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Abstract

Concurrent programming using shared memory and locking is known to be ex-
tremely error prone, which is why more and more frameworks and tool-kits are pro-
viding interfaces encouraging concurrency through communication. Effpi is an ex-
perimental, theoretically-grounded toolkit for type-driven concurrent programming.
It provides expressive types that specify the behaviour of concurrent agents, and
domain-specific languages (DSLs) for writing message-passing programs, in a style
reminiscent of well-established toolkits like Erlang/OTP and Akka. The Effpi types
and DSLs are embedded in the Scala programming language: hence, the Scala type
checker can statically verify whether an Effpi program conforms to an Effpi type, and
this ensures that a program runs and interacts as specified by its type.

However, the original Effpi implementation is based on a simple runtime system
that executes each concurrent agent in a dedicated operating system thread. This
approach is inefficient and does not scale beyond a few thousand agents/threads.
For this very reason, toolkits like Erlang/OTP and Akka have sophisticated runtime
systems that use a small number of OS threads, an yet, can execute applications with
hundreds of thousands of concurrent agents.

This project presents a new runtime system for Effpi, that decouples concurrent
agents from OS threads. Our new runtime greatly improves the performance of Effpi
programs: our benchmarks show an improvement in scalability of over an order of
magnitude, and an increased speed of execution of up to a factor of 100. Our new
runtime can successfully handle applications with hundreds of thousands of agents;
moreover, our new runtime does not alter the types and DSLs originally provided by
Effpi, and thus preserves its theoretically-grounded properties.
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Chapter 1

Introduction

Do not communicate by sharing memory; instead, share memory by
communicating [9]

This is a maxim I got used to hearing throughout my years at university. It refers
to a general guideline in concurrent programming, advising to create concurrent
units with their own local memory which communicate with one another to share
and distribute information, as opposed to having a central, shared storage which is
accessed by many concurrent threads. The explicit communication makes it easier
to trace the information flow, which in turn helps with avoiding deadlocks, which
are instead easy to encounter in concurrent programs based on shared memory.

Two notable theories that study concurrency through communication are the actor
model and π-calculus. Both resort to the definition of units of concurrent execution
(actors and processes, respectively) that manage to share information by sending
and receiving messages to each other. By design these strategies encourage the de-
velopment of concurrent programs that avoid the common pitfalls of shared memory
concurrency and manual locking.

For the actor model, there are famous and well established implementations such
as Erlang [25] and Akka [16], but also newer, cutting-edge implementations such
as Pony [26]. Erlang, for example, has been successfully used to create large scale
concurrent systems by companies such as WhatsApp for its messaging servers [4]
[11], Pivotal for its open source message broker RabbitMQ[22] and Amazon for
SimpleDB (part of its extremely popular service, EC2)[10].

Implementations based on π-calculus on the other hand are less common. One
such example is Effpi[24], an experimental framework for concurrent programming
whose API provides two Domain-specific languages (DSLs): one that reflects the
common syntax of π-calculus and an auxiliary one that reflects the actor model.
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These DSLs are deeply embedded[27] in the Scala 1 programming language, and
their types allow us to describe in details the behaviour of concurrent programs.
Deep embedding ensures that the type checker can be leveraged to ensure that a
program runs according to the behaviour described by the types.

1.1 Motivation

100 101 102 103 104 105

Number of processes

100

101

102

103

104

Ti
m

e 
(m

illi
se

co
nd

s)

original

Figure 1.1: Example of the original runtime crashing, from the ForkJoin Throughput
benchmark, described in details in Section 5.3.

Unfortunately the original implementation of Effpi has a naive runtime that creates a
JVM thread per actor/process2, which greatly undermines the ability to spawn them
in large number, as illustrated in Figure 1.1. While it is still possible to benefit from
the correctness checks even in the current state, for small concurrent systems with
relatively few agents, it would be extremely helpful to be able to use Effpi to create
large concurrent systems.

All the implementations of the actor model mentioned above actively decouple the
concept of actor from that of operating system thread, making them extremely
lightweight and far easier to manage. Consequently, all these implementations allow

1This project is actually implemented using the experimental Dotty compiler [21], which was
necessary to implement the dependent function types described in Section 2.5

2From now on, unless otherwise stated, process will refer to an effpi-process as opposed to an
operating system process
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for the creation systems that can realistically handle hundreds of thousands of ac-
tors, something that would be impossible if they were internally represented as OS
threads. This makes them very suitable for representing highly concurrent systems,
and is a major factor behind their successful adoption.

Improving Effpi’s runtime would help reduce the gap in performance with frame-
works such as Akka, Akka Typed and Erlang, hence allowing a more engaging com-
parison using similarly large benchmarks which would enable to truly appreciate the
extra safety features that Effpi provides (described in [24]). An improved runtime
would also be paramount to encourage the adoption of Effpi in real world applica-
tion where performance would likely be a criterion on which to choose a framework
and would therefore influence its spread.

1.2 Objectives

The primary objective of this project is to improve the performance of Effpi’s run-
time. However changes made to the runtime should not compromise the correctness
guarantees provided by the original implementation. Furthermore, the behaviour
observed for a given system of processes should be independent of the implementa-
tion of the runtime, i.e. ignoring any difference due to interleaving.

In practice this entails the following goals:

1. Preserving correctness: Effpi’s DSL and its types provide static guarantees on
the correctness of the programs they are used to implement. Therefore our
goal is to minimise the changes required to it while providing Effpi with a new
runtime design, in order to be able to provide the same correctness guarantees.

2. Scalability: The original runtime has a naive implementation that leads to a
very limited upper bound on the number of processes Effpi can spawn before
the program becomes non-responsive. We need to implement a new runtime
with an increased limit.

3. Performance: Improve the speed of execution and throughput of the runtime
compared to the original implementation. We expect this to be (in part) a
by-product of the reduction of JVM threads.

4. Customisability: Provide customisability of default parameters of the frame-
work to allow the users to fine tune the framework to specific use cases. For
example make it possible to specify how many JVM threads to spawn per phys-
ical core on the host machine, in order to optimise performance.
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1.3 Challenges

• The optimised implementations of the runtime rely on the creation of an OS-
like scheduling system for the execution of processes, that decouples effpi-
processes from JVM threads. Since this implies multi-threaded access of a
common scheduling queue (or an equivalent data structure) this will have non-
trivial correctness implications and high risk of deadlocks (initially adopted
designs, later abandoned for this reason can be found in Section 4.3.9 and
Section 4.6).

• Since another objective is to improve speed of execution, further attention had
to be paid to improve the efficiency in handling blocking input processes.

• The optimised implementations of the runtime introduced were tested on a
number of benchmarks, in order to compare them to the original runtime im-
plementation, and to asses their relative strengths and weaknesses. This pro-
cess was also challenging, because it order to test the original runtime, we had
to run it with systems too large for it to handle and pushed to its limit where
programs would become non-responsive, to the point of causing the JVM to
crash. Isolating the crashed state and recovering useful quantitative informa-
tion in this scenario turned out to be problematic.

1.4 Contributions

The main contributions of this project are:

• In Section 4.2 we introduce a new runtime for Effpi. It uses a limited number
of JVM threads and an OS-like scheduling system to govern when to run and,
unlike the original runtime, when to suspend effpi-processes. The suspended
processes, and all the information about their state required for running, are
kept in a queue in memory until ready to be executed again by a JVM thread.

• In Sections 4.3 and 4.4 we present an optimised implementation of our run-
time, introducing a separate scheduling system for input processes, which al-
lows it to reduce the time spent scheduling processes that are not ready to be
executed–e.g. blocked reading from a channel that has no data available.

• In Section 4.5 we describe another optimised implementation of the runtime
that reduces the time spent by the runtime context switching between pro-
cesses.

• In Section 5.3 we provide a series of benchmarks that validate the improve-
ments of our optimised implementations compared to the original runtime (a
short extract shown in Figure 1.2). We also compare the relative strengths
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and weaknesses of our implementations and analyse the causes of these differ-
ences.
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Figure 1.2: Example of successful results, from the ForkJoin Throughput benchmark,
described in details in Section 5.3.
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Chapter 2

Background: π-calculus and types

In this chapter we provide a brief overview of languages and types for concurrency,
providing the theoretical background of Effpi (overviewed in Section 3).

In Section 2.2 and Section 2.3, we summarise the π-calculus and session types re-
spectively: this sets the scene on how concurrent programs can be formalised, and
their behaviour described in details and checked using type judgements. Then, in
Section 2.4 we introduce the higher-order -calculus, and in Section 2.5 we describe
the behavioural types that allow the description of full processes: this is the direct
theoretical foundation of Effpi.

2.1 Introducing type-driven concurrent programming

As previously mentioned, implementing distributed concurrent systems is extremely
error prone and difficult to test and verify. Often a developer will neglect important
aspects of the internal interactions within the system in an effort to focus on specific
implementation details. These errors unfortunately can be extremely hard to iden-
tify and fix, and they range from data races and deadlocks, to significant yet hidden
errors in the implementation of the intended protocol of communication. Currently,
many of the tools used to guide developers during the implementation of concur-
rent programs trying to verify their correctness are hardly satisfying. Some are too
centralised and struggle with larger applications, while some have restricted speci-
fication methods, and many rely on run time checks that cannot give guarantees of
correctness [5]. The methodologies used in this project revolve around π-calculus
and session types. π-calculus is a technique used to formalise distributed concurrent
systems and the communication between their agents. Session types in turn help
verify the systems’ run time correctness through local semantic checks at compile
time [6]. In the coming sections we provide an intuitive overview of how these
techniques can be helpful starting with the fundamentals of π-calculus.
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2.2 π-calculus

π-calculus is dedicated to the description of communication protocols between agents
in a system, similarly to how Turing machines and λ-calculus describe sequential
computation [3]. The interactions between processes are formalised in terms of
message passing (as opposed to synchronisation). This is done by defining primitives
that are building blocks for communication between processes. The two fundamen-
tal entities in this calculus are values and channels. The main difference between
the two is the ability of channels to act as medium of communication between pro-
cesses. Values (and/or channels themselves) can be sent or received between pro-
cesses through channels. While there are a number of slightly different π-calculi we
will settle for the simplest syntax that is sufficiently powerful to give enough insight
into the work done in the project (Table 2.1).

P,Q ::=
0 Nil process
P | Q Parallel composition of two processes. They

run asynchronously
u(x).P Input of x on channel u with continuation P

(x scoped in P)
u〈v〉.P Output of v on channel u with continuation P
(ν v)P Generation of name v with scope in P
!P Infinite parallel composition of P :

P | P | P | ...
k � {li : Pi } Branching gives options to choose from
k � l.P Selection of a particular label and continua-

tion
def D in P Recursive definition
X〈e〉 Recursive call
if e then P else Q Conditional

Table 2.1: Syntax of the π-calculus used in this Section

2.2.1 Example I: Sending and receiving

In order to introduce π-calculus and its syntax we will start with a simple interaction
between a user and a remote tool that performs numerical computations given an
input and then returns the result. Given that technically our syntax does not provide
arithmetic operations, and that therefore this is somewhat abusing it we will imagine
a simple tool that calculates the successor of a number to keep it simple. Therefore
if the user sends 42 to the remote tool she will get back 43. Using the syntax above
this interaction can be expressed as:
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a〈42〉.a(y).0 | a(x).x〈x+ 1〉.0

Here user (left) and tool (right) are represented as two parallel sub-processes in the
system. The former uses a public channel a to communicate the number to the latter,
which then in turn sends back the result of the computation.

2.2.2 Example II: Private communication

Lets now consider a simple interaction in which Alice wants to tell Bob a secret.
Assuming they both find themselves in a public setting, we assume that somehow
they booth need to know that a secret is about to be told and that they agree on
a secure way of communicating this secret, some private channel; once this is done
the secret can be communicated safely. If these aspects can be formalised then the
key features of the communication are encapsulated and the formalisation will be a
good abstraction. Using our π-calculus, this can be expressed as:

(ν u)a〈u〉.u(y).y〈c〉.0 | a(x).(ν v)x〈v〉.v(y).0

Firstly we can notice that there are two subprocesses running in parallel, this will
represent Alice and Bob. Alice communicates to Bob over the public channel a the
channel u that it just created. Over this channel u Bob accepts to receive the secret
and provides a private channel v of his own. Since this calculus relies on message
passing, and this means sharing by communicating, the channels v and u will be
private to Alice and Bob and invisible to anyone else. At this point the secret is com-
municated and then the interaction terminates successfully. This initial exchange of
private channels can be thought essentially as a handshake. Since it is up to Alice to
decide whether to tell the secret or not, she will have to initiate the communication.
Only then can Bob provide back a private channel for the communication.

These covers the most basic elements of the syntax. We will now show that by
using some of the remaining syntactic elements provided we can model increasingly
complex systems.

2.2.3 Example III: Forwarder

The formula that we will introduce now describes a forwarder, a process that can
be used to forward a new value to a given channel. This is part of a number of
stand alone processes called small agents. These can be thought as design patterns
in programming, as they are efficient constructs that achieve a common task.
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NN(a)
def
=!a(x).(ν b).x〈b〉.0

As introduced above, NN can repeatedly produce a subprocess that accepts a private
channel of communication x over a public channel a and then sends a newly created
name b back through x.

It is possible now to see how π-calculus can help abstracting communication systems.
However, while it is very powerful in what it allows us to model, it does not prevent
us from modelling erroneous protocols by construction. Just as before introducing
π-calculus we could come up with systems with incorrect message passing, deadlock
and data races, so we can now, even using these formalisations. This becomes a
problem when modelling more realistic and complex protocols, such as the Three
Buyers Protocol that we are about to introduce.

2.2.4 Example IV: Three Buyers Protocol

The protocols illustrated by the execution in Figure 2.1 can be found with a detailed
explanation in [6]. In short, it handles a transaction in which Alice wants to buy
something from s Seller. If necessary, she can ask Bob for financial help, who in turn
can ask Carol. Based on the request they will decide if they can contribute. If in the
end they collectively have enough money to make the purchase, the seller is notified.

Figure 2.1: An execution of the three buyers protocol from [6]

Compared to industry level systems, this is still extremely simple. However it is
complex enough to be able to picture how easily one could make a mistake in the
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π-calculus description. This means our tool for formalisation is not powerful enough
to prevent a variety of errors, such as type error of the message (string instead
of number), deadlock and communication mismatch. This is an issue because in
practice this calculus is supposed to be a helpful, concise abstraction of the code
implementation, that helps focus on the communication aspect and reduce mistakes.
However while it helps with formalised description, it is not sufficient to guarantee
correctness properties. For this we can use session types.

2.3 Session Types

As mentioned before the objective of session types is to offer the same type of sup-
port for concurrent communication protocols that normal types and data structures
provide in typical programming languages. Hence they aim to act as units of com-
positionality, and to guide developers in their implementation efforts [3]. Formally
session types perform syntactic local checks at compile time guaranteeing that the
following properties hold at run time [6]:

1. Communication safety: no mismatch between the types of sent and expected
messages.

2. Protocol fidelity: correspondence between the interactions that occur at run
time and those accounted for by the types and therefore allowed by the proto-
col.

3. Progress: deadlock guaranteed not to occur.

To illustrate how the type checks work, in Table 2.2 we provide the type syntax for
the previously introduced calculus.

Using the example from Section 2.2.1 we explore the application of this typing syn-
tax. We provide the type of the occurrences of session channel v in the two subpro-
cesses representing the tool and the user. This is a syntactic operation that takes a
π-calculus expression and step by step extrapolates the type using the rules provided
above.

Alice: ?[nat]; ![nat]; end
Bob: ![nat]; ?[nat]; end

However being able to tell the local type of a subformula does not guarantee any
property. The types of the two parallel subprocesses need to be compared to assert
that their interaction is correct. In other words, we need to perform type judgement.
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S ::= Sort
bool | nat | string

T ::= Types
![S̃];T sending sort of type S with continuation with type

T
![T ];T ′ sending session of type T with continuation with

type T ′

?[S̃];T receiving sort of type S with continuation with
type T

&{l1 : T1, ..., ln : Tn} branching
⊕{l1 : T1, ..., ln : Tn} selection (does not need all option in local con-

text)
t recursion call
µt.T recursive behaviour
end end of session

Table 2.2: Session types syntax

2.3.1 Typing judgement

The objective of type judgement is to assert that the occurrences of a channel in
parallel processes are dual. In other words, it checks that channels are used in a way
that allows valid interactions to occur and progress to be made.

Duality can be asserted syntactically using the following acceptable pairings:

![S̃];T =?[S̃];T ![T ];T ′ =?[T ];T ′ &{li : Ti} = ⊕{li : Ti}
?[S̃];T =![S̃];T ?[T ];T ′ =![T ];T ′ ⊕{li : Ti} = &{li : Ti}
end = end µt.T = µt.T t = t

In the current example the type checks pass because the interaction occurs correctly,
progressing appropriately to the end of the communication.

?[nat]; ![nat]; end = ![nat]; ![nat]; end = ![nat]; ?[nat]; end = ![nat]; ?[nat].end

However, simple alterations to the protocol–formally representable with the calculus–
could invalidate the interaction. Changes like sending a string instead of a number,
or sending two values in a row instead of sending and waiting for a response in the
user subprocess would make the reduction impossible. The types would not be dual
and the type judgement would fail.

These are the basic concepts introduced with binary session types [12] [28] , and
constitute the fundamentals necessary to understand this project.

These concepts extend to multi-party session types [6] [5] which makes these find-
ings applicable to more complex systems. However in multi-party session types there
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are two levels of typing abstraction. The higher level one is that of global types.
These describe the protocol from a neutral standpoint essentially modelling the in-
teractions between the peers, their order and the type of messages exchanged. At
a lower level of abstraction local types describe the communication from the single
peer viewpoint–specific actions that it will performs on messages and order.

This certainly complicates the model, but fortunately in practice type checks still rely
on local types. This is due to the tight connection between global and local types. It
is in fact possible to extract single local types from the global types, and vice-versa
from local types to the global type. The former transformation is called projection
and the latter synthesis. Conveniently this mapping causes checks on local types to
give global guarantees. This is an extremely useful property as it allows the type-
checker to focus on smaller sections of a large distributed system at a time. While
initially all local types need to be checked, if any local component is then changed
while the rest stays the same, only the local type of the modified component needs
to be rechecked, which leads to better efficiency and performance.

We can now introduce the actual calculus behind the implementation of effpi, the
Higher-order π-calculus.

2.4 Higher-Order π-calculus

P,Q ::=
end Nil process
u?(x).P input of x on channel u with continuation P (x

scoped in P)
u!〈v〉.P output of v on channel u with continuation P
let f = λ x.P in Q abstraction of process f with parameter x
f u v application of abstract process f taking values u and

v, which can be normal types such as String, chan-
nels, or even abstract processes

Table 2.3: Partial syntax of the HOπ

The correctness properties described in Section 2.3 are more difficult to check when
dealing with higher-order concurrent programs that can exchange communication
channels and mobile code. Firstly we need to extend the π-calculus syntax to be able
to formally describe such systems. This can be done through the higher-order π-
calculus (HOπ) [23], which allows us to express, on top of what is possible through
the syntax from Section 2.2, the sending and receiving of processes.

This is done by introducing abstract processes, similar to an abstraction in λ-calculus.
In practice, this allows us to define processes such as let f = λo.o!〈1〉 where λo
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indicates that the channel of the process is actually parametrised and that will be
passed in an application of f with a concrete channel to take o’s place.

While abstraction and application are the main additions to the syntax, there are also
a few other syntactic differences, illustrated in Table 2.3.

2.4.1 Example V: Ping-Pong system

We can use this new syntax to represent a simplified version of the Ping-Pong system
described in [13] and later used as a benchmark in Section 5.3, with a single pair of
processes, doing a single ping-pong back and forth of messages with no recursion.
Ping sends its channel to Pong to receive a response (we use () to indicate a value of
type Unit).

let Pong = λ po.(po?(x).x!〈()〉.end) in (

let Ping = λ pi.λ po.(po!〈pi〉.pi?(x).end) in (

ν pi. ν po.(Ping pi po | Pong po)

))

In Section 3.1 we present the Effpi implementation of thi system and we compare
it to this this representation to assess the similarity and give an intuition of Effpi’s
grounding on this formal calculus.

2.5 Behavioural abstract process types for HOπ

While the syntax of HOπ allows us to have parametrised abstract processes, the
session types described in Section 2.3 are channel types, which are only capable of
describing the behaviour of a given channel.

What is introduced in [24] are abstract process types which describes in details the
runtime behaviour of processes. It does so using dependent function types, which
are of the form:

Π(in : InputType)FunctionReturnType

which represents closures, with typed and named input which can be referenced in
the FunctionBodyType thus allowing to detail the behaviour of the function within
the type.

13



The full type definition can be found in [24], however in Table 2.5 we introduce the
elements necessary to express the Pong system from Section 2.4.1 and to give an
intuition on the theory on which Effpi is grounded.

S ::= Sort
bool | nat | string | Unit

S, T, U ::= Types
Π(x : T )U dependent function type
o[S, T, U ] describes a process that sends a T -typed

value on an S-typed channel, and contin-
ues as U

i(S, T ) describes a process that receives a value
from an S-typed channel and continues as
T

nil unit type
Table 2.5: Partial definition of behavioural types as presented in [24], upon which Effpi
is grounded

Typing of the Pong Process with behavioural types

Using this type system, the type of the abstract process Pong introduced in Sec-
tion 2.4.1 is:

Pong : Π(po : ChanI [ChanO[Unit]]) i(po, Π(x : ChanO[Unit]) o(x, Unit, nil))

Breaking this type down into its component helps understanding how the type is a
detailed description of the process behaviour:

• Π(po : ChanI [ChanO[Unit]])...: we can see that Pong first takes an input
channel po of type ChanI [ChanO[Unit]], which is an input channel that yields
an output channel, that in turn allows to send a message of type Unit(the type
of ()). The return type of this expression will be able to reference po directly.

• i(po, Π(x : ChanO[Unit]) ...): This is the first part of the return type, which
indicates that an input x of type ChanO[Unit] has to be received through chan-
nel po. This is possible because the type of the value matches the type that was
given to channel po in the input. The reference to po means that any value of
type ChanI [ChanO[Unit]] would not be sufficient. It requires a value of the
type of po, which is only satisfied by po itself, thus ensuring the correct use of
the channel.

• o(x, Unit, ...): this means that a value of type Unit is sent through channel x.
Once again this is possible because this checks with the type just defined for x
in the previous step.
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• nil: the process terminates.

Since these types allow for a very detailed description of the processes behaviour,
their correctness can be established through type judgement (beyond the scope of
this overview, but is explained in details in [24]). In Section 3.1 this types are com-
pared to those implemented in Effpi to provide an intuition of their strict relationship
that allows Effpi to provide the same correctness guarantees.
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Chapter 3

Background: Effpi - an overview

In this chapter we explore the architecture of the Effpi library, its DSLs and the types
provided to perform correctness checks. We then analyse the original implemen-
tation of the runtime to understand its flaws. This should help contextualise the
contributions made in later chapters, highlighting the reason for their necessity and
giving a background that should ease the understanding of their practical implemen-
tation.

3.1 An introduction to Effpi

As mentioned in the introduction Effpi provides an API composed of two DSLs, one
based on π-calculus and one based on the actor model, that helps writing concurrent
programs receiving strong guarantees of correctness through type-checking. This is
done through deep embedding of the DSLs [27] in Scala. More specifically, the
DSLs help build data structures representing the behaviour of the program being
developed. These data structures are strongly typed and their types therefore also
reflects the program behaviour. This allows type-checking to ensure that a program
behaves as described by its type.

Before we dive into Effpi’s details, in Listing 3.1 we provide an Effpi implementation
of the Ping-Pong system described in Section 2.4.1, to show how the DSL closely
matches the HOπ representation. Furthermore Effpi’s types are clearly resemblant
of the theoretical types introduced in Section 2.5, providing a similar detailed de-
scription of the process behaviour. This only aims to provide an intuition of this
correlation, a more detailed explanation is provided in [24].
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Listing 3.1: Effpi implementation of a simple PingPong system

1 type TPong = (

2 (po: InChannel[OutChannel[Unit]]) =>

3 In(po.type, (x: OutChannel[Unit]) =>

4 Out(x.type, Unit, (Unit) => Nil) ))

5

6 def pong(po: InChannel[OutChannel[Unit]]): TPong = {

7 receive(po) { x =>

8 send(x, ()) {

9 nil

10 }

11 }

12 }

13

14 type TPing = ... // Omitted

15

16 def ping(pi: Channel[Unit], po: OutChannel[OutChannel[Unit]]): TPing = {

17 send(po, pi) {

18 receive(pi) { x =>

19 }

20 }

While the project is mostly concerned with improving Effpi with a new improved
runtime, it is necessary to have a general understanding of how the other parts of
the system work. In particular the data structures produced by the Process DSL are
directly parsed and processed by the runtime, and therefore it is necessary to un-
derstand how the DSL is used to create them in order to appreciate this project’s
contributions. It is also useful to have familiarity with the Actor DSL as it provides
a simpler API, and because all the benchmarks and examples are implemented us-
ing it (including the Ping-Pong system from Listing 3.1). However there is also a
number of other internals that make up the architecture and there is a dependency
structure between the different concepts. It is therefore useful to explore these in
order to understand their purpose, which is why we will start describing the concept
of Channel.

3.2 Channels

The concept of Channel is fundamental in π-calculus, and therefore also in Effpi. All
other concepts depend on it and therefore it is a good place to start.

The main two types of channels in Effpi are InChannels and and OutChannels, de-
scribed in Effpi by the homonym traits shown in Listing 3.2. These describe two
fundamental behaviours: the ability to receive and the ability to send.
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Listing 3.2: Original InChannel and OutChannel traits

1 trait InChannel[+A] {

2 val in: InChannel[A] = this

3 def receive()(implicit timeout: Duration): A

4 }

5

6 trait OutChannel[-A] {

7 val out: OutChannel[A] = this

8 def send(v: A): Unit

9 }

In practice the implementation of sending and receiving adopted by both DSLs,
used in the system and in the runtime, is given by the traits QueueInChannel and
QueueOutChannel (Listing 3.3, Listing 3.4). It is important to notice that the imple-
mentation of receive is blocking, and can be given a maximum time out duration,
after which a runtime error is thrown.

Listing 3.3: Original implementation of receive through QueueInChannel trait

1 trait QueueInChannel[+A](q: LTQueue[A]) extends InChannel[A] {

2

3 override def receive()(implicit timeout: Duration) = {

4 if (!timeout.isFinite) {

5 q.take()

6 } else {

7 val ret = q.poll(timeout.length, timeout.unit)

8 if (ret == null) {

9 throw new RuntimeException(s"${this}: timeout after ${timeout}")

10 }

11 ret

12 }

13 }

14 }

Listing 3.4: Original implementation of send through QueueOutChannel trait

1 trait QueueOutChannel[-A](q: LTQueue[A])(maybeDual:

Option[QueueInChannel[Any]]) extends OutChannel[A] {

2 override def send(v: A) = q.add(v)

3 }

18



3.3 Processes and the process DSL

The next important concept is that of process. As seen in the background, in π-
calculus there are many different types of processes, depending on the syntax, which
allow for sending, receiving, creating two parallel sub-processes and so on.

These are expressed in Effpi as case class implementation of the sealed abstract class
Process (Listing 3.5). This is a common pattern in Scala when there is a sealed
abstract class or trait implemented by a number of case classes. This means that
pattern matching can be done on the sealed entity and that if all the implementing
cases are considered the pattern matching will be seen as exhaustive by the type
checker. Any missing case on the other hand will be spotted. This implementation
comes useful in the runtime, where the correct processing of each possible process
type is extremely important.

The Process class also implements the spawn function that takes care of instantiat-
ing a concurrent computation that performs the process. This logic is part of what
constitutes the original runtime and is explained in more details later in Section 3.5.

Listing 3.5: Original implementation Process

1 sealed abstract class Process {

2 def >>[P1 >: this.type <: Process, P2 <: Process](cont: => P2) = >>:[P1,

P2](() => this, () => cont)

3

4 def spawn() = {

5 val self = this

6 val t = new Thread { override def run = eval(Map(), Nil, self) }

7 t.start()

8 t

9 }

10 }

The implementations of Process are reported in Listing 3.6. It is important to notice
that each of this classes has a specific type, and that these type-checking these classes
is what provides guarantees about the programs behaviour.

It is also important to point out that there is a strong correspondence between the
types of these elements and those described in [24]. One notable difference is that
send in [24] has a direct continuation, while in this DSL this is not the case, and by
default the process ends after an Out. However, for convenience, the DSL offers the
sequence building block, >>:, which allows us to manually add continuation. This
is implemented by the >> operator of Process (Listing 3.5).
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Listing 3.6: The different types of processes are expressed as implementations of
Process

1 case class Out[C <: OutChannel[A], A](channel: C, v: A) extends Process

2

3 case class In[C <: InChannel[A], A, P <: Process](

4 channel: C, cont: A => P, timeout: Duration

5 ) extends Process

6

7 case class Fork[P <: Process](p: () => P) extends Process

8

9 sealed abstract class PNil() extends Process

10

11 case class Def[V <: ProcVar, A, P1 <: Process, P2 <: Process](

12 name: V[A], pdef: A => P1, in: () => P2

13 ) extends Process

14

15 case class Call[V <: ProcVar, A](procvar: V[A], arg: A) extends Process

16

17 case class >>:[P1 <: Process, P2 <: Process](

18 p1: () => P1, p2: () => P2

19 ) extends Process

3.3.1 DSL

While the implementations of Process are the actual building blocks that are used
to create a data structure that describes in details a process, these are not to be
used directly by the user for the construction of a process. While possible to do, this
would not be neither convenient nor practical. This is the reason behind having the
the process DSL as a public API. We describe now the main functions it provides, and
compare them to the syntax of the calculus from [24].

Sending: send corresponds to send from the calculus. The function passes the
channel and the value to build an Out block.

Listing 3.7: Process DSL: send

1 def send[C <: OutChannel[A], A](c: C, v: A) = Out[C,A](c, v)

Receiving: receive corresponds to recv as it takes the input channel and the con-
tinuation as arguments. However, since the implementation of InChannel this is
based on requires a time-out to handle waiting on the read, this is also taken as an
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implicit parameter. The advantage of timeout being implicit is that the caller code
can be cleaner.

Listing 3.8: Process DSL: receive

1 def receive[C <: InChannel[A], A, P <: Process]

2 (c: C)(cont: A => P)(implicit timeout: Duration) = In[C,A,P](c, cont,

timeout)

Creating parallel processes: fork corresponds to the parallel composition of two
processes P | Q for processes P and Q

Listing 3.9: Process DSL: forking parallel processes

1 def fork[P <: Process](p: => P) = Fork[P](() => p)

Creating abstract processes: pdef vaguely corresponds to let x = t in t′. This is
because that syntax can be used for any sort of definition, while this DSL function
(and the Def structure itself) is specific for abstract processes. The definition of
normal variables, for example, can be done with plain Scala. The arguments name,
pdef and in correspond respectively to x, t and t′ the first two establishing a mapping
between a name and the body of the definition and the last being the continuation
that is also the scope of the definition just established.

Listing 3.10: Process DSL: abstract process definition

1 def pdef[V <: ProcVar, A, P1 <: Process, P2 <: Process]

2 (name: V[A])(pdef: A => P1)(in: => P2) = Def[V, A, P1, P2](name, pdef, ()

=> in)

Applying abstract processes definitions: pcall corresponds to application t t′,
with name corresponding to t and arg to t′.

Listing 3.11: Process DSL: calling abstract processes definitions

1 def pcall[V <: ProcVar, A](name: V[A], arg: A) = Call[V,A](name, arg)

Recursion: rec is a convenience method based on Def that simplifies the descrip-
tion of recursive processes. This is used in the benchmarks, as most large benchmark
require some sort of recursive behaviour, as there is no concept of looping.
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Listing 3.12: Process DSL: calling abstract processes definitions

1 def rec[V <: RecVar, P <: Process](v: V[Unit])(p: => P): Rec[V, P] =

2 Def[V, Unit, P, P](v, (x) => p, () => p)

Remarks:

The π-calculus syntax provides and if-then-else construct, however this is already
provided by Scala, and therefore it is not necessary to reproduce it in the DSL. The
operator >> from Listing 3.5 is also integral part of the DSL, as it allows us to have
continuation on send, which should be possible by the calculus described in [24].

3.4 Actors and Actor DSL

The Actor DSL is somewhat of an extra, experimental feature of Effpi. The main
goal was to have a pi-calculus based concurrency framework, however due to the
popularity of actor base frameworks, providing an actor based API could facilitate
the framework’s adoption.

The Actor DSL is actually implemented using the Process DSL under the hood, which
is why it provides the same correctness guarantees. It actually serves as a façade to
the Process DSL, providing a simpler API, which also allows us to enforce certain
properties beneficial to actor programming (for example enforcing that each actor
has only one mailbox). However in order to provide this added simplicity some Actor
specific internals had to be introduced.

3.4.1 Mailbox & ActorRef

Given that the core characteristic of the actor model is to perform asynchronous
computation through message passing, and since actors are the primary concept in
this model, they must be able to send and receive messages. An actor Mailbox is
what allows an actor to receive messages–that is an actor can check its mailbox for
incoming messages from other actors. ActorRefs conversely are addresses can be
used to send actors messages.

In Effpi Mailboxes and ActorRefs are internally implemented extending the InChannel
and OutChannel traits (Listing 3.13). The only addition is to the ActorRef interface,
which is provided with a ! operator,
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Listing 3.13: Traits for Mailboxes and ActorRefs to use in the Actor DSL

1 abstract class Mailbox[+A] extends InChannel[A]

2

3 abstract class ActorRef[-A] extends OutChannel[A] {

4 def ! = send

5 }

3.4.2 Behaviours and Actor Context

In order to encourage good patterns by design there are a few other concepts im-
plemented to allow the Actor DSL to spawn actors with their unique Mailbox and
ActorRef accessible within their context.

A fundamental construct is the Behavior class (Listing 3.14). Essentially a behaviour
allows for the creation unexecuted closures. This closures represent the processes
defined using the DSL.

Listing 3.14: Definition of Behavior to create unexecuted closures representing the
processes

1 type WithMailbox[A, T] = implicit ActorCtx[A] => T

2

3 class Behavior[A, P](body: => WithMailbox[A, P])

4 extends Function0[WithMailbox[A, P]] {

5 def apply() = body

6 }

The type of the closures, WithMailbox, ensures that they exist in an Actor Context
(Listing 3.15), meaning they have access to an ActorRef and a Mailbox implicitly.

Listing 3.15: Actor Context, used to ensure a mailbox is implicitly available

1 abstract class ActorCtx[A](val self: ActorRef[A],

2 protected[actor] val mbox: Mailbox[A])

So checking the types of these unexecuted closures is actually what guarantees the
correctness of the behaviour of the processes created. The runtime can subsequently
execute the processes by making calls to the closures.

One last important detail is that the Actor DSL relies on actors being spawned us-
ing the Actor.spawn function (Listing 3.16). This wraps the spawn function from
Process introduced in Listing 3.5, but at the same time establishes the ActorRef and
Mailbox to be used for the actor and to be passed to the Actor Context.
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Listing 3.16: The Actor.spawn function creates an actor providing it an Actor Context

1 object Actor {

2 def spawn[A, P <: Process](beh: Behavior[A, P])(implicit ps:

ProcessSystem): ActorRef[A] = {

3 val pipe = ActorPipe[A]()

4 implicit val ctx = new ActorCtxImpl[A](pipe.ref, pipe.mbox)

5 val proc = beh()

6 proc.spawn(ps)

7 pipe.ref

8 }

9 }

3.4.3 The Actor DSL

While the Actor DSL provides a simpler API than the Process DSL, most functions
needed to understand the benchmarks are actually fairly similar to those presented
for the Process DSL, and internally depend on them anyway. Just as an example we
show how this is the case for sending and receiving in Listing 3.17. Note that psend
is just an alias for the send function of the Process DSL

Listing 3.17: The read and send functions of the ActorDSL

1 def read[T, P <: Process]

2 (cont: T => P)

3 (implicit timeout: Duration): WithMailbox[T, Read[T, P]] = {

4

5 preceive[Mailbox[T], T, P](implicitly[ActorCtx[T]].mbox)(cont)(timeout)

6 }

7

8 def send[R <: ActorRef[T], T](ref: R, x: T): SendTo[R, T] = psend(ref, x)

The main advantage in using the Actor DSL in general is that it provides channels
implicitly as explained in the previous section. In Listing 3.18 we provide an exam-
ple of how this leads to more readable code, by implementing the same Ping-Pong
system from Listing 3.1 using the Actor DSL.

Intuitively we can see that the actor-style PongProcess type performs a receive action
of a value of type Ping, and then continues with a send action of a value of type Pong

through a channel that accepts Pong-typed messages. We can notice that the main
difference between this definition and the one given in Listing 3.18 (and in turn that
from Section 2.5) is that in the actor-style code the input channel from which the
pong process receives the Ping-typed value is kept implicit, and does not appear as a
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parameter in Read. This reminds the implicit actor mailboxes used in Erlang or Akka
programs.

Listing 3.18: Effpi implementation of a simple PingPong system

1 final case class Ping(replyTo: ActorRef[PongMessage])

2 final case class Pong()

3

4 type PongProcess = Read[Ping, SendTo[ActorRef[Pong], Pong]]

5

6 def pong = Behavior[Ping, PongProcess] {

7 read {

8 case Ping(replyTo) =>

9 send(replyTo, Pong())

10 }

11 }

12

13 type PingProcess[R <: ActorRef[Ping]] = SendTo[R, Ping] >>: Read[Pong,

PNil]}

14

15 def ping(pongRef: ActorRef[Ping]) = Behavior[PongMessage,

PingProcess[pongRef.type]] {

16 send(pongRef, Ping(self)) >>

17 read {

18 case PongMessage.Pong =>

19 nil

20 }

21 }

Furthermore it is important to notice that, as long as the function names are disam-
biguated, the two DSLs can actually be mixed seamlessly given that the Actor DSL is
simply a wrapper. This property is used in the benchmarks where the simpler Actor
DSL is preferred, however the rec function from the Process DSL is used to allow for
recursive behaviour which helps describing larger and more complex systems (see
for example the Chameneos benchmark in Appendix A).

3.5 Original run-time

The original runtime was intended to provide the bare minimum functionality that
would allow the framework to work. As such it follows the naive strategy of spawn-
ing a JVM thread per process to guarantee their concurrent execution. Going into
the details of this implementation helps highlight its limitations and will be useful to
understand the changes made.
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The two main concepts behind the runtime to understand are the mechanism to
maintain state and the actual strategy for the execution. The former is required as
it provides a sort of execution context, that at all times contains the information
needed to perform correctly the behaviour of a process as it is consumed. The latter
contains the actual logic that tells what actions should be taken for each process
type, meaning what to do for each kind of process (read, write, fork and so on...)

Execution context

It is important to establish what the execution context is in this framework. In other
words, what kind of state is needed to be able to execute a process. The execution
context should store enough information to maintain the state of a process as the
evaluation unravels the intricate and recursive Process data structure. As layers are
evaluated some of the information that might otherwise be lost must be stored in a
convenient fashion to be available to inner parts of the Process.

The process state, as it will be referred to moving forward, consists of the following
three pieces of information:

• current process: The process the evaluation function is currently consuming.
This is the main focus of the evaluation and when the process execution just
starts it is also the only information provided.

• future processes: This is a list containing processes that must still be evalu-
ated when the current process finishes (becomes nil). It can be thought of
a ’secondary’ continuation. This is due to types like Out not having a contin-
uation embedded in their type and relying on the >>: to have one. In these
cases the evaluation continues on the current process and the continuation is
appended onto this list.

• environment: The last element of the triplet is a map storing the process
definitions encountered so far. This is needed to deal with the Def and Call

process types. This map allows to keep definitions in memory where they are
available in the needed scope, and to access them efficiently.

Run strategy

The way a system of processes runs can be conceptually divided into three steps:
process construction, spawning, evaluation.

Firstly a process is constructed using the DSL, which creates a data structure that
works as a definition of the process behaviour.
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Then the method spawn can be called (Listing 3.5). This method has the responsi-
bility to create a JVM thread inside which the process can be executed concurrently,
through the eval function. When using the Actor DSL one can use the Actor.spawn

function (Listing 3.16), which has the advantage of implicitly setting up a Mailbox
and an ActorRef.

eval is where the logic for the evaluation resides, and as such defines what is meant
by executing a process. This function is tail recursive, reflecting the recursive na-
ture of the Process data structure. At each call it unravels one layer of the process,
defined as one step of the process execution. It then generally recurs on the contin-
uation of the process. Naturally since all the logic for the execution is contained in
this function, it takes the triplet representing the process state as argument ((env,
lp, p)), to guarantee the necessary knowledge to perform the evaluation is always
available. Diving into the implementation of eval, the first important task it per-
forms, shown in Listing 3.19, is to pattern match on the current process p. This is
necessary because different actions are required for each process type in order for it
to reflect its semantic meaning.

Listing 3.19: The overall structure of the eval function

1 def eval(p: Process): Try[Unit] = Try(eval(Map(), Nil, p))

2

3 @annotation.tailrec

4 def eval(env: Map[ProcVar[_], (_) => Process], lp: List[() => Process],

5 p: Process): Unit = p match {

6 case i: In[_,_,_] => ???

7 case o: Out[_,_] => ???

8 case f: Fork[_] => ???

9 case n: PNil => ???

10 case d: Def[_,_,_,_] => ???

11 case c: Call[_,_] => ???

12 case s: >>:[_,_] => ???

13 }

Then in general the pattern for most types of processes is:

• evaluate the current step of the process and perform the required actions

• make a recursive call to eval passing as argument a process state that looks like
(env, lp, p.con), where by p.con we mean the continuation of the current
process p

However this is not true for all cases, and the action taken for the specific step differs
from type to type.
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PNil

This is somewhat of a special case, because nil represents the 0 process and there-
fore it does not have a direct continuation.

However the list of future processes might provide a continuation, and therefore
lp is pattern matched and if it is not empty then the head of the list becomes the
new current process for the state to be passed as an argument to a recursive call to
eval, taking the form eval(env, tail(lp), head(lp)) However if lp is empty the
process is truly over, and the evaluation terminates.

Listing 3.20: eval evaluation of the PNil case

1 case n: PNil => lp match {

2 case Nil => ()

3 case lh :: lt => eval(env, lt, lh())

4 }

In

In case of In a value is read from the InChannel accessible as a field of the process.
This is done through the channel’s receive method, which blocks and waits for
a value to be passed. However a time out is set on how long this wait can last
(Listing 3.3), and if it is not successful by then a runtime exception will be thrown.
This blocking implementation makes sense, because since each process is assigned
a JVM threads these will handle context switching to allow other processes to run.
At the same time the time out provides a sanity check to the status of each input-
process.

If the read is successful, however, a recursive call to eval is made, with the state of
the continuation as argument. Said continuation of the process i is obtained through
the field cont.

Listing 3.21: eval evaluation of the In case

1 case i: In[_,_,_] => {

2 val v = i.channel.receive()(i.timeout)

3 eval(env, lp, i.cont.asInstanceOf[Any => Process](v))

4 }
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Out

In Out the first operation is to send a value to the OutChannel accessible as a field of
the current process o.

As we saw in Section 3.3, Out does not have a direct continuation like In. Therefore
the list of future processes is pattern matched. If the list is empty the process is over
and the execution terminates, but if it is not then a recursive call to eval is made in
a similar fashion to the PNil case.

Listing 3.22: eval evaluation of the Out case

1 case o: Out[_,_] => {

2 o.channel.asInstanceOf[OutChannel[Any]].send(o.v)

3 lp match {

4 case Nil => ()

5 case lh :: lt => eval(env, lt, lh())

6 }

7 }

Fork

Fork is supposed to allow for parallel processes, embodying the syntax P |Q for pro-
cesses P and Q. For this reason it spawns a new thread running another instance of
eval. This takes a process state that inherits the environment and takes an empty
list as future processes and the parallel process p specified as a field of the current
process f. A Fork type process does not have a direct continuation, so it continues
the execution on the current thread with a behaviour similar to that of PNil and Out,
matching on the list of future processes lp.

Listing 3.23: eval evaluation of the Fork case

1 case f: Fork[_] => {

2 new Thread { override def run = eval(env, Nil, f.p()) }.start()

3 lp match {

4 case Nil => ()

5 case lh :: lt => eval(env, lt, lh())

6 }

7 }
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Def

The Def process is supposed to establish a definition of a process assigning it a name.
As a result the only action taken prior to making a recursive call, is to add a definition
to the environment of the state, now updated with one more mapping from d.name

to d.pdef. It also sets the current process to the process stored in the in field of
d. While theoretically it could have continued with lp like in Fork, this design
was chosen to make it more similar to the syntax from [24], with the in process
representing the scope of the definition.

Listing 3.24: eval evaluation of the Def case

1 case d: Def[_,_,_,_] => {

2 eval(env + (d.name -> d.pdef), lp, d.in())

3 }

Call

Call tries to access a definition in the environment to use it in the continuation. This
could potentially cause an error, if the definition needed is not found. In this case a
runtime exception is thrown.

Listing 3.25: eval evaluation of the Call case

1 case c: Call[_,_] => {

2 env.get(c.procvar) match {

3 case Some(p) => {

4 // println(s"*** Calling ${c.procvar}(${c.arg})")

5 eval(env, lp, p.asInstanceOf[Any => Process](c.arg))

6 }

7 case None => {

8 throw new RuntimeException(s"Unbound process variable: ${c.procvar}")

9 }

10 }

>>:

For the sequence operator the implementation is quite straightforward: take s.p1()

as continuation and append s.p2 at the front of the future processes list.
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Listing 3.26: eval evaluation of the >>: case

1 case s: >>:[_,_] => {

2 eval(env, s.p2 :: lp, s.p1())

3 }

3.5.1 Final Remarks

As described in the Introduction (Section 1.1), the problem with this implementa-
tion is that not decoupling effpi-processes from JVM threads it only supports a very
limited number of processes before the program becomes non-responsive.

Furthermore, once the number of threads greatly exceeds the cores available to the
host hardware, this does not bring any significant advantage since the parallelism
will still be limited. Improving on this limitation is the focus of the next chapter.
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Chapter 4

Design and Implementation

4.1 Design overview

This chapter presents a number of optimised implementations of the runtime that
address the objectives described in the Introduction (Section 1.2). The first funda-
mental goal of this project was to allow Effpi to run large concurrent systems with
hundreds of thousands of processes without the program becoming non-responsive,
and the first implementation (referred to as RunningQueue) described in Section 4.2
brings improvements on this aspect. Another important objective was that of speed
of execution, that is minimising the bookkeeping operations performed during schedul-
ing to maximise the time spent performing actions that bring the execution forward.
This issue is addressed by the optimised implementations WaitQueue (Section 4.3),
WaitQueueImproved (Section 4.4) and MultiStep (Section 4.5).

An important concept that helps understand these implementations is that of Exe-
cution Context of a process, introduced in Section 3.5. This represents all the infor-
mation required to successfully execute a process, and is represented by the triplet
(env, lp, p), where env is the mapping storing all the process definitions, lp is a
list of future continuations, and p represents the current process. The common char-
acteristic of all following runtime implementations is that in order to decouple pro-
cesses from JVM threads they store the processes to run in memory and only spawn
a limited number of threads. The processes in memory are then gradually consumed
and executed by the threads. All this is managed by a structure called Process Sys-
tem shown in Figure 4.1. This should reduce the overhead due to creating too many
JVM thread, which is the core reason why all the following implementations can
sustain much larger systems than the original runtime.
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Process System

Memory

process 1

process 2

process 3

process n

...

run

run

run

Threads

process 4

Figure 4.1: General architecture of a process system. With different practical imple-
mentations, this kind of structure will be used in all following implementations

4.2 Running Queue Implementation

4.2.1 Process System

The main concept behind this implementation, pictured in Figure 4.2, is that already
mentioned of process system. The ProcessSystem object has two practical responsi-
bilities in order to guarantee efficient memory based execution:

• Store in memory the state of all running processes.

• Gradually execute such processes by scheduling them on a limited number of
JVM threads (the exact number of threads spawned is later discussed in the
Evaluation, Section 5.4).

Running Queue

ProcessSystem stores a queue of states of active processes that are waiting to be
executed. This leads to a queue of the type presented in line 3, that contains process
state triplets (described in 3.5) which contains:

• the environment (a map storing the definition of processes)
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Process System

RunningQueue

process 1

process 2

process 3

process n

...

Executor

process 4

dequeue

enqueue

Figure 4.2: Architectural diagram of the RunningQueue implementation. The executors
here consume and reschedule processes from a queue in memory

• the list of future processes to be evaluated

• the current process to evaluate.

As part of the ProcessSystem trait the methods enqueueRunning and dequeueRunning

are also provided for consuming elements of that queue.

Listing 4.1: ProcessSystem storing a Running Queue

1 trait ProcessSystem {

2

3 var runningQueue = new SchedulingQueue[(Map[ProcVar[_], (_) => Process],

List[() => Process], Process)]

4

5 def enqueueRunning = runningQueue.enqueue

6 def dequeueRunning() = runningQueue.dequeue()

7 }

Internally this queue is implemented using Java’s LinkedTransferQueues, which are
a well established and performant thread safe queue. This is important because the
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Working Queue will be accessed concurrently by the threads in order to run execute
the processes (Listing 4.2).

The important detail to notice about this queue is that although in theory it returns
an Option, it is actually blocking, and therefore it will normally always return a
value. The reason why an Option is returned is described in details in Section 4.2.6.

Listing 4.2: This is a wrapper around a Java LinkedTransferQueue which adds some
logic on dequeueing needed for termination

1 class SchedulingQueue[E] {

2

3 val queue = new LTQueue[E]

4

5 def enqueue(elem: E) = {

6 queue.add(elem)

7 ()

8 }

9

10 def dequeue(): Option[E] = {

11 try { Some(queue.take()) } catch {

12 case e: InterruptedException =>

13 None

14 }

15 }

16

17 }

Thread spawning

In order to consume the processes stored on the RunningQueue the Process System
object is also responsible for assessing how many cores the host machine has and for
making a decision about how many JVM threads to create 1.

This is all handled by the init function (Listing 4.3), which is called immedi-
ately after construction (construction here is performed using the apply method
of the companion object, a fairly common and idiomatic pattern in Scala, which
allows construction to be performed without the new keyword, like so val ps =

ProcessSystemRunningQueue().

1The current number has been established heuristically and is discussed further in the Evaluation
chapter 5.4
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Listing 4.3: Process System logic to spawn Executors in a limited number of threads

1 override def init(threadsPerCore: Int): Unit = {

2 val numCores = Runtime.getRuntime().availableProcessors()

3

4 val numThreads = numCores * threadsPerCore

5

6 (1 to numThreads).foreach { c =>

7 threads += new Thread(new Executor(this))

8 }

9

10 threads.foreach{ t => t.start()}

11 }

Each JVM thread runs an Executor, which is the class responsible for dealing with
the evaluation of processes.

4.2.2 Evaluation with Executors

RunningQueue consumption

The key function in Executor which contains the logic for evaluating a process is
fastEval. This is conceptually similar to the original eval described in Section 3.5,
and in fact it has two significant differences:

• It is not exclusively bound to a single process and as a result, subsequent calls
to fastEval may execute different processes.

• It is one-step, meaning each call to the function performed one step of the
original recursive eval function (with one notable exception discussed later).

Listing 4.4: Executor logic to consume the Running Queue

1 override def run() = {

2 while (ps.alive) {

3 val head = ps.dequeueRunning()

4 head match {

5 case Some(p) =>

6 fastEval(p)

7 case None =>

8 ()

9 }

10 }

11 }
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Since fastEval performs one-step evaluation, it is run in an while loop to ensure
it keeps consuming processes in the RunningQueue, where at each iteration a new
process state is dequeued and evaluated (Listing 4.4).

fastEval implementation

Even though the signature of fastEval slightly differs from that of the original naive
eval, accepting a tuple as an argument as opposed to three separate arguments,
due to their conceptual similarity the substance of its implementation is left fairly
unchanged. The first important task it performs is still to pattern match on the
current process p, as shown in Listing 4.5. Moreover, the general pattern for most
types of processes is only slightly changed. fastEval still evaluates the current
step of the process and performs the required actions, but then instead of making a
recursive call with the process state of the continuation, it simply enqueues this state
back onto the Running Queue of the Process System.

Listing 4.5: Overview of fastEval

1 def fastEval(

2 proc: (Map[ProcVar[_], (_) => Process], List[() => Process], Process)

3 ): Unit = {

4 val (env, lp, p) = proc

5 p match {

6 case i: In[_,_,_] => ???

7 case o: Out[_,_] => ???

8 case f: Fork[_] => ???

9 case n: PNil => ???

10 case d: Def[_,_,_,_] => ???

11 case c: Call[_,_] => ???

12 case s: >>:[_,_] => ???

13 }

14 }

In and changes to InChannel

This new scheduling system requires one further change in order to be able to ex-
ecute input-processes. Now that the one-to-one correspondence between processes
and JVM threads is lost, it is no longer possible to wait on a read action for the en-
tirety of the time-out. If all threads end up waiting on an input process and there is
no way to continue the execution of other processes this might deadlock the execu-
tion. Instead we must have a fail-fast method to check if the channel has received
any value, and if not simply re-enqueue the process back onto the RunningQueue.
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Since the receive method of InChannel did not match the fail-fast requirement, a
new non-blocking poll method is added to the trait, shown in Listing 4.6

Listing 4.6: InChannel trait updated with a non-blocking poll method

1 trait InChannel[+A] {

2 val in: InChannel[A] = this

3 def receive()(implicit timeout: Duration): A

4 def poll(): Option[A]

5 }

However if the call to receive happens successfully, then the value is read and the
continuation of process p can be considered in the new current process to enqueue,
(env, lp, cont). Notice that now an In process is not necessarily evaluated exclu-
sively by a single JVM thread, and therefore we lose the possibility to use time outs
naively as we did with the original runtime. This is discussed further in Future Work
(Section 6.2).

Listing 4.7: RunningQueue implementation of fastEval in the In case

1 case i: In[_,_,_] =>

2 i.channel.poll() match {

3 case Some(v) =>

4 val cont = i.cont.asInstanceOf[Any => Process](v)

5 ps.enqueueRunning((env, lp, cont))

6 case None =>

7 ps.enqueueRunning((env, lp, p))

8 }

Out

The implementation of out remains fairly similar to that of the original eval. How-
ever after the value has been sent, if pattern matching of future processes lp reveals
that the list is not empty, instead of having a recursive call, the continuation process
of the form (env, tail(lp), head(lp)) is enqueued onto the Running Queue.

Listing 4.8: RunningQueue implementation of fastEval in the Out case

1 case o: Out[_,_] =>

2 val outCh = o.channel.asInstanceOf[OutChannel[Any]]

3 outCh.send(o.v)

4 lp match {

5 case Nil => ()

6 case lh :: lt => ps.enqueueRunning((env, lt, lh()))

7 }
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Fork

As mentioned before this is the equivalent of P |Q, so it creates two parallel processes

It can be seen in Listing 4.9, the current implementation, instead of spawning a JVM
thread for f.p() as in the naive eval, two new processes are enqueued. One being
(env, Nil, f.p()) and the other is the continuation of the parent, which consists
in (env, tail(lp), head(lp)

Listing 4.9: RunningQueue implementation of fastEval in the In case

1 case f: Fork[_] =>

2 ps.enqueueRunning((env, Nil, f.p()))

3 lp match {

4 case Nil => ()

5 case lh :: lt => ps.enqueueRunning((env, lt, lh()))

6 }

The other cases

The other cases are left almost unchanged. The only difference with eval is that in-
stead of making a recursive call the state of the continuation process is re-enqueued
to the Running Queue. This is an illustration of this change for the PNil case:

Listing 4.10: RunningQueue implementation of fastEval in the PNil case

1 case n: PNil => lp match {

2 case Nil => ()

3 case lh :: lt => ps.enqueueRunning((env, lt, lh()))

4 }

4.2.3 Spawning effpi-processes

One thing left to complete the runtime is the ability to spawn processes. The old
spawn function was the one responsible for creating the thread in which to run eval.
In this implementation spawn is still a method of Process, but the implementation is
changed. Now it is responsible to kick-start the consumption of the Running Queue
by initially populating it, by enqueuing the process onto it, with an empty definition
map and an initially empty list of future processes.
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Listing 4.11: The spawn function used in all of the runtimes introduced in this project

1 def spawn(ps: ProcessSystem) = {

2 ps.enqueueRunning((Map(), Nil, this))

3 }

4.2.4 RunningQueue strategy on simple Ping-Pong example

In order to illustrate the details explained so far of the RunningQueue strategy for
the runtime, we will analyse potential execution traces of a Ping-Pong concurrent
system. We do so without explicit assumptions on the hardware, just that it can
perform parallel execution. This is the same system detailed in Listing 3.1, with
a single pair of processes, doing a single ping-pong back and forth of messages.
Figure 4.3 illustrates its execution.

ping

Ping Pong

pong

[INIT

Figure 4.3: Simple Ping-Pong system with only one pair doing a single back and forth

Firstly we will detail the optimal execution trace (Table 4.1), that is the one that
requires the least amount of evaluation steps before successfully running the system
to completion:

Step 1. The Process System
is created with an empty Run-
ning Queue and a number of
Executors ready to consume it.
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Step 2. Two processes are cre-
ated: a Ping pi and a Pong po.
Importantly the spawning process
appends the processes onto the
Running Queue of the Process
System.

Step 3: Now the Executors
can start consuming the Running
Queue. Let’s say pi is picked up
first and its send to po’s InChan-
nel is evaluated. After this its con-
tinuation (a receive waiting for
a pong message) is re-appended
onto the Running Queue.

Step 4: Now say po is executed.
Since ping has been sent to its In-
Channel, the receive operation is
successful, and the continuation
(a send) is re-enqueued onto the
Running Queue.

Step 5: Now assume that due to
internal scheduling of the threads
handling the Executors the con-
tinuation of po is executed. It
could either be because it was re-
enqueued first, or because even
after being dequeued after, it
reached fastEval faster (which
is what happens in this trace,
causing the Running Queue to
be empty). The pong is sent to
pi’s InChannel, and then po termi-
nates.
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Step 6: Finally only the receive by
pi is left, which can be executed
successfully, since a message pong
is found in its InChannel, after
which pi also terminates

Table 4.1: This is a suboptimal execution trace trace of ping-pong

This gives an idea of how the execution is run end to end to completion. However
as mentioned this represents the optimal execution trace for the given Ping-Pong
system. It turns out that the execution is only this efficient when for every send-
receive pair of processes in the system at any point of the execution, the send is
executed before. If this is not the case there will be extra steps required to reach
the end, as we show below in a suboptimal execution trace (Table 4.2), where upon
initialisation po is scheduled before the pi, and then again later reading pong is
attempted before it has been sent:

Step 1. The Process System
is created with an empty Run-
ning Queue and a number of
Executors ready to consume it.

Step 2. Two processes are cre-
ated: a Ping pi and a Pong po.
Importantly the spawning process
appends the processes onto the
Running Queue of the Process
System.
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Step 3. The options are the send
action by pi and the receive action
by po. Assume that po is picked,
the receive is attempted but fails
because no value is found on the
channel. As a result the process is
re-enqueued unchanged. Notice
that due to the non-deterministic
nature of threads this could hap-
pen more than once.

Step 4. The state is exactly the
same as above, but now assume
the send by pi is evaluated. This
of course is successful, it sends a
value to the channel shared with
po, and then appends the contin-
uation of pi, a receive action, back
on the RunningQueue.

Step 5. The receive by po is at-
tempted again, this time success-
fully, which causes the value sent
in the step before by pi to be re-
ceived, and the continuation of po
(a send action) to be re-enqueued.

Step 6. The options now are
a receive by pi and a send by
po. Assume receive is once
again attempted first. The
channel is empty and there-
fore the action fails, causing the
process to be re-enqueued un-
changed. Once again, non-
determinism could mean this
happens multiple times.
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Step 7. Now assume send by po
is executed. This sends a value
to the channel shared with pi. po
terminates

Step 8. Finally the pi is executed,
receiving the pong message suc-
cessfully and then terminating.

Table 4.2: This is a suboptimal execution trace trace of ping-pong

4.2.5 Takeaways

The key takeaway from this example is how likely failed receive actions can be in an
execution trace. Given an execution, there is only one ideal trace, and that is the
one in which there are no failed receive actions. This means that for each send-receive
pair of actions, the write actions is performed first.

This is because every time a receive action is evaluated before a write is performed
on its channel, it gets re-enqueued and will have to be re-evaluated, wasting time
on the first evaluation. However since there is always the possibility of the receive
being performed first, the likelihood of the execution being ideal decreases with the
number of send-receive pairs.

In fact it might be even worse. This assumes that in the sub-ideal case where we
unsuccessfully attempted receive first, we then immediately execute the send before
retrying the receive. As mentioned in the example trace this is not necessarily the
case. A failed receive could be attempted many times if for whatever reason the Ex-
ecutor responsible for handling the respective write is late or idle, and would unnec-
essarily slow the execution down, having Executors attempting and re-attempting
the receive action and giving less opportunity to other potentially successful pro-
cesses.

The inherent weakness of this rapid fire-and-miss approach is that the RunningQueue
might be filled with many of this failing In processes with no values ready in their
InChannels slowing down other processes that are ready to run. Solving this issue is
what motivated the next implementation.
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4.2.6 Final remarks

Looping and termination

Before moving on we are going to address the reason why dequeuing for Scheduling
Queue (Listing 4.2) returns an option–even though the dequeuing of the Running
Queue is blocking–is necessary to terminate the execution. In the original imple-
mentation, once a process evaluated to nil and had no future processes in its state,
the thread execution would terminate. Once all threads return, the system execution
is finished and the programs can terminate.

In this implementation however, the only signal that the system is terminated is
that the Running Queue is left empty, as once the processes evaluate to nil with no
future processes, nothing is rescheduled. However while this condition is necessary
to establish termination, it is not sufficient to be sure that is the case. The queue
could also be momentarily empty if for example not many process are left in the
system, so much that they all get dequeued by an Executor, however this should not
cause the system to terminate.

In order to address this situation we provided a kill (Listing 4.12) method to the
Process System, which the user can manually call when creating a finite system.
This method sets the alive flag to false, which is going to prevent the Executors
from continuing to loop and consume the Running Queue (Listing 4.4). It also sends
an interrupt to all the threads it spawned to run the Executors. Since we assume this
function is called when the execution is over and the Running Queue is empty, the
threads will be blocked, waiting on getting an element from the queue.

This is the reason behind the implementation of SchedulingQueue shown in List-
ing 4.2. When a sleeping thread receives the interrupt signal from the Process Sys-
tem it throws an InterruptedException which is caught and causes the queue to
return None. This, together with the interruption of looping due to the change to
false of the alive flag, in turn allows to gracefully terminate the Executors.

Listing 4.12: The method kill allows a process system to terminate cleaning all re-
sources

1 override def kill(): Unit = {

2 alive = false

3 threads.foreach { t =>

4 t.interrupt()

5 }

6 threads.foreach { t => t.join() }

7 }
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Usage of Process System

The Akka documentation discourages from creating more than one Actor System at
a time [15], but still allows it to cater for all use cases.

The same is true for Process Systems. Firstly, they are a relatively heavyweight
structure, being responsible for maintaining state in memory. Secondly they hold
the logic for efficient spawning of threads, however their logic doesn’t account for
other process systems running, because they are agnostic of each other. Creating
more than one Process System could cause them to starve each other of resources.

However, while most use cases would benefit from creating only one ProcessSystem

instance, we do allow for the creation of multiple instances to ensure any potential
use case can benefit from the use of Effpi.

4.3 The WaitQueue Implementation

While the execution of input-processes does not block on receiving like the original
runtime, it might still be the case that–if there are not many other processes in the
Running Queue–an In process is processed multiple times while no value has been
sent to its channel. Every time this happens the process is dequeued, a receive action
is attempted and if it fails the process needs to be enqueued again. This could happen
multiple times before the receive action is successful. This new implementation of
the runtime addresses this problem and it is inspired by the way Akka’s Dispatchers
[17] [18] work.

4.3.1 Dispatchers in Akka

As mentioned in the introduction Akka is an actor based framework. Actors schedul-
ing in Akka is handled by so called Dispatchers, and is based on the actors’ Mailboxes
[19] [20]. The key concept is that a Dispatcher stores a queue of Mailboxes, which
are only scheduled when they have data available. Another consequence of this
design is that Akka only pre-empts Actors execution upon input-actions.

4.3.2 Separate In process scheduling

In Effpi however we can pre-empt processes at any point, because the Executors re-
enqueue a process after every step of execution. This solution allows it to provide
more granularity of execution. However Akka’s reactive design was an inspiration
for a design that uses a double scheduling system: a general one similar to the
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Process System

inCh 1 inCh 2 inCh 3 inCh n...

Executor
InputExecutor
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InChannels Queue

Running Queue

Figure 4.4: Architectural diagram of the WaitQueue implementation. The Executors
consume the Running Queue and InputExecutors consume the InChannels Queue

one introduced in Section 4.2, and one specific to In typed processes, which would
alleviate the effect of the blind rescheduling illustrated before on the execution of
non In typed processes. We also wanted to be able to schedule In processes only
when data is available and try to reduce the need of blind rescheduling in general.

The outline of the execution strategy illustrated in Figure 4.4 is the following:

• InChannels can now store a queue of In processes that want to read a value
from the channel (Wait Queue).

• A new queue is added in ProcessSystem storing scheduled InChannels (In-
Channels Queue). A channel should be added to this queue whenever an In
receiving on it can potentially be executed.

• Like in the previous RunningQueue implementation (Section 4.2), the Execu-
tors consumes the queue of processes. However now they do not execute In

typed processes.

• InputExecutors consume the InChannels Queue. When a channel has a pro-
cess in its Wait Queue and a value ready to be received (that is when the
process can be successfully executed) it executes the the process. Then it ap-
pends the continuation back onto the Running Queue so that its execution can
be continued by the Executors.
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4.3.3 Changes to InChannel

Two changes are required to the InChannel and OutChannel traits and their im-
plementation. The first one is the ability to store a queue of process states inside
an InChannel. Unlike the queue in ProcessSystem however, this queue only really
needs to store In type processes, which is reflected in the more stringent type.

Listing 4.13: Modifications to the InChannel trait for the WaitQueue implementation

1 trait InChannel[+A] {

2 def enqueue(i: (Map[ProcVar[_], (_) => Process], List[() => Process],

In[InChannel[_], _, Process])): Unit

3 def dequeue(): Option[(Map[ProcVar[_], (_) => Process], List[() =>

Process], In[InChannel[_], _, Process])]

4 }

Once again, internally this is implemented as a Java LinkedTransferQueue. The
need for thread-safety comes from the fact that we want to dequeue and execute
multiple waiting processes in parallel when enough data is available on the InChan-
nel.

Listing 4.14: Implementations of enqueue and dequeue for the Wait Queue of an In-
Channel used by the runtime

1 trait QueueInChannel[+A](q: LTQueue[A]) extends InChannel[A] {

2

3 var pendingInProcesses = new LTQueue[(Map[ProcVar[_], (_) => Process],

List[() => Process], In[InChannel[_], _, Process])]()

4

5 override def enqueue(i: (Map[ProcVar[_], (_) => Process], List[() =>

Process], In[InChannel[_], _, Process])): Unit =

pendingInProcesses.add(i)

6

7 override def dequeue() = pendingInProcesses.poll() match {

8 case null => None

9 case head => Some(head)

10 }

11

12 }

The second change needed is to be able, given a specific OutChannel to obtain its
respective dual InChannel. This is reflected in the interface by adding the dualIn

method.
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Listing 4.15: OutChannel with the additional dualIn method to retireve the dual In-
Channel

1 trait OutChannel[-A] {

2 val out: OutChannel[A] = this

3 val dualIn: InChannel[Any]

4 def send(v: A): Unit

5 }

Without delving into dualIn’s implementation, it is important to notice that each
OutChannel has a single dual InChannel, and that therefore multiple calls of this
method return the same object.

4.3.4 Changes to ProcessSystem

The first fundamental architectural change is the addition of a new queue of InChannels
to ProcessSystem required to implement the new scheduling strategy.

The additions (highlighted in Listing 4.16) are very similar to already existing code.
A queue of InChannels, methods to access it and additional code in init to initialise
the InputExecutors that will consume the queue of InChannels.

Listing 4.16: Process System additions to perform the WaitQueue strategy of execution

1 trait ProcessSystem {

2 var waitingInChs = new SchedulingQueue[InChannel[ ]]

3

4 def enqueueWaitingInCh = waitingInChs.enqueue

5 def dequeueWaitingInCh() = waitingInChs.dequeue()

6

7 def init(threadsPerCore: Int): Unit = {

8 val numCores = Runtime.getRuntime().availableProcessors()

9

10 val numThreads = numCores * threadsPerCore

11

12 (1 to numThreads).foreach { c =>

13 threads += new Thread(new Executor(this))

14 }

15

16 (1 to numThreads).foreach { c =>

17 threads += new Thread(new InputExecutor(this))

18 }

19

20 threads.foreach{ t => t.start()}

21 }

22 }
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4.3.5 Changes to Executor

As a result of this new strategy, fastEval will need two changes in implementation,
one for the Out case and one for In.

Out

fastEval still performs the old functionality in case of Out, sending a value to the
OutChannel and appending the continuation of the process back onto the Running
Queue. However now it also schedules the dual of the current OutChannel to allow
the InputExecutors to consume it. The reason why this is potentially a good time
to let the InputExecutors attempt to execute an In process and perform a receive is
because the channel is guaranteed to have received at least one value. This argu-
ment is clearly true when just there are just one Executor and one InputExecutor,
because only one In process can be performed at a time and there is no contention.
However this still applies in a more parallel context with multiple Executors and In-
putExecutors with In processes potentially competing to consume values off a single
channel. This is because for each Out process that is evaluated by an Executor, one
value will be guaranteed to be present in the channel, and therefore if n Out sending
to the same channel have been processed, n values will be guaranteed to be avail-
able on it. The dual is obtained using the newly added dualIn function illustrated in
Listing 4.15, and then the channel is added to the list of waiting InChannels in the
Process System.

Listing 4.17: WaitQueue implementation of fastEval in the Out case

1 case o: Out[_,_] =>

2 val outCh = o.channel.asInstanceOf[OutChannel[Any]]

3 outCh.send(o.v)

4 lp match {

5 case Nil =>

6 ()

7 case lh :: lt =>

8 ps.enqueueRunning((env, lt, lh()))

9 }

10 val inCh = outCh.dualIn

11 ps.enqueueWaitingInCh(inCh)

In

This implementation changes drastically because, as described below, inEval now
covers the tasks that in the previous strategy were performed by fastEval. fastEval
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now simply ensures that when an In process is found and there is a potential read
action available, this is appended on the Wait Queue of the InChannel it wants to
read from and that the channel itself is appended to the InChannels Queue of the
Process System. This in turns means that the InputExecutors can consume the chan-
nel from the InChannels Queue, and find a process on the channel’s Wait Queue.
However there is still the possibility that a value has not yet been received by the
channel. This is possible if a send action has not been performed yet.

Listing 4.18: WaitQueue implementation of fastEval in the In case

1 case i: In[_,_,_] =>

2 i.channel.enqueue((env, lp, i.asInstanceOf[In[InChannel[_], _,

Process]]))

3 ps.enqueueWaitingInCh(i.channel)

4.3.6 InputExecutor

Now that the Executors contain the logic for scheduling InChannels, the InputExecutors
are left with the responsibility of dealing with the actual execution of In processes.
This means that an InputExecutor has a similar responsibility with respect to In

processes to that of the Executor to all other process types. As the latter contains
the logic to consume the Running Queue, so the former consumes the InChannels

Queue. Consequently the logic for keeping it running forever is very similar (List-
ing 4.19), with a loop controlled by the alive flag.

However in the InputExecutor logic there are two queues to consider, and notice-
ably, the logic is somewhat inverted from the previous implementations:

• It used to be the case that fastEval (but also the original eval) would en-
counter an In process and from it then the channel from which to receive a
value was established.

• In this implementation, on the other hand, the channel is established first when
it is consumed by the InputExecutor, and only then a process that wants to
perform a read over it is dequeued from the queue contained in the channel
itself.

The first queue encountered is the Process System’s InChannels Queue. Dequeuing
has a similar behaviour to Running Queue. In practice dequeuing is blocking and
therefore a value is always retrieved. The only exception is on termination for finite
systems, for similar reasons to those detailed in Section 4.2.6.

If a channel is returned, then the logic can continue leading to the second queue,
the Wait Queue of the channel. If the Wait Queue is empty and a process cannot be
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dequeued then the evaluation simply continues onto the next available InChannel.
However, if a process is found, then inEval is called to perform the evaluation.

Listing 4.19: WaitQueue logic to consume the InChannels Queue

1 override def run() = {

2 while (ps.alive) {

3 val maybeInCh = ps.dequeueWaitingInCh()

4 maybeInCh match {

5 case Some(in) =>

6 in.dequeue() match {

7 case Some(proc) =>

8 inEval(proc)

9 case None =>

10 ()

11 }

12 case None =>

13 ()

14 }

15 }

16 }

The implementation of inEval (Listing 4.20) is very similar to that of the In case
in fastEval for the RunningQueue implementation. If a value is successfully polled
from the channel, then the continuation of this process is enqueued back onto the
Running Queue of the Process System. In case the channel has not received a value
however the behaviour is now different. The process is re-enqueued onto the Wait
Queue of the InChannel, so that it can be retried in the future and the channel itself
is rescheduled.

Listing 4.20: WaitQueue implementation of inEval to execute In processes

1 def inEval(proc: (Map[ProcVar[_], (_) => Process], List[() => Process],

In[InChannel[_], _, Process])): Unit = {

2 val (env, lp, i) = proc

3 i.channel.poll() match {

4 case Some(v) =>

5 val cont = i.cont.asInstanceOf[Any => Process](v)

6 ps.enqueueRunning((env, lp, cont))

7 case None =>

8 i.channel.enqueue((env, lp, i))

9 ps.enqueueWaitingInCh(i.channel)

10 }

11 }
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4.3.7 WaitQueue strategy on Ping-Pong example

We use an example execution trace of the Ping-Pong system introduced in Listing 3.1
and used in Section 4.2.4 to illustrate how this strategy works (Table 4.3). Once
again, we do so without explicit assumptions on the hardware, just that it can per-
form parallel execution. It is useful to focus on how this implementation deals with
failed receive actions compared to the RunningQueue one.

Step 1. The Process System
is created with an empty Run-
ning Queue and a number of
Executors and InputExecutors

ready to consume it.

Step 2. The two processes pi and
po are spawned and added to the
Running Queue.

Step 3. The two available options
now are a send for pi and a receive
for po. If send is executed, a ”ping”
message is sent to po’s InChan-
nel, which is then appended onto
the Process System’s InChannels
Queue. Then pi’s continuation is
rescheduled.

53



Step 4. In this implementation
the state is more complex: the
InChannels Queue is also being
consumed and as such it requires
consideration when analysing the
execution. There is now the re-
ceives from pi and po on the Run-
ning Queue and po’s channel on
the InChannels Queue. Assume
the InputExecutor is faster, and
the channel is consumed first.
The receive action will be un-
successfully attempted after the
channel’s Wait Queue is found to
be empty. In this case the channel
is not rescheduled and the execu-
tion continues.
Step 5. Now the only available
choices are the receives from pi
and po. the latter is executed
first, and po’s channel is sched-
uled, with po appended to its Wait
Queue.

Step 6. The options now are
receive from pi on the Running
Queue and the channel from po
on the InChannels Queue. The
latter is executed first, and since
a value was sent to the channel in
step 3 and the receive process is
still to be processed the execution
is successful. The continuation of
po, a send is rescheduled onto the
Running Queue.
Step 7. Now there are a receive
from pi and a send from po. This
time receive is executed first. this
causes pi to be appended on the
Wait Queue of its InChannel, and
the channel itself to be appended
to the InChannels Queue.
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Step 8. The options are now send
from po or pi’s InChannel. Assum-
ing the InputExecutor is faster the
latter is considered first. Since
no value has yet been sent to the
channel the execution is unsuc-
cessful. However this time the
channel is re-scheduled to the In-
Channels Queue. Note that this
unsuccessful case, unlike that in
step 4, can be repeated an ar-
bitrary number of time depend-
ing on the internal scheduling of
the threads running the Executors
and the InputExecutors.
Step 9. The send from po is now
executed, it sends a value to pi’s
InChannel, and the channel itself
is scheduled. At this point po is
finished.

Step 10. Notice that now the In-
Channel for pi is present twice on
the InChannels Queue. However
this is irrelevant from a correct-
ness perspective. Both are picked
up by InputExecutors, but only
the first one to retrieve the sin-
gle process from the queue will
be successful. The other one will
simply flush out the other copy, as
the receive fails and the channel
will not be rescheduled (the state
is not shown it it would leave all
the queues empty).

Table 4.3: This is a suboptimal execution trace trace of ping-pong

4.3.8 Takeaways

While this strategy was originally supposed to remove the blind rescheduling of re-
ceives, it might still schedule redundant empty InChannels. Given a send-receive pair,
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if the Out process is executed first, then indeed the channel is not rescheduled and
the execution just waits for a dual In before rescheduling the channel. However if
the In is executed first, then the InputExecutors will keep rescheduling the channel,
every time they dequeue one that has no value available to be read.

Incidentally from the trace this seems redundant, as once the Out process is executed
it also schedules a second reference of the InChannel onto the InChannels Queue.
This ends up leaving an extra copy of the channel on the queue, which potentially
might never be removed as more references of each channel will added than are
removed. This might eventually cause memory issues at scale.

4.3.9 Early WaitQueue implementation leading to deadlock

Unfortunately however, while the rescheduling of the channel inside the InputExecu-
tor does seem at a first glance not only redundant but a clear hindrance to perfor-
mance, it is necessary for correctness. Without it there is the possibility for a subtle
deadlock scenario which unfortunately precludes completely the possibility of using
this strategy without any sort of blind rescheduling.

Consider the following example:

1. A send-receive pair is given, and the In process in is picked up first by an Ex-
ecutor, its channel c scheduled and then picked up by an InputExecutor.

2. A InputExecutor finds c, dequeues in and then attempts to read a value from
c. This is unsuccessful, however assume that by virtue of the host hardware
scheduling of the threads, the context switches before it can re-append in onto
c’s Wait Queue.

3. Now an Executor picks up the respective Out process out causing a value to be
sent to c before it is again scheduled onto the InChannels Queue.

4. A second InputExecutor takes c from the InChannels Queue and attempts to
dequeue an In process from it. This of course is unsuccessful as the first Inpu-
tExecutor has not re-enqueued it yet. At this point this InputExecutor simply
continues consuming the InChannels Queue forgetting c

5. Now back to the first InputExecutor, in is re-appended onto c’s Wait Queue and
then, without rescheduling, the InputExecutor continues its execution forget-
ting c

At this point in this scenario a value is present for c to read, and its Wait Queue
is not empty, meaning there are In processes that want to read that value, how-
ever the channel has been forgotten and will not be scheduled again. Rescheduling
upon failure to find a process in c’s Wait Queue solves the issue. In conclusion this
implementation mitigates, but does not completely solve the failed receives issue.
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4.3.10 Final Remarks

One last thing worth noting is that given an InChannel c the In processes trying
to read from it are gradually appended to its Wait Queue in order by fastEval.
However, in the case that no Out process has yet been processed for these Ins, when
the initial attempt of inEval triggered by the addition of c by the In case of fastEval
fails due to no value found on the channel, the processes will be re-appended, but
the concurrent nature of the scheduling of the threads running the InputExecutors
means that the original order is not guaranteed to be maintained.

While this has some effect in terms of fairness and performance, it does not affect
the correctness of the runtime. The fact that the Wait Queue is checked before trying
to get a value from the channel is intentional and important. Doing the opposite –
trying to read a value from the channel before checking for processes trying to read
it – would make correctness much harder to achieve.

The fact is, these processes are inherently concurrent and therefore in what order
they are evaluated does not actually matter. Yet the same is not true for values sent
to a channel. If two parallel processes p and q both send a value to channel in, the
order in which they are received is irrelevant. However in the case in which q is the
continuation of p, the order is very important.

This is why this strategy avoids reinsertions of values on the queue of values an
InChannel, and elects to do so on the Wait Queue, because the latter is more flexible,
making it more appropriate to use for checks.

4.4 Improved WaitQueue implementation

While the current implementation of InputExecutor reschedules the InChannels

when failing to poll a value from it, another possibility is to do so when failing
to find an In process in the channel’s Wait Queue (the change from the previous
implementation is highlighted in Listing 4.21).

Listing 4.21: WaitQueueImproved implementation of InputExecutor

1 override def run() = {

2 while (ps.alive) {

3 val maybeInCh = ps.dequeueWaitingInCh()

4 maybeInCh match {

5 case Some(in) =>

6 in.dequeue() match {

7 case Some(proc) =>

8 inEval(proc)

9 case None =>

10 ps.enqueueWaitingInCh(in)
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11 }

12 case None =>

13 ()

14 }

15 }

16 }

17

18 def inEval(proc: (Map[ProcVar[_], (_) => Process], List[() => Process],

In[InChannel[_], _, Process])): Unit = {

19 val (env, lp, i) = proc

20 i.channel.poll() match {

21 case Some(v) =>

22 val cont = i.cont.asInstanceOf[Any => Process](v)

23 ps.enqueueRunning((env, lp, cont))

24 case None =>

25 i.channel.enqueue((env, lp, i))

26 }

27 }

It is also possible in this strategy to omit scheduling the channel in the In case of
fastEval

Listing 4.22: WaitQueueImproved implementation of fastEval in the In case

1 case i: In[_,_,_] =>

2 i.channel.enqueue((env, lp, i.asInstanceOf[In[InChannel[_], _,

Process]]))

This change does not actually eliminate the failed receives issue, it simply changes
the scenario in which they occur. Previously this was when an In was scheduled
before any Out on its channel. Now this happens when an Out is scheduled before
any In.

However one potential advantage that comes from not scheduling the channel in
fastEval in the In case is that channels are never double-scheduled, as it was hap-
pening before. The exact dynamic why this is the case may not be intuitive, so we
produce two short traces (one with the old strategy and one with this new one) to
illustrate the difference. Assume two processes out and in with the first one sending
a message to the second one, which reads the value through its InChannel c.

With the original WaitQueue implementation:

1. in is processed by an Executor. in is appended onto c’s Wait Queue and c is
scheduled onto the Process System’s InChannels Queue.

2. out is processed now. A value is send to in and c is scheduled again.
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3. A InputExecutor picks up c and successfully executes in since a value is avail-
able to be read and there is in ready to receive it.

4. The leftover copy of c remaining on the InChannels Queue will need to be
flushed out by a InputExecutor. If this were in the context of a longer execution,
this would add an extra step to it.

With this current improved version:

1. in is processed by an Executor. in is appended onto c’s Wait Queue.

2. out is processed now. A value is send to in and c is scheduled onto the Process
System’s InChannels Queue.

3. A InputExecutor picks up c and successfully executes in since a value is avail-
able to be read and there is in ready to receive it.

This implementation takes one less step to fully execute. This is shown in Section 5.3
to affect performance at scale as it makes more efficient use of resources.

4.5 Multi-step Implementation

4.5.1 Multiple steps evaluation

This implementation takes a different directions and addresses the cost of context
switching between two consecutive calls to fastEval. As mentioned before fastEval

only performs one step of the execution of each process at a time. In between calls it
dequeues and enqueues elements on the Running Queue. This abundance in book-
keeping operations and frequent access to this queue which is stored in memory and
shared by multiple threads definitely represents an inefficiency in the execution.

Obviously some of this bookkeeping operations are required, because it is funda-
mental for the correctness of the runtime that the general state of the system is
maintained. Also some degree of context switching is necessary to provide fairness
and allow all processes to gradually execute.

However one possible solution would be to reduce the frequency of context switch-
ing to reduce its relative impact in performance. Reducing the time spent performing
context switching, which per se does not lead to advance in the execution, would
reduce the overall running time.
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4.5.2 Multi-step Executors

Our solution to do this was to allow the Executor to make several calls to fastEval

once a process is dequeued from the Running Queue, in order to perform multi-
ple steps of the execution. In practice this meant making fastEval tail recursive,
adding an extra argument stepsLeft to keep track of how many iterations are left
(Listing 4.23). Once this counter gets to zero, the base case of the function is reached
and the state of the continuation is rescheduled on the Running Queue.

This change was made to all the implementations described in earlier sections (Sec-
tion 4.2, Section 4.3 and Section 4.4), however we will take the Improved Wait-
Queue implementation as example to illustrate the changes.

Listing 4.23: fastEval from the WaitQueueImproved implementation with multi-step
execution

1 @annotation.tailrec

2 private def fastEval(

3 proc: (Map[ProcVar[_], (_) => Process], List[() => Process], Process),

4 stepsLeft: Int

5 ): Unit = {

6 if (stepsLeft <= 0) {

7 ps.enqueueRunning(proc)

8 } else {

9 val (env, lp, p) = proc

10 p match {

11 case d: Dep[_,_] => ...

12 case i: In[_,_,_] => ..

13 case o: Out[_,_] => ...

14 case f: Fork[_] => ...

15 case n: PNil => ...

16 case y: Yield[_] => ...

17 case d: Def[_,_,_,_] => ...

18 case c: Call[_,_] => ...

19 case s: >>:[_,_] => ...

20 }

21 }

22 }

The average change to each case is fairly minimal, mostly just substituting a previous
call to ps.enqueueRunning(contState) with fastEval(contState, stepsLeft-1),
where contState represents the state of the continuation process. This is the case
for example in the Out case:
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Listing 4.24: Out case of WaitQueueImproved fastEval with multi-step execution

1 case o: Out[_,_] =>

2 val outCh = o.channel.asInstanceOf[OutChannel[Any]]

3 outCh.send(o.v)

4 val inCh = outCh.dualIn

5 ps.enqueueWaitingInCh(inCh)

6 lp match {

7 case Nil =>

8 ()

9 case lh :: lt =>

10 fastEval((env, lt, lh()), stepsLeft - 1)

11 }

However the number of iterations left is not strict. In fact, in case of In the behaviour
remains the same as the modified InputExecutors implementation, and no further
recursive call is made. This is because the responsibility for handling In processes
and all other types is still separated to InputExecutors and Executors respectively,
and therefore once the Executor is forced to yield the process because it needs to
perform a read, it should just continue consuming the Running Queue.

Listing 4.25: In case of WaitQueueImproved fastEval with multi-step execution

1 case i: In[_,_,_] =>

2 i.channel.enqueue((env, lp, i.asInstanceOf[In[InChannel[_], _,

Process]]))

4.5.3 Multi-step InputExecutors

Similarly the same can be done to the InputExecutors, to make the evaluation of In
processes multi-step. The caveat is that a new iteration is attempted only in case of
successful receives. This means that as soon as an attempt fails, whether because
there are no processes in the channel’s Wait Queue, or because there is no value to
read on the channel, the recursive execution stops and the context switches.

Listing 4.26: inEval from the WaitQueueImproved implementation with multi-step
execution

1 @annotation.tailrec

2 private def inEval(

3 proc: (Map[ProcVar[_], (_) => Process], List[() => Process],

In[InChannel[_], _, Process]),

4 stepsLeft: Int

5 ): Unit = {

6 if (stepsLeft == 0) {

7 ps.enqueueRunning(proc)
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8 } else {

9 val (env, lp, i) = proc

10 i.channel.poll() match {

11 case Some(v) =>

12 val cont = i.cont.asInstanceOf[Any => Process](v)

13 cont match {

14 case i: In[InChannel[_], _, Process] =>

15 inEval((env, lp, i), stepsLeft - 1)

16

17 case _ =>

18 ps.enqueueRunning((env, lp, cont))

19 }

20 case None =>

21 i.channel.enqueue((env, lp, i))

22 }

23 }

While this implementation is likely to bring improvements in performance, it is also
important to notice that allowing for too many consecutive iterations reduces the
granularity in the concurrency of the execution. Granularity is an important prop-
erty to have in a framework for concurrent programming aiming not to be domain
specific, because some application need it to resemble real life systems. A default
value of 10 consecutive iteration steps is established, however we provide the possi-
bility to tweak this value, through a parameter in the ProcessSystem constructor.

4.6 Abandoned design: SleepingMap

Prior to any of the WaitQueue implementations, we explored another strategy to deal
with failed receives, illustrated in Figure 4.5. Instead of storing a queue of process
states into each InChannel and having a global (as in accessible to all threads) queue
of InChannels to be consumed by a scheduling agent, this designed kept into the
ProcessSystem a map from InChannel to list of sleeping processes states (Sleeping
Map). An In process that performed an unsuccessful receive was considered ready to
be put to sleep, and enqueued to the list of processes of the channel it tried to read.
A sleeping process would only be awaken after a send to the channel it needs to read
from had been performed, providing a chance of successful execution.

4.6.1 Map of sleeping processes

Firstly, in order to implement this strategy we need a map that can store a list of In
process states grouped by their InChannel. It also needs to be thread safe, since it
will be accessed concurrently by the Executors.
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Figure 4.5: Architectural diagram of the SleepingMap implementation. The executors
here consume and reschedule processes from a queue in memory

The main methods are put and recover. The former allows us to either append a
process onto a channels list or, if no prior mapping for that channel was found, to
create a fresh one with a list containing the new sleeping process.

The latter deals with awaking processes, and due to the maps structure has a slightly
more complex behaviour. A mapping is only returned if at least one sleeping process
is found. When a process state is recovered it is also removed from the list, and if
the list is empty the mapping is removed completely from the map. This function
has multiple steps and checks, but it is important for the overall correctness that
this whole function is executed atomically. Unfortunately the only way to guarantee
this is to wrap the whole function body in a synchronized block. This may have a
negative effect on performance.

Listing 4.27: SleepingMap used to store input-processes waiting on a value to read

1 class SleepingMap[K, V] {

2

3 val map = (new ConcurrentHashMap[K, List[V]]).asScala

4

5 def put(key: K, value: V): Unit = this.synchronized {

6 map.putIfAbsent(key, List(value)).foreach { v =>

7 map.replace(key, v :+ value)
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8 }

9 }

10

11 def recover(key: K): Option[V] = {

12 this.synchronized {

13 map.get(key) match {

14 case Some(v) =>

15 v match {

16 case Nil =>

17 map.remove(key)

18 None

19 case x :: Nil =>

20 map.remove(key)

21 Some(x)

22 case x :: _ =>

23 map.replace(key, v.tail )

24 Some(x)

25

26 }

27 case None =>

28 None

29 }

30 }

31 }

32

33 }

4.6.2 Changes to the Executor to deal with sleeping processes

In order to actuate this scheduling strategy, changes need to be made to the In and
Out cases of fastEval. Since all other types are not cannot be sleeping (like In),
nor can they cause a sleeping process to wake up, they remain unchanged. It is
worth remembering that this implementation was intended as an improvement on
the RunningQueue design, and so by ’unchanged’ we mean that those cases maintain
the same implementation of that strategy.

In

If a value is successfully retrieved from the channel, then the implementation is
unchanged, in that it reschedules the state of the continuation. However if the
channel could not provide any value, then the process is put to sleep on the map,
and it is not rescheduled.
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Listing 4.28: In case of fastEval using the Sleeping Map to handle input-processes

1 case i: In[_,_,_] =>

2 i.channel.poll() match {

3 case Some(v) =>

4 val cont = i.cont.asInstanceOf[Any => Process](v)

5 ps.enqueueRunning((env, lp, cont))

6 case None =>

7 val inCh = i.channel.asInstanceOf[InChannel[Any]]

8 val inProc = i.asInstanceOf[In[InChannel[_], _, Process]]

9 ps.putToSleep(inCh, (env, lp, inProc))

10 }

Out

In case of Out first a value is sent and the continuation of the current process is
rescheduled, just like in the RunningQueue implementation. Then however the dual
channel of the OutChannel to which the value has been sent is obtained (using the
dualIn function described in Section 4.3) we attempt to awake a sleeping process
waiting on a value from that channel. Whether a process will be found depends on
the scheduling order, and if any In processes had been previously attempted to be
executed. If such a process is found, it is immediately executed.

Listing 4.29: Out case of fastEval using the Sleeping Map to handle input-processes

1 case o: Out[_,_] =>

2 val outCh = o.channel.asInstanceOf[OutChannel[Any]]

3 outCh.send(o.v)

4 lp match {

5 case Nil =>

6 ()

7 case lh :: lt =>

8 ps.enqueueRunning((env, lt, lh()))

9 }

10 val inCh = outCh.dualIn

11 val inProc = ps.awakeSleeping(inCh)

12 inProc match {

13 case Some(proc) =>

14 fastEval(proc)

15 case None =>

16 ()

17 }

The reason to do this instead of, for example, rescheduling the In process on the
Running Queue, is that it decreases the likelihood that a fresh In channel steals the
value from the channel first causing the newly awaken process to go back to sleep.
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While this could potentially mean that it becomes more likely for all In to be briefly
put to sleep, it should decrease the likelihood of starving a single In process and
keeping it asleep for a long time.

4.6.3 How this leads to deadlock in the Ping-Pong example

While this strategy may work in some cases, it is not inherently safe. Below is
an example trace of such a scenario with two Executors (s1 and s2) handling the
execution of Ping pi and Pong po:

1. s1 picks po from the Running Queue. It attempts to read a ping message, but
none was sent. Now imagine that due to the inherent scheduling of threads of
the host hardware the context switches before po can be put to sleep.

2. s2 picks up pi and sends a ping message to po’s InChannel. It then checks
if for this InChannel there are any sleeping processes, but none are found and
therefore scheduled. The continuation of pi, a receive action for a pong message
is scheduled.

3. The context goes back to s1, which now puts po to sleep and which will now
wait to be awaken.

4. The system is now hung. po has a value available but it has not been resched-
uled, so it will never be able to read it. In turns pi is waiting for po to send a
pong message, but this is conditional on po receiving a ping first. Therefore the
system is in deadlock.

While this does not necessarily precludes the use of this general design, it unfortu-
nately makes this implementation unusable, and caused us to abandon the design.
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Chapter 5

Evaluation

In this chapter we first review the changes that surfaced to the level of the public API,
and what effect this has on the library, especially in terms of the correctness guaran-
tees it can provide. We also review and justify the design choices made throughout
the implementation that lead to the final design. We then analyse the performance of
the optimised implementations of the runtime introduced in Section 4 and compare
it to that of the original runtime. This allows us to highlight the improvements made
both in terms of scalability and performance across the board. We also compare the
different optimised implementations to identify their relative strengths and weak-
nesses and provides guidance to choose the best fit for a given use case. Finally we
provide the results of fine-tuning the default value of the thread-per-core parameter,
to justify our choice heuristically.

5.1 Changes to the public API

A fundamental prerequisite of this project was to provide an optimised implementa-
tion of Effpi’s runtime which could improve on the original implementation’s perfor-
mance, without trading off the correctness guarantees which the library can provide.
In Section 1.2 we established that the way to do so was to minimise changes to the
DSLs and the types they provide, as those are the part part of the library grounded
on the theory that allows to provide those guarantees.

Fortunately the runtime implementation proved to be an orthogonal part of the ar-
chitecture, and the typed structures created through the DSLs could be executed
without requiring any modification. This means that the optimised runtimes pre-
sented in Section 4 are able to provide the same guarantees as the original imple-
mentation.
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There were a couple of changes, independent of the DSLs, that surfaced to the public
API level:

• One is the necessity to explicitly instantiate a Process System before being able
to start spawning processes (or actors).

• The other one is the need to explicitly call the kill method of the Process
System to terminate its execution.

While we considered to provide a default implicit Actor System that could be avail-
able through imports (similarly to how one can use the default ExecutionContext
when using Futures and Promises in Scala), we decided that this was not necessar-
ily a bad change, given that Akka also requires the explicit instantiation of Actor
Systems [15].

5.2 Attempted and abandoned design choices:

Throughout the project there were two designs initially adopted that had to be later
abandoned. In both cases this was due to a lack of correctness in the implemen-
tation that would lead to deadlocks under certain conditions. This of course is not
acceptable as any design should provide some improvement in performance, but has
the definite prerequisite of correctness.

In the case of the implementation that makes use of a sleeping process map (Sec-
tion 4.6), the issue was due to not enough atomicity in the implementation of fastE-
val. The design itself is not necessarily completely flawed, however to ensure atom-
icity much of the code would have to be executed in synchronized blocks, which
would likely be detrimental to performance. The advantage of the two WaitQueue
strategies is that they avoided the issue in a slightly more elegant and flexible way,
with each channel being responsible of its own sleeping processes as opposed to a
global data structure. Furthermore it is a more tried approach, as it was inspired by
Akka’s Mailboxes and Dispatchers, an industry standard design to handle this type
of problem.

The other faulty design that was initially attempted was InputExecutors without
blind rescheduling within inEval. This solution had the advantage of only schedul-
ing when fastEval encountered an In or an Out process. Unfortunatelly, as illus-
trated in Section 4.3.9, this implementation allowed the runtime to cause deadlocks
under specific circumstances, and the only readily available fix unfortunately rein-
troduced the problem of failed receives. While as we will see this is generally still
an improvement on the RunningQueue implementation, and it is further improved
by the WaitQueueImproved implementation, it misses to solve a significant bottle-
neck to the runtime performance. Possible further improvements that would better
address this issue are presented in the future work section.
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5.3 Performance

First of all we analyse the performance of the different optimised implementations
(referred to as RunningQueue, WaitQueue and WaitQueueImproved) and com-
pare them to the original runtime (referred to as Original). The analysis is done
using a number of different benchmarks, each testing a specific facet of the runtime.
All of the benchmarks utilised for this analysis are based on the Savina Benchmark
Suite [13], which is widely used to test concurrency frameworks. RunningQueue,
WaitQueue and WaitQueueImproved all benefit from some level of multi-step exe-
cution, more specifically both the Executors and the InputExecutors have their num-
ber of maximum consecutive steps of iteration set to 10. Also note that all these
benchmarks have been run on a work station with the following characteristics:

• hardware specifics: 4 x Intel Core i7-4790 CPUs (3.60GHz), 8 hyperthreads,
16 GB RAM

• software installed: Java 1.8.0 172 (HotSpot 64-Bit Server VM), Dotty 0.7.0-
RC1, Ubuntu 16.04.

and that the results shown are the average of repeating each benchmark 30 times to
account for variance.

5.3.1 Chameneos

Overview

Chameneos [13] [14] models a peer-to-peer system. It features a central broker with
a public address (or channel in our case) which handles connecting the peers to each
other. Then there are the Chameneos, that is the peers of the system.

Each chameneos first communicates to the broker its wish to be paired with another
chameneos. The broker waits for two chameneos to make such a request, and then
provides each with the other’s address. At this point the two chameneos will send
each other their respective colour and start over. Once the chameneos receive the
other’s colour they use that information to mutate their own colour for the next
meeting (the details of how the colour mutation algorithm works are actually irrel-
evant for the purpose of this benchmark, as long as all the information it needs are
the colours of the two mated chameneos). A meeting is defined to be each time
the broker pairs two chameneos. The benchmark terminates after a specific num-
ber of meetings is reached. Note that for this specific benchmark the number of
meetings allowed is 25000 which is half the maximum number of chameneos tested.
Since each meeting involved two chameneos, this number gives at least a theoretical
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chance to all chameneos to meet at least once, even with the largest system tested,
which involves 50000 chameneos.
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Figure 5.1: Chameneos system: time of execution against number of chameneos. Both
scales are logarithmic. 25000 meetings allowed.

Results analysis

Figure 5.1 shows the results for the different implementations. The first thing worth
noting is how Original crashes with systems larger than 5000 chameneos circa. We
will see that this is about half the number for which it crashes in other benchmarks.
This is because under the hood the implementation spawns two concurrent processes
for each chameneos. This was necessary for two reasons:

• Since these benchmarks are originally meant to test actor based frameworks,
they have been implemented using the ActorDSL. Actors are supposed to have
a single Mailbox, and a Mailbox (which under the hood is an InChannel) can
only accept a specific type of message. However each chameneos needs to deal
with a message from the broker establishing the p2p connection, and one from
another chameneos sharing its colour.

• The implementation needed to keep into account that one of the two chame-
neos could be executed faster than the other. Given a pair of chameneos c1
and c2, c1 might receive c2’s address and send it its colour before c2 has even
received a response from the broker. Therefore the ability to receive the mate’s
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colour should not be dependent on having received the mate’s address from
the broker.

The full code of Chameneos referred to in this description can be found in Ap-
pendix A.

Another interesting fact about Original is that, at least initially, it performs signifi-
cantly worse than all other implementations. This is likely due to the large cost for
context switching with JVM threads.

Regarding RunningQueue, it steeply slows down as the number of chameneos in-
creases, to the point that Original catches up to it before crashing. This is likely due
to the fact that failed receives are appended back into an increasingly large queue
which therefore causes an explosion in complexity combined with the bottleneck
caused by the broker. If the broker process fails a receive, the whole system needs
to wait for it to make it to the front of the Running Queue before execution can
continue.

Lastly, while both WaitQueue and WaitQueueImproved show a reasonable perfor-
mance, WaitQueueImproved seems to perform consistently better by what seems
to be a constant factor. This could be due to the double-scheduling that occurs in
WaitQueue. While these copies are eventually flushed out, they may cause the In-
Channels Queue to be slightly larger at any point in time. This has two effects:

• Having these unnecessary copies of InChannels that need to be flushed out
reduces the relative time InputExecutors spend executing useful channels, thus
increasing the overall execution time.

• The queue is internally implemented using Java’s LinkedTransferQueues, which
under the hood implements all enqueue/dequeue operations using the same
private method xfer [7]. This method performs internally performs traversal
of the queue (although it is optimised to a certain extent). This means that the
performance of appending to a LinkedTransferQueue, and as a result to the
InChannels Queue and to the Running Queue, will be affected by the queue
size. The fact that WaitQueue keeps the queue size constantly larger than
WaitQueueImproved will cause scheduling of process states or channel to be
slightly less efficient.

We look now at the individual results to asses their variance (Figure 5.2). It seems
that the original runtime only varies significantly at the end of the plot just before
a crash occurs. This indicates that this implementation becomes less reliable with
larger systems. Given that for lower values it was outperformed by the optimised
implementation, Original simply does not seem like a good solution to handle p2p
systems.
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Figure 5.2: Performance results for the Chameneos benchmark

It is hard to accurately asses the variance of RunningQueue, because its perfor-
mance degenerates so dramatically that in comparison the deviation results fairly
small. However in this case variance is of little relevance, as the performance is
so considerably worse that the WaitQueue and WaitQueueImproved implementa-
tions (by almost a factor of ×1000) that it is clear that this implementation is not an
optimal solution to handle p2p systems.

Looking at Figure 5.1 we established that WaitQueueImproved seems to perform
slightly, but decisively, better than WaitQueue. However their performance is similar
enough that variance could make a difference. Large variance is not positive, as it
means unpredictability. If a solution performs better on average, but has extreme
variance in its results, it might actually be less convenient to adopt if worse case
performance is a concern. However in this case we can see that on average, but
especially with larger systems, WaitQueueImproved seems to have lower variance
in results, which establishes it as the likely best implementation for p2p systems.
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5.3.2 Counting Actor

Overview

Counting Actor [13] [1], unlike the other benchmarks, only spawns two processes,
one of which sendsN consecutive messages to the other. Its goal is to test throughput
as the number of messages changes.
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Figure 5.3: Counting Actor: time of execution against number of messages sent. Both
scales are logarithmic.

Results analysis

Figure 5.3 shows the results for the different implementations. Immediately it can be
noticed that the two implementations that faired worst in the previous benchmark
now perform best. In particular Original is the fastest strategy for this benchmark.
This might be due to the fact that there are only two processes in this system, each
of which runs in a thread. Given that there are only two processes and the level of
concurrency is low (unlike Chameneos) context switching between JVM threads is
good enough.

While WaitQueue seems to initially perform better than WaitQueueImproved, for
larger number of messages they converge to a reasonably equal performance. Once
again, similarly to Chameneos, this may be due to WaitQueue double-scheduling
InChannels. This is not a problem in terms of having to wait for a specific channel
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Figure 5.4: Performance results for the Counting Actor benchmark

to get to the front of the InChannels Queue, because given that there is only one
process receiving, all the extra copies are actually of the same channel. However
the negative effect that this larger queue size has on the speed of scheduling of
InChannels due to the implementation details of LinkedTransferQueue described in
the Result Analysis of Chameneos (Section 5.3.1), may affect the overall time of
execution.

Regarding RunningQueue, the reason it performs better than WaitQueue and Wait-
QueueImproved might be because there are only maximum two processes in the
Running Queue at any point in time, which likely makes the more sophisticated
strategy by WaitQueue and WaitQueueImproved not worth having the extra In-
Channels Queue and the extra steps required to use it.

For this benchmark the variance (Figure 5.4) is very limited for all the implemen-
tations. This simply confirms that Naive is actually the best implementation for
achieving large throughput in very small systems.
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5.3.3 ForkJoin Creation

Overview

This benchmark, based on its homonym described in [13], specifically measures
the cost of creating processes, by measuring the time required to have N processes
ready to execute. In particular, we want to check how long it would take to spawn
N processes in the worst scenario, which is when all the processes stay in memory
for long enough for the spawning to finish before the first process finishes executing.

However as soon as the process system is started, the Executors and the InputExecu-
tors start consuming processes. The only way to guarantee that this will be the case
is to use In processes, because they will block and wait for a value to be sent to the
channel they need to read. All other types would just immediately be executed by
the Executor and there would be no guarantee (in fact it would be quite an unlikely
occurrence if it happened) that all the processes are spawned before any process has
finished executing.
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Figure 5.5: Fork Join Creation system: time of execution against number of processes
created. Both scales are logarithmic.

Results analysis

Figure 5.5 shows the results for the different implementations. Predictably Original
crashes, however this time is at around 10000 processes.
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Interestingly the results for the optimised implementations are not the same, which
would be reasonable to expect given that they all start by appending processes to
the Running Queue.

This is likely due to the use of In processes in the implementation of the benchmark.
In fact WaitQueue and WaitQueueImproved will remove those In processes from
the Running Queue because they are not the responsibility of the Executors. While
this may, in the case of WaitQueue, increase the size of the InChannels Queue, it
would also leave less elements in the Running Queue. Since spawning relies on
appending process states onto the Running Queue, if the queue has smaller average
size the overall time required for spawning all the processes could be reduced, due to
the implementation details of LinkedTransferQueue – on which the Running Queue
is based – described in the Result analysis of Chameneos (Section 5.3.1).

From the plots in Figure 5.6 the only implementation that seems to have an in-
creasingly wider variance at larger scale seems to be WaitQueue. This is quite sig-
nificant because in terms of average performance WaitQueue and WaitQueueIm-
proved converge at higher scale, suggesting they are both valid implementations to
use for large concurrent systems.

However this variance suggests that WaitQueue’s performance is much less pre-
dictable. We can see that WaitQueueImproved takes a fairly consistent 400 millisec-
onds to spawn 100000 processes, with only few sporadic outliers. WaitQueue on the
other hand takes 200 milliseconds in the best case scenario, but can also realistically
take up to 700 milliseconds. This means that WaitQueueImproved may be a better
solution as it provides better worst case scenario performance.

5.3.4 Fork Join Throughput

Overview

This benchmark [13] aims to measure messaging throughput. Specifically, it ignores
the time of creation (which should be measured by Fork Join Creation) and focuses
on unidirectional messaging. There are M processes each receiving N messages.
There is a single process dealing with sending all of the M ×N messages, therefore
the ability of processes to deal with concurrent incoming messages is not tested in
this benchmark. Fork Join Throughput is vaguely similar to Counting Actor, in the
sense that they both test throughput. However Counting Actor focused on messages,
while this benchmark tests the effect of varying the number of processes.
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Figure 5.6: Performance results for the ForkJoin Creation benchmark

Results analysis

Figure 5.7 shows the results for the different implementations. The first thing worth
noting is how significantly worse Original is compared to the optimised implemen-
tations, even in the range before crashing. Just like in Chameneos, this might be due
to the high cost of context switching between JVM threads.

It is also interesting how, while in Chameneos RunningQueue was so slow Original
caught up with it before crashing, in this benchmark it performs quite well, to the
point that it catches up to WaitQueueImproved in terms of performance.

This could be due to the fact that in Chameneos each process performs both sends
and receives, while here there is only one process doing all the sending and, more
importantly, it does only sending. This means that even if a receive fails and that
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Figure 5.7: Fork Join Throughput system: time of execution against number of pro-
cesses consuming the messages. Both scales are logarithmic. 200 messages are being
sent to each process

process is rescheduled, nothing depends on it and therefore the system can continue
to advance its execution with other processes.

In fact, given that it does not have an extra queue and extra steps added by a more
sophisticated logic like in WaitQueue and WaitQueueImproved, just like in Count-
ing Actor, RunningQueue might even perform better at an even larger scale

Once again the slight gap in performance between WaitQueue and WaitQueueIm-
proved may be due to the double-scheduling of InChannels slowing down schedul-
ing for WaitQueue.

Analysing the plot of Figure 5.8 we notice that the only runtime implementation that
does not have significant variance in its results at large scale is Original. However
Original’s performance, even before crashing, is so significantly worse than that of
all other implementations, that its stability is not sufficient to make it comparable.

RunningQueue, WaitQueue and WaitQueueImproved all seem to have increas-
ingly larger variance as the system size grows. However RunningQueue has the best
results with its running times ranging between 3000 and 6500 milliseconds, while the
second best is WaitQueueImproved with a range of 4500 to 8000. From this results
RunningQueue is the best implementation to handle unidirectional throughput in
large concurrent systems.
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Figure 5.8: Performance results for the ForkJoin Throughput benchmark

5.3.5 Ping-Pong

Overview

The Ping-Pong system (based on [13] [8]) used in this benchmark is very similar
to that used in the examples throughout the implementation (explained in Sec-
tion 4.2.4 and described in Listing 3.1), with a pair of processes – Ping and Pong
– which communicate back and forth. However in this case the pairs communicate
back and forth for 200 times, and what is being tested is the time of execution as the
number of independent pairs in the system increases.

While this benchmark bears some similarity to Fork Join Throughput its goal is differ-
ent. It focuses more on the round-trip time required for processes to send a message
and receive a response. Furthermore, unlike Fork Join Throughput, for each process
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the sends are intertwined with receives, and the sends are also performed in parallel
by different processes.

101 102 103 104 105

Number of pairs

100

101

102

103

104

105

106

Ti
m

e 
(m

illi
se

co
nd

s)

original
runningqueue
waitqueue
waitqueueimproved

Figure 5.9: PingPong system: time of execution against number of pairs. Both scales
are logarithmic

Results analysis

Figure 5.9 shows the results for the different implementations. Once again Original
crashes at around 5000. This is because what is recorded is the number of pairs, and
each has a ping and a pong process.

RunningQueue performs not just as well but slightly better than WaitQueueIm-
proved.

In general, this good performance could be due to the pairs being are independent
of each other and therefore even if there is a failed receive that causes an In process
to be put to the back of the Running Queue, the system’s overall execution can
continue.

Specifically, the reason RunningQueue is slightly faster than WaitQueueImproved
may be due to the way multi-step execution is implemented. In RunningQueue both
sends and receives are executed by the Executor, which means that it can fully benefit
from the multi-step nature of fastEval and perform up the maximum number of
steps (unless due to thread scheduling the receive is delayed). However in Wait-
Queue and WaitQueueImproved when fastEval encounters and In process this is
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not executed directly, it is only set to be eventually processed by the InputExecutors
when its channel is scheduled. And when it is, after inEval executes the receive,
since the next process is a send, this is not immediately executed but it is scheduled
to be consumed by the Executors. This essentially robs these two implementations of
all the benefits of a multi-step evaluation. A potential solution is discussed in Future
Work (Section 6.2).

The even worse performance of WaitQueue could be once again due to the double-
scheduling of InChannels, which increase the average size of the InChannels Queue.
If there are many copies of a specific InChannel c scheduled, but an Out sending to it
is at the back of the Running Queue, this will likely slow down the InputExecutors.

The variance of the results for each implementation is shown in Figure 5.10. In
this case it seems that all implementations have reasonably consistent results, with
only slight increase in variance at larger scale. This confirms that RunningQueue
is the most apt solution for concurrent systems similar to Ping-Pong, with many
independent components requiring fast round trip time in internal communication.

5.3.6 Thread Ring

Overview

This benchmark [13] [2] instantiate a ring like structure where a token message is
passed around from member to member until the maximum number of hops allowed
is reached. Notably this benchmark’s execution is actually sequential regardless of
how many members (processes) there are in the ring. Its goal is to test the ability of
the different implementations to efficiently context switch between processes while
most of the system is hung waiting for a message.

Results analysis

Figure 5.11 shows the results for the different implementations. The first notable
detail of this plot is that right until it crashes due to too many threads being spawned,
Original seems to have the best performance out of all. This is probably because
when so many JVM are spawned, context switching becomes extremely expensive.

However it seems safe to assume that, considering scalability, the best implemen-
tation seems to be WaitQueueImproved. While it starts worse than all other im-
plementations, it actually seems to have constant complexity, remaining fairly un-
changed regardless the number of ring members.

On the other hand both WaitQueue and RunningQueue seem to have linear com-
plexity with regard to the number of ring members. This is an extremely significant
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Figure 5.10: Performance results for the Ping-Pong benchmark

difference, and it is likely due to the way the three optimised implementations deal
with In processes. Upon failure in receiving, RunningQueue reschedules an In pro-
cess to the back of the Running Queue. This means that even if immediately after a
value arrives on the channel that process needs to read, the whole queue of processes
will have to be consumed before it gets a chance. Similarly in WaitQueue, when the
processes are spawned (all of which but one are Ins) the first thing that happens
is that all their InChannels are scheduled, filling up the InChannels Queue, which
now is slowly consumed in order. However in WaitQueueImproved the scheduling
of InChannels is only done when a send is executed. This means that all the In

processes will not be stored in either queue, but will be dormant on their respective
InChannel’s Wait Queue, and therefore the scheduling will be much faster.

The only implementation whose performance results have considerable variance
(Figure 5.12) is WaitQueueImproved. However in Figure 5.11 we saw that its
performance is considerably better than any of the other implementation. We see
that for 50000 processes it takes it between 320 and 360 milliseconds to run (with a
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Figure 5.11: Thread Ring system: time of execution against number of ring members.
Both scales are logarithmic

few outliers at around 410 milliseconds). However the second most efficient imple-
mentation, RunningQueue takes around 190000 milliseconds to run, which is worse
by a factor of ×1000.

5.4 Fine tuning the default number of threads per core

The number of threads per core (which in turn determines the number of Executors
and InputExecutors) is a significant parameter to the library, which can affect its
performance. While we give the option to modify this parameter to cater for all
possible use cases, it is valuable to provide a sensible default value, which should be
optimal for the most common scenarios. In this section we explore the performance
of each runtime implementation introduced in Section 4 with varying number of
threads per core. We will proceed to reason by implementation, as a different default
value can be set for each if needed.

RunningQueue

Figure 5.13 shows that for Counting Actor and Ping-Pong, there is some variance in
performance using a single threads. However all other benchmarks’ results indicate
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Figure 5.12: Performance results for the Thread Ring benchmark

that performance decreases with the number of threads per core, and so does the
variance – and therefore the unreliability – of the results.

The ideal value that seems to yield good performance and low variance in all bench-
marks is 2 threads per physical core.

WaitQueue

Figure 5.14 shows that for Counting Actor and Ping-Pong, there is some variance in
performance using a single threads. However all other benchmarks’ results indicate
that performance decreases with the number of threads per core, and so does the
variance – and therefore the unreliability – of the results.
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The ideal value that seems to yield good performance and low variance in all bench-
marks is 2 threads per physical core.

WaitQueueImproved

The results are shown in Figure 5.15. ForkJoin Throughput seems to always have
some variance in the results, but especially with a single thread per core, which
also yields the worst performance. ForkJoin Creation has less variance in perfor-
mance, but one thread per core still yields the worst performance. The results from
Chameneos, Counting Actor and Ping-Pong show that performance decreases with
the number of threads per core. Thread Ring follows a similar trend, however a
single thread per core also yields to performance. Once again the ideal value seems
to be around 2 threads per physical core.
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Figure 5.13: RunningQueue results varying number of threads per core
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Figure 5.14: WaitQueue results varying number of threads per core

87



1 2 5 10 25 50
Threads per CPU core

0

10000

20000

30000

40000

Ti
m

e 
(m

illi
se

co
nd

s)

(a) Chameneos

1 2 5 10 25 50
Threads per CPU core

0

5000

10000

15000

20000

25000

30000

Ti
m

e 
(m

illi
se

co
nd

s)
(b) Counting Actor

1 2 5 10 25 50
Threads per CPU core

5

10

15

20

25

30

Ti
m

e 
(m

illi
se

co
nd

s)

(c) Fork Join Creation

1 2 5 10 25 50
Threads per CPU core

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Ti
m

e 
(m

illi
se

co
nd

s)

(d) Fork Join Throughput

1 2 5 10 25 50
Threads per CPU core

50

100

150

200

250

300

350

400

450

Ti
m

e 
(m

illi
se

co
nd

s)

(e) Ping-Pong

1 2 5 10 25 50
Threads per CPU core

4

6

8

10

12

14

Ti
m

e 
(m

illi
se

co
nd

s)

(f) Thread Ring

Figure 5.15: WaitQueueImproved results varying number of threads per core
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

We now discuss the outcome of the project relating it to the objective listed in the
Introduction (Section 1.2).

Objective 1: Preserving correctness

No change was required to the DSLs nor their types, and therefore the new runtime
designs provide the same correctness guarantees as the original implementation.

The only changes made that surfaced to the public API level is that before being able
to start spawning processes, it is necessary to instantiate a Process System and that
in order to terminate the execution of a program, the kill method of the Process
System must be explicitly called. We believe this is an acceptable change given that,
as mentioned in Section 4.2 where the Process System is introduced, this resembles
Akka’s Actor System, which is also generally explicitly instantiated.

Objective 2: Scalability

We achieved the first fundamental objective of this project – allow Effpi to run large
concurrent systems without the program becoming non-responsive – by decoupling
effpi-processes from JVM threads (Section 4.2). As evident from the benchmarks
results shown in the Evaluation in Section 5.3, all of our runtime implementations
have improved on that aspect compared the original version. It can be clearly seen
that while the original runtime crashes at around 10k processes, our implementa-
tions still work successfully at 50k-100k processes, and more.
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Objective 3: Performance

We improved speed of execution with respect to the original runtime by minimising
bookkeeping operations. In Section 4.3 and Section 4.4 we managed to make im-
provements to the overall performance by reducing the impact of scheduling input-
processes not ready to be executed. We did so having two separate scheduling sys-
tems for input-processes and for all other types of processes. This solution meant
that while scheduling input-processes not ready to execute can still slow down other
input-processes, the effect on processes of other types is alleviated.

Further success was achieved in Section 4.5 by reducing the relative time spent in the
execution performing context switching between processes. This is done by allowing
Executors and InputExecutors to perform multiple steps of evaluation of a process
before rescheduling it.

The results discussed in Section 5.3 show how we achieved an increase of speed of
execution of up to a factor of 100 (e.g. in the ForkJoin Throughput benchmark).

Objective 4: Customisability

We allow the users to customise the number of threads created per physical core
of the host machine, because depending on the use case, they might benefit from
tweaking that value. However we fine-tuned its default value to 2 as a consequence
of benchmarking, discussed in Section 5.4.

6.2 Future Work

Reducing the number of failed receives by avoiding blind rescheduling

This is a very important area of future improvement. Essentially the main goal
would be to avoid blind rescheduling inside the InputExecutor without incurring in
the deadlock described in Section 4.3.9

A potential solution (once again inspired by the implementation of Akka’s Mailboxes
[20]) involves using a state-machine to describe the state of each InChannel, to
capture the following three states: unscheduled, scheduled and running (scheduled
but currently being considered in the execution of an InputExecutor). Essentially
this would capture the deadlock situation just mentioned and, only in that specific
case, issue a rescheduling of the InChannel.

Keeping this state would also make possible to schedule only one reference to each
channel at a time. This would minimise the size of the InChannels Queue. Since
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this is internally represented as a LinkedTransferQueue, due to the latter’s imple-
mentation details described in the Result Analysis of the Chameneos benchmark in
Section 5.3.1, this could lead to better performance of scheduling.

Improve multi-step execution

In Section 5.3 we analysed how the current implementation is not optimal with
systems such as Ping-Pong, where a process performs receives alternated to any other
type of process. This is because it requires to keep moving the process from the
InputExecutors to the Executors, as now the scheduling responsibilities are fully
separated.

One solution could be to maintaining the scheduling of input processes separated,
but to provide both Executors and InputExecutors with the logic to evaluate all pro-
cess types. This for example would allow an Executor that encounters an input
process to evaluate it if ready to run, otherwise leaving it to the InputExecutors.
Similarly InputExecutors would be able able to execute any non-input process that is
part of the continuation of a scheduled input-process up to the maximum number of
consecutive steps. This would require to change the evaluation functions fastEval
and inEval to contain some overlapping logic.

Smart management of Executors and InputExecutors

A less clearly defined improvement could involve the instantiation of Executors and
InputExecutors. At the moment they are statically instantiated in fixed number,
however this is not necessarily always the best solution.

First of all it is unlikely that spawning the same number of Executors as InputEx-
ecutors is always the optimal strategy. Perhaps an analytical tool that parses the
process data structures and tries to guess the optimal Executors to InputExecutors
ratio could lead to better runtime performance.

Secondly there might be systems where, for example, at different times of execution
there are more (or less) input-processes. In such a scenario having Executors and
InputExecutors instantiated and terminated dynamically to optimise resource usage
might lead to better performance. This would probably require a runtime monitoring
system of the state of the Running Queue and InChannels Queue to establish which
type of scheduling system is under the most stress, and which could potentially yield
some spare capacity.
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Akka Integration

Given the spread of Akka and how well established it has become in industry, it
would be extremely beneficial for Effpi’s adoption to allow for integrated use. This
would enable systems of processes created with Effpi to intercommunicate with sys-
tems of Akka actors, thus immediately widening the number of existing projects that
Effpi could interact with.

At least an initial integration (the ability to send and receive messages from actor
to process and vice-versa) should not be too challenging. However some changes
would be required due to the addition made during this project to the OutChannel
trait, which at the moment requires a dualIn method, which Akka actors would not
be able to provide since actors do not have the concept of dual, as they are not based
on π-calculus and therefore do not use channels.

Formal proof of correctness of the new runtimes

Given the scope of this project, correctness was tested through testing and bench-
marking. This strategy was sufficient to spot the issues with the two abandoned
designs mentioned in Section 5.2, and at the same time no issue surfaced for the op-
timised implementation adopted. However this does not provide a formal guarantee
of correctness, which could be a potential future area of study.

Providing the ability to set time outs

A feature with great practical value is the possibility to set time outs on the maximum
time given to input-processes to receive a value. These are often used in practice for
sanity check on systems and, since the original runtime provided that feature, it
would be valuable to enable their use in the new runtime implementations too.

However since processes are now decoupled from JVM threads and their execution is
often suspended, a smarter strategy to keep track of the waiting times for each time
out would have to be introduced, potentially dedicating a whole thread for this. To
this purposes we could, once again, take Akka’s approach as inspiration.

Further scalability testing

Since the current benchmarks aimed at comparing the different implementations,
the size of the systems attempted never exceeded the hundreds of thousands of
concurrent agents. In order to asses the current limits on scalability testing should
be done with significantly larger benchmarks. This will likely require longer running
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times and more resources. In particular it might be necessary to run the JVM with
custom parameters, such as more heap space.

Fine-tuning the default value for maximum number of consecutive evaluation
steps

While this was beyond the scope of the project – and therefore the reasonable, but
somewhat arbitrary default value of 10 was chosen – it might be beneficial to fine-
tune this default value like it was done for the number of threads per physical core.
This is actually non-trivial, because in order to have a meaningful quantitative analy-
sis a large number of benchmarks would be needed, presenting different system sizes
and different granularity requirements. For the time being the ability to customise
this value is provided.
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Appendix A

Chameneos Benchmark full code

Listing A.1: Effpi implementation of the full Chameneos benchmark

1 object Chameneos {

2

3 implicit val timeout: Duration = Duration.Inf

4

5 // Convenience types for the messages exchanged ====================

6

7 enum Colour {

8 case Blue

9 case Red

10 case Yellow

11 }

12

13 case class Request(replyTo: ActorRef[Response], mate:

ActorRef[PtoPCommunication])

14

15 enum Response {

16 case Mate(replyTo: ActorRef[PtoPCommunication])

17 case Stop

18 }

19

20 enum PtoPCommunication {

21 case Col(colour: Colour)

22 case Stop

23 }

24

25 // Chameneos System ===============================================

26

27 type Broker = Rec[RecAt, Read[Request, (Read[Request,

28 SendTo[ActorRef[Response], Response] >>:

29 SendTo[ActorRef[Response], Response] >>:

30 Loop[RecAt]] | SendTo[ActorRef[Response], Response] >>:
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31 (Loop[RecAt] | PNil))]]

32

33 // DSL expression describing the behaviour of the broker

34 def broker

35 (maxMeetings: Int, numChameneos: Int)

36 (startTimeFuture: Future[Long], endTimePromise: Promise[Long]) =

37 Behavior[Request, Broker] {

38 var meetings = 0

39 var stoppedChameneos = 0

40 prec(RecA) {

41 Await.result(startTimeFuture, Duration.Inf)

42 read {

43 case Request(replyToA, mateA) =>

44 if (meetings < maxMeetings) {

45 read {

46 case Request(replyToB, mateB) =>

47 send(replyToA, Response.Mate(mateB)) >> {

48 send(replyToB, Response.Mate(mateA)) >> {

49 meetings += 1

50 ploop(RecA)

51 }

52 }

53 }

54 } else {

55 if (stoppedChameneos == 0) {

56 endTimePromise.success(System.nanoTime())

57 }

58 send(replyToA, Response.Stop) >> {

59 stoppedChameneos += 1

60 if (stoppedChameneos < numChameneos) {

61 ploop(RecA)

62 } else {

63 nil

64 }

65 }

66 }

67 }

68 }

69 }

70

71 type Chameneos = Rec[RecAt, Spawn[PtoPCommunication,

72 PtoPChameneos, SendTo[ActorRef[Request], Request] >>:

73 Read[Response, ((SendTo[ActorRef[PtoPCommunication], PtoPCommunication]

>>:

74 Loop[RecAt]) | SendTo[ActorRef[PtoPCommunication],

PtoPCommunication])]]]

75

76 type PtoPChameneos = Read[PtoPCommunication, PNil]
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77

78 // DSL expression describing the behaviour of a chameneos

79 def chameneos(broker: ActorRef[Request])(initColour: Colour) =

80 Behavior[Response, Chameneos] {

81 var colour = initColour

82 // println(s"Initial colour for $self is $colour")

83 prec(RecA) {

84 spawn (Behavior[PtoPCommunication, PtoPChameneos]{

85 read {

86 case PtoPCommunication.Col(matesColour) =>

87 colour = mutatedColour(colour, matesColour)

88 // println(s"The new colour for $self is $colour")

89 nil

90 case PtoPCommunication.Stop =>

91 nil

92 }

93 }) { ref =>

94 send(broker, Request(self, ref)) >>

95 read {

96 case Response.Mate(mate) =>

97 send(mate, PtoPCommunication.Col(colour)) >>

98 ploop(RecA)

99 case Response.Stop =>

100 send(ref, PtoPCommunication.Stop)

101 }

102 }

103 }

104 }

105

106 // This function handles the chameneos colour mutation

107 private def mutatedColour(colourA: Colour, colourB: Colour) = {

108 if (colourA != colourB) {

109 (colourA.enumTag + colourB.enumTag) match {

110 case 1 => Colour.enumValue(2)

111 case 2 => Colour.enumValue(1)

112 case 3 => Colour.enumValue(0)

113 }

114 } else {

115 colourA

116 }

117 }

118 }
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