Imperial College
London

MENG INDIVIDUAL PROJECT

IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Making Bitcoin Quantum Resistant

Supervisor:

Author: Prof. William Knottenbelt

Dragos Ilie (diil4) Second Marker

Prof. Kin Leung

June 18, 2018

Abstract

Quantum computers are expected to have a dramatic impact on numerous fields,
due to their anticipated ability to solve classes of mathematical problems much more
efficiently than their classical counterparts. This particularly affects cryptographic
systems involving integer factorisation and discrete logarithms, such as the Rivest-
ShamirAdleman or Elliptic Curve cryptosystems.

Bitcoin is a decentralised digital currency system, which was introduced by the
pseudonymous Satoshi Nakamoto in 2008. Its conception was enabled by the use of
two cryptographic primitives: hash functions and public-key cryptography.

In this paper we consider the threats a quantum-capable adversary could impose
on Bitcoin, which currently uses the Elliptic Curve Digital Signature Algorithm
(ECDSA) to sign transactions and ensure immutability.

We then propose a simple protocol update, structured as a commit—delay-reveal
scheme, which allows users to securely move funds secured by the now vulnerable
ECDSA into a quantum-resistant digital signature scheme. The transition protocol
functions even if ECDSA has already been compromised. While our scheme requires
modifications to the Bitcoin protocol, these can be implemented as a soft fork.

Acknowledgements

I would like to start by thanking Research Associate Iain Stewart of the Cryptocur-
rency Research Centre at Imperial College London, for numerous clarifications and
discussions, without which this work would not have been possible. He consistently
contributed to deepen my understanding on the subject while allowing me to focus
on whichever aspect of the work I wanted.

I would also like to express my sincere gratitude to my thesis supervisor Prof.
William Knottenbelt for his continuous support, for pushing me to publish the
theoretical part of this work in the Royal Society Open Science Journal, and most
importantly, for encouraging me to pursue a PhD. degree. His availability in helping
me was really far beyond expectations.

Furthermore, I would like to thank PhD. students Alexei Zamyatin and Sam
Werner with whom I have co-authored the aforementioned journal paper. Together,
we gracefully overcame the various challenges encountered, thus producing an ele-
gant solution.

Finally, I must convey my absolute appreciation to my parents and girlfriend for
their inexhaustible support and unceasing encouragements throughout this venture.

Contents

L1 Problem and Motivationl
L2 Contribution
IL.o Objectivey e e e e e
2 background
.1 Elhptic Curve Cryptography
E.1.1 Riiptic Curve Arithmeticy
E.1.2 Rliliptic Curve Public-Frivate Kkeyy
R2.1.3 Elliptic Curve Digital Signature Algorithm (ECDSA)
E.2 dSome Cryptographic FPrimitives Used In Bitcomny
£.2.1 Cryptographic Hash tunctiond
222 MNMerkle Ired 000000
P33 Rifcoml
£.0.1 Dblockcham lechnology
o2 bitcom Networkl
Koo bBitcomn lransactiond L L Lo Lo 00
£.0.4 Iransaction Litecyeldo L Lo
£.4 Quantum Computingo
241 Mathematical Frameworkl
£.4.2 Dbasics of Quantum lheoryl.
£.4.0 Quantum Algorithmg
E.0 Post-Quantum Cryptography
P FPost-Quantum bitcoin
B.1 Attacks on Prootf Of Work (PoW)
b2 Afttackson HWODSA . . L L . L .
b.2.1 Public Key unvellingl
b.2.2 lLive lransaction Hijacking
b Hstimated Lossed 0L L oL e e
b.4 Hindering lransition to Quantum kesistancd
4 ‘lransition to Quantum Resistance

A1 Protocol Overviewlo
ML Commitl e e e
/]) 5, [
BET3 Reveal e
A.2 An Alternative Interpretation or QRWitf
A2.1 Flexabilityl oo
Bo HKeal (Case Scenariod oo e
U4 Standard heveal lransactionl

13

15
15
16
18
18
22
23
27
28
29
33
37
41

44
44
46
46
47
48
49

CONTENTS

p__Implementation
p.l Quantum hesistant Signatures
p.2 QRWi1t Implementation
p.2.l Commit Stagd
p.2.2 Reveal dtagdo
p.2.0 backwards Compatibility]
bhZ24 Version Bifd L L L L Lo e e e e e e
b helated Work
b.l Johnson Lau’s lwo-dtage Commitment
b.2 11mm kumhng’'s Committed lransaction
bo Fawkescoml L L L L L
I[[_kKvaluationl
[/.1 "l'heoretical Analysiy
/.2 Implementation Analysid
Il.2.1 Unmit Testingo

I(.2.2 Manual lesting|

B _bFuture Work

.1 Commit Multiple Keyd
11 Merkle Pair-"1red

B.2.1 User-Conngurable Commitment Location

B.o User-Conngurable Delay

8 _Conclusion

59
29
61
61
64
68
68

70
70
71
71

73
73
74
5
76

79
79
79
81
81
81

84

Section 1: Introduction

In this paper we approach the issue of integrating Bitcoin in a post-quantum world.
One of the aspects, for which Bitcoin is regularly praised is the security guarantees
it offers. However, with recent developments in the quantum computing research
area, it appears that one of the core cryptographic primitives, on which the whole
security model relies, is highly vulnerable. However, the system was designed in
such a modular and extensible fashion, that it can be smoothly recovered with little
modifications to the existing system.

In this paper we offer a protocol update called QRWit (QuantumResistantWit-
ness), as inspired by SegWit [40]. We propose a three stage, commit—delay-reveal,
scheme that allows Bitcoin users to safely spend their non-quantum-resistant funds
and secure them under a quantum-resistant cryptosystem.

1.1 Problem and Motivation

Bitcoin was introduced by the pseudonymous Satoshi Nakamoto in 2008 [47].
It can be described as a set of standards, ideologies, protocols and technologies
that form the basis of a decentralized digital currency system. The units of digital
money are called bitcoins and their ownership can be transferred to other partici-
pants through transactions. Transactions are signed by the sender using ECDSA, an
algorithm based on the elliptic curve public-key cryptosystem. Users communicate
to each other, broadcasting transactions, via a peer-to-peer network characterised by
the lack of a central authority governing the state of the system. Participants main-
tain a list of all historic transactions, aggregated in blocks, in a distributed public
ledger called the blockchain. Blocks are linked via the hashes of their predecessors,
thereby providing strong guarantees for the immutability of the transaction history.
Miners, a subset of the participants, validate transactions and solve a computa-
tionally expensive puzzle called Proof-of-Work (PoW) to create blocks. For their
services, they are rewarded with fresh (minted) units of the underlying cryptocur-
rency and with transaction fees. The dynamically changing set of pseudonymous
participants establishes agreement on the current state of the system by considering
only the longest chain of blocks (main chain), thus monetizing mining only on top
of the main chain.

Quantum computers (QCs) theoretically appeared about 40 years ago, but rel-
atively recent breakthroughs have placed the idea in the public eye once again. One
such breakthrough, with a direct impact on Bitcoin’s security, is Peter Shor’s poly-
nomial time quantum algorithm [60], which in its subsequently generalised form can
break ECDSA. Although the early generations are not scalable enough to affect Bit-
coin, various alternatives for the architecture of QCs are being considered, tested

4

1.2. CONTRIBUTION

and implemented [69, 22, 68]. As more entities enter this growing research area,
it seems increasingly likely that powerful QCs will emerge in the near future. A
sudden improvement in the approach towards scaling might lead to a powerful QC
appearing virtually overnight.

To this end, the Bitcoin community must be prepared to transition to a quantum-
resistant signature scheme. Post-quantum cryptography is an area of research with
substantial history and many different approaches are still being pursued and con-
sidered. Although such cryptosystems exist theoretically, not many satisfy the low-
bandwidth, space efficiency, and scalability requirements of Bitcoin. Furthermore,
even if a suitable quantum-resistant signature scheme is found and deployed in Bit-
coin, the issue of safely transferring ECDSA protected funds to the new signature
scheme remains. In particular, the scenario in which the transition has to be done in
the presence of quantum-capable adversaries must be taken into consideration and
solutions to overcome this problem must be developed as soon as possible.

QRWit comes as response to exactly this issue. Moreover, while we appreciate
many Bitcoin believers are confident that QCs will not affect Bitcoin any time soon,
the need for QRWit remains as ECDSA secured funds should be recoverable even in
the distant future when QCs will become everyday gadgets. As a digital currency
system, Bitcoin has to guarantee backwards compatibility such that users who leave
their funds untouched for extended periods of time can still recover them at any
point they wish.

1.2 Contribution

On these grounds, a protocol that allows Bitcoin users to safely consume funds
backed by ECDSA even in the presence of a quantum-capable attacker, should be
proposed. Consequently, we propose QRWit, a commit—delay-reveal protocol for
the secure transition from Bitcoin’s current signature scheme to a quantum-resistant
analogue, applicable even if ECDSA has already been compromised. Independent of
quantum computing, QRWit can be generally applied to react to the appearance of
any other vulnerabilities rooted in Bitcoin’s public-key cryptography. Furthermore,
unlike other proposals, we emphasise the necessity of a substantial delay phase to
provide strong guarantees against adversarial chain reorganisations.

We would like to note that the theoretical work we present here has already
been redacted in a paper co-authored with members of the Cryptocurrency Research
Centre of Imperial College London [62]. The paper has already been accepted for
publication in a special issue of the Royal Society Open Science journal on Blockchain
technology and is due to appear shortly after this work is submitted.

In support of our theoretical work and analysis, we have developed a prototype
implementation for QRWit, which we describe in detail in Section BH. We will show
how the changes we propose can be implemented as a soft fork using a similar
approach as, for example, SegWit [40].

1.3. OBJECTIVES

1.3 Objectives

At the beginning of the project, we set the following goals. To clear away any
suspense and to calm the reader’s curiosity, we will also mention in what proportion
we managed to achieve them.

1. Develop a scheme that can safely transition ECDSA secured funds to quantum
resistance. This goal was certainly achieved as we will show throughout this

paper.

2. Publish a paper on this scheme. We set this goal because we noticed that
there are no other papers or well defined proposals for how to solve this dire
problem. As mentioned, we achieved this, as our paper [62] was accepted for
publication.

3. Optimise the scheme to maximise usability (i.e. flexibility, costs, transition
time). This goal was partly achieved. We managed to create a completely
flexible scheme that allows consumption and creation of any type of transaction
outputs. Furthermore, we believe the costs are minimal as no scheme involving
less than two transactions could offer the same security guarantees. On the
other hand, we recently discovered a further modification to our scheme that
would allow for the transition time to be user configurable, thus allowing for
even more flexibility. Therefore, we can say that the current implementation
of QRWit can be optimised further as we explain in Section B.

4. Give a prototype implementation of QRWit in Bitcoin. This goal was also
partly achieved. The current implementation successfully implemented all the
new protocol updates, but we did not manage to fully update the relaying
mechanism to ensure communication with un-upgraded clients. Although this
is not a hard requirement of the Bitcoin consensus protocol as upgraded nodes
represent a majority so the consensus is still established, it would have been
a nice addition to our scheme.

The remainder of this paper is organised as follows. Section 2 presents the back-
ground knowledge necessary to understanding the core problem and the solution. In
particular, we give a somewhat formal and extensive introduction to elliptic curve
cryptography, quantum computing, Bitcoin, and post-quantum cryptography. In
Section B, we present all the alternative proposals of which we became aware while
working on this project. Having covered the basic theory, we are in a position to
fully describe the impact QCs have on Bitcoin (i.e. vulnerabilities uncovered, attack
models and their feasibility), in Section B. Consequently, in Section @ we propose a
protocol for the transition from Bitcoin’s ECDSA to a quantum-resistant signature
scheme and address certain concerns that the community might have (e.g. costs,
flexibility, time frame). The specific prototype implementation demonstrating the
workings of our protocol is given in Section H and its effectiveness, correctness, and
scalability is assessed in Section [. Furthermore, we present some extension possibil-
ities and specific optimisations that will improve the overall usability of the scheme
we suggest, in Section B. Finally, we conclude this report with Section B.

Section 2: Background

In this section we briefly present the basic concepts needed to understand the rest
of the material. We will use these building blocks to explain the problem our work
is aiming to solve and, in doing so, we will construct a clear image of the threats
that quantum computing is posing to Bitcoin.

Firstly, we will take a look at elliptic curve cryptography which is the mechanism
that ensures Bitcoin users maintain control of their funds and which is the main
vulnerability from the point of view of a quantum-capable attacker. Secondly, we
will go over the main aspects of Bitcoin that are relevant to understanding the
problem and our solution. Then, we will cover the basics of quantum computing
and give two examples of quantum algorithms that are of interest in the context of
this paper. Finally, we will present some alternatives to elliptic curve cryptography
that are believed to be secure even in the face of quantum computers.

2.1 Elliptic Curve Cryptography

Public-key cryptography is the first cryptosystem that relies on number theory rather
than simple substitutions or permutations. Such cryptosystems are intrinsically
asymmetric, requiring the use of two keys to encrypt and decrypt, thus providing a
solution to the problem of secret key sharing. The concept was publicly introduced
in 1976 by Whitfield Diffie and Martin Hellman [24] and one year later Ron Rivest,
Adi Shamir and Len Adleman leveraged the intractability of factoring large integers
to realize the first practical implementation: the RSA cryptosystem [b5].

Elliptic curve cryptography (ECC) is a form of public-key cryptography devel-
oped in 1985 by Neal Koblitz and Victor Miller [37]. While it provides the same
functionality as RSA, ECC’s security relies on another hard mathematical problem:
the elliptic curve discrete logarithm problem (ECDLP). At the moment, the most ef-
ficient known classical algorithms for solving ECDLP have fully exponential runtime
complexity [44] which is an improvement over the subexponential-time algorithms
that can factor large integers [39]. Thus, the same level of security can be achieved
with smaller keys in elliptic curve systems than in RSA. As smaller key sizes imply
a more efficient use of power, bandwidth, and storage, many applications, including
Bitcoin, make use of ECC.

The remainder of this section is based on Darrel Hankerson’s, Alfred Menezes’,
and Scott Vanstone’s book "Guide to Elliptic Curve Cryptography" [30].

2.1. ELLIPTIC CURVE CRYPTOGRAPHY

2.1.1 Elliptic Curve Arithmetics

Definition 1 (Abelian Group)
An abelian group (G, *) consists of a set G with a binary operation x : G x G — G
satisfying the following properties:
1. Closure: Ya,b € G we have that axb € G
Associativity: a* (bxc) = (axb)xc Va,b,c € G.

FExistence of an identity: de € G such that axe =exa =a Ya € G.

Ezxistence of inverses: Ya € G 3b € G, called the inverse of a, such that
axb=bxa=ce.

5. Commutativity: axb = bxa Va,b € G. This property is required for a group
to be abelian.

Remark 1 (Exponentiation)
For any group, we will denote exponentiation to mean repetitive applications of the
group operation on the same element. i.e. gt = gx---%g.

t

Definition 2 (Order of a Group)
When G is a finite set, the group is called a finite group and the number of elements
in set G is called the order of the group.

Definition 3 (Cyclic Subgroups)
If (G, %) is a finite group of order n and g € G, then the smallest positive integer t
such that g' = 1 is called the order of g and the set

(9)={g":0<i<t—1}

of all powers of g is itself a group under the same operation as G, and is called the
cyclic subgroup of G generated by g.

Definition 4 (Cyclic Groups)
If G has an element g of order n, then G is said to be a cyclic group and g is
called a generator of G.

Definition 5 (Field)
A field is a set F' together with two operations, addition (denoted by +) and multi-
plication (denoted by -), that satisfy the usual arithmetic properties:

1. (F,+) is an abelian group with (additive) identity denoted by 0.

2. (F\ {0},-) is an abelian group with (multiplicative) identity denoted by 1.

3. The distributive law holds: (a+0b)-c=a-c+0b-cVa,b,c € F.

As for groups, the field is said to be finite, if the set F' is finite. The order of the
field is the number of elements in set F'.

2.1. ELLIPTIC CURVE CRYPTOGRAPHY

Theorem 1 (The order of a finite field is a prime power)
There exists a finite field F' of order q if and only if q is a prime power, i.e. ¢ = p™
where p is a prime number called the characteristic of F' and m is a positive integer.

Theorem 2 (Finite field isomorphism)
For any prime power q, there is essentially only one finite field of order q.

Informally, this means that any finite fields of order ¢ has the same structure of
elements (maybe the labelling differs). Hence, we say that any two finite fields of
order ¢ are isomorphic and denote such a field by Fj,.

Definition 6 (Subfields and Extension fields)
A subset k of a field K is a subfield of K if k is itself a field with respect to the

operations of K. In this instance, K s said to be an extension field of k.

Definition 7 (Elliptic Curve)
An elliptic curve E over a field K is defined by an equation

E:y? + a1xy + asy = 3 + asxs + aux + ag
where ay, as,az, as, a6 € K and A = —d3dg — 8d3 — 27d2 + 9dydydg = 0 with
dy = a% + 4day, dy = 2a4 +aras, dg= a§ + 4dag,
dg = a%% + 4dasag — ar1asay + a2a§ — ai
If L is any extension field of K, then the set of points on E is
E(L)={(z,y) € L x L:y* + a1zy + asy — 2° — apx® — a4z — ag = 0} U {00}
where 0o 1s the point at infinity.

Remark 2 (Comments on Definition @)
1. The equation of an Elliptic Curve is called a Weierstrass equation.

2. E is defined over K because the coefficients aq, as, az, as, ag of its defining equa-
tion are elements of K. Note that if E is defined over K, then E is also defined
over any extension field of K, by Definition .

3. The condition that A = 0 ensures there are no points at which the curve has
more tangent lines.

4. The point oo is the point at infinity and it lies on any vertical (parallel with
the line of equation: x = 0).

5. The points on E are the points (x,y) that satisfy the equation of the curve and

whose coordinates are in L. oo is considered a point on all extension fields L
of K.

Definition 8 (Simplified Weierstrass equations)
Two elliptic curves E1 and Es defined over K are said to be isomorphic over K if
Ju,r, s, t € K,u # 0, such that the change of variables in the respective Weierstrass
equations:

(z,y) = (x4 7, u’y +u’sz +t)

transforms equation Ey into equation FEy. This transformation is called an admis-
stble change of variables.

2.1. ELLIPTIC CURVE CRYPTOGRAPHY

Due to Definition B we can drastically simplify the elliptic curve equation. De-
pending on the characteristic of the field K there are three simplifications that can
be made. If the characteristic of K is not equal to 2 or 3, then the admissible change
of variables:

(z.1) = T — 3a? — 12a27 y —3mzr atdayay — 12a3
36 216 24

transforms E to the curve:
y2=x3+ax+b
where a,b € K and the discriminant becomes A = —16(4a® + 27b%).

In cryptography, the characteristic of K has to be large to ensure security, hence
this simplification can certainly be made and is the usual form elliptic curves appear
in domain literature.

Below, in Figure P71, are two elliptic curves over the field (R, +,) where addition
and multiplication have the usual meaning. On the left we show the elliptic curve
used in Bitcoin.

Y)

(a)E:y?=a®+7 M) E:y?=a3—-422x+3

Figure 2.1: Two elliptic curves over the infinite field (R, +,-), i.e. the real numbers.

10

2.1. ELLIPTIC CURVE CRYPTOGRAPHY

Elliptic Curve Point Addition

Geometrically, elliptic curves exhibit some interesting properties. Until now we
have described the set of points F(K) of an elliptic curve E defined over a field K.
Further, we define an addition rule over E(K) to form an abelian group with oo
serving as its identity. This group structure is used in the design of elliptic curve
cryptographic systems as the elliptic curve digital logarithm problem is defined over
it.

Before we give the formal group law of elliptic curves, we would like to show its
graphical properties. Hence, addition of elliptic curve points is achieved through the
following rule. For a graphical representation see Figure 224 below.

Definition 9 (Geometric Representation of Elliptic Curve Group Law)
The sum QQ = P+ R, is defined geometrically through the chord-and-tangent rule
as follows:

Draw a line through P and R. This line intersects the elliptic curve E at a third
point (—Q). Then Q is the reflection of this point about the X-axis.

Remark 3 (Special Cases)
1. When P = R the line through P and R s a tangent of E.

2. For a point P = (x,y), the point P' = (x, —y) is called the negative of P, i.e.
P = —P' and their addition is, as expected, the identity element oo.

Figure 2.2: Geoemetric representation of elliptic curve addition on two different
curves. In both cases we show how to compute P + R,2P and P — P.

11

2.1. ELLIPTIC CURVE CRYPTOGRAPHY

To give a formal description for the operation above we define the elliptic curve
group law:

Definition 10 (Elliptic Curve Group Law)

The group operation on points of E is represented by '+’ and is defined as follows.
If Pe E then P+ 00 =00+ P = P as oo is the identity element.

If P=(x1,y1), R = (x2,y2) € E then:

P+R= o0 when ($‘2>y2) = (21, —1y1),
(r3,y3) otheruwise,

where x3 = * — (z1 + x2),y3 = M1 — 23) — U1

Y2 — if P#R,
To — T
\ =
2
Brita) p_pg
2y,

Note that all operations are performed over the field K.

Elliptic Curve Discrete Logarithm Problem (ECDLP)

Using all the above theory, we are finally in a position to introduce the elliptic curve
discrete logarithm problem, whose hardness is crucial for the security of any elliptic
curve cryptographic scheme. The ECDLP belongs to a class of problems called the
Hidden Subgroup, hence we will first show what this subgroup refers to by noticing
the following:

Remark 4 (Elliptic Curve subgroup of P)

Given an elliptic curve E defined over a finite field Fy, and the elliptic curve group
law denoted as +, we can define the abelian group (E(F,),+). In respect to this
group, we have from Definition @ any point P € E(Fy) is a generator of a cyclic
subgroup (P) of some order n.

Definition 11 (ECDLP)
For some Q € (P), find the integer | € [0,n — 1] such that Q = P' =P+ ...+ P.
———

l
The integer | is called the discrete logarithm of Q) to the base P, denoted | =logp Q.

Remark 5 (Exponentiation or Multiplication)
Because exponentiation refers to repeated additions here, we will use multiplication
from now on to represent it.

Remark 6 (Hardness of the ECDLP)

1. In order to find | one could compute the series: P,2P, 3P, ... until finding Q,
but this has time complexity O(n) and choosing n ~ 2% is intractable. Other
optimizations exist that speed up this search, but the time complexity is still
fully exponential in the number of bits of n.

2. We should note that there is no proof that the ECDLP is intractable, but there
is no publicly known efficient algorithm that can solve it.

12

2.1. ELLIPTIC CURVE CRYPTOGRAPHY

Remark 7 (Complexity of Multiplication)
Note however, that computing kP for some random integer k can be achieved much
easier using the following algorithm:
Algorithm 1: Elliptic Curve Point Multiplication
Input : k P
Output: kP
1 t < number of bits in k
2 () < 00

sfori<0tot—1do
4 if £, =1 then

5 LQ%Q%—P

6 P« 2P

7 return @)

The time complexity of this algorithm is O(t) = O(log, n) which is definitely tractable.
Furthermore, if the point P is known beforehand, there are algorithms which use this
knowledge to pre-compute a table of powers of p which can then be used to speed up
the algorithm even more.

2.1.2 Elliptic Curve Public-Private Keys

Considering remarks B and [, we can create a public-key cryptographic system re-
lying on ECDLP. Firstly we need to decide on some domain parameters which will
be made publicly available to anyone wishing to use the cryptosystem. For the pur-
poses of this paper, we will assume that a field K, a curve E, and a point P € E(K)
with known order n were chosen such that the ECDLP is indeed intractable. Now
to generate a pair of private and public keys:

Definition 12 (Private and Public Key Generation)
1. As private key, choose a random integer k € [0,n — 1].

2. As public key, compute Q = kP.

Remark 8 (Trapdoor Function Explained)

While it is easy to compute QQ = kP using algorithm @ or an optimised version, it is
intractable to compute k knowing just @), as established by the ECDLP. Thus, this
construction of the private-public key pair acts a trapdoor function.

2.1.3 Elliptic Curve Digital Signature Algorithm (ECDSA)

ECDSA is a scheme based on elliptic curve cryptography that implements the Dig-
ital Signature Standard (DSS) [I3|. The purpose of signature schemes is to replace
handwritten signatures, or, in the context of digital signatures: to provide authen-
tication, integrity, and non-repudiation. Digital signatures are closely related to the
concept of private and public keys. A signature created with some private key will
be correctly verified only by the corresponding public key.

13

2.1. ELLIPTIC CURVE CRYPTOGRAPHY

Definition 13 (Signature Scheme)
A digital signature scheme must describe 4 algorithms:

1. A domain parameter generation algorithm that gemerates a set D of domain
parameters.

2. A key generation algorithm that takes as input a set D of domain parameters
and generates key pairs (Q,d).

3. A signature generation algorithm that takes as input a set of domain parame-
ters D, a private key d, and a message m, and produces a signature ..

4. A signature verification algorithm that takes as input the domain parameters
D, a public key Q, a message m, and a purported signature X', and accepts or
rejects the signature.

The relevant algorithms for constructing and validating ECDSA signatures are
given below. Note that in the following two algorithms, H is a cryptographic hash
function whose outputs have bitlength no more than that of n.

Algorithm 2: ECDSA Signature Generation
Input : private key d, message m, P,n
Output: signature (r, s)

1 Select k € [1,n — 1].

2 Compute kP = (z1,y1) and convert z; to an integer z.
3 Compute r = 2} mod n.

4 if r =0 then

5 L go to step 1

6 Compute e = H(m).

7 Compute s = k(e + dr) mod n.

8 if s =0 then

9 L go to step 1

10 return (r,s)

Algorithm 3: ECDSA Siganture Verification
Input : signature (r,s), public key @, message m, P,n
Output: True or False

1ifrg[l,n—1] or s ¢ [1,n — 1] then

L return False

N

Compute e = H(m).
Compute w = s~! mod n.
Compute u; = ew mod n and uy = rw mod n.
Compute X = uy P + usQ).
if X = oo then
L return False

@ N o oA~ W

9 Convert the x-coordinate z; of X to an integer x7; compute v = 2} mod n.
10 return v ==r

14

2.2. SOME CRYPTOGRAPHIC PRIMITIVES USED IN BITCOIN

Proof 1 (Proof of Signature Verification)
If signature (r,s) on message m was indeed generated by the legitimate signer, then
s =k (e +dr) mod n. Which rearranged gives:

k=ste+dr)=s"'e+s'rd =we+wrd =u; +usd mod n
On the other hand, X = u1 P + us@ = uy P + uz(Pd) = (uy + uad)P = kP, and so

v =1 as required.

With this, we conclude our introduction to Elliptic Curve Cryptography and
move on to the following sections in which we will see how Bitcoin uses ECDSA and
how quantum computers can solve the ECDLP.

2.2 Some Cryptographic Primitives Used In Bitcoin

This section introduces some cryptographic primitives used in Bitcoin that are es-
sential to understanding the rest of the paper as we make use of them regularly.

2.2.1 Cryptographic Hash functions

Definition 14
An ideal cryptographic hash function H takes an input of any size and returns an
output of predefined size. Furthermore, it must exhibit the following properties:

1. Determanistic - It produces the same result for the same input, regardless of
any other factors.

2. Efficiency - It is effortless to compute the hash of some arbitrary message.
3. Butterfly Effect - A small change to the input changes the output completely.

4. Pre-image Resistance - Given h it should be infeasible to find m such that
H(m) = h.

5. Colliston Resistant - It is infeasible to find two different messages my # mo
such that H(my) = H(ma).

6. Second Pre-image Resistance - Given my it should be infeasible to find
mo # my such that H(msy) = H(my).

Remark 9

The last two properties of definition [I4 are both required because they protect against
different types of possible vulnerabilities. Collision resistance protects against special
types of messages which can be modified in a way that will yield the same hash. On
the other hand, second pre-image resistance refers to the more specific case in which
a message 1s already known and a second message with the same hash is wanted.

15

2.2. SOME CRYPTOGRAPHIC PRIMITIVES USED IN BITCOIN

In Bitcoin there are a few important hash functions that are used to offer im-
mutability guarantees. Hashing a piece of data is a common practice for creating a
fingerprint of the data. If even one bit of the data would change the hash would be
completely different.

SHA256 is a secure hash algorithm (SHA) part of the SHA-2 family of cryp-
tographic hash functions designed by the National Security Agency (NSA) and is
believed to be an ideal cryptographic hash function, satisfying all the required prop-
erties. It returns outputs with exactly 256 bits.

Double SHA256 (D-SHA256) is the double application of SHA256. Essentially,
D-SHA256(m) = SHA256(SHA256(m)). It is used in Bitcoin, instead of the simple
SHA256 in case a length extension attack on SHA256 is ever found.

RIPEMD160 is a cryptographic hash function based on the MerkleDamgard con-
struction, being part of the RIPEMD family of cryptographic functions. It returns
outputs with exactly 160 bits and is also believed to be an ideal

2.2.2 Merkle Tree

Merkle Trees were patented in 1979 by Ralph Merkle [45]. They are trees in which
each leaf is some block of data and each non-leaf node is the hash of the concatenation
of its children. An example of this is in Figure 223 below.

H(Hag||Hcp)
H(A||B) = Hap H(C||D) = Hep

/N /\

Figure 2.3: Merkle tree with four data blocks.

Assuming H is an ideal cryptographic hash functions, we observe that changing
one bit in any of the leaves, will completely change the root node as ensured by
property 3 of definition I4. This is especially useful for easily checking the integrity
of large data structures.

Proof of Existence
An interesting property of Merkle trees is the fact that we can construct proofs that

some data is present in the Merkle tree without actually transmitting the whole
structure. The proof creators need all the data in the leaves in order to create

16

2.2. SOME CRYPTOGRAPHIC PRIMITIVES USED IN BITCOIN

proofs, but the verifiers only need to have a trusted value for the root node in order
to be completely convinced that some data exists in the tree. Although the proof
creator can simply deny answering a proof request, he cannot trick the requester by
providing a misleading proof as this would involve breaking the pre-image resistance
of H. Such proofs are also called Merkle branches, because they essentially provide
all the information needed to recompute one branch of the tree from leaf to root.

H4/J('/)

PN

Hup Hep
A B C D

Figure 2.4: The data that needs to be proven to be in the merkle tree is in red.
The merkle branch to prove this is depicted in blue. The verification requester can
compute the brown values from the blue and red values, thus being able to check
that the value of the root matches the trusted value he owns.

Below we give the algorithm that a proof creator would use to generate the proof
that some node exists.
Algorithm 4: Merkle Tree Branch Construction

1 function constructBranch(node)
if node is root then
| return ([[)
end
(hashes, bits) = constructBranch(node.parent)
hashes.append(node.sibling)
bits.append(node is on the right)
return (hashes, bits)

© 00 N O A~ W N

The algorithm starts at the leaf we want to prove appears in the merkle tree and
builds a list of sibling hashes, marking at each step whether the sibling was on the
left or on the right.

Next we give an algorithm that verifiers could use to check the correctness of
some existence proof. Note that, they must already be in possession of the root
value as otherwise they would have nothing to match against.

17

2.3. BITCOIN

Algorithm 5: Merkle Tree Branch Verification

1 function verifyBranch (hashes, bits, data, root)
2 if bits is empty then

3 ‘ return data == root

4 end

5 if bits[-1] = True then

7 | data = H(hashes|-1]||data)

8 end

9 else

11 | data — H(datal|hashes|-1])

12 end

13 return verifyBranch (hashes/0:-1], bits[0:-1], data, Toot)

The algorithm starts from the data we required verification of and computes suc-
cessive hashes using the provided sibling at each step. When it runs out of siblings,
the full root should have been constructed, so a comparison with the trusted value
of the root is done.

2.3 Bitcoin

This section gives a high-level overview of Bitcoin, while focusing with some more
detail on the aspects which are specifically important to our work. One can find a
more complete description of Bitcoin in Andreas M.Antonopoulos’ book "Mastering
Bitcoin" [I5], on which this section is based.

Bitcoin can be described as a set of standards, ideologies, protocols and tech-
nologies that form the basis of a decentralized currency system. The units of dig-
ital money are called bitcoins and their ownership can be handed over to other
participants through transactions. Users communicate to each other, broadcasting
transactions, via a peer-to-peer network over the Internet. Transactions are aggre-
gated together into blocks which are appended to a distributed public ledger called
the blockchain. To avoid a central authority that issues new blocks, any consen-
sus participant can append a new block after completing a cryptographically hard
puzzle. Each block also contains the hash of its predecessor, thus providing strong
guarantees for the immutability of the transaction history.

2.3.1 Blockchain Technology

For the purpose of this section, it can be assumed that transactions are just chunks
of data of arbitrary lengths. The blockchain structure is an ordered list of blocks of
transactions where each block links to its predecessor by referring to its hash in the
block header. We shall first define some basic terms in Bitcoin.

Definition 15 (Block Reward)
The block reward is a diminishing amount of newly created currency that s awarded
to miners that successfully append a block to the blockchain. The block reward halves

18

2.3. BITCOIN

every 210,000 blocks. It started at 50 Bitcoins and is now at 12.5. Apart from this
reward miners also collect the fees associated to transactions in a block.

Definition 16 (Block Header)
The structure of a block header is:

Field Description Size
Version A version number to track protocol updates. 4 bytes
Previous The hash (D-SHA256) of the header of the previ- | 32 bytes
Block Hash | ous block.
Merkle A hash of the root of the Merkle Tree of this block’s | 32 bytes
Root transactions.
Timestamp | The approximate creation time of this block (in | 4 bytes
seconds from UNIX Epoch).
Difficulty The proof-of-work algorithm difficulty target for | 4 bytes
this block.
Nonce A random number found as solution to the proof- | 4 bytes
of-work algorithm.

Table 2.1: Structure of the block header.

Block

Each block in the blockchain contains all the transactions included in that block, a
block header and some meta-data (see table below).

Field Description Size
Block Size | The size of the block, in bytes, excluding this field. | 4 bytes
Block The header of the block. 80 bytes
Header
Tx Count Number of transactions in this block. 1-9 bytes
Transactions| Vector with all the transactions in this block. Variable

Table 2.2: Structure of a Bitcoin block.

Within the blockchain, each block is identified by a hash (blockhash), generated
using the D-SHA256 cryptographic hash algorithm on the header of the block. Fur-
thermore, each block specifies the blockhash of the previous block (parent block)
in its own header. Thus, a sequence of hashes linking each block to its parent is
created. Although, any block has exactly one parent, it is possible for a block to
have multiple children. This could be due to two miners generating a new block at
approximately the same time. However, the network cannot operate on two chains
in parallel and all consensus participants need to decide to follow the same chain.
The rule that Bitcoin imposes is to follow the longest chain. The purpose of this
long cryptographic hash chain is to ensure that historical blocks cannot be altered
in any way. If an attacker would try to modify the hash of a deeply buried block, he
would break the link with the blocks on top of this block. This would immediately

19

2.3. BITCOIN

yield a shorter chain than the original one so other consensus participants would
immediately disregard it. As the blockhash is sensible to changes in the merkle tree
root of all transactions in a block, this implies that any change to any transaction
in a block would require recomputing all the blocks on top of the altered one. This
hash chain goes all the way back to the first block ever created, also known as the
genesis block.

The Genesis Block

The first block that was ever created in Bitcoin is called the genesis block. It was
created in 2009 and was statically encoded within the Bitcoin client software. Its
purpose is to serve as a trusted root for all participants to build the blockchain upon.
This block only contains one transaction that created the first units of Bitcoin ever.

Mining and Proof of Work (PoW)

Mining serves to protect users against fraudulent transactions (eg.: double spend-
ing), and to create a consensus on the current main chain. Miners validate new
transactions and record them in blocks. A new block gets added to the blockchain
approximately every 10 minutes. For donating their computational power to validate
transactions, miners are rewarded in two ways: transaction fees and block rewards.
However, in order to publish a block to the blockchain, miners compete to solve a
cryptographically hard puzzle called Proof of Work.

Definition 17 (Proof of Work)

Given a block header, find a nonce such that D-SHA256(block header) < difficulty,
where the difficulty is specified in the block header and the nonce has to be inserted
in the block header.

Remark 10 (Hard to find, easy to prove)

Although it is extremely hard to solve PoW as the only guaranteed way is to test
random numbers for the monce, it is trivial to check that a solution to PoW is
correct or not. All that is needed is one hash computation and one comparison with
the difficulty.

The reason PoW needs a difficulty threshold, is to regulate the rate of new block
additions. The only reason consensus participants can establish which is the longest
chain is that miners prefer to mine blocks on top of the longest chain, so eventually
one of the competing chains will become the longest as more miners are competing
on it. However, if miners would be able to generate new blocks much faster than 10
minutes, then competing chains would exist for much longer as blocks are relayed
across the globe and a split of very distant miners would appear. This is why the
difficulty threshold adjusts automatically such that the average block time remains
at around 10 minutes.

20

2.3. BITCOIN

Blockchain Forks

As the blockchain is a decentralized data store, multiple variants of it could exist
that are not consistent. Blocks are routed through the network from peer to peer,
so they might arrive at different nodes at different times. This might give some
miners an advantage as they can start mining the next block faster. Although all
miners, only mine on top of the longest chain, it can sometimes happen that miners
extend the same block with different chains at an approximately equal rate. This
would create two competing chains. In time, the one on which more miners are
working will exceed the other one, thus convincing all miners to move towards it.
An example of this can be seen in the diagram below.

t=2.05 t=3.05 t=4.05

genesis block winning fork

abandoned fork

t=3.04 t=4.5

Figure 2.5: Three competing forks; blocks are marked with the creation time. The
green miners mine at the same rate as the blue ones until they receive block t=5
which clearly proves to them that the chain they are working on is not the longest.
At the same time, the red miners cannot mine as fast as the blue miners and they
become aware of this when they receive block t=4. Unfortunately, they have already
mined block t=4.5, but they abandon it as they see the longest chain is going to be
on top of t=4.

As such, forks occur as temporary inconsistencies between competing versions
of the blockchain, which are resolved by eventual reconvergence as more blocks are
added to one of the forks at a higher rate.

Consensus forks

Hard Fork - If the current protocol rules are extended and become less strict
(i.e. a transaction that was previously invalid is now valid), then old (un-upgraded)
clients will not understand the new rules and will not follow the chain of the new
miners who will basically be forced to transact only between them. This situation
can only be resolved if either all clients upgrade to the new rules or the upgraded
clients give up their fork and start running the original code again.

Soft Fork - If the current protocol rules are extended and become more strict
(i.e. a transaction that was previously valid is now invalid), then the success of the
fork depends on how many miners switch to the new rules. If there is a majority

21

2.3. BITCOIN

of miners switching, the fork will be valid as there is more hashing power working
towards extending the chain with the new rules. Old miners would see the chain as
valid by their rules, so they would not disagree. However, they would not be able to
use the new features until they upgrade. On the other hand, if the majority of the
hashing power runs the old code, then the fork will fail. Upgraded clients will be
able to publish their transactions and they would be valid, but the new rules would
not be in effect.

Thus it is usually the case, that any software update in Bitcoin is better deployed
as a soft fork. This means that in case the majority of consensus enforcers do not
want to upgrade then the fork just fails instead of permanently remaining split in
the case of a hard fork.

2.3.2 Bitcoin Network

The Bitcoin network is a peer-to-peer network, meaning that nodes (clients, miners,
etc.) connect to other nodes and form a mesh network over which they relay (dis-
tribute) transactions and blocks. Nodes can answer to special type of requests from
other nodes soliciting data they haven’t seen. Even if the network communication
layer is not reliable or secure, the security of the Bitcoin system is not undermined
as hash functions form digital fingerprints (checksums) of transactions and blocks.

Full Node

A full node is a node which stores all the transactions and all the blocks and indexes
them accordingly. A full node has complete knowledge of the state of transactions
and can serve information to other nodes which are trying to build their own copy of

the blockchain. To run a full node one requires relatively powerful hardware memory
and CPU wise.

Miners are full nodes, that also participate in the competition of publishing the
next block to the blockchain. They have no incentive to spam, misinform, or trick
other nodes as the consensus rules would ban the miner for a period of time and,
thus render his hashing power useless. This would imply major financial losses for
the miner.

Simple-Payment-verification (SPV) Node

SPV nodes are lightweight devices that only store a list of block headers and relevant
transactions (eg: only the ones associated to the user) instead of all the transactions
in the whole blockchain. The reason SPV nodes can exist is because of the merkle
tree structure in which transactions are stored. As shown in Section X2 it is
possible for an SPV node to check the existence of a transaction in the blockchain
by simply asking a full node for a proof of existence. The full node would return a
merkle branch, which the SPV node would check. This would completely convince
him that his transaction is included in the blockchain.

22

2.3. BITCOIN

2.3.3 Bitcoin Transactions

Transactions are the most basic and important structure in Bitcoin; they are data
structures that encode the transfer of ownership of funds. All the other parts of the
system are designed to ensure that transactions can be created, propagated on the
network, validated, and persisted.

Transactions are formed of inputs, outputs and some meta-data. The basic
(before segregated witness, a.k.a SegWit, was deployed) format of a transaction is
depicted in the figure below.

Field Description Size

nVersion Version number used to specify what consensus | 4 bytes
rules this transaction should be treated under.

nln Number of inputs 1-9 bytes

ins Vector referencing some unspent outputs that can | Variable
be consumed as part of this transaction

nOut Number of outputs 1-9 bytes

outs Vector specifying some outputs that will be created | Variable
by this transaction

nLocktime | Locktime 4 bytes

Table 2.3: Structure of a Bitcoin transaction before segregated witness activated.

Transactions are identified by their txid or hash, which is obtained by applying
SHA256 on the transaction data.

A Coinbase Transaction (or generation transaction) is a special type of trans-
action meant to create new units of currency out of nothing. Miners include such a
transaction as the first transaction in every block to pay themselves the fees associ-
ated to all the transactions in the block and the block reward.

Transaction Inputs reference some previously unspent output, consuming the
entirety of the funds. Consensus participants can check if an output is spent or un-
spent because they maintain a set of unspent transaction outputs (UTXOs), which
they update continuously as new transactions are formed and new blocks are re-
ceived. The sum of the funds in all the inputs must be spent by the outputs. Any
remainder will be considered as transaction fees. The structure of an input is given

in Table 4.

23

2.3. BITCOIN

Field Description Size
Transaction Hash Hash of the transaction where the | 32 bytes
UTXO is.
Output Index Index of the output in its transaction. | 4 bytes
ScriptSig Size Size of the scriptSig. 1-9 bytes
ScriptSig The unlocking script. Variable
Sequence Number Not used anymore 4 bytes

Table 2.4: Structure of a Bitcoin transaction input.

Thus, to consume some unspent output, a user needs to know the transaction in
which it resides and the index of the output. However, to successfully consume an
output, the user also needs to provide a scriptSig that can successfully unlock the
scriptPubKey found in the referenced output.

Transaction Outputs are the building blocks of transactions. They are both
produced as outputs out of a transaction, but also referenced as inputs. The outputs
must consume all the Bitcoins produced by the inputs, minus a remainder which
will be automatically considered as fee. The structure of an output is quite simple

(see Table 23).

Field Description Size
Amount Value of this output. 4 bytes
scriptPubKey Size Size of the scriptPubKey. 1-9 bytes
scriptPubKey The locking script. Variable

Table 2.5: Structure of a Bitcoin transaction output.

Unspect Transaction Outputs (UTXOs) are tracked by validating nodes con-
tinuously. When a new transaction references some outputs, each of them is checked
for existence in the current UTXO set. If the transaction is validated, the output
is removed from the UTXO set, making all other transactions, that reference the
same output, invalid. At the same time, the outputs that are created by a valid
transaction are added to the UTXO set. Thus a new block contains transactions
that have all the inputs referencing already existing outputs.

Transaction Scripts

In Bitcoin, an UTXO is secured by a locking script, historically known as script-
PubKey. The challenge a UTXO poses to the world is to provide a scriptSig that
together with the scriptPubKey will evaluate to True. The Bitcoin scripting lan-
guage, Script, is not Turing complete to avoid infinite loops and complex scenarios
that can lead to resource exhaustion and denial of service attacks when executed.
Script is quite flexible though and allows for a variety of scripts to be composed.
All scripts can be verified without any state and all the operations have op codes
that represent stack manipulations such as push, pop, and compute data.

24

2.3. BITCOIN

Very complex scripts can be created, but most users just construct the following
basic scripts.

1. Pay-To-Public-Key (P2PK) is an old style script that is no longer used
in Bitcoin, but we will present it here for completeness. A P2PK lock-
ing script looks like this: <Public Key A> OP_CHECKSIG, and the match-
ing unlocking script that would appear in an input wanting to unlock this
output should be: <Signature from Private Key A>. Hence, the concate-
nated script would be: <Signature from Private Key A> <Public Key A>
OP_CHECKSIG, which evaluates to True.

2. Pay-To-Public-Key-Hash (P2PKH) is the improved version of the above.
To minimize the size of scriptPubKey, the public key is moved to the scriptSig
and only a hash of it is required in the output. The scriptSig and scriptPub key
become: <Signature from Private Key A> <Public Key A> and OP_DUP
OP_HASH160 <Public Key Hash A> OP_EQUAL OP_CHECKSIG, which will re-
turn True if the public key hashes to the correct value and the signature
matches.

3. OP_RETURN (data) is a type of output that is provably un-spendable
as it pushes data onto the stack. Whatever scriptSig provides, this type of
script will not unlock. In fact, nodes do not even keep this sort of outputs in
the UTXO set as they are provably un-spendable. This sort of output is used
mainly to persist data on the blockchain or to tag transactions. For denial of
service reasons, each transaction is allowed to have maximum one such input
and the length of the scriptPubKey has to be maximum 80 bytes. Such a
script would look like this: OP_RETURN <data>.

4. Pay-To-Script-Hash (P2SH) outputs are an improvement over P2PKH.
Instead of specifying whatever script we had in the scriptPubKey, it is much
better to simply store a hash of it and to require the input to present a re-
deemScript that matches the hash. The extra consensus rules will require for
the redeemScript to be ran after the remaining scriptSig. This type of out-
put guarantees the fixed size of the scriptPubKey to 32 bytes. For example, if
the original scriptPubKey was: redeemScript = 2 PubKeyl PubKey2 PubKey3
PubKey4 PubKey5 5 OP_CHECKMULTISIG, then the new scriptPubKey will be:
OP_HASH160 <20-byte hash of redeemScript> OP_EQUAL and the scriptSig
will be: Sigl Sig2 redeemScript.

Note that with the exception of OP RETURN, all other script types require a
signature. This is a crucial part of a Bitcoin transaction as this ensures, the owner
of the private key is the only one that can modify the transactions he created.

A Bitcoin address is a base 58 encoded scripPubKey with an extra fingerprint.
When a user wants to receive some money, he usually uses a public key to create
a scriptPubKey of one of the aforementioned types, encodes it in base 58, adds the
fingerprint over the data, and sends it over to the payer. The payer removes the
fingerprint, decodes the scriptPubKey in base 58, and, if the fingerprint matches,

25

2.3. BITCOIN

includes it in the output. This abstraction allows users to protect against transmis-
sion errors, i.e. if one of the bits in the address is changes, the fingerprint will not
match any more and the payer will know he is about to send funds to an invalid
scriptPubKey.

Transaction Signatures

In Bitcoin digital signatures use the ECDSA signature scheme and sign the data of
the transaction in part or fully, depending on the signature type specified:

1. SIGHASH ALL is a flag specifying that the data to be signed is all the
inputs and all the outputs. This does not let anybody modify the transaction
you are creating.

2. SIGHASH NONE is a flag specifying that all the inputs should be signed,
but none of the outputs. This basically allows anybody to add, remove, or
modify outputs.

3. SIGHASH SINGLE is a flag specifying that all the inputs and only the
output corresponding to this input should be signed. This is used when users
want to ensure their output is not modified, but other outputs which do not
belong to the user can be modified.

4. SIGHASH ANYONECANPAY is a flag that can be used in combination
with all the other flags to indicate that we want to sign only the current input
and not the others. This is useful if we want to allow other users to contribute
money to our transaction.

Elliptic Curve Secp256k1l

ECDSA in Bitcoin is implemented over the elliptic curve Secp256kl. This curve
was rarely used before Bitcoin, but due to its several nice properties it is gaining
popularity. The structure was constructed to optimize computations so it is often
more than 30% faster than other curves when sufficiently optimized.

Definition 18 (Secp256k1)
Let E : y* = 2+ 7 be defined over F, where p = 2256 —232 29 28 _27_26_24_1
is a prime number. The generator of the cyclic subgroup of E(F),) is

G = 0479BE66TEFIDCBBACSH55A06295C E870B07029BFCDB2DCE?2S . . .
and its order is

n=FF. .FEBAAEDCEG6AFA8A03BBF D25E8C D0364141
—

31

Considering the large characteristic of £}, and the large order of the cyclic subgroup,
it is certain that classical computers would not be able to break ECDSA in Bitcoin.

26

2.3. BITCOIN

2.3.4 Transaction Lifecycle

To conclude the Background section on Bitcoin we will present the lifecycle of a
transaction. We assume user Bob wants to send n Bitcoins to user Alice.

1. Transaction Creation

(a) Find UTXOs that Bob can unlock until the sum of their values is larger
than n.

(b) Crate the input vector by referencing each UTXO we found at the previ-
ous step.

(c¢) Create an output to Alice, by specifying the amount n and the script-
PubKey that she supplied to us.

(d) Create an output to Bob with the change. Leave some fees though, to
give incentive miners to include our transaction in a block.

2. Transaction Signing - We will just use the general SIGHASH ALL type, for
simplicity. Go through each input and provide a corresponding scriptSig as
explained in section Z233. Include this scriptSig in the corresponding input.

3. Transaction Broadcasting - Broadcast the signed transaction to other nodes.
They will validate it, by checking that the inputs are not double-spending and
correctly unlock the outputs they reference. If validation passes, the transac-
tion is included in their memory pools. Then, nodes will keep propagating the
transaction until a miner picks it up from its memory pool, includes it in a
block and publishes the block.

4. Transaction Confirmed - From time to time, Bob will ask full nodes if the
transaction he created is part of the blockchain. When the transaction is
indeed included, any full node can notify Bob that his transaction exists in
the blockchain and offer him a Merkle branch proof that will convince him
that the transaction is indeed accepted.

5. More confirmations - For extra security, Alice should wait a bit longer so that
more Proof Of Work is accumulated on top of the block with Bob’s transaction
and she can gain more confidence in the immutability of the transaction.

27

2.4. QUANTUM COMPUTING

2.4 Quantum Computing

In this section we offer some insight into Quantum Computing, its mechanisms,
phenomena, the current state of physical realizations, and the direction it is heading
towards.

Even though the idea that atoms or photons could be manipulated to perform
highly efficient parallel computations was first formulated in 1959 by Richard Feyn-
man |26], the idea of quantum computers became of (somewhat) wide interest only
recently (1994), when Peter Shor developed a polynomial time algorithm for factor-
ing large integers [B0]. This is one of the major threats to current cryptographic
systems (RSA and Bitcoin’s ECDSA included) which rely on the hidden subgroup
problem on finite abelian groups.

The power of quantum computing stems from several phenomena and laws of
quantum mechanics that are fundamentally different from those encountered in clas-
sical computing. In order to understand complex probability amplitudes, quan-
tum interference, quantum parallelism, quantum entanglement, and the unitarity of
quantum evolution, one has to understand several basic principles on which quan-
tum mechanics is based. To use these features in the design of quantum algorithms,
networks, and processors, we need to study the basics of Hilbert space formalism,
which represents the mathematical framework used in quantum mechanics.

In general, quantum algorithms work by preparing the state on which the com-
putations are performed as a superposition of more (or all) possible classical states,
thus computing all the possible solutions in only one step. The major problem quan-
tum algorithms have to overcome is wave function collapse, i.e. when the result of
a computation is measured, the superposition of states is collapsed and only one of
the results is observed, the others being lost forever. Hence, quantum computations
try to use the underlying structure of the problem and manipulate the superim-
posed state in order to increase the likelihood of a certain outcome which can be
interpreted deterministically and yield the result wanted.

Motivation for Quantum Computing (QC)

Before diving into the mathematics of quantum mechanics, we note the motivation
behind quantum computing and we argue that it is only a matter of "when" and
not "if" this technology will become functional. The challenges QC poses to current
cryptographic systems must be addressed and resolved before it reaches a stage of
maturity.

Current, classical, computers are getting smaller and faster, approximately sat-
isfying Moore’s Law. Unfortunately, this trend will stop very soon as physical laws
impose limits on how much smaller we can build transistors. Intel currently produces
transistors only 14 nanometres wide [A1] while an atom is about 0.5 nanometres.
We are getting close to a scale where the classical laws of physics simply do not
apply any more and quantum mechanics takes over. Phenomena such as quantum
tunnelling will render transistors useless as electrons will pass right trough them. To
overcome this barrier, we need to drastically change the paradigm of building a com-

28

2.4. QUANTUM COMPUTING

puter and make use of the laws of physics at this extreme scale. In fact, according
to our current knowledge, the physical world is fundamentally driven by quantum
mechanics. All computers are physical devices and computations are physical pro-
cesses. However, all classical computers and models of computers rely solely on
classical mechanics and while their performance is impressive, they do not tap into
the full potential of information processing power that our world offers. As such,
it is a fundamental duty to deepen our knowledge and understanding of the laws
of quantum mechanics and how they can be used to overcome the computational
limitations of classical mechanics.

2.4.1 Mathematical Framework

This section aims to present the mathematical tools needed to model, operate, and
measure quantum systems. For a deeper understanding of the theory presented here,
please refer to Jozef Gruska’s book "Quantum Computing" [29].

Hilbert Spaces

The set of all possible (pure) states of a quantum system constitutes a so called
Hilbert space. This formalism is the basic framework for rigorous, precise definitions
and for the study of quantum mechanical concepts, phenomena, algorithms, and
processes.

Definition 19 (Vector (linear) Space)

A wector (linear) space S, with a carrier H, over a field K is an algebra S =
(H,+,71,0,K,+y, x,0,1,-) such that (H,+,7",0) is a commutative group, K =
(K,+7,%7,0,1) is a field, and - : K x H — H s a scalar multiplication satisfying
the following axioms for any a,b € K and ¢,y € H:

a-(p+v)=a-¢o+a-Y,(a+sb)-¢p=a-¢+b- (distributive laws)
2. (a-(b-¢))=(axsb)-¢
3 1-¢=o.

Definition 20 (Inner-product Space)

An inner-product space H is a complex vector space, equipped with an inner product
operation (-|-y : H x H — C satisfying the following axioms for any vectors ¢,
WV, P, 02 € H, and any complex numbers ci,co € C.

1. {¢l) = (P|g)*, where x denotes the conjugate of a complex number, i.e. x* =

(
(a+bi)* =a— bi.

2. (Y|) >0 and (Y|v) = 0 if and only if 1» =0,
5. (Ylerdr + caga) = c1 (Y[d1) + ca (]da).

29

2.4. QUANTUM COMPUTING

The inner product introduces on H the norm

el = v {2l9)

and the metric
disty (),) = [|¢ — |
|o|| is sometimes called the length of vector ¢ and (p|p) is called the squared length.

Definition 21 (n-dimensional Complex Inner-product Space)
If H=C" for a fired n and the inner product is defined by

<(I17 SR ’xn)l(yb <o :yn» = foyz
i=1
then we speak about the n-dimensional complex inner-product space.

For our purposes, we will assume the above definition for the (:|-) operator.

Dirac Notation introduces (¢| and [¢)) called bra and ket vectors respectively.
For n-dimensional complex Hilbert spaces a ket |1)) can be considered as an n-
dimensional column vector and a bra (¢| as an n-dimensional row vector. As such,
the scalar product (¢|¢) is the result of a usual row vector x column vector
product, i.e. a complex number and the tensor product [¢) (¢| is the result of a
usual "column vector x row vector" product, i.e. a matrix. For an indexed set of
vectors {x;} we sometimes write |i) or (i| to represent the bra or ket vector of the
i-th element in the set.

Definition 22 (Hilbert Space)

An inner-product space H is called complete if for any sequence {¢;}32, with ¢; €
H, and with the property lim; ;_, ||¢; — ¢;|| = 0 there is a unique element ¢ € H
such that lim; . ||¢ — ¢;|| = 0. A complete inner-product space is called a Hilbert
space. The elements of H are usually called vectors and those elements with norm
1 denote (pure) states.

Remark 11 (Interpretation of Definition 22)

An inner-product space or pre-Hilbert space is complete if any Cauchy sequence
converges with respect to the norm to some element in the space. A Cauchy sequence
1 a sequence whose elements become arbitrarily close to each other as the sequence
Progresses.

Orthonormal Basis of Hilbert Spaces

The concept of orthogonality is one of the key constructs in the theory of Hilbert
Spaces.

Definition 23 (Orthogonal and Orthonormal)
Two vectors ¢ and ¢ of a Hilbert space H are called orthogonal if (1)) = 0. A set
S C H is orthogonal if any two of its elements are orthogonal. S is orthonormal
iof it is orthogonal and all its elements have norm 1.

30

2.4. QUANTUM COMPUTING

Remark 12 (Interpretation of Orthogonal Vectors)
Orthogonal vectors are linearly independent vectors, i.e.

Z)‘ixi =0 implies that \; =0V

As such, orthogonal vectors can represent events that are independent of each other;
e.g. all positions a particle can be located in, all the possible polarizations of a
photon.

Orthogonality plays an important role in quantum computing as whenever a mea-
surement is performed on a quantum system, the quantum states that lead to dis-
tinguishable outcomes have to be mutually orthogonal.

Definition 24 (Orthonormal Basis of Hilbert Spaces)
An orthonormal set B C H is an orthonormal basis for H if none of its proper
supersets is orthonormal.

Remark 13 (Implications of Definition 24))
1. A base must contain a mazimal number of linearly independent vectors as
otherwise a superset of it would also be orthogonal.

2. All bases of a Hilbert space H have the same cardinality, also called the dimen-
ston of H. Hence, all Hilbert spaces of the same dimension are isomorphic.

3. If basis B = {¢;}~, is a base of an n-dimensional Hilbert space, then any
vector ¥ can be written as a linear combination of columns of B i.e. 1 =
Yoy aip;. The vector (a, ..., ay) is called the representation of ¥ in base B.

Definition 25 (Linear Functional)
A linear functional on a vector space H over a field K is a map f: H — K such
that:

1 flz+y) = flx)+ fy)
2. flax)=af(x)Vr,y e Ha e K

The space of all linear functionals on H, is itself a vector space called the dual space
of H and is denoted H*.

More specifically, for a Hilbert space H the following theorem holds.

Theorem 3 (Riesz Representation)
For each continuous functional f € H*, f : H — C there exists a unique vector

¢ € H such that f() = (¢f|¢) for any ¢ € H.

This theorem establishes a bijection between H and H*, which implies that H* is
isomorphic to H; in particular (C™)* = C™.

31

2.4. QUANTUM COMPUTING

Definition 26 (Linear Operator)

A map T :V — W between two vector spaces V. and W is called a linear map if:
1. T(x+y)=T(z)+ T(y)
2. T(ax) = aT(z)

forallz,y € V and all o € K.
For V = W we talk about a (linear) operator on V.

Similar to linear functionals, which can be represented as vectors which map other
vectors to complex numbers, linear operators can be represented as matrices that
map vectors to other vectors. For ease of notation we will usually denote the
matrix of an operator A with A also. As such the application A(z) becomes
Az = (Aij)(x;) = >, Ajjx;. Furthermore, the composition of two operators A o B
is just matrix multiplication AB.

Definition 27 (Adjoint Matrix/Operator)
For a matriz T = (Ty;), the adjoint matriz is T = (TT)*. Furthermore, if T =T,
then T is called self-adjoint and is a Hermitian matriz.

It follows from the above definition that (TTy|¢) = (|T'}) .

Definition 28 (Unitary Matrix/Operator)
A matriz U is called unitary if and only if UT = U~!

Definition 29 (Tensor Product)
The tensor product "®" is defined for vectors as:

T & Yy = (xla s 7xm) & (yh cee yn) - ($1?Jl7 o 1Yny T, 7xmyn)
and for matrices as:

a;pr Q12 ... bll b12 CLHB CleB
AQ B = | G2 Qa2 @ | ba1 b2 — | annB axB

Remark 14 (Properties of the Tensor Product)
The tensor product exhibits a number of nice properties:

1. Bi-linearity, which applies to both vectors and matrices: (av + o/v') @ (fw +
') =af(v@w)+ BV @w)+af (vew)+ bW @u).

2. (M@N)(vew)=(Mv)®(Nw) and MRN)(M'@ N')=(MM") & (NN').
3. If M and N are unitary (or invertible) so is M @ N.
4. (M@ N)T = MT @ NT.

32

2.4. QUANTUM COMPUTING

2.4.2 Basics of Quantum Theory

We are finally in a position to present the basic constructs of a quantum system.

Definition 30 (Quantum Postulates)
1. The state of an (isolated) quantum system is represented by a (normalised)
vector in a complex Hilbert space H.

2. An observable is represented by a self-adjoint matriz (operator) acting on a
Hilbert space.

3. The expected result (average) when measuring observable A of a system in
state |z) € H is given by: (A), = (x| Alx) = (z|Ax).

4. The only possible results are eigen-values \; of A.

5. The probability of measuring \, in state |z) is given by: Pr(A = \,|z) =
(x| Pyx) where P, = |\,) (A, is the orthogonal projection onto the space gen-
erated by eigen-vector |\,) of A.

Quantum State

The state of a quantum system offers a complete description of the internal "mem-
ory" of the quantum computer at any point during the computation. These states
are modelled as vectors of a Hilbert space.

One can say that to each isolated quantum system corresponds a Hilbert space.
Other interpretations go further by claiming that reality on the quantum level does
not exist and only emerges when measurement is done. Everything we know about
the quantum level are computational procedures (expressed in terms of Hilbert space
mathematics) that compute the evolution of quantum systems and probabilities of
the measurement outcomes.

Using the Hilbert space formalism, any state X of the system can be represented
as a ket-vector or a bra-vector. Any state X can be written in terms of any basis B:

X) = 3010 (i1X) = Y asli) and (X] =D ai (i

The complex numbers (i|X) are called probability amplitudes and represent the
probability that when measuring the state with respect to basis B, the qubit will
collapse to |i).

Qubits

A quantum state is represented by a normalised vector in C". A qubit is a two-
dimensional quantum state in C?. We can represent the coordinates of a qubit with
respect to the orthonormal basis

B= ((1) ?) = {[0),]1)}, where 0) = (é) 1) = ((1))

33

2.4. QUANTUM COMPUTING

also called a standard basis, as follows:

14) = (g) =a<(1)>+5((1)) —al0) +BI1)

where o and f are complex numbers with ||a||* + ||8]|* = 1. Note that all quantum
states are normalised, so ||¢|| = (¥ |¢¥) = 1.

Any two state quantum effect can be

0 n-2) n—2 used to create physical implementations
n=17 n=/7 of qubits. For example, an electron that
can be on either of two energy levels in a
hidrogen atom (see figure on the left), or
the vertical and horizontal polarizations of
a photon.

Measurements and Observables

Before quantum mechanics was introduced, it was taken for granted that measuring
something represents gaining knowledge of a pre-existing state. In other words, it
was thought that measurement does not affect the state of the system in any way.
The quantum interpretation is that measurement cannot be done without affecting
the system.

Example 1 (Measurement affects the system it measures)

This concept can be understood even in a classical world. When one measures the
speed of a an object (e.g. car), what usually happens is that a wave (eg. radio, light)
is emitted towards the object and the reflection of the wave is caught with a receiver.
As the object is moving, the wavelength will be different after reflection and the speed
of the object can be determined. It would appear that the object was not affected at
all during this measurement, but, in fact, when particles reflect off the surface of the
object they exert a small pressure on the object which slightly changes its position. In
a classical world this effect is negligible, but when we talk about microscopic entities
(e.g. atoms, photons, electrons) this intervention to the system completely changes
the output of the measurement.

In order to extract information from a quantum system we have to observe the
system i.e. to perform a measurement of the system. Thus, a quantum test consists
of two phases. During the preparation phase, a deterministic physical system is set
up; both the observable represented by the testing instrument and the state to-be-
measured are fixed. The second phase is the measuring itself, which is a probabilistic
process. Only one of the potential outcomes is produced and its probability can be
computed using deterministic rules.

Observables are properties of the physical system that can be measured. While
in classical physics these can be position, speed, or size, in quantum theory an
observable is a self-adjoint operator. The outcome of the measurement of a quantum

34

2.4. QUANTUM COMPUTING

state |¢) with respect to an observable A is one of the eigenvalues of A and the effect
of such a measurement is a collapse of |1) into a state which is represented by the
corresponding eigenvector.

Evolution of a Quantum System

During the evolution of a quantum system, some transformations of the initial state
are performed such that the state can be manipulated to amplify certain probability
amplitudes. Some physical quantum gate A is represented mathematically by a
linear operator A which transforms each complex vector to another complex vector
that represents the new state. Since all quantum states should be normalised vectors,
the condition for an operator to represent a quantum transformation is to be unitary.
This implies that any transformation is also reversible using the adjoint operator
A*.

Compound Quantum Systems

When designing quantum circuits, it is often desirable to treat the system as a
composition of two other systems. For example, we have to be able to put together
multiple qubits to build a much more complex system. Often, we also need to
decompose the system back into individual qubits in order to measure only parts of
the system.

Definition 31 (Compound Quantum Systems)
Let S1 and S5 be two quantum systems and let Hy and Hs be the corresponding
Hilbert spaces. Let the compound system of Sy and Sy be S. It holds:

1. The tensor product H = Hy ® Hy s the Hilbert space associated to S.
2. Observables of S are self-adjoint operators in H.

3. Fwvolutions in S are determined by unitary operators of H.

A compound state |¢) € C?" is said to be separable if and only if it can be written
as the tensor product of some other states. In case this cannot be done, the state is
said to be entangled and it exhibits some extremely counter-intuitive properties.
For example, we know that the state collapses when we measure it, but what would
happen if we only measure one of the particles from a fully entangled state. Quantum
laws dictate that the whole state would collapse to another superposition where the
qubit observer is fixed and all the other qubits are fully entangled. This means that
observing a certain particle somehow affects the behaviour of other particles too. In
fact, the particles could have been moved to very far locations before observation
and the collapse of the un-measured particles would still happen simultaneously with
the measurement. Although very un-intuitive, this is the nature of the world.

35

2.4. QUANTUM COMPUTING

Quantum Gates

Likewise classical computers, the basic elements of a quantum computer are qubits,
quantum registers, quantum gates and quantum networks. However, the properties
of these elements are very different from their classical counterparts. A qubit can be
in an infinite number of states and a quantum register composed of n qubits can be
in any superposition of the 2" basis states, at the same time. This enables massive
parallelism, which can be exploited by performing transformations using quantum
gates (implementations of self-adjoint operators). In Figure P8 are some examples
of common 1 qubit quantum gates and their matrix representation.

Pauli X-Gate x=(91 | x =
10
. 0 —i
Pauli Y-Gate Yz(!. 0) — Y —
Pauli Z-Gate Z=(1 0) B
0 —1
Hadamard Gat H= (1 1 B P
adamar aie _ﬁ 1 1 H

10 ®
Phase Gate ¢=(0 ef¢)— & — _._

Figure 2.6: Some examples of 1 qubit quantum gates. In fact, from these gates we
can construct any other unitary matrix.

Furthermore, we give the representation of the much utilized controlled not gate.
The operation & is defined as addition mod 2.

%) %)

CNOT =

o O O
o O = O
_— o O O
o= O O

1Y) N |z @ y)

Figure 2.7: The CNOT gate. Whenever |z) = [1), the lower qubit is negated.
Example 2 (Swapping two qubits)

Mathematically the swapping of two qubits (see Figure ZZ8 below) can be achieved as
follows. We start from the initial state:

|z} [y) = (a]0) + B[1))(a’[0) + £[1)) = aa’|00) + fa’ [10) + " |01) + 55" [11)

36

2.4. QUANTUM COMPUTING

we apply the first C-NOT gate — o’ |00) + Sa’|11) + a5 |01) + 56" |10)
we apply the second C-NOT gate — ac’|00) 4+ Ba’ |01) + " |11) + 55" [10)
we apply the third C-NOT gate — aca’|00) + 8o’ |01) + o' [10) + 83" [11)

Finally the result can be factored as such:

= a'[0) (a[0) + B 1)) + 5" [1) (@ |0) + 5 [1)) = (' [0) + 5" [1))([0} + B [1)) = [y) |x)

Another way to see this would be to use matrix multiplication using the matriz rep-
resentation of the C-NOT gate.

D @ C) o

) <> P <>)

Figure 2.8: Graphical representation of the circuit for swapping two qubits.

2.4.3 Quantum Algorithms

Quantum algorithms outperform their classical counterparts for some classes of prob-
lems by using quantum phenomena. In general, they prepare a state in quantum
superposition and move through entangled states, thus being able to leverage the
power of quantum parallelism. By a single application of a unitary operator, quan-
tum algorithms can perform 2" (where n is the number of qubits) classical compu-
tations on basis states. Note that in quantum registers the amount of parallelism
increases exponentially with the size of the system, only requiring a linear increase
of physical space.

For our paper we will only present the algorithms which affect Bitcoin and the
building blocks needed to create them.

Quantum Fourier Transform (QFT)

Classical Fourier transforms are regarded as powerful mathematical tools that map
functions of period r to functions with non-zero values only at the multiples of the
frequency 1/r. Thus, a quantum analogue was developed that can perform the same
task in polynomial time.

37

2.4. QUANTUM COMPUTING

Definition 32 (QFT)
QFT with the base q (or in the group Z,) is the unitary transformation:

q—1

1 .
QFT, : |a) —» —) e2miabla|p)
q \/ag

and has the following unitary matrix:

1 1 1 1
w2 wq—l
F = L 1 w? wt .. w2
TV
1 il 201 e-D?

where w = e*™/9 s the ¢-th root of unity.

The physical realization of this algorithm is obtained by composing multiple Hadamard

1 0
and phase shift gates. In the following representation X; = <)

0 €2m'/2i
%)

2 3

|23)

|ZL’2> H X2

|1171> H —

Figure 2.9: Quantum network implementation for the Quantum Fourier Transform
for n = 3.

Shor’s Algorithm

Shors algorithm can solve in polynomial time the hard problems of integer factor-
ization and discrete logarithms. The first part of the solution can be run on classical
computers and reduces the problem of factoring large integers to finding the period
of a function. The second part makes use of the QFT to extract the exact period.
However, for our purposes we are more interested in how we can solve the ECDLP
not integer factorization. For simplicity, we will only show how Shor’s algorithm
is implemented for a general discrete logarithm problem as the elliptic curve spe-
cialization requires implementing the elliptic curve group law (addition of points).
This can be implemented easily as it reduces to simple operations [60], but it would
exceed the space limitations of this paper.

Definition 33 (Discrete Logarithm Problem)
Determine an r such that ¢ = x mod p given a prime p, a generator g of the
multiplicative group Z; and some x € (0,p).

38

2.4. QUANTUM COMPUTING

We first start by preparing the quantum register in the following form:

|90) = [) [) |0)[0) |0) = |, 9,0,0,0)

We apply the QFT,_; two times to modify the third and fourth registers and
obtain

l\’)

p—2 p—

2
|¢1 - 1 |x,g,a,b,0>
a=0 b

I
=)

a uniform distribution of all pairs (a,b) with 0 < a,b < p — 2. Next we apply
the following uniform transformation mapping (unitary operator): (z,g,a,b,0) —
(7,9,a,b,g%c" mod p) and have

p—2

*G
w

lz,g,a,b,¢27° mod p).
b=0

62) = ——

o
Il
=)

From now on, the computation leaves the registers on which x and g reside un-
touched, so we will not include them anymore until the end. We apply the QF

twice on the registers of a and b again. First we map a — ¢ with amphtude ep 1“

and then we map b — d with amplitude pT1 271 The result is

—2

1 4 27\'1 (lC
|¢3) = -1y > et e d g" mod p).
p a,b,c,d=0

Now let us compute the probability amplitude of the states that are of interest to
us, i.e. the states for which z = ¢" mod p. The probability is the square of the sum
of all the corresponding probability amplitudes. Substituting x in the last register
gives g%(¢") ™" mod p = ¢* "™ mod p. Further, we can use the fact that for a prime
p the following holds: gp*1 = 1 mod p. As such, the following implication holds
a=b mod (pl) = ¢ = ¢* mod p. Now if we define a —rb =k mod (p — 1), the
final register becomes ¢g¥ mod p.

Therefore, we measure the state y = ¢g* mod p with probability

2mi 7 (actbd)
. epr—
(p _ 1)2 Z

2

where a —rb=k

§ : 6137”1 (kc+b(d+rc))
2
b,c,d=0

When d+rc# 0 mod (p— 1), the above expression is over a set of (p — 1)st (even)
roots of unity that cancel each other, so the probability of this event is 0.

As such, it must be that d + r¢ = 0 mod (p — 1)) and the above expression
2nik

becomes (p—1)~ter- -1 . Because the expression does not depend on b, the probability
s(p—1)7?

Hence, we can measure the registers of ¢ and d to retrieve some ¢,d < p — 1
that satisfy: d = —rc mod (p—1). From this we can extract r = =% mod (p — 1),

provided that ged(c,p — 1) = 1.

39

2.4. QUANTUM COMPUTING

It can be proven that the probability that ged(c,p—1) = 1is Q(@). Therefore,
the number of number of tries we have to do to obtain this event and be able to
retrieve r is polynomial in lg p.

This demonstration proves that we can break ECDLP in time polynomial with
n, the size of the key. To achieve this, it has been calculated that approximately
6n qubits are needed [63|. These calculations are made specifically for the elliptic
curve discrete logarithm, with point addition implemented and all details accounted.
Thus, quantum computers just need a small leap in order to be able to break ECDSA
and RSA.

Grover’s Algorithm

Definition 34 (Unstructured Search Problem)
Given a set {x;}1<i<n, and a function f : {0,1} — {0,1} with the property that

=== s relatively small. Return one item z for which f(x) = 1. In other

words: Find an item with some un-indexed, rare property in an unordered structure.

Remark 15
In fact, this class of problems covers all the hash functions and many more problems.

Classically this problem can only be perfectly solved in O(N) time which means
exponential in terms of the number of bits in N. Grover’s quantum search algo-
rithm can find a desired value = in approximately O(\/N), which means a quadratic
speedup. To design such an algorithm we first need to create a unitary operator Uy
that can compute f and select the elements we want. In fact, it can be proven that
we can construct Uy which maps |x) — (—=1)7@ |z). This essentially means that we
will negate (invert) only those basis states that correspond to wanted solutions.

Let N = 2" and assume there is only one state we are looking for, i.e. f(z) =1
holds for exactly one state. The Grover quantum search algorithm is:
1. Initialize the system with an n-dimensional vector |0), .

2. Using the n-dimensional Hadamard gate H,,, prepare the register in a super
position of all possible inputs.

3. Apply Uy to |¢).

61) = [6) = ——= 3 (=1)@ |

4. Apply the inversion about average operator D,, = —H, R: H,, to ¢s.

5. Iterate steps 3 and 4 (the Grover iterate), [Tv/2"] times.

40

2.5. POST-QUANTUM CRYPTOGRAPHY

6. Measure the register, and retrieve one of the wanted values.

(100 — e
0} — e
nqubits] .| pen Of —4DH—O0f—D— - —A
10) — e
L [0) — T
xO(v/N) times

Figure 2.10: A network implementing Grover’s quantum search algorithm.

The Grover Iterate is successively amplifying the probability amplitudes of the
wanted states. When the probability is maximal the measurement is done and
the wanted solution is represented by the collapsed state.

For the general case, where we have k possible wanted states instead of 1, the

N
runtime complexity is O(4 / ?)

2.5 Post-Quantum Cryptography

Post-quantum cryptography is a new branch of cryptography interested in a suite
of algorithms which are believed to be secure even against attackers equipped with
quantum computers [I6]. There have been multiple proposals of cryptographic sys-
tems which are believed to withstand attacks by quantum computers. As each of
the following cryptographic systems is a very complex and vast domain in itself, we
are not aiming to cover the theoretical basis underlying these concepts.

This section’s purpose is to demonstrate that cryptographic schemes that can
withstand quantum computers exist and can be implemented.

Code-based cryptography relies on the intractability of decoding unknown linear
error-correcting codes [59]. McEliece used the algebraic properties of Goppa codes
and proposed the first such system [42], which took his name. In general all code-
based cryptographic systems rely on the concept of permutation equivalence.

Definition 35 (Permutation Equivalence)
Two codes C,C" € F}, with their respective generator matrices G,G’, are called
permutation equivalent provided there is a coordinate permutation f, which sends
C to (', i.e.

C'={f(x):x€C}

41

2.5. POST-QUANTUM CRYPTOGRAPHY

It follows then, that there must be a non-singular matriz S and a permutation matrix
P such that: G = SG'P

Thus, in such cryptosystems, we can construct private and public keys as follows:

1. The private key is composed of:

(a) A random non-singular matrix S.

(b) An efficient decoding algorithm for some random irreducible binary Goppa
code C' with its generator matrix G.

(c) A random permutation matrix P.

2. The public key is G’ = SGP.

The trapdoor function of this cryptosystem is the knowledge of an efficient error
correcting algorithm for the chosen code (which is available for any Goppa code)
and of the permutation P [b0].

Cryptosystems relying on linear codes perform very efficiently when generating
the keys, encrypting, and decrypting, but their drawback is the very large size of
the public keys.

Hash-based cryptography relies solely on the security of cryptographic hash func-
tions, which, as mentioned, are not drastically weakened by QC. Merkle [46] was the
first to propose hash-based digital signatures by building on the concept of one-time
signature schemes such as Lamport’s signature scheme [38|. As the name suggests,
one-time signature schemes have a major drawback, i.e. the private key is gradu-
ally revealed to the public as more and more messages are signed. In particular,
approximately half of the private key is revealed every time a message is signed. To
overcome this problem, Merkle used the ideas of hash trees to build a tree of public
keys, while the private keys are kept in the same way as before. This extends the
number of messages that can be signed without revealing enough information to
break the scheme to the number of leaves in the Merkle tree of public keys.

Although the public key size is now quite small, the key generation algorithm
requires creating as many key-pairs as many messages we want to sign, which is why
this system is not used in practice.

Lattice-based cryptography is based on the hardness of lattice problems such as
approximating the closest vector problem in a lattice [49]. A lattice is a set of points
in n-dimensional space with a periodic structure |50, or more formally:

Definition 36
Given n linearly independent vectors by, ..., b, € R", the lattice generated by this
basis is the set of vectors:

L(by,... by) = {Zmibi L1 € z}
=1

42

2.5. POST-QUANTUM CRYPTOGRAPHY

Furthermore, it is intuitive that for any lattice there are more than one basis that
correctly describe it. However, some of these basis will allow the computations of
vectors in the lattice to be relatively cheap computationally, while others will require
very expensive calculations.

Therefore, a public-key cryptosystem can be designed where the private key is
a "good" basis, which consists of short vectors, almost orthogonal vectors and the
public key is a "bad" basis for the same lattice.

Although lattice problems exhibit a periodic underlying structure, which is what
quantum algorithms usually look for, attempts to create such algorithms date since
Shors factoring technique and none have been successful in applying the same strate-
gies.

For the purposes of our paper, it is important that the Bitcoin community agrees
on and implements an appropriate alternative (or perhaps more than one) to replace
Elliptic Curve Cryptography as the basis for digital signatures of transactions.

43

Section 3: Post-Quantum Bitcoin

In this section, we analyse the impact a malicious adversary in possession of a
)
quantum computer can pose to Bitcoin.

Nowadays, multiple companies have shown major interest in quantum computing
and extensive research on error-correction, physical implementations, theoretical
algorithms and much more is going on [6Y, 22, 68|. Considering the number of new
players that enter this growing domain, it seems increasingly probable that powerful
quantum computing will emerge in the near future. A sudden improvement in
the approach of physical implementations might lead to a fast quantum computer
appearing virtually overnight.

We will present a few attack strategies that become possible with quantum com-
puting and the extent to which they can be used. Note that we do not discuss
the possibility of using Grover’s quantum search to retrieve the public key from a
P2PKH or P2SH challengeScript in our work, as the achieved speed-up is merely
quadratic and can be mitigated by increasing the key size [I4].

3.1 Attacks on Proof Of Work (PoW)

Attacks on Bitcoin’s Proof Of Work (PoW) have the purpose of gaining an unfair
advantage when mining such that the attacker can produce valid blocks considerably
faster than the rest of the network. As such, an adversary can successfully rewrite
the blockchain history by publishing a chain of blocks that links to an older block
instead of the tip of the blockchain. In order for such an attack to be successful,
the attacker needs to extend his chain until it exceeds the length of the main chain,
thus convincing the rest of the nodes to abandon the original main chain and start
mining on the malicious chain. This is especially difficult since while an attacker is
mining blocks, the rest of the network keeps mining on the main chain, adding a
block every 10 minutes.

genesis block original tip of main chain

new tip of main chain

Figure 3.1: The red attacker mines blocks that do not link to the tip of the blockchain
and outperforms the honest miners (in blue) so his chain will become the new main
chain.

44

3.1. ATTACKS ON PROOF OF WORK (POW)

As explained in the Section P23 of this paper, Proof-of-Work (PoW) is a hard
cryptographic puzzle based on hashing. For the purpose of this attack we will
ignore the Bitcoin specific details of POW and, without loss of generality, we can
simplify the challenge a miner needs to solve to the following problem:

Definition 37 (Simplified Proof-Of-Work)

Given:

1. A predefined cryptographic hash function H that takes an arbitrary long bit-
string as input and outputs an n-bit bitstring of deterministically generated
data.

2. A bitstring m of some length.

3. A target difficulty expressed as a m-bit bitstring.

Find a nonce n such that:
H(m|ln) <t

where "||" represents the concatenation operation and "<" represents the "lower
than" comparison operation for n-bit bitstrings.

Remark 16

As H is a predefined function, both a classical miner and a quantum capable miner
can pre-compute information about this function to speed-up the computation. In
fact, classical miners make use of application-specific integrated circuits (ASIC)
which they design specifically to implement function H, thus drastically improving
their hash-rates.

Given the current state of quantum computing research, the most suitable tool
for attacking Proof of Work is actually Grover’s quantum search algorithm that we
described in Section 2. Grover’s algorithm was designed exactly for this type of
unstructured search problems. This provides a quadratic speed-up compared to a
classical computer, which should give a decent advantage to the adversary. In fact,
the multiple acceptable solutions version of Grover’s algorithm should be employed
here as any H(m/||n) < t is acceptable. Thus, the worst case runtime complexity is

actually O(y/%"). Compared to the classical worst case time complexity of O(2"—t),

Grover’s algorithm offers a considerable speed-up. However, current miners use
parallel computations on optimised hardware (ASICs) and achieve extremely high
hashrates which could definitely not be matched by a quantum computer, given the
clock cycles predicted [I4]. Moreover, the quantum circuits will need to load the
message m before starting the computation, and interfacing with classical computers
is currently one of the bottlenecks of QCs. It is hence difficult to predict if and
when they will be reliable and fast enough to outperform classical highly parallel
computations.

To this end, we assume early generations of QCs will not be capable of out-
performing classical miners, so no advantage can be gained. Furthermore, once
quantum computations become scalable enough to make mining profitable, the tech-
nology would probably also be widespread, so a quick adoption among miners can be

45

3.2. ATTACKS ON ECDSA

expected. Hence, an equilibrium will be achieved as the network difficulty adjusts.
For these reasons, in this paper, we do not aim at addressing potential vulnerabil-
ities rooted in Bitcoin’s Proof of Work but rather the weaknesses of the embedded
transaction verification mechanism.

3.2 Attacks on ECDSA

Once efficient quantum computers with internal states comprised of many qubits are
implemented, the underlying cryptographic guarantees of Bitcoin’s ECDSA can be
challenged. As mentioned in Section P4, an attacker with a quantum computer of
about 6 xn ~ 1500 (given the ECDSA public key is a 256 bit string) qubits [564, B3]
can use Shor’s algorithm to solve the ECDLP and compute an ECDSA private key
given the public key. Once an adversary obtains a private key, he is indistinguishable
from the original owner so he is in full control of the funds.

3.2.1 Public key unveiling

In the following paragraphs we highlight why the community should be concerned
about exposing their public keys. Although a discussion has to be made regarding
the speed a quantum computer can achieve when computing private keys from public
keys, it is somewhat clear that attacks where the public key is publicly available for
more than a few hours can succeed as there is enough time for a quantum computer
to run Shor’s algorithm.

As such, we can identify the following scenarios where Bitcoin users reveal their
public key.

1. Bitcoin UTXOs secured by P2PK challengeScripts display the public key in
plaintext in the output of the transaction. As soon as a transaction with such
an output is broadcast to the network, a quantum attacker can compute the
corresponding private key and thereby consume the P2PK output just created.

2. Any Bitcoin UTXO secured by any other type of challengeScript will require
the public key in the scriptSig that unlocks it. Thus, attackers can scan the
blockchain for any other UTXOs that are locked by scripts with the same
public key, and unlock them. In fact, a fast quantum attacker could even
attack the very transaction that reveals the public key in its input, but this
case is considered separately in Section BZ22. However, if we operate under the
assumption that the quantum attacker needs at least a few hours to compute
a private key from a revealed public key, then a solution to this problem is not
reusing a public key. One can prevent against this scenario by using public
keys only once. In fact, reusing public keys is not recommended, neither by
Bitcoin developers nor the community, as numerous studies identifying privacy
risks have been conducted [43, bR, 70, "4, 277].

3. A group of parties using an m-of-n multisig type UTXO requires, each party
to give his public key in order to construct the challengeScript. Thus, all the

46

3.2. ATTACKS ON ECDSA

members of the group have access to all the public keys. In fact, this type
of UTXO usually appears when different set of parties in the group are not
trusted, so it would make sense for one of the parties to disclose the public
keys of the other members to a quantum attacker.

4. Bitcoin users that own currencies on other Bitcoin forks (e.g. Bitcoin Cash (]
or Bitcoin Gold [?]) can use the same public key on all forks where they
operate. As such, users could reveal a public key in the challengeScript of
one of the outputs or in the scriptSig of any of the inputs of transactions on
Bitcoin forks. As Bitcoin forks share the same transaction history prior to the
fork point, such behavior may allow adversaries to gain control over the funds
on all forks.

5. A Bitcoin user can reveal his public key as part of a signed message to ensure
integrity, in forums, or in payment channels (e.g. Lightning Network [567]).
This type of unveiling is not immediately threatening as attackers do not
know if any public key they find online is also used to secure some bitcoins.
However, it is not far-fetched to imagine adversaries that regularly scan the
network for standard type challengeScripts built using the revealed public
key. As they have precomputed the private key needed to unlock the output,
they can simply consume the funds. Furthermore, attackers could monitor all
broadcast transactions and wait until one of the public keys they found online
appears in an input as part of the scriptSig. When this happens they can use
the computed private key to overwrite the transaction by specifying a higher
fee on their own transaction. Miners would not be able to tell which of the
transactions is the original one so they would just include the one with the
higher fee.

3.2.2 Live Transaction Hijacking

In this section we consider the special case in which a quantum capable attacker
can perform live transaction hijacking. Thereby an attacker attempts to compute
the private key corresponding to a public key revealed in the input of a transac-
tion broadcast to the network but not yet included in a block. Consequently, just
like in a double-spending attack [34, b6, B5, 61|, the attacker creates a conflicting
transaction” spending the same UTXOs, thus stealing the victim’s funds. Note,
however, that this form of transaction hijacking differs from the more conventional
notion of double-spending as the attacker is the beneficiary rather than the original
transaction initiator.

It is important to note that the attacker, must not only create, sign and broadcast
the conflicting transaction, but also first run Shor’s algorithm to derive the private
key. As timing is essential for such attacks, the performance of quantum computers
plays a central role for the success probability of this type of attack.

An extension to this attack could be to combine it with selfish mining strate-
gies |25, b7, 4R, 27]. Assuming the adversary is also a miner, he could employ his

'Possibly with a higher fee to incentivise inclusion in the blockchain over the victim’s transaction

47

3.3. ESTIMATED LOSSES

computational power to attempt to build up a secret chain and, when in the lead,
selectively publish blocks to cause main chain reorganisations. In contrast to tra-
ditional selfish mining attacks, the feasibility of this combined attack is expected
to improve significantly, since the adversary can now also perform transaction hi-
jacking, thus drastically increasing his profits. As such, the prospectively-gained
revenue consists of more than just block rewards and transaction fees, as all funds
contained in (non-quantum-resistant) UTXOs spent in the overwritten transactions
are also at the mercy of the attacker.

3.3 Estimated Losses

As described, it is clear that in a post-quantum world the current implementation of
Bitcoin is rendered useless as transactions can be immediately hijacked. Hence, the
community will most likely deploy a quantum resistant signature scheme at some
point in the future. If this is done in time users will be able to move their funds from
unsafe outputs secured by ECDSA to quantum resistant ones. However, if a quantum
computer appears without notice and the community has not fully transitioned to
the quantum resistant signatures, all funds secured by revealed public keys can be
stolen using the attacks described above. In order to illustrate the full extent of the
issue posed to the community, we estimate the potential losses in Bitcoin (BTC).
This is of relevance as the attacker can subsequently invest the profits in further
improving his quantum capabilities.

Currently?, approximately 33% ® of the total amount of BTC reside in unspent
outputs secured by a revealed public keys?. At the time of writing, this amounts to
approximately 50 billion USD®. If a quantum capable attacker would appear at the
time of this analysis, it would be impossible to guarantee the safe retrieval of these
funds even if our scheme is deployed because a quantum enabled attacker would
be in possession of the same information as the original owner. The community
can remedy the situation by moving their funds to outputs that do not have the
associated public key revealed.

Furthermore, approximately 30% © of these 33% are actually in P2PK outputs,
which cannot be recovered in any way once quantum attackers appear. The only
way to recover these funds is for the original owners to transition them to P2PKH or
P2SH outputs. But the fact is that most of these funds originate in very old blocks
so it is very probable that the original owners lost the private keys that could have
unlocked these funds. Thus, this is a guaranteed bounty for anyone who manages
to scale quantum computers enough to break ECDSA in Bitcoin.

2at Bitcoin blockchain height: 514877

35,687,262 Bout of 16,937,813 13

4All the data was gathered using the blocksci [3] tool and the Amazon Machine Image they
provide.

®Calculated using a BTC/USD exchange rate of $9.369 [d].

61,761,130 B

48

3.4. HINDERING TRANSITION TO QUANTUM RESISTANCE

3.4 Hindering Transition to Quantum Resistance

Given these possible attacks, the Bitcoin community is considering different quan-
tum resistant signature schemes that could be suitable for Bitcoin. Once one of them
is deployed, users will be able to create challengeScripts using the new quantum re-
sistant public key, hence securing their funds against quantum capable attackers.
However, if adversaries have the ability to perform live transaction hijack-
ing, users will not be able to transition their funds to quantum resistant
UTXOs as their transactions would be immediately hijacked. This is the
exact problem we are trying to solve in this paper.

49

Section 4: Transition to Quantum Re-
sistance

In this chapter we offer a solution to the problem of transitioning to quantum resis-
tance securely. More specifically, we describe a new scheme, called QRWit, that can
be used to consume outputs secured by the elliptic curve digital signature algorithm
by leveraging on the security of a quantum resistant cryptographic system®. Thus,
our scheme can be used to transition to quantum resistant signature schemes by
simply consuming the funds and sending them to a quantum resistant output. As
the scheme we are about to describe relies on a quantum resistant cryptographic
construct that can produce signatures for a given message, we are assuming that
such a system will be deployed before or at the same time with our scheme. A
detailed discussion on deployment of quantum resistant signatures and their timing
is done in Section H. For the remainder of this section we assume quantum resistant
signatures are deployed in Bitcoin. This means users can generate pairs of private-
public keys that cannot be broken by quantum computers. The protocol update we
propose will make use of such a pair of keys.

After the transition protocol is given, we offer a deeper analysis of each step of
the protocol and demonstrate the security guarantees we claim it provides. Bitcoin-
specific implementation details, as well as discussions on parametrization and nec-
essary data structures are considered separately in Section B.

4.1 Protocol Overview

In order to consume funds protected by some ECDSA public key pk, we propose the
creation of a new quantum resistant public key (pkggr) which will act as surrogate
for pk. Thus, whenever pk is used to verify the validity of a signature, the protocol
update we introduce would also require a second signature verification with pkgg.
Even though the classical signature can be forged by quantum attackers, we still
require it for backwards compatibility reasons. Un-upgraded users will trust the
transaction is valid because they check the classical signature. On the other hand,
upgraded clients will also check the quantum resistant signature which cannot be
forged. Furthermore, users must first prove to the network that pkgg is indeed their
own creation and is meant as a surrogate for pk. To achieve this we can employ the
same strategies used in hash-commitment schemes. Hence, before wanting to spend
funds associated with pk, a user must first publish a hash commitment H (pk||pkqr),
i.e., the hash of his concatenated public keys, thus linking the two keys together.
After including this commitment in the blockchain, the owner of pk can prove to
the network he is the creator of pkgr by revealing both pk and pkgr and pointing

IBitcoin community shall decide the specific one

20

4.1. PROTOCOL OVERVIEW

to the commitment transaction. As pk is not known by anyone other than the
owner, only he could have produced such a commitment so the network will be
convinced of his claim and validate the transfer. Furthermore, to avoid the risk of
an attacker rewriting the blockchain history to insert his own commitment to his
own quantum resistant public key, users should wait a sufficiently long time %,
between committing and revealing pk. Any time which is long enough to guarantee
chain rewrites are impossible is fine, but we argue this delay should be of the order
of months. We discuss this subject further in Section AT

We give an overview of our protocol in the form of a diagram (Figure B) and
describe each of the three steps in more detail in the following paragraphs.

,‘ Commit '\ Delay (C Reveal D\

L JA ’
T
tsec
/ Tcammit \ Treveal
include: - proo:f“of erStEnc include:
- H(pk || pkgr) L - pk, pkor

+ link to Teommit
signed with:
signed with:

» sk'gr
« sk

\\ /) k . skop)

Figure 4.1: Overview of the commit-delay-reveal protocol for secure spending in the
presence of a quantum attacker.

4.1.1 Commit

The first phase of the transition is to create a quantum resistant surrogate for pk.
Such a public key can be created by simply using the quantum resistant crypto-
graphic system that is now active in Bitcoin to generate a pair (skgg, pkgr). To
mark the commitment of the funds secured by pk, the user must include the hash
of both public keys pk and pkgr concatenated, i.e. H(pk||pkgr), in some block of
the blockchain in a transaction denoted T,,,mi:. There are multiple variants for
how to achieve this and the community or developers can decide upon the most
suitable format and method of this commitment. For example, we could create a
transaction T,ymi¢ Which includes the hash commitment in an OP _RETURN type
challengeScript in one of the outputs.

After T.ommit is broadcasted to the network and included in the blockchain, the
user will ask for a merkle branch proof of the existence of this transaction. This can
be used at a later stage to prove to the network the existence of the commitment.

An important discussion should be made on what type of transaction is T.ymmit-
As T.ommit would immediately reveal the public key that verifies the signature on

51

4.1. PROTOCOL OVERVIEW

itself, this poses an intrinsic problem in publishing it. Basically, an adversary capable
of performing live transaction hijacking could attempt to prevent the creation of
T,.ommit by double spending the transaction thus performing a denial of service.
To overcome this problem there are multiple defence mechanisms we could employ
depending on the timing of the transaction. For example, a guaranteed method
of ensuring T.ommi: cannot be hijacked is to sign it with some quantum resistant
key-pair (skgp, phgpr). In fact, this can even be the same key-pair as (skqr, pkqr)-
To achieve this, the user needs to consume some output that is already secured by
a quantum resistant signature scheme. He could acquire these through trade or by
successfully mining a new block.

Note that T,.,mmi does not even have to be created by the owner of pk. In
fact, one can envision a service that could offer commit transactions. Users would
send the bytes representing the hash of their concatenated keys and the service
providers would send back the proofs of existence which can be checked by the
users immediately. After a delay of ..., the user can transition his funds as we will
describe in the following paragraphs.

An important aspect of this phase is that it does not require any code changes in
the Bitcoin code. The earlier a user publishes a commitment, the earlier he can reveal
the keys and transition the funds. Users can start publishing such commitments even
now, provided that they can guess the format on which the developers will decide
upon for the commitment data.

4.1.2 Delay

This phase requires no user interaction and its only purpose is to allow the network
to build Proof of Work on top of the block where T,,,,mi: was included. The user
just needs to wait for a predefined security period #..

Any funds associated with pk must be left untouched for this period of time as
otherwise, pk would be revealed and quantum capable attackers would compromise
the entire scheme. In fact, if one would try to consume funds associated with pk
after our scheme is deployed, the transaction would not even be valid under the
new protocol rules. For instance, clients that did not upgrade their code to our
protocol update would still be constructing transactions without the quantum sur-
rogates which would never be accepted. At the same time, they would be revealing
the classical public key which would allow attackers to break the private key and
subsequently use our scheme to steal the funds.

We argue that a long delay is necessary to ensure no blockchain reorganization
could have occurred accidentally or have been caused intentionally by an adversary.
While the specific choice of delay may be subject to follow-up scientific work and
discussion in the community, we propose an initial period of 6 months.

The reasoning behind our choice is explained in the next paragraphs taken from
the paper [62], which we have co-authored.

52

4.1. PROTOCOL OVERVIEW

Necessity for a Long Delay Phase

The correct choice of the security period t,.., used as protection against accidental
and adversarial chain reorganisations, has a significant impact on the security prop-
erties of the proposed transition protocol. In contrast to previous proposals and
discussions [B, 65, 66, 67|, we emphasise the necessity of a sufficiently long delay
phase, substantially longer than the standard confirmation period of ~ 6 blocks in
Bitcoin. While the exact duration of ¢,,. may be subject to future discussion, we
propose to require hash commitments to be older than 6 months, i.e., the UTXOs
used as input to T}y must remain unspent during this period.

As explained in Section B we assume that the feasibility of block reorganisation
attacks, such as 51% attacks or selfish mining attacks requiring a smaller fraction
of the overall computational power, is significantly increased for quantum-capable
adversaries. In contrast to traditional reorganisation attacks, the prospective gains
in this scenario are not only comprised of block rewards and transaction fees but
also include any funds whose public keys have been revealed in one of the blocks
overridden by the attacker. Hence, relying on a short security period of a few blocks
(or no delay at all) provides insufficient protection against chain reorganisations in
the presence of a quantum-capable attacker.

We note that in theory an adversary controlling a significant portion of the overall
computational power could successfully rewind the chain further than t.., thereby
altering the transaction history, and attempt to steal funds from all non-quantum-
resistant outputs which were spent from during this period. However, we argue
a fork overriding the block history of such substantial period as 6 months would
be classified as a catastrophic failure of the system, forcing out-of-band measures
to be undertaken by the majority of honest consensus participants. Specifically,
we assume clients and miners will have incentive to manually reject the conflicting
branch of the attacker®?.

However, by intuitive continuity arguments there must exist a point between
short- and long-ranged attacks, where the community is unable to find even out-of-
band consensus on how to proceed, i.e., whether to perform a manual invalidation
(override) of attacker’s fork or accept the conflicting branch of the adversary, as
visualized in Figure B2. While under different circumstances, similar disputes have
been observed in other cryptocurrencies and have led to permanent chain splits,
as in the case of Ethereum [21] and Ethereum Classic [5]. Hence, a quantum-
capable adversary may have incentive to attempt to exploit this “sweet-spot” to her
advantage, as a destabilisation or split of the chain could yield a higher success
probability of an attack.

By implementing a long delay phase, sufficient to trigger out-of-band actions in
case a longer fork is created by an adversary, the probability of a malicious chain
reorganisation interfering with the transition protocol can be minimized.

2Note that this does not require any changes to the reference client implementation, as Bitcoin’s
JSON-RPC API provides an invalidateblock call, which permanently marks a specific block as
invalid, as if it had violated a consensus rule [I9]. (There are of course many other clients available,
some of which may require code changes to manually reject a branch.)

93

4.1. PROTOCOL OVERVIEW

?7??
Short range forks
potentially not
handled
out of band

Potential
“sweet-spot”
'
]
]
Long-range forks

K rejected manually
/ by majority of nodes

Figure 4.2: While long-range forks are expected to be manually rejected by the
majority of nodes, this may not be possible with short-range chain-splits due to the
limited time frame. There may exist a “sweet-spot” which causes a dispute whether
to accept or reject the conflicting branch, destabilising or even permanently splitting
the network to the benefit of the adversary (red).

4.1.3 Reveal

After the delay period has passed, the user can safely spend funds associated with
pk by creating a transaction T}.,eq, in which he does the following:

1. Reveal pk; this happens intrinsically when trying to consume an output locked
by pk. To be more exact, this will appear in the scriptSig of the input of T}epeq
that references the output to be consumed.

2. Give a classical signature that can be checked with pk; this also happens auto-
matically when trying to consume the output. The signature is required as part
of the aforementioned scriptSig. Note that this signature can be forged by any
quantum attacker, but we require it for backwards compatibility reasons. The
challengeScript was created using the old protocol rules, so the un-upgraded
clients would consider the transaction invalid if the scriptSig does not provide
the classical signature.

3. Give a quantum resistant signature that signs exactly the same data as the
classical signature did; this can be included in a new segregated area that
we call QRWit and that only upgraded clients can see. The purpose of this
signature is to offer ownership guarantees in the presence of quantum attackers.

4. Reveal pkgp; this will be needed in order to verify the quantum resistant
signature and can be included in QRWit as well.

5. Give a proof that pkgr is indeed the surrogate of pk as committed to in some
transaction T,p,mi. This proof can also be included in the segregated area.
The proof consists of a merkle branch proof that T,,,,,+ was included in some
block and that it contains the hash of the concatenated public keys. This,
also, can be included in QRWit.

54

4.2. AN ALTERNATIVE INTERPRETATION OF QRWIT

As all the additional data will be transmitted through the segregated area of the
transaction QRWit, un-upgraded consensus participants will simply believe T}eyeq is
a normal transaction consuming some UTXO secured by pk. They will be satisfied
with just the classical signature and accept the transaction. However, the upgraded
users will be able to see the additional data and to check the proof of existence for
the creation of the surrogate quantum resistant key. Finally, they can now check
that the quantum signature is valid and accept the transaction as valid.

The necessary implementation specifics are provided in Section B. The protocol
updates P — P’ that we propose restricts the definition of a valid transaction. As
such, the set of blocks that are valid under the new rules (P’) is a proper subset of
the blocks that would have been valid under the old rules (P). This means we can
be deploy these changes as a soft fork. Once the majority of the network upgrades
and accepts our code changes, the new protocol begins to be enforced.

We would like to accentuate that once the protocol is deployed, classic ECDSA
signatures will no longer be accepted in Bitcoin without providing the extra data as
well. Furthermore, if one uses an un-upgraded client and spends some funds, then
the respective funds will not be transferred and will become prone to theft, as the
public key is now revealed.

4.2 An Alternative Interpretation of QRWit

To prove the simplicity of the new protocol we would like to offer the following
summary in the form of a definition, which also offers a different point of view on
QRWit. What we would like to do is to strengthen the concept of a valid ECDSA
signature, to require the extra checks we described.

Definition 38 (QRWit (Quantum Resistant Witness))
Denote an ECDSA signature created with secret key k for message m as sigg(m).
Denote a quantum resistant signature created with secret key k for message m as

qrsigr(m).

For any elliptic curve digital signature d = sigsy(m), where (sk,pk) is a private-
public key pair, d is valid only if:

1. a new valid quantum resistant signature, over m, is generated with skqor and
verifiable with pkgg, i.e. qrsigs,,(m) can be checked using pkqgr. In this sce-
nario, validity refers to the rules of the quantum resistant signature verification
algorithm.

2. a proof of common ownership of the two public keys is given, i.e. the user
must provide a proof that (skqr, pkor) was created by the owner of (sk,pk).

To prove that our protocol really implements this definition we would like to
explicitly show how each requirement is satisfied by our protocol update.

1. During the reveal phase of our protocol we require a quantum resistant signa-
ture over exactly the same data that the classical signature was over.

95

4.3. REAL CASE SCENARIOS

2. The proof of existence of the hash commitment and the impossibility of altering
this commitment, serves as proof that pkgr was created by the owner of pk,
which in turn implies the second requirement.

4.2.1 Flexibility

The advantage of looking at the protocol in this way is that the flexibility of the
scheme is immediately clear. In this section we would like to illustrate this and show
how users can benefit from it.

The inputs can reference any type of output. Apart from the standard output
types that were described in Section P23, the scripting language of Bitcoin can be
used to create many different challengeScripts. However, our scheme is not concerned
with this in any way. We are just requiring that whenever an ECDSA signature is
checked against a public key, a second quantum resistant signature over the exact
same data is given. This means that more complex challengeScripts that include
multiple signatures are automatically accommodated.

The outputs can be created in any way the user wants. There is no limitation
imposed by our scheme on how to spend the coins. We only enforce rules on the
consumption of UTXOs. A user could even send his funds to an UTXO secured by an
old, non-quantum-resistant public key, if he wishes so. Furthermore, in comparison
to other schemes we became aware of while working on this project, our protocol
does not require the user to predefine the way in which he wants to spend the coins.
The user can take this decision at the time of transitioning the funds.

4.3 Real Case Scenarios

In this section, we give a few real case scenarios that we believe are very probable to
arise. In terms of when quantum capable attackers appear, we can rate the scenarios
from optimistic (appears very late) to pessimistic (appears tomorrow). Hence, to
prove our scheme is needed in any scenario, we will present the scenarios and the
actions that should be taken from most optimistic scenario to most pessimistic.

Quantum Attackers Never Appear

Although this scenario is highly unlikely, we will go ahead and consider it. Even
though quantum computers are not scalable enough to be used against Bitcoin,
the community will still upgrade the current signature scheme (ECDSA) to a more
evolved one (let us call it MISS: Much Improved Signature Scheme) at some time.
Thus, when MISS will be deployed, the community will need to offer a way to
transition from ECDSA to MISS under MISS security guarantees. If this would not
be the case, then attackers that can break ECDSA would hijack the transition and

o6

4.3. REAL CASE SCENARIOS

MISS would never be used. Our scheme can be used in this scenario by use of a
MISS surrogate for the ECDSA public key.

Quantum Attackers Give Plenty Notice

This scenario assumes that the community is aware of the appearance of a quantum
capable attacker with months in advance. In such a case, the community has plenty
of time to deploy a quantum resistant scheme (let us call it QRS). QRS can be ran
alongside ECDSA until quantum capable attackers are believed to start operating.
In fact, the exact moment should take into consideration t,.. as quantum attackers
could try to rewind the blockchain and replace older transactions. Anyway, while
both signature schemes are active, users would be able to transition their funds from
ECDSA secured UTXOs to QRS secured UTXOs just by normal transactions.

However, at some point, ECDSA must be considered broken and invalidated in
Bitcoin. At that time, instead of simply invalidating all ECDSA signatures, the
community should instead deploy our scheme. If ECDSA would just be invalidated,
then users who did not transition and still have their funds in UTXOs will never be
able to recover them. On the other hand, replacing ECDSA with our scheme, would
allow users to transition to QRS even at a later time.

We note that ECDSA must not be invalidated before deploying our scheme as this
would require a hard fork to recover the funds. We will prove this by contradiction.
If ECDSA is invalidated before deployment of our scheme, there will be some new
clients which upgrade to this protocol change which only accept QRS. Thus, the set
of rules for valid blocks would state that all valid blocks contain only transactions
signed with QRS. Now, if we further want to deploy our scheme, we would have
to loosen the set of rules to re-allow ECDSA signatures which are required by the
challengeScript in the outputs to be consumed. As such, this cannot be deployed as
a soft fork as the set of blocks valid under the new rules is not a proper subset of
the previous set of valid blocks.

Quantum Attackers Appear Tomorrow

This scenario analyzes the extreme case in which quantum computers appear with-
out notice and our scheme has not been deployed yet. However, we assume quantum
resistant signatures exist. This scenario could be identified by the Bitcoin commu-
nity through reports made by users who are attacked. If this becomes real, all funds
associated with revealed public keys are not recoverable and is only a matter of time
until attackers consume them.

To recover the system from this extreme scenario, all transactions consuming
ECDSA secured UTXOs should stop as live transaction hijacking is possible. The
next step the community should take is to deploy a scheme such as ours as soon as
possible. Commit transactions would need to be created using quantum resistant
UTXOs, so we expect a surge in the price of quantum resistant bitcoins as most of
the currency is still not quantum resistant.

o7

4.4. STANDARD REVEAL TRANSACTION

4.4 Standard Reveal Transaction

To conclude the description of our new scheme (QRWit), we would like to describe
how an average reveal transaction would look like. We shall try to predict the
behaviour of an average user. The scenario in which he operates can be any of the
above and we assume all his public keys have quantum resistant surrogates. In fact,
he could even have the same quantum resistant surrogate for more of his public keys.
However, this is not recommended as it would prove to the network that all those
public keys belong to the same person, information that would aid adversaries in
deanonymizing a user.

Furthermore, let us assume that the average user has multiple UTXOs where
his funds reside. After he waits for the delay period to pass for each of the public
keys he plans to use, he can construct reveal transactions. Once he uses one of
the public keys in the reveal transaction, this key is now revealed and a quantum
attacker can immediately use it to commit to his own quantum resistant surrogate.
However, in order to consume the rest of the funds associated to it, the attacker
would have to wait for the delay t,.. to pass. During this time, the legitimate owner
of the funds should consume all of them by using his quantum resistant surrogate
and creating reveal transactions. If the user consumes all the UTXOs in time, the
quantum attacker cannot do anything to steal the funds as the outputs are already
consumed.

As such, we would like to emphasize that there is not a one-to-one correspondence
between commit transactions and reveal transactions. One commit transaction can
be used as proof of existence for many different reveal transactions. Moreover, one
reveal transaction can, and probably will, consume multiple UTXOs so multiple
commit transactions can be linked in one commit transaction. However, for the
whole reveal transaction to be valid, all commit transactions have to be older than
the delay period.

o8

Section 5: Implementation

In this section, we describe the implementation of our scheme in Bitcoin. We will
show how we simulated the deployment of quantum resistant signatures and how
each phase of the scheme impacts the code. Furthermore, we will explain how
we adapted the code to allow this protocol update to be deployed through a soft-
fork. We have built our code on top of the Bitcoin code base [IR] as it was on
the 18th of May 2018. More specifically, we have chosen the commit with hash
d792e47421fcb9ce3b381c1e6d8902777ae3f9f3. Bitcoin does have stable releases
every few months, but we decided to extend the code as it was at the aforementioned
commit as some pieces of code were refactored in such a way that enabled an easier
integration of the changes we were trying to implement.

5.1 Quantum Resistant Signatures

As mentioned in Section PO, we are assuming that quantum resistant signatures
exist in Bitcoin. However, their implementation is a completely different research
study and a convoluted topic in itself, hence we do not aim to offer a viable prototype
for quantum resistant signatures in Bitcoin, but rather a hack that would allow us
to build the rest of the code. As such, we need to make an assumption about how
a new quantum resistant cryptographic system will be deployed in Bitcoin, so that
we know how to simulate it. Thus, when the complete implementation will appear,
our code can be easily integrated.

Currently, in Bitcoin, there is only one cryptographic system implemented
(ECDSA) so the code is not flexible enough to allow an easy integration of a new
cryptosystem. The current elliptic curve cryptographic primitives are modelled in
the following way:

1. CKey is an object representing an ECDSA private key. Private keys can be
created, compared, serialized (and un-serialized), validated (for integrity), and
invalidated. Furthermore, the object offers functionality to create ECDSA
signatures for given messages using the private key represented by this object.

2. CPubKey is an object representing an ECDSA public key. The object handles
creation, comparison, serialization, verification, and invalidation of public keys.
Moreover, it offers a method (Verify) through which users can check that a
signature over some message was created using the private key associated to
the public key represented by this object.

Quantum resistant signatures can thus be deployed in an elegant manner by
applying the strategy pattern on the aforementioned objects. When instantiating a

99

5.1. QUANTUM RESISTANT SIGNATURES

CKey or a CPubKey, the strategy of choice can be specified in the constructor to obtain
a pair of keys that belongs to a certain cryptosystem. However, this would require
changes in all the seams where private or public keys are constructed. Furthermore,
the serialization implementation would have to be modified to specify the strategy
chosen.

In the future, the community will need to deploy quantum resistant signatures
and offer a way to check if a certain public key is quantum resistant or not. As our
protocol is not interested in how this will be achieved we are just assuming that
the CPubKey object will offer a method that can be called to obtain the guarantees
offered by the underlying public key (e.g. is it quantum resistant?). To avoid
modifying the code base in many different places, we have designed a simple hack
for providing the required functionality. We will simply consider that half of the
ECDSA public keys are quantum resistant. To implement this neatly we provide
the following implementation of the method Is@)R which classifies public keys as
quantum resistant or not.

/**% An encapsulated public key. */
class CPubKey

{
private:
unsigned char vch[PUBLIC_KEY_SIZE];
public:
// Check if this public key is quantum resistant.
bool IsQR() const {
return vch[4] < 0x80;
}
}

Figure 5.1: Implementation of quantum resistant public keys, by considering ap-
proximately half of the ECDSA public keys are quantum resistant.

Note that the 4th byte was chosen randomly, while the hex value 0x80 is the
median of all 8-bit numbers. As any byte in a public key is essentially randomly
generated, the approach we implemented will yield quantum resistant public keys
half the time. Note that with such an implementation any quantum resistant public
key is also a valid ECDSA public key, which means that signature verification,
generation and any other constructs remain completely unchanged. In fact, the
only thing we care about is the ability to classify some keys as quantum resistant or
not. This is enough to allow implementing the other bits of the protocol.

60

5.2. QRWIT IMPLEMENTATION

5.2 QRW:it Implementation

To implement the protocol we have described, there are two stages we need to think
about: commit and reveal. Apart, from these aspects, we also have to consider
deployment of the code and backwards compatibility. In the following sections we
will approach each of these aspects with code samples and explications.

One of the challenges of being a Bitcoin developer is the backwards compatibility
thinking. Because the system supports a currency intended to be used by people
throughout the world, any protocol update should be backwards compatible so that
users who do not wish or are just unable to upgrade can do so without losing their
funds. Sometimes users are off-line for a long time, but they should be able to
recover their funds even after years of not using the system. Although sometimes
this is not possible and a hard fork is required, the core developers try to implement
all changes as soft forks.

We would first like to explain why we tried to alter existing code as little as
possible and why all code changes introduced have to be inserted in just the right
places in this very convoluted system. Bitcoin is an open source project where
developers are volunteers with expertise and a very specific Bitcoin mentality. As
ensuring security is one of the main goals of the system, all code changes have to
go through a very lengthy process of peer review, implementation, peer verification
and optimization. Before code is merged in, the core developers have to accept
the changes. Considering all these factors, code proposals should be very specific
and only implement the functionality required and no other refactoring should be
done. This does not mean refactoring doesn’t exist in Bitcoin, but that is a separate
process from integrating a new feature.

5.2.1 Commit Stage

The first phase of our protocol is the hash commitment that will be used to prove
the common ownership of and ECDSA public key and a new quantum resistant
public key. As explained in Section HEI, this phase requires no code changes
and users can start creating hash commitments whenever they want, once quantum
resistant signatures exist. Below we will describe the specific syntax we used and
the additional tools we created in order to help users create such commitments much
easier.

Structure of the Hash Commitment

The structure of the hash commitment we use in our implementation is simply the
direct concatenation of the bytes of the old public key, followed by the bytes of the
quantum resistant public key. This can be seen below

uint256 hashCommitment = Hash(
oldPubKey.begin(), oldPubKey.end(),
qrPubKey.begin (), qrPubKey.end());

61

5.2. QRWIT IMPLEMENTATION

Although there exist other formats which would provide more flexibility, we decided
on this trivial approach for simplicity as we are building just a prototype to prove
the concept.

In our implementation this hash commitment is included in a transaction by
using an OP _RETURN type output. Transactions containing such outputs can be
created using the functionality that already exists in the Bitcoin client.

Tools

To enable users to easily create such hash commitments and to generate the proof
of existence for the commitment transaction, a few remote procedural call (RPC)
commands can be used. Some of them are implemented by us to add functionality
while others already existed in Bitcoin. As such, we will detail the functionality we
added and explain how to use the existing RPC commands. Note that the RPC
commands prefixed with m are implemented by us. The following list also serves as
a guide for completing the Commit phase of our protocol.

1. mkeys is an RPC command that takes no arguments and lists all the public
keys owned by the user. The output is a map from addresses T to key ids. For
informing the user, we classify the ids of the keys by resistance against quantum
computers. For example, after generating 5 new addresses and running the
command we obtain:

$ bitcoin-client mkeys

{
"2MtT7n9...": "qr-e8fbc9703cc25...",
"2Mtx3HB...": "non-qr-8784e25c3c3a9...",
"2Mu9qcT...": "qr-13816b76f42aa...",
"2Mucsei...": "non-qr-90ela91b6161d...",
"2Mviwqz...": "qr-57a3eal9lblll...",

X

Colours are added to aid in the visualization of the example we will use
throughout the section.

2. mcreatesurrogateforkey is an RPC command that takes as input the id of
an old ECDSA key and the id of a new quantum resistant key, and returns
the hash of the concatenated public keys. This hash should be used as value
for the hash commitment. For example, let us use the first key from the above
output as surrogate for the second one to obtain:

$ bitcoin-client mcreatesurrogateforkey 8784e25c3c3a9. ..
e8fbc9703cc25. . .
"£32f6d455db7bcfcedf542a52b3. . . "

! Addresses are base 58 encoded challengeScripts. They are used in Bitcoin as destinations of
funds. Many people consider that outputs must be directed to some address, but the fact is that
only a subset of the possible challengeScripts are actually addresses. For example, P2PKH and
P2SH are addresses, but OP_ RETURN is not an address.

62

5.2. QRWIT IMPLEMENTATION

3. createrawtransaction is an RPC command used to create transactions. As
arguments it takes a list of inputs and a list of outputs and as result it returns
a blob of data which represented the serialized transaction. Each input is
a reference to some UTXO and each output is a key value pair. If sending
money to someone, the key should be the recipient’s address and the value,
the amount of money to send. If creating an OP _RETURN output, the key
is "data" and the value is a hex value that represents the data that will be
pushed in the challengeScript. As such, in order to create a hash commitment
a user would run a command similar to this:

$ bitcoin-client createrawtransaction "[
Uuuut\"txid\":\"6efc668eafb...\", \"vout\":0}
]u ||[

uuuuiN"data\" :\"f32f6d55db7bcfcedf542a52b3 ...\ "},
uuuu{\”2N9kiH7gGV...\":11.999}

]n

0200000001 £ffd233eedb38974396b4dd26dc9982c0ab6. ..

The above transaction can be signed with the signrawtransactionwithwallet
RPC command and broadcast with sendrawtransaction. The latter, returns
a 64 byte string representing the txid of the commit transaction.

4. gettxoutproof is an RPC command that creates merkle branch proofs for
given txids in a block. Users will use this to generate proofs of the fact that
their commit transaction is indeed included in a block.

$ bitcoin-client gettxoutproof "[\"6efc668eafb5...\"]"
0000002029a40fbb30c52fb582e24884e1297e605dec ...

The output can be checked using the RPC command verifytxoutproof which
takes as input merkle branch proofs and produces a list of txids and the block
in which they all appear. In fact, in our case it would be only one txid.

Equipped with all this data, a user can move on to the next stage of the protocol.

Delay Stage

This doesn’t require any actions from the users as they just need to wait for the
predefined 6 months delay period to pass. We have decided on 6 months for con-
siderations discussed in Section EI2, but this could be determined to be different
after more extensive research on the topic.

To ensure users do not reveal their public keys during this stage, we added code
in the Bitcoin client that warns the user every time he is about to broadcast a
transaction where a public key, with a surrogate commitment, would be revealed.

63

5.2. QRWIT IMPLEMENTATION

5.2.2 Reveal Stage

Having waited for the security period to pass, users can consume funds secured by
ECDSA public keys with the guarantee that no attacker can hijack their transaction.
In order to complete this section in code we had to think about adding the surro-
gate data (i.e. quantum resistant signature, quantum resistant public key, proof of
existence) to a transaction, verifying the proof and validating the signature.

Structure of the Reveal Data - QRWit

Under the new protocol rules, all transactions that consume an ECDSA secured
UTXO, will need to provide quantum resistant surrogate data. To this end, we
create the concept of a quantum resistant witness (QRWit), i.e. data witnessing the
fact that quantum resistant surrogates exist in this transaction.

For each input of a transaction, there will be an additional area of data at the
end of the transaction. We will name this area "qrWit" and it will contain a vector
of public key surrogates. We require one qrWit for each input instead of a global
one, because each input could be signed with a different SIGHASH type so for
ease of implementation and clarity we have taken this choice. All the qrWits in a
transaction form the segregated are we call QRWit.

A public key surrogate is represented by the following object:

class CPubKeySurrogate

{

public:
CPubKey pubKey; // old key
CPubKey qrPubKey; // new key
CTransactionRef commitTx; // commit transaction in ful
std::string proof; // a serialized merkleproof object
std::vector<unsigned char> qrSig; // new signature

+

We have modified the code such that when users sign transactions under the new
protocol rules, the Bitcoin client will automatically add surrogates for all the ECDSA
public keys that appear in the input as part of the scriptSig. The surrogates are
grouped by input and added in vectors that represent qrWits, one for each input.

Furthermore, we have created an additional RPC command, mgetrawrevealtx
that creates a reveal transaction which moves all the funds associated to a public
key to some new address. This does not mean users have to move all the funds
tied to a public key at once, but as explained in Section B4 they will have to do
it in a certain time frame. To simplify this process for them, we have created the
aforementioned command. The command takes as inputs the id of the public key
we are trying to transition to quantum resistance, the new address to which we
wish to send the funds, a serialized transaction representing the commit transaction
and a serialized merkle branch proof. The returned value is a serialized transaction

64

5.2. QRWIT IMPLEMENTATION

with all the surrogate data in place and all the UTXOs associated to the old public
key consumed as inputs. The user can now sign and broadcast this transaction to
transition his funds.

Verification of QRWit

Having described the creator’s part of the protocol, we will now focus on the verifier’s
part. More specifically, we need to add code that enforces the new protocol rules at
a consensus level. To this end, we will first give a short introduction on the stages
a transaction has to go through in order to be accepted by a node. Afterwards,
we will continue to demonstrate the changes we implemented to accommodate our
protocol updates.

Currently, a transaction object is serialized and relayed to the network using the
Bitcoin peer-to-peer network. Whenever e node receives a transaction, it will have
to decide whether this transaction is valid or not. If it is valid the transaction
will be added to the node’s memory pool, where it will sit until it is included in
a block. However, we do not want to perform unnecessary expensive checks if
there is no need. Furthermore, we want to access the global state, which requires
thread synchronization, as little as possible. Thus, the Bitcoin pipeline for validating
transactions is the following:

1. Unserialize transaction blob of data to the C++ object CTransaction. This
could fail if the transaction is malformed or the creator used a buggy client
implementation.

2. Perform transaction checks that require no context. Some of this checks are not
consensus critical, but enforce a good behavior and prevent denial of service
attacks through CPU or memory exhaustion.

(a) Verify the size respects the imposed limits.
(b) Verify there is at most one OP_RETURN output.

(c) Verify the transaction is not a coinbase transaction as those are only
accepted in blocks not as loose transactions relayed by the network

3. Acquire a lock on the memory pool and UTXO set and cached the outputs
referenced as inputs by the transaction. After the caching is done, the lock is
released and the data cached is used to check for conflicts with other transac-
tions in the memory pool. If the inputs of two transactions overlap then the
transactions conflict and it is guaranteed that one of them will not be included
in a block. The miner will choose to keep the one with a higher fee as that
will benefit him most.

4. Acquire a lock on the blockchain and retrieve the current consensus rules rep-
resented through flags in the latest block. Use these flags to perform specific
checks that might require the blockchain and pass them to the signature vali-
dating objects to enforce specific protocol updates.

65

5.2. QRWIT IMPLEMENTATION

5. Fully validate the transaction by checking the scripts in the inputs and the
signatures. This is the most expensive part of the validation.

If all the above checks pass, the transaction is considered valid and is included in
the memory pool. Every ten minutes it will have the chance to be picked up and
included in a block.

Our code changes are listed below.

1. We modified the transaction serialization format and the respective code to
include one qrWit per input. This is serialized in vector format, i.e. the
number of elements in the vector first and then the elements one after the
other.

2. We did not modify the context independent checks.
3. We did not modify this stage at all, as well.

4. The protocol update is deployed through version bits which will be described
in Section BZ4. When the flag marking activation of our scheme is present
we have to validate the surrogate data. Furthermore, we will instruct the
signature validators to check quantum resistant signatures by adding a script
check flag.

5. When fully validating the transaction by checking the signature we simply
modify the definition of a valid signature as described in Section E2.

We will now describe in more detail steps 4 and 5 of the above changes.

Validate Surrogate Data

Once our protocol update is activated, all transactions that have surrogate data
have to be validated. As such, we iterate over all qrWits and over all their elements
(CPubKeySurrogate objects) and call the

bool CheckSurrogate(CPubKeySurrogate surrogate)

static method. The boolean returned specifies if the given CPubKeySurrogate is
valid or not. The following checks, essentially, ensure that the two public keys
specified in the surrogate are indeed created by their owner.

1. Verify that qrPubKey is indeed quantum resistant, by calling IsQR().
2. Verify that commitTx contains the hash of the concatenated pubKey, qrPubKey.

3. Verify that the merkle branch proof for the existence of commitTx corectly
matches this transaction. To achieve this, we unserialize proof and obtain
a CMerkleBlock object as used in gettxoutproof. This object specifies the
block on which the merkle branch proof was constructed and the transactions
matched. We check if the txid of commitTx is matched and if it isn’t we declare
the surrogate as invalid and the whole transaction is rejected.

66

5.2. QRWIT IMPLEMENTATION

4. Verify that the block in which commitTx appears, as returned by the unserial-
ized CMerkleBlock object, is indeed part of the main chain and is older than
tsee. In order to perform this check we need to obtain the blockchain lock once
again.

Verify Quantum Resistant Signature

Once the check described above passes and we reach the final stage of validating
a transaction, the scriptSigs and the challengeScripts from each input will be con-
catenated and ran as a script. Inside this script, various operations will take place.
We are not interested in any of these operations and we do not add or change these
in any way. However, some of them will be signature verifications, i.e. a public
key and a signature will be provided and a TransactionSignatureChecker will be
used to check the validity of the signature. As we mentioned multiple times, this
is what we are interested in modifying. We will change the implementation of the
VerifySignature method as follows:

bool TransactionSignatureChecker::VerifySignature (
const std::vector<unsigned char>& vchSig,
const CPubKey& pubkey,
const uint256& sighash) const

if (!pubkey.Verify(sighash, vchSig)) return false;
if (enforceQR && !'pubkey.IsQR()) {
for (const auto& s : txTo->vin[nIn].qrWit)
if (pubkey == s.pubKey)
return s.qrPubKey.Verify(sighash, s.qrSig);
return false;

}

return true;

Remark 17 (Valid Surrogate)
Note that the grPubKey is guaranteed to be in control of the same user who controls
pubkey as we have already validated all the CPubKeySurrogate objects.

As we have added an additional area of data to the transaction, i.e. the qrWits,
we need to include a fingerprint of this data in the block that will contain this
transaction. Otherwise, adversaries could subsequently change this data when they
relay the block and other nodes would consider the transaction invalid. To this end,
we build a merkle tree of hashes of all the qrWits in the transactions of a block and
include it in a special script of the coinbase transaction. The hash of the coinbase
will be part of the merkle tree of all the transactions of the block, thus ensuring that
no one can alter any surrogate data of any transaction in a block. We could have
achieved the same goal by including the hash of the qrWits of a transaction in the
transaction itself, but for backwards compatibility reasons this is not possible as we
will explain.

67

5.2. QRWIT IMPLEMENTATION

5.2.3 Backwards Compatibility

As this protocol update is intended for soft fork deployment, we need to ensure that
old clients can also validate transactions with qrWit. However, if they would receive
such a transaction they would not be able to understand the format of the new
data. Hence, when a new node communicates with an old one, all the transactions
and blocks relayed will be stripped of the qrWit data. Thus, old nodes will consider
reveal transactions as normal transactions with just an ECDSA signature which
they will accept as they think such signatures are still valid.

For this reason, the merkle tree root in the block header has to be constructed
from stripped transactions so that old miners can validate them. At the same time,
new nodes know that the transaction has some extra data, the fingerprint of which
is included in the special script of the coinbase transaction. They will check that
the fingerprint matches the data and consequently validate the transaction.

Furthermore, in case a new node mistakenly sends a complete transaction with
the qrWit included, the old nodes should reject the transaction as soon as possible so
that they do not waste resources on transactions that they cannot even unserialize.
Hence we change the serialization format of a transaction as shown in the digram
below.

Original Serialization Format Updated Serialization Format
int nVersion int nVersion

vector <CTxIn> vin unsigned char dummy = 0x00
vector <CTx0Out > vout unsigned char flags (!= 0)

— |vector<CTxIn> vin
vector <CTx0ut > vout
if (flags & 2):
vector qrWits
uint nLockTime uint nLockTime

With this change, it is easy to see why old clients will immediately invalidate
such transactions. As vectors are serialized with their length first, old clients will
treat the dummy value as the length of the vector of inputs and any transaction with
no inputs is immediately rejected.

The flags variable is included there to mark the type of extra data we added.
In fact, this approach is already employed in Bitcoin for the implementation of
segregated witness (SegWit)[40d|, which uses the first bit of flags to mark extra
data serialized by them. Similarly, we reserve the second bit to mark our extra
data.

5.2.4 Version Bits

To conclude the implementation section we would like to explain how deployments
are achieved in Bitcoin through the use of Version Bits [61]. This concept allows
for multiple soft fork deployments at the same time. The idea is to allow users to
upgrade their code whenever they want, but to only start enforcing the new rules

68

5.2. QRWIT IMPLEMENTATION

when the deployment is supported by a majority of users.

Each block includes in its header a version number. Initially this was used as an
unsigned integer that was incremented whenever upgrades were deployed. Miners
would read the version of the last block and know to enforce the specific rules
specified by the version. The drawback of this approach is that it does not allow for
multiple deployments in parallel. Hence, the concept of Version Bits was introduced.

The version of a block is now treated as an area where miners can signal adoption
of a feature. Each feature reserves a bit in this area, for example, we chose bit 2 for
qrWit. Furthermore, the bit will have a specified start time and timeout after which
the feature is considered to have failed deployment because not enough participants
upgraded to it. Miners who do upgrade their code, will signal this by setting the
specific bit in the block header. When enough blocks in the blockchain have a certain
bit set, the corresponding feature is considered active and the rules enforced by it
start to manifest in the code. To describe the process in more detail we give the
following state automata which describes the state of a feature depending on its
version bit.

threshold
reached

LOCKED IN

ST >=T
start —| DEFINED STARTED

Always

Timeout

FAILED

Figure 5.2: Finite state automata showing the different stages of a feature deploy-
ment using the Version Bits protocol. T denotes the current time and ST the
specified start time of the feature. Threshold reached refers to the fact that a cer-
tain percentage of the blocks in the last 2016 blocks signal the version bit of this
feature.

Therefore, to allow our protocol to be deployed in a manner that does not impact
other features and to allow the miners to upgrade their code at their own pace,
we implemented our code using the Version Bits technique. Hence, all consensus
critical changes we implemented such as surrogate validation and quantum resistant
signature verification only activate when the feature is in active state.

Therefore, to summarize the whole scheme, QRWit is a segregated transaction
area that is checked for the quantum resistant signature over the transaction, and
for the existence proof of the commit transaction.

69

Section 6: Related Work

Before we evaluate the overall success probability of QRWit, we would like to con-
struct a more complete picture of the existing proposals and alternative schemes
that we could find that aim to solve the same issue as our proposal, QRWit. With
the exception of Fawkescoin, which is a proposed cryptocurrency, none of the works
we found have formal descriptions. Before we go into these schemes, we would like to
present some general research done towards integrating Bitcoin in the post-quantum
era, even though it does not directly relate to our specific work.

As the possibility of quantum computers emerging in the near future is increas-
ingly appreciated by members of the Bitcoin community, a number of approaches to
make Bitcoin resilient against quantum-capable adversaries have recently appeared
online.

As we outline in Sections B and B, a first step towards maintaining Bitcoin’s
security properties in a post-quantum world is replacing ECDSA with a signature
scheme that is at least believed to be quantum resistant. As presented in Section P,
such schemes exist and are meant to be implemented on classical computers |28, 23,
64]. On the other hand, other proposals aim to provide quantum resistant signatures
by means of quantum hardware [32, 86, 31]. An alternative research direction focuses
on identifying alternatives to Proof-of-Work, as a countermeasure to possible unfair
advantages in mining through Grover’s algorithm |12, B3].

However, we will not focus on these works as they do not consider the issue our
paper is most interested in, i.e., transitioning Bitcoin in a post-quantum world in
the presence of an already fast quantum-capable attacker. Instead, we would like to
briefly analyse the following ideas and works. As very little data was available around
these proposals, we have contacted their authors and requested more explanations.
In some cases we obtained further details which we include here, while in others, we
learnt that the authors conceded their ideas, hence we will not mention them any
more. Furthermore, we would like to note that our scheme was developed completely
independently from all the ideas we are about to mention.

6.1 Johnson Lau’s Two-Stage Commitment

This method is presented on Twitter in a comment from Adam Back [6] and in
further explanations he offers |7, 8, @]. From our understanding, the scheme follows
the structure of a two stage hash commitment. The first step is to commit to the
ECDSA public key and a quantum resistant public key in the form of a hashed
pair. This commitment would be stored in the OP _RETURN field of a transaction,
similarly to our scheme. The second step is to reveal the pair in plain-text in
another transaction that is signed against the quantum resistant public key. The

70

6.2. TIM RUFFING’S COMMITTED TRANSACTION

commitment ensures that the owner of the ECDSA public key, also controls the
quantum resistant public key, while the quantum resistant signature guarantees
QCs cannot modify the transaction.

This scheme is similar to out proposal, with the exception of the delay phase.
The lack of a sufficiently large delay period means quantum attackers have the
opportunity to rewrite the blockchain and insert their own commitment, thus being
able to steal the funds. It appears that Adam Back is aware [I0] of this, but
assumes || Grover’s algorithm does not offer a considerable advantage in mining,
thus making massive chain rewrites impossible.

6.2 Tim Ruffing’s Committed Transaction

This scheme is clearly described on the Bitcoin-dev mailing list [65] and in the
discussions that led to it [66, 67]. The initial proposal suffered from multiple defi-
ciencies, as mentioned by the author, but the current version of the scheme seems
functional, although very rigid (i.e. the user has to create a transaction in advance
of actually broadcasting it). The general idea of the scheme is to secure a non-
quantum resistant transaction by first committing to it in a different transaction.
The commitment is enacted by symmetrically encrypting the unsafe transaction. To
guarantee that only someone who can consume the UTXOs being transitioned can
create such a commitment, the encryption key is the scriptSig itself.

Apart from this, the scheme also uses a tagging technique on the commitment
which eliminates the need for a link between the commit and the reveal transactions.
Similar to this, we found an improvement to our scheme that will allow users to self-
configure the delay period. We describe this in Section B.

The question of long delay between commitment and reveal is not approached
and we would like to note that a delay actually affects the usability of this scheme
a lot. Although it might be feasible to predict spending in case of a delay of a few
blocks, it is certainly not feasible if the delay needs to be much larger. However, the
advantage of this scheme, as the author points out, is that the reveal transaction can
be immediately considered confirmed as its encrypted form was already committed
in the blockchain, so the community can trust this transaction.

6.3 Fawkescoin

This is a cryptocurrency relying only on secure hash functions, thus avoiding com-
pletely the need for public-key cryptography [20]. In this digital currency system,
each user holds a secret value which is used to provide ownership guarantees. Trans-
actions are implemented as a commit-reveal scheme, thus involving two interactions
with the blockchain for a single transfer. In this work, we present the basic mecha-
nism behind transactions. For a more detailed explanation, refer to the Fawkescoin

paper [20].

71

6.3. FAWKESCOIN

Assume that user Oy, who holds secret Y, wants to receive some money from
user Ox, who is in possession of secret X. To this end, the following steps are taken,
where H is a cryptographic hash function.

1. Oy sends H(Y) to Ox.

2. Ox proceeds to include H(X, H(Y)) in the blockchain, thus committing to
sending funds to whoever can show Y.

3. A few blocks are added to the blockchain on top of the block including the
commitment. This is necessary to ensure immutability.

4. Ox reveals (X, H(Y)). This act proves that Ox owns any outputs to H(X).

5. Oy can now spend his funds in a similar manner.
While not aiming at transitioning to a quantum resistant signature scheme, this
cryptocurrency shares some conceptual similarities with our proposal. However, it is

more restrictive as it requires users to commit to the destination of funds in advance
and it does not take into account the attacker’s ability to rewind the blockchain.

72

Section 7: FEvaluation

Having presented the theory behind QRWit, its practical implementation, and some
alternative schemes which achieve similar effects, we can evaluate our proposal both
theoretically and from the implementation perspective.

Furthermore, note that we have already provided a comparison with other schemes
that have the same goal as ours, in Section B. Thus, the advantages of QRWit over
the other proposals are clear, i.e. it works even if quantum attackers can rewrite the
blockchain for limited periods of time, and is much more flexible in regards to when
and what types of UTXOs can be consumed.

Before we go into the actual analysis, we would like to clearly mention one of
QRWit’s drawbacks: the long security delay. Although, this delay is necessary in
the current implementation as we described in Section 12, there is another scheme
that we describe in Section B which solves this problem, letting the users to decide
for themselves how long to wait before commit and reveal.

7.1 Theoretical Analysis

Before ensuring that our code changes correctly implement the protocol rules en-
forced by QRWit, we need to show that the new scheme really is secure. To this end,
we will informally describe the requirements of a secure scheme in this scenario, and
show how the assumed capabilities of a quantum attacker do not offer any means of
hijacking a transaction. Through these, we can construct an adversarial model of
provable security, against which we can evaluate QRWit and determine if it meets
the requirements or not.

Furthermore, note that for our purposes, security only needs to refer to the
safe spending of funds under the presence of QC. We do not need to make any
additional claims about the type of outputs, as a quantum resistant output is just a
special case of a standard one (i.e. it requires a quantum resistant public key in the
challengeScript). In fact, for most outputs, it would be impossible to decide if they
are secured by ECDSA or a quantum resistant scheme, until they are consumed as
part of other transactions.

Without making any claims about the current security Bitcoin offers in the ab-
sence of quantum capable attackers, we can define the new notion of security (i.e.
in the presence of such attackers) by building on the former.

Definition 39 (Secure Spending of UTXOs)

A scheme for consuming (spending) UTXOs, in the presence of a quantum
capable attacker (QCA), is secure if and only if, the QCA is not more powerful
than a classical attacker, i.e. he cannot achieve anything more than what a classical
attacker can.

73

7.2. IMPLEMENTATION ANALYSIS

To formally describe the capabilities of a quantum attacker, we can define them
in terms of a classical attacker, as well.

Definition 40 (Quantum Attacker Capabilities)
A quantum capable attacker can perform the following actions:

1. Any actions that a classical attacker can perform.

2. Giwven an ECDSA public key (pk), can immediately compute the secret key
that was used to generate pk.

Therefore, we have to prove that Definition holds under the new protocol
rules introduced by QRWit, as described in Section A. First of all, any transactions
that consume quantum resistant UTXOs, are impossible to hijack by the QCA,
as he cannot forge quantum resistant signatures. Secondly, the commit and delay
phases of the protocol do not introduce any vulnerabilities, as there are no public
keys revealed during these stages, so a QCA cannot use his extra ability to gain an
advantage over a classical attacker. Thirdly, we have to analyse the main attack
point, Treveal-

During the reveal phase the ECDSA public key is revealed as part of T epear-
However, for such a transaction to be valid, all the surrogate data must be valid.
This implies that any ECDSA public keys revealed must have an associated com-
mitment (H (pk, pkor)) older than the security period ¢, and that any data signed
with ECDSA is also signed with a quantum resistant scheme. Thus, the QCA can
construct a valid transaction, that consumes the same input as the original one,
only if he manages to construct a quantum resistant signature over the data. As
he cannot break the quantum resistant signature scheme, the only option is to use
a different quantum resistant private-public key pair, (sk¢p, pké), that is under
his control. Furthermore, he also needs to have committed H(pk,pkéy) in some
transaction older than t,... It is impossible, even for a QCA, to construct such a
commitment as he did not have knowledge of pk at the time at which he should have
introduced the commitment in the blockchain. Thus, we conclude that a quantum
attacker cannot modify T;...eq in any way.

Therefore, a quantum capable attacker does not benefit from his extra ability in
any way, hence he is equivalent to a classical attacker, as required by Definition B9.

7.2 Implementation Analysis

For testing the implementation of our scheme, we have used both unit testing and
manual testing on a simulated blockchain over which we have full control. The former
tests target only the validity of the consensus rules and they act as a specification
of the protocol, while the manual testing allowed us to test real case scenarios and
also to create demonstrations that we can showcase when presenting the protocol.

74

7.2. IMPLEMENTATION ANALYSIS

7.2.1 Unit Testing

To ensure that our core and most relevant functionality runs as expected, we decided
to write some unit tests that check the new transaction validation rules. We used
these tests as specification for the overall protocol. Naturally, these tests only regard
the reveal phase and the segregated data introduced in there. Using the current
Bitcoin code architecture, one can write unit tests that create transactions and then
send them through the standard verification pipeline, simulating the exact behaviour
of a network node who includes the transaction in the memory pool. Note that these
tests do not require a network or a blockchain to run as they will directly call the
functions which handle validation of transactions and blocks.

To check the validity of individual transactions , we need to test the function
AcceptToMemoryPoolWorker, to ensure that when our protocol is deployed and
active, no invalid transactions are accepted. A test would simply be comprised of
a call to the aforementioned function with a custom transaction as parameter and
with the new consensus rules activated. Thus the types of transactions that we
tested and the errors we expected from the test are presented below, grouped by the
mechanism that should trigger the failure.

1. Transactions rejected when checking the surrogate data using the CheckSurrogate
function. This is the first check enforced by the new rules. Such transactions
can fail because one of the surrogates (qrWit) is invalid in the following ways:

(a) The surrogate public key is not quantum resistant. We tested this by
simply providing an ECDSA public key.

(b) The Teomma referenced does not contain the hash of the pair of the pro-
vided ECDSA public key and quantum resistant public key. We tested
this by including some random data in T,y,mit, instead of the actual hash.

(¢) The proof of existence (i.e. a Merkle branch) given does not prove the
existence of T ,mmir- This could happen for multiple reasons:
i. The Merkle branch does not generate the expected Merkle tree root.
ii. The Merkle branch references more than one transaction.
iii. The Merkle branch references one transaction, but it is not the hash

of Tcommit .

(d) Teommat s not on the main chain. We tested this by creating an orphan
block that is not included in the main chain.

(€) Teommat is on the main chain but it is not old enough. We tested this by
leaving a delay shorter than t,.. between commit and reveal.

2. Transactions rejected when checking a signature. These tests are only inter-
ested in rejecting those transactions which do not provide valid signatures
under the new rules. Transactions that fall under this type of failure are:

(a) Transactions which present invalid ECDSA signatures. These would im-
mediately fail even by the old rules.

75

7.2. IMPLEMENTATION ANALYSIS

(b) Transactions which present a valid ECDSA signature, but no correspond-
ing quantum resistant signature. These transactions would be considered
valid by the first checks which validate the surrogate data as no sur-
rogate data is present for the respective ECDSA public key. However,
when checking the signatures in the scriptSig, the ECDSA signatures
will require both a valid ECDSA signature and a valid quantum resis-
tant signature, which would not be found as the ECDSA public key in
question has no surrogate.

(c¢) Transactions with no segregated data. In fact, these transactions are
just a special case of the previous one, as no segregated data implies no
quantum resistant signatures are provided.

(d) Transactions which present a valid ECDSA signature, but an invalid
quantum resistant signature. As in the previous two cases, these trans-
actions would pass the CheckSurrogate verification, but would be con-
sidered invalid when checking the quantum resistant signature. We in-
validated a quantum resistant signature by changing one of its bits.

To check the validity of a block of transactions, we need to test the function
AcceptBlock to ensure that we only consider valid blocks when constructing our
local copy of the blockchain. The changes in code that are tested here are those
regarding the fingerprint of the segregated data QRWit. Any blocks which do not
include the Merkle tree root of all the QRWits in transactions of this block should
be invalidated. To test for this scenario we generated a block and then modified it
in the following ways:

1. Remove the slice of data that represented the Merkle tree root. We achieved
this by computing the root in the test, searching for the binary data in the
serialised version of the block, and removing it.

2. Alter the slice of data that represented the Merkle tree root. To test this, we
had a similar approach as to the above case, but instead of removing the data
we simply flipped a random bit.

3. Alter one of the QRWits in a transaction. As in the previous two cases, to
test this block is invalid, we searched for some known QRWit data in the
transactions of the block and flipped one of the bits.

7.2.2 Manual Testing

In order to manually perform transactions by sending RPC commands to the modi-
fied Bitcoin client, we need a network on which to broadcast transactions and blocks.
These blocks would then be validated by the other participants of the network. How-
ever, we do not want to operate at real costs, consuming real Bitcoins as this would
be both very slow (a block appears on average every 10 minutes) and not very useful
for our scenario. Furthermore, the real network would not even take into consid-
eration the new consensus rules our protocol proposes. To solve these issues, the

76

7.2. IMPLEMENTATION ANALYSIS

Bitcoin code base provides two main testing frameworks or modes of operation: the
testnet and the regtest.

Testnet

The testnet is an alternative blockchain with the same general rules as the actual
Bitcoin network. Coins on the testnet are completely separate, cannot be traded for
real bitcoins, and are supposed to have no value. The purpose of the testnet is to
allow application developers or bitcoin testers to experiment with their implemen-
tations, without actually paying the costs of transactions or having to worry that
their version of the code is broken.

For the changes we are trying to test, this framework is not useful because we
would need a majority of miners on the testnet to run our version of the code. If
we do not have a majority, then our rules would just never take effect. First of all,
the deployment through Version Bits would never activate. Secondly, if we would
manually activate the deployment, our client would basically drop all transactions
as it considers them invalid by the new rules. However, the rest of the network
would accept them so the blockchain would extend with blocks that we consider
invalid. Transactions created by our client with the segregated data in place, would
just look like normal transactions to the other miners as they would not even see
the segregated data.

One way to overcome this problem would be to spawn enough miners to exceed
the average hash power, so that we can construct a majority of miners. However,
this would require too much work and it would just not be efficient from a tester’s
point of view, as any small change would require each of the miners forming the
majority to upgrade.

Regtest

The regtest is one of the modes of operation of the Bitcoin client. It will instruct the
client not to connect to nodes on the real Bitcoin network, but to nodes specified
by the developer. As we do not require interaction with random nodes, this mode
is perfectly suitable to test our deployment. Furthermore, regtest lets developers
instantly create brand-new blocks that can be filled with no transactions. We will
use this feature to simulate the passing of time which is required for the delay phase.

Therefore, the tests we are interested in performing using regtest are those that
require node communication. From unit tests, we know that an individual node
will correctly validate transactions and blocks, but using manual tests through the
regtest mode, we can also test the communication between two nodes. As such, we
can check if blocks and transactions are correctly relayed by the upgraded nodes.

All upgraded nodes should see all transactions and blocks with the QRWit
present, hence being able to check the validity of that data as enforced by the
new rules. However, old nodes which did not upgrade should only see stripped
transactions which contain no QRWit data. The block will still contain the Merkle

77

7.2. IMPLEMENTATION ANALYSIS

tree root of all QRWits in the special location of the coinbase transaction, but they
will not try to validate it as they do not even understand what that data represents.
Thus, we have devised two manual tests that rely on regtest.

1. A new node communicating with an old node. In this case, we just aim to test
that any standard transactions are accepted by the old node. Furthermore, to
ensure that there is no mistake and the old node does not even see the QRWit
data, we send manually form blocks with invalid surrogate data and check that
the old node does not invalidate the block. In fact, he does not even receive
the invalid data.

2. A new node communicating with another new node. On the other hand, in
this scenario, the new node should be able to fully validate the data.

To conclude this section, we would like to note that the theoretical aspects of
the work described here have already been subject to peer review, as our paper [62]
was accepted for publication in a Blockchain Technology issue of the Royal Society
Open Science journal.

78

Section 8: Future Work

In this section, we present further improvements to QRWit that would enhance
usability thus increasing the chances of this scheme to be accepted by the Bitcoin
community. For each of the changes we mention in this section, we will also clearly
specify the issue they are addressing and the goals they achieve. We aim to describe
the enhancements both from a theoretical point of view and implementation wise.

As our current implementation of QRWit is only a proof of concept prototype,
we did not implement any of these changes, but we note that most of them could be
implemented with little code changes as the basic transaction validation mechanism
remains unchanged.

8.1 Commit Multiple Keys

The improvements we address in this section aim to decrease the overall cost of
transitioning to quantum resistance. With the current scheme, users need to create
one commitment for each of their ECDSA public keys. However, we estimate that
T,.ommit Will be quite an expensive transaction, as it needs to be funded by UTXOs
secured with the new quantum resistant signature scheme and, under some scenarios,
such outputs might be very scarce, so their value would rise in comparison to the
non-quantum-resistant UTXOs. To solve this issue, we suggest to aggregate multiple
commitments of different ECDSA public keys under the same T,..,mit-

However, one has to be very careful about how the aggregation is achieved in a
way that does not deanonymise the user, i.e. the scheme must not reveal any new
information about the user. In particular, it should not be possible to link multiple
public keys to the same owner, as this would allow attackers to gain information
that could lead to finding the owner’s real identity. In fact, even with the current
implementation, users should not commit different ECDSA keys to the same quan-
tum resistant key, as this would prove to the world that the ECDSA keys have the
same owner.

A naive implementation, could try to optimise space by committing a list of
multiple (or all the) ECDSA public keys of a user to the same quantum resistant
public key. Although this would reduce space in both Ti.,mit and Trepear, it would
also act as evidence for everyone else that the keys belong to the same person.

8.1.1 Merkle Pair-Tree

To achieve the aforementioned specification, we propose to change the data that is
committed in Tipmmit- Instead of the current pair of two public keys (pk, pkgr), the

79

8.1. COMMIT MULTIPLE KEYS

new data will be a Merkle Tree root constructed from multiple pair commitments.
More exactly, each leaf of the Merkle tree will contain the data that was previously
contained in T,y,mit, as in Figure B Consequently, the root of the Merkle tree
will be included in the OP _ RETURN output of T¢,mmit-

H (pk'||pkég) H (pk?||pk)g) H (pk?||pk)) H (pk*||pkég)

Figure 8.1: Merkle tree of hash commitments. The green nodes are the leaves and
they each contain a hashed pair of keys. The blue nodes are intermediary nodes
composed by hashing the two children. The red node is the data that will be
included in Teommie- k' and pkgp refer to keys of the same user .

From the implementation perspective, the consensus rules validating the exis-
tence proof need to change to account for the fact that the hashed pair of keys is
now deeply buried in the root of the Merkle tree. To this end, the new segregated
area will also need to provide a Merkle branch that proves that the hash of the con-
catenated revealed keys (pk, pkgr), is present inside the data committed in T.ppmmit-
The new Merkle branch required can be generated by the creator of the Merkle tree,
whoever he is. For space issues in Ty epeqr, it might make sense to limit the size of
the Merkle tree (and thus the size of the branch) to prevent memory exhaustion
attacks.

Note that, this change does not weaken the security guarantees of the scheme
in any way, because faking a commitment in the Merkle tree requires breaking the
pre-image resistance of the cryptographic hash function.

Having described the improvement, we would like to point out that simply link-
ing to the same T,,,mi; from multiple ECDSA public keys, is not enough reason
for an attacker to believe that the keys have the same owner, as there could be,
and probably will be, service providers that post commitments on behalf of users.
Actually, this is a very probable scenario as users who do not own quantum resistant
UTXOs still need a way to commit.

Furthermore, using a service provider is economically better for all parties. The
providers will be able to combine different hash-pairs (from many users) into the
same T .,mmit, Which means that their cost is fixed regardless of how many key pairs
are committed. To prove to the client that the data given is indeed persisted in
the blockchain, they will send him a Merkle branch of the data in the tree, T .,mmit,
and the Merkle branch of T,,,,,:: in the block. Thus, users can commit all of their
ECDSA public keys in one T, ,,,mit, which they will reference every time they reveal
any of the keys.

80

8.2. FLEXIBLE COMMITMENT STRUCTURE

8.2 Flexible Commitment Structure

As we mentioned in Section BT, users can start committing their ECDSA public
keys to quantum resistant ones even now. However, in order to do this they would
need to know what quantum resistant signature scheme will be used, and the specific
format imposed by the validation format. It could be that the validation rules will
consider the commit data is included in the first OP_ RETURN output (like our
current implementation), or maybe the rules will look for the commit data in some
other area of T,,,,m: that the community believes is better suited.

8.2.1 User-Configurable Commitment Location

For the problem of where to place the commitment data (whatever that is: hash-pair
or Merkle root), we suggest some validation rules which do not decrease the security
of the scheme at all, while allowing users to place the data wherever they want in
the transaction. Instead of providing T,..,mir in the qrWit segregated area, we could
provide three pieces of information:

1. prefix data — This is a slice of T,.,mmi from byte 0 to the first byte that is
part of the commitment data.

2. commitment data — This is the data that is actually committed in T,.,mmit-
This could even be a simple hash-pair or a merkle root as described above.

3. suffix data — This is another slice of T,,,mi from the last byte of the com-
mitment data to the last byte in the transaction.

Concatenating these three pieces of data will create T..,mit, Wwhich can be checked
for existence in the blockchain as previously. The implementation changes that
should be done are obvious.

8.3 User-Configurable Delay

One of the most common objections to our scheme is the long delay phase. The
choice of how long the delay phase should be is sure to cause a massive debate in
the community. Some users will want very large periods out of precaution as they
believe QC to be extremely powerful, while other users will want to risk and choose
a short delay period as freezing their funds for long period of times is not acceptable.
As such, we will describe a variant of our scheme which offers configurable delays. To
understand why the scheme is structured as it is, we will first present an unsuccessful
attempt at creating a scheme with user-configurable delay.

No Delay — A possible approach to user configurable delays is to remove the idea
of a delay altogether. Users will simply reveal with the same data as before, whenever

81

8.3. USER-CONFIGURABLE DELAY

they feel confident that their commitment is immutable, even under the presence
of a quantum-capable attacker. However, this strategy has a major vulnerability
as attackers can listen for Te.eq transactions (i.e. transactions with QRWit data),
retrieve the ECDSA public keys included, compute the private keys, create their own
commitments, and publish their own reveal transaction linking to their commitment,
all this while the owner’s T.ceq is still in the memory pool. Thus, the attacker would
be able to steal any funds he wants given that he can complete the above actions
really fast.

First-Seen — To mitigate the issue described above, we could employ a "first-
seen" rule for the commitments to a certain public key. However, in order to find
the first commitment belonging to a key, T.,mmi: Will need to be tagged in some
form with something linking it to the key. We cannot simply use the public key
because this would reveal it, but we can use a hash of it. Hence, the commitment
for data H(pk,pkgr) would be tagged with H'(pk). Miners and validators would
index all the commitments by tags, only storing the first transaction for each tag.
Therefore, the reveal transaction would not even need to link to the commitment
transaction any more, as it would be indexed by the tag. Indeed, such a change
would solve the aforementioned problem as attackers would need to revert the chain
until before the creation of T.,mmit in order for their commitment to be valid. Such
a chain rewrite is not possible if the user waits long enough between commit and
reveal. However, this approach allows griefing to happen, i.e. adversaries could
listen for commit transactions, retrieve the tag associated to it, and publish some
random commitment data with the same tag, essentially invalidating the original
commitment. The funds would be irrecoverable now, as they only commitment
that would be accepted by the consensus rules is one with some random data in it.
Although this attack is not profitable for the adversary, griefers who want to disrupt
the network might employ such techniques.

First Valid Commitment

To overcome the issue of griefing we have to change the strategy from first-seen to
first valid commitment. Where valid means that it must be possible to determine
if the commitment was created by the owner of the public key or by an adversary.
Thus, we will change the structure of the commitment data completely. The 80 byte
OP_RETURN output must now contain:

1. 1 byte flag that can indicate to miners that this is a commitment transaction.
This is needed so that miners know which UTXOs to index.

2. 32 bytes tag, H'(pk), that can link this transaction to the public key pk being
committed in it. This will be used by miners to index transactions. Note that
miners will need to index all transactions with a specific tag, rather than just
the first, as they do not know yet which ones are valid.

3. 32 bytes commitment data, H(pk, pkgr), that represents surrogate links.

82

8.3. USER-CONFIGURABLE DELAY

4. 15 bytes validation data, ES,;(d||CHKSUM(d)), where ES; is a function for
symmetric encryption with key k, d is some 12 bytes of random data, and
CHKSUM(d) is a 3 byte checksum of that data.

With the above data in T.,mmit, Trevear does not need the proof of existence any
more, as the commitment is indexed anyway. The new consensus rules would verify
a surrogate as follows.

From the revealed ECDSA public key, compute H'(pk) and use it to retrieve the
list of commitments for this tag. Only one of these commitments is created by the
real owner, and that is the first valid one. Given pk, we can check if a commit is
valid by doing the following:

1. Decrypt the validation data vd (last 15 bytes) using pk as key, i.e. DS, (vd).

2. Check if the checksum of the first 12 bytes of vd matches the last 3 bytes of
vd.

Thus, this method solves the sole issue of the previous proposal as the only way
for somebody to construct a valid commitment for some pk, is to have access to pk.

Furthermore, note that this method can be combined with the strategy for ag-
gregating commitments, with a small change, i.e. The tag would be another Merkle
tree root, built from hashes of public keys that are committed inside this transac-
tion. As such, this would increase usability to the maximum, as users could commit
with low costs and reveal whenever they want. The delay is configurable in the sense
that it doesn’t exist any more. However, we still recommend a long delay between
commit and reveal as otherwise attackers could rewind the blockchain and include
a malicious commitment before the actual user.

83

Section 9: Conclusion

To conclude this paper, we would like to reiterate our contributions and accom-
plishments. We believe our most important achievement is the publication of the
theoretical part of this paper in a special issue (on Blockchain technology) of the
Royal Society Open Science journal [62].

We presented the basics of Elliptic Curve Cryptography and the workings of the
elliptic curve digital signature algorithm (ECDSA), which is the main vulnerability
in Bitcoin once quantum attackers appear. To place in context this breach of secu-
rity, we gave a short introduction to Bitcoin and explained how ECDSA is used and
what it guarantees. Furthermore, we illustrated the exact method through which
Quantum Computing enables attackers to break ECDSA and how scalable the QCs
would need to be for these attacks to be efficient. As alternatives to ECDSA, we
summarized some proposed quantum resistant cryptosystems, which will have to be
considered by the community.

In light of the emerging threat of quantum-capable adversaries in Bitcoin, we
have outlined how Bitcoin could become subject to theft of funds due to the exposure
of public keys. In particular, we showed how live transaction hijacking can be
achieved, and how it allows attackers to compromise any transactions published to
the network.

Thus, we have proposed QRWit, a commit—delay-reveal scheme, to allow for
the secure transition to a quantum-resistant signature scheme in Bitcoin. We have
explained the protocol, considering each phase individually, but we also offered an
alternative, more intuitive view, by regarding our changes as introducing quantum
resistant surrogate keys.

Given the theoretical specification of QRWit, we have shown how the underlying
protocol modifications can be implemented as a soft fork and how the initial commit
phase can be done even before QRWit is actually deployed.

For the security of the transition scheme, we emphasise the need for a sufficiently
long delay period and propose an initial period of 6 months in order to prevent
possible blockchain reorganisation. At the same time, we also provide a future
extension of QRWit which allows users to transition at their own pace if they believe
a shorter or longer delay is more suitable.

Furthermore, we mentioned all the other proposals which aim to solve the same
goal as QRWit and compared their usability and cost efficiency with ours. We also
individually evaluated the security model of QRWit, and the specific implementation
we provided.

Finally, we described a series of improvements which would further increase the
usability by decreasing the cost of the overall transition and by allowing users to
choose their own delay period.

84

Bibliography

1]
2|
3]

4]
5]

6]

7]

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

Bitcoin Cash. https://www.bitcoincash.org/. Accessed: 2018-02-18.
Bitcoin Gold. https://bitcoingold.org/. Accessed: 2018-02-18.
BlockSci. https://github.com/citp/BlockSci. Accessed: 2018-02-18.
Coinmarketcap. http://coinmarketcap.com/. Accessed 2016-09-10.

Ethereum Classic. https://ethereumclassic.github.io/. Accessed: 2018-
02-18.

Adam Back. https://twitter.com/adam3us/status/947900422697742337.
Accessed: 2018-02-18.

Adam Back. https://twitter.com/adam3us/status/948105646062391297.
Accessed: 2018-05-04.

Adam Back. https://twitter.com/adam3us/status/948213904668352512.
Accessed: 2018-05-04.

Adam Back. https://twitter.com/adam3us/status/992123846063882240.
Accessed: 2018-05-04.

Adam Back. https://twitter.com/adam3us/status/992378285748375552.
Accessed: 2018-05-04.

Adam Back. https://twitter.com/adam3us/status/992380561414152192.
Accessed: 2018-05-04.

D. Aggarwal, G. K. Brennen, T. Lee, M. Santha, and M. Tomamichel. Quan-
tum attacks on bitcoin, and how to protect against them. arXiv preprint
arXw:1710.10377, 2017.

American National Standards Institute. Public Key Cryptography for the
Financial Services Industry: The Elliptic Curve Digital Signature Algorithm
(ECDSA). ANSI X9.62, 2005.

M. Amy, O. Di Matteo, V. Gheorghiu, M. Mosca, A. Parent, and J. Schanck.
Estimating the cost of generic quantum pre-image attacks on sha-2 and sha-3.
In International Conference on Selected Areas in Cryptography, pages 317-337.
Springer, 2016.

A. M. Antonopoulos. Mastering Bitcoin: Unlocking Digital Crypto-Currencies.
O’Reilly Media, Inc., 1st edition, 2014.

85

https://www.bitcoincash.org/
https://bitcoingold.org/
https://github.com/citp/BlockSci
http://coinmarketcap.com/
https://ethereumclassic.github.io/
https://twitter.com/adam3us/status/947900422697742337
https://twitter.com/adam3us/status/948105646062391297
https://twitter.com/adam3us/status/948213904668352512
https://twitter.com/adam3us/status/992123846063882240
https://twitter.com/adam3us/status/992378285748375552
https://twitter.com/adam3us/status/992380561414152192

BIBLIOGRAPHY

[16]

[17]

18]

[19]

[20]

21

22|

23]

[24]

[25]

[26]

[27]

28

[29]
[30]

D. J. Bernstein. Introduction to post-quantum cryptography. In D. J. Bernstein,
J. Buchmann, and E. Dahmen, editors, Post-quantum cryptography, chapter 1,
pages 1-14. Springer, 2009.

A. Biryukov, D. Khovratovich, and 1. Pustogarov. Deanonymisation of clients
in bitcoin p2p network. In Proc. 2014 ACM SIGSAC Conference on Computer
and Communications Security, pages 15-29. ACM, 2014.

Bitcoin community. Bitcoin-core source code. https://github.com/bitcoin/
bitcoin. Accessed: 2015-06-30.

Bitcoin community. Original Bitcoin client/API calls list. https://en.
bitcoin.it/wiki/Original_Bitcoin_client/API_calls_list. Accessed:
2018-02-18.

J. Bonneau and A. Miller. Fawkescoin: A cryptocurrency without public-key
cryptography. In Cambridge International Workshop on Security Protocols,
pages 350-358. Springer, 2014.

V. Buterin. Ethereum: A next-generation smart contract and decen-
tralized application platform. https://github.com/ethereum/wiki/wiki/
White-Paper, 2014. Accessed: 2016-08-22.

S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright, and C. Mon-
roe. Demonstration of a small programmable quantum computer with atomic
qubits. Nature, 536(7614):63, 2016.

D. Derler, S. Ramacher, and D. Slamanig. Post-quantum zero-knowledge proofs
for accumulators with applications to ring signatures from symmetric-key prim-
itives. In International Conference on Post-Quantum Cryptography, pages 419—
440. Springer, 2018.

W. Diffie and M. Hellman. New directions in cryptography. IEEFE transactions
on Information Theory, 22(6):644-654, 1976.

[. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is vulnerable.
In Financial Cryptography and Data Security, pages 436-454. Springer, 2014.

R. Feynman. Theres plenty of room at the bottom. In Feynman and computa-
tion, pages 63—-76. CRC Press, 2018.

A. Gervais, G. O. Karame, K. Wiist, V. Glykantzis, H. Ritzdorf, and S. Capkun.
On the security and performance of proof of work blockchains. In Proc. 2016

ACM SIGSAC Conference on Computer and Communications Security, pages
3-16. ACM, 2016.

L. Groot Bruinderink. Towards Post-Quantum Bitcoin, 2016. Masters thesis.
Eindhoven University of Technology.

J. Gruska. Quantum computing, volume 2005. McGraw-Hill London, 1999.

D. Hankerson, A. Menezes, and S. V. Springer. Guide to Elliptic Curve Cryp-
tography.

86

https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin
https://en.bitcoin.it/wiki/Original_Bitcoin_client/API_calls_list
https://en.bitcoin.it/wiki/Original_Bitcoin_client/API_calls_list
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper

BIBLIOGRAPHY

[31]

32|

3]

[34]

[35]

[36]

[37]

38

[39]

[40]

|41

[42]

[43]

[44]

[45]

K. Ikeda. gbitcoin: A peer-to-peer quantum cash system. arXiv preprint
arXw:1708.04955, 2017.

J. Jogenfors. Quantum bitcoin: An anonymous and distributed currency
secured by the no-cloning theorem of quantum mechanics. arXiv preprint
arXiv:1604.01383, 2016.

K. P. Kalinin and N. G. Berloff. Blockchain platform with proof-of-work based
on analog hamiltonian optimisers. arXww preprint arXiw:1802.10091, 2018.

G. O. Karame, E. Androulaki, and S. Capkun. Two bitcoins at the price of
one? double-spending attacks on fast payments in bitcoin. TACR Cryptology
ePrint Archive, 2012:248.

G. O. Karame, E. Androulaki, M. Roeschlin, A. Gervais, and S. éapkun. Mis-
behavior in bitcoin: A study of double-spending and accountability. ACM
Transactions on Information and System Security (TISSEC), 18(1):2, 2015.

E. O. Kiktenko, N. O. Pozhar, M. N. Anufriev, A. S. Trushechkin, R. R.
Yunusov, Y. V. Kurochkin, A. I. Lvovsky, and A. K. Fedorov. Quantum-secured
blockchain. arXiv:1705.09258, 2017. Accessed: 2017-06-29.

N. Koblitz. Elliptic curve cryptosystems. Mathematics of computation,
48(177):203-209, 1987.

L. Lamport. Constructing digital signatures from a one-way function, 1979.
Technical Report. CSL-98, SRI International Palo Alto.

R. S. Lehman. Factoring large integers. Mathematics of Computation,
28(126):637-646, 1974.

E. Lombrozo, J. Lau, and P. Wuille. BIP141: Segregated Witness (con-
sensus layer). https://github.com/bitcoin/bips/blob/master/bip-0141.
mediawiki, 2012. Accessed: 2018-02-18.

M. Lundstrom. Moore’s law forever? Science, 299(5604):210-211, 2003.

R. J. McEliece. A public-key cryptosystem based on algebraic coding theory.
The Deep Space Network Progress Report, 42-44:114-116, 1978.

S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M.
Voelker, and S. Savage. A fistful of bitcoins: characterizing payments among
men with no names. In Proc. 2013 Internet Measurement Conference, pages
127-140. ACM, 2013.

A. Menezes. Evaluation of security level of cryptography: the elliptic curve
discrete logarithm problem (ecdlp). 2001. Technical Report. University of
Waterloo.

R. C. Merkle. A digital signature based on a conventional encryption func-
tion. In Conference on the Theory and Application of Cryptographic Techniques,
pages 369-378. Springer, 1987.

87

https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki

BIBLIOGRAPHY

|46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

58

[59]

[60]

R. C. Merkle. A certified digital signature. In G. Brassard, editor, Advances in
Cryptology — CRYPTO’ 89 Proceedings, pages 218-238, New York, NY, 1990.

Springer New York.

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https://
bitcoin.org/bitcoin.pdf, Dec 2008. Accessed: 2015-07-01.

K. Nayak, S. Kumar, A. Miller, and E. Shi. Stubborn mining: Generalizing
selfish mining and combining with an eclipse attack. In 1st IEEE FEuropean
Symposium on Security and Privacy, 2016. IEEE, 2016.

P. Q. Nguyen and O. Regev. Learning a parallelepiped: Cryptanalysis of ggh
and ntru signatures. Journal of Cryptology, 22(2):139-160, 2009.

R. Overbeck and N. Sendrier. Code-based cryptography. In Post-quantum
cryptography, pages 95-145. Springer, 2009.

G. M. g. R. R. r. Pieter Wuille <pieter.wuille@gmail.com>, Peter
Todd <pete@petertodd.org>. BIP009: Version Bits with timeout
and delay. https://github.com/bitcoin/bips/blob/master/bip-0009.
mediawikil, 2015. Accessed: 2018-02-18.

J. Poon and T. Dryja. The bitcoin lightning network. https://lightning.
network/lightning-network-paper.pdf, 2016. Accessed: 2016-07-07.

J. Proos and C. Zalka. Shor’s discrete logarithm quantum algorithm for elliptic
curves. arXiv preprint quant-ph/0301141, 2003.

J. Proos and C. Zalka. Shor’s discrete logarithm quantum algorithm for elliptic
curves. arXiv preprint quant-ph/0301141, 2003.

R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa-
tures and public-key cryptosystems. Communications of the ACM, 21(2):120—
126, 1978.

M. Rosenfeld. Analysis of hashrate-based double spending. arXiv preprint
arXw:1402.2009, 2014.

A. Sapirshtein, Y. Sompolinsky, and A. Zohar. Optimal selfish mining strategies
in bitcoin. http://arxiv.org/pdf/1507.06183.pdf, 2015. Accessed: 2016-
08-22.

N. Schneider. Recovering bitcoin private keys using weak signa-
tures from the blockchain. http://www.nilsschneider.net/2013/01/28/
recovering-bitcoin-private-keys.html, 2013. Accessed: 2018-02-18.

N. Sendrier. Code-Based Cryptography. In H. C. A. van Tilborg and S. Jajodia,
editors, Encyclopedia of Cryptography and Security, pages 215-216. Springer
US, Boston, MA, 2011.

P. W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM review, 41(2):303-332, 1999.

88

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://github.com/bitcoin/bips/blob/master/bip-0009.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0009.mediawiki
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
http://arxiv.org/pdf/1507.06183.pdf
http://www.nilsschneider.net/2013/01/28/recovering-bitcoin-private-keys.html
http://www.nilsschneider.net/2013/01/28/recovering-bitcoin-private-keys.html

BIBLIOGRAPHY

|61]

|62]

|63]

|64]

[65]

[66]

[67]

(68

[69]

[70]

Y. Sompolinsky and A. Zohar. Bitcoin’s security model revisited. arXiv preprint
arXiv:1605.09193, 2016.

I. Stewart, D. Ilie, A. Zamyatin, S. Werner, M. F. Torshizi, and W. J. Knotten-
belt. Committing to Quantum Resistance: A Slow Defence for Bitcoin against
a Fast Quantum Computing Attack.

L. Tessler and T. Byrnes. Bitcoin and quantum computing. arXiv preprint
arXiw:1711.04235, 2017.

K. K. A. Thissen. Klepto for post-quantum signatures, 2016. Bachelors Thesis.
Eindhoven University of Technology.

Tim Ruffing. https://lists.linuxfoundation.org/pipermail/
bitcoin-dev/2018-February/015758 . html. Accessed: 2018-02-18.

Tim Ruffing. https://lists.linuxfoundation.org/pipermail/
bitcoin-dev/2018-January/015659.html. Accessed: 2018-02-18.

Tim Ruffing. https://lists.linuxfoundation.org/pipermail/
bitcoin-dev/2018-January/015619.html. Accessed: 2018-02-18.

M. Veldhorst, C. Yang, J. Hwang, W. Huang, J. Dehollain, J. Muhonen, S. Sim-
mons, A. Laucht, F. Hudson, K. Itoh, et al. A two-qubit logic gate in silicon.
Nature, 526(7573):410, 2015.

T. Watson, S. Philips, E. Kawakami, D. Ward, P. Scarlino, M. Veldhorst,
D. Savage, M. Lagally, M. Friesen, S. Coppersmith, et al. A programmable
two-qubit quantum processor in silicon. Nature, 555:633637, 2018.

Y. Yarom and N. Benger. Recovering OpenSSL ECDSA nonces using the
FLUSH+ RELOAD cache side-channel attack. [TACR Cryptology ePrint
Archive, 2014:140, 2014.

89

https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-February/015758.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-February/015758.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-January/015659.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-January/015659.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-January/015619.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-January/015619.html

	Introduction
	Problem and Motivation
	Contribution
	Objectives

	Background
	Elliptic Curve Cryptography
	Elliptic Curve Arithmetics
	Elliptic Curve Public-Private Keys
	Elliptic Curve Digital Signature Algorithm (ECDSA)

	Some Cryptographic Primitives Used In Bitcoin
	Cryptographic Hash functions
	Merkle Tree

	Bitcoin
	Blockchain Technology
	Bitcoin Network
	Bitcoin Transactions
	Transaction Lifecycle

	Quantum Computing
	Mathematical Framework
	Basics of Quantum Theory
	Quantum Algorithms

	Post-Quantum Cryptography

	Post-Quantum Bitcoin
	Attacks on Proof Of Work (PoW)
	Attacks on ECDSA
	Public key unveiling
	Live Transaction Hijacking

	Estimated Losses
	Hindering Transition to Quantum Resistance

	Transition to Quantum Resistance
	Protocol Overview
	Commit
	Delay
	Reveal

	An Alternative Interpretation of QRWit
	Flexibility

	Real Case Scenarios
	Standard Reveal Transaction

	Implementation
	Quantum Resistant Signatures
	QRWit Implementation
	Commit Stage
	Reveal Stage
	Backwards Compatibility
	Version Bits

	Related Work
	Johnson Lau's Two-Stage Commitment
	Tim Ruffing's Committed Transaction
	Fawkescoin

	Evaluation
	Theoretical Analysis
	Implementation Analysis
	Unit Testing
	Manual Testing

	Future Work
	Commit Multiple Keys
	Merkle Pair-Tree

	Flexible Commitment Structure
	User-Configurable Commitment Location

	User-Configurable Delay

	Conclusion

