
IMPERIAL COLLEGE LONDON

MASTER’S THESIS

Typing JavaScript through Symbolic
Execution

Author:
Radu-Andrei SZASZ

Supervisor:
Prof. Philippa GARDNER

A thesis submitted in fulfillment of the requirements
for the degree of Masters in Engineering

in the

Department of Computing

June 18, 2018

3

IMPERIAL COLLEGE LONDON

Abstract

Faculty of Engineering

Department of Computing

Masters in Engineering

Typing JavaScript through Symbolic Execution

by Radu-Andrei SZASZ

JavaScript is the de facto language for client-side web applications, supported by all
major browsers. It is also used to build server-side solutions and mobile applications.
Despite its massive popularity, JavaScript’s dynamic nature, together with its compli-
cated semantics, make it a troublesome language for developing and maintaining large
applications. In the past decade, there have been numerous attempts to retrofit a static
type system on top of JavaScript. The most popular such extension is TypeScript.

This work builds a mechanism for using TypeScript type annotations as light-weight
specifications for a static analysis tool based on Separation Logic, JaVerT. We provide a
sound translation from TypeScript type annotations to JaVerT assertions and implement
a tool that carries out this translation. The translation provides strong guarantees for
class types, ensuring prototype safety and enabling reasoning about scope chains. We
applied our approach to a number of examples, where we were able to achieve a 40-fold
reduction in the specification character count.

5

Contents

1 Introduction 1
1.1 Related work . 2
1.2 Motivation . 3

1.2.1 Examples in JavaScript . 4
1.2.2 Examples in TypeScript . 6
1.2.3 Examples in JaVerT . 8

1.3 Contributions . 12
1.4 Report outline . 12

2 Background 13
2.1 TypeScript . 13

2.1.1 Syntax of TypeScript . 13
2.1.2 Sources of unsoundness . 16
2.1.3 Useful notation . 17
2.1.4 The TypeScript compiler . 17
2.1.5 Translating a TypeScript Class to ES5 18

2.2 JaVerT . 19
2.2.1 Separation logic . 19
2.2.2 JaVerT assertions . 20
2.2.3 JS Logic built-in predicates . 21
2.2.4 Toolchain structure and safety guarantees 22

3 Translating TypeScript to JaVerT 25
3.1 The translation without classes . 26

3.1.1 Translating the typing environment without classes 28
3.1.2 Specifying functions without classes 29

3.2 The translation with classes . 29
3.2.1 Relevant design decisions for translating classes 30
3.2.2 The inheritance graph and its relation to prototype safety 31
3.2.3 The class JaVerT predicates . 32
3.2.4 The definitions of the compile functions revisited 34
3.2.5 Discussion . 36

3.3 Assertion placement — an example . 37
3.3.1 Predicate definitions . 38
3.3.2 Method and constructor specifications 38
3.3.3 Assignment assertions . 38
3.3.4 Loop invariant assertions . 40

3.4 Soundness . 40
3.5 Implementation . 44

4 Evaluation 47
4.1 Theoretical results . 47

6

4.2 Practical results . 47
4.2.1 Ease of code specification . 48
4.2.2 Performance . 49

4.3 Known limitations . 50
4.4 Lessons learnt . 51
4.5 Comparison with other works . 52

4.5.1 Type systems for JavaScript . 52
4.5.2 Generating Separation Logic assertions 53

5 Conclusion and future work 55
5.1 Future Work . 55

5.1.1 Tool enhancements . 55
5.1.2 Separation logic and types . 55

Bibliography 57

1

Chapter 1

Introduction

JavaScript is the de facto language for client-side web applications, supported by all
major browsers. It is also used to build server-side solutions and mobile applications.
Despite its massive popularity, JavaScript’s dynamic nature, together with its compli-
cated semantics, make it a troublesome language for developing and maintaining large
applications. This drawback is amplified by the lack of adequate static analysis tools.

In the past decade, there have been numerous attempts to retrofit a static type system on
top of JavaScript. The most popular such extension is TypeScript [6], with over 200.000
GitHub repositories using it as of 2017 [23]. It is an extension of JavaScript that enriches
it with interfaces and a static type system. TypeScript improved the JavaScript devel-
oper experience greatly, by enabling a streamlined IDE experience previously associated
with languages such as Java or Scala. The main disadvantage of TypeScript is that its
type system is unsound by design and hence type checking does not provide the safety
developers expect. Flow [9], an alternative to TypeScript, tracks the flow of values to
produce a sound type system for a large subset of JavaScript. If we consider the entire
JavaScript language, Flow can not guarantee type safety either.

In contrast, Fragoso Santos et al. developed JaVerT [17], a JavaScript verification toolchain
based on separation logic. The authors of JaVerT provide an assertion language, JS
Logic, which is required for writing the specifications of JavaScript code. Programmers
need to specify function pre- and post-conditions, loop invariants and instructions for
folding and unfolding user-defined predicates. The code annotated with JS Logic as-
sertions is then compiled to JSIL code annotated with JSIL Logic assertions. JSIL is an
intermediate goto language capturing the dynamism of JavaScript. Lastly, the toolchain
contains a semi-automatic verification tool named JSIL Verify, which performs verifica-
tion at the JSIL level. These elements enable programmers to verify functional correct-
ness properties of their code. The main drawback of this approach is that developers are
required to annotate their methods with JS Logic assertions and instructions for carrying
out the proof, which is often as complicated as writing the code in the first place.

The goal of this project is to combine the approaches described above. More specifically,
we process JavaScript programs containing TypeScript type annotations and translate
the type information into JS Logic assertions. The mechanical checking of the JavaScript
code annotated with JS Logic assertions is then facilitated by JaVerT. This approach pro-
vides users with the intuitive interface of TypeScript type annotations, while offering
them the precise analysis of JaVerT. Soundness is a core goal of the resulting system and
a proof of it is presented in this report. Common JavaScript idioms should be supported
and the code should be interpreted as dictated by the JavaScript standard.

2 Chapter 1. Introduction

1.1 Related work
We present a timeline of the work done with the goal of retrofitting a type system on
top of JavaScript. This culminates with the development of TypeScript and Flow.

1995 • JavaScript is launched and deployed in Netscape Navigator 2.0 beta 3.

2005 • Thiemann presents a first attempt at defining a type system for
JavaScript [40]. The system tracks the possible traits of an object and flags
suspicious type conversions. The work did not cover vital aspects of
JavaScript, such as prototypal inheritance, and was not accompanied by an
implementation at the time it was published.

2005 • Anderson et al. [1] design a type system for JS0, a subset of JavaScript,
together with a sound type inference algorithm. This subset tracks dynamic
addition/reassignment of fields and methods, but does not cover important
features such as object indexing using strings and implicit coercions.

2009 • Jensen et al.’s [25] work “is the first step towards a full-blown JavaScript
program analyser”. The analysis is built on previously developed techniques
such as recency abstraction [2]. The analysis suffers from the presence of false
positives and is infeasible for use in an IDE due to performance issues, as
pointed out in the evaluation section of the paper.

2011 • Alternative approach: Google launches Dart [7] — a typed programming
language for client-side web applications that compiles to JavaScript.

2012 • Microsoft launches TypeScript [31]. TypeScript is syntactically a superset of
JavaScript. Its intuitive type annotations, performance and IDE support,
coupled with the flexibility of its gradual type system were the factors behind
the adoption process. A substantial drawback is the fact that the type analysis
is unsound; sources of unsoundness include unchecked downcasts,
unchecked gradual typing and unchecked covariance, all of which are
covered at length in [6].

2014 • In their work, Feldthaus et al. [15] check the correctness of TypeScript
Interfaces for JavaScript libraries. Their system analyses the snapshot of the
heap after library initialisation and performs a static analysis on the functions
exported by the library checked. The mechanism is implemented in the
toolchain JSNAP, TSCORE and TSCHECK.

2014 • Facebook launches Flow [22]; its implementation is later described in [9].
Flow constitutes a system for both type inference and type checking. It
analyses the flow of values, creating a constraint-graph and inferring types
for the expressions in the program. Consequently, it requires far fewer
annotations than TypeScript and presents fewer sources of unsoundness.

2015 • Rastogi et al. [38] publish a paper describing a safe type system for
TypeScript. They introduce a number of stricter static checks as well as
runtime checks. The implementation minimises the performance hit taken by
runtime checks by only instrumenting code that is not used in compliance
with the static typing discipline.

1.2. Motivation 3

Alongside with the work carried out to retrofit a type system onto JavaScript, it is im-
portant to note the contributions which led to the development of static analysis tools
such as JaVerT.

1969 • Hoare develops a formal system for reasoning about the correctness of
computer programs [21]. He introduces a new notation: P{C}Q to be
interpreted as "If the assertion P is true before the initialisation of a program
C, then the assertion Q will be true on its completion."

2001 • O’Hearn et al. [35] create an extension of Hoare logic for reasoning about
programs that alter data structures. The central piece of their work is the
addition of the ∗ operator called separating conjunction, which enables
reasoning about partial heaps. Intuitively, P ∗Q describes the set of partial
heaps that can be separated in two disjoint partial heaps, one satisfying P and
the other one satisfying Q.

2005 • Berdine et al. [5] develop a symbolic execution algorithm for automatically
checking triples of the form {P}C{Q} where P and Q are separation logic
assertions. Their work is targeted at a C-like language for which they provide
an operational semantics. In [4] the authors present an experimental tool built
upon the algorithms in [5].

2008 • Distefano and Parkinson create an automatic verification system for Java,
jStar [12], abstract predicate families [36, 37] and the idea of symbolic
execution and abstraction using separation logic. They use their system to
verify four popular Java design patterns.

2011 • Jacobs et al. [24] introduce VeriFast, a semi-automatic verification tool for C
and Java. Verifast can verify both single- and multi-threaded programs, takes
permissioning into account in the case of Java, allows user to define custom
predicates, and provides predictable and fast verification times.

2012 • Gardner et al. [19] adapt ideas from separation logic to provide a scalable
program logic for a subset of JavaScript, based on an operational semantics
faithful to ECMAScript 3. They model several challenging features of
JavaScript, such as prototypal inheritance and scope chains.

2017 • Fragoso Santos et al. [17] create JaVerT: a JavaScript verification toolchain,
which allows for semi-automatic reasoning about functional correctness
properties of JavaScript programs, without introducing simplifications to the
language semantics. The annotation load required, however, is substantial.

1.2 Motivation
We illustrate two scenarios in which TypeScript fails to ensure type safety on its own,
but we are able to enforce it by compiling TypeScript’s type annotations to JS Logic
assertions. Onward, we use the terms “JS Logic assertions” and “JaVerT assertions”
interchangeably.

We first present the examples in JavaScript and illustrate some features of the language
that we deem important. Next, in Figures 1.3 and 1.4, we present the corresponding

4 Chapter 1. Introduction

1 function createShape(shape, sz) {
2 if (shape === "circle") {
3 return { radius: sz };
4 }
5 else if (shape === "square") {
6 return { edgeSize: sz };
7 }
8 };
9 var shape = createShape("circle", 3);

10 var square = shape;
11 console.log(square.edgeSize); // undefined

FIGURE 1.1: A JavaScript example illustrating TypeScript’s lack of sup-
port for flow sensitivity.

TypeScript code and introduce the syntax and semantics of TypeScript type annotations.
Finally, in Figures 1.6 and 1.8, we show the JavaScript annotated with JaVerT assertions
we compile the TypeScript code to and use these examples to introduce JaVerT asser-
tions and explain why they can offer soundness where TypeScript fails.

The first of the two examples illustrates how type safety can be enforced by a flow-
sensitive analysis. The second example highlights the benefits of using JS Logic asser-
tions when dealing with dynamic property accesses—an area in which both TypeScript
and Flow struggle.

1.2.1 Examples in JavaScript

Example 1: Flow sensitivity

In the example presented in Figure 1.1, we define a function that takes an argument
shape and an argument sz and returns an object that describes either a circle or a square
(lines 1-8). After the function call in line 9 we are free to assign, in line 10, the return
value of the function, even though it describes a circle, to a variable called square that a
developer would assume describes a square.

Not all paths in a JavaScript function need to return a value. If the end of a function is
reached without encountering a return statement, the value undefined is returned by
default. Another interesting point to make is that while square = { radius: 3 }, the
access square.edgeSize returns undefined instead of triggering a runtime. This forgiv-
ing runtime behaviour enables the undefined value produced by accessing a missing
field to propagate and cause a bug further in the execution flow; a bug occurring at a
totally different place will be harder to trace and fix for a developer.

In an ideal world, a type system analysing the createShape function in a flow sen-
sitive manner should detect that when called with the argument shape having value
"circle", the function returns an object with a single field named radius. Such a type
system should complain that, in line 11, we are accessing a nonexistent field, thus saving
a good amount of debugging time.

Example 2: Dynamic Property Access

In the code snippet presented in Figure 1.2 we implement a key/value map, MyMap
(lines 1-14), which works by storing the key/value pairs into the contents object. We
provide a constructor (lines 2-4) and two methods: the get method (lines 5-9), which
returns the value corresponding to a key; and put (lines 10-12), which adds a key/value
pair to the map, overwriting the old value if the key already existed.

1.2. Motivation 5

1 var MyMap = (function () {
2 function MyMap() {
3 this.contents = {};
4 }
5 MyMap.prototype.get = function (k) {
6 if (this.contents.hasOwnProperty(k)) {
7 return this.contents[k];
8 }
9 };

10 MyMap.prototype.put = function (k, v) {
11 this.contents[k] = v;
12 };
13 return MyMap;
14 }());
15

16 var myMap = new MyMap();
17 myMap.put("myKey", 3);
18 myMap.put("hasOwnProperty", 0);
19 console.log(myMap.get("myKey"));

FIGURE 1.2: JavaScript example illustrating lack of type safety

Before covering the lines of code after the definition of MyMap, we need to explain two
vital concepts: prototype-based inheritance and prototype safety.

Prototype-based inheritance. JavaScript does not model classes, but instead uses ob-
jects and prototypes. Each object has a private property holding a link to another object
called prototype. The chain we get by following this link on an object is called prototype
chain. The value of a property on an object is resolved by firstly inspecting the object it-
self and then traversing its prototype chain. This is the mechanism via which JavaScript
models inheritance and is commonly referred to as prototype-based inheritance.

The prototype chain of nearly all JavaScript objects ends with a special prototype ob-
ject, Object.prototype [33]. The hasOwnProperty method in Object.prototype checks
whether an object has a certain property as its own property, as opposed to inheriting it.
This method is called in line 6 to check that the key we are accessing was purposefully
added to the map.

Prototype safety. In general, the specification of a given library must ensure that all pro-
totype chains are consistent with correct library behaviour by stating which resources
must not be present for its code to run correctly. In particular, (P1) constructed objects
cannot redefine properties that are to be found in their prototypes; and (P2) prototypes
cannot define as non-writable those properties that are to be present in their instances.
We refer to these two criteria as prototype safety1.

We illustrate how the example in Figure 1.2 breaks prototype safety. We first create a
new key-value map (line 16) and associate the key "myKey" with the value 3. Next,
the call to put in line 18 shadows the hasOwnProperty method from Object.prototype,
breaching condition (P2) of prototype safety. As (P2) is broken, the call to get in line 19
leads to a crash: when execution reaches line 6, this.contents.hasOwnProperty evalu-
ates to 0, and the call 0("myKey") triggers a type error at runtime, as 0 is not a function.

We would like a type system that prohibits the assignment to the hasOwnProperty field,
because it shadows the target method of Object.prototype and breaks prototype safety.

1Prototype safety as defined in [17]

6 Chapter 1. Introduction

1 interface Square {
2 edgeSize: number;
3 }
4

5 interface Circle {
6 radius: number;
7 }
8

9 function createShape(shape: "circle" | "square", sz: number): Square | Circle {
10 if (shape === "circle") {
11 return { radius: sz };
12 } else if (shape === "square") {
13 return { edgeSize: sz };
14 }
15 }
16

17 var shape: Square | Circle = createShape("circle", 3);
18 var square: Square = shape as Square;
19 console.log(square.edgeSize);

FIGURE 1.3: TypeScript code that transpiles to the JavaScript presented
in Figure 1.1

The pattern used for object creation in the code in Figure 1.2 is common in JavaScript [10],
as it enables information hiding via the use of closures.

1.2.2 Examples in TypeScript

TypeScript is an extension of JavaScript, adding interfaces and a static gradual type
system to the language. Users interact with the type system via the use of type anno-
tations which the TypeScript compiler completely erases once it finishes type checking
the code—full type erasure is one of the characteristics of TypeScript. This implies that
there exists no run-time representation of types and no run-time type checking; cou-
pled with JavaScript’s implicit type coercions, this characteristic of TypeScript is likely
to allow bugs to propagate.

We present, in Figures 1.3 and 1.4, the TypeScript code that transpiles to the JavaScript
code in Figures 1.1 and 1.2, respectively. We make use of these two examples to intro-
duce the TypeScript type annotations; we give the full syntax of types in §2.1.

Example 1: Flow Sensitivity

The program presented in Figure 1.3 transpiles to the code we showed in Figure 1.1. We
focus on the TypeScript-specific features present in this example. As a first observation,
the TypeScript is much easier to grasp for someone coming from Java or C++ than the
transpiled code.

TypeScript makes use of a structural type system; interfaces, declared by using the key-
word interface, are used to describe the structure of an object. The declaration in
lines 1-3 describes a Square. A Square must have a field edgeSize of type number. Simi-
larly, a Circle (lines 5-7) must have a field radius of type number.

Focusing on the type annotations present in the definition of createShape, we notice
that the function takes two arguments: shape, of type "circle" | "square", which
is called a string literal union type [26]; and sz of type number. Intuitively, the type
annotation of shape says that shape must represent either the string "circle", or the

1.2. Motivation 7

1 class MyMap {
2 private contents: { [key: string]: number };
3

4 public constructor() {
5 this.contents = {}
6 }
7

8 public get(k: string): number | undefined {
9 if (this.contents.hasOwnProperty(k)) {

10 return this.contents[k];
11 }
12 }
13

14 public put(k: string, v: number): void {
15 this.contents[k] = v;
16 }
17 }
18

19 var myMap = new MyMap();
20 myMap.put("myKey", 3);
21 myMap.put("hasOwnProperty", 0);
22 console.log(myMap.get("myKey"));

FIGURE 1.4: TypeScript code that transpiles to the JavaScript presented
Figure 1.2

string "square". The | symbol constructs a union type. Another example of such a
union type is present in the return type of the function, Square | Circle, meaning that
the function will return either a Square or a Circle.

The call in line 17 creates a Circle. TypeScript’s type analysis is not flow sensitive, so it
cannot determine this; the variable shape must have type Square | Circle. In line 18,
we are downcasting shape to a Square and assigning it to the variable square. Type-
Script is unable to statically verify whether or not this downcast is valid and, hence, does
not throw a compile time warning. Because of full type erasure, checking the validity of
the downcast cannot be performed at runtime either. A consequence of the unchecked
downcast is that we can proceed with the variable square having type Square, despite
it having the structure of a Circle without the compiler complaining. This implies that
when we try to access the field edgeSize in line 19, the field will not exist in the object
square and, hence, we will print undefined.

Example 2: Dynamic Property Access

In Figure 1.4 we showcase the TypeScript code corresponding to the key-value map
we presented in the JavaScript code in Figure 1.2. The TypeScript code uses classes
instead of closures to define MyMap. Classes are not specific to TypeScript; they were
introduced in ECMAScript 2015 [32]. JaVerT operates on ES5 code and since classes
were not available in ES5, we compile them to closures, like in Figure 1.2.

In line 2 of the example, we declare a private field called contents. Its type signature,
which is { [key: string]: number }, intuitively says that each field in contents is
denoted by a string and that the value of that field is a number. The type annotation
[key: string]: number is referred to as the index signature of an object. The index sig-
nature can be coupled with other fields, as shown in Figure 1.5; those fields must have
a type compatible with the index signature.

8 Chapter 1. Introduction

1 interface EnhancedMap {
2 size: number;
3 [key: string]: number;
4 }
5

6 var x: EnhancedMap = {
7 size: 2,
8 a: 32,
9 b: 64

10 };

FIGURE 1.5: Combining an index signature with other fields

Intuitively, we would expect this.contents.hasOwnProperty to have type number on
line 9 due to the index signature. However, TypeScript assumes prototype safety and
types this.contents.hasOwnProperty with the type (k: string): boolean, which is
the type it has in Object.prototype.

The definition of the get and put methods is identical to that in Figure 1.2. The union
type used in the return type of the get function is required because not all paths in the
function contain an explicit return statement; if the key k is not in the map, we do not
enter the if and implicitly return undefined. The private and public identifiers are
orthogonal to the discussion about the type system. Nevertheless, we note that they are
used only by the TypeScript compiler and have no effect on the code emitted.

Despite the program type checking, a runtime error will be thrown at runtime due to
this.contents.hasOwnProperty evaluating to a number rather than a function in line 9.
The type system cannot check that special identifiers, such as hasOwnProperty, are not
passed as arguments to the put function, thus allowing the shadowing of the function
in Object.prototype and failing to ensure the prototype safety which it assumes when
typing the code.

1.2.3 Examples in JaVerT

The examples presented in JaVerT provide identical code to the JavaScript ones pre-
sented in §1.2.1. The code is annotated with JS Logic assertions computed based on the
type annotations of the TypeScript code presented in §1.2.2.

Example 1: Flow sensitivity

In Figure 1.6 we present the JavaScript code annotated with JaVerT assertions generated
from the TypeScript code in Figure 1.3.

In lines 2-5 we are defining a Circle predicate. This predicate corresponds to the Circle
interface in the TypeScript code. The predicate is formed out of three conjuncts:

1. In line 3, our predicate requires that a Circle is a JavaScript object having the
prototype set to Object.prototype. In order to express that, we are making use of
the built-in JSObjWithProto predicate;

2. In line 4, we are specifying that an object satisfying the Circle predicate must
have a data property radius, whose value we refer to using the logical variable
#r; as a rule, all logical variables must begin with the # symbol and are implic-
itly existentially quantified. DataProp is a JaVerT built-in predicate describing an
enumerable, writable, and configurable property.

1.2. Motivation 9

1 /**
2 @pred Circle(c) :
3 JSObjWithProto(c, Object.prototype) *
4 DataProp(c, "radius", #r) *
5 types(#r : Num);
6

7 @pred Square(s) :
8 JSObjWithProto(s, Object.prototype) *
9 DataProp(s, "edgeSize", #e) *

10 types(#e : Num);
11 */
12

13 /**
14 @id createShape
15

16 @pre (shape == "circle") * types(sz : Num)
17 @post (ret == #shape) * Circle(#shape)
18

19 @pre (shape == "square") * types(sz : Num)
20 @post (ret == #shape) * Square(#shape)
21 */
22 function createShape(shape, sz) {
23 if (shape === "circle") {
24 return { radius: sz };
25 }
26 else if (shape === "square") {
27 return { edgeSize: sz };
28 }
29 };
30 var shape = createShape("circle", 3);
31 var square = shape;
32 console.log(square.edgeSize);

FIGURE 1.6: JavaScript code annotated with JS Logic assertions corre-
sponding to the TypeScript code in Figure 1.3

3. Lastly, in line 5, we require that the value represented by #r has type Num, meaning
that #r is a number.

All these conjuncts in the Circle predicate describe the way a partial heap containing a
Circle object should look like. The Square predicate (lines 7-10) is similar.

Lines 13-21 represent the specifications for the createShape function. The id in line 14
is used to disambiguate functions which might have the same name in the code. We
provide two distinct sets of pre-/post-conditions, one for the case when shape repre-
sents the string "circle" and the other one for the case when shape represents the
string "square". The string literal union type used to annotate the shape parameter
in the TypeScript code in Figure 1.3 provided us with the information required to write
two separate sets of specifications. In line 16 we express a pre-condition: shape must
represent the string "circle" and the second argument of the function, sz, must be a
number. In the post-condition (line 17), we require that the return value, denoted by
the logical variable #shape, satisfies the Circle predicate. The specification for the case
when shape represents the string "square" is almost identical.

Both specifications are satisfied by the implementation and can be verified with JaVerT.

In the call in line 30, we match the first pre-condition of createShape and due to the

10 Chapter 1. Introduction

1 MyMap.prototype.put = function(k, v) {
2 if(k !== "hasOwnProperty") {
3 this.contents[k] = v;
4 }
5 }

FIGURE 1.7: Definition of the put method that ensures prototype safety.

specification of the function, which was verified by JaVerT, we know that the shape vari-
able will satisfy the Circle predicate. The assignment in line 31 leaves the underlying
structure described by the Circle predicate unchanged and, hence, when we attempt to
access the edgeSize property in line 32, we detect that no such property exists and raise
an error during verification.

Example 2: Dynamic Property Access

The TypeScript in Figure 1.4 compiles to the JS Logic annotated JavaScript code in Fig-
ure 1.8. In the example in Figure 1.6, we began by translating the TypeScript interfaces
to JaVerT assertions. Similarly, in lines 1-17, we provide predicates corresponding to the
classes we defined in TypeScript. These predicates, one corresponding to instances and
one corresponding to the prototype, must ensure prototype safety.

The MyMapProto predicate (lines 2-5) describes the prototype of MyMap. It contains two
properties: get and put, both functions. The JSFunctionObject built-in predicate de-
scribes JavaScript function objects. To ensure prototype safety, we require that the proto-
type of MyMap only contains the fields get and put via the emptyFields built-in predicate
(line 4). This is a stronger requirement than the one in (P2).

Similarly, the MyMap predicate requires that:

1. The object m has a field contents, captured by the (logical) variable #c;

2. The object #c has an associated index signature2. We describe what it means to
have an index signature, such as the one in Figure 1.4, with the user-defined pred-
icate IndexSig;

3. No properties other than contents exist on m; this prevents m from shadowing any
properties that are to be defined in its prototype chain. This condition is stronger
than (P1) and clearly ensures prototype safety.

4. The contents, denoted by #c, must not have the property hasOwnProperty.

The IndexSig predicate ensures that all the values stored in a certain object are numeric,
as required by the type signature in 1.4. To pass verification, it is required that we specify
the negative resource in the definition [recmissing].

The specification for the put function is the key to ensuring prototype safety. Its post-
condition requires that the this object satisfies the MyMap predicate, which clearly states
that the map contents must not contain hasOwnProperty. However, the function put can
be called with the parameter k having value "hasOwnProperty". Hence, JaVerT is unable
to prove the specification. We can pass verification by modifying the definition of put
to that in Figure 1.7.

The specification of the get function requires two different post-conditions. This is be-
cause not all the paths throughout the function lead to return statement–if a key is not

2Index signatures are described when presenting the TypeScript examples in §1.2.2

1.2. Motivation 11

1 /**
2 @pred MyMapProto(mp):
3 JSObjWithProto(mp, Object.prototype) * DataProp(mp, "get", #get_loc) *
4 DataProp(mp, "put", #put_loc) * emptyFields(mp : -{ "get", "put" }-) *
5 JSFunctionObject(#get_loc, "get") * JSFunctionObject(#put_loc, "put");
6

7 @pred MyMap(m, mp):
8 JSObjWithProto(m, mp) * DataProp(m, "contents", #c) * IndexSig(#c, #fs) *
9 emptyFields(m : -{ "contents" }-) * ((#c, "hasOwnProperty") -> none);

10

11 @pred IndexSig(c, fields):
12 [base] fields == [],
13 [recexists] (fields == -u- (-{ #f }-, #other)) * DataProp(c, #f, #v) *
14 types(#v : Num) * IndexSig(c, #other),
15 [recmissing] (fields == -u- (-{ #f }-, #other)) * ((c, #f) -> none) *
16 IndexSig(c, #other);
17 */
18 var MyMap = (function () {
19 /**
20 @id: constr
21

22 @pre: JSObjWithProto(this, mp) * MyMapProto(mp) * emptyFields(this : -{}-)
23 @post: MyMap(this, mp) * MyMapProto(mp)
24 */
25 function MyMap() { this.contents = {}; }
26

27 /**
28 @id: get
29

30 @pre: MyMap(this, mp) * MyMapProto(mp) * types(k : Str)
31 @post: MyMap(this, mp) * MyMapProto(mp) * types(ret : Num);
32 MyMap(this, mp) * MyMapProto(mp) * types(ret : Undef)
33 */
34 MyMap.prototype.get = function (k) {
35 if (this.contents.hasOwnProperty(k)) { return this.contents[k]; }
36 };
37

38 /**
39 @id: put
40

41 @pre: MyMap(this, mp) * MyMapProto(mp) * types(k : Str, v : Num)
42 @post: MyMap(this, mp) * MyMapProto(mp) * types(ret : Undef)
43 */
44 MyMap.prototype.put = function (k, v) { this.contents[k] = v; };
45

46 return MyMap;
47 }());
48

49 var myMap = new MyMap();
50 myMap.put("myKey", 3);
51 myMap.put("hasOwnProperty", 0);
52 console.log(myMap.get("myKey"));

FIGURE 1.8: JavaScript code annotated with JS Logic assertions corre-
sponding to the TypeScript code in Figure 1.4

present in the map, the function returns undefined. This is consistent with the semantics
of the types in TypeScript.

JaVerT first verifies the specifications of the defined functions. As the specification of put
fails, we cannot verify the entire program either. If we replace the definition of the put
method with that in Figure 1.7, prototype safety is ensured and verification succeeds.

12 Chapter 1. Introduction

1.3 Contributions
We discussed two approaches to ensuring safety of JavaScript programs. On the one
hand, we have TypeScript, which is a superset of JavaScript allowing developers to add
type annotations to their code. The type checking process is not sound, as discussed
in 1.2.2, but it is very flexible and easy to use from the perspective of the developer.
On the other hand, we have JaVerT, which enables programmers to verify functional
correctness properties of their code, but requires developers to annotate their code with
method specifications and instructions that enable the semi-automatic verifier to carry
out its work. This process is cumbersome and is currently justified only in the case of
critical JavaScript code.

This project bridges the gap between the flexibility TypeScript provides with the cost
of unsoundness and the precision JaVerT offers while asking developers for significant
input in the process of verification. The three major contributions of this project are:

1. A formal translation from TypeScript types to JaVerT assertions. We interpret
types differently than TypeScript in two ways: (1) we assume all objects are self-
contained, disjoint from all other objects; and (2) we impose a stricter definition of
classes, which enforces prototype chain structure and guarantees prototype safety.

2. A soundness proof for the translation. We prove that, for a TypeScript typing
environment Γ [6], all heaps H that satisfy the translation of Γ, also satisfy the
typing environment Γ;

3. A tool that processes easy-to-annotate TypeScript files and compiles them to
JavaScript code annotated with JaVerT assertions. The system offers an expres-
sive interface by supporting a large subset of the TypeScript type annotations. The
approach we take is that of semi-automatic specification generation—the gener-
ated assertions can be manually perfected by the programmmer.

1.4 Report outline
The present work is structured in five chapters.

Chapter 2 introduces the TypeScript programming language and the JaVerT toolchain.
We present the syntax of TypeScript, its sources of unsoundness, and the TypeScript
compiler. We proceed by giving a brief introduction to separation logic, after which we
introduce JaVerT assertions and the built-in predicates which we use throughout the
current work. Finally, we present the safety guarantees offered by JaVerT.

Chapter 3 contains the bulk of the current work. We present the translation of TypeScript
type annotations to JaVerT assertions, firstly not taking TypeScript classes into consid-
eration. We then enhance the translation with classes and walk the reader through a
practical example. We prove the translation is sound and offer a glimpse of the imple-
mentation in the end of the chapter.

In Chapter 4, we evaluate the current work from a theoretical and a practical standpoint.
We go in detail regarding known limitations and compare our tool with other works. We
briefly mentioned the lessons learnt while developing the project.

Chapter 5 presents the future work that can be carried out in the current space. We
present several potential improvements for our current tool as well as brining forward
a discussion regarding the relation between separation logic and types.

13

Chapter 2

Background

As it was mentioned in introduction, we aim to combine the advantages of two dis-
tinct approaches of ensuring safety in JavaScript: retrofitting a type system on top of
JavaScript and verifying functional correctness via the use of assertions. The examples
presented in §1.2 showcased what the strengths and weaknesses of these approaches
are, but did not go into detail regarding their inner workings and the guarantees they
provide.

We present the TypeScript language and the JaVerT toolchain, focusing on the syntax
and the semantics of TypeScript types and JaVerT assertions respectively. We discuss
their safety guarantees and their drawbacks briefly to get a clear image of what is the
underlying foundation this project is built upon.

2.1 TypeScript
TypeScript is an extension of JavaScript offering interfaces and a gradual type system.
It is designed to facilitate easy adoption for JavaScript developers. Its users enjoy a
streamlined IDE experience and a certain degree of type safety — the TypeScript type
system is not sound by design so errors can still occur despite the program type check-
ing. Safe alternatives to the TypeScript type system exist: in [38] a system is developed
involving more thorough static checking of the code coupled with run-time instrumen-
tation to ensure type safety.

Syntactically, TypeScript is a superset of JavaScript — every valid JavaScript program is
a valid TypeScript program. The TypeScript compiler processes TypeScript code and
emits JavaScript. The compilation is more complicated than simply removing type
annotations: the TypeScript compiler gives the user the option to specify the target
JavaScript standard; additionally, some features are often available in TypeScript before
they are available in JavaScript (e.g. classes, async/await keywords).

We present TypeScript, following [6]. We discuss the specifics of the type system, cover-
ing the syntax of types and some of the novel types TypeScript provides such as inter-
section types and union types [3]. Sources of unsoundness are presented and illustrated
with examples. We present the notation that we use throughout the project and intro-
duce the TypeScript compiler.

2.1.1 Syntax of TypeScript

We describe the syntax of the subset of TypeScript covered in this project. It is very
similar to the syntax of [6]. The fragment of TypeScript which we choose not to tackle is
discussed in §4.3.

14 Chapter 2. Background

Identifiers x ∈ ID
Literals l ∈ R∪ S ∪ { true, false }

Binary operators ⊕ ∈ {+,−, ∗, · · · }
Expressions e ::= x | l | undefined | null | e1 ⊕ e2

| { ni : ei|ni=0 } | e.n | e1[e2] | e1 = e2
| e(ei|ni=0) | new e(ei|ni=0) | e as τ | (e)
| function (xi : τi|ni=0) : τr { s }

Statements s ::= e | if (e) { s } else { s }
| while (e) { s } | return;
| return e; | var x: τ;
| var x: τ = e; | F

Named function declarations F ::= function x(xi : τi|ni=0) : τr { s }

FIGURE 2.1: The syntax of TypeScript expressions and statements

In the syntax presented we use the notation A to denote that the terminal or non-terminal
A may appear zero or more times, A to denote that the terminal or non-terminal A is
optional (i.e. may appear zero times or once) and A+ to denote that the terminal or non-
terminal A appears one or more times.

The syntax of programs. TypeScript expressions and statements, presented in Fig-
ure 2.1, are largely inheritted from JavaScript. A major difference in between the subset
of TypeScript we support and the calculus presented in [6] is that we require type anno-
tations for function parameters, function return values and variable declarations, while
in [6] type annotations are optional for all these cases. This requirement is largely be-
cause we are dependent on type annotations to produce JaVerT assertions and creating
an inference mechanism is beyond the scope of the project.

We define a literal to be either a number literal r ∈ R, where R is the set of all real
numbers expressible in JavaScript (e.g. r = 3.14), a string literal str ∈ S (e.g. str =
"abc"), or a boolean literal b ∈ { true, false }. The coexistence of undefined and
null can be confusing; the difference between them is mostly semantic—null is used
to denote a non-existence reference, while undefined is the value of an uninitialised
variable. The cases for expressions are mostly straightforward; the novel ones are e as
τ, which represents a cast of expression e to type τ and function (xi : τi|ni=0) : τr { s
} which highlights that functions are first class citizens in JavaScript and implicitly in
TypeScript. Statements are standard; we ignore some of the regularly used constructs
such as for loops from our syntax for brevity as they can easily be expressed using a
while loop. const/let declarations are omitted as their effect is mainly on the scoping
rules, a subject orthogonal to that of the current work.

The syntax of type annotations. We present the syntax of TypeScript type annotations
in Figure 2.2. A type is one of the following: (1) the special type any, presented in the
examples in §2.1.2, (2) a primitive type, ρ, (3) a type name, T, denoting a user-defined
type, (4) an object type literal, O.

Primitive types are standard and can be found in many other languages. It is worth not-
ing that both void and undefined require an identifier to represent the value undefined;
as a convention void is used to denote the return type of a function with no returned
value, while undefined is associated with variables and it signifies that their value is
undefined. The type null signifies that a variable holds the value null.

Type names are associated with user-defined types: interfaces or classes. We split the
set of type names T in two disjunct subsets: interface names I and class names C.

2.1. TypeScript 15

Type names T ∈ T
Interface names I ∈ I

Field names n ∈ F
String literals str ∈ S

Primitive types ρ ::= number | boolean | string | void | str
| undefined | null

Types τ ::= any | ρ | T | O | (τ1|τ2)
Object type literals O ::= { ni : τi|ni=0, n′j ? : τ′j |mj=0 }

| { ni : τi|ni=0, n′j ? : τ′j |mj=0, [n : string] : τ }
| { (xi : τi|ni=0) : τr, n′j : τ′j |mj=0, n′′k ? : τ′′k |

p
k=0 }

| { new(xi : τi|ni=0) : τr, n′j : τ′j |mj=0, n′′k ? : τ′′k |
p
k=0 }

Interface decl. ID ::= interface I O
| interface I extends T+ O

FIGURE 2.2: The syntax of TypeScript type annotations

Union types τ1|τ2 indicate that a certain object can either be of type τ1 or type τ2.

Object types O, are specific for a structural type system: they specify what fields should
be present on an object. The following members can be present on an object:

A regular field n: τ, indicating field n has type τ

An optional field n ?: τ indicates that the field n may or may not be present on an
object of the current type, and if it is present it has type τ.

A call signature (xi : τi|ni=0) : τr, indicating that the current object represents a function
with n arguments returning a value of type τr. The type of the ith argument is τi;

An index signature [n: string]: τ indicating that the current object can be indexed
with any string and if that field exists, the result is an object of type τ;

A constructor signature new(xi : τi|ni=0) : τr meaning the current object represents a
constructor (i.e. a function that should be called using the new keyword). The
constructor call requires n arguments, similar to the call signature and creates an
object of type τr.

Different approach to object literal types: Our definition of an object literal is different
from that presented in [6]. While they allow multiple call signatures, index signatures
and constructor signatures in an object literal type, we restrict each one of these dec-
larations to at most one. This design decision is based on the fact that while multiple
declarations are possible, they need to be satisfied by a single implementation, which
must weaken its type to fit all the defined overloads. Hence, we find that a single def-
inition for all the aforementioned members is easier to reason about and enables us to
provide clearer assertions. Similarly, we distinguish amongst object type literals with
associated call signatures, constructor signatures or none of these. An object literal hav-
ing both a call signature and a constructor signature would require an object o satisfying
the type to have constructor behaviour (i.e. create a new object when called using the
new keyword), as well as regular function behaviour (i.e. correct behaviour when this
is bound to a previously existent object). Hence, we chose to make it impossible for an
object type literal to contain both these declarations.

Interfaces allow us to specify the shape of an object and associate a name with it; they
are used for type checking only—no JavaScript is emitted for the declaration of an inter-
face. Interfaces are the named variants of object type literals O: a declaration interface

16 Chapter 2. Background

Class names C ∈ C
Access specifiers κ ∈ { public, private, protected }

Class declarations C ::= class C { CD, M }
| class C extends Ce { CD, M }
| class C implements T+ { CD, M }
| class C extends Ce implements T+ { CD, M }

Constr. definition CD ::= κ constructor(xi : τi|ni=0) : τr { s }
Members M ::= κ n: τ;

| κ n: τ = e;
| κ x(xi : τi|ni=0) : τr { s }

FIGURE 2.3: The syntax of TypeScript class declarations

I O associates object type literal O with the name I. Interfaces can extend zero or more
base types. All fields introduced by I or any of its base types must be present on an ob-
ject of type I. No access modifiers are allowed so all members declared are considered
public and are inherited from the base types. Circular dependencies are forbidden. In-
terfaces can also extend classes. This is discussed after classes are formally introduced.

The syntax of classes. We introduce TypeScript classes in Figure 2.3. Classes are syn-
tactic sugar over JavaScript’s prototype-based inheritance; they do not introduce a new
object oriented inheritance model to JavaScript. They can appear in both declarations
and expressions; without loss of generality we focus on Class declarations.

A class can extend another class. Saying a class A extends a class B makes B the
immediate parent on the prototype chain of A. A class can implement multiple interfaces
or classes. If class A implements interface I, then all objects of type A must adhere
to the shape indicated by I. This implies that all methods specified by interface I are
associated with an implementation in class A and all other fields named are present on
every instance of A.

As mentioned, a class A can implement another class B and an interface I can ex-
tend a class B. In this context class B is treated as an interface: the method implemen-
tations are stripped away and the definitions of the class’ members treated as if they
were part of an interface.1

2.1.2 Sources of unsoundness

We present the three sources of unsoundness discussed in [6]. Dynamic property ac-
cesing is an additional source of unsoundness, which is not covered here as we illus-
trated it with the code in Figure 1.4.

1. Unchecked downcasts. Type erasure is one of the characteristics of TypeScript.
This design decision makes it impossible to benefit from run-time type checks
whenever using implicit or explicit downcasts. This causes a hole in the type
system as illustrated in Figure 1.3 in §1.2.2.

2. Unchecked gradual typing. By design, TypeScript wants JavaScript programmers
to encounter as few issues as possible in migrating to TypeScript and decided to
opt for a gradual type system to achieve this goal. Gradual typing is achieved by

1Implementing other classes does not work when access specifiers other than public
are used in the parent class. A GitHub issue tracking the subject is available here:
https://github.com/Microsoft/TypeScript/issues/471 — accessed 23 Feb 2018

2.1. TypeScript 17

1 type Vegetable = "carrot" | "potato";
2 interface Person {
3 eat: { (food: any): void };
4 }
5 interface Vegetarian {
6 eat: { (food: Vegetable): void };
7 }
8 var veg: Vegetarian = {
9 eat: function(food: Vegetable): void {

10 console.log("Eating vegetable " + food);
11 }
12 }
13 var pers: Person = veg;
14 pers.eat("beef"); // "Eating vegetable beef"

(A) Type checking program illustrating unsoundness
caused by the use of unchecked covariance on object

properties

1 interface MathLib {
2 pi: number;
3 isPrime: {
4 (x: number): boolean
5 };
6 nextPrime: {
7 (x: number): number
8 };
9 floor: {

10 (x: number): number
11 }
12 }
13

14 var num: number = 3;
15 var x: any = num;
16 var obj: MathLib = x;

(B) Type checking program illustrat-
ing unsoundness caused by use of any

FIGURE 2.4: Examples of unsoundness in TypeScript.

using the special type any. The assignment compatibility rules involving any are
very liberal: anything can be assigned to any and any can be assigned to anything.
We present in Figure 2.4b a code snippet in which using a temporary variable of
type any enables us to bypass the type system and assign a number to a variable
that is expected to have the type MathLib.

3. Unchecked covariance. To have a sound type system, the types of object fields
need to be invariant for two objects to be assignable to each other. TypeScript takes
a different approach and allows covariance on object property types, as illustrated
by the code in Figure 2.4a. TypeScript allows us to assign expressions with type
Vegetarian to variables of type Person because the type of the field eat in an object
of type Vegetarian is a subtype of the field eat in type Person. The unsoundness
is apparent, since after assigning the Vegetarian veg to pers of type Person, we
can make veg eat "beef".

2.1.3 Useful notation

We define a typing environment Γ as a mapping from identifiers to TypeScript types. We
write · to denote the empty type environment and Γ, x : τ to denote the extension of the
type environment Γ with the mapping of identifier x to type τ. Environment extension
is only defined if x 6∈ dom(Γ). In the following section we use the above notation to
analyse the mapping x : τ for every x ∈ dom(Γ); hence, we write Γ = Γ′, (x : τ) to obtain
the mapping for identifier x ∈ dom(Γ).

2.1.4 The TypeScript compiler

The official TypeScript compiler, tsc, provides an API that is instrumental in our efforts
of translating type annotations to JaVerT assertions. Alongside the compiler API, tsc
performs several useful checks, such as ensuring that the program is valid syntactically,
and translates it to JavaScript.

18 Chapter 2. Background

1 var n1: number = undefined; // <- Fails to compile. ’undefined’ cannot be
assigned to type ’number’.

2 var n2: number | undefined = undefined // <- Compiles since we explicitly
mentioned the value can be undefined.

3 var n3: number | undefined = 3 // <- Compiles since 3 is a number
4 var n4: number | undefined = null // Fails to compile. ’null’ cannot be

assigned to type ’number’.

FIGURE 2.5: Example of TypeScript behaviour when the
strictNullChecks flag is activated.

Compiler options

Target. JaVerT works on JavaScript ES5 [13] programs annotated with assertions. In this
work we use features of TypeScript that require translation to become valid ES5 code.
The most significant is the class feature which is only introduced in JavaScript from
ES2015 [14]. We can require tsc to output valid ES5 via the target compiler option.

Strict null checks. Every variable in TypeScript can by default, regardless of its type,
hold the falsy values undefined or null. The tsc compiler prohibits this behaviour
when the strictNullChecks compiler option is activated [27], and requires types to
explicitly state that a variable can hold undefined or null. An example is provided
in Figure 2.5. We aim to provide safe behaviour in TypeScript code and opt for the
behaviour imposed by running tsc with strictNullChecks enabled.

The TypeScript compiler API

The TypeScript compiler’s functionality can be accessed by client TypeScript code via
the API provided. This enables software such as ours to build additional functionality
around the TypeScript compiler.

Besides offering developers the possibility to alter the compile options or load addi-
tional files, the TypeScript compiler API gives programmers access to the generated
TypeScript abstract syntax tree (AST). The design employed is well-established, visitors
must be used to walk the AST and potentially modify it.

2.1.5 Translating a TypeScript Class to ES5

TypeScript classes are the only entities in our syntax which do not have a close equiv-
alent in ES5. Their translation to ES is fortuantely handled by tsc and hence does not
impose any burden on our software. In Figure 2.6 we illustrate a simple instance of
class extension. We imagine a number of animals placed on a 1-dimensional axis. Upon
creation, an animal is at position 0 and can move to the right (positive distance) or to
the left (negative distance).

Animal, the base class, provides a single private member, position, the initial position
of every Animal and a method, walk, which enables the animal to move either
direction;

Cat inherits from Animal; a Cat has a name and can meow. As is the case in most object-
oriented programming languages, the Cat constructor must include a call to super
in order to populate the fields defined in the superclass.

Since JaVerT operates on ES5, we make the transition to the world of JavaScript pre-
classes. The transpiled code is featured in Figure 2.7.

2.2. JaVerT 19

1 class Animal {
2 private position: number = 0;
3 walk(distance: number) {
4 this.position += distance;
5 }
6 }
7

8 class Cat extends Animal {
9 private name: string;

10 constructor(name: string) {
11 super();
12 this.name = name;
13 }
14 meow() {
15 console.log("Meow!! I’m " + name + "!");
16 }
17 }

FIGURE 2.6: TypeScript code showcasing classes and class extension.

Class translation with no inheritance. The translation for the Animal class is much sim-
pler than that of the Cat class, as no inheritance is involved. Lines 1-6 in Figure 2.6 trans-
late to lines 1-8 in the JavaScript code presented in 2.7. We analyse the JavaScript code
line-by-line. On line 1 we have a comment /** @class */ that indicates the expression
following is corresponding to a class. The creation of the class constructor, defined in
between lines 2-4, is wrapped in a function. The instance methods are then added to the
prototype of the constructor function and finally, the constructor is returned in line 7 and
stored in a variable, Animal. The Animal constructor can now be used together with the
new keyword to create objects behaving as an instance of the Animal class would in an
object oriented language. We emphasize that this behaviour is achieved via prototypal
inheritance in JavaScript.

Class translation when the class inherits from a parent class. The definition of the Cat
class, lines 8-17 in Figure 2.6, gets translated to lines 9-20 in Figure 2.7. The translation
uses an automatically generated function, __extends, which sets the __proto__ field of
the inheriting objects to their corresponding parent in the prototype chain. This function
is common for all instances of inheritance and is fully handled by tsc. Once the purpose
of the __extends function is clear, the definition of the Cat class can be easily parsed in
the same manner as that of the Animal class. The main difference is that the _super
argument, taken by the function on line 9, is used to set the parent in the prototype
chain (line 10) and populate the required fields of the this object (line 12).

2.2 JaVerT
We introduce separation logic as it constitutes the foundation upon which the JaVerT
assertions are built. A presentation of JaVerT assertions, covering some of the built-in
abstractions follows. We then present the structure of the JaVerT toolchain and discuss
its safety guarantees. Most of the information is adapted from [17].

2.2.1 Separation logic

Separation logic [35] is an extension of Hoare logic [21] that permits reasoning about
low-level imperative programs that use shared mutable data structures.

20 Chapter 2. Background

1 var Animal = /** @class */ (function () {
2 function Animal() {
3 this.position = 0;
4 } Animal.prototype.walk = function (distance) {
5 this.position += distance;
6 };
7 return Animal;
8 }());
9 var Cat = /** @class */ (function (_super) {

10 __extends(Cat, _super);
11 function Cat(name) {
12 var _this = _super.call(this) || this;
13 _this.name = name;
14 return _this;
15 }
16 Cat.prototype.meow = function () {
17 console.log("Meow!! I’m " + name + "!");
18 };
19 return Cat;
20 }(Animal));

FIGURE 2.7: The JavaScript emitted after the compilation of the Type-
Script code in 2.6

Hoare introduces a new notation: P{C}Q to be interpreted as "If the assertion P is true
before the initialisation of a program C, then the assertion Q will be true on its comple-
tion." [21] His system includes a set of rules for reasoning rigorously about the correct-
ness of imperative programs that alter the variable store. However, Hoare logic is not
suitable for reasoning about imperative programs that alter the heap—it does not scale
due to the need to explicitly reason about overlaps.

Separation logic [35] extends the assertion language with operators for describing mem-
ory heaps. It introduces two main operators: 7→ and ∗. The assertion l 7→ v, read "l
maps to v" describes the heap consisting of only one memory cell, at address l, contain-
ing value v. The assertion P ∗Q, where ∗ is the separating conjunction, describes all the
heaps that can be split into two disjoint heaps, one of them satisfying assertion P and
the other one satisfying assertion Q. The assertion emp describes the empty heap.

For example, the assertion 10 7→ 1 ∗ 11 7→ 2, describes a heap containing two memory
cells, at addresses 10 and 11, storing values 1 and 2, respectively. To relate this to the se-
mantics of the separating conjunction, we can split the heap described into two distinct
heaps, one containing one memory cell at address 10 holding value 1 and another heap
formed of one memory cell at address 11 holding value 2.

All the usual logic operators can be used in conjunction with the separation logic ones.

2.2.2 JaVerT assertions

To specify JavaScript programs, JaVerT provides an assertion language capable of cap-
turing key JavaScript heap structures such as: property descriptors, prototype chains,
the variable store emulated via scope chains, and function closures.

JavaScript Memory Model

JS locations : l ∈ L JS variables : x ∈ XJS
J S values: v ∈ VJS ::= n | b | m | undefined | null | l

JS heap values : ω ∈ Vh
JS:: =v | v | fid

JS heaps : h ∈ HJS : L×XJS ⇀ Vh
JS

2.2. JaVerT 21

A JavaScript heap, h ∈ HJS, is a partial function mapping pairs of object locations and
property names to JS heap values.

Object locations are taken from a set of locations L. Property names and JS program
variables are taken from a set of strings XJS.

JS values contain: numbers, n; booleans, b; strings, m; the special JavaScript values
undefined and null; and object locations, l.

JS heap values, ω ∈ Vh
JS, contain: JS values, v ∈ VJS; lists of JS values, v; and function

identifiers, fid ∈ Fid.

Function identifiers, fid, are associated with syntactic functions in the JavaScript code
and are used to represent function bodies in the heap uniquely. [...] The EC-
MAScript standard does not prescribe how function bodies should be represented
and our choice closely connects the JavaScript and JSIL heap models.

Notation. Given a heap h, we denote a heap cell by (l, x) 7→ v when h(l, x) = v, disjoint
heap union by h1] h2, heap lookup by h(l, x), and the empty heap by emp.2

JS Logic Assertions

V ∈ V L
JS ::= ω | ωset | � E ∈ E L

JS ::= V | x | x | 	 E | E⊕ E | sc | this

τ ∈ Types ::= Num | Bool | Str | Undef | Null | Obj | List | Set | Type
P, Q ∈ ASJS ::= true | false | E = E | E ≤ E | P ∧Q | ¬ P | P ∗Q | ∃x.P |

emp | (E, E) 7→ E | emptyFields(E | E) | types(Xi : τi|ni=1)

JS logical values, V ∈ V L
JS, contain: JS heap values, ω; sets of JavaScript heap values,

ωset; and the special value �, read none, used to denote the absence of a property
in an object.

JS logical expressions, E ∈ E L
JS, contain: logical values, V; JS program variables, x;

JS logical variables, x; unary and binary operators, 	 and ⊕ respectively; and the
special expressions, sc and this, referring respectively to the current scope chain
and the current this object.

JS Logic assertions are constructed from: basic boolean constants, comparisons, and
connectives; the separating conjunction; existential quantification; and assertions
for describing heaps and declaring typing information. The emp assertion de-
scribes an empty heap. The cell assertion, (E1, E2) 7→ E3, describes an object at
the location denoted by E1 with a property denoted by E2 that has the value de-
noted by E3. The assertion emptyFields(E1 | E2) states that the object at the location
denoted by E1 has no properties other than possibly those included in the set de-
noted by E2. The assertion types(Xi : τi |ni=1) states that variable Xi has type τi for
0 ≤ i ≤ n, where Xi is either a program or a logical variable and τ ranges over
JavaScript types, τ ∈ Types. We say that an assertion is spatial if it contains cell
assertions or |emptyFields| assertions. Otherwise, it is pure.3

2.2.3 JS Logic built-in predicates

For JS Logic assertions to be as concise as possible, a number of built-in predicates are
provided. We illustrate those that are relevant for the current work; the complete list
together with a thorough description is available in [17]:

2Description of JavaScript memory model adapted from [17].
3Description of JS Logic assertions, as presented in [17].

22 Chapter 2. Background

1. JSObjectGen(o, p, c, e) describes an object o, with prototype p, having the in-
ternal class attribute value c and the extensible internal attribute set to e;

2. JSObjectWithProto(o, p) is a special instance of JSObjectGen, where the class
attribute is set to "Object" and extensible is set to true.

3. JSFunctionObject(o, fid, sc, len, p) describes the function object o associ-
ated with the function body indicated by fid. The scope internal property has
value given by sc; there are len parameters expected and the prototype field has
value p.

4. JSFunctionObjectStrong(o, fid, sc, len, p) is a variant of JSFunctionObject
which does not allow any user-defined properties on the function object o.

5. DataProp(o, p, v) states that the property p of object o holds a data descrip-
tor with value v and all other attributes set to true. A more general predicate,
DataPropGen, is available, but we do not make use of it.

6. DescVal(desc, v) states that the data descriptor desc has the value attribute v.

7. Pi(o, p, d, lo, lc) states that the property p has value d in the prototype chain
of o. The two additional parameters, lo and lc, denote lists that capture the lo-
cationns and classes of the objects in the prototype chain up to and including the
object in which p is found, or of all objects if the property is not found.

8. Scope(x : v, sc, fid) states that the variable x has value v in the scope chain
denoted by sc of the function literal with identifier fid. It is common to use
Scope(x : v) to state that in the current scope chain, in the current function,
variable x has value v.

9. EmptyFields(o | F) states that the object at the location denoted by o has no
properties other than possibly those in the set denoted by F.

10. ObjectPrototype() decribes the resource of the Object.prototype object.

11. FunctionPrototype() decribes the resource of the Function.prototype object.

12. GlobalObject() describes the resource of the global object.

13. GlobalVar(p, v) states that in the global object, property p has value v.

Parameters of predicates can be left unspecified, by using _ in their place.

2.2.4 Toolchain structure and safety guarantees

Figure 2.8 presents the infrastructure of JaVerT, as presented in [17]. We describe the
individual components to formulate a safety guarantee.

The first stage involves compiling the JavaScript annotated with JS Logic assertions to
JSIL, a simple intermediate goto language capturing the dynamism of JavaScript, an-
notated with JSIL logic assertion. Thus, instead of reasoning about complex JavaScript
code, JaVerT reasons about much simpler JSIL statements. The compiler carrying out
the work, JS-2-JSIL is meant to be line-by-line close to the ECMAScript standard, with-
out simplifying the behaviour in any way. In addition to this, JSIL subsumes the heap
model of JavaScript so their assertions coincide. The JS-2-JSIL compiler is tested against
the ECMAScript Test262 suite, while the JS-2-JSIL logic translator is proven correct.

The JSIL code, annotated with JSIL assertions is checked by a semi-automatic verifier,
JSIL Verify. JSIL Verify comprises of a symbolic execution engine and entailment engine,

2.2. JaVerT 23

FIGURE 2.8: JaVerT infrastructure [17]

which uses Z3 SMT solver [11] to discharge assertions in first-order logic with equality
and arithmetic.

JaVerT contains axiomatic specifications for the JavaScript internal functions in JSIL
Logic and providing reference implementations in JSIL. The reference implementations
are line-by-line close to the standard and proven correct with respect to the axiomatic
specifications using JSIL Verify.

In terms of correctness, JS-2-JSIL, has been thoroughly tested: it passed the 8797 tests
in the official ECMAScript test suite. JSIL Logic is proven sound with respect to its
operational semantics. Since JSIL is designed so that the JSIL heap model subsumes the
JavaScript heap model, the correctness of the logic translator is straightforward. A proof
showing that JS-2-JSIL is logic-preserving and that JSIL verification lifts to JavaScript
verification are presented in [17]. "JSIL Verify is validated by verifying that the reference
implementations of the internal functions are correct with respect to their axiomatic
specifications, and by verifying compiled JavaScript programs. The specifications of the
internal functions are validated by verifying that they are satisfied by their well-tested
corresponding JSIL reference implementations."4

4As specified in [17]

25

Chapter 3

Translating TypeScript to JaVerT

The translation process consists of two stages. First, we process TypeScript code and
emit JavaScript ES5 code that JaVerT can analyse; this is taken care of by the official
TypeScript compiler, tsc [30]. Second, we translate the type annotations present in the
TypeScript code to JaVerT annotations; this translation is presented in the rest of this
section. Once both of these translations are done, we combine the outputs and hand
them over to JaVerT for the verification step.

Notation. We write: (1) G for the set of all possible typing environments Γ; (2) A for
the set of all possible JaVerT assertions; (3) T for the set of all types; (4) C for the set
of all class names; (5) F for the set of all functions in the program; (6) NC for the set
of all methods in all classes; (7) NC for the set of all methods in class C; (8) m to iterate
over methods and mC to indicate that the method m is a method of class C; (9) constrC to
denote the constructor of class C.

We define five compilers to translate TypeScript type annotations to JaVerT assertions:

The environment compiler, CTE : G → A, takes a typing environment, Γ, and gener-
ates a JaVerT assertion describing a heap in which every variable in the domain of
Γ has the type indicated by Γ.

The type compiler, CT : (E L
JS × T) → A, takes a logical expression and a TypeScript

type and generates the JaVerT assertion describing the heap in which the value
associated with the logical expression has the given type.

The function spec compiler, C F
spec : F → (A×A), takes a function f and generates its

corresponding pre- and post-condition.

The method spec compiler, C M
spec : NC → (A×A), generates specifications for class

methods.

The constructor spec compiler, C C
spec : C → (A×A), generates specifications for the

constructor of any class C ∈ C. To simplify our reasoning when defining C C
spec, we

require classes to explicitly define a constructor (§2.1.1); if this would not be the
case, we could create an empty constructor as part of the pre-processing stage.

The disjointness assumption. In §2.2.1, we introduced the separating conjunction op-
erator, ∗. The assertion P ∗ Q describes all the heaps that can be split into two disjoint
heaps, one of them satisfying assertion P and the other one satisfying assertion Q. This
separation is a very strong assumption; aliasing is allowed in JavaScript and TypeScript
code and the TypeScript typing environment Γ does not provide any information re-
garding aliasing. Separation logic is not a suitable tool for modelling potential overlaps.
We design the analysis assuming that all our variables refer to self-contained objects,
disjoint from all other objects defined.

26 Chapter 3. Translating TypeScript to JaVerT

3.1 The translation without classes
In the table below, we define the CT compiler for all the supported TypeScript type
annotations, except for classes.

Translation of TypeScript type annotations to JaVerT assertions, without class types

TYPE-VOID

CT(E, void) , types(E : Undef)
TYPE-UNDEF

CT(E, undefined) , types(E : Undef)

TYPE-NULL

CT(E, null) , types(E : Null)
TYPE-NUMBER

CT(E, number) , types(E : Num)

TYPE-STRING

CT(E, string) , types(E : Str)
TYPE-STRINGLITERAL

CT(E, str) , (E == str)

TYPE-BOOL

CT(E, boolean) , types(E : Bool)
TYPE-ANY

CT(E, any) , emp

TYPE-UNION

CT(E, τ1|τ2) , CT(E, τ1) ∨ CT(E, τ2)

MANDATORY FIELDS COMPILER

COF(E, ni : τi|ni=0) , ~n
i=0Pi(E, ni, #desc, _, _) ∗ DescVal(#desc, #v) ∗ CT(#v, τi)

OPTIONAL FIELDS COMPILER

COF(E, ni ? : τi|ni=0) , ~n
i=0COF(E, ni : τi) ∨ Pi(E, ni, undefined, _, _)

RESERVED FIELDS
ReservedFields(E) = ~ f∈R(E, f) 7→ None

OBJECT-FIELDS-ONLY

CT(E, { ni : τi|ni=0, n′j ? : τ′j |mj=0 }) , JSObjectGen(E, _, _, _) ∗ COF(E, ni : τi|ni=0)

∗COF(E, n′j ? : τ′j |mj=0)

OBJECT-FIELDS-INDEXSIGNATURE

CT(E, { ni : τi|ni=0, n′j ? : τ′j |mj=0, [n : string] : τ }) , JSObjectGen(E, _, _, _)∗
COF(E, ni : τi|ni=0) ∗ COF(E, n′j ? : τ′j |mj=0)∗
IndexSigτ(E, # f ields) ∗ ReservedFields(E)

OBJECT-CALLSIGNATURE

CT(E, { (xi : τi|ni=0) : τr, n′j : τ′j |mj=0, n′′k ? : τ′′k |
p
k=0 }) , JSFunctionObject(E, _, _)

∗ COF(E, n′j : τ′j |mj=0) ∗ COF(E, n′′k ? : τ′′k |
p
k=0)

OBJECT-CONSTRUCTORSIGNATURE

CT(E, { new(xi : τi|ni=0) : τr, n′j : τ′j |mj=0, n′′k ? : τ′′k |
p
k=0 }) , JSFunctionObject(E, _, _)

∗ COF(E, n′j : τ′j |mj=0) ∗ COF(E, n′′k ? : τ′′k |
p
k=0)

INDEX SIGNATURE PREDICATE
IndexSigτ(Eo, E f) =

[base]E f = []
[recexists]E f = # f :: #other ∗ DataProp(Eo, # f , #v) ∗ CT(#v, τ) ∗ IndexSigτ(Eo, #other)
[recmissing]E f = # f :: #other ∗ (E, # f) 7→ None ∗ IndexSigτ(Eo, #other)

Note: All logical variables used in the rules above are considered to be fresh.

Primitive types. The rules TYPE-VOID, TYPE-UNDEF, TYPE-NULL, TYPE-NUMBER,
TYPE-STRING, TYPE-STRINGLITERAL, and TYPE-BOOL are straightforward. All these
TypeScript types have a JavaScript equivalent which is preserved in JaVerT.

Any type. In separation logic, no resource equates no knowledge. The rule TYPE-ANY

states that we do not have any knowledge about a variable of type any.

3.1. The translation without classes 27

Union type. The rule TYPE-UNION states that the logical expression E, must either be
of type τ1, or τ2. The rule uses the ∨ operator, which is only part of the syntax of JaVerT
assertions at the top level. To handle this aspect, after all assertions are generated, we
write them in disjunctive normal form so they can be expressed in JaVerT syntax.

Object fields compiler function. In order to discuss the translation rules for objects,
we define the auxiliary compiler COF through the rules MANDATORY FIELDS COMPILER

and OPTIONAL FIELDS COMPILER. The assertion COF(E, ni : τi|ki=0) states that all the
fields in the set {n0, . . . , nk} are present in the object E and they have associated with
them values satisfying types τ0, . . . , τk, respectively. To capture this for an object with
an unknown prototype chain, we use the Pi predicate introduced in §2.2.3. The predi-
cate Pi(E, n, #desc, _, _) says that accessing field n on the object E, resolves to the descrip-
tor #desc. The built-in predicate DescVal(#desc, #v) extracts the value #v associated with
the descriptor #desc. Lastly, we require that the value #v has type τi, as indicated by the
type declaration. The definition of COF for optional fields is very similar: it models as a
disjunction the cases where a given field n is present or absent.

1 interface A {
2 a: string; b: string;
3 }
4 interface B { b: string; }
5 interface C {
6 a?: number; b: string;
7 }
8 var x: A = { a: "A", b: "B" };
9 var y: B = x;

10 var z: C = y;
11 z.a = 3;

FIGURE 3.1: TypeScript code that
causes unsoundness.

Restricted fields. The prototype chain of every
JavaScript object by default terminates with the
Object.prototype object. We expect that the ob-
jects used in our program will not shadow any of
the fields inherited from Object.prototype, as do-
ing so would potentially break prototype safety.
We defineR to be the set of field names that are re-
served for built-in objects and provide a predicate,
ReservedFields, which takes as its single param-
eter an object location E and ensures that none of
these reserved fields are defined in E. The pred-
icate ReservedFields is defined in the rule RE-
SERVED FIELDS.

Non-extensible objects. In the rule OBJECT-FIELDS-ONLY we express that:

1. At location E there is an object with an unknown prototype. We use the JSObjectGen
predicate over the JSObjWithProto predicate, as we have no guarantees on the
value of the internal property @class: E could be an object, or it could be a function—
the type declaration states nothing about this.

2. The object at location E contains all the fields in the set {n0, . . . nn} and their types
are τ0, . . . , τn respectively. The fields in the set {n′0, . . . n′m} need not be present in
the object; if a field n′i is present, it has type τ′i . We use the auxiliary compiler COF
to express these requirements.

3. We do not have any information about fields not in {n0, . . . , nn, n′0, . . . , n′m}. This
is implicit in our translation. This causes our assignment compatibility relation
to be different to that of TypeScript. We show in Figure 3.1 code that passes the
TypeScript type checking process and leads to unsoundness. In TypeScript, we
are able to assign an object with more fields to a variable whose type requires
fewer fields. Hence, in our example, we are able to assign x to y. TypeScript keeps
no information about the y.a field. Because from TypeScript’s perspective field a
does not exist in y and because field a is optional in C, we can assign y to z. Since
z is of type C, if field a exists in z, it is expected to have type number. We are thus
able to assign field a a number, via z (line 11. Since x and z refer to the same object,

28 Chapter 3. Translating TypeScript to JaVerT

after the assignment in line 11, x.a evaluates to a number, even though according
to its type definition it should evaluate to a string. Using our translation, the
assignment in line 10 fails verification, as we cannot prove that in the prototype
chain of the object indicated by y, a is either absent or has type number.

Traditional JavaScript objects. In JavaScript it is common for objects to be dynamically
accessed (i.e. o[prop] where o is an object and prop is a string denoting the name of the
field that the programmer wants to retrieve). TypeScript only allows dynamic accesses
when an index signature, [key: string]: τ, is present in the object type literal de-
scribing the object o. For objects with index signatures, any string str can be used for
dynamic property access and if the field exists, it has associated a value of type τ. The
predicate IndexSigτ(Eo, E f), says that the set of keys E f may or may not be present in
the object Eo; present keys are mapped to values of type τ. Modelling missing resource
is common in separation logic. The set E f denotes all possible keys. The definition of
the predicate IndexSigτ(Eo, E f) is presented in the rule INDEX SIGNATURE PREDICATE.

Rule OBJECT-FIELDS-INDEXSIGNATURE translates object types which, besides named
fields, have an index signature. As explained, the list of fields present in the object is
existentially quantified via the # f ields logical variable. We ensure that fields added via
dynamic accesses do not break prototype safety via the RestrictedFields predicate.

When an object literal type has associated an index signature [key: string]: τ, the
TypeScript standard requires that the type τ is the same as the type of all named fields.
The OBJECT-FIELDS-INDEXSIGNATURE rule allows for more flexibility. This is possible
because during verification, the code is executed symbolically and we can determine
whether dynamic field accesses are guaranteed not to target any of the explicitly de-
clared fields. While this would be a useful feature, implementing it would mean that
some programs which would fail tsc compilation would be successfully verified using
our software. This is an issue, because we use tsc extensively in our compilation. To
support checking programs that fail tsc compilation, we would have to implement the
checks tsc is performing in our software, thereby increasing its complexity.

Objects with call or constructor signatures. The rules OBJECT-CALLSIGNATURE and
OBJECT-CONSTRUCTORSIGNATURE are identical as the memory footprint of regular
functions and constructors is identical. The difference between the two is semantic:
objects with constructor signatures must be called using the new keyword, while objects
with call signatures must not be called using the new keyword. In translating these two
types to assertions, we make use of the JSFunctionObject JaVerT built-in predicate.
Since functions are simply special objects in JavaScript, they may have named fields
associated with them; the translation of named fields is the same as for normal objects.

3.1.1 Translating the typing environment without classes

Given the the non-overlapping resources assumption and the fact that we are currently
working with a typing environment where no class types are present, we extend our
translation to the level of typing environments. The compiler CTE translates a typing
environment Γ to a JaVerT assertion specifying the type of all variables. It is defined by
the rule TS-ENV given below.

Translation of TypeScript type environment to JaVerT assertion, without class types

TS-ENV

CTE(Γ) , ~x: τ∈ΓScope(x, #x) ∗ CT(#x, τ)

Note: The logical variable used is considered to be fresh in every conjunct.

3.2. The translation with classes 29

3.1.2 Specifying functions without classes

JaVerT requires users to provide pre- and post-conditions for the functions they define.
For every function f we generate the specification based on the rules in the table below.

Auxiliary functions. We define Γin(f) to be the typing environment containing the
parameters of the function f, and Γout(f) to be the typing environment of variables used
in the function f, but declared in an outer scope (i.e. captured variables). These two sets
of variables associated with types can be determined statically—we use the captured
and params functions to denote the process of determining the two sets. The function
return maps every function to its declared return type.

Function pre- and post-condition compile rules: C F
pre and C F

post

FUNC-PRE-NOCLASS
Γout(f) = captured(f) Γin(f) = params(f)

C F
pre(f) , CTE(Γout(f)) ∗~(x:τ)∈Γin(f)CT(x, τ)

FUNC-POST-NOCLASS

Apre = C F
pre(f) τr = return(f)

C F
post(f) , Apre ∗ CT(ret, τr)

FUNC-SPEC-NOCLASS

Apre = C F
pre(f) Apost = C F

post(f)

C F
spec(f) ,

{
{Apre}f{Apost}

}
Pre-condition rule. Since Γout(f) is a subset of the outer typing environment, Γ, we can
use the CTE function to obtain the assertion corresponding to the captured variables. To
ensure the parameters passed in have the correct type, applications of CT suffice. Using
the CTE for parameters, as for captured variables, would needlessly impose the use of
the JaVerT built-in Scope for getting the value of the parameters, which we know exist
in the current scope. These judgements lead to the FUNC-PRE-NOCLASS rule.

Post-condition rule. In the FUNC-POST-NOCLASS rule, we make use of the pre-condition
of the function and generate an extra conjunct for the ret, imposing that it has the re-
quired type τr. We are able to derive the post-condition in this manner due to the invari-
ant nature of types in TypeScript—once a variable x is declared to have type τ, it cannot
change its type. Hence, all captured variables and all parameters must have the same
type after the function’s body is executed, as they did before.

The spec rule. The FUNC-SPEC-NOCLASS assembles the generated pre-/post-conditions,
generating a set of specifications for the f function. In the case of the present rule, the
set always contains one element.

Specifying methods and constructors. Methods and constructors need to be specified
as well. For those, reasoning about the type of the this object is required and hence
they are covered after we introduce the translation for classes.

3.2 The translation with classes
This section extends the translation to the level of classes. Classes provide us with com-
plete knowledge of their prototype chain statically. They also come coupled with the
challenge of carrying out the translation from TypeScript to ES5, since ES5 does not sup-
port classes. As mentioned in §2.1, classes represent syntactic sugar for prototype-based
inheritance and do not introduce an object-oriented paradigm to JavaScript.

30 Chapter 3. Translating TypeScript to JaVerT

3.2.1 Relevant design decisions for translating classes

Before describing the translation for classes, we aim to get an intuitive grasp of what the
structure of an object of type C is, where C is an arbitrary class. We take into considera-
tion two main aspects: (1) the representation of the prototype chain structure; (2) which
fields belong in instances and which fields belong in prototypes.

1 class C {
2 f(): void {
3 console.log("BCD");
4 }
5 }
6 function g(x: C): void {
7 x.f();
8 }
9 g({

10 f: function(): void {
11 console.log("xcd");
12 }
13 });

FIGURE 3.2: TypeScript example il-
lustrating the assignment relation for

classes.

Enforcing the prototype chain structure. To ad-
dress the first point, we introduce the following
scenario via the example in Figure 3.2: a function g
takes an argument x, of type C, which should pro-
vide one method, f. Most developers would ex-
pect the definition of f to be the one in the class
C. The TypeScript compiler, tsc, type checks if an
object said to have type C can resolve all the fields
a programmer would expect to find in an instance
of class C, either as its own fields, or through its
prototype chain. Hence, tsc allows the object lit-
eral in between lines 9-13 to be assigned to a vari-
able of type C despite the fact that the prototype
chain does not contain C.prototype. This differ-
ent structure of the prototype chains means that
the definition of f is not the one in class C. We de-

part from TypeScript in that we require an object of type C to preserve the structure of
the prototype chain, as defined at class declaration. We find this extra requirement to be
in accordance with the programmers’ intuition.

Prototype safety revisited. We describe each class C using two predicates: one describ-
ing its prototype, and one describing each instance. When stating these, our goal is to
ensure prototype safety, defined in [17]: "The specification of a given library must en-
sure that all prototype chains are consistent with correct library behaviour by stating
which resources must not be present for its code to run correctly. In particular, (P1) con-
structed objects cannot redefine properties that are to be found in their prototypes; and
(P2) prototypes cannot define as non-writable those properties that are to be present in
their instances. We refer to these two criteria as prototype safety". Hence, when express-
ing the predicate corresponding to the prototype, we need to ensure that the prototype
does not define as non-writable properties that are to be present in their instances. A
stronger assertion is requiring that the prototype does not define properties that are to
be present in their instances at all. Similarly, when defining the predicate corresponding
to instances, we want to ensure that objects do not redefine properties that are to be
found in their prototypes.

Distributing fields between instance and prototype. We follow the choices of tsc to
determine which properties belong in instances and which ones belong prototypes. The
TypeScript compiler places methods, defined as κ x(xi : τi|ni=0) : τr { s }, in class proto-
types and all other fields in class instances. We introduce the following notation to refer
to the fields in an object and to the methods defined by a class:

1. We denote the set of all field names present in an instance of class A by FA. In
Figure 3.3, we have FA = FB = FC = {"x"}; an instance of a class inherits all the
fields defined in both the class and its superclasses;

3.2. The translation with classes 31

1 class A {
2 x: number = 3;
3 a(): void {
4 console.log("a");
5 }
6 }
7 class B extends A {
8 b(): void {
9 console.log("b");

10 }
11 }
12 class C extends A {
13 c(): void {
14 console.log("c");
15 }
16 }

FIGURE 3.3: Example of class inheritance in TypeScript (left) and the as-
sociated inheritance graph (right)

2. We denote the set of all methods defined in class A by NA. In Figure 3.3, we have
NA = {"a"}, NB = {"b"} and NC = {"c"}. For any class C all members of NC are
expected to be found in C.prototype.

3.2.2 The inheritance graph and its relation to prototype safety

We model an inheritance graph as follows: classes are represented as nodes; introduce
a directed edge from node A to node B if class B extends class A. In a valid TypeScript
program there are no circular inheritance chains; tsc performs this check. Hence, the
inheritance graph is a directed acyclic graph (DAG). In the table below we introduce
functions for describing classes from the perspective of the inheritance graph.

Definition of prototype-safety relevant sets

CLASS-ALLDESCENDANTS
C = descendants(C)

descendants+(C) , {C} ∪ ⋃
C∈C

descendants+(C)

CLASS-ALLPARENTS-BASE
ancestor(C) = ⊥
ancestor+(C) , {C}

CLASS-ALLPARENT-INHERIT
ancestor(C) = P P = ancestor+(P)

ancestor+(C) , {C} ∪ P

CLASS-ALLMETHODS
C = ancestor+(C)

N+
C ,

⋃
C∈C
NC

CLASS-ALLFIELDS
C = descendants+(C)

F+
C ,

⋃
C∈C
FC

Descendants and parents. We introduce the functions descendants and ancestor, which
take a class C as argument and return its direct descendants or ancestor, respectively. In
the example given in Figure 3.3 we have that descendants(A) = {B, C}, descendants(B) =
descendants(C) = ∅, ancestor(A) = ⊥, and ancestor(B) = ancestor(C) = A. The rule
CLASS-ALLDESCENDANTS defines descendants+, a function which gives us all the de-
scendants of a given class C, not necessarily direct. Rules CLASS-ALLPARENTS-BASE

and CLASS-ALLPARENTS-INHERIT define ancestor+, a function which provides us with
all of the ancestors of a class C. For convenience, we include the class C in the sets
descendants+(C) and ancestor+(C). For the inheritance graph in Figure 3.3, we have the
following: descendants+(A) = {A, B, C}, descendants+(B) = {B}, descendants+(C) = {C},
ancestor+(A) = {A}, ancestor+(B) = {A, B}, ancestor+(C) = {A, C}.

32 Chapter 3. Translating TypeScript to JaVerT

First prototype safety condition. To ensure prototype safety, it is required that instances
do not redefine properties that are to be found in their prototypes. We previously estab-
lished that named functions (i.e. methods) are meant to be found in the prototype chain,
not in instances. The set of methods found in the prototype chain for an instance of a
given class C is given by N+

C . In our assertions, we ensure that only elements of FC are
present in instances of C via the emptyFields(E | FC), which states that the object at the
location denoted by E has no properties other than possibly those included in the set de-
noted byFC. Since tsc checks thatFC∩N+

C = ∅, our requirement guarantees prototype
safety. The setN+

C can be determined statically using the rule CLASS-ALLMETHODS. In
the example in Figure 3.3, we have N+

A = {"a"}, N+
B = {"a", "b"}, N+

C = {"a", "c"}.

Second prototype safety condition. Prototype safety requires that prototypes do not
define as non-writable those properties that are to be present in their instances. As per
our discussion, we strengthen this requirement such that fields that are to be in the
instances, are not defined at all in the prototype chain. There are two aspects we are
concerned with:

1. Fields of class instances. In the rule CLASS-ALLFIELDS, we define F+
C as the set

of fields present in instances of C or any of its subclasses. The prototypes corre-
sponding to any class C must not declare as non-writable any of the fields f ∈ F+

C .
For the code in Figure 3.3, we have F+

A = F+
B = F+

C = {"x"}. If A.prototype
defined as non-writable property x, we would be unable to create instances of A,
B, and C.

2. Methods of subclasses. In the example presented in Figure 3.3, if A.prototype
would have declared property b as non-writable, then the declaration of class B
would have been illegal. Since prototypes are just regular objects and A.prototype
is the parent of B.prototype along the prototype chain, this declaration of b as
non-writable would break prototype safety.

To ensure that neither of the two cases occur, we require that the prototypes of the classes
defined only contain the properties corresponding to the class methods. Furthermore,
these properties must be writable in order to ensure methods can be overriden in sub-
classes.

3.2.3 The class JaVerT predicates

For every class C, we define four predicates:

1. ProtoC(p, pproto, sch), describing what it means for p to have the shape expected
for C.prototype; pproto represents the next object along the prototype chain, and
sch is the scope chain in which the methods are defined.

2. InstanceC(x, p), describing each instance x of the class C; here, p represents the
C.prototype object.

3. ConstructorC(constr, p, sch), describing the constructor constr of the class C; p rep-
resents the prototype field of the constructor (i.e. not the internal proto property),
and sch is the scope chain in which the constructor was declared.

4. ProtoAndConstructorC(p, pproto, sch)constr, bundling the resources correspond-
ing to the prototype p and the constructor constr. The pproto parameter represents
the next object along the prototype chain, while sch is the scope chain in which the
methods of class C and its constructor were defined.

These predicates are defined below.

3.2. The translation with classes 33

JaVerT predicates for class prototypes and instances

CLASS-PROTOLVAR
c = name(C)

pvn(C) , "#" ++ c ++ "proto"

CLASS-CONSTRLVAR
c = name(C)

cvn(C) , "#" ++ c

CLASS-SCOPELVAR
c = name(C)

svn(C) , "#" ++ c ++ "sch"

CLASS-PROTOTYPE

ProtoC(p, pproto, sch) , JSObjWithProto(p, pproto)∗
~m∈NC

[
DataProp(p, m, #m_loc) ∗ JSFunctionObjectStrong(#m_loc, Cm, sch, _)

]
∗

emptyFields(p | NC)

CLASS-INSTANCE

InstanceC(x, p) , JSObjWithProto(x, p) ∗~ f∈FC

[
DataProp(x, f , #v) ∗ CT(#v, typeC(f))

]
∗

emptyFields(x | FC)

CLASS-CONSTRUCTOR

ConstructorC(constr, p, sch) , JSFunctionObjectStrong(constr, C_constr, sch, p)

CLASS-PROTOANDCONSTRUCTOR-NOINHERITANCE
ancestor(C) = ⊥

ProtoAndConstructorC(p, sch, constr) , Scope(C_constr, C : constr, sch)∗
ProtoC(p, Object.prototype, sch) ∗ ConstructorC(constr, p, sch)

CLASS-PROTOANDCONSTRUCTOR-WITHINHERITANCE
ancestor(C) = A pproto = pvn(A) pconstr = cvn(A)

ProtoAndConstructorC(p, sch, constr) , Scope(C_constr, C : constr, sch)∗
ProtoC(p, pproto, sch) ∗ ConstructorC(constr, p, sch)∗
Scope(C_constr, _super : pconstr, sch)

Prototype, constructor and scope chain logical variable names. We associate with each
class a set of three logical variables corresponding to their prototype, constructor and
scope chain. The names of these logical variables is determistic and obtained using the
auxiliary functions pvn, cvn, and svn, defined via the rules CLASS-PROTOLVAR, CLASS-
CONSTRLVAR, and CLASS-SCOPELVAR, respectively.

The prototype predicate. The rule CLASS-PROTOTYPE models the inheritance relation
by allowing the parameter pproto, the parent on the prototype chain be passed in as a
parameter. If the class C does not explicitly extend any other class, we consider pproto
to be Object.prototype. In TypeScript, class methods cannot have user-defined proper-
ties, unlike regular function objects. We use the JSFunctionObjectStrong JaVerT built-
in predicate (§2.2.3) to capture this. All methods m ∈ NC are defined in the same scope
chain; hence, we use the same sch variable for all methods. We highlight in pink the
prototype safety requirement for prototypes, (P2).

The instance predicate. The InstanceC(x, p) predicate, which is defined in the rule
CLASS-INSTANCE, takes the instance and the prototype objects as parameters. We use
DataProp for describing the fields instead of COF. Using COF would impose a loose
specification in the assertion it outputs: a field can be found anywhere in the prototype
chain. In the context of classes, we know the fields in the set FC are to be found in the

34 Chapter 3. Translating TypeScript to JaVerT

instance itself and using the Pi predicate as part of COF would not capture that. The
prototype safety requirement for instances, (P1), is highlighted in pink.

The constructor predicate. We define the ConstructorC(constr, p, sch) predicate in rule
CLASS-CONSTRUCTOR; it takes the constructor, its prototype field, and the scope chain
in which it is defined as parameters.

The prototype and constructor predicate. We define the ProtoAndConstructor predi-
cate, which bundles together the resources associated with the prototype and the con-
structor of class C, in the rules CLASS-PROTOANDCONSTRUCTOR-NOINHERITANCE

and CLASS-PROTOANDCONSTRUCTOR-WITHINHERITANCE. These two definitions deal
with the case when the class C is a base class or a derived class, respectively. The predi-
cate takes as arguments:

1. p, the C.prototype object;

2. sch, the scope chain in which the constructor/methods of class C were defined;

3. constr, the constructor object.

We take advantage of the deterministic mapping from classes to logical variable names
and omit the parent along the prototype chain and the constructor of the parent class
from the list of parameters.

It is essential to understand that for any class C, its methods and the constructor are
defined in the same scope chain; this can be observed by analysing the translation from
classes to ES5 code in §2.1.5. We illustrate the importance of this by an example in §3.3.
The translation of derived classes uses a _super parameter (§2.1.5), bound to the con-
structor of the parent class. The ProtoAndConstructor predicate captures this binding of
the _super parameter in the scope chain sch via the conjunct highlighted in pink.

3.2.4 The definitions of the compile functions revisited

We revisit the definitions for all five compilers in the scenario where class types are
present. The updated definitions are presented in the table below:

The definition of all compile functions with classes

TYPE-CLASS
C = descendants+(C)

CT(E, C) ,
∨

C∈C
InstanceC(E, pvn(C))

PROGRAM-PROTOSANDCONSTRUCTORS

AllProtos(C) , ObjectPrototype() ∗ FunctionPrototype() ∗ GlobalObject()∗
~C∈CProtoAndConstructorC(pvn(C), svn(C), cvn(C)) ∗ GlobalVar(C, cvn(C))

FUNC-PRE
Γout(f) = captured(f) Γin(f) = params(f)

C F
pre(f) , AllProtos(C) ∗ CTE(Γout(f)) ∗~(x:τ)∈Γin(f)CT(x, τ)

FUNC-POST

Apre = C F
pre(f) τr = return(f)

C F
post(f) , Apre ∗ CT(ret, τr)

FUNC-SPEC

Apre = C F
pre(f) Apost = C F

post(f)

C F
spec(f) ,

{
{Apre}f{Apost}

}

3.2. The translation with classes 35

METHOD-PRE
Γout(mC) = captured(mC) Γin(mC) = params(mC) D ∈ descendants+(C)

C M
pre(mC, D) , AllProtos(C \ {C}) ∗ InstanceD(this, pvn(D))∗

ProtoAndConstructorC(pvn(C), $$scope, cvn(C)) ∗
CTE(Γout(mC)) ∗~(x:τ)∈Γin(mC)CT(x, τ)

METHOD-POST

D ∈ descendants+(C) Apre = C M
pre(mC, D) τr = return(mC)

C M
pre(mC, D) , Apre ∗ CT(ret, τr)

METHOD-SPEC

C M
spec(mC) ,

{
{C M

pre(mC, D)}mC{C M
post(mC, D)}|D ∈ descendants+(C)

}
CONSTRUCTOR-PRE
Γout(constrC) = captured(constrC) Γin(constrC) = params(constrC)

proto ∈ {pvn(C)|C ∈ descendants+(C)}
C C

pre(C, proto) , AllProtos(C \ {C}) ∗ ProtoAndConstructorC(pvn(C), $$scope, cvn(C))∗
JSObjWithProto(this, proto) ∗ emptyFields(this | ∅) ∗
CTE(Γout(constrC)) ∗~(x:τ)∈Γin(constrC)CT(x, τ)

CONSTRUCTOR-POST
Γout(constrC) = captured(constrC) Γin(constrC) = params(constrC)

proto ∈ {pvn(C)|C ∈ descendants+(C)}
C C

post(C, proto) , AllProtos(C \ {C}) ∗ ProtoAndConstructorC(pvn(C), $$scope, cvn(C))∗
InstanceC(this, proto) ∗ CTE(Γout(constrC)) ∗~(x:τ)∈Γin(constrC)CT(x, τ)

CONSTRUCTOR-SPEC
D = {pvn(C)|C ∈ descendants+(C)}
C C

spec(constrC) ,
{
{C C

pre(constrC, proto)}constrC{C C
post(constrC, proto)}|proto ∈ D

}
Translating class types. An instance of a class C is translated following the rule TYPE-
CLASS. Subclassing is supported by iterating over all the classes that have C as an ances-
tor. This translation of class types breaks modularity: for every new class that extends
class C, we need to reverify all specifications which mention C. This is a consequence of
the lack of higher-order reasoning in JaVerT; we discuss this in §3.2.5.

All prototypes and constructors. We define the AllProtos(C) predicate to specify the
resources corresponding to the prototypes and constructors of all classes in the set C.
In this context C is taken as argument and does not refer to the set of all classes in
the program, as defined in §2.1.1. The predicate specifies the resources associated with
Object.prototype, Function.prototype and the global object; it is reasonable to expect
these resources to be available as JavaScript code frequently relies on function defined
in these two prototypes and on accessing fields in the global object. The prototypes
and constructors associated with all the classes C ∈ C are specified via a conjunction of
ProtoAndConstructor. As discussed earlier, ProtoAndConstructor requires knowledge
of the constructor resource: we resolve the constructors’ resources via the global object
using the GlobalVar predicate.

Function specification. The rule FUNC-PRE only differs from FUNC-PRE-NOCLASS in
that it adds the AllProtos(C) conjunct, highlighted in pink, providing the resources
associated with the constructors and prototypes of all classes in the program. These

36 Chapter 3. Translating TypeScript to JaVerT

resources are needed to operate with existent class instances or create new ones. The
post-condition can be obtained from the pre-condition using the rule FUNC-POST. This
rule is identical to FUNC-POST-NOCLASS. If τr is a class type, we are guaranteed to have
available all the resources needed because in the pre-condition we specify the structure
of all prototypes and constructors. The pre- and post-conditions are put together using
the FUNC-SPEC rule.

Method specification. The METHOD-SPEC rule relies on C M
pre and C M

post compilers de-
fined in the rules METHOD-PRE and METHOD-POST, respectively. These are similar to
FUNC-PRE and FUNC-POST used for regular functions. The difference is highlighted in
pink. There are three conjuncts which are different to the ones in FUNC-PRE:

1. We use the AllProtos predicate only for the set C \ {C}. We generate the predicate
bundling the prototype and constructor of the C function separately.

2. The first extra conjunct requires that this is an instance of C or an instance of
a descendant class of C. This is standard behaviour for subclassing: if a method
is not defined in a class, we inspect the parent class and progress through the
prototype chain until the method is found. The class which this is an instance
of needs to be passed as a parameter to enable us to form groups of pre-/post-
conditions where this does not change its type. This decision is imposed by the
fact that assignments to this are forbidden in JavaScript.

3. The prototype and constructor of the C class are bundled together by an extra
conjunct. The difference between the current usage of ProtoAndConstructor and
its usage in the AllProtos predicate is that here we indicate that the scope in which
the method is defined is the current scope, denoted by the $$scope JaVerT variable.

Iteration over all descendants of the current class, C, is done in the METHOD-SPEC rule.

Constructor specification. The rules CONSTRUCTOR-PRE and CONSTRUCTOR-POST de-
fine the pre- and the post-conditions for the constructor of a given class C. We highlight
in pink the ways in which these rules differ from those describing the specifications of
methods. In the pre-condition of the constructor, we require this to be a fresh object
which has the prototype proto. The prototype of this, proto, is conditioned to be a
prototype of one of the descendants of the class C. We take the prototype as a param-
eter instead of using the C.prototype object because constructors can be called from
within a subclass’ constructor; for that case, the prototype is that of the subclass, not
C.prototype. We exemplify this in §3.3. In the post-condition we require this to have
the expected shape of an instance of C, but we use the same proto variable as in the pre-
condition, passed an argument. The rule CONSTRUCTOR-SPEC assembles the pre- and
post-conditions, iterating through all the possible values of proto, in a similar fashion to
the METHOD-SPEC rule.

3.2.5 Discussion

When a variable x is declared to have type C, it can refer to an instance of any class that
has C as an ancestor. We model this through a disjunction over all the members of the
descendants+(C) set in rule TYPE-CLASS. This leads to two main issues:

1. We face a state explosion problem: the number of specifications that JaVerT needs
to verify grows exponentially with the number of disjunctions. Given the cur-
rent translation of classes, we introduce a disjunction for every variable whose
declared type is a class with descendants;

3.3. Assertion placement — an example 37

2. We lose modularity: if a new class is declared and it extends C, either directly
or indirectly, we need to verify all the specifications in which variables of type C
appear, including the methods and the constructor of C. This means that we cannot
use our toolchain to verify a library and then distribute it. A client extending a
class provided by the library would need to reverify the whole library.

1 class A {
2 constructor() { }
3 m(): string {
4 return "Some string";
5 }
6 }
7 class B extends A {
8 constructor() { super(); }
9 m(): string {

10 return "Some other string";
11 }
12 }
13 function f(x: A): string {
14 return x.m();
15 }

FIGURE 3.4: TypeScript method overriding

The root cause of the inefficient translation is
the lack of higher-order reasoning in JaVerT:
in order to call a function, we must know its
precise identifier. Since classes can redefine
methods defined in super-classes, we cannot
precisely determine the identifier of a given
method m, unless we have complete informa-
tion on the structure of the prototype chain.
In Figure 3.4, the method m defined in class A,
is a property in A.prototype and has id A_m,
while the overriding method m, defined in
class B, is a property in B.prototype and has
id B_m. The method m of x that is called in
line 14, can resolve to either of these two
methods, depending on whether x is an in-
stance of class A or an instance of class B.

If JaVerT supported higher-order reasoning, we could potentially redefine the predicate
describing the prototype of C such that it would not require methods to be present in
one precise prototype object, but instead allow them to be resolved by inspecting the
prototype chain. In this way, we would be able to provide a more efficient translation
for classes. However, this approach is speculative as it is not clear how higher-order
reasoning would work: since we do not know which function we are calling, we also do
not know what resource it needs. Whereas it is easy to frame off [39] excess resource,
it is much more difficult to anticipate the resource we might need in a higher-order
setting. The reasoning would also become more complicated, especially given the fact
that JavaScript can capture variables via closures.

3.3 Assertion placement — an example
To enable verification, we must place the JaVerT assertions generated by translating
TypeScript type annotations in the emitted JavaScript program. We identify four differ-
ent types of assertions that need to be laid out throughout our program:

1. Predicate definitions, such as ProtoC(p, pproto, sch), must be placed at the top of
the program; they do not interact with the emitted code in anyway. We generate
predicates for every class declaration, instance declaration, index signature.

2. Function, method and constructor specifications describe the pre-conditions and
post-conditions corresponding to every function, method and constructor in the
program and are generated in accordance with the FUNC-SPEC, METHOD-SPEC

and CONSTRUCTOR-SPEC rules;

3. Assignment assertions ensure that after every assignment the type of the value
assigned to is preserved. Their placement depends on the interpretation of types
we opt for; a discussion of the possibilities is presented shortly;

38 Chapter 3. Translating TypeScript to JaVerT

4. Loop invariants ensure that all the variables within the typing environment main-
tain their type before the loop and after every iteration of it;

We illustrate the way we place these assertions by analysing the JaVerT translation cor-
responding to the TypeScript code presented in Figure 2.6: the JaVerT translation of the
Animal class is presented in Figure 3.5, while the Cat class is translated in Figure 3.6.

3.3.1 Predicate definitions

We first define the following predicates: Animal, AnimalProto, AnimalConstructor,
and AnimalProtoAndConstructor, together with their Cat equivalents. In addition, the
AllProtosAndConstructors predicate bundles together the prototypes and constructors
associated with all the classes in the program.

3.3.2 Method and constructor specifications

Method specifications. We turn our attention to the only method in the Animal class,
walk (lines 24-47 in Figure 3.5). Its two sets of pre-/post-conditions correspond to the
cases when the this object is an instance of the Animal class or the Cat class respectively.
The Animal and Cat classes are the only elements of the descendants+(Animal) set; if a
new class extended Animal we would need to add another set of pre-/post-conditions
for the walk method and verify it again. In the meow method of the Cat class (lines 21-33
in Figure 3.6), there is a single spec, which requires this to have the shape of an object
of type Cat and the prototype Cat.prototype. This is in accordance to the fact that
descendants+(Cat) only contains the element Cat. It is important to notice that for all
these specifications, the type of this does not change.

Constructor specifications. The two specifications corresponding to the constructor
of the Animal class correspond to the case when we call new Animal(num) and when
we call the constructor via the Cat constructor; in the latter case, the prototype is set
to Cat.prototype. Regardless of the prototype, the constructor expects to receive an
empty this object and populates it with the fields that are expected to be found in an
instance of Animal. The specification of the Cat constructor only describes the case when
we call new Cat(num, str), since Cat is not extended by any class.

The _super resource. In the closure where we define Cat (Figure 3.6), the _super pa-
rameter is bound to the Animal constructor. In line 17, the Cat constructor makes a call
to the Animal constructor via the _super parameter. To verify that call, we need to know
that _super is indeed bound to the Animal constructor in the scope chain of the construc-
tor. By accessing the scope chain via the CatProtoAndConstructor predicate, JaVerT is
able to verify the binding.

3.3.3 Assignment assertions

Once a variable x is declared to have a type τ, it is commonly required that x satisfies
type τ at all points during the execution of the program. We believe that this is in
accordance to the TypeScript programmer’s intuition and chose to maintain variable
types invariant. A different approach would be requiring that the type invariant holds
at the beginning of a unit of execution (e.g. a function) and at the end of it, but can be
broken in between.

These different approaches towards the typing invariant lead to different needs in terms
of placing assertions. Since we require the invariant to hold at all times, we assert that

3.3. Assertion placement — an example 39

1 var Animal = /** @class */ (function () {
2 /*
3 @id Animal_constructor
4

5 @pre JSObjWithProto(this, #Animalproto) * empty_fields(this : -{ }-) *
6 ($$scope == #sc) * (position == #position) * types(#position: Num) *
7 AllProtosAndConstructors(#Animal, #Animalproto, #sc,
8 #Cat, #Catproto, #Catscope)
9 @post Animal(this, #Animalproto) * types(#position: Num) *

10 (ret == #ret) * types(#ret: Undef) *
11 AllProtosAndConstructors(#Animal, #Animalproto, #sc,
12 #Cat, #Catproto, #Catscope)
13

14 @pre JSObjWithProto(this, #Catproto) * empty_fields(this : -{ }-) *
15 ($$scope == #sc) * (position == #position) * types(#position: Num) *
16 AllProtosAndConstructors(#Animal, #Animalproto, #sc,
17 #Cat, #Catproto, #Catscope)
18 @post Animal(this, #Catproto) *
19 types(#position: Num) * (ret == #ret) * types(#ret: Undef) *
20 AllProtosAndConstructors(#Animal, #Animalproto, #sc,
21 #Cat, #Catproto, #Catscope)
22 */
23 function Animal(position) { this.position = position; }
24 /*
25 @id Animal_walk
26

27 @pre Animal(this, #Animalproto) * ($$scope == #sc) *
28 (distance == #distance) * types(#distance: Num) *
29 AllProtosAndConstructors(#Animal, #Animalproto, #sc,
30 #Cat, #Catproto, #Catscope)
31 @post Animal(this, #Animalproto) * types(#distance: Num) *
32 (ret == #ret) * types(#ret: Undef) *
33 AllProtosAndConstructors(#Animal, #Animalproto, #sc,
34 #Cat, #Catproto, #Catscope) *
35

36 @pre Cat(this, #Catproto) * (distance == #distance) *
37 types(#distance: Num) * ($$scope == #sc) *
38 AllProtosAndConstructors(#Animal, #Animalproto, #sc,
39 #Cat, #Catproto, #Catscope)
40 @post Cat(this, #Catproto) * types(#distance: Num) *
41 (ret == #ret) * types(#ret: Undef) *
42 AllProtosAndConstructors(#Animal, #Animalproto, #sc,
43 #Cat, #Catproto, #Catscope) *
44 */
45 Animal.prototype.walk = function (distance) {
46 this.position += distance; /* @tactic assert(Cat(this, #Catproto)) */
47 };
48 return Animal;
49 }());

FIGURE 3.5: The JaVerT code corresponding to the TypeScript example of
Figure 2.6; fragment illustrating the translation of the Animal class

after every assignment to variable x of type τ, Scope(x, #x) ∗ CT(#x, τ) holds. It is im-
portant to bear in mind that only checking the type of x after an assignment to x or
one of its fields is sufficient due to the disjointness assumption under which we carried
out the translation. In case we allowed overlaps, changes in x would impact all objects
referencing x and the analysis would become untractable.

The approach that allows the typing invariant to be broken would require fewer asser-
tions and would be more efficient. The precise placement of assertions depends on the

40 Chapter 3. Translating TypeScript to JaVerT

1 var Cat = /** @class */ (function (s) {
2 __extends(Cat, s);
3 /*
4 @id Cat_constructor
5

6 @pre JSObjWithProto(this, #Catproto) * empty_fields(this : -{ }-) *
7 ($$scope == #sc) * (position == #position) * types(#position: Num) *
8 (name == #name) * types(#name: Str) *
9 AllProtosAndConstructors(#Animal, #Animalproto, #Animalscope,

10 #Cat, #Catproto, #sc) *
11 @post Cat(this, #Catproto) * types(#position: Num) *
12 types(#name: Str) * (ret == #ret) * (#ret == this) *
13 AllProtosAndConstructors(#Animal, #Animalproto, #Animalscope,
14 #Cat, #Catproto, #sc)
15 */
16 function Cat(position, name) {
17 var _this = _super.call(this, position) || this;
18 _this.name = name;
19 return _this;
20 }
21 /*
22 @id Cat_meow
23

24 @pre Cat(this, #Catproto) * ($$scope == #sc) *
25 AllProtosAndConstructors(#Animal, #Animalproto, #Animalscope,
26 #Cat, #Catproto, #sc) *
27 @post Cat(this, #Catproto) * (ret == #ret) * types(#ret: Str) *
28 AllProtosAndConstructors(#Animal, #Animalproto, #Animalscope,
29 #Cat, #Catproto, #sc) *
30 */
31 Cat.prototype.meow = function () {
32 return "Meow! I’m " + this.name + "!";
33 };
34 return Cat;
35 }(Animal));

FIGURE 3.6: The JaVerT code corresponding to the TypeScript example of
Figure 2.6; fragment illustrating the translation of the Cat class

defined unit of execution: if we expect the types to only hold at the beginning and at the
end of a function, the function pre-/post-conditions suffice.

The only assertion that we place to check the validity of an assignment is on line 46 in
Figure 3.5. We do not check assignments for the this object within constructors: the
this object does not yet have the expected shape and assertions would fail.

3.3.4 Loop invariant assertions

We expect that before entering a loop, all the variables in the current scope satisfy their
declared types; this requirement is captured by the CTE compiler. Since we consider
types to be invariant, the same assertion must hold after every iteration of the loop.

3.4 Soundness
We prove the soundness of the translation from TypeScript type annotations to JaVerT
assertions. We rely on the guarantees provided by JaVerT (§2.2.4), namely: (1) The

3.4. Soundness 41

JS-2-JSIL compiler is logic preserving and thoroughly tested; (2) The JS-2-JSIL logic
translator is proven correct; (3) JSIL Logic is sound with respect to its operational se-
mantics. These guarantees enable us to reach a soundness result without the need to
reason about the subject reduction at the level of JavaScript operational semantics.

The JS Logic satisfiability relation. We define satisfiability for JS Logic assertions with
respect to abstract heaps, which differs from concrete heaps in that they may map object
properties to the special value �. The satisfiability relation for JS Logic assertions has
the form: H, L, lt, ε |= P, where: (1) H is an abstract heap; (2) L is the current scope
chain; (3) lt is the binding of the this object (4) and ε is a JS logical environment, map-
ping logical variables to values. The satisfiability relation for JS Logic assertions builds
on the semantics of JS logical expressions. A logical expression E is interpreted with
respect to L, lt and ε, written JEKε

L,lt . Both the satisfiability relation and the expression
interpretation are mostly standard; we show a fragment below.1 We make use of the
following auxiliary functions:

1. TypeOf, which given a value, outputs its type;

2. Scope which given a heap H, a scope chain L and an identifier x returns the envi-
ronment record in which x is resolved;

3. Object which takes a location as a parameter and returns the partial heap contain-
ing an object at the given location;

4. Function which takes a location as a parameter and returns the partial heap con-
taining a function object at the given location;

5. Pi which takes a heap H, an object location l and a property name n and returns
the location d of the data descriptor that n resolves to in the prototype chain of the
object at location l;

6. DescVal which, given a heap and the location of a data descriptor, returns its value.

Interpretation of JS Logic Expressions and Satisfiability Relation for Assertions (fragment)

Semantics of Logical Expressions:
JscKε

L,lt
, L JthisKε

L,lt
, lt

JVKε
L,lt

, V JxKε
L,lt

, ε(x)

Semantics of GetValue: GetValue(H, ler, x) ,
{

H(ler, x) if ler 6= lg
DescVal

(
H(ler, x)

)
if ler = lg

Satisfiability Relation:
H, L, lt, ε |= emp ⇔ H = emp
H, L, lt, ε |= emptyFields(E1 | E2) ⇔ H =

⊎
m 6∈{JE2Kε

L,lt
}((JE1Kε

L,lt
, m) 7→ �)

H, L, lt, ε |= types(Xi : τi|ni=1) ⇔ H = emp∧ ∀i ∈ {1, ..., n}
[
TypeOf(JEKε

L,lt
) = τi

]
H, L, lt, ε |= (E1, E2) 7→ E3 ⇔ H = (JE1Kε

L,lt
, JE2Kε

L,lt
) 7→ JE3Kε

L,lt

H, L, lt, ε |= Scope(x, E) ⇔ ∃ler, v
[
Scope(H, L, x) = ler∧

GetValue(H, ler, x) = v ∧ JEKε
L,lt

= v
]

H, L, lt, ε |= Pi(E1, E2, E3, _, _) ⇔ Pi(H, JE1Kε
L,lt

, JE2Kε
L,lt

) = JE3Kε
L,lt

H, L, lt, ε |= JSFunctionObject(E, _, _) ⇔ H = Function(JEKε
L,lt

)

H, L, lt, ε |= E1 = E2 ⇔ JE1Kε
L,lt

= JE2Kε
L,lt

H, L, lt, ε |= P ∗Q ⇔ ∃H1, H2

[
H = H1] H2 ∧ H1, L, lt, ε |= P∧

H2, L, lt, ε |= Q
]

1Adapted from [17]

42 Chapter 3. Translating TypeScript to JaVerT

We introduce a typing judgement H, L, lt |= Γ meaning that for all (x : τ) ∈ Γ, the value
x resolves to under H, the scope chain L, given the binding lt of the this object, satisfies
type τ. We define an auxiliary typing judgement H, lt, v |= τ stating that under the heap
H, with the binding lt of the this object, the value v satisfies type τ.
Satisfiability Relation for Types and Typing environments (fragment)

Typing environment satisfiability:

H, L, lt |= (x : τ)] Γ′ ⇔ ∃H1, H2, ler, v
[

H = H1] H2 ∧ Scope(H, L, x) = ler∧

GetValue(H, ler, x) = v ∧ H1, lt, v |= τ ∧ H2, L, lt |= Γ′
]

H, L, lt |= [] ⇔ H = emp

Type satisfiability:
H, lt, v |= number ⇔ TypeOf(v) = Num
H, lt, v |= string ⇔ TypeOf(v) = Str
H, lt, v |= undefined ⇔ TypeOf(v) = Undef

H, lt, v |= { ni : τi|ni=0 } ⇔ ∃Hobj, H0, . . . Hn

[
H = Hobj]

n⊎
i=0

Hi ∧ Hobj = Object(v)

∀i ∈ {0, · · · , n}∃di, vi, H′i , H′′i
[

Pi(H′i , v, ni) = di ∧ DescVal(H′i , di) = vi∧
H′′i , lt, vi |= τi

]]
H, lt, v |= { (xi : τi|ni=0) : τr } ⇔ H = Function(v, n)

Theorem 1 For any type environment Γ, if H, L, lt, ε |= CTE(Γ), then H, L, lt |= Γ.

PROOF SKETCH: We show that if H, L, lt, ε |= CTE(Γ), then H, L, lt |= Γ by induction on
the size of the domain of Γ.
1. CASE: Γ = []

PROVE: If H, L, lt, ε |= CTE([]), then H, L, lt |= []
1.1. ASSUME: H, L, lt, ε |= CTE([])
1.2. CTE([]) = emp

PROOF: By def. of CTE.
1.3. H, L, lt, ε |= emp

PROOF: By 1.1 and 1.2.
1.4. H = emp

PROOF: By 1.3 and the def. of satisfiability relation for assertions.
1.5. H, L, lt |= []⇔ H = emp

PROOF: By def. of satisfiability relation for typing environments.
1.6. H, L, lt |= []

PROOF: By 1.4 and 1.5.
2. CASE: Γ = (x : τ)] Γ′

INDUCTIVE HYPOTHESIS: For any heap H, if H, L, lt, ε |= CTE(Γ′), then H, L, lt |= Γ′

PROVE: If H, L, lt, ε |= CTE((x : τ)] Γ′) then H, L, lt |= (x : τ)] Γ′

2.1. ASSUME: H, L, lt, ε |= CTE((x : τ)] Γ′)
2.2. H, L, lt, ε |= Scope(x, #x) ∗ CT(#x, τ) ∗ CTE(Γ′)

PROOF: By 2.1 and def. of CTE.
2.3. There exist H1 and H2 such that:

1. H = H1] H2
2. H1, L, lt, ε |= Scope(x, #x) ∗ CT(#x, τ)
3. H2, L, lt, ε |= CTE(Γ′)

PROOF: By 2.2 and def. of satisfiability relation for P ∗Q assertions.
2.4. H2, L, lt |= Γ′

PROOF: From conjunct 3 in 2.3 and the inductive hypothesis.

3.4. Soundness 43

2.5. There exist ler and v, such that:
1. Scope(H1, L, x) = ler
2. GetValue(H1, ler, x) = v
3. ε(#x) = v
4. H1, L, lt, ε |= CT(v, τ)

PROOF: Conjuncts 1, 2, and 3, follow from conjunct 2 in 2.3 and by the satisfiability
relation of the Scope predicate. Since Scope is a pure assertion (§2.2.2), we do not
need to split H1 into two disjoint heaps. Conjunct 4 is carried over.

2.6. H1, lt, ε, v |= τ
PROOF: By Theorem 2 and conjunct 4 in 2.5.

2.7. H, L, lt |= (x : τ)] Γ′

PROOF: By conjunct 1 of 2.3, 2.4, conjuncts 1, 2 of 2.5, 2.6 and the def. of the satisfia-
bility relation for typing environments.

Theorem 2 For any type environment Γ, value v and type τ, if H, L, lt, ε |= CT(v, τ), then
H, lt, ε, v |= τ.

PROOF SKETCH: We show that if H, L, lt, ε |= CT(v, τ), then H, lt, ε, v |= τ, by structural
induction on the structure of types.
1. CASE: τ = number

1.1. ASSUME: H, L, lt, ε |= CT(v, number)
1.2. CT(v, number) = types(v : Num)

PROOF: By def. of CT.
1.3. H = emp∧ TypeOf(v) = Num

PROOF: By 1.1, 1.2 and the def. of the satisfiability relation for assertions.
1.4. H, lt, ε, v |= number⇔ TypeOf(v) = Num

PROOF: By def. of the satisfiability relation for types.
1.5. H, lt, ε, v |= number

PROOF: By 1.3 and 1.4.
2. CASE: τ = string

Analogous to the case when τ = number.
3. CASE: τ = undefined

Analogous to the case when τ = number.
4. CASE: τ = { (xi : τi|ni=0) : τr }

4.1. ASSUME: H, L, lt, ε |= CT(v, { (xi : τi|ni=0) : τr })
4.2. CT(v, { (xi : τi|ni=0) : τr }) = JSFunctionObject(v, _, _)

PROOF: By def. of CT.
4.3. H = Function(v)

PROOF: By 4.1, 4.2, and the satisfiability relation for assertions.
4.4. H, lt, ε, v |= { (xi : τi|ni=0) : τr }⇔ H = Function(v)

PROOF: By def. of satisfiability relation for types.
4.5. H, lt, ε, v |= { (xi : τi|ni=0) : τr }

PROOF: By 4.3 and 4.4.
5. CASE: τ = { ni : τi|ni=0 }

INDUCTIVE HYPOTHESIS For any i ∈ {0, . . . , n} and any vi, if H, L, lt, ε |= CT(vi, τi),
then H, lt, ε, vi |= τi.

5.1. ASSUME: H, L, lt, ε |= CT(v, { ni : τi|ni=0 })
5.2. CT(v, { ni : τi|ni=0 }) = JSObjectGen(v, _, _, _) ∗~n

i=0Pi(v, ni, #desci, _, _) ∗
DescVal(#desci, #vi) ∗ CT(#vi, τi)

PROOF: By def. of CT.
5.3. There exist Hi, di and vi for all i = {0, . . . , n} and Hobj such that:

44 Chapter 3. Translating TypeScript to JaVerT

1. H = Hobj]
n⊎

i=0
Hi

2. Hobj, L, lt, ε |= JSObjectGen(v, _, _, _)
3. Hi, L, lt, ε |= Pi(v, ni, di, _, _) ∗ DescVal(di, vi) ∗ CT(vi, τi)
4. ε(#desci) = di
5. ε(#vi) = vi

PROOF: From 5.2, by the satisfiability relation for the P ∗Q assertion.
5.4. PICK any i ∈ {0, . . . , n}. We have:

Hi, L, lt, ε |= Pi(v, ni, di, _, _) ∗ DescVal(di, vi) ∗ CT(vi, τi)
PROOF: Follows directly from 5.3, conjunct 2.

5.5. There exist H′i and H′′i , such that:
1. Hi = H′i] H′′i
2. H′i , L, lt, ε |= Pi(v, ni, di, _, _) ∗ DescVal(di, vi)
3. H′′i , L, lt, ε |= CT(vi, τi)

PROOF: From 5.4, by the satisfiability relation for the P ∗Q assertion.
5.6. H′′i , L, lt, vi |= τi

PROOF: From conjunct 3 in 5.5 and the inductive hypothesis.
5.7. Pi(H′i , v, ni) = di ∧ DescVal(H′i , di) = vi

PROOF: From conjunct 2 in 5.5, the satisfiability relation for the Pi predicate and the
fact that DescVal is a pure assertion equivalent to the DescVal function.

5.8. ∀i ∈ {0, . . . , n} there exist H′i and H′′i , such that:
1. Hi = H′i] H′′i
2. Pi(H′i , v, ni) = di ∧ DescVal(H′i , di) = vi
3. H′′i , L, lt, vi |= τi

PROOF: Follows due to the fact i was chosen arbitrarily and from conjunct 1 in 5.5,
5.6 and 5.7.

5.9. Hobj = Object(v)
PROOF: By satisfiability relation for the JSObjectGen predicate and conjunct 2 of
5.3.

5.10. H, L, lt, v |= { ni : τi|ni=0 }
PROOF:By satisfiability relation for the { ni : τi|ni=0 } type, 5.8 and 5.9.

3.5 Implementation

The translation presented in §3 is accompanied by an implementation.2 The tool is easy
to use via the command-line: it takes a single required argument, the TypeScript file to
be compiled. The output consists of a JavaScript file with the same name as the Type-
Script one in case the compilation is successful or an error message in case of failure.

The compiler structure is presented in Figure 3.7. All the possible outcomes of running
our compiler are represented in the figure. Invalid TypeScript files are automatically
rejected in the first stage of the compilation process. In the second stage, we filter out the
programs that do not respect the syntax we presented in §2.1.1. All TypeScript programs
which pass the first two stages are expected to compile successfully to a JavaScript file
annotated with JaVerT assertions.

As mentioned previously, the translation process consists of two parts: 1. translating
the TypeScript code to valid JavaScript ES5 code, handled by tsc; 2. translating the
TypeScript type annotations to JaVerT assertions and placing them in their respective
positions. It is apparent from Figure 3.7 that these two tasks are tightly coupled: the

2https://github.com/RaduSzasz/TS2JaVerT

3.5. Implementation 45

FIGURE 3.7: The structure of the compiler

JaVerT assertions are associated with nodes in the TypeScript AST before the JavaScript
is emitted. This means that we do not need to have a mapping between statements
in the TypeScript input and statements in the JavaScript output. The TypeScript com-
piler guarantees that during the transpilation from TypeScript to ES5, the comments
will remain associated with their corresponding statements. While this aspect might
not appear to be a huge gain for most statements, where the TypeScript compiler only
removes type annotations to obtain valid JavaScript, it is vital in the case of classes
where the translation process is not as straightforward.

The technology stack. It is apparent from the structure presented in Figure 3.7 that
our compiler makes extensive use of features provided by the TypeScript compiler. Re-
quiring access to the TypeScript AST and numerous other features of the TypeScript
compiler API (§2.1.4) motivated our choice of technology stack: the compiler is written
entirely in TypeScript and only contains few utility libraries as dependencies.

We divide the compilation in four steps, as shown in Figure 3.7:

1. TypeScript compiler checks. This step is delegated to the TypeScript compiler,
tsc. If tsc generates any errors, they will be displayed to the user.

2. Gathering type information. To generate JaVerT assertions we must firstly pos-
sess three pieces of information: (1) the definitions of every user-defined type in
the input program; (2) the declared types of every variable and function defined
in the input program; (3) the variables which have been assigned to in every state-
ment. We obtain this information in this exact order, by traversing the AST using
the visitor pattern [18]. A different visitor is used for each one of these different
tasks. The visitors throw an error if the TypeScript program taken as input does
not respect the syntax in §2.1.1.

3. Placing the assertions. The TypeScript compiler API allows users to manipulate
the AST. More specifically, we are able to insert comments before or after any node
of the AST. All comments on a certain node must be added at the same time. This
restriction is a result of our organisation of the data: we map the type information
to the corresponding AST node; after a node is modified, a new one is generated
and the mapping is no longer valid. To address this issue, we place the comments
representing function specifications, assignment assertions, and loop invariants

46 Chapter 3. Translating TypeScript to JaVerT

using a single visitor. The predicate declarations are placed independently as the
first token in the file.

4. Emitting JavaScript code. Generating JavaScript ES5 code is delegated to the
TypeScript compiler. At the end of this process, we gain access to the AST of the
emitted JavaScript. While we should not need to alter the emitted AST in any way,
a bug in the TypeScript compiler forces us to do so: when it comes to classes, the
TypeScript compiler does not handle synthetic comments placed via the compiler
API gracefully—the comments associated with the constructor and initialised in-
stance fields are not displayed. This behaviour is thoroughly documented as an
issue in the official TypeScript repository.3 We use a workaround employed in
the Tsickle codebase [20] which involves altering the emitted JavaScript AST. This
issue caused significant delays in the development process.

Translating types. The translation from types to assertions is not represented as a stand-
alone step in the diagram in Figure 3.7. The translation is carried out in steps three and
four, immediately before the AST nodes are annotated. Once the bug in the TypeScript
compiler has been fixed, we will be able to generate and place all assertions at once.

3https://github.com/Microsoft/TypeScript/issues/17594

47

Chapter 4

Evaluation

The current work provides a safe, easy-to-use interface for writing JaVerT specifications
for JavaScript programs. We achieved a tremendous reduction in program size via this
interface, while ensuring prototype safety and the ability to reason about scope. Our
tool provides semi-automatic specification generation: we process TypeScript programs,
interpreting types under a disjointness assumption, and generate JavaScript annotated
with JaVerT assertions; we then rely on the programmers to enrich the generated asser-
tions using their deep knowledge of the code.

This project is a stepping stone in establishing the relation in between types and separa-
tion logic. We evaluate its results from a theoretical and practical standpoint, as stated
in the introduction. We then discuss the known limitations and the challenges faced.

4.1 Theoretical results
In §3, we created a translation from TypeScript type annotations to JaVerT assertions,
assuming that each object is self-contained, disjoint from all other objects defined. The
translation covers a very large subset of the TypeScript types, including object type lit-
erals with or without indexing signatures, interfaces, classes, and union types. The only
major unsupported types are generic types and arrays; we discuss this decision in §4.3.
We prove our translation from TypeScript types to JaVerT assertion to be sound.

We provide a new interpretation for classes, in accordance with the intuition of pro-
grammers coming from an OO-programming background: we ensure a certain proto-
type chain structure and guarantee prototype safety. These two characteristics of our
translation of class types lead to more predictable behaviour. We incorporate scope
chains into our reasoning, capturing the scope chain at the time of class declaration.

4.2 Practical results

We developed an implementation1 for the translation from TypeScript to JaVerT asser-
tions. The compiler processes TypeScript files that adhere to the syntax presented in
§2.1.1 and outputs JavaScript files that are ready to be analysed by JaVerT. The output
specifications are generated by leveraging on the information extracted from the typ-
ing environment and they can be verified automatically by JaVerT. The programmer can
choose to refine these assertions to provide tighter specifications for their code. If they
are only interested in checking assertions corresponding to types and that their imple-
mentation adheres to our interpretation of types, no additional assertions are required.

1https://github.com/RaduSzasz/TS2JaVerT

48 Chapter 4. Evaluation

Example name
Chars
(types)

Chars
(gen. assertions)

Chars
(manual assertions)

ReportFlow 101 1179 0
ReportDynamic 81 2169 224
JaVerTKVMap 81 2169 (3547) 224
JaVerTIdGen 59 1945 (930) 0

JaVerTBST 89 3082 (2050) 0
JaVerTPQ 119 4233 (3705) 0
JaVerTSort 66 2447 (1250) 0

SimpleExtendingClasses 59 3725 0
ComplicatedExtendingClasses 89 7178 0

FIGURE 4.1: Character count of type annotations, JaVerT assertions gen-
erated based on the type annotations, and the assertions that needed to

be added manually for the program to pass verification

We evaluate our implementation using two metrics:

1. Ease of code specification. We measure the difference between the size of Type-
Script type annotations and the size of the JaVerT assertions generated. We chose
this method over other metrics that are harder to quantify, but are perhaps more
meaningful, such as the time spent to write these specifications, especially consid-
ering the debugging time that is inherent to manually specifying the code.

2. Performance. We mentioned previously that the translation we laid out suffers
from a state explosion problem due to subclassing, union types and optional fields.
We evaluate the time required to generate the specifications and the time required
to verify the generated code using JaVerT.

4.2.1 Ease of code specification

We measure the difference in character count achieved by using our tool instead of
hand-writing specifications. The character count for generated assertions includes the
predicate definitions as well as the assertions placed within the code. The character
count for type annotations includes the annotations specifying variable types, parame-
ter types, function return types, and interface types. Most notably, the class syntax does
not contribute towards the character count, as it is equivalent to the manual setting of
the prototype chain structure in the emitted ES5 code.

We present the results in Figure 4.1. The name of the example is the one that is used in
the repository. The examples come from different sources:

1. The ReportFlow and ReportDynamic examples correspond to the two code snip-
pets which lead to unsoundness in TypeScript: Figure 1.3 and Figure 1.4. As indi-
cated in the motivation, these two examples are expected to fail verification.

2. Other examples from the report: we ran our compiler on the TypeScript code pre-
sented in Figure 2.4b, Figure 2.6, and Figure 3.1 and achieved the expected result
in all cases. For the code in Figure 2.4b and Figure 3.1 the verification failed, as
expected. We successfully verified a version of the TypeScript code in Figure 2.6
augmented with two statements, creating a Cat and making it meow.

3. The examples whose name starts with JaVerT are adapted from the JaVerT reposi-
tory: an id generator, a key-value map, a binary search tree, a priority queue, and
an implementation of an insertion sort. We translated the single-file JavaScript

4.2. Practical results 49

FIGURE 4.2: Time spent compiling/verifying three examples.

implementations from the JaVerT repository to TypeScript, making use of classes
where these would fit the semantics of the code. We provide the character count
for the original specifications in the JaVerT repository in parenthesis.

Using type annotations to specify programs leads to much shorter specifications: for
most programs, roughly 40 times less characters are needed to write type annotations
than JaVerT assertions. The best ratio is offered by the ComplicatedExtendingClasses
example which requires 89 characters to be annotated with types, while the generated
assertions sum up to 7178 characters; the character count for type annotations represents
only 1.2% of the character count for assertions. At the opposite end of the spectrum is
ReportFlow: it requires 101 characters of type annotations to generate 1179 characters of
assertions; the character count for type annotations represents only 8.5% of the character
count for assertions.

For the JaVerT examples, we included the character count used in the JaVerT reposi-
tory. The original specifications are shorter, with the exception of the key-value map
example. This is due to the simpler structure these examples employ in the original
JavaScript code; our use of classes makes the code more structured, but complicates the
specifications.

4.2.2 Performance

We assess the capacity of the toolchain to be used in a production environment. To
this end, we measure the type spent translating the TypeScript files to JavaScript code
annotated with JaVerT assertions, as well as the time spent verifying the files.

We used the built-in node [16] functionality to measure the time the compiler spent dur-
ing the different stages of the translation and the time command-line utility to measure
the verification time. The measurements are made on a machine with an Intel Core
i7-4770HQ 2.2GHz CPU and 16GB 1600 MHz DDR3 RAM; for each file presented, the
measurements are averaged over ten runs carried out under similar conditions: idle
machine, fully charged, charger connected. We did not consider external factors such as
ambient temperature in the measurements.

50 Chapter 4. Evaluation

We chose three examples of various size and complexity that we considered to be rep-
resentative of different file types that might be encountered in practice. The results are
presented in Figure 4.2.

The time for compiling each of the examples is around 2.1 seconds. The execution time is
dominated by the initialisation and the checks performed by tsc. The time spent gath-
ering type information is around 8ms, while annotating the AST takes an additional
10ms, on average. These results show that the translation phase would not affect the
user in any meaningful way. The overall time needed to run the compiler could be dras-
tically reduced by introducing a watch mode, which tracks changes in files, rather than
recompiling them from scratch every time. This interface is exposed by the TypeScript
compiler API and hence, we would be able to incorporate the watch functionality in our
compiler.

The burden in the process, hence, lies in the time spent verifying the produced spec-
ifications using JaVerT. The JaVerT verification times strongly depend on the contents
of the program being verified: several type annotations cause an exponential increase
in the number of specifications that require verification; a complicated logic with many
branchings or loops also leads to increased verification times. For the JaVerTIdGen ex-
ample, using a single class, the verification time is only 1.8 seconds. In examples with
more complex class hierarchies, the number of specifications that need to be verified
grows: for SimpleExtendingClasses2, JaVerT needs 3.4 seconds to complete verification;
for the ComplicatedExtendingClasses example, where we add a new class Sphynx, ex-
tending Cat, verification takes almost 12 seconds. Verification time increases dramati-
cally as we operate on more complex data structures: the binary search tree takes over
four minutes to verify. JaVerT does not currently support the watch functionality and,
hence, we cannot expect improvements in verification times for files that have previ-
ously been analysed. It is possible for this functionality to be introduced into JaVerT in
future releases.

4.3 Known limitations
We discuss several limitations of our tool below.

The disjointness assumption. The main limitation of the tool is the fact that it carries
out the translation assuming that every object is self-contained and disjoint from all
other objects. This means our tool is unable to reason about aliasing. For example, for a
linked list, (Figure 4.3), we are unable to specify the following:

1. the findElementNode method—the returned element is an element in the list and
this leads to duplicated resource;

2. the makeCircular method—by unfolding the LinkedListNode predicate a suffi-
cient number of times times, we would get duplicated resource corresponding to
this.head; and

3. an optimised list—if we added a tail node to our LinkedList data structure, this
would constitute aliasing; our LinkedList predicate would be invalid.

State explosion. The current translation causes an explosion in the number of states
that need to be verified when three features are used: subclassing, union types, and
optional fields. All these type annotations are translated as disjunctions. The number of

2The example presented in Figure 2.6.

4.4. Lessons learnt 51

specifications that need to be checked for any given function grows exponentially with
the number of disjunctions, as JaVerT only supports disjunctions at the top level.

Lack of higher-order reasoning. JaVerT lacks the ability to reason about:

1. Higher-order functions. JaVerT associates a unique id with the body of every
function, which enables pre-/post-conditions to be associated with that function.
Hence, in order to be able to call a function during verification, we must know its
id; this contributes to the above-mentioned state explosion, as we must create a
specification for every possible id.

2. Generic types. Our approach requires of us to write assertions describing the
shape of the heap, but for generic types we do not possess any information on
the potential shape of the object and hence cannot describe the part of the heap in
which they are contained. The problem encountered using generics is twofold: (1)
verifying the implementation of the functions/classes using type variables is dif-
ficult; (2) client code cannot make use of the fact that it knows what type variables
are instantiated to: JaVerT does not allow predicates to be passed as arguments to
other predicates and hence, we are unable to perfectly describe the structures we
are working with in the case of generic code.

Lack of support for arrays. JaVerT lacks a suitable abstraction for JavaScript arrays. In
TypeScript, arrays are generic types and, hence, the fact that JaVerT lacks support for
arrays is augmented by the lack of support for generics.

Other missing TypeScript syntax. Besides the aforementioned lack of support for
generics and arrays, there are other aspects of TypeScript not supported in the current
implementation. For brevity, we omitted some features that would have posed no prob-
lems, such as for loops, error throwing, intersection types, and const/let declarations.
We chose to not support: (1) type guards [26], since we felt user-defined type checks are
prone to errors and would be a potential weak point in our verification process; (2) itera-
tors [28], whose support is limited to the Array interface when transpiling TypeScript to
ES5; (3) modules and namespaces [29], which would have complicated our translation
from TypeScript to ES5 greatly, introducing challenges orthogonal to the current work.

4.4 Lessons learnt
The current work is different from any of my prior experience: it contains a heavy theo-
retical component and is a large piece of work which requires sustained effort. Previous
tasks encountered in my undergraduate years and as part of my internship experiences
were much more well defined, required less exploration, were mostly practical in nature
and were much smaller in size. There are two main lessons that I have learnt as part of
this project.

Base work on examples. We started this project by building the translation formalism.
The practical examples we had at the time were limited to the two motivation exam-
ples. These examples did not highlight the extent to which the disjointness assumption
impacts the work. Had we explored further examples before starting to formalise the
translation, we would have better understood the implications of the disjointness as-
sumption and would have had more time to explore the aspects detailed in §5. Similarly,
the development of the formalism was slowed down and required multiple iterations
because of cases we did not initially consider; most of the issues encountered had to do
with subclassing.

52 Chapter 4. Evaluation

1 class LinkedListNode {
2 public val: number;
3 public next: LinkedListNode | undefined;
4 /** Constructor and potentially other methods **/
5 }
6

7 class LinkedList {
8 private head: LinkedListNode | undefined;
9 /** Constructor and other methods **/

10 public makeCircular(): void {
11 var currNode: LinkedListNode | undefined;
12 while (currNode) {
13 if (currNode.next === undefined) {
14 currNode.next = this.head;
15 return;
16 }
17 currNode = currNode.next;
18 }
19 }
20 public findElementNode(val: number): LinkedListNode | undefined {
21 var currNode = this.head;
22 while (currNode) {
23 if (currNode.val === val) {
24 return currNode;
25 }
26 currNode = currNode.next;
27 }
28 }
29 }

FIGURE 4.3: Linked list implementation in TypeScript

Make it clear when you are uncomfortable. There was a considerable amount of time
that did not produce as much impact as it could have because I did not voice the fact that
I was uncomfortable with the task at hand and did not ask for clarifications and help.
The two concrete examples are delaying asking for support for the soundness proof and
help in learning how to debug the traces produced by JaVerT myself. I am confident
that for future work I will communicate better and mitigate this issue.

4.5 Comparison with other works
We compare the current work with two distinct approaches: ensuring type safety for
JavaScript on the one hand, and verifying properties of programs by checking separa-
tion logic specifications on the other hand.

4.5.1 Type systems for JavaScript

The two main attempts to retrofit a type system on top of JavaScript, TypeScript and
Flow, provide a smooth onboarding experience for programmers and good performance,
suitable for the environment that JavaScript developers are used to operate in. Both of
these have holes in their type systems and can lead to potential unsoundness.

Analysing the code with JaVerT produces stronger safety guarantees than either of the
other options. Via the current work, JaVerT provides the same easy to use interface as
TypeScript. Our approach requires type annotations to be present for every variable

4.5. Comparison with other works 53

declaration, parameter and return value, while TypeScript and Flow feature type infer-
ence mechanisms.

An important aspect is that while Flow and TypeScript handle the entire JavaScript lan-
guage, we are restricted to a subset (§4.3). The type annotations that we support are not
as expressive as those in either of these other languages. Hence, the advantage of auto-
matically generated specifications is reduced; the developer needs to fill in the missing
information that we are unable to extract from the typing environment. The verification
times are also an impediment for the wide adoption of the tool (§4.2.2).

We believe that the current work facilitates programmers to verify their critical JavaScript
code, where the lack of soundness of TypeScript and Flow is unacceptable, but we con-
sider the tool to be far from entering the mainstream JavaScript toolchain.

4.5.2 Generating Separation Logic assertions

Other attempts to prove correctness of programs using separation logic assertions, such
as jStar and VeriFast, both require the user to write verbose specifications for the meth-
ods they define. Our work has the major contribution of offering an expressive interface,
enabling users to specify their code without any prior knowledge of separation logic. It
is likely that programmers need to familiarise themselves with the underlying assertion
language—as shown in §4.3, the assertions we generate are often not illustrating the
programmer’s intent, but the bulk of the specification is generated automatically, so we
can confidently say that the users are more likely to successfully specify their code.

Comparisons with other tools in respects other than ease of specification writing pro-
vide little insight. The aim of the current work is to enable efficient specification writing.
Metrics such as verification time are relevant for JaVerT in comparison to the tools dis-
cussed. We show in §4.2.2 that the time spent generating specification is insignificant
compared to the verification time. Expresiveness is another metric where comparisons
are meaningless: our compiler only emits assertions that are analogous to type annota-
tions, which only constitute a subset of what hand-written assertions can talk about.

55

Chapter 5

Conclusion and future work

The current work provides a safe, easy-to-use interface for writing JaVerT specifications
for JavaScript programs. We achieved a tremendous reduction in program size via this
interface, while ensuring prototype safety and the ability to reason about scope.

On top of that, the current work opened the door towards a multitude of projects. On
the one hand, there are opportunities to develop the tool as it is, together with JaVerT,
which is a viable option for developers who desire safe JavaScript code. On the other
hand, there is ample opportunity to discuss whether the current interpretation of types
is in accordance with the programmer’s intuition and the potential role separation logic
could have in developing new safer type systems.

5.1 Future Work
5.1.1 Tool enhancements

We believe that the tool offers a viable alternative to hand-writing JaVerT specifications,
making it easier for programmers to verify their code using JaVerT. We believe some
additional feature would reduce friction significantly for users.

1. Extending the TypeScript type annotations. TypeScript type annotations do not
provide enough information for us to generate tight specifications. We believe
there is potential in trying to investigate alternative type annotations or extend
the TypeScript ones to provide greater expressivity.

2. Type inference. Most TypeScript programmers do not annotate every single vari-
able with its corresponding type and instead allow the TypeScript compiler to
infer the type. We could operate on the information inferred by tsc since it is
made available via the TypeScript compiler API. If the type inference algorithm
produced the wrong type, an error would be detected during verification and the
programmer could explicitly annotate the given variable/function.

3. Lifting errors to the level of TypeScript. JaVerT produces logs that are often
longer than a million lines and are hard to debug, even for experienced users.
The situation would be far worse for a programmer relying on our tool for spec-
ifying their code who is not familiar with JaVerT. Lifting errors from the level of
JSIL to that of JavaScript and then to the level of TypeScript constitutes a difficult
challenge. Solving it would greatly improve the usability of the entire toolchain.

5.1.2 Separation logic and types

Throughout the current work, we used the separating conjunction to model the asser-
tion corresponding to class types. We showed how this requires us to carry out our

56 Chapter 5. Conclusion and future work

l1 12 99

l2 120

l1 12 99

l2

FIGURE 5.1: Possible overlaps for two linked lists

translation under a disjointness assumption that is not in accordance with the Type-
Script interpretation of types.

To describe the heap satisfying a typing environment, given the TypeScript interpreta-
tion of types, we need to use the classical logic ∧ operator, rather than the ∗ or even the
more permissive sepish operator, t∗ [19]. However, separation logic can enforce proper-
ties that the TypeScript type system cannot:

1. Structure. It is common to assume that a linked list, such as that in Figure 4.3, is
not circular. However, the TypeScript type system cannot provide that guarantee.
With separation logic, we can easily generate a predicate that requires the list to
end with a pointer to null. Enabling tighter specifications for data structures using
separation logic assertions is worth analysing.

2. Resource ownership. We consider two linked lists, l1 and l2, satisfying the types
presented in Figure 4.3. In Figure 5.1 we present possible overlaps for these two
linked lists. Neither l1 nor l2 have ownership over the list that they denote, which
makes it harder for programmers to ensure invariants within their code. Separa-
tion logic is able to reason about this kind of behaviour by modelling disjointness
via the ∗ operator. We believe that there is potential in exploring the relation be-
tween separation logic and ownership types [8, 34], especially since there exists an
intuitive relation between “objects in boxes” [8] and heaplets in separation logic.

We find providing safety guarantees via better descriptions of data structures and re-
source ownership to be very exciting future work. There are strong indications that
using separation logic to reason about types in this new system and JaVerT to check
specifications can be successful.

57

Bibliography

[1] C. Anderson, P. Giannini, and S. Drossopoulou. “Towards Type Inference for Java-
Script”. In: ECOOP 2005 - Object-Oriented Programming. Ed. by A. P. Black. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 428–452.

[2] G. Balakrishnan and T. Reps. “Recency-abstraction for heap-allocated storage”.
In: SAS. Vol. 6. Springer. 2006, pp. 221–239.

[3] F. Barbanera, M. Dezani-Ciancaglini, and U. de’Liguoro. “Intersection and union
types: syntax and semantics”. In: Information and Computation 119.2 (1995), pp. 202–
230.

[4] J. Berdine, C. Calcagno, and P. O’Hearn. “Smallfoot: Modular automatic assertion
checking with separation logic”. In: International Symposium on Formal Methods for
Components and Objects. Springer. 2005, pp. 115–137.

[5] J. Berdine, C. Calcagno, and P. O’Hearn. “Symbolic execution with separation
logic”. In: APLAS. Vol. 5. 3780. Springer. 2005, pp. 52–68.

[6] G. Bierman, M. Abadi, and M. Torgersen. “Understanding TypeScript”. In: ECOOP
2014 – Object-Oriented Programming: 28th European Conference, Uppsala, Sweden, July
28 – August 1, 2014. Proceedings. Ed. by R. Jones. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 257–281. ISBN: 978-3-662-44202-9. DOI: 10.1007/978-
3-662-44202-9_11. URL: https://doi.org/10.1007/978-3-662-44202-9_11.

[7] G. Bracha and L. Bak. Dart, a new programming language for structured web program-
ming. GOTO Aarhus. 2011.

[8] N. R. Cameron et al. “Multiple Ownership”. In: SIGPLAN Not. 42.10 (Oct. 2007),
pp. 441–460. ISSN: 0362-1340. DOI: 10.1145/1297105.1297060. URL: http://doi.
acm.org/10.1145/1297105.1297060.

[9] A. Chaudhuri et al. “Fast and Precise Type Checking for JavaScript”. In: Proc. ACM
Program. Lang. 1.OOPSLA (Oct. 2017), 48:1–48:30. ISSN: 2475-1421. DOI: 10.1145/
3133872. URL: http://doi.acm.org/10.1145/3133872.

[10] G. Crockford. JavaScript: The Good Parts. O’Reilly, 2008.
[11] L. De Moura and N. Bjørner. “Z3: An efficient SMT solver”. In: Tools and Algorithms

for the Construction and Analysis of Systems (2008), pp. 337–340.
[12] D. Distefano and M. J. Parkinson. “jStar: Towards practical verification for Java”.

In: ACM Sigplan Notices. Vol. 43. 10. ACM. 2008, pp. 213–226.
[13] ECMA International. Standard ECMA-262 - ECMAScript Language Specification. 5.1.

2011. URL: https://www.ecma-international.org/ecma-262/5.1.
[14] ECMA International. Standard ECMA-262 - ECMAScript Language Specification. 6th ed.

2015. URL: https://www.ecma-international.org/ecma-262/6.0.
[15] A. Feldthaus and A. Møller. “Checking Correctness of TypeScript Interfaces for

JavaScript Libraries”. In: SIGPLAN Not. 49.10 (Oct. 2014), pp. 1–16. ISSN: 0362-
1340. DOI: 10.1145/2714064.2660215. URL: http://doi.acm.org/10.1145/
2714064.2660215.

[16] Node.js Foundation. Node.js. 2012-2017. URL: https://github.com/nodejs/node
(visited on 05/26/2018).

http://dx.doi.org/10.1007/978-3-662-44202-9_11
http://dx.doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1007/978-3-662-44202-9_11
http://dx.doi.org/10.1145/1297105.1297060
http://doi.acm.org/10.1145/1297105.1297060
http://doi.acm.org/10.1145/1297105.1297060
http://dx.doi.org/10.1145/3133872
http://dx.doi.org/10.1145/3133872
http://doi.acm.org/10.1145/3133872
https://www.ecma-international.org/ecma-262/5.1
https://www.ecma-international.org/ecma-262/6.0
http://dx.doi.org/10.1145/2714064.2660215
http://doi.acm.org/10.1145/2714064.2660215
http://doi.acm.org/10.1145/2714064.2660215
https://github.com/nodejs/node

58 BIBLIOGRAPHY

[17] José Fragoso Santos et al. “JaVerT: JavaScript Verification Toolchain”. In: Proc.
ACM Program. Lang. 2.POPL (Jan. 2018), 50:1–50:33. ISSN: 2475-1421. DOI: 10 .
1145/3158138. URL: http://doi.acm.org/10.1145/3158138.

[18] Erich Gamma. Design patterns: elements of reusable object-oriented software. Pearson
Education India, 1995.

[19] P. Gardner, S. Maffeis, and G. Smith. “Towards a program logic for JavaScript”.
In: ACM SIGPLAN Notices 47.1 (2012), pp. 31–44.

[20] Google. Tsickle. https://github.com/Angular/Tsickle/. 2014.
[21] C. A. R. Hoare. “An axiomatic basis for computer programming”. In: Communica-

tions of the ACM 12.10 (1969), pp. 576–580.
[22] Facebook Inc. Flow. 2014-2018. URL: https://flow.org (visited on 06/16/2018).
[23] Github Inc. Github website. 2018. URL: https://octoverse.github.com (visited on

01/17/2018).
[24] B. Jacobs et al. “VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C and

Java.” In: NASA Formal Methods 6617 (2011), pp. 41–55.
[25] S. H. Jensen, A. Møller, and P. Thiemann. “Type Analysis for JavaScript.” In: SAS.

Vol. 9. Springer. 2009, pp. 238–255.
[26] Microsoft. Advanced Types. 2012-2017. URL: https://www.typescriptlang.org/

docs/handbook/advanced-types.html (visited on 01/21/2018).
[27] Microsoft. CompilerOptions. 2012-2018. URL: https://www.typescriptlang.org/

docs/handbook/compiler-options.html (visited on 03/29/2018).
[28] Microsoft. Iterators and Generators. 2012-2018. URL: https://www.typescriptlang.

org/docs/handbook/iterators-and-generators.html (visited on 06/17/2018).
[29] Microsoft. Namespaces And Modules. 2012-2018. URL: https://www.typescriptlang.

org/docs/handbook/namespaces-and-modules.html (visited on 06/17/2018).
[30] Microsoft. TypeScript. https://github.com/Microsoft/TypeScript/. 2012.
[31] Microsoft. TypeScript. 2012-2018. URL: https://www.typescriptlang.org (visited

on 06/16/2018).
[32] Mozilla and individual contributors. Defining classes. 2005-2018. URL: https://

developer.mozilla.org/en- US/docs/Web/JavaScript/Reference/Classes
(visited on 01/21/2018).

[33] Mozilla and individual contributors. Object.prototype. 2005-2018. URL: https://
developer.mozilla.org/en- US/docs/Web/JavaScript/Reference/Global_
Objects/Object/prototype (visited on 06/16/2018).

[34] J. Noble, J. Vitek, and J. Potter. “Flexible alias protection”. In: ECOOP’98 — Object-
Oriented Programming. Ed. by E. Jul. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1998, pp. 158–185. ISBN: 978-3-540-69064-1.

[35] P. O’Hearn, J. Reynolds, and H. Yang. “Local reasoning about programs that alter
data structures”. In: Computer science logic. Springer. 2001, pp. 1–19.

[36] M. Parkinson and G. Bierman. “Separation logic and abstraction”. In: ACM SIG-
PLAN Notices. Vol. 40. 1. ACM. 2005, pp. 247–258.

[37] M. J. Parkinson and G. Bierman. “Separation logic, abstraction and inheritance”.
In: ACM SIGPLAN Notices. Vol. 43. 1. ACM. 2008, pp. 75–86.

[38] A. Rastogi et al. “Safe & efficient gradual typing for TypeScript”. In: ACM SIG-
PLAN Notices. Vol. 50. 1. ACM. 2015, pp. 167–180.

[39] J. Reynolds. “Separation logic: A logic for shared mutable data structures”. In:
Logic in Computer Science, 2002. Proceedings. 17th Annual IEEE Symposium on. IEEE.
2002, pp. 55–74.

[40] P. Thiemann. “Towards a type system for analyzing JavaScript programs”. In:
ESOP. Vol. 3444. Springer. 2005, pp. 408–422.

http://dx.doi.org/10.1145/3158138
http://dx.doi.org/10.1145/3158138
http://doi.acm.org/10.1145/3158138
https://github.com/Angular/Tsickle/
https://flow.org
https://octoverse.github.com
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/compiler-options.html
https://www.typescriptlang.org/docs/handbook/compiler-options.html
https://www.typescriptlang.org/docs/handbook/iterators-and-generators.html
https://www.typescriptlang.org/docs/handbook/iterators-and-generators.html
https://www.typescriptlang.org/docs/handbook/namespaces-and-modules.html
https://www.typescriptlang.org/docs/handbook/namespaces-and-modules.html
https://github.com/Microsoft/TypeScript/
https://www.typescriptlang.org
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/prototype
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/prototype
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/prototype

	Introduction
	Related work
	Motivation
	Examples in JavaScript
	Examples in TypeScript
	Examples in JaVerT

	Contributions
	Report outline

	Background
	TypeScript
	Syntax of TypeScript
	Sources of unsoundness
	Useful notation
	The TypeScript compiler
	Translating a TypeScript Class to ES5

	JaVerT
	Separation logic
	JaVerT assertions
	JS Logic built-in predicates
	Toolchain structure and safety guarantees

	Translating TypeScript to JaVerT
	The translation without classes
	Translating the typing environment without classes
	Specifying functions without classes

	The translation with classes
	Relevant design decisions for translating classes
	The inheritance graph and its relation to prototype safety
	The class JaVerT predicates
	The definitions of the compile functions revisited
	Discussion

	Assertion placement — an example
	Predicate definitions
	Method and constructor specifications
	Assignment assertions
	Loop invariant assertions

	Soundness
	Implementation

	Evaluation
	Theoretical results
	Practical results
	Ease of code specification
	Performance

	Known limitations
	Lessons learnt
	Comparison with other works
	Type systems for JavaScript
	Generating Separation Logic assertions

	Conclusion and future work
	Future Work
	Tool enhancements
	Separation logic and types

	Bibliography

