taken with
the HAN model is slightly different to that of the other deep learning models dis-
cussed, in that we do not use spaCy’s pre-trained word embeddings. Instead there is
a trainable embedding layer. This is a layer which takes in an input of the dimensions
of the number of unique tokens in the training set, and the desired size of each word
embedding. Thus, each token in the training set will have a word embedding vector.
These vectors get updated during the process of training the network, when the infor-
mation from the encoding and attention layers gets propagated backwards.

As far as possible we maintain a similar setup: we limit the number of sentences
in a sample to a maximum of 300, and the number of tokens in a sentence to 300.3°
The embedding layer returns a 300-dimension embedding for each unique token. We
use the same spaCy tokenizer to tokenize samples. We then initialise a Keras tokenizer
which gives each unique token in the training set an integer ID, much like the count
vectorizer we used with the machine learning models. We then shorten the samples to
our maximum lengths due to computational limitations. We then pass each vectorized
sample, which is vectorized based on the tokenizer’s integer 1Ds, into the first layer of
the model, the embedding layer.

Overall, we note that the HAN performed well, but was not able to display better
results than the CNN. Its accuracy justifies to some extent the intuition behind us-
ing a trainable embedding layer and attention layers to focus on key information in
each sample. It also lends weight to the notion that documents have a hierarchical
structure, being formed from words and sentences. However, compared to the CNN,
the HAN took a much longer time to train, over 15 hours for each epoch with our
hardware. Thus the CNN is not only more accurate, but also more efficient in our
case. A key limitation of our work is that we have not analysed time complexity and
training time, as we will discuss in Chapter 6.

4.8.5 Conclusions on deep learning models

It is not surprising that all the deep learning models we implemented outperformed
the MLP by far. However, it was interesting for us to note that a CNN with fixed-size
windows running uni-directionally outperformed many other models based on other
models based on a more nuanced understanding of language, such as its hierarchical
constructs and the idea that the meaning of a word should be captured not only
from the words preceding it, but also those succeeding it. Our view is that this
is probably due to the nature of the textual data specifically in this dataset. As we
noted with our analysis of the logistic regression classifier, there are many single words
occurring in samples which are strongly indicative of the true label of a sample which
would not occur in the context of any of the other classes (such as ‘fishing’ and Class
4 (Fisheries)). This led to a fixed-size window approach with a stride length of 1
being effective. In addition, the max pooling and global max pooling layers focus the

30 This model is implemented in han.py, not deep_learning-models.py
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attention of the network on those single words which are particularly useful for the
classification task. On the other hand, the effectiveness of some of the more complex
models may have been dampened where the models ended up capturing superfluous
information unrelated to the classification task, especially given the complex linguistic
features of the samples. In effect, in our particular case, Occam’s razor holds: “the
simplest solution is often the best one”.

4.9 Choice of best models

Accuracy/Micro-F1 | Macro-F1
Linear SVM 0.956 0.930
CNN 0.920 0.791

Table 4.24: Best performing models

Overall, due to the nature of our experimental set-up, we have to comment on the
machine learning models and deep learning models separately before recommending a
single model. This is largely because we had to limit the length of the samples used
with the deep learning models, resulting in any comparison being a potentially unfair
one.

Throughout this project, we have considered performance in terms of accuracy and
macro-F1. However, in our conclusion and with regards to making a recommendation
for which such a model can be used in practice, we have to consider the efficiency of
training time relative to performance and the complexity of setting up models as well.

We consider the best machine learning model to be feature representation with a
TF-IDF vectorizer and classification with a one-vs-rest linear SVM, having the best
accuracy and macro-F1 overall. In terms of macro-F1, it significantly outperforms all
deep learning models. It also has a faster training time than the MLP, which has
comparable accuracy and macro-F1.

We consider the best deep learning model to be the CNN. The next best perform-
ing model is the HAN, but the running time of the HAN is over 15 hours for a single
epoch on our limited hardware. In contrast, the CNN can be run over 10 epochs in
several minutes (although this does not include the time taken to obtain pre-trained
embeddings from spaCy, which we store and access in a dataframe). Regrettably, as
we have noted, we did not monitor closely the running time of each model during our
implementation, and are not able to report an exact runtime.

Between the two models, due to its simplicity in implementation, swift running time
as well as higher accuracy and macro-F1 overall, on this particular dataset, we would
choose the linear SVM.

82



Chapter 5
Related Work

5.1 Deep learning approaches to NLP
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Figure 5.1: Collobert and Weston’s CNN architecture (Figure 1, [11])

In this section, instead of reviewing machine learning research which may be less re-
cent, we focus more on contemporary deep learning research (as per our distinction
between both groups). In a seminal article published over a decade ago, Collobert and
Weston [10] demonstrated that a single convolutional neural network (CNN) model,
trained jointly on six standard NLP tasks (e.g. part-of-speech (POS) tagging, chunk-
ing, named entity recognition (NER), semantic role labelling(SRL)), could outperform
systems built with hand-engineered features. This paper has proven to be highly in-
fluential in motivating the use of neural networks in NLP. This paper is particularly
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useful as it explains the traditional approach to NLP (feeding hand-engineered fea-
tures into a classification algorithm e.g. a support vector machine (SVM)), and then
details how a neural network is built. It also details its use of word embeddings, which
was considered state-of-the-art at the time. They followed this up with [11], and the
figure of their CNN architecture is reproduced above. These papers catalysed the use
of CNNs in NLP.

Goldberg [20] provides a useful primer on various neural network models for NLP,
which we have relied on in our report. More recently, a comprehensive and very useful
review of recent trends in deep learning-based approaches to NLP has been done by
Young et al. [77]. In particular, it highlights research on RNNs and CNNs, which we
have relied on to inform our understanding of the subject matter. In addition, they
provide an overview of the success of pre-trained models such as BERT [13] and ELMo
[58] for text classification, which we were unfortunately unable to experiment with due
to time constraints.

Source

Nearest Neighbors

playing, game, games, played, players, plays, player,

GloVe play Play, football, multiplayer

Chico Ruiz made a spec- | Kieffer , the only junior in the group , was commended
tacular play on Alusik ’s | for his ability to hit in the clutch , as well as his all-round
grounder {... } excellent play .

bilM Olivia De Havilland | {...} they were actors who had been handed fat roles in

signed to do a Broadway | a successful play , and had talent enough to fill the roles
play for Garson {...} competently , with nice understatement .

Figure 5.2: Effect of contextual representations, which captures different meanings of
the word “play” (Table 4, [58])

ELMo [58] builds on the idea of pre-trained word representations from models such as
word2vec [49], but take this further with deep contextualised word representations.
Broadly, the key difference between ELMo and pre-trained word embeddings like
word2vec is that instead of assigning an embedding to each token based on the vocab-
ulary of the entire dataset, each token is assigned a representation based on an input
sentence. They use a bi-LSTM trained with a language model (biLM) objective to
obtain these representations. They show that the higher-level LSTM captures context,
while the lower-level LSTM captures syntax, leading to state-of-the-art performance
in several NLP tasks. The figure above provides an example of their approach, show-
ing how the meaning of the word “play” is captured in context. While Peters et al.
[58] do not consider multi-class text classification in their original paper, they provide
results on sentiment analysis, and their model is designed to be used with existing
architectures.
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Figure 5.3: BERT’s two stages. It is first trained on unlabelled data in several
pre-training tasks, then fine-tuned using labelled data from a downstream task; in this
example the task is question answering (Figure 1, [13]).

BERT [13] is based on an idea alluded to earlier: that language representations should
be bi-directional. While ELMo uses task-specific architectures, it uses uni-directional
language models to learn representations. BERT aims to overcome this constraint
using the ‘masked language model’. It has two steps, shown above: pre-training and
fine-tuning. In the first stage, it is trained on unlabelled data, with different pre-
training tasks. In the latter stage, it is initialised with the parameters obtained from
pre-training, and these parameters are then fine-tuned, using labelled data from a
downstream task. Thus, each downstream task will have a separate fine-tuned model.
However, there is little difference between the pre-trained architecture and the final
downstream architecture. A summary of both steps is shown in their figure reproduced
above. Overall, the major contribution of BERT is that it applies unsupervised pre-
training to a bidirectional architecture, presenting a pre-trained model that can be
used across a range of NLP tasks with minimal fine-tuning.

5.2 Deep learning approaches to text classification

Convolutions Max-pooling Conv. and Pool. layers Fully-connected

Figure 5.4: Architecture for character-level CNN for text classification (Figure 1,
[78]).
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More specifically, there have been many studies of the use of deep learning methods
for the task of text classification. Zhang et al. [78] explore the use of character-
level CNNs for text classification, applying their CNN only on characters rather than
words and comparing the performance of their model against traditional NLP models
such as multinomial logistic regression with count and TF-IDF vectorizers. They also
compare their model against an LSTM with word2vec 300-dimension embeddings. A
representation of their architecture is reproduced above, and is broadly similar to the
CNN we attempted. They ultimately showed that their model was effective on several
news text classification datasets.

recurrent structure (convolutional layer) max-pooling layer | output layer

left context word embcdding right context
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Figure 5.5: Architecture for R-CNN. Word embeddings for a specific word are
obtained from those on its left and right (Figure 1, [41]).

Lai et al. [41] use a combination of a CNN and a bi-directional RNN, a recurrent
convolutional neural network (RCNN). They obtain word embeddings of a word from
the words on its left (the ‘left context’) through an RNN where input is read in back-
wards, and its right (the ‘right context’) from an RNN with input read in forwards.
This recurrent structure allows the network to capture contextual information when
learning word representations, as shown in their figure above. They then use a max
pooling layer to underscore the importance of features which play key roles in the text
classification task. Chen et al. [9] take a similar approach to the case of a multi-label
text classification task, combining a word-vector based CNN feature extraction with
an RNN architecture.

Liu et al. [44] use RNNs with a multi-task learning framework, to learn across mul-
tiple related tasks with the aim of avoiding the problem of insufficient training data.
Training their models on four different text classification tasks, they show that the
joint learning of multiple related tasks together can improve the model’s performance
across all four text classification tasks, as opposed to learning the tasks separately.
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Figure 5.6: The three stages of ULMFiT: pre-training a language model (LM) on a
general corpus to capture general language features, fine-tuning the LM on specific
task data, and finally fine-tuning the classifier on the target task (Figure 1, [27]).

With regards to transfer learning methods, ULMFiT [27] is particularly promising.
They report results specifically on six text classification tasks, although their model
can be used for other NLP tasks. Their model has three stages, as shown above. First,
a language model (LM) is pre-trained on a general corpus, in their case, processed
Wikipedia text. They then fine tune their LM on the data from the specific target
task. They use a discriminative fine-tuning approach, the intuition being that different
layers of the model should have different learning rates, to fine tune them to varying
extents. They propose their own formula for determining the learning rate, called
the slanted triangular learning rate. Finally, they fine-tune their classifier on top of
the LM, by adding two linear blocks to the LM. They show that ULMFiT provides
comparable classification performance to other models on an IMDB dataset, with 10x
less labelled data to train on.

5.3 Text classification in the legal context

In the legal context in particular, the problem of text classification remains an under-
explored one [28, 5], providing the motivation for this project. Mencia and Furnkranz
[48] evaluate three methods on the multi-label classification task using the original
EUR-LEX dataset: the binary relevance approach, multi-label multi-class perceptron
approach, and the dual multi-label pairwise perceptron approach. A table of their
results was reproduced in Figure 3.1, which shows the latter strategy achieving an av-
erage precision of 83.38% on multi-class directory code labels (with over 500 possible
labels).

Boella et al. [5] approach the text classification task with a support vector machine
(SVM) with TF-IDF representation, which at the time of their publication was the
state-of-the-art model for text classification, and in fact was our best model. This ap-
proach was also taken by Goncalves and Quaresma [21], who use an SVM on a dataset
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of Portuguese legislation as well as a Reuters news dataset. Similarly, de Maat et al.
[12], experimenting with binary (a simplified count vectorizer, where a word is rep-
resented either present in the sample or not), count and TF-IDF vectorization, show
that SVMs perform better than Naive Bayes or decision trees at text classification on
a dataset of Dutch laws with 18 categories.

More recently, Sulea et al. [67] examine three tasks: predicting the legal area of a
case, predicting the outcome of a case, and estimating the date of the case; the first
task is of particular relevance. They propose an ensemble-based SVM, which classifies
based on the average output of multiple SVMs; more specifically, it is a mean prob-
ability classifier which adds the probability estimates for each class, and chooses as
the prediction the class label with the highest average probability. On their dataset
of French legislation with 8 possible classes, they show that this method results in an
accuracy of 96.8% and Fl-score of 96.5%, outperforming their earlier research which
uses a single linear SVM [68], which attains an accuracy of 90.2% and an F1-score of
90.3%.

ALL LABELS FREQUENT FEW ZERO
RPQ@5 nDCG@5 Micro-F1 RPQ5 nDCGQ@5 RPQ5 nDCGQ@5 RPQ5 nDCGQ5
Exact Match 0.097 0.099 0.120 0.219 0.201 0.111 0.074 0.194 0.186
Logistic Regression  0.710 0.741 0.539 0.767 0.781 0.508 0.470 0.011 0.011
BIGRU-ATT 0.758 0.789 0.689 0.799 0.813 0.631 0.580 0.040 0.027
HAN 0.746 0.778 0.680 0.789 0.805 0.597 0.544 0.051 0.034
CNN-LWAN 0.716 0.746 0.642 0.761 0.772 0.613 0.557 0.036 0.023
BIGRU-LWAN 0.766 0.796 0.698 0.805 0.819 0.662 0.618 0.029 0.019
Z-CNN-LWAN 0.684 0.717 0.618 0.730 0.745 0.495 0.454 0.321 0.264
Z-BIGRU-LWAN 0.718 0.752 0.652 0.764 0.780 0.561 0.510 0.438 0.345
ENSEMBLE-LWAN  0.766 0.796 0.698 0.805 0.819 0.662 0.618 0.438 0.345
MAX-HSS 0.737 0.773 0.671 0.784 0.803 0.463 0.443 0.039 0.028
LW-HAN 0.721 0.761 0.669 0.766 0.790 0.412 0.402 0.039 0.026

Figure 5.7: Extreme multi-label multi-class classification results on EURLEX57K,
including logistic regression and HAN (Figure 2, [8]).

Two papers were presented this year at the inaugural Workshop in Natural Legal Lan-
guage Processing (NLLP). First, Chalkidis et al. [8] update the EURLEX dataset in
for the task of ‘extreme multi-label text classification’ (XMTC), i.e. text classification
with many possible classes (over 4,000). They release their novel updated dataset,
called EURLEX57K.3! They first measure the performance of several baseline classi-
fiers, including a naive ‘Exact Match’ classifier which classifies documents into classes
only if their labels appear exactly in the document text, and a logistic regression clas-
sifier. They then experiment with eight deep learning methods, including a CNN with
an attention mechanism which they termed a ‘label-wise attention network’ (LWAN) as
implemented by Mullenbach et al. [52] and a HAN (which we implemented). They re-
port that that using a ‘BIGRU-LWAN’ (implementing the LWAN with a bi-directional
gated recurrent unit) results in the best performance. These results are reproduced
above. Note that they are not comparable to our case, although the subject matter of

the dataset is similar and some models implemented are similar, because their task is
XMTC.

31 Available at http://nlp.cs.aueb.gr/software_and_datasets/EURLEX57K /index.html
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However, some state-of-the-art methods they have not experimented with include us-
ing Transformers, which were devised by Vaswani et al. [74] and shown to be more
effective and computationally efficient than CNNs and RNNs for other tasks (e.g. ma-
chine translation); as well as capitalising on transfer learning and experimenting with
pre-trained models such as BERT [13], ELMo [58] and ULMFiT [27], as discussed
above.

Howe et al. [28] examine the task they term legal area classification, i.e. classifying a
judgement into the legal areas it belongs to (e.g. ‘property law’, ‘criminal law’ etc.).
Each sample can cover more than one area of law, thus it is a multi-label classification
task. Each sample is also associated with one or more topics within its legal area, e.g.
the topics within ‘property law’ can be ‘land’, ‘purchaser’, ‘tenant’, and so on. They
use a dataset they compiled of over 6,000 Singapore judgements. Unfortunately, to
our knowledge, this was not publicly released, thus we were unable to run our models
on their dataset.

6.1 F1 Score

Subset 10% 50% 100 %

bertigrge  45.1[57.9] 56.7[63.8] 60.7 [66.3]
bertpase  43.1[53.6] 52.0[57.6] 56.2[63.9]
ulm fit 45.7 [62.8] 45.91[63.0] 49.2[64.3]
] [
] [

glovec,, 40.7[62.2] 58.7[67.1] 63.1[70.8]
gloveg,y  36.7[49.7] 59.1[64.3] 61.5[65.6]
glovemar 292[47.4] 47.8[59.9] 52.5[63.2]
lsassg 379 [63.5] 55.2[70.8] 63.2[73.3]
lsaioo 30.6 [58.5] 51.8[68.5] 57.1[70.8]

countas 32.6[36.1] 31.8[30.6] 27.7[28.1]
base,qy 52[17.3] 5.5][16.6] 5.5[16.6]

Table 2: Macro [Micro] F1 Scores Across Experiments

Figure 5.8: Linear SVM showing the best Micro-F1 in all cases, and best Macro-F1
on their full dataset (Table 2, [28]).
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6.2 Precision

Subset 10% 50% 100%

bertigrge  54.7[65.8] 57.1[59.7] 63.6[64.3]
bertpase  41.4[45.1] 48.1[50.0] 61.4[67.2]
ulmfit 49.3[63.7] 46.6[61.4] 48.7[63.2]
gloveenn  50.7[69.8] 63.4[68.5] 66.7[72.9]
gloveqy,y  62.5[68.0] 67.0[68.1] 64.8 [68.2]
gloveya, 51.3[65.1] 47.3[56.6] 59.2[68.6]
lsazs 56.7[76.11 70.0 [81.1] 83.4[81.7]
lsajpo 52.3[77.2] 73.8[81.9] 73.9([83.7]

countys  30.2[26.4] 26.4[19.8] 23.0[17.8]
base,qy 2.9 [10.0] 3.1[9.5] 3.1[9.5]

Table 3: Macro [Micro] Precision Across Experiments

Figure 5.9: Linear SVM showing the best precision almost in all cases (Table 3, [28]).

They use a counting strategy as a baseline (similar to the ‘exact match’ baseline of [8],
but the term to be matched must exceed some arbitrarily chosen threshold count), as
well as a linear SVM as baseline classifiers. They experiment with pre-trained models,
including BERT and ULMFiT, and pre-trained embeddings using GloVe. They held
out a test set, and they split their remaining training set in 3 different ways: 10% of
the training data, 50% and 100% (all of the training data), and reported performance
on their models having trained on each of the sets (as shown above). Interestingly,
they note that a one-vs-rest linear SVM with features learned from a subset of data
using latent semantic analysis (lsajgop and lsassp are linear SVMs trained on 100 and
250 topics extracted by LSA respectively) still had almost consistently the best per-
formance. This was despite the fact that they compared against more sophisticated
models such as BERT and ULMFiT. As shown in Figures 5.8 and 5.9 (emphasis on
SVMs added with highlighting), the SVMs had almost the best precision and F1 in
many cases. However, they do note that the SVMs high F1 was propped up by their
high precision, and BERT-based models had the best recall. Still, this was particularly
enlightening for us, given that the best performer on our dataset was also a one-vs-rest
linear SVM (albeit trained with a different way of selecting the training set).

Finally, we consider some related work specifically on the EURLEX dataset, beyond
Mencia and Furnkranz [48] and Chalkidis et al. [8]. Unfortunately, as we have noted,
the original EURLEX dataset was for the XMTC task, thus we could not compare
our results to other work using the EURLEX dataset. Rubin et al. [63] approach the
XMTC task with probabilistic generative statistical topic models, such as latent Dirich-
let allocation (LDA) which associate individual word tokens with different labels, as
opposed to discriminative models such as an SVM. They note that an LDA-based
model outperforms the multilabel multiclass perceptron on several multiclass metrics.
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Rubin et al. [63] experiment with a neural network with a single hidden layer, and
note that using cross entropy as a loss function, as well as a reLLU activation function,
dropout, and Adagrad for gradient descent optimisation, showed convincing results on
multi-label metrics such as rank loss. At the time of their publication, these methods
were considered state-of-the-art. Of course, in the fast-moving field of machine learn-
ing, these methods have become fairly standard approaches, not only for multi-class
classification, but with neural networks in general.
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Conclusions

6.1 Summary of contributions

Text classification is a fairly standard NLP task [36]. For this task, there are sev-
eral publicly available datasets, which are commonly used: Reuters-21578,32 Reuters
RCV1 (English) and RCV2 (other languages),? 20 Newsgroups dataset,>* and the
IMDB movie dataset for sentiment classification.?

With reference specifically to legal subject matter, however, it was difficult for us
to find a publicly available dataset. We managed to access the EURLEX dataset, but
this was for an ‘extreme’ multi-label, multi-class classification task. Our first step was
thus to distill this dataset into one which was appropriate for a single-label, multi-
class classification task. We would thus consider our first achievement to be having
reshaped the existing EURLEX dataset into one which is appropriate for the standard
task of multi-class classification. In fact, we might even argue that with more work,
this refined dataset can be published to be used as a standard dataset for legal text
classification, which, to our knowledge, is not publicly available. We address this sug-
gestion later, when we discuss future work.

Secondly, we have thoroughly considered both machine learning and deep learning
models (per the distinction we drew in our project), through the complete text clas-
sification pipeline (as outlined in Section 2.2), from preprocessing to evaluation. Less
recent academic work would have only considered machine learning models, with the
multilayer perceptron as the most complex model. More recent work has, in our
view, tended to consider only more complex models, against a single machine learn-
ing model as a baseline, such as a linear support vector machine. We have provided
analysis of both these groups of models on the same dataset. We have evaluated and
provided visualisations for less popular (from our limited observation) approaches to
text classification such as the k-nearest neighbours and decision tree classifiers, and

32 See http://kdd.ics.uci.edu/databases/reuters21578 /reuters21578.html

33 See https://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+ Multilingual, +Multiview
+ Text+Categorization+ Test+collection

34 See https://www.kaggle.com/crawford/20-newsgroups

35 See http://ai.stanford.edu/~amaas/data/sentiment/
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more commonly used models like logistic regression and support vector machines. We
have also considered models which are more contemporary, such as convolutional and
recurrent neural networks, and the hierarchical attention network. In addition, we
have experimented with various forms of feature extraction, from the count and TF-
IDF vectorizer to pre-trained word embeddings and a trainable embedding layer as
part of the hierarchical attention network. Thus, in our view, we have contributed
through the breadth of our analysis, particularly in the legal context.

Thirdly, to our knowledge, academic work in the legal context (as discussed in Section
5.3) has generally used pre-trained embeddings from GloVe, word2vec, and fastText.
Similarly, tokenization and sentencization has generally been achieved with the Stan-
ford Tokenizer,®® Natural Language Toolkit,>” and gensim.?® We considered a legal
domain-specific library, LexNLP, but with our experimentation and to our understand-
ing this simply calls NLTK or the Stanford Tokenizer [32]. Thus, we ran our deep
learning experiments with spaCy, and to our knowledge the performance of spaCy
with legal texts has not been reported.

Finally, our defined task at the outset was to propose a classification model which,
given an English legal document X, can classify that document into one of k£ prede-
fined classes. We have proposed a model: TF-IDF for feature representation, with a
one-vs-rest linear support vector machine. This is by no means a revolutionary pro-
posal. However, we note that this model has long been known to perform especially
well on data represented in high-dimensional and sparse vectors [35, 53]. It is also the
model which performs best for Goncalves and Quaresma [21], and is the basis for the
ensemble model of Sulea et al. [67]. Most significantly, it outperformed BERT and
ULMFiT in various measures in Howe et al. [28]. As a result, this choice was not an
unexpected outcome.

Thus, although there is certainly very much on which our work has to improve on,
as we will discuss below, we consider these to be the academic contributions of our
project.

6.2 Practical implications

In legal practice, text classification has many potential uses. Searching legal databases
for documents or legislation is an everyday occurrence for most lawyers; common solu-
tions include LexisNexis,? Westlaw,*® and Practical Law.*' There are also jurisdiction
specific databases of legislation, such as EUR-Lex for European Union law, BAILII

36 See https://nlp.stanford.edu/software /tokenizer.html
37 See nltk.org

38 See https://radimrehurek.com/gensim/

398ee https://www.lezisnexis.co.uk

408ee https://www.westlaw. co.uk

See https://www.practicallaw. co.uk
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for British and Irish law,*?, Congress.gov for US law®3, or SSO for Singapore law,*
to name only a few. The contents of all these databases are categorised into different
classes, usually multi-label, as cases often fall into multiple different areas or subject
matter. Such contents are, to our knowledge, often manually hand-labelled.

The databases above generally concern publicly available information, such as judge-
ments and legislation. However, text classification is also important in the private
sector. A common task for lawyers is e-discovery: this is done in the context of litiga-
tion, where lawyers manually go through multiple (possibly thousands of) documents
to find documents containing information crucial to a case, and set aside relevant ones.
Of course, having an effective information retrieval system would greatly hasten this
process, and any such system would require documents to be categorised, which is
where text classification is crucial. There are various commercial solutions, such as
Exterro.*

Similarly, due diligence is done often in the context of a merger or an acquisition,
where all the relevant documents relating to the company being acquired are hosted in
a data room. Often, the data in a data room is not categorised, and it is the lawyers’
role to make sense of it, and to ensure that there are no potential loopholes or areas of
risk in the documents which could affect the value of the target company. Again, this
is often done by manually reviewing documents. Having a scalable, accurate classifi-
cation system could again be extremely useful. There are various commercial machine
learning-based solutions, such as Kira Systems?® and Luminance.*”

Thus, a truly effective text classification solution has tremendous potential applica-
tions. However, there are two key challenges to this: the first is that such a system
must have near complete accuracy. The stakes in commercial contracts are often astro-
nomically high. Thus, if a document were mislabelled by a classifier, the consequences
would be far worse than, for example, an image classification system wrongly identify-
ing cat pictures. Hence, a system which has 95.6% classification accuracy, which the
linear SVM does on our dataset, may still not be considered successful in commercial
terms, although it may alleviate the burden on junior lawyers.

The second challenge is pithily summarised by Zhang, Zhao and LeCun [78]:

“There is no free lunch. Our experiments once again verifies that there is
not a single machine learning model that can work for all kinds of datasets.”

This is a great obstacle to producing a commercially viable solution. As legal texts
come in various lengths, formats, subject matter and even languages, it is our view
that finding a model which generalises well remains an open challenge.

42 See https:/ /www.bailii.org/

13 See https://www.congress.gov/
44 See https://sso.agc.gov.sq/
45See https://www.exterro.com/

46 See https://kirasystems.com/
47See https://www.luminance.com,/
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6.3 Challenges

6.3.1 Lack of labelled data

As we have noted, given that text classification is generally a supervised learning task,
having sufficient data relevant to the legal domain is vital. As this project was focused
on the legal domain, we were unable to obtain a labelled dataset for single-class text
classification. We have presented our solution to this challenge, but we have not been
able to measure the efficacy of our solutions on another dataset of legal texts, to see
if the models we used generalise well.

6.3.2 Hardware limitations

Another challenge we faced is a lack of access to powerful hardware, which resulted
in us limiting word embeddings to the first 300 tokens of each sample, and later the
first 1,000. Further, the long training times due to hardware limitations forced us to
often rely on manual search, rather than a more exhaustive grid search or random
search for hyperparameter tuning. As we have noted, this would likely have affected
the performance of our deep learning models.

6.4 Possible improvements

On hindsight, there are several ways in which the implementation of this project could
have been improved. First, as we have just noted, our approach to hyperparameter
tuning more often than not was manual search. This method has been humourously
termed grad student descent [18], where a graduate student tries hyperparameters to
find the best fit. This aptly describes our situation. A grid search may have resulted in
marginally better performance in some models, although through the process of manual
search, we did not see a drastic change in performance with different hyperparameters.

Secondly, more analysis could have been done during the running of the models. Cru-
cially, an analysis of time and space complexity of models and recording their actual
training time should have been done. In practice, a case can perhaps be made for
using a model which performs slightly worse in terms of accuracy or related metrics,
but is much more efficient in terms of running time. For example, a key benefit of
using max pooling with CNNs may be that it reduces the output’s dimensions, and
thus is effective in terms of training time and memory requirements, but we did not
shed light on this.

Finally, we could have done a better theoretical analysis of the models we proposed.
From a machine learning perspective, we could have analysed more closely the specific
functions and transformations in each layer of our models. From a linguistics per-
spective, we could have better examined the syntactic structure of our samples. We
could have used tools such as spaCy’s visualiser*® to better understand the linguistic

48 See https://explosion.ai/demos/displacy

95



Chapter 6. Conclusions

features of our dataset, and proposed a model based on such an understanding.

6.5 Future work

Aside from the possible improvements cited above, there are ways in which this work
can be expanded. First, we can build on what we have done with the original EU-
RLEX dataset to provide a dataset which can be used for single-class English legal
text classification. This is very much aided by the fact that the EUR-Lex portal is
open for public use, and is constantly updated with labelled samples. Our dataset is
very much an imbalanced one, but more labelled samples can be obtained to balance
the dataset, increase the number of samples, and publish it for use. Chalkidis et al. [§]
updated and released EURLEX57K, but that remains a dataset for XMTC. Several
articles cited in related work also use labelled legal datasets, but in French [68] and
Portuguese [21]. Howe et al. [28] use an English-language labelled legal dataset, but
to our knowledge this was not released for public use.

In addition, we can experiment with many more state-of-the-art models and language
models and apply them to the text classification task, including BERT, ELMo, and
ULMFiT. We can also use transformers [74], which use only attention mechanisms
without CNNs or RNNs. While so far we have applied models designed by others
to the data that we have, in future work we could propose our own models which
generalise well, although this may prove to be a tall order.

6.6 Legal and ethical considerations

This project relies largely on the EURLEX dataset, which has been made freely avail-
able as part of the paper presented by Mencia and Furnkranz [48].%° The dataset is
also freely available to be modified, as we have done in distilling its contents to ensure
that it is appropriate for a single-label classification task. In addition, the dataset
itself is compiled from data obtained from the EUR-Lex portal. Any commercial or
non-commercial use of data from EUR-Lex is authorised, provided its source is cited,
as we have done.?®

With regards to Section 4 of the ethics checklist (see Appendix A), this project does
not collect ‘personal data’, as defined by Article 4(1) of the General Data Protec-
tion Regulation (GDPR).%! This project does not supplement the data provided in
the EUR-Lex portal by the European Union in any way. The EUR-Lex portal itself
collects personal data, but this is in compliance with personal data protection regula-

49 For the specific terms and conditions, see
http:/ /www.ke.tu-darmstadt.de /resources/eurlexsection-13

50 For the European Union’s terms and conditions, see
https://eur-lex.europa.eu/content /legal-notice /legal-notice. himl2. %20droits

51 For the full definition, see
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?7uri=CELEX:32016R0679
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tions, and authorised under Regulation (EU) 2018/1725.52

However, where ‘processing’ is defined under Article 4(2) GDPR,?® this project may
involve ‘personal data processing’ or ‘further processing of previously collected per-
sonal data’ The raw text samples in the EURLEX dataset may include information
relating to natural persons, such as names. We have performed ‘operations’ on this
data for the purposes of data analysis in our project. However, all such processing has
been lawful under Article 6(1) of the GDPR on the lawfulness of processing.’* Indeed,
the data has been used in accordance with the copyright terms of the European Union,
which itself is the very source of the GDPR.

With regards to Section 8, we consider our project to have an exclusive focus on
civil applications, as defined by the European Commission’s guidance.?® There is no
intention for it to be used in military application or serve military purposes.

With regards to Section 10, we have not produced any software for which there are
copyright licensing implications. However, a potential copyright implication which
arises is that the dataset we have used, and the modified data we will reproduce,®®
is provided under the permissions of Mencia and Furnkranz [48] and the European
Union. It follows that any further use of the data is subject to the same copyright
rules as we have been subject to.

We do not consider that this project confronts any ethical concerns, other than the
fact that machine learning is in general related to artificial intelligence, which itself
is a source of much ethical debate for various reasons such as its potential to cause
job displacement. However, we consider such matters to be beyond the scope of this
project, given that our aim is mainly to evaluate and present models which can classify
legal documents accurately. We have considered - and our view is that this project
is in line with - the BCS Code of Conduct, IET Rules of Conduct, and Engineering
Council Statement of Ethical Principles.

52 See https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32018R1725

%3 ibid.

o4 ibid.

55 For the full guidance note, see
https://ec.europa.eu/research/participants/data/ref/h2020/other/hi/quide_research-civil-apps_en. pdf

56 Data provided in data.csv
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Chapter A. Ethics checklist

Yes
Section 1: HUMAN EMBRYOS/FOETUSES
Does your project involve Human Embryonic Stem Cells?
Does your project involve the use of human embryos?
Does your project involve the use of human foetal tissues / cells?
Section 2: HUMANS
Does your project involve human participants?
Section 3: HUMAN CELLS / TISSUES
Does your project involve human cells or tissues? (Other than from
“Human Embryos/Foetuses” i.e. Section 1)?
Section 4: PROTECTION OF PERSONAL DATA

Does your project involve personal data collection and/or processing? %

Does it involve the collection and/or processing of sensitive personal
data (e.g. health, sexual lifestyle, ethnicity, political opinion,
religious or philosophical conviction)?

Does it involve processing of genetic information?

Does it involve tracking or observation of participants? It should be
noted that this issue is not limited to surveillance or localization
data. It also applies to Wan data such as IP address, MACs, cookies
etc.

Does your project involve further processing of previously collected
personal data (secondary use)? For example Does your project
involve merging existing data sets? X
Section 5: ANIMALS

Does your project involve animals?

Section 6: DEVELOPING COUNTRIES

Does your project involve developing countries?

If your project involves low and/or lower-middle income countries,
are any benefit-sharing actions planned?

Could the situation in the country put the individuals taking part in
the project at risk?

Section 7: ENVIRONMENTAL PROTECTION AND SAFETY

Does your project involve the use of elements that may cause harm
to the environment, animals or plants?

Does your project deal with endangered fauna and/or flora /
protected areas?

Does your project involve the use of elements that may cause harm
to humans, including project staff?

Does your project involve other harmful materials or equipment, e.g.
high-powered laser systems?

Section 8: DUAL USE

Does your project have the potential for military applications?

Does your project have an exclusive civilian application focus? X
Will your project use or produce goods or information that will
require export licenses in accordance with legislation on dual use
items?

Does your project affect current standards in military ethics - e.g.,
global ban on weapons of mass destruction, issues of proportionality,
discrimination of combatants and accountability in drone and
autonomous robotics developments, incendiary or laser weapons?
Section 9: MISUSE

No

x| X

>
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Chapter A. Ethics checklist

Does your project have the potential for malevolent/criminal/
terrorist abuse?

Does your project involve information on/or the use of biological-,
chemical-, nuclear/radiological-security sensitive materials and
explosives, and means of their delivery?

Does your project involve the development of technologies or the
creation of information that could have severe negative impacts on
human rights standards (e.g. privacy, stigmatization, discrimination),
if misapplied?

Does your project have the potential for terrorist or criminal abuse
e.g. infrastructural vulnerability studies, cybersecurity related
project?

SECTION 10: LEGAL ISSUES

Will your project use or produce software for which there are
copyright licensing implications?

Will your project use or produce goods or information for which
there are data protection, or other legal implications?

SECTION 11: OTHER ETHICS ISSUES

Are there any other ethics issues that should be taken into
consideration?
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Project files

This is a summary of how to run the models and visualisations in this project.
We provide the files for running all the models discussed in the project.

e Download and save thedata.csv file.
e Due to the file size limitations in CATe, we have hosted the filehere.
e |t contains 3 columns per line:
1. "Text": consisting of the raw text samples, extracted from HTML source
2. "Class": the class label belonging to the text sample
3. "Cleaned": the preprocessed text samples, for easy access. We discuss the preprocessing steps
thoroughly in the project, and also provide the functions for preprocessing in our files.
e Files provided:
1. dataset.py. get word counts, visualise dataset
machine_learning_models.py. run machine learning models
deep_learning_models.py. run deep learning models (excl. HAN)
han.py. run hierarchical attention network (HAN) model
decision_boundary_visualisation.py. visualisation for k-NN classifier
extract.py. extract text samples from raw html files
decision_tree.pdf. image of decision tree visualisation

© N o A~ WD

random_forest.pdf. image of random forest visualisation
Libraries

e tensorflow (machine learning library)

e keras (ML library, used with Tensorflow backend)

e pandas (for data handling)

e spaCy (for various NLP tasks)

e mixtend (for some plotting and additional functions, statistical testing)
e adjustText (to adjust matplotlib plot overlaps)

e seaborn (for visualisation)

e matplotlib (for visualisation)

e beautifulsoup4 (for scraping raw html text files)

Installation

Note that we do not use the latest version of matplotlib (v3.1.1), because of a bug in plotting confusion
matrices.

With Python 3.x, usingpip:

pip install scikit-learn tensorflow keras pandas spacy mlxtend adjustText seaborn matpl
python -m spacy download en_core web lg

Rl | il



https://www.dropbox.com/s/v8qhwjwobp8ti00/data.csv?dl=0
https://www.dropbox.com/s/v8qhwjwobp8ti00/data.csv?dl=0
file:///tmp/tensorflow.org
file:///tmp/keras.io
file:///tmp/pandas.pydata.org
file:///tmp/spacy.io
http://rasbt.github.io/mlxtend/
https://adjusttext.readthedocs.io/en/latest/
file:///tmp/seaborn.pydata.org
file:///tmp/matplotlib.org
file:///tmp/pypi.org/project/beautifulsoup4
https://pip.pypa.io/en/stable/

Usage of dataset.py

Import all dependencies and function definitions in the file.
We acknowledge that the cleanup_text functions and plot_tokens_clean function are based onthis kernel.

e Store data in a pandas dataframe, 'df’
e Pass in as a string the file location where data.csv has been saved.

df = load_data('/.../data.csv')
¢ load the largest nlp model from spaCy
nlp = spacy.load('en_core web_1lg')
e this function takes loaded pandas dataframe as argument
e prints the counts of each sample in each class
e plots bar chart of distributions of samples in each class
e prints counts of tokens/sentences per sample

e prints bar charts of occurrences of most common words in each class

class_distributions(df)

e plot a visualisation of spaCy's embeddings of some common words

visualise embeddings()

visualise our dataset with count or TF-IDF vectorizer, with dimensionality reduction to 2D

takes in the dataframe and two strings as parameters

the first string is the vectorizer ("count” or "tfidf")

the second string chooses whether to visualise the full dataset or only the test set ("full” or "test")

visualise data(df, "count", "full")

Usage of machine_learning_models.py

Import all dependencies and function definitions in the file.
We acknowledge that the plot_confusion_matrix function is based onthis article.

e Store data in a pandas dataframe, 'df’
e Pass in as a string the file location where data.csv has been saved.

df = load _data('/.../data.csv')


https://www.kaggle.com/enerrio/scary-nlp-with-spacy-and-keras
https://medium.com/@deepanshujindal.99/how-to-plot-wholesome-confusion-matrix-40134fd402a8

¢ the run_model function takes three parameters, returns a trained classifier, vectorizer, and confusion
matrix; prints classification report from sklearn, accuracy and macro-F1
e parameters:
1. df - the dataframe we loaded above
2. vectorizer - the name of the vectorizer (options: "count" or "tfidf")
3. classifier - the name of the classifier
o classifier options:

"naive_bayes"

= "decision_tree"

= "random_forest",

= "logistic_regression”
= 'linear_svm",

= "nonlinear_svm"

= "knn"

n mIpll
vectorizer, classifier, cm = run_model(df, "count", "logistic_regression")

e next, run another classifier if desired

vectorizer2, classifier2, cm2 = run_model(df, "tfidf", "linear_svm")

print confusion matrix

takes confusion matrix object returned by run_model as argument

if normalize=True, prints a normalised confusion matrix

change title text string as desired

plot_confusion_matrix(cm, normalize=False, target_names=[i for i in range(1,21)],
title="Confusion Matrix")

e run a mcnemar's test if desired (pass in two classifiers returned from run_model)

stat_test(df, classifierl, classifier2)

e generate plot of logistic regression coefficients
e pass in classifier and vectorizer objects as arguments
e only works if passing in a logistic regression classifier

plot 1r coef(classifier, vectorizer)

e generate k-NN performance graph used in our report
e values in this plot are hard-coded from our results

knn_plot()



Usage of deep_learning_models.py

Import all dependencies and function definitions in the file.

e Store data in a pandas dataframe, 'df’
e Passin as a string the file location where data.csv has been saved.

df = load data('/.../data.csv')

¢ load the largest nlp model from spaCy
e by default, the spacy model takes in inputs of max length 1,000,000 chars
e our dataset has max char length 2,871,868, so we need to configure this

nlp = spacy.load('en_core web _1lg')
nlp.max_length = 2871868

e choose some options
e if using word embeddings, MAX_LENGTH controls max number of words per sample
e if using sentence embeddings, MAX_LENGTH controls max number of sentences per sample

MAX_LENGTH = 300 # the max length per sample (choose wisely)

NB_EPOCHS = 50 # number of epochs over which to run. choose some integer, ideally <100
EARLY_STOPPING = True

PATIENCE = 5 # patience for early stopping, if set to True. choose some integer < NB_EPC

Kl ‘\ il

¢ we run the function to add embeddings from spacy to our dataframe

e function takes in 3 parameters, returns our df
1. df - the pandas dataframe containing our data
2. embedding - the type of embedding (options: "word_embeddings", "sentence_embeddings")
3. MAX_LENGTH - options: an integer between 1 to 300,000 but due to memory requirements,

ideally <=1,000. Note: setting length=1000 already loads ~75GB of embeddings in memory
df = get_embeddings(df, "word embeddings", MAX_LENGTH)

e we run the neural network model, function takes in 6 parameters, including those defined above:
1. df - the pandas dataframe containing our data

2. architecture - the type of architecture (options: "mlp", "cnn”, "ngram_cnn", "Istm", "bi_Istm")

[o]

note: "ngram_cnn" is based on the CNN implemented in (Kim, 2014) as discussed in our report
MAX_LENGTH

NB_EPOCHS

EARLY_STOPPING

PATIENCE

o g kW



model, cm = run_model(df, "mlp", MAX_LENGTH, NB_EPOCHS, EARLY_STOPPING, PATIENCE)

e plot confusion matrix (normalised or not), if desired

plot_confusion_matrix(cm, normalize=False, target_names=[i for i in range(1,21)])

Usage of han.py

We acknowledge that the implementation of the dot_product function and AttentionWithContext layer, and

general design of the network, is based on this and that repository.

However, based on those existing implementations, we configured the network to work in our context and for

our purposes.
Import all dependencies and function definitions in the file.

e Store data in a pandas dataframe, 'df’
e Passin as a string the file location where data.csv has been saved.

df = load data('/.../data.csv')
e set some parameters which can be chosen

MAX_WORDS = 261737 # number of unique tokens in our training set
MAX_SENTS = 300 # we stick to max. 300 sentences per sample
MAX_SENT_LENGTH = 300 # we stick to max. 300 tokens per sentence
VALIDATION SPLIT = 0.2 # same training:validation split, 80:20
EMBEDDING_DIM = 300 # we stick to embedding dimensions of 300

e run the model

model, cm = run_model(df, MAX_WORDS, MAX_SENTS, MAX_SENT_LENGTH, VALIDATION_SPLIT, EMBEI

Kl ‘\ 2

e plot the confusion matrix

plot_confusion_matrix(cm, normalize=False, target names=[i for i in range(1,21)], title:

Rl | i

Usage of decision_boundary._visualisation.py

Run the entire python script.
We used a list of 20 distinct colours fromhere.

e It generates a plot of our k-NN classifier's decision boundaries.


https://github.com/richliao/textClassifier/blob/master/textClassifierHATT.py
https://gist.github.com/cbaziotis/7ef97ccf71cbc14366835198c09809d2
https://sashat.me/2017/01/11/list-of-20-simple-distinct-colors/

e The dimensions of our features have been reduced to 2D, so this is not representative of the actual
classifiers we trained.

¢ In the file there is a variable, vectorizer, which is set to the TfidfVectorizer().

e Change this to CountVectorizer()if desired.

# vectorizer = CountVectorizer()
vectorizer = TfidfVectorizer() # choose vectorizer

e There are also variables, k=7 and weights="distance.
e kcan be reset to any desired value ofk and the corresponding plot will be generated.
e weights can be set to distance’or uniform'’.

k = 1 # choose value for k-NN

# weights = 'uniform'

weights = 'distance' # choose distance weighting

classifier = KNeighborsClassifier(n_neighbors=k, weights="distance")

¢ run the entire python script once decided.

Usage of extract.py

This file extracts the text samples from the raw HTML files from the original EURLEX dataset. This can be
accessed here.

To run this file, first download and unzip all raw HTML files fromhere. Note the directory in which these files
have been saved.

Create a new empty directory where the extracted text files will be stored.

e Import dependencies

import os
from bs4 import beautifulsoup

¢ Initialise variables containing the filepath of the directory where all the raw HTML files are, and the
directory where the extracted text files will be stored.

base dir = "/..." # the location of raw HTML files

second_dir = "/..." # the location of extracted files

Run the rest of the script.

The output of this process is the body text of each file, with a CELEX ID. We then matched the CELEX IDs with
the document IDs in this file.

At this stage, we have the body texts, with document IDs. We then matched the document IDs with the top
level directory codes, which are the class labels in the file id2class_eurlex_DC_I1.qrels, from this zip file.


http://www.ke.tu-darmstadt.de/resources/eurlex
http://www.ke.tu-darmstadt.de/files/resources/eurlex/eurlex_html_EN_NOT.zip
http://www.ke.tu-darmstadt.de/files/resources/eurlex/eurlex_ID_mappings.csv.gz
http://www.ke.tu-darmstadt.de/files/resources/eurlex/eurlex_id2class.zip

Note that the output of this process has been saved in a format which is easy to work with, especially with a
pandas dataframe, in the file data.csv.
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