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Abstract

Pony is a performant, actor-based programming language with a type system that statically guar-
antees freedom from data races. Pony uses a novel garbage collection algorithm ORCA designed
to leverage the type safety of Pony.

It is a crucial to have a model for ORCA. We have proofs that the actors in Pony are free from
data races, but this is meaningless if the memory they are reading from could be trashed. A
soundness proof for ORCA guarantees memory safety in the langauge and any programs written
in it. The current model ORCA0 is complex and misses key optimisations, we address both of
these problems in this thesis.

The model ORCA0 is unsatisfactory for two main reasons.

1. The algorithm accounts for fully concurrent actor execution, and contains invariants that
are preserved under each step of this execution model. But this results in many technical
and syntactical definitions, obscuring a lot of intuition.

2. The model is a composition of many disparate elements. ORCA0 contain a complete theory
for the accessibility of objects, reference counts and coherence of the workings sets. This
means that the definitions are cluttered and the proofs difficult to follow.

We present ORCAGhost , a model of ORCA that adds a ghost state used to addresses our first
issue. This gives rise to some complexity but also simpler definitions making the model easier to
reason about. On top of this we define ORCAGhost+Val which includes the missing optimisations.
We give a proof of soundness of ORCAGhost+Val and completeness up to object cycles.

We tackle the second problem by building a submodel - CALF - that reasons only about the
reference counts and how they are altered by execution. We then take a novel approach to proving
properties on CALF . Inspired by linearisability theory, we break up actions the model can perform
into events and look at how the events by different actors are interlaced. Then at a configuration,
we reason about what properties would hold if all ongoing actions were finished. This gives us
an alternate solution to the problem of fine grained concurrency, and we look at other problems
this technique could be applied to.

Finally we define a relation between a larger model ORCA1 and CALF . This forms a bisimu-
lation between them and we look at what we can prove about ORCA1 by its relation with CALF
.
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1. Introduction

1 Introduction

The goal of modern language design is to aid the programmer and allow them to focus on higher
level logic free from the conceptual burden of reasoning about underlying systems.

Many programming languages, such as C [Kernighan. and Ritchie, 1988] allow the program-
mer to directly allocate, manipulate and free memory. However, this unchecked access opens up
a wide range of potential programming errors. Accessing unallocated memory or trying to free
the same memory address twice may cause trigger an error from the operating system, corrupt
data, or even expose a security vulnerability [Seacord, 2005].

Garbage collection is one approach moving responsibility of memory management onto the
programming language. The language runtime is given responsibility of creating and managing
memory, hidden from the programmer. An example of such a language is Java [Gosling et al., 2014]
Using a garbage collected language gives up fine control of allocations and can often have sig-
nificant performance overheads, but the freedom and safety it provides have caused garbage
collection to be widespread in languages used today [Chen et al., 2005].

With the decline of Moore’s law the computer hardware industry has moved from single cored
CPUs to multiple cores. Because of this, concurrency is becoming more and more relevant when
designing performant programs. However, if concurrency is implemented poorly there are many
pitfalls the naive programmer can succumb to. There is a whole class of of data races that can
occur when the same piece of data is accessed simultaneously in two different contexts. This
often makes concurrent programming very difficult in traditional languages like C and Java men-
tioned earlier. Fortunately, language design has evolved and there are languages such as Rust
that promise to eradicate these bugs simply by construction of the language and type system
[Klabnik and Nichols, 2018].

Pony [Pony, 2018] is a language that follows the actor paradigm [Hewitt et al., 1973], consisting
of many actors with strictly sequential logic but executed in parallel. The actors then communicate
only through asynchronous message passing. Pony is also a performant language with a static
type system that guarantees freedom from data races. The type system uses a capabilities system
to restrict which actors are able to read and mutate data.

The Pony runtime uses the ORCA protocol, a concurrent, reference counting garbage collector.
ORCA does not use stop-the-world or block execution. Instead ORCA has actors garbage collect
independently and synchronises only through message passing. ORCA gives each actor a heap of
objects and the responsibility of collecting that heap. Each actor keeps a set of reference counts for
both the owned objects that foreign actors have access to, and the foreign objects that they have
access to. Reference counts are updated during message sending, message receipt, and garbage
collection. Because of the strong guarantees from the Pony type system it is often known that
an object is immutable. The Pony runtime leverages this by keeping a single reference count to
represent the whole structure of an immutable object graph.

There is an existing model for ORCA, ORCA0 [Franco et al., 2018] is complex. ORCA0 de-
scribes the algorithm and then proves invariants over its execution. These invariants have to
hold under fine grained concurrent execution, so many of the ideas are muddied by the technical
definitions.

1.1 Contributions

We first present ORCAGhost , a reformulation of ORCA0 designed to be easier to reason about.
We then extend this to ORCAGhost+Val including the immutable object optimisations. This

model does not follow the Pony runtime exactly, and provides an alternate approach to imple-
menting the same optimisation. We thus give an evaluation of the performance difference be-
tween the model and the actions taken in the current Pony implementation.
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1. Introduction

In both ORCAGhost and ORCAGhost+Val we introduce auxiliary concepts to reframe and gener-
alise existing invariants. This allows us to keep the “structure” of the proofs the same. Using this
we show that ORCAGhost+Val is sound.

Further, we show that in ORCAGhost+Val the only time a memory leak can occur is when there
is a cycle in the structure, proving completeness up to object cycles.

Finally we revisit ORCA0 from a more abstract setting. We build a submodel CALF focused
entirely on the reference counts of a configuration of ORCA0 . We then split up actions take into
stories composed of fine-grained events that are interleaved during execution. By looking at the
histories formed by an execution we see that they are not directly linearisable, but by taking inspi-
ration from work done on linearisability we make arguments about the closure of configurations
and histories. If we are concerned with an object we reason about what would hold if all the
currently executing events that effect the object were to finish. We define invariants that hold at
closures and use these to prove properties in the larger model. This allows us to reconstruct the
main results of ORCA0 without much of the tedium. We look at some general results of this form
an ask whether it is useful in other contexts.
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2. Background

2 Background

2.1 Actor Languages

The actor paradigm tries to provide safe concurrency by denying shared mutability but instead
allowing threads to send asynchronous messages to each other. An individual actor is run se-
quentially on a single thread, but in a program multiple actors will be executed simultaneously
with nondeterministic interleaving. Actors define a set of behaviours which can be triggered by a
message from another actor.

Actors can also make synchronous calls to their own functions or to objects they own. Each ac-
tor has a single message queue that is processed first-in first-out, sequentially [Hewitt et al., 1973]
[Greif, 1975].

2.2 Pony

Pony is a object-oriented, actor-based, programming language. Pony is equipped with a formally
verified type system that gives the following guarantees: if a program compiles, the program will
never crash, deadlock or encounter a data race [Pony, 2018].

Pony uses capabilities in its type system to ensure freedom from data races. From the pony
website:

A capability is an unforgeable token that:

1. Designates an object

2. Gives the program the authority to perform a specific set of actions on that object.

This system is used to achieve several goals:

• Prevent shared mutability that could cause concurrent access.

• Allow sharing immutable data, which is safe.

• Allow sending of isolated, mutable data; this is safe because the type system ensures that
the sender gives up control of the data.

Every variable and field is assigned, along with the type of a class, a capability. We will now
describe all of the capabilities except transition and box, which we will not need.

• Iso - Isolated object. If a variable is Iso then there are no other variables that can reference the
object. This means it can be mutated and we know that it cannot form a race condition.

• Val - Value. If a variable is Val then it is immutable. This means that an actor is free to read
its value and share it with other actors without forming a data race.

• Ref - Reference. References are used for mutable data that is not isolated. References cannot
be sent to other actors as they could cause a data race, so all references to a given object
must only be accessible from a single actor.

• Tag - Tag object. Tag is the least permissive capability, denying both reads and writes. How-
ever this does mean that we can safely send a variable with tag capability. While we cannot
inspect the values of the variable, we are still able to perform pointer equality checks be-
tween two variables.

[Liétar, 2017] gives a formal model of the Pony language and type system.
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2. Background

Figure 1: Mark and Sweep, left shows the initial heap, centre shows the traced heap and right
shows the resultant heap.

2.3 Garbage Collection

During program execution, we generally have a heap of allocated memory, occupied by data from
our program. We will refer to individual items within this heap as objects. In real-world machines
this space will be finite, so if we are to execute a program with a potentially unbounded number
of new object allocations, we will need some process to remove unused or unneeded objects.
Our program will be able to reference some of these objects, and we allow objects themselves to
reference other objects. We will use the term garbage to refer to objects that are no longer accessible
to the program via a path of references from the variables. Garbage collection is the automated
process of removing or reclaiming garbage.

In his paper on the implementation of the Lisp programming language, McCarthy describes
the process of memory reclamation. The system holds a list of free registers to allocate objects
to. When this list is exhausted, the system begins a trace of its memory. Starting at the "base
registers", it walks recursively through the objects, marking them as accessible. The system can
then add all registers not marked as accessible back onto the free register list[McCarthy, 1960].
This forms the most primitive form of the Mark and Sweep approach to garbage collection.

2.3.1 Mark and Sweep

If we consider program variables and objects as a directed graph and take the variables as roots of
the graph, then we say that a node is reachable if there is some path through the directed edges
to that node.

The Mark and Sweep approach to collection involves breaking the process down into two
phases. The mark phase, involves a traversal of the above defined graph starting at its roots and
marking all reachable nodes [Zorn, 1990] . The sweep phase can then act to reclaim all unmarked
nodes. Optionally, a compaction phase can then be performed that reallocates the live objects to
make future allocation easier.

No matter the chosen algorithms for the marking phase, sweeping the heap requires accessing
all possible objects starting from the lowest memory address and iterating up to the highest.

2.3.2 Copying Collection

Copying divides the heap into two heaplets, a from-space and a to-space. During collection, the
system traverses the from-space and builds an isomorphic copy of the traversed subgraph in the
to-space. The new copy should be compact and occupy a contiguous block[w. Appel, ]. While this
approach requires copying all reachable objects, it means that we do not have to scan through the
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2. Background

From Space To Space

To Space From Space

Figure 2: Copying Collection, top shows the initial state of the two heaplets and below shows the
result with an isomorphic copy of the reachable subgraph. Then the two spaces are swapped over
which is seen in the relabelling.

entire heap. After a copying collection cycle, the to-space and from-space swap roles. This is
illustrated in figure 2.

A technique used by the JVM (Java Virtual Machine) is generational collection, where the heap
is further divided into several regions for objects that have survived various collection cycles. This
follows the heuristic that "young" objects are more likely to be collected, so collections on these
heaps is performed more frequently.

2.3.3 Reference Counting

Instead of performing a search to determine what is reachable, reference counting collection in-
stead keeps track of how many pointers exist to a given object, known as its reference count and
stored inside the object [w. Appel, ].

Most implementations operate by adding operations to variable assignments in order to deal
with this bookkeeping. If we want to assign ω to x. f we both need to decrement the reference
count of the current object assigned to x. f and then increment the count for ω. This can be very
expensive, especially in concurrent systems where atomic reference counting is required.
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2. Background

If the reference of an object should ever become zero then it is unreachable so can be added to
the free memory list and all of its fields can have their reference counts decremented.

The main problem with reference counting is dealing with cycles. If we have, for instance an
object that references itself through one of its fields then even if that object is unreachable from
every other point, its reference count will remain one, and so the object will not be collected. A
solution to this is to require the programmer explicitly deal with cycles before they can assume
an object will be collected. This is not as bad as explicit free calls but is a unsatisfactory solution
for something that should automate the process of memory reclamation. Alternatively, reference
counting could be supplemented with an occasional mark and sweep collection phase.

2.3.4 Concurrent Garbage Collection

In the most general scenario, we can view garbage collection as a graph problem. We consider
our heap as a directed graph with some set of root nodes corresponding to local variables and
other nodes as objects. A node is reachable if there exists a path from a root node to that node.
Non-reachable nodes are garbage nodes.

[Dijkstra et al., 1978] first proposed a concurrent mark and sweep garbage collection scheme.
They split the general description into a two parts. The mutator that alters the graph in one of
a number of allowable ways. And a collector that can mark the reachable nodes and append
them to a free list, but perform no other action that could effect the structure of the graph. They
proposed a solution that would allow the mutator and collector to run in parallel with the smallest
amount of synchronisation possible. They allow the mutator to perform the following actions:

1. Redirect an outgoing edge of a reachable node to an already reachable one.

2. Redirect an outgoing edge of a reachable node to an unreachable node with no outgoing
edges.

3. Add an outgoing edge to a reachable node, pointing towards an already reachable one.

4. Add an outgoing edge to a reachable node, pointing towards a a fresh, but unreachable
node with no outgoing edges (used to model allocation of a new object.)

5. Remove an outgoing edge from a reachable node.

Actions (1), (2) and (5) can cause nodes to become unreachable, garbage nodes.

The following example is given to show that some change to the mutator is necessary and that
some overhead is required to facilitate concurrent collection. If we have three objects A, B, and C
with A and B root nodes and initially with one edge from A to C:

1. B adds an edge to C

2. A removes its edge to C

3. A adds an edge to C

4. B removes its edge to C

Then it is possible that when tracing A, we find that A has no outgoing edges. Then tracing
moves to B, where due to concurrent scheduling, B has no outgoing edges.

In order to combat this, marking is extended to tagging objects with one of three colours:
black, grey and white. At the start of a gc cycle, all objects are reverted to white and then during
collection nodes are only darkened. When the mutator acts on the object graph by redirecting
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2. Background

nodes it also shades the new targets of arcs. This two staged approach allows the collector to run
simultaneously with the mutator but with a performance overhead.

Actor languages often use a variant of concurrent garbage collection. Akka [Akka, 2018] is an
actor framework based on the JVM. Erlang [Erlang, 2018] uses an variant of the actor model where
all objects are immutable. It then assigns each actor a heap where it keeps all of its own objects.
When an object is sent, it is deeply copied onto the heap of the receiving actor. This means, as no
object has any shared mutability, all collection can be done independently and concurrently by
each actor on their own heap without risk of data races.

2.3.5 Correctness of Garbage Collection

Again we consider that collection is a problem on a directed graph, where we have a formal model
of a mutator and a collector. We can prove correctness with three properties [Dijkstra et al., 1978]:

• Soundness - everything collected is garbage.

• Completeness - all garbage is eventually collected.

• The collector does not make any modifications to edges of reachable nodes in the graph.
Note that this is satisfied in a copying collector, as it would preserve an isomorphic copy of
the reachable subgraph.

2.4 ORCA Host Language

ORCA is a garbage collection protocol for actor oriented languages, designed to be parametric
on any host language meeting some base assumptions. First we will describe the features a host
language should have, all of which are present in Pony, which will be the target of later discussion.

A host language should conform to the actor paradigm by having both actors and objects,
with objects simply being static data structures, not necessarily instances of classes. These objects
need not contain more than a set of fields containing references to other objects.

Actors should contain a set of fields, set of synchronous methods, and a set of asynchronous
behaviours. ORCA deals only with the collection of objects so we can assume that all actors have
references to all other actors and may call behaviours on them. Calling a behaviour on an actor
with some object involves sending a message with the behaviour and the parameter objects; doing
so will effectively share or send the object to the target actor. Each actor has a queue of messages
that can contain either these application messages or protocol-level ORCA messages. This queue
is processed by the actor in a strict order for reasons discussed later.

An actor is either idle, executing a behaviour, or performing garbage collection. When idle an
actor processes the top message of its message queue. This also ensures that an actor can never
execute multiple behaviours concurrently.

ORCA assumes that the language has a type system that associates each field an access ’capa-
bility’: read, write or tag. write allows both read and write access to the object , read allows only
immutable access. tag gives only opaque access to the object, enough to make simple equality
checks but without being able to examine it.

We define a path as a nonempty list of fields starting from an object or actor. We say that an
object, ι is reachable from another object or an actor ω if there exists a path from that ω to ι.

We say that ι is accessible from ω if the capabilities on the path allow ω to access ι. Thus
accessibility implies reachability but not necessarily the reverse.

ORCA uses messages to send protocol-related information, and because of this we require
message sending in the language to be causal - messages must be delivered after any and all
messages that caused them. We say If α is an actor and α receives a message m then afterwards,
a message m′, we say Causes(m, m′). If α sends a message x and then a message x′, we also have
Causes(x, x′).
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Message passing should be the only way to share objects in the language, and message send-
ing should comply with the capability system. When an actor shares an object to another actor,
then either the first gives up all access to the object, or neither can modify the object. In the lan-
guage we must ensure that heap mutation only decreases accessibility while message sending can
transfer accessibility from sender to receiver.

2.5 ORCA Protocol - An Informal Description

The aims of ORCA are to compliment those of Pony and to form an idiomatic garbage collection
protocol. While ORCA uses reference counting to decide whether an object is collectable these ref-
erence counts are local to each actor and only updated on message sending, receival and garbage
collection. This removes some of the mentioned shortcomings of reference counting which gives
a performance hit on expression evaluation. The reference counting does require communication
between actors about changes to these reference counts but this is done by asynchronous message
passing rather than by stopping execution. Reference counts on actors do not have to use atomic
operations because they are only ever modified by the actor that controls them.

Actors are given a local heap that they assign objects to. An object is said to be owned by
an actor if it exists on that actor’s heap. Ownership cannot be modified but actors may have
references to unowned objects. Each actor is then responsible for collecting objects on its own
heap, so only the owner of an object may free it.

All actors keep two kinds of reference counts, to objects that they own and have sent other
actors, and to objects they do not own which have been sent themselves. The local reference
count of an object is the reference count of the owner to the object, which should be kept equal
to the sum of the foreign reference counts - the reference counts from other actors. Then when
an actor can no longer reach an object it owns and it has a local reference count of zero, the actor
knows no other actor has a reference count so the object is safe to collect.

Specifically, an object is collectable if it is not reachable from its owner, and the owner’s refer-
ence count for the object is zero. If an actor α has a reference to an non-owned object ω that it
then drops, it is obligated to send an update to the owner of ω that there is one fewer foreign ref-
erences. Similarly, if α sends the reference on to some other actor, it must tell the owner that there
is one more foreign reference. These updates are done with ORCA messages that are processed
separately to regular, application messages.

An example situation is shown in Figure 3. We have two actors α and α′, and some object ι
owned by α and α has a reference to ι. In this initial configuration, without any reference counts,
ι is safe from collection as it is directly referenced by its owner. Now if α sends ι to α′ and drops
its own reference to the object, the act of sending will increase α’s reference count for ι to 1,
to represent that another actor has a reference and to prevent collection. When α′ receives ι it
increments its reference count to one.

Now, if α′ replaces its reference to ι by a reference to a new object ι′ nothing happens immedi-
ately. If α was to perform collection now it would not collect ι as garbage as it still has a positive
reference count. However if α′ performs collection it will trace its references and see that while it
has a positive reference count for ι it is not reachable. It then zeros that reference count and sends
an ORCA message to its owner, α, telling it to reduce its reference count by one. After α receives
this message its reference count to ι will be zero, meaning that a collection cycle will reclaim ι.

We can see now why we require the message delivery of the language to be causal. If we could
reorder incoming messages, it would be possible for a reference count for an object to dip below
zero and then come back to a positive value. This is dangerous because during the period where
the reference count was zero the object could have been collected.

It is a design decision of ORCA that collection does not interrupt the execution of behaviours
of an actor. Throughout we will assume that behaviour execution of actors is finite.
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α′α

ι

α : ι 7→ 0 α′ : ι 7→ 0

α′α

ι

α : ι 7→ 1 α′ : ι 7→ 1

α′α

ι ι′

α : ι 7→ 1
ι′ 7→ 0

α′ : ι 7→ 1
ι′ 7→ 0

α′α

ι ι′

α : ι 7→ 0
ι′ 7→ 0

α′ : ι 7→ 0
ι′ 7→ 0

α′α′

ι1

α : ι′ 7→ 0 α′ : ι′ 7→ 0

Figure 3: Example reference counting
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2.6 ORCA Val Optimisation

ORCA requires tracing objects on sending and on receipt, so if we repeatedly send a complex
object we will incur a significant performance cost.

Because immutability is deep in our host language, if we have an immutable object we know
that none of its fields can change value, and we know that no paths from it can change value.

Because of this, we are able to optimise the sending and receiving of immutable objects. The
current implementation of ORCA in the Pony runtime uses such an optimisation.

The runtime implements this by keeping track of which objects have been seen as immutable.
Each reference count from an actor for an object has an attached field denoting whether the object
has been seen as immutable from the actor. The first time it is seen immutable - sent or received
with a val capability for example - a full trace is performed setting incrementing the message
counts, and marking them as seen-immutable. For each object marked this way, a message is sent
to the owner of the object, notifying them that the object is immutable.

Intuitively owners trace their own immutable objects and when an object graph crosses an
ownership boundary, the owner of the child object is relied on to perform the tracing [Clebsch et al., 2017].

2.7 Order Theory

We recap some order theory as it will be used in some of our definitions and reasoning later on.

Definition 2.1. A poset or partially ordered set is a set X along with a binary relation ≤ that
satisfies the following axioms:

1. Reflexivity: ∀x ∈ X. x ≤ x

2. Antisymmetry: ∀x, y ∈ X. x ≤ y ∧ y ≤ x −→ x = y

3. Transitivity: ∀x, y, z ∈ X. x ≤ y ∧ y ≤ z −→ x ≤ z

Definition 2.2. Let (X,≤) be a poset. a chain is a subset S ⊆ X that is totally ordered with respect
for ≤, i.e. for all elements s, s′ ∈ S either s ≤ s′ or s′ ≤ s.

Definition 2.3. A chain (S,≤) ⊆ (X,≤) is maximal if there is no other chain (T,≤) such that S is
a proper subset of T.

Definition 2.4. Given two posets X = (X,≤X) and Y = (Y,≤Y) a function f : X → Y is order-
preserving if:

∀a, b ∈ X. a ≤X b −→ f (a) ≤Y f (b)

Definition 2.5. Let X = (X,≤X) and Y = (Y,≤Y) be two posets with order-preserving functions
α : X → Y and β : Y → X. Then (X , α, β,Y) forms a galois connection if:

1. α ◦ β is reductive i.e. ∀y ∈ Y, (α ◦ β)(y) ≤Y y

2. β ◦ α is extensive i.e. ∀x ∈ X, (β ◦ α)(x) ≥X x
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3 ORCA0

Here we present the original ORCA0 model verbatim as described in [Franco et al., 2018], taking
some of the examples given there. Our original work does not start until the next section. The
reason we do this is because the rest of the project builds upon this model. Understanding it will
give intuition into the decisions made later as well as give context for our evaluation.

Following the notation in the paper, we describe actors’ actions through pseudocode proce-
dures, which have the form:

procedure_name〈α〉:
condition
→
{ instructions }

We start by defining the set of addresses as the disjoint union of actor addresses, object ad-
dresses and a single null address.

Definition 3.1 (Addr).

Addr = ActorAddr]ObjAddr] {Null}

Definition 3.2 (Ownership). An ownership function

O : Addr→ ActorAddr

is one such that for all actors α ∈ ActorAddr

this is defined such that for all actors α ∈ ActorAddrO(α) = α and take some arbitrary value
for Null

We will say that an object ι is local with respect to an actor α if O(ι) = α and say it is foreign
otherwise.

We restrict ourselves to the following capabilities, which we assume are present in the host
language

κ ∈ Capability = {read,write, tag}

where write gives both read and write access to a object’s fields, read gives read-only access
and tag gives neither. So if an actor can access an object with a capability we have the following
implications:

write −→read

read −→tag

We define an ORCA0 runtime configuration C consisting of a heap, mapping addresses and
field identifiers to addresses, and an actor map mapping actor addresses to actors.

Definition 3.3 (ORCA0 configuration).

C ∈Con�g = Heap×Actors

χ∈Heap = (Addr \ {null})× FId→ Addr

as∈Actors = ActorAddr→ Actor

a∈Actor = Frame×Queue×RefCountT× State×Workset×Marks× PC

φ∈Frame = ∅ ∪ (BId× LocalMap)

ψ∈LocalMap = VarId→ Addr

q∈Queue = Message?

m∈Message ::= orca(ι : z) | app(φ)
rc∈RefCountT = Addr→N
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We assume that multiple actors are executing concurrently at any point in program execution
and individual actors transition between states as shown in Figure ??.

Definition 3.4. C(ι. f ) , C.heap(ι, f ), and C(ι. f . f ′) ≡ C.heap(C(ι. f , ) f ′)

We introduce the distinction between static paths and dynamic paths. Static paths describe paths
originating in the current actor or frame and dynamic paths include paths starting from messages.
A static path is formed by the keyword this for a path starting from within the current actor, or a
behaviour b and a local variable x indicating a path starting from a local variable in the context of
a behaviour. This may then be followed by an arbitrary number of fields:

sp ::= this | b.x | sp. f

This gives rise to the following axioms about the host language. A1 and A2 state that the
capability of a static path is constant, so we have some strict type system in the language. A3
and A4 state that capabilities decrease along static paths, we cannot have a read capable path
constructed from a path with only tag or a write capable path constructed from a path with read

capability.

Definition 3.5. We use the typing judgement α `C p : κ to denote that the actor α at the configu-
ration C associates the capability κ to the path p.

Axiom 1. For actors α, static path sp, field f , behaviour b, variable x, fields f , capability κ, configurations
C and C ′ which belong to the execution of the same program, we assume:

A1 α `C this.f : κ ←→ α `C ′ this.f : κ.
A2 α `C b.x.f : κ ←→ α `C ′ b.x.f : κ.
A3 α `C sp. f : κ −→ ∃ κ′ 6= tag. α `C sp : κ′.
A4 α `C sp. f : write −→ α `C sp : write.

Dynamic paths, or simply paths, are a superset of static paths as they can describe paths
starting at an actor or a frame, but also they can describe paths starting at some message in an
actor’s message queue. The actor cannot access the paths from message queue objects but will be
able to at some point in the future. We will use the notation k.x where k is an integer k ≥ 0 to refer
to the kth message on an actor’s message queue and x is a variable in the frame contained in the
message.

We will also later extend this for k = −1 which will be defined only while an actor is sending
or receiving a message and refers to that message currently being processed.

p ∈ Path ::= lp | mp lp ::= this | x | lp. f mp ::= k.x | mp. f

Accessibility is the partial function from configurations, actors and paths to the object and capa-
bility reached by the path.

Definition 3.6 (accessibility). The partial function
A : Con�g×ActorAddr× Path→ (Addr×Capability)

is defined as
AC(α, this. f ) = (ι, κ) iff C(α. f ) = ι ∧ α `C this. f : κ

AC(α, x. f ) = (ι, κ) iff ∃b.ψ. [ α.frameC = (b, ψ) ∧ C(ψ(x). f ) = ι

∧ α `C b.x. f : κ ]
AC(α, k.x. f ) = (ι, κ) iff k ≥ 0 ∧ ∃b.ψ. [ α.quC [k] = app(b, ψ) ∧

C(ψ(x). f ) = ι ∧ α `C b.x. f : κ ]
AC(α,−1.x. f ) = (ι, κ) iff α is executing Sending or Receiving, and ...

continued in Definition 3.24.
AC(α, p.owner) = (α′, tag) iff ∃ι.[AC(α, p)=(ι, _) ∧O(ι)=α′ ]
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Collect Idle Receive Execute Send

Figure 4: Actor state transitions, recreated from [Franco et al., 2018].

We use AC(α, p) = ι as shorthand for ∃κ. AC(α, p) = (ι, κ)

Example 3.7. AC0(α1, this. f1. f2. f3)=(ω3,write), andAC0(α2, this. f8)=(ω3, tag) give paths from actors’
fields, while AC0(α2, x′)=(ω8,write) gives a path from the actor’s frame. AC0(α1, 0.x. f5. f7) = (ω8, tag)
is a path from a message queue.
Accessibility of objects determines what an actor can read or write. AC0(α1, this. f1. f2. f3) = (ω3,write),
so actor α1 can mutate object ω3. However, this mutation is not visible by α2, even though C0(α2. f8)=ω3,
because AC0(α2, this. f8) = (ω3, tag), which means that actor α2 only knows of the existence of ω3, not of
the contents of its fields.
Accessibility plays a role in garbage collection: if the reference f3 were to be dropped it would be safe to
collect ω4. Even though ω4 is reachable from α2, it is not accessible, as the path this. f8. f4 leads to ω4
but will never be navigated (AC0(α2, this. f8. f4) is undefined). Further, AC(α2, this. f8.owner) = (α3, tag);
thus, as long as ω4 is accessible from some actor, e.g. through C(α2. f8)=ω4, actor α3 will not be collected.

We assume the host language gives us freedom from data races as a result of the capabilities.
This is characterised with the judgement � C ♦, i.e. we say that C is free from data races if � C ♦.

Definition 3.8 (Data-race freedom). � C ♦ ⇐⇒
∀α, α′, p, p′, κ, κ′.

α 6= α′ ∧ AC(α, p) = (ι, κ) ∧ AC(α′, p′) = (ι, κ′)
−→

κ ∼ κ′

where we define
κ ∼ κ′ ⇐⇒ [ (κ=write −→ κ′= tag) ∧ (κ′ = write −→ κ= tag) ]

3.1 Invariants

We now list the invariants of ORCA0 .

I1: if an object is accessible with write capability from an actor, then it is not accessible with
read or write capability from any other actor.

This is guaranteed by the assumptions we put on the host language, and therefore, always
holds in Pony. In particular, this holds from the Data-race freedom judgement � C ♦.

I2: if an object is accessible via a message queue, or by a non-owner, then the owner’s reference
count is greater than zero.

Definition 3.9 (I2).

I2 , ∀α, p, mp, ι. AC(α, p) = ι ∨AC(α, mp) = ι

−→ O(ι).rcC(ι) > 0

The notation O(ι).rcC(ι) denotes the owner of ι’s reference count at the configuration C for ι.
This means that when an actor has an inaccessible object with a reference count of zero they

know that no actor can reach it, so it is safe to collect the object.
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I3: if α can access an unowned object ι through a field or its call stack, then α’s reference count
for the object is greater than zero.

Definition 3.10 (I3).

I3 , AC(α, lp) = ι −→ α.rcC(ι) > 0

So actors must maintain positive reference counts for all foreign objects that are accessible to
them.

Definition 3.11 (Local Reference Count). The Local Reference Count of an object ι is defined as the
reference count at the object’s owner.

LRCC(ι) , O(ι).rcC(ι)

Definition 3.12 (Foreign Reference Count). The Foreign Reference Count of an object ι is defined as
the sum of the reference counts over all non-owning actors.

FRCC(ι) , ∑
α 6=O(ι)

α.rcC(ι)

Definition 3.13 (Application Message Count). The Application Message Count of ι is the sum across
all message queues of behaviour invocations containing ι.

AMCC(ι) , #{ (α, k) | k>0∧ ∃x. f .AC(α, k.x. f ) = ι }

Definition 3.14 (Orca Message Count). The Orca Message Count of ι, owned by α, is the sum of all
increment and decrement messages sent by the ORCA protocol in α’s message queue that refer to
ι.

OMCC(ι) , ∑j

{
z if O(ι).quC [j] = orca(ι : z)
0 otherwise

I4: We use these definitions to describe a relation between the distribution of reference counts
throughout the system.

Definition 3.15 (I4).
I4 , ∀ι.LRC(ι) + OMC(ι) = FRC(ι) + AMC(ι)

Definition 3.16 (I5). All reference counts are non-negative

I5 , ∀α, ι. α.rcC(ι) ≥ 0

Definition 3.17 (I6). Accessible paths don’t dangle

I6 , AC(α, p)= ι −→ C.heap(ι) 6=⊥
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3.2 Sending - ORCA0

Sent objects are traced. Then for any object we find in the trace, if we own the object we increase
the reference count by one. If we do not own an object in the trace, we decrease its reference count
by one. This is done to preserve the equation of I4 when a message is sent.

If we would decrease an unowned object’s reference count to zero, we instead set it to 256 and
send an ORCA- level message to the owner notifying them of this increase. This means that we re-
tain a positive reference count as we may still have a live reference to the object but we preserve I4.

1 α.st = EXECUTE && α.frame = (b, φ · φ′)
2 Sending<α>:
3 {
4 α.st := SEND
5

6 ws := trace_frame( α, (b, φ′))
7

8 for ι ∈WS:
9 if O(ι) = α:

10 α.rc(ι) += 1
11 else if α.rc(ι) > 1:
12 α.rc(ι) −= 1
13 else:
14 O(ι).qu.push(orca(ι:256))
15 α.rc(ι) := 256
16 ws := ws \ {ι}
17

18 α.frame := (b, φ)
19

20 α′.qu.push(app(b’, φ′))
21 }
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3.3 Receiving - ORCA0

When receiving an application message, we trace the incoming object and then if we own the
object, we decrease its reference count by one, otherwise we increase it by one.

1 α.st = IDLE && top(α.qu) = app(φ)
2 Receiving<α>:
3 {
4 α.st := RECEIVE
5 ws := trace_frame(α, φ)
6

7 pop(α.qu)
8

9 for ι ∈ ws:
10 if O(ι) = α:
11 α.rc(ι) −= 1
12 else:
13 α.rc(ι) += 1
14 ws := ws \ {ι}
15

16 α.frame := φ
17

18 α.st := EXECUTE
19

20 }

3.4 Receiving orca message - ORCA0

Upon receiving an orca message, we simply add the specified amount to our current reference
count of the object.

1 α.st = IDLE && top(α.qu) = ORCA(ι : z)
2 Receiving<α>:
3 {
4 α.st := RECEIVE
5 α.rc(ι) += z
6 pop(α.qu)
7 α.st := EXECUTE
8 }
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3.5 Garbage Collection - ORCA0

1 α.st = IDLE && α.st = EXECUTE
2 GarbageCollection<α>:
3 {
4 α.st := COLLECT
5 ms := ∅
6

7 // Marking as unreachable
8 for ι such that O(ι) = α || α.rc > 0:
9 ms := ms[ι→ U]

10

11 // Tracing and marking locally accessible as reachable
12 for ι ∈ trace_this(α) ∪ trace_frame(α.frame):
13 ms := ms[ι→ R]
14

15 // Marking owned and globally accessible as reachable
16 for ι such that O(ι) = α && α.rc > 0:
17 ms := ms[ι→ R]
18

19 // Collection
20 for ι such that ms(ι) = U:
21 if O(ι) = α:
22 C.heap := C.heap[ι→ ⊥]
23 α.rc := α.rc[ι→ ⊥]
24 else:
25 α.rc(ι) := 0
26 O(ι).qu.push(orca(ι: −tmp))
27

28 if α.frame = ∅:
29 α.st := IDLE
30 else:
31 α.st := EXECUTE
32 }
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1 GoIdle〈α〉:
2 α.st = EXECUTE
3 →
4 { α.frame := ∅; α.st := IDLE; }
5

6 Create〈α〉:
7 α.st = EXECUTE ∧ fresh ω ∧ O(ω) = α
8 →
9 {

10 heap :=
11 heap[ω 7→ ( f1 7→ null, ..., fn 7→ null)]
12 α.frame := α.frame[x 7→ ω]
13 }

1 MutateHeap〈α〉:
2 α.st = EXECUTE ∧ AC (α, lp1) = (ι1,write)
3 ∧ AC (α, lp2) = ι2
4 ∧ ∀ι, κ, lp [ AC[ι1, f 7→ι2](α, lp) = (ι, κ) −→
5 (∃κ′, lp′ AC (α, lp′) = (ι, κ′) ∧ κ′ ≤ κ ])
6 →
7 {
8 heap := heap[ι1, f 7→ ι2]
9 }

Figure 5: Pseudo-code for synchronous operations.

3.6 Well Formed Queues

What we have defined so far has been quite concise and intuitive but we now begin a series of
more technical definitions. In particular I7 which tells us about the effect of processing messages
from message queues, and I8 which encompasses a series of definitions for well-formed states for
each ORCA method we have seen.

Definition 3.18 (Reaches).

ReachesC(α, ι, k) ⇐⇒ ∃x.∃ f .AC(α, k.x. f ) = ι

Definition 3.19 (Weight).

WeightC(α, ι, j) ,


z, if α.quC[j] = orca(ι : z)
−1, if ReachesC(α, ι, j) ∧O(ι) = α

0, otherwise

Definition 3.20 (Queue Effect).

QueueEffectC(α, ι, n) , LRCC(ι) +
n

∑
j=0

WeightC(α, ι, j)

We now stray slightly from the definitions used in [Franco et al., 2018] by defining the predi-
cate relevant, which we think makes I7 more succinct.

Definition 3.21 (Relevant). For all i ∈N and objects ι with O(ι) = α 6= α′
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∃x, f . AC(α, i.x, f ) −→∀k ≤ i. Relevant(α, ι, k)
α.queueC[i] = orca(ι : z) −→∀k < i. Relevant(α, ι, k)

∃p. AC(α
′, p) = ι −→∀k ∈N. Relevant(α, ι, k)

Definition 3.22 (I7).

I7(a)
∀n. QueueEffectC(α, ι, n) ≥ 0

I7(b)
Relevant(α, ι, n)→ QueueEffectC(α, ι, n) > 0

3.7 Fine Grained Concurrency

If we break down the pseudocode listings into “atomic” statements we want to model execution
in as fine-grained manner as possible. Is thus modelled as picking some actor non-deterministically
and executing the next atomic statement. However, the above invariants do not hold under this
fine grained execution. For example during message receival, I4 is broken when a message is
popped off the queue but before the appropriate reference counts are mutated. ORCA0 gives
more precise definitions of AMC and OMC in order to combat this, we will list them here.

Definition 3.23 (Derived counters – preliminary for AMC and OMC).

LRCC(ι) , O(ι).rcC(ι)

FRCC(ι) , ∑α 6=O(ι) α.rcC(ι)

OMCC(ι) , ∑j

{
z if O(ι).quC [j] = orca(ι : z)
0 otherwise

+ OMCsnd
C (ι) − OMCrcv

C (ι)

AMCC(ι) , #{ (α, k) | k>0∧ ∃x. f .AC(α, k.x. f ) = ι }+ AMCsnd
C (ι) + AMCrcv

C (ι)

where # denotes cardinality.

Definition 3.24 (Accessibility - Sending and Receiving). AC(α,−1.x. f ) = (ι, κ) iff
α.stC = Receiving ∧ 9 ≤ α.stC ≤ 18 ∧ C(ψ(x). f ) = ι ∧ α `C b.x. f : κ

where (b, ψ)is the frame popped at line 8,
or
α.stC = Sending ∧ α.pcC = 23 ∧ C(ψ′(x). f ) = ι ∧ α′ `C b′.x. f : κ

where α′ is the actor to receive the app-message, and
(b′, ψ′) is the frame to be sent in line 20.

Definition 3.25 (Auxiliary Counters for AMCC(_) and OMCC(_)).

AMCrcv
C (ι) , #{α | α.stC=RECEIVE ∧ 9 ≤ α.pcC ∧

ι ∈ ws\CurrAddrRcvC(α)}

CurrAddrRcvC(α) ,

{
{ι10} if α.pcC = 15
∅ otherwise
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In the above ws refers to the contents of the variable ws while the actor α is executing the pseu-
docode from Receiving, and ι10 refers to the contents of the variable ι arbitrarily chosen in line ??
of the code.
We define AMCsnd

C (ι), OMCrcv
C (ι), and OMCsnd

C (ι) similarly in Def. 3.26 .

Definition 3.26 (AMCC(_) and OMCC(_) – more cases).

AMCsnd
C (ι) , #{ α | α.stC=SEND ∧ 12 ≤ α.pcC ∧ ι ∈ ws\CurrAddrSndC(α) }

CurrAddrSndC(α) ,

{
{ι12} if α.pcC = 20
∅ otherwise

OMCrcv
C (ι) , ∑α OMCrcv

α,C,(ι)

OMCrcv
α,C (ι) ,


z if O(ι) = α, and α is executing ReceiveORCA

and α.pcC = 6 and top(α.quC) = ORCA(ι : z)
0 otherwise

OMCsnd
C (ι) , ∑α OMCsnd

α,C (ι)

OMCsnd
α,C (ι) ,



256 if α.state = SEND and ff.pcC = 19

and ι is the address chosen in line 12
α.rcC(ι) if α.s f state = COLLECT and α.pcC = 24

and ι is the address chosen in line 18
0 otherwise

In the above ws refer to the contents of the variable ws while the actor α is executing the pseu-
docode from Receiving, and ι12 refers to the contents of the variable ι arbitrarily chosen in line 12
of the code.

3.8 Well Formed Executions

Finally we have a definition for I8 that is used to show correctness of the defined methods, with
each having their own correctness criteria I8

Send etc. This is given in full in Appendix A.
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4 ORCAGhost

We now present ORCAGhost , a refinement of ORCA0 with the goal to remove the special cases
introduced to tackle fine grained concurrently.

To do this we rely on ghost variables, variables not present in any physical implementation
but are considered during verification. We assume that we can mutate these variables instan-
taneously, and we can execute any regular pseudocode statement and an arbitrary sequence of
statements that modify only ghost variables atomically. For this we use the notation:

1 [s1 | g1; g2; g3; . . . ]

Where s1 is a statement in pseudocode, gi are statements mutating only ghost variables and the
brackets indicate an atomic block.

In ORCAGhost , for each actor α, and each object ι we add an additional ghost reference count
α.grc(ι). With this, we redefine the local and foreign reference counts in terms of these ghost
reference counts:

Definition 4.1.

LRCDS(ι) = O(ι).grc(ι)

FRCDS(ι) = ∑
α 6=O(ι)

α.grc(ι)

Then we can use this in an updated I4

Definition 4.2 (I4
DS, Reference Counting Equation).

I4
DS , ∀ι. (LRCDS(ι) + OMC(ι) = FRCDS(ι) + AMC(ι))

In general we also ‘lift’ all other invariants In to In
DS where instead of referring to the reference

counts they now state properties about the ghost reference counts.

• I2
DS Now states that accessibility in a foreign actor implies the owner has a non-zero ghost

reference count for the object.

• I3
DS Now states that accessibility of a foreign object implies a non-zero ghost reference

count for it.

• I5
DS States that ghost reference counts are positive

• QueueEffect Now refers to ghost reference count

• I7
DS Consuming messages will preserve inv 5

• I8
DS Now uses ghost reference count in well formed definitions

As we give the updated pseudocode we will also define I9 which gives the exact relation
between the ghost reference counts and the runtime’s reference counts.

We will use the notation

1 if e −→ s

Page 28



4. ORCAGhost

to denote the conditional execution of the statement s if the expression e holds, this is to make rea-
soning about specific lines easier. We add an additional state that an actor can be in RECEIVE_ORCA

to distinguish between actors receiving application and ORCA messages.
The highlighted lines are those changed from ORCA0 .

4.1 Sending - ORCAGhost

1 α.st = EXECUTE && α.frame = (b, φ · φ′)
2 Sending<α>:
3 {
4 α.st := SEND
5

6 [ws := trace_frame( α, (b, φ′)) | gws := ws; ∀ι. α.rc0(ι):=α.rc(ι)]
7

8 for ι ∈ ws:
9 if (O(ι) = α):

10 α.rc(ι) += 1
11 else:
12 if α.rc(ι) > 1:
13 α.rc(ι) -= 1
14 else:
15 [O(ι).qu.push(orca(ι:256)) | α.grc(ι) := 257]
16 α.rc(ι) := 256
17 ws := ws \ {ι}
18

19 α.frame := (b, φ)
20

21 [α′.qu.push(app(b’, φ′)) |
22 for ι ∈WS:
23 if O(ι) = α:
24 α.grc(ι) += 1
25 else:
26 α.grc(ι) -= 1]
27 }

Note that whenever we push messages we are simultaneously updating the ghost reference
counts to counteract the effect on one side of the equation in I4

DS.
For some ι we define SendRC(α, ι) by:

SendRC(α, ι) =

{
257 for α = O(ι) ∧ α.rc0(ι) = 1
α.rc0(ι) otherwise

Here we use the notation ι8 to refer to the variable ι in the pseudocode defined on line 8.

I9
SEND , α.st =SEND →

pc ≤ 17 −→
∀ι 6= ι8.

ι 6∈ (gws \ ws)→ α.grc(ι) = α.rc(ι)
ι ∈ (gws \ ws)→ α.grc(ι) = SendRC(α, ι)

8 ≤ pc < 15 −→ α.grc(ι8) = α.rc0(ι8)

15 ≤ pc ≤ 17 −→ α.grc(ι8) = SendRC(α, ι8)
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Where pc = α.pcC.

Where ι8 is the program variable ι defined on line 8. For cases where ι8 is not defined, we assume
∀ι. ι 6= ι8.
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4.2 Receiving - ORCAGhost

1 α.st = IDLE && top(α.qu) = app(φ)
2 Receiving<α>:
3 {
4 α.st := RECEIVE
5 ws := trace_frame(α, φ)
6

7 [pop(α.qu) |
8 for ι ∈WS:
9 if O(ι) = α:

10 α.grc(ι) -= 1
11 else:
12 α.grc(ι) += 1]
13

14 for ι ∈ ws:
15 if (O(ι) = α) −→ α.rc(ι) -= 1
16 if (O(ι) 6= α) −→ α.rc(ι) += 1
17 ws := ws \ {ι}
18

19 α.frame := φ
20

21 α.st := EXECUTE
22

23 }

For some ι we define RecRC(α, ι) by:

RecRC(α, ι) =

{
α.rc(ι) + 1 for α = O(ι)
α.rc(ι)− 1 for α 6= O(ι)

I9
REC , α.st =RECEIVE →

pc < 7 −→ ∀ι. α.grc(ι) = α.rc(ι)
pc = 14 −→ α.grc(ι14) = RecRC(α, ι14)

14 < pc ≤ 17 −→ α.grc(ι14) = α.rc(ι14)

7 ≤ pc ≤ 23 −→
∀ι 6= ι14.[
ι 6∈ ws→ α.grc(ι) = α.rc(ι)
∧ι ∈ ws→ α.grc(ι) = RecRC(α, ι)

]

Where pc = α.pcC.
4.3 Receiving orca message - ORCAGhost

1 α.st = IDLE && top(α.qu) = ORCA(ι : z)
2 Receiving<α>:
3 {
4 α.st := RECEIVE_ORCA
5 α.rc(ι) += z
6 [pop(α.qu) | α.grc(ι) := α.rc(ι)]
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7 α.st := EXECUTE
8 }

I9
REC_ORCA , α.st =RECEIVE_ORCA →

∀ι 6= ι. α.grc(ι) = α.rc(ι)
pc = 5 −→ α.grc(ι) + z = α.rc(ι)

Where pc = α.pcC.
4.4 Garbage Collection - ORCAGhost

1 α.st = IDLE && α.st = EXECUTE
2 GarbageCollection<α>:
3 {
4 α.st := COLLECT
5 ms := ∅
6

7 // marking as unreachable
8 for ι such that O(ι) = α || α.rc > 0:
9 ms := ms[ι→ U]

10

11 // tracing and marking locally accessible as reachable
12 for ι ∈ trace_this(α) ∪ trace_frame(α.frame):
13 ms := ms[ι→ R]
14

15 // marking owned and globally accessible as reachable
16 for ι such that O(ι) = α && α.rc > 0:
17 ms := ms[ι→ R]
18

19 // collecting
20 for ι such that ms(ι) = U:
21 if O(ι) = α:
22 C.heap := C.heap[ι→ ⊥]
23 α.rc := α.rc[ι→ ⊥]
24 else:
25 α.rc(ι) := 0
26 [O(ι).qu.push(orca(ι: −tmp)) | α.grc(ι) := 0]
27

28 if α.frame = ∅:
29 α.st := IDLE
30 else:
31 α.st := EXECUTE
32 }

I9
GC , α.st =COLLECT →

pc 6= 26 −→ ∀ι α.grc(ι) = α.rc(ι)
pc = 26 −→
∀ι 6= ι20. α.grc(ι) = α.rc(ι)
α.rc(ι20) = 0
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I9
IDLE,EXEC , α.st =IDLE∨ α.st = EXECUTE→

∀ι α.grc(ι) = α.rc(ι)

Where pc = α.pcC.

4.5 Correctness

We do not provide a full, line by line proof of the preservation of I9 because it is clear by compar-
ing it to the pseudocode and it is not interesting.

Lemma 4.3. I3
DS is preserved

I5
DS is preserved

I7
DS is preserved

I8
DS is preserved

We argue that the proof of these invariants is not significantly different from those in ORCA0 .

Lemma 4.4. I4
DS is preserved

Proof. This is far easier to prove than I4 in ORCA0 , we just note that whenever a message queue
is altered in the code it is coupled with an operation on ghost reference counts that preserves I4.
This accounts for all of the ghost reference count operations.
For example, take lines 7− 12 in Receive, when the message is popped off the queue it adjusts the
AMC for the objects in the trace, but these are exactly the ghost reference counts we update.

Proposition 4.5. Any configuration that satisfies I3 − I9 also satisfies I2
DS

Proof. We take the same approach as in the proof for ORCA0 . Take an arbitrary object ι and actors
α, α0, path p and message path mp such that α 6= O(ι) = α0. We want to show LRCDS

C (ι) > 0:

Case 1: AC(α, lp) = ι, so by I3
DS we have that the right hand side of I4

DS is positive.

Case 2: p starts from a queue, i.e. p = k.x. f for some k ≥ 0 and series of fields f . By definition
we have that AMCC(ι) > 0. By I5 we also have that the right hand side of I4

DS is positive.

Case 3: p starts from a queue again, p = −1.x. f . We can see this holds from the definition of
I8

DS.

In the first two cases we have that the right hand side of I4
DS is greater than zero, so the left

hand side must be. Then I7 implies that LRCC(ι)
DS > 0

Lemma 4.6.

∀α, ι. α 6= O(ι) −→ α.rc(ι) > 0 −→ α.grc(ι) > 0

Proof. Case inspection of I9

Proposition 4.7. If an actor α owns an object ι and is in garbage collection at configuration C then
α.rcC(ι) = 0 means that ι can be safely collected.
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Proof.

α.rcC(ι) = 0
=⇒ α.grcC(ι) = 0 (In Garbage Collection)

=⇒ OMCC(ι) + LRCDS
C (ι) = 0 (I7, Queue Effect )

=⇒ AMCC(ι) + FRCDS
C (ι) = 0 (I4

DS)

=⇒ FRCDS
C (ι) = 0 (AMCC ≥ 0)

=⇒ ∀α′ 6= α. α.grcC(ι) = 0 (Foreign reference counts non negative)

=⇒ ∀α′ 6= α. α.rcC(ι) = 0 (Lemma 4.6)
=⇒ ι is Globally Inaccessible (I3)

We still have some of the “ugly” reasoning where we have to define the ghost reference counts
for every possible line of execution, but we think this is easy to reason about then the original
ORCA0 model. In Section 8 we will improve upon this but for now we will continue and look at
the Pony optimisations.

4.6 Evaluation

Comparing our definition to ORCA0 we can see that it is more complex in several places. We
introduced an additional invariant I9, introduced new notation with the atomic ghost statements,
and we added complexity to the pseudocode. However, by doing so we were able to reduce the
definitions of AMC and OMC to forms reminiscent of those before fine grained concurrency was
considered.

In the next section we are going to build on this and we can do so because we move the
cognitive overhead of fine grained concurrency onto the ghost variables. We can define more
complex invariants in terms of the ghost variables and leave the distinction from the real variables
in the proofs here.
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5 ORCAGhost+Val

5.1 Immutability

Here we present an extension to ORCAGhost to capture the optimisations made on immutable
structure. We leverage the fact that immutability is both deep and persistent. By deep we mean
that if some object ι is immutable and ι can reference some other object ι′ then ι′ is immutable.

Immutability is persistent in that there is no way to reclaim write access to an immutable
object. If ι is immutable in some configuration C and C ; C′ then ι is immutable in C′ if it has not
been collected.

We also know that if an immutable object ι has a reference to another object ι′ then ι′ must
outlive ι. It is impossible for ι to be globally inaccessible before ι′ because accessibility to ι gives
accessibility to ι′. What we want to do therefore is give a reference count to ι that also acts as
a reference count for ι′ in a sound manner. This means that we can defer tracing of immutable
objects until they are collected which allows more efficient sending and receiving.

Note that if ι had a mutable reference to ι′ and ι is not immutable then a reference count for
ι cannot be used for ι′. This is because the field in ι assigned to ι′ can be changed, leaving no
relation between the objects ι and ι′.

We say an object ι is immutable in a given configuration C, immC(ι) if and only if there does
not exist some actor α, with path p (including fields and paths through messages on the queue)
with write access to it and all child objects that ι can access through fields are also immutable.

Definition 5.1 (Immutability).

immC(ι) , 6 ∃, α, p. AC(α, p) = (ι,write)

∧ ∀ f . ∃ι′. (C(ι, f ) = ι′ → immC(ι
′))

This is satisfied by val types in Pony, so if we have reference to an object ι with val capability
then we can assume immC(ι). In this model we assume that immutability is somehow known to
actors in the runtime, later in Section 7 we will discuss how this can be realised.

We say an object ι protects another object ι′ at a configuration C if in a garbage collection run,
ι being reachable would prevent the collection of ι′. All objects protect themselves, but also ι
protects ι′ at C if ι is immutable at C and an actor α owns both ι and ι′. Further there must be a
path from ι to ι′ where all intermediate objects are also owned by α.

This would mean that ι′ and all intermediate objects are immutable also, as by definition there
is a path from an immutable object, ι to them, and from our assumptions about the host language
all objects reachable from an immutable object are immutable.

Definition 5.2 (Protection).

ι.ProtectsC(ι
′) , ι = ι′

∨ (immC(ι) ∧ ∃n ≥ 0. ∃ f = f1. f2 . . . fn.

(C(ι, f ) = ι′∧
∀i = 1, . . . n. O(ι) = O(C(ι, f1. f2 . . . fi))))

We can then represent our statement earlier as a lemma. Because of deep immutability, pro-
tection is preserved as the program runs, as none of the objects can modify their fields. This also
means that if an object ι protects another ι′, then ι′ will always live at least as long as ι.

Lemma 5.3.

ι.ProtectsC(ι
′)∧ |= C ∧ C ; C′ ∧ ι ∈ dom(C′)

−→ ι′ ∈ dom(C′) ∧ ι.ProtectsC′(ι
′)
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We can deduce this from the definition of immC, that there are no write references and the type
safety of the host language, we assume objects can only be modified by actors with references with
write capability.

α1α0

ι0

ι4 ι3

ι1

ι2

Figure 6: In this configuration, where all objects are immutable, all objects protect themselves but
ι0 does not protect anything else. We do have though that ι1.Protects(ι2) and ι3.Protects(ι4).

We form a definition for when an object ι is collectable in this model. We only collect an object
ι owned by α if there is no local path from α to ι, its reference count from α is zero, and all objects
that protect it are also collectable.

Definition 5.4 (Collectable).

collectableC(ι) , 6 ∃lp. AC(O(ι), lp) = ι

∧ α.grcC(ι) = 0

∧ ( 6 ∃ι′.ι′.Protects(ι) ∧ α.grcC(ι
′) > 0)

Note that we do not require that there is no path from α to ι′. This is because, if there was
some path, then we could form a path from α to ι as ι′ protects ι, but we know that this cannot
exist! So by contradiction there cannot be a path to ι′.

α1α0

ι0

ι1

ι2

α0.rc(ι0) = 0
α0.rc(ι1) = 1
α0.rc(ι2) = 0

α1.rc(ι0) = 0
α1.rc(ι1) = 1
α1.rc(ι2) = 0

Figure 7: An example of a configuration with a reachable object that has a zero reference count
but no objects are collectable.
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Definition 5.5 (Subpath). We say that a path p is a subpath of a path p′, if either p = p′ or p is a
prefix of p′.

p v p′ , ∃ f . p′ = p. f

Definition 5.6 (Strict Subpath). A path p is a strict subpath of a path p′ if p 6= p′ and p is a prefix
of p′.

p @ p′ , p v p′ ∧ p 6= p′

As with ORCA0 , we invoke a behaviour on an actor by adding the tuple (b, φ) to the actor’s
message queue. If we are passing an immutable object, in ORCAGhost+Val we do not trace its fields
and only alter the reference count of φ itself. If we are sending a mutable object φ′ with a path
to an immutable object, ι, we do not trace ι’s children, and only alter the reference count of ι.
We justify this as ι protects all its children, so they will not be affected in an updated version of
collection.

Then, we define the following predicate to calculate the trace stopping at immutable objects.

Definition 5.7 (trace_ws).

trace_wsC(α, φ) = { ι | ∃x, f , b, ψ. [φ = (b, ψ) ∧
AC(α, b.x. f ) = (ι, _) ∧
∀p ∃ι′, κ. (p @ (b.x. f )→

(AC(x, p) = (ι′, κ)→ κ 6= Val∨ κ 6= Tag))]}

ι

Figure 8: Showing the result of trace_ws on a frame containing only ι, squares represent mutable
objects and circles immutable objects.

When we send and receive an object ι we update the reference counts in trace_wsC(ι).
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α2α1α0

ι0

ι1

ι3

ι2

ι4

α0.rc(ι2) = 2 α1.rc(ι2) = 2
α2α1α0

ι0

ι1

ι3

ι2

ι4

α0.rc(ι0) = 1
α0.rc(ι1) = 1
α0.rc(ι2) = 1

α1.rc(ι2) = 2 α2.rc(ι0) = 1
α2.rc(ι1) = 1
α2.rc(ι2) = 1

Figure 9: Here we represent an Iso reference with a double arrow. We have two configurations,
before and after sending, α0 sends a message with an Iso reference to ι0, to α2. ι0 is mutable so its
children are traced, but ι1 and ι2 are both immutable so their children are not traced. The traced
objects have their reference counts altered.

When, during collection, we find an unreachable, immutable object ι we do not own, but
have a positive reference count to, we calculate the full trace of the object. We trace the object
to find children of the the object that we may not have a reference count for, but can still reach.
These are objects that were being protected by ι and now may have lose their reference count in
future collections or be freed. We increment our reference count for these objects and send an orca
message to the owner telling them about this increase.
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α1α0

U

U

R

α0.rc(ι0) = 0
α0.rc(ι1) = 1
α0.rc(ι2) = 0

α1.rc(ι0) = 0
α1.rc(ι1) = 1
α1.rc(ι2) = 0

α1α0

ι1

ι2

α0.rc(ι1) = 0
α0.rc(ι2) = 1

α1.rc(ι1) = 0
α1.rc(ι2) = 1

Figure 10: If we consider the layout from Figure 7, and then give α0 a reference to ι2 and drop
its reference to ι0, we get the above configuration. We then assume α0 performs collection, the
U and R show which objects are marked unreachable and reachable during the collection proce-
dure. Below shows the result of the collection, ι0 is freed as its reference count is zero and it is
unreachable, ι1 has its reference count reduced to 0 and ι2 has its reference count increased by 1
as it is included in the trace of both ι0 and ι1. Both these changes are then communicated to α1 via
orca messages. Now when α1 runs collection it will collect ι1.

Remember if we are sending an object we own, then we increase its reference count and if we
do not own it we decrement it. In the special case where we would decrement its count to zero,
we instead notify the owner that we have added 256 references and set our reference count to 255,
with the last reference accounted for by the message, this preserves I4

DS.
It is now possible to have a case where we send an immutable object that we have a reference

count of zero, we will handle this in a similar way, we increment our reference count and send an
orca message to the owner.
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α2α1α0

ι0

ι1

ι2

α0.rc(ι0) = 0
α0.rc(ι1) = 1
α0.rc(ι2) = 0

α1.rc(ι0) = 0
α1.rc(ι1) = 1
α1.rc(ι2) = 0

α2α1α0

ι0

ι1

ι2

α0.rc(ι0) = 0
α0.rc(ι1) = 1

α0.rc(ι2) = 255

α1.rc(ι0) = 0
α1.rc(ι1) = 1

α1.rc(ι2) = 256

α2.rc(ι2) = 1

Figure 11: Two configurations before and after sending ι2 to α2. As α0 has no reference count for
ι2 it increments its reference count to 255 and sends an orca message ι1 to increase the number of
references by 256. This is described in full in the pseudocode.

We introduce the more general transitive protection to formalise the property that if there is
an immutable object ι that references an object ι′ owned by a different actor, then ι′ cannot be
collected until ι has been collected. ι must outlive ι′. We want to form a property such that the
following holds:

ι.TransProtectsC(ι
′)∧ |= C ∧ C ; C′ ∧ ι ∈ dom(C′)→ ι′ ∈ dom(C′) ∧ ι.TransProtectsC′(ι

′)

An object ι transitively protects another object ι′ if there is some path from ι to ι′ where every
field access in the path goes either between objects that protect each other, or the reference goes
between actors and there is a reference count greater than zero for the target object from the
previous objects owner.
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Definition 5.8 (Transitive Protection).

ι.TransProtectsC(ι
′) , ι.protectsC(ι

′)

∨ (∃ιlocal , ιremote, f . O(ι) = O(ιlocal) 6= O(ιremote)

∧ ι.protectsC(ιlocal)

∧ C(ιlocal , f ) = ιremote

∧O(ιlocal).rcC(ιremote) > 0
∧ ιremote.TransProtectsC(ι)))

α2α1α0

ι0

ι1

ι2

ι3

ι4

ι5

α0.rc(ι2) = 1 α1.rc(ι2) = 1
α1.rc(ι4) = 1

α2.rc(ι4) = 1

Figure 12: We can see that ι0 protects ι1 but not ι2 or ι3 as they have different owners. However, ι0
transitively protects all other objects in the configuration. For example, ι0.TransProtectsC(ι3). ι2
protects ι2 so ι2.TransProtectsC(ι3) from the definition. Then ι1 has a reference to an object ι2, that
transitively protects ι3. The owner of ι1 has a reference count greater than zero for this object and
ι0 protects ι1. From these we get that ι0.TransProtectsC(ι3).

5.2 Invariants

We generalise I2 to I2
Val, if an object ι is accessible via a message queue or by a non-owner, then

the owner has a positive reference count for an object ι′ that protects ι.

Definition 5.9 (I2
Val). For α0 = O(ι) with α 6= α0

I2
Val , ∃p′, ι′. (AC(α, p) = ι ∧ p′ v p) ∨ (AC(α0, mp) = ι ∧ p′ v mp)

−→ AC(α, p′) = ι′ ∧ ι′.Protects(ι) ∧ α0.grcC(ι
′) > 0

Note that we have for a fixed C, α and ι, I2
Val −→ I2

We make a similar extension to I3. If a non owner α can access an object ι through a field or its
call stack, then we have either a positive reference count to some object that transitively protects
ι.

Definition 5.10 (I3
Val).

I3
Val , AC(α, lp) = ι −→ ∃ι′. (ι′.TransProtectsC(ι) ∧ α.grcC(ι

′) > 0)

Again we have for a fixed C and ι, I3
Val −→ I3
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This definition takes into account what happens when we drop a reference to an immutable
object but retain a reference to one of its children, we call this subreferencing. As an immutable
object transitively protects its children, if there is some α, ι and ι′ that satisfies I3

Val but α does not
have a path to ι′ then we can assume that we had a reference to ι′ and subreferenced it to ι.

α2α1α0

ι0 ι1 ι2 ι3

α0.rc(ι1) = 1 α1.rc(ι1) = 1
α1.rc(ι3) = 1

α2.rc(ι3) = 1

α2α1α0

ι0 ι1 ι2 ι3

α0.rc(ι1) = 1 α1.rc(ι1) = 1
α1.rc(ι3) = 1

α2.rc(ι3) = 1

Figure 13: The above show α0 subreferencing ι0 to ι2. In the first configuration we require that
I3

Val holds for all objects apart from ι0 as they are all foreign to α0 and α0 has a path to all of them.
This is then satisfied by the fact that α0 has a positive reference count to ι1 which protects all the
required objects.
In the second configuration, α0 only has paths to ι2 and ι3, but both of these are transitively
protected by ι1 which α0 has retained a positive reference count for.

Because we require that for all foreign, reachable objects I3
Val holds, we cannot have some an

example as below.
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α2α1α0

ι0 ι1

ι2 ι3

ι4

α0.rc(ι0) = 1 α1.rc(ι0) = 1
α1.rc(ι4) = 1

α2.rc(ι4) = 1

Figure 14: An example invalid configuration, even though I3
Val holds for ι4 it does not for ι2 and

ι3.

Because we do not require a positive reference count to all foreign objects that we have a path
to, if we subreference ι to give some ι′ that we do not have a reference count to we need some
process during garbage collection to fix this so that when the reference count for the, now un-
reachable, ι reduced to zero, I3

Val is maintained for ι′. This is described in full later.
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α2α1α0

ι0 ι1 ι2 ι3

α0.rc(ι1) = 1 α1.rc(ι1) = 1
α1.rc(ι3) = 1

α2.rc(ι3) = 1

α2α1α0

ι0 ι1 ι2 ι3

α0.rc(ι1) = 1 α1.rc(ι1) = 1
α1.rc(ι3) = 1

α2.rc(ι3) = 1

α2α1α0

ι1 ι2 ι3

α0.rc(ι2) = 1 α1.rc(ι1) = 0
α1.rc(ι2) = 1
α1.rc(ι3) = 1

α2.rc(ι3) = 1

Figure 15: This shows Figure 13 with an additional configuration for after α0 performs collection.
During collection ι0 is freed as it is unreachable from α0 and with zero reference count, and ι1
which is also unreachable, has its reference count decremented and this is propagated to its owner.
Then a trace is made from ι0 to find reachable objects, it finds ι2 but does not recurse further. It
then increments its reference count for ι2 and sends the increment to ι2’s owner.

We also give a new definition for the application message count for some object to account for
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not updating the reference counts on some objects. We use trace_ws to define this as this is what
is used to construct the set of reference counts to update when we send and receive an object. So
by doing this we make sure that I4 continues to hold.

Definition 5.11 (I4
Val , Reference Counting Equation with Values).

I4
Val , ∀ι. LRCDS(ι) + OMC(ι) = FRCDS(ι) + AMCVal

C (ι)

AMCVal
C (ι) = ∑

a∈C.actors
∑

φ∈a.queue
1trace_wsC(a,φ)(ι)

Where 1S(x) is the indicator function on a set S

1S(x) =

{
1 if x ∈ S
0 if x 6∈ S

Before introducing the pseudocode we introduce several trace predicates to be used.

Definition 5.12.

traceC(ι) = {ι′|∃ f s. C(ι, f s) = ι′}
trace_localC(α, ι) = {ι′|O(ι) = α, ∃ f s. C(ι, f s) = ι′}
trace_stop_reach(ms, ι) = {ι′|∃ f s. C(ι, f s) = ι′, ms(ι′) = R, 6 ∃ f s′ @ f s. ms(C(ι, f s′)) = R}
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5.3 Sending - ORCAGhost+Val

1 α.st = EXECUTE ∧ α.frame = (b, ψ · ψ′)
2 Sending<α>:
3 {
4 α.st := SEND
5

6 ws := trace_wsC(α, (b, ψ′))
7

8 for ι ∈WS:
9 if (O(ι) = α):

10 α.rc(ι) += 1
11 else:
12 if α.rc(ι) > 1:
13 α.rc(ι) -= 1
14 else:
15 // Note this now deals with the case for imm objects where rc = 0
16 [O(ι).qu.push(orca(ι:256)) | α.grc(ι) += 256]
17 α.rc(ι) += 255
18 ws := ws \ {ι}
19

20 α.frame := (b, ψ)
21

22 [α′.qu.push(app(b’, ψ′)) |
23 for ι ∈WS:
24 if O(ι) = α:
25 α.grc(ι) += 1
26 else:
27 α.grc(ι) -= 1]
28 }

5.4 Receiving - ORCAGhost+Val

1 α.st = IDLE ∧ top(α.qu) = app(φ)
2 Receiving<α>:
3 {
4 α.st := RECEIVE
5 ws := trace_wsC(α, φ)
6

7 [pop(α.qu) |
8 for ι ∈WS:
9 if O(ι) = α:

10 α.grc(ι) -= 1
11 else
12 α.grc(ι) += 1]
13

14 for ι ∈ ws:
15 if (O(ι) = α) −→ α.rc(ι) -= 1
16 if (O(ι) 6= α) −→ α.rc(ι) += 1
17 ws := ws \ {ι}
18

19 α.frame := φ
20

21 α.st := EXECUTE
22

23 }

Page 46



5. ORCAGhost+Val

5.5 Garbage Collection - ORCAGhost+Val

1 α.st = IDLE ∧ α.st = EXECUTE
2 GarbageCollection<α>:
3 {
4 α.st := COLLECT
5 ms := ∅
6

7 // marking as unreachable
8 for ι such that O(ι) = α ∨ α.rc > 0:
9 ms := ms[ι→ U]

10

11 // tracing and marking locally accessible as reachable
12 for ι ∈ trace_this(α) ∪ trace_frame(α.frame):
13 ms := ms[ι→ R]
14

15 // marking owned and globally accessible as reachable
16 for ι such that O(ι) = α && α.rc > 0:
17 ms := ms[ι→ R]
18 if (immC(ι)) :
19 for ι′ ∈ trace_localC(α, ι) :
20 ms := ms[ι′ → R]
21

22

23 // collecting
24 inc_set = ∅
25 dec_set = ∅
26 for ι such that ms(ι) = U:
27 if O(ι) = α:
28 C.heap := C.heap[ι→ ⊥]
29 α.rc := α.rc[ι→ ⊥]
30 else:
31 dec_set = dec_set ∪{ι}
32 if (imm(ι)):
33 inc_set := inc_set ∪ trace_stop_reachC(ms, ι)
34

35 for ι ∈ inc_set:
36 α.rc(ι) += 1
37 [O(ι).qu.push(orca(ι: +1)) | α.grc(ι) += 1]
38

39 for ι ∈ dec_set:
40 tmp := α.rc(ι)
41 α.rc(ι) := 0
42 [O(ι).qu.push(orca(ι: -tmp)) | α.grc(ι) := 0]
43

44

45 if α.frame = ∅:
46 α.st := IDLE
47 else:
48 α.st := EXECUTE
49 }

We add logic for sending the increment messages first then the decrement messages to avoid
the situation where after some decrement message is sent, the recipient actor performs collection
and frees an object only to have the reference count incremented afterwards.
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6 ORCAGhost+Val Correctness

6.1 Preservation of I4
Val

An equivalent definition of AMCC(ι) from ORCAGhost and ORCA0 is

AMCC(ι) = ∑
a∈C.actors

∑
φ∈a.queue

1traceC(a,φ)(ι)

We when we introduce

AMCVal
C (ι) = ∑

a∈C.actors
∑

φ∈a.queue
1trace_wsC(a,φ)(ι)

We can see the only difference is the trace function. But this is the only difference between
I4

Val and I4
DS, we also know that the pseudocode in ORCAGhost+Val changes trace to trace_ws in

the send and receive methods. With this we argue that I4
Val holds here for the same reasons that

I4 held previously.

6.2 Preservation of I3
Val

Recall I3
Val states that, for a non owner α of an object ι:

AC(α, lp) = ι −→ ∃ι′. (ι′.TransProtectsC(ι) ∧ α.grcC(ι
′) > 0)

We need to show that when a message is received all newly accessible objects must satisfy the
above. If the message φ = (b, ψ) and ι = AC(α, b.x. f ) for some variable x ∈ ψ and path f . Take
ι0 = AC(α, b.x), we consider two cases:

• ι ∈ trace_wsC(ι0)

We set ι′ = ι then α.grcC(ι) > 0 holds by the same argument as I2 in earlier models.

• ι 6∈ trace_wsC(ι0)

Then there must exist some sequence of fields p such that b.x.p v b.x. f andAC(α, b.x.p) = ι′

with immC(ι
′) and ι′ ∈ trace_wsC(ι0). Now either ι′.ProtectsC(ι) or not. Suppose it does then

ι′.TransProtectsC(ι) and as ι′ ∈ trace_wsC(ι0), α.grcC(ι
′) > 0.

Otherwise, the path from ι′ to ι leaves O(ι′). So O(ι′) 6= O(ι) had a reference to ι, so as I3
Val

previously held O(ι′) must have some ι′′ such that O(ι′).grcC0(ι
′′) > 0 and ι′′ transitively

protects ι. We can ensure thatO(ι′).grcC(ι
′′) > 0, i.e. the actor still has this positive reference

count as ι′ has a reference to it and ι′ was sent and is in the immutable trace so we can assume
it has a positive reference count at its owner, so ι′′ has remained protected. This means that
we have ι′.TransProtects(ι) and α.grcC(ι

′) > 0.

We also need to show that this is preserved through subreferencing and gc. Suppose there is
some object ι reachable from a non owning actor α but with a zero reference count and protected
by some ι′ with positive reference count. Now suppose this ι′ is unreachable so during collection
will be added to the dec_set to have its reference count reduced to zero. The algorithm will now
trace through ι′ to find a set of reachable, accessible children. Either ι will be found, or some ι′′

that transitively protects ι, this will be added to the inc_set. Then, before the reference count to
ι′ is removed, a reference count to ι′′ (wlog) will be added and an orca message sent to its owner
which will arrive before the decrement message.
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6.3 Preservation of I2
Val

If an object ι is accessible either by a foreign actor α or by a message path to its owner α0.

I2
Val , ∃α′, p′, ι′. (α′ = α ∧AC(α, p) = ι ∧ p′ v p) ∨ (α′ = α0AC(α0, mp) = ι ∧ p′ v mp)

−→ AC(α
′, p′) = ι′ ∧ ι′.Protects(ι) ∧ α0.grcC(ι

′) > 0

We can break this down into the following cases:

• Case 1

AC(α, lp) = ι, by I3
Val we have that there is an object that transitively protects it with

α.grcC(ι) > 0. By the definition of transitive protection there must exists ι′ with O(ι′) =

α0, ι′.Protects(ι) such that there exists α′ with α′.grcC(ι
′) > 0. This implies by I4

Val that
α0.grcC(ι

′) > 0.

• Case 2

p starts from a queue, p = k.x. f that is either accessible from α0 or α. Either way take the
actor as α′ and let ι0 = AC(α, k.x) then if ι ∈ trace_wsC(ι0) then AMC is positive for ι.
Otherwise, there is an object ι′ with b.x.p @ b.x. f , AC(α

′, b.x.p) = ι′ and ι′ ∈ trace_wsC(ι0).
Either ι was accessible from a foreign actor before in which case the positive AMC for ι′

preserves the invariant, or ι′ was constructed as an immutable object with a reference to ι,
so O(ι′) = O(ι) = α0 so ι′.Protects(ι) and ι′ has a positive reference count from α0 by I4

Val

and the positive AMC.

• Case 3

p starts from a queue currently being processed, p = −1.x. f , then this holds by a similar
argument and I8.
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6.4 Completeness

We know that ORCA0 is complete, that after a finite number of steps any globally unreachable
object is collected and hope to show a similar result for ORCAGhost+Val . However, it is possible to
construct an immutable cycle, which results in a cycle of transitive protections and so can never
be collected. An example is detailed in Figure 16.

What we can do is prove that if an object is globally unreachable but cannot be collected then
it must have a cycle in its object graph, so this is the only case where it can occur.
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α1α0

ι0 ι1

Iso Iso

α1α0

ι0 ι1

Iso
Iso

α1α0

ι0 ι1
Iso

Tag

Iso

α1α0

ι0 ι1
Iso

Tag

Val

α1α0

ι0 ι1
Iso

Tag

Figure 16: Constructing an immutable object cycle across actors in ORCAGhost+Val
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1 use "collections"
2

3 // Pony code to produce an object with an immutable cycle across
4 // actors
5 actor Main
6 var f : (A iso | None)
7 var alice : Alice
8 new create(env: Env) =>
9 alice = Alice

10 f = None
11 alice.make(this)
12

13 be make(x : A iso) =>
14 var y : A iso = recover A end
15 x.g = recover y end
16 y.f = consume x
17 var vl : A val = recover consume y end
18 alice.take(consume vl)
19 alice.make(this)
20

21

22 actor Alice
23

24 var f : (A val | None)
25 new create() =>
26 f = None
27

28 be make(x : Main) =>
29 let y : A iso = recover
30 A
31 end
32 x.make(consume y)
33

34 be take(x : A val) =>
35 f = consume x
36

37 class A
38 var f : ( A iso | None )
39 var g : ( A tag | None )
40 new create() =>
41 f = None
42 g = None

Figure 17: Code listing in Pony for producing an immutable object cycle across two actors.
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6.5 Cycle-Free Objects

We now show that for a configuration made up of cycle-free objects, ORCAGhost+Val is complete.

Recall. We defined that an object ι is collectable at C if there is no local path from the owner to the object,
it has a local reference count of zero, and there is no other object that directly protects it with a positive
reference count.

collectableC(ι) , 6 ∃lp. AC(α, lp) = ι

∧ α.rcC(ι) = 0

∧ ( 6 ∃ι′.ι′.Protects(ι) ∧ α.rcC(ι
′) > 0)

where α = O(ι)

Definition 6.1. We say that an object ι is Possibly Leaked at a configuration C if it is not collectable,
but there are no paths from actors or message queues to the object.

PossLeakC(ι) , ¬collectable(ι) ∧ ( 6 ∃α, p. AC(α, p) = ι)

Theorem 6.2 (Completeness of Cycle-Free objects). Given an object ι in a configuration C such that
PossLeakC(ι) then there is a cycle in the object graph of ι.

Proof. So PossLeak states that there are no paths from any actors, which means that there is defi-
nitely no path from the owner, so we have

PossLeakC(ι) ⇐⇒ (α.rc(ι) 6= 0∨ ∃ι′.ι′.Protects(ι) ∧ α.rcC(ι
′) > 0) ∧ ( 6 ∃α, p. AC(α, p) = ι)

Suppose there are no cycles in the object graph of ι (the set of objects accessible to, and acces-
sible from ι), then the object graph forms a finite, directed acyclic graph (DAG).

By induction on the size of this graph we show that this will be collected in a finite number of
steps.

Base Case: there are no objects that point to ι, so there are no objects protecting it, and after a
finite number of steps its reference count will go to zero as it is unreachable from all actors that
may have had foreign references.

Inductive Case: Suppose ι is part of an object graph of size n, if we consider it a poset under
accessibility, that is ι0 v ι1 if and only if ι0 is accessible via some path from ι1. Assuming the
axiom of choice, we know from set theory that Zorn’s lemma states that if every chain has an
upper bound (all chains are finite here), then the poset has at least one maximal element.

In this case a maximal element is an object ι> that is not accessible by anything in the object
graph. By assumption there are no actors that can reach any such element, so we can choose one
arbitrarily and be sure that like in the base case, it will be collected in a finite number of steps.

Either we chose ι itself or we have reduced in finite steps, the graph down size n− 1 which by
inductive assumption, shows ι will be collected in a finite number of steps.
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6.6 Evaluation

Being able to generalise invarients I2 and I3 allowed us to keep the proof structure which allows
the arguments to be communicated far easier.

The main problem with this model and perhaps its greatest failing is with collection of cycles.
Both the current implementation and our model cannot collect cycles of immutable objects across
actors. We considered approaches for cycle detection and collection. We tried to construct an
algorithm idiomatic with the design of ORCA relying only on message passing. An object graph
would be identified and the owners sent a message asking them to make a judgement on whether
they believed it to be a cycle. But because of concurrent scheduling there could be an active
reference passed around avoiding any actors currently making a judgement.

An alternative approach that might be possible with the current implementation is to trace the
entire object graph of an object and look for cycles the first time an object is seen as immutable.
Then an immutable object structure can never form a cycle by adding individual objects.

We also considered a definition of protection where there was an “inferred” reference count
for an object that relied on the reference counts of all objects that protect it. This would be done
either with a sum or by taking a maximum. But this ended up in a model further from ORCA0 or
ORCAGhost and had difficulty dealing with any cycles let alone those across objects.
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7 Immutability

Up to this point we have unrealistically assumed that the immutability of an object is known to
all actors. In this section we give several ways of embedding this information in the runtime.

We need to know the mutability of an object in three places, when we send an object, when
we receive an object, and during garbage collection. In the first two cases, we have to consider
the objects being sent and anything that can be referenced from them. From the assumptions of
the host langauge, if we have an object ι sent or received, it can only ever have an Iso, Val or Tag
capability. If ι is Iso then we know that there are no external writable references, to it or any of
its children that ι has a read reference too. This distinction is important because it is possible for ι
to have Tag references to mutable objects. However we know that if an object has a readable path
from ι and does not have a writable path from ι then it is immutable.

If a variable is sent with Val capability, it can also have Tag children but we know that all
children with a read capable path are immutable.

Finally if ι is sent with Tag then there are no accessible children, and we can make no judge-
ments about the immutability of ι.

During collection there are two cases where we need to determine whether an object is im-
mutable. Firstly when we own an object ι, with a positive reference count we if ι is immutable
then we mark its trace as reachable. Also if we have an unreachable foreign object with a positive
reference count, if this object is immutable we need to check to see if we have subreferenced it
and need to alter the reference counts of any other objects.

A core problem is where we have been sent an immutable object and made a Box alias to it or
one of its children. This reference is ambiguous because it could refer to a mutable object we also
have a Ref reference to.

α0

ι2

ι0 ι1

ι3

Box

Box

Ref

Box

Figure 18: Here ι2 is mutable as there is at least one write reference that can reach it whereas all
references to ι3 are read only.

7.1 Immutability in objects

We aim to construct local immutability functions, partial functions valid over some subset of
objects to replace positions in the code where we test the immutability of an object using the
immC predicate. The local functions must give answers consistent with the predicate for objects
they defined for.

The cases we must deal with are for objects we are sending, objects we are receiving, owned
objects with a positive reference count during collection, and unowned objects during collection.
Note that until an object is sent it cannot fall into any of these categories.

The simplest approach is to embed in every object a boolean field denoting whether this object
is immutable or not. This is set to mutable on object creation and only set when the object is sent
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as immutable. Even if we send an object ι as Iso it is still possible for some of its children to be
immutable. Because as discussed above, ι is Iso so all possible write-capable paths to a child ι′

must have write capability from ι.
When we send or receive a frame we construct the set of mutable objects in that frame, objects

with a write-capable path from the actor. We can use this to test if an object is immutable by
checking inclusion.

Therefore we alter the trace_ws predicate to take a lambda expression for testing if an object
is immutable trace_ws(α, φ, λ). This lambda is a local immutability function defined on objects
reachable from the frame φ.

In the special case where the frame contains just one val object, the mutable set is empty.
Now for all other immutability checks we use ι.imm which is now well defined. This may be

altered in further sends, but as we know from assumptions about the language immutability is
persistent, so we can never reconstruct a mutable object.
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7.2 Set of immutable references

Alternatively, we propose a scheme where we give each actor a set of immutable roots. This set
denotes the objects and children who must be considered immutable in order to satisfy invariants
I2

Val and I3
Val .

Definition 7.1 (Well Formed Roots). We say a set of objects X for an actor α at a configuration C
is a set of well formed roots if the set obeys the following properties:

• All objects in the set are immutable

• If α has a path to some object not owned by α and has a zero reference count to the object
then either that object or an object that protects it is in the immutable roots

• If some other actor α′ 6= α has a path to some object owned by α and α has a zero reference
count to the object then either that object or an object that protects it is in the immutable
roots of α.

C �WFR α, X ⇐⇒
(a.) ∀ι. [ι ∈ X → immC(ι)]

(b.) ∀ι, p. [AC(α, p) = ι ∧O(ι) 6= α ∧ α.grcC(ι) = 0 −→
∃ι′, p′. (p′ @ p ∧AC(α, p′) = ι′ ∧ ι′.TransProtects(ι) ∧ ι′ ∈ X ∧ α.grcC(ι

′) > 0)]

(c.) ∀ι, α′, p. [AC(α
′, p) = ι ∧O(ι) = α 6= α′ ∧ α.grcC(ι) = 0 −→

∃ι′, p′. (p′ @ p ∧AC(α
′, p′) = ι′ ∧ ι′.Protects(ι) ∧ ι′ ∈ X ∧ α.grcC(ι

′) > 0)]

We introduce a new field for each actor α.ImmRoots that we will argue maintains this well
formed roots property for α.

Definition 7.2 (I11). The invariant I11 states that at configuration C the immutable roots sets of all
actors satisfy the well formed roots property.

I11 , ∀α. C �WFR α, α.ImmRootsC

We can think of the well formed roots condition as bounds on the size of the immutable roots
set. At most it can contain all immutable objects in the configuration, we know from monotonic-
ity of capabilities that if something is immutable it can never become mutable again. But the
immutable roots must be at least the set containing enough objects to check whether an object
being sent or collected is immutable or not.

The approach that we will take is to adjust the tracing on message send and receipt. As we
stated earlier, conditions where immutability matters do not occur until a foreign actor has access
to an object. We adjust the tracing to construct a set of objects to add to the immutable roots to
preserve the well formed roots property. We have the problem of subreferencing however, what
if we have an object in the immutable roots and drop our reference to it but retain a reference
to a child? The approach we take is a lazy form of modification, where we adjust the garbage
collection to perform an extra trace on dropped immutable roots members.

We will leverage the type system and use a trick to infer the immutable objects being sent.
Assume we are sending an object ι with Iso capability. Now we know that there are no external
read-capable or write-capable references to ι or any sub objects by the type system of the host
language. We then know that anything not reachable with write capability from ι has no write
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capable references globally, and therefore are immutable. So if we trace the write capable objects
from ι, something we will always have to do, then the complement of that set in the complete
trace is exactly the set of immutable objects.

Further, we know that the working set contains the write-capability set, so if we look at the
difference of these two sets we compute a “boundary” between the mutable and immutable ob-
jects. These are the immutable objects that are given reference counts, and these are the objects
added to the immutable roots set.

During collection, the two cases where we test for immutability we check for inclusion in
the immutable roots. This does not accurately model immutability for the objects being checked.
However, because the code executed conditionally on immutability always performs some kind
of trace, and because immutable children always outlive their immutable parents, we can argue
that if a child is every incorrectly classified as not being immutable when they are, then there is
some parent that is classified that will trigger the same effect through the trace.

writeC(α, φ) = { ι |φ = (b, ψ), ∃x, f . AC(α, b.x. f ) = ι ∧ α �C ι : write}
readC(α, φ) = { ι |φ = (b, ψ), ∃x, f . AC(α, b.x. f ) = ι ∧ α �C ι : read}

trace_wsC(α, φ) =(writeC(α, φ), readC(α, φ) ∩ wsC(α, φ), wsC(α, φ))

writeC(α, φ) ⊆ readC(α, φ)

This is clear as write capability implies read capability.

writeC(α, φ) ⊆ wsC(α, φ)

This is true from the definition of the ws, we make sure to trace all mutable objects.

writeC(α, φ) ⊆ readC(α, φ)

−→
writeC(α, φ) ∩ wsC(α, φ) ⊆ readC(α, φ) ∩ wsC(α, φ)

−→
writeC(α, φ) ⊆ readC(α, φ) ∩ wsC(α, φ) ⊆ wsC(α, φ)

So trace_ws creates three increasing sets. We use readC(α, φ) \ writeC(α, φ) to approximate a
set of immutable objects. Note that this does not include any objects with tag reference.
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ι

Write Set

Read Set ∩Working Set

Working Set

Accessible

Figure 19: Again we use the double arrow to denote an Iso reference. This shows the trace of
some object ι where dotted lines are tag references. This shows the nested subset relation between
the write set, read set, working set and full trace.

We give the pseudocode for this approach below:
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Send - ORCAGhost+Val with Immutability

1 α.st = EXECUTE ∧ α.frame = (b, ψ · ψ′)
2 Sending<α>:
3 {
4 α.st := SEND
5

6 [ (write, read, ws, seen) := trace_ws(C, α, ψ)| WS := ws]
7 α.imm_roots := α.imm_roots ∪ (read \ write)
8

9 for ι ∈ ws:
10 if (O(ι) = α) −→ α.rc(ι) += 1
11 if (O(ι) 6= α ∧ α.rc(ι) > 1) −→ α.rc(ι) -= 1
12 // Note this now deals with the case for imm objects where rc = 0
13 if (O(ι) 6= α ∧ α.rc(ι) ≤ 1) −→ [O(ι).qu.push(orca(ι:256)) | α.grc(ι) += 256]
14 if (O(ι) 6= α ∧ α.rc(ι) ≤ 1) −→ α.rc(ι) += 255
15 ws := ws \ {ι}
16

17

18 α.frame := (b, ψ)
19

20 [α′.qu.push(app(b’, ψ′)) |
21 for ι ∈WS:
22 if O(ι) = α:
23 α.grc(ι) += 1
24 else:
25 α.grc(ι) -= 1]
26 }
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Receive - ORCAGhost+Val with Immutability

1 α.st = IDLE ∧ top(α.qu) = app(φ)
2 Receiving<α>:
3 {
4 α.st := RECEIVE
5

6 [ (write, read, ws, seen) := trace_ws(C, α, φ)| WS := ws]
7 α.imm_roots := α.imm_roots ∪ (read \ write)
8

9 [pop(α.qu) |
10 for ι ∈WS:
11 if O(ι) = α:
12 α.grc(ι) -= 1
13 else
14 α.grc(ι) += 1]
15

16 for ι ∈ ws:
17 if (O(ι) = α) −→ α.rc(ι) -= 1
18 if (O(ι) 6= α) −→ α.rc(ι) += 1
19 ws := ws \ {ι}
20

21 α.frame := φ
22

23 α.st := EXECUTE
24

25 }

traceC(ι) = {ι′|∃ f .AC(ι, f ) = ι}
trace_localC(α, ι) = {ι′|O(ι) = α, ∃ f s. C(ι, f s) = ι′}
trace_stop_reach(ms, ι) = {ι′|∃ f s. C(ι, f s) = ι′, ms(ι′) = R, 6 ∃ f s′ @ f s. ms(C(ι, f s′)) = R}

Garbage Collection - ORCAGhost+Val with Immutability

1 α.st = IDLE ∧ α.st = EXECUTE
2 GarbageCollection<α>:
3 {
4 α.st := COLLECT
5 ms := ∅
6

7 // marking as unreachable
8 for ι such that O(ι) = α ∨ α.rc > 0:
9 ms := ms[ι→ U]

10

11 // tracing and marking locally accessible as reachable
12 for ι ∈ trace_this(α) ∪ trace_frame(α.frame):
13 ms := ms[ι→ R]
14

15 // marking owned and globally accessible as reachable
16 for ι such that O(ι) = α && α.rc > 0:
17 ms := ms[ι→ R]
18 if (ι ∈ α.imm_roots) :
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19 for ι′ ∈ trace_localC(α, ι) :
20 ms := ms[ι′ → R]
21

22

23 // collecting
24 inc_set = ∅
25 dec_set = ∅
26 add_imm_roots = ∅
27 rem_imm_roots = ∅
28 for ι such that ms(ι) = U:
29 if O(ι) = α:
30 C.heap := C.heap[ι→ ⊥]
31 α.rc := α.rc[ι→ ⊥]
32 if (ι ∈ α.imm_roots):
33 add_imm_roots := add_imm_rootss ∪ trace_stop_reach(ms, ι)
34 rem_imm_roots := rem_imm_roots ∪ {ι}
35 else:
36 dec_set = dec_set ∪{ι}
37 if (ι ∈ α.imm_roots):
38 inc_set := inc_set ∪ trace_stop_reach(ms, ι)
39 add_imm_roots := add_imm_roots ∪ trace_stop_reach(ms, ι)
40 rem_imm_roots := rem_imm_roots ∪ {ι}
41

42 α.imm_roots := α.imm_roots ∪ add_imm_roots
43 for ι ∈ inc_set:
44 α.rc(ι) += 1
45 [O(ι).qu.push(orca(ι: +1)) | α.grc(ι) += 1]
46

47

48 α.imm_roots := α.imm_roots \ rem_imm_roots
49 for ι ∈ dec_set:
50 tmp := α.rc(ι)
51 α.rc(ι) := 0
52 [O(ι).qu.push(orca(ι: -tmp)) | α.grc(ι) := 0]
53

54

55 if α.frame = ∅:
56 α.st := IDLE
57 else:
58 α.st := EXECUTE
59 }
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1 trace_ws :: Config→Actor→Path→[OID]→[OID]→[OID]→[OID]
2 →([OID], [OID], [OID], [OID])
3 trace_ws cfg a p write read ws seen
4 −− Already Seen
5 = if | oid ‘elem‘ seen→(write, read, ws, seen)
6 −− No capabilities (tag reference)
7 | not (readPath cfg a p)→(write, read, oid:ws, oid:seen)
8 −− Read capability
9 | not (writePath cfg a p)→(write, recRead, recWs, recSeen)

10 −− Read + Write capability
11 | otherwise→(recWrite, recRead, recWs, recSeen)
12 where
13 obj@(Object oid fields) = lookupObj cfg a p
14 fields’ :: [FieldId]
15 fields’ = [ x | ((x , k), _) <− fields]
16

17 f :: ([OID], [OID], [OID], [OID])→FieldId→([OID], [OID], [OID], [OID])
18 f (ws, rs, xs, ss) fid = trace_ws cfg a (p ++ [fid]) ws rs xs ss
19

20 (write’, read’, ws’, seen’) = foldl f (write, read, ws, oid:seen) fields’
21 recWrite = oid:write’
22 recRead = oid:read’
23 recWs = oid:ws’
24 recSeen = seen’

Figure 20: An example recursive function implementation of trace_ws that efficiently generate
the write, read and working sets for that trace of an individual path. It has an additional return
set that is used to keep track of the addresses it has seen to prevent getting stuck in a loop in the
object graph.

7.3 Correctness

We now show the correctness of the approach. The first thing we need to show is that elements
we put into the immutable roots set are all immutable. That is:

Proposition 7.3. If readC,α and writeC,α are formed by performing a trace on an object ι from an actor α at
a valid configuration C (where all invarients hold) then all the objects in readC,α \writeC,α are immutable.

∀α, ι. ι ∈ (readC,α \ writeC,α) −→ immC(ι)

Proof. As ι ∈ read we have that ι ∈ ws. So we have that ∃x, f . AC(α, b.x. f ) = ι. Without loss of
generality, assume that this path b.x. f has the maximal capability of any path from α to ι.

So we also have some ι′ and κ such that AC(α, b.x) = (ι′, κ).
We can only have that κ is either Iso, Val or Tag as those are the only capabilities that the

language is allowed to send.
If κ = Tag then b.x. f = b.x and ι = ι′ as no children from a Tag reference are accessible, but

this is a contradiction as ι′ then does not have read access so κ 6= Tag.
If κ = Val then we know from the host language that ι′ and all its read-capability children have

no write capable reference, so specifically we have immC(ι) as ι has a read-capable reference.
If κ = Iso then for all its read-capable children, all write capable references must be dominated by

ι′ as a guarantee of the language. Specifically, we know ι has a read-capable reference, and we
know there can be no foreign write capable references, and there is no write capable reference
from ι′, so ι must be immutable.
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Corollary 7.4. In the sending and receiving pseudocode the line

1 α.imm_roots := α.imm_roots ∪ (read \ write)

preserves the well formed roots property.

Now we wish to argue that the elements of readC,α \writeC,α are sufficient to preserve the well
formed roots property on receipt of a new message.

Proposition 7.5. If some set X satisfies C �WFR α, X for some α in a configuration C with all invariants
holding at C and C ; C′ as α pushes the frame (b, ψ) onto the message queue of some α′, then:

C′ �WFR α, X ∪ (readC,α \ writeC,α)

Proof. From corollary 7.4, we know that adding this term to the immutable roots preserves prop-
erty (a.) that all objects in the set are immutable. We just need to prove property (c.) that all
foreign-accessible owned objects with zero reference count from α are in the immutable roots of
α.

As C �WFR α, X we assume that there is some ι, owned by α, made accessible to α′ by the push
of (b, ψ) with α.rcC′(ι) = 0.

So ι ∈ trace(ψ) and is therefore reachable by some path b.x. f . But ι 6∈ ws as otherwise it would
have a positive reference count from α. So as it is not in the working set there must be some im-
mutable ι′ such that ι′ ∈ ws, b.x.p @ b.x. f and AC(α, b.x.p) and ι′ has a reference to ι. This ι′ must
also have a positive reference count.

Proposition 7.6. If some set X satisfies X �C WFRα for some α in a configuration C with all invariants
holding at C and C ; C′ as α sets its frame to (b, ψ) it has received from its message queue, then:

C′ �WFR α, X ∪ (readC,α \ writeC,α)

Proof. Similar to Proposition 7.5

Proposition 7.7. At some configuration C where all invariants hold and the garbage collection of α is
being run, for all objects ι owned by α if ι is accessible from some foreign actor α′ then it is marked as
reachable.

Proof. If α.grcC(ι) > 0 then this is clear so assume α.grcC = 0. Then from the well formed roots
property there exists some ι′ ∈ α.ImmRootsC such that ι′.Protects(ι) so ι ∈ trace(ι′).

Note because we have Protects we rather than TransProtects it is sufficient to trace locally!

Proposition 7.8. During garbage collection we add the add_imm_roots to the immutable roots, this
preserves the well formed roots property.

Proof. As we know that all elements of the immutable roots are immutable and the add_imm_roots
is constructed from objects in the trace of objects in the immutable roots, these objects are all
immutable too.

Proposition 7.9. If some set X satisfies X �C WFRα for some α in a configuration C at the beginning of
garbage collection with all invariants holding at C and C ;∗ C′ as α performs garbage collection then:

C′ �WFR α, (X ∪ add_imm_roots) \ rem_imm_roots
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Proof. From Proposition 7.8 the union is valid, we also assume that because we are executing
garbage collection no local objects can become reachable by a foreign actor and no foreign objects
can become reachable to this α.

Objects in the rem_imm_roots are foreign and unreachable from α, so we need to worry about
the second condition, however the add_imm_roots is constructed in such a way that if some
reachable object was transitively protected by an object in the rem_imm_roots there is now an
object transitively protecting it in the add set. By the definition of trace_stop_reach if ι has a
path from ι0 and ι is marked as reachable in the marking set ms, then there is an object ι′ ∈
trace_stop_reach(msι0) either with ι′ = ι or ι is accessible from ι′. Because both are children of an
object in the immutable roots they are immutable so ι′.TransProtects(ι)

Therefore, we argue I11 is preserved by execution.

7.4 Evaluation

Unfortunately we were unable to perform a thorough analysis of the differences, particularly
in performance of this model of immutability with that of the Pony runtime. Our given lazy
determination of immutability is expensive during garbage collection but provides very cheap
sends and receives. Whereas the Pony runtime uses a technique closer to the first we gave where
reference counts are given a flag determining whether the object has been seen as immutable.
This requires additional message sends for notifying the owner when the object is first seen as
immutable.

If we had more time it would have been interesting to see the conditions where each algorithm
succeeds, and perhaps gather benchmarks. We hypothesise that for message-heavy benchmarks
our proposal would be more efficient, whereas for message-sparse benchmarks it would fall short.

Page 65



8. CALF - Reference Counting Submodel

8 CALF - Reference Counting Submodel

8.1 Motivation

We saw when describing ORCA0 and ORCAGhost there were two main problems. We had to
carefully consider the our invariants under fine grained concurrency. We also had to deal with
all aspects of the protocol at all points, the accessibility, the reference counts and the state of the
workings sets.

In this section we build a submodel - CALF which only focuses on the reference counts. We
also formalise the following argument: Given a configuration, we should be able to reason about
the invariants as if all send and receive events in all actors have finished, and this should in some way
be equivalent to reasoning about our current configuration.

Recall (Reference Counting Equation).

LRC + OMC = FRC + AMC

If we can show that at every configuration, when the sending and receiving has been resolved,
the reference counting equation holds then we could argue as follows.

If we have some actor with an owned object ι and a zero reference count and we know that we
cannot have any orca messages, then because the reference counting equation holds when other
actors are finished with their actions, there is no way that any of them could access ι.

8.2 Histories

In this section we aim to build a simpler model, CALF focused only on the reference counts and
how they are altered during execution. We then define a relation between CALF and the larger
model such that certain properties of the smaller model carry over. In particular we want to show
that when we are performing garbage collection in the larger model with a local reference count
of zero for some object then all other actors have zero reference count also to the object so it is safe
to collect.

We will define a configuration, then three protocols: send, receive, and drop. These will be
split up into multiple events each with corresponding execution rules which will represent atomic
blocks that will be executed nondeterministically. For our model we will split each protocol into
a begin event, several mid events and an end event.

A history, H is a list of events [Herlihy and Wing, 1990]. Each event will be of the form
e(p, α, X) where p is the protocol, α is the actor and X is the set of objects it is acting upon. We can
use this to restrict histories to an actor and a set of objects. We compute this by filtering the list of
events based on equality of actors and intersection of objects. If e(p, α, X) ∈ H then x ∈ H|α′, Y if
an only if α = α′ and X ∩Y 6= ∅.

The ordering of the restricted history is always preserved.

Example 8.1. An example of restricting the history H to H|α, {1}:

H = [begin(p1, α, {1, 2}, mid(p2, α′, {1}, mid(p1, α, {2}]
H|α, {1} = [begin(p1, α, {1, 2}]
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Figure 22: An example of a valid history H and its restriction to three actors.

Definition 8.2 (Story). For our model we call a list of events a story if they are of the form

begin(p, α, X)

mid(p, α, {ι1})
mid(p, α, {ι2})

...
mid(p, α, {ιn})
end(p, α, X)

For some fixed protocol p, actor α and set of objects X where X is exactly the set {ι1, . . . ιn}.

Definition 8.3 (Sequential). A history H restricted to an actor α and a set of objects X, H|α, X is
sequential if and only if it is a sequence of stories.

H|α, X = [b, m . . . , m, e, b, m, . . . , m, e, . . . ]

Definition 8.4 (Valid History). A history H is valid if for all actors α and all sets of objects X,
H|α, X is sequential. This includes Ω the set of all objects, so we are stating that no actor can
concurrently be executing two protocols.

We can also use Ω to restrict to just an actor, for which we will use the notation H|α.
We define a configuration consisting of a countable number of actors and an ownership func-

tion from objects to actors. Each actor contains a reference count function from objects to an
integer, a series of sets for ghost state while executing protocols and a message queue that maps
objects to the increment or decrement the message contains.

The SWS is the Sending Working Set, similarly the RWS is the Receiving Working Set. Finally
FS is the shared, Finalise Set. We will reuse the SWS for drop events because they have the same
signature and will be used in disjoint contexts.
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Definition 8.5 (CALF Configuration).

C = (a0, a1, a2, . . . . . . , O) ∈ C

ai = (rc, SWS, RWS, FS, msgs) ∈ A

O = λι. α ∈N→N is an ownership function

rc ∈N→ (N∪ {⊥})

RWS ∈ ℘(N×N×N)

SWS ∈ ℘(N×N)

FS ∈ ℘(N×N)

msgs ∈ [(N→ Z)]

We write C ;x C′ if the execution of the rule corresponding to event x takes C to C′.
A list of these forms a history so we adopt the notation C0 ;H Cn for C0 ;x1 C1 · · · ;xn Cn

where H = [x1, . . . xn].

Definition 8.6 (Closed Configuration). We say that a configuration C is closed for an actor α and a
set of objects X if for all actors, their reference count for all the objects is defined.

closed(C|α, X) , ∀α, ι ∈ X. C.α.rc(ι) 6= ⊥

Note that this is an abuse of notation, C is a configuration not a history, but they allude to the
same thing. We will also be writing O(ι) for the owner instead of C.O(ι) because we can assume
a fixed ownership map throughout, this will be explained further when we show how objects are
related between an ORCA model and CALF .

Lemma 8.7.

closed(C|α, X) ∧ closed(C|α, Y) ⇐⇒ closed(C|α, (X ∪Y))

Proof. This follows clearly from the definition, two sets of objects have reference count ⊥ if and
only if the union of them does.
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8.3 Event Rules, Send

∀ι ∈ X. rc′(ι) = ⊥ ∀ι 6∈ X. rc′(ι) = C.α.rc[ι]

C.α.SWS = ∅ C.α.RWS = ∅ C.α.FS = ∅ ∀ι ∈ X. O(ι) 6= α −→ C.α.rc(ι) > 0
begin(send, α, X)

C ;begin(send,α,X) C [α.SWS 7→ {(ι, C.α.rc(ι))|ι ∈ X}, α.rc 7→ rc′]

C.α.SWS = {(ι, 1)} ] sws O(ι) 6= α
mid(send, α, {ι})

C ;mid(send,α,{ι}) C
[
O(ι).msgs 7→ C.O(ι).msgs++[ f ], α.SWS 7→ sws, α.FS 7→ C.α.FS ∪ {(ι, 256)}

]
Where f (ι) = −256, f (x) = 0 for all x 6= ι.

C.α.SWS = {(ι, x)} ] sws x 6= 1 O(ι) 6= α
mid(send, α, {ι})

C ;mid(send,α,{ι}) C[α.SWS 7→ sws, α.FS 7→ C.α.FS ∪ {(ι, x− 1)}]

α.SWS = {(ι, x)} ] sws O(ι) = α
mid(send, α, {ι})

C ;mid(send,α,{ι}) C[α.SWS 7→ sws′, α.FS 7→ C.α.FS ∪ {(ι, x + 1)}]

∀(ι, x) ∈ C.α.FS. rc′(ι) = x ∀ι 6∈ X. rc′(ι) = C.α.rc(ι)

C.α.SWS = ∅ X = {ι|(ι, _) ∈ C.α.FS}
end(send, α, X)

C ;end(send,α,X) C [α.FS 7→ ∅, α′.msgs 7→ C.α′.msgs++[1X ], α.rc 7→ rc′]

Where 1X is the characteristic function on X

8.4 Event Rules, Receive

∀ι ∈ X. rc′(ι) = ⊥ ∀ι 6∈ X. rc′(ι) = C.α.rc[ι]

C.α.SWS = ∅ C.α.RWS = ∅ C.α.FS = ∅ C.α.msgs = Z : zs X = {ι|Z(ι) 6= 0}
begin(recv, α, X)

C ;begin(recv,α,X) C [α.rc(ι) 7→ rc′, α.msgs 7→ zs, α.RWS 7→ {(ι, Z(ι), C.α.rc(ι))|ι ∈ X}]

C.α.RWS = {(ι, x, rc0} ] rws O(ι) 6= α
mid(recv, α, {ι})

C ;mid(recv,α,{ι}) C[α.RWS 7→ rws, α.FS 7→ C.α.FS ∪ {(ι, rc0 + x)}]

C.α.RWS = {(ι, x, rc0} ] rws O(ι) = α
mid(recv, α, {ι})

C ;mid(recv,α,{ι}) C[α.RWS 7→ rws, α.FS 7→ C.α.FS ∪ {(ι, rc0 − x)}]

∀(ι, x) ∈ C.α.FS. rc′(ι) = x ∀ι 6∈ X. rc′(ι) = C.α.rc[ι]
C.α.RWS = ∅ X = {ι|(ι, _) ∈ C.α.FS}

end(recv, α, X)
C ;end(recv,α,X) C[α.rc(ι) 7→ rc′, α.FS 7→ ∅]
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8.5 Event Rules, Drop

∀ι ∈ X. rc′(ι) = ⊥ ∀ι 6∈ X. rc′(ι) = C.α.rc[ι]

C.α.SWS = ∅ C.α.RWS = ∅ C.α.FS = ∅ begin(drop, α, X)
C ;begin(drop,α,X) C[α.rc(ι) 7→ rc′, α.SWS 7→ {(ι, α.rc(ι))|ι ∈ X}]

C.α.SWS = {(ι, x)} ] sws O(ι) 6= α
mid(drop, α, {ι})

C ;mid(drop,α,{ι}) C[α.SWS 7→ sws, α.FS 7→ C.α.FS ∪ {(ι, 0)}, O(ι).msgs 7→ C.O(ι).msgs++[ f ]]

Where f (ι) = x, f (x) = 0 for all x 6= ι.

∀(ι, x) ∈ C.α.FS. rc′(ι) = x ∀ι 6∈ X. rc′(ι) = C.α.rc[ι]

C.α.SWS = ∅ X = {ι|(ι, _) ∈ C.α.FS}
end(drop, α, X)

C ;end(drop,α,X) C[α.rc(ι) 7→ rc′, α.FS 7→ ∅]

8.6 Closures

A configuration may have several actors that are currently performing a story. We want to be
able to reason about a hypothetical configuration where all these ongoing stories have been con-
cluded. We call such a hypothetical configuration a closure of the configuration. Intuitively the
closure of a configuration is the set of all possible endings, including all possible interleavings
and nondeterministic possibilities.

Definition 8.8 (Follows Order). On the set of configurations, C, we define the partial order,
C vX

Follows C′ as the least transitive closure such that the following holds:

C vX
Follows C

C ;mid(p,α,Y) C′ ∧ X ∩Y 6= ∅ −→ C vX
Follows C′

C ;end(p,α,Y) C′ ∧ X ∩Y 6= ∅ −→ C vX
Follows C′

Recall. A chain (S,≤) is maximal if there is no other chain (T,≤) such that S is a proper subset of T.

Lemma 8.9. Let S,vX
Follows be a maximal chain such that C ∈ S. If C � WFC then S has a maximal

element.

If we take a configuration C such that C 6� WFC then it is possible for it to have an sequence
without start events and thus an infinite chain, consider C such that all reference counts are ⊥
and recall that there are an infinite number of actors in C.

Definition 8.10 (Closure).

closure(C|X) =
{

max(Z)|Z is a maximal chain in (C,vX
Follows) such that C ∈ Z

}
Lemma 8.11.

C �WFC ∧ dCe ∈ closure(C|X) −→ closed(C|X)
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Figure 23: An example of a configuration C from evaluating C0 under some history, and an ele-
ment dCe in the closure of C.

Proof. We know there exists some C0 such that C0 ;H C ;H′ dCe where H′ only contains mid
and end events. Suppose there is some ι ∈ X such that there exists an α with dCe.α.rc(ι) = ⊥.
Now we know that Known(C0) so there is some begin event begin(p, α, Y) ∈ H with ι ∈ Y. So now
there is at least an end event end(p, α, Y) that could have been performed in the history H′ but
was not which is a contradiction that dCe is the max value of a maximum chain of executions.

8.7 Invariants

We define predicates for the local and foreign reference counts in CALF , these look similar to
those in full ORCA models but are only defined when all of their constituent reference counts are
non bottom. We also define the AMC but this includes both what we would consider application
messages in ORCA, between foreign actors say, but also orca messages for increments to the
owner. This is because in this model there is no distinction between the two kinds of message.

Definition 8.12 (Reference Counters).

LRCC(ι) , O(ι).rc(ι)

FRCC(ι) , ∑
α 6=O(ι)

α.rc(ι)

AMCC(ι) , ∑
α∈C

∑
Z∈α.msgs

Z(ι)

We can then define what the reference counting equation should be in CALF , we will denote
this I1.

Definition 8.13 (I1, Reference Counting Equation for CALF ).

I1(C, ι) , LRCC(ι) = FRCC(ι) + AMCC(ι)
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Note that being closed with respect to ι is a necessary condition for I1 to hold for that object ι
because the counters LRC and FRC are only defined when all the constituent reference counts are
non bottom.

We now define some straightforward properties of CALF configurations.

Definition 8.14 (Known). Known(C) , ∀α, ι.C.α.rc(ι) 6= ⊥

Definition 8.15 (Well Formed Messages). MessagesWellFormed(C) , ∀α, ι, n. ((C.α.msgs[n])(ι) <
0 −→ O(ι) = α)

Definition 8.16 (Valid Foreign Reference Counts). ForeignValid(C) , ∀α, ι. (O(ι) 6= α −→
C.α.rc(ι) ≥ 0∨ C.α.rc(ι) = ⊥)

Definition 8.17 (Well Formed Configuration). We say that C is a well formed configuration if it
can be expressed as the result of executing a valid history from an initial condition C0 satisfying
various properties.

C �WFC ⇐⇒
∃C0. (I1(C0) ∧ Known(C0) ∧ ForeignValid(C0) ∧MessagesWellFormed(C0)∧
C0 ;H C ∧Valid(H))

It is clear that if a well formed configuration C executes to another configuration C′ under a
history H, C ;H C′. Then because C is well formed there is some C0 such that C0 ;H0 C through
the valid history H0. So if the concatenation H0++H is a valid history, then C′ �WFC.

Proposition 8.18. C �WFC −→ ForeignValid(C)

Proof. Suppose for some α and ι such that ι is not owned by α, C.α.rc(ι) < 0. Then from the well
formed condition there is some C0 such that C0 ;H C for a valid history H and ForeignValid(C0)
and Known(C0) so C0.α.rc(ι) ≥ 0. We know that closed(C|α, ι), so there is a sequence of stories
H|α, ι that takes the reference count from positive to negative.

This cannot be a receive as by definition all message queue entries are non-negative, and we
are not the owner so by the execution rules this can only increase the reference count. And this
cannot be a send as we have a precondition guarding this. Contradiction.

Lemma 8.19. C �WFC −→ MessagesWellFormed(C)

Proof. We see that the only rule that allows us to append a negative value for an object onto a
message queue is in mid(send, α, {ι}) and this sends the message to the owner of ι.

Lemma 8.20. If C ;x C′ and x = e(p, α, X). For all ι 6∈ X, then all of the following hold:

• C.α.rc(ι) = C.α.rc(ι)

• LRCC(ι) = LRCC′(ι),

• FRCC(ι) = FRCC′(ι)

• AMCC(ι) = AMCC′(ι)

Proof. It is clear from inspecting the execution rules that they only mutate the reference counts of
objects in the set X, which gives the first three results. The final is clear when you notice that all
the alterations of message queues require all non-zero objects in the message to be elements of
X.
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Proposition 8.21 (Completed Stories Preserve I1).

C �WFC ∧ I1(C, ι) −→ ∀C′. (C ;S C′ −→ I1(C′, ι))

Where S is a story S = [begin(r, α, X), mid(r, α, ι1) . . . mid(r, α, ιn), end(r, α, X)] for some r.

Proof. Either ι 6∈ X in which case ι is not in any effected message queues or actor reference counts,
so the sums are unaffected.

So C ;b Cb ;m · · · ;m Cm ;m · · · ;e C′. (We have r, α and X fixed so we abbreviate here
b = begin(r, α, X), e = end(r, α, X) and m = mid(r, α, ι) and we will do this elsewhere.) We know
from the definition of a story that for ι there is exactly one mid event that will effect it and we
assume Cm is the event after that execution.

Or ι ∈ X, first assume that the story is for receive.
We know C.α.msgs = Z : zs and that (ι, zι) ∈ Z. And let rc0 = C.α.rc(ι)
Now Cb.α.rc(ι) = ⊥ and (ι, Z(ι), rc0) ∈ Cb.α.RWS
If O(ι) = α then (ι, rc0− zι) ∈ Cm.FS. Which means that C′.α.rc(ι) = rc0− zι and C′.msgs = zs.

So FRCC′ = FRCC as we have not changed the values for any other α, but LRCC′ = LRCC − zι

and AMCC′ = AMCC − Z(ι) as we have not modified any other actor’s message queues and
removed the top message from α. Altogether, this means that I1 is preserved into C′. If O(ι) 6= α
we have a similar argument where the values are summed and the FRC is updated.

Now we assume the story is for send.
Let rc0 = C.α.rc(ι) again, now Cb.α.rc(ι) = ⊥ and (ι, rc0) ∈ Cb.α.SWS. We split into ownership

cases

• If O(ι) = α
Then (ι, rc0 + 1) ∈ Cm.FS so C′.α.rc(ι) = rc0 + 1. So LRCC′ = LRCC + 1 but we also have
some other actor α′ with an additional message in its message queue containing (ι, 1) with
all other message queues preserved, so AMCC′ = AMCC + 1. We also have that FRC is
preserved as the only alterations to the reference counts are for α.

• If O(ι) 6= α and rc0 > 1
Then (ι, rc0− 1) ∈ Cm.FS so C′.α.rc(ι) = rc0− 1. So FRCC′ = FRCC − 1 similarly we have α′

with an additional message in its message queue containing (ι, 1) so AMCC′ = AMCC + 1.

• If O(ι) = α and rc0 = 1
This is the most complex case where we send two messages, one to the owner and one to α′.
(ι, 256) ∈ Cm.FS so C′.α.rc(ι) = 256 and FRCC′ = FRCC + 255. But the messages we send
set AMCC′ = AMCCm + 1 = AMCC − 255.

We argue for drop in a similar way for send as it is similar but simpler.

Theorem 8.22.

C �WFC ∧ closed(C|ι) =⇒ I1(dCe, ι)

Proof. Fix ι arbitrarily, as C is well formed there is some configuration C0 such that C0 ;H C via
some valid history H.

As H is valid we know that for all actors α the restriction H|α, {ι} is a sequence of stories. We
will prove the result by induction on the total number of stories from all such restrictions.
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Base Case, no stories: as C is closed for {ι} we know that H|{ι} has to be empty so holds
trivially.

Inductive case, assume this holds for some n, to show for n + 1. Now let b be the begin event
in the history b = begin(p, α, Y). Then we have the execution C0 ;x1 · · · ;xk Cb ;b; · · · ; C
defining H0 = {x1, . . . xk}. Now we take dCbe ∈ closure(Cb, {ι}). We know that there are n stories
from the restricted histories H0|α, {ι} so by inductive assumption I1(dCbe, ι). Now define dCe
such that dCbe;S dCe, we know that I1(dCe, ι) holds from the previous proposition.

Finally we argue I1(dCe, ι) ⇐⇒ I1(C, ι) which is true because C is equal to dCe up to permu-
tations of message queues which do not effect AMC.

We now define the queue effect in CALF and the derived I2 to show properties of the owner
of an object’s reference counts.

Definition 8.23 (Queue Effect).

QueueE f f ectC(ι, n) ,

{
⊥ where C.O(ι).rc(ι) = ⊥
C.O(ι).rc(ι)−∑n

i=0(C.O(ι).msgs[i])(ι) otherwise

Definition 8.24 (I2).

I2(C, ι) , ∀n ≥ 0. QueueE f f ectC(ι, n) ≥ 0

This invariant I2 is a generalisation of the idea that all reference counts are non-negative, if we
take n = 0 then QueueE f f ectC(ι, 0) > 0 expands to a condition only on the reference count of the
owner.

Similarly we define an invariant I3 stating that if in a configuration the owner of an object
receives some number of messages to reach a reference count of zero for the object, then that
reference count stays at zero throughout further receivals.

Definition 8.25 (I3).

I3(C, ι) , ∀n ≥ m ≥ 0. QueueE f f ectC(ι, m) = 0 −→ QueueE f f ectC(ι, n) = 0

8.8 Equivalence of Configurations

We now want to show that if we have a configuration then the elements in its closure have similar
properties that we can use to reason about them.

Definition 8.26 (Equivalence of X-Closed Configurations). The equivalence of X-closed configura-
tions is the relation vX for a set X

C vX C′ ⇐⇒ ∃C0. C, C′ ∈ closure(C0|X)

Lemma 8.27. For all sets of objects X, vX is an equivalence relation on X−closed configurations.

Proof. We show this obeys the equivalence relation axioms:

• Reflexivity: if C has closed(C|X) then C ∈ closure(C|X) so C vX C

• Symmetry: this is clear from the definition.

• Transitivity: if C vX C′ and C′ vX C′′ then there is some C0 and C1 such that C′ ∈
closure(C0|X) and C′ ∈ closure(C1|X) it must be the either C0 ;∗ C1 or C1 ;∗ C0 as
they both evaluate to C′ with only mids and ends. Therefore wlog we assume C0 ;∗ C1
therefore C ∈ closure(C0|X) and C′′ ∈ closure(C0|X) so C vX C′′.
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Proposition 8.28.

C vX C′ −→

∀ι ∈ X.

 I1C(ι) ⇐⇒ I1C′(ι)

∧ I2C(ι) ⇐⇒ I2C′(ι)

∧ I3C(ι) ⇐⇒ I3C′(ι)




Proof. We argue that C is the same as C′ up to some permutation of message queues. All events
that act on the sets of an actor are protocols of that actor, for instance sending does not directly
alter the working set of another actor. The closures elements are formed by performing the same
series of events but in different orders, so the only differences can be the message queue orderings.
I1 and I2 follow directly from this.

For I3 we assume wlog I3(C) and assume for contradiction ¬I3(C′ so there is some α, ι, n < m
such that the queue effect for ι at n is zero, but the queue effect at m is non-zero. We know that I2
holds so the queue effect must be positive, so must have been caused by an increment message.
But the queue effect was at one point zero, we thus argue that causality must have been broken
for this to happen. The increment message must have been processed before the messages that it
allowed, which is of course, a contradiction.

Proposition 8.29.

I1(C, ι) −→ LRCC(ι)− AMCC(ι) ≤ QueueE f f ectC(ι, n)

Where n is the length of the owner of ι’s message queue.

Proof. We split the AMC into its constituent parts, the count from messages sent to the owner,
and the count from messages sent elsewhere. We say that

AMCC(ι) = AMCF
C(ι) + AMCL

C(ι)

Where AMCF
C = ∑α 6=O(ι) ∑Z∈α.msgs Z(ι) and AMCL

C = ∑Z∈O(ι).msgs Z(ι).

We know that AMCF
C(ι) ≥ 0 as all messages to foreign actors are greater than zero, so AMCL

C(ι) ≤
AMCC(ι)
Then LRCC(ι)− AMCC(ι) ≤ LRCC(ι)− AMCL

C(ι) = QueueE f f ectC(ι, n) by definition of queue
effect, where n is the length of the message queue.

Lemma 8.30 (Complete Stories Preserve Invariants). Suppose S is a story such that S = [begin(p, α, X) . . . end(p, α, X)]
then

∀ι ∈ X.

C �WFC ∧ C ;S C′ ∧

I1(C, ι)∧
I2(C, ι)∧
I3(C, ι)

 −→
I1(C′, ι)∧

I2(C′, ι)∧
I3(C′, ι)




Proof. Fix ι. We know from Proposition 8.21 that I1(C′, ι) holds.
From I2(C, ι) we know that the queue effect is non-negative up to the length of the message

queue n. We know for any foreign α

C.α.rc(ι) ≤ FRCC(ι) = LRCC(ι)− AMCC(ι) ≤ QueueE f f ectC(ι, n)

as only some of the messages are directed to the owner. Consider stories that impact the QueueEf-
fect, in particular drop and send but these cannot produce an effect that exceeds α’s own reference
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count, so from the above inequality I2(C′, ι) holds.
Similarly for I3

0 ≤ FRCC(ι)

= LRCC(ι)− AMCC(ι) ≤ QueueE f f ectC(ι, n) = 0
−→ FRCC(ι) = 0

So there can be no send or drop events.
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Proposition 8.31.

C ; C′∧∀dCe ∈ closure(C|X), ∀ι ∈ X. (I1(dCe, ι) ∧ I2(dCe, ι) ∧ I3(dCe, ι))

−→ ∀dC′e ∈ closure(C′|X), ∀ι ∈ X. (I1(dC′e, ι) ∧ I2(dC′e, ι) ∧ I3(dC′e, ι))

Proof. This is clear when C ;x C′ and x is a mid or end event so assume x = begin(p, α, Y).
Take dCe ∈ closure(C|X) so C ;H dCe where H = [h1, . . . , hn] all mid and end events.
We argue that the following diagram holds, where S is a story formed from begin(p, α, Y) and

some S′ of mid and end events.

C

C′

dCe

dC′e

H

H++S′

S = [begin(p, α, Y)]++S′

begin(p, α, Y)

We claim that this holds because the effects of begin events are to set the reference counts of Y
to ⊥ and, in the case of receive, remove the head message. So doing this first or last should have
no effect on the final configuration.

We know that all invariants are preserved into dC′e, now, for all dC′′e ∈ closure(H, X) we
clearly have dC′e vX dC′′e so they hold for every element in the closure of C′ with respect to
X.

Definition 8.32 (Complete Configuration). C � ♦ ⇐⇒ C �WFC∧∀X. (∀dCe ∈ closure(C, X) −→
I1(dCe) ∧ I2(dCe) ∧ I3(dCe))

Corollary 8.33. Completeness of a configuration is preserved under execution.

Theorem 8.34. C � ♦∧ LRCC(ι) = 0 −→ FRCC(ι) = 0

Proof. Suppose not, then there is some α 6= O(ι) such that C.α.rc(ι) = ⊥ or C.α.rc(ι) > 0. Now
take dCe ∈ closure(C, {ι}) then we know that LRCdCe(ι) = 0. We now perform case analysis of
the possible end events that could have occurred for α between C and dCe. As we have C � ♦we
know all invariants holds for dCe

• Send - we know FRCdCe(ι) ≥ 0 so AMCdCe(ι) ≤ 0 as FRCdCe(ι)+ AMCdCe(ι) = LRCdCe(ι) =
0. We also know that there is a message on some message queue, for this to sum to a nega-
tive value there must be a negative message on the owner’s message queue, but from I3 we
know there is none.

• Receive - Receiving for a foreign actor increments the reference count for objects. We know
that AMCdCe(ι) ≥ 0 from I3 (no messages on the owner’s queue), and FRCdCe(ι) ≥ 0.
Either we get a contradiction as I1 does not hold, or receiving the message set the reference
count to zero. In this case we know because dCe is well-formed there is some C0 such that
C0 ;∗ dCe with all intermediate Ci well formed. But there must be one with a negative
foreign reference count which is a contradiction.

• Drop - drop sends a message to the owner which directly contradicts I3.

So all possibilities end in a contradiction
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8.9 Evaluation

One of the challenges of designing the submodel is that when ORCA sends an application mes-
sage, it may send many orca messages first.A This means that CALF had to be able to mimic
this behaviour and led to the design of the story as it is presented. If we represented the three
protocols as atomic blocks or just as beginning and end events we would not be able to capture
all the possible behaviour that could occur. Linearisability of histories involves looking at the
dependence of events on each other and trying to construct an equivalent history that is sequen-
tial. But with a design that allowed blocks to perform ”side effects“ such as send these messages
reordering is no longer necessarily possible.

Initially in development we had invariants that were defined for a fixed initial condition and
reasoned about what histories from that condition would preserve them. We started with a def-
inition of a closed history instead of a closed configuration, giving rise to propositions like the
following:

IC([]) ∧ closed(H) −→ IC(H)

Where IC(H) is some statement about the configuration formed starting at C and applying the
history H. [] is the empty history.

This is closer to CALF ’s origins in linearisability theory, considering histories as the main object of
study rather than the configuration they form. However, when we had to relate the configurations
to those of a larger model it became clear that this approach would be difficult.

We then re-oriented the ideas from studying the histories back towards configurations. The
definition we gave for a closed configuration is equivalent to applying a closed history to an
initially closed configuration. This can be seen in the definition of a well formed configuration
used in CALF . From the histories perspective the closure of a history is more intuitive also, it is
all the maximal concatenations of mid and end events.

Some of the reasoning about histories took the form building a Kripke Frame and viewing the
histories through the lens of modal logic. Given an initial state each world would be a history
and the relation between them would be a concatenation of an additional event. We will revisit
this in Section 10.

We allow the reference counts to take on the bottom value ⊥ to represent a lock of knowledge
about their state. We split up the protocols send, receive and drop into “blocks” but during the
execution of these we do not know exactly when the reference counts are updated. We can think
of this slicing into blocks as the slicings of when “atomic” or synchronised values are updated,
in this case message queues and some ghost values. Then during the execution of stories all the
information about eventually mutated non-atomic values is lost. We think this works well as an
abstraction.
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9 Submodel Relation

9.1 ORCA1

In order to map into CALF we must first make some minor adjustments to ORCA0 . We denote
this modified model ORCA1 .

We have altered the ordering of some of the lines of pseudocode which will be presented be-
low. Similar to ORCAGhost we need to differentiate whether an actor is receiving an orca message
or an application message so we add the actor state RECEIVE_ORCA.

9.2 Mapping Between ORCA0 and CALF

We show that we can form a bisimulation between a CALF configuration and an ORCA1 con-
figuration. To avoid confusion we will use γ ∈ Γ to refer to ORCA1 configurations. Actors in Γ
configurations will be labelled as β and addresses as σ.

We will need an injective mapping A to take actors in an ORCA1 configuration to their corre-
sponding CALF actor.

Definition 9.1.

A : ActorAddr →N

Mapping objects is more complex, in ORCA1 we are able to create an arbitrary number of
objects for any actor, but we do not have any methods for creating “new” objects in CALF .

We know from set theory that there are bijections between N and N×N. Using one of these
for the ownership function in a CALF configuration we are able to have an infinite number of
objects for each actor.

We will use bijections θ between ORCA1 addresses and CALF objects. Later we will require
these to be correct up to the allocated objects in an ORCA1 configuration. Then when the ORCA1

configuration nondeterministically allocates an object we will choose a new θ′ the agrees with θ
for all pre-existing objects and assigns the new object the correct owner.

Definition 9.2.

θ : ObjectAddr →N

9.3 Code - Event Mappings

We define a series of mappings for three different pseudocode function MSend , MRecv , MGC that
map the program counter to an event or a no-op.

1 α.st = IDLE && top(α.qu) = orcaa(σ : z)
2 Receiving<α>:
3 {
4 α.st := RECEIVE_ORCA
5 pop(α.qu)
6 α.rc(σ) += z
7 pass
8 α.st := EXECUTE
9 }

begin(Receive, A(α), {θ(σ)|σ ∈ trace_frame(α, φ))}
mid(Receive, A(α), θ(σ))
end(Receive, A(α), {θ(σ)|σ ∈ trace_frame(α, φ))}

Figure 24: MRecvOrca - Mapping from ORCA1 receive pseudocode to CALF events.
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We define the Fine Grained Correspondence of the Receive Orca method between an ORCA1

state γ and a CALF state C given an actor mapping A and an object bijection θ.
Note we use the notation Xc to be the compliment of the object set X that is, all objects not in

X.

Definition 9.3 (Fine Grained Correspondence for Receive Orca).

(FGCRecvOrca)A
θ (β, γ, C) , β.stγ = RECEIVE_ORCA→ (

(pc < 5∨ pc > 7 −→ closed(C|A(β)))

∧(5 ≥ pc < 7 −→ closed(C|A(β), {θ(σ)}c))

∧(pc = 6 −→ (θ(σ), A(β).rcγ(σ)) ∈ C.A(β).FS)
)

Where pc = β.pcγ

1 β.st = IDLE && top(β.qu) = app(φ)
2 Receiving<β>:
3 {
4 β.st := RECEIVE
5 ws := trace_frame(β, φ)
6

7 pop(β.qu)
8

9 for σ ∈ ws:
10 if (O(σ) = α) −→ α.rc(σ) -= 1
11 if (O(σ) 6= α) −→ α.rc(σ) += 1
12 ws := ws \ {σ}
13

14 β.frame := φ
15

16 β.st := EXECUTE
17

18 }

begin(Receive, A(α), {θ(σ)|σ ∈ trace_frame(α, φ))}

mid(Receive, A(α), θ(σ))
mid(Receive, A(α), θ(σ))

end(Receive, A(α), {θ(σ)|σ ∈ trace_frame(α, φ))}

Figure 25: MRecv - Mapping from ORCA1 receive pseudocode to CALF events.

Definition 9.4 (Fine Grained Correspondence for Receive).

(FGCRecv)A
θ (β, γ, C) , β.stγ = RECEIVE→ (

pc < 7∨ pc > 16 −→closed(C|A(β))

pc = 9 −→(θ(σ9), 1, β.rcγ(σ9)) ∈ C.A(β).RWS
pc = 10∧O(σ) 6= β −→(θ(σ9), 1, β.rcγ(σ9)) ∈ C.A(β).RWS
(pc = 10∧O(σ) = β) ∨ pc = 11 −→(θ(σ9), β.rcγ(σ9)) ∈ C.A(β).FS
7 ≥ pc < 14 −→∀σ 6= σ9. (

(σ ∈ ws −→ (θ(σ9), 1, β.rcγ(σ9)) ∈ C.A(β).RWS)
(σ 6∈ trace_ f rame(β, φ) −→ closed(C, A(β), {σ}))
(σ ∈ trace_ f rame(β, φ) \ ws −→

(θ(σ), β.rcγ(σ)) ∈ C.A(β).FS)
)

)
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Where pc = β.pcγ

1 β.st = EXECUTE && β.frame = (b, φ · φ′)
2 Sending<β>:
3 {
4 β.st := SEND
5

6 ws := trace_frame( β, (b, φ′))
7

8 for σ ∈WS:
9 if O(σ) = β:

10 β.rc(σ) += 1
11 else if β.rc(σ) > 1:
12 β.rc(σ) −= 1
13 else:
14 O(σ).qu.push(orca(σ:256))
15 β.rc(σ) := 256
16 ws := ws \ {σ}
17

18 β.frame := (b, φ)
19

20 β′.qu.push(app(b’, φ′))
21 }

begin(Send, A(α), {θ(σ)|σ ∈ trace_frame(α, φ))}

mid(Send, A(α), θ(σ))

mid(Send, A(α), θ(σ))

mid(Send, A(α), θ(σ))

end(Send, A(α), {θ(σ)|σ ∈ trace_frame(α, φ))}

Figure 26: MSend - Mapping from ORCA1 send pseudocode to CALF events.

Definition 9.5 (Fine Grained Correspondence for Send).

(FGCSend)A
θ (β, γ, C) , β.stγ = SEND → (

pc < 6∨ pc > 20 −→closed(C|A(β))

pc = 8∨ pc = 9∨ pc = 11 −→(θ(σ8), β.rcγ(σ8)) ∈ C.A(β).SWS
pc = 10∨ pc = 12∨ pc = 15∨ pc = 16 −→(θ(σ8), β.rcγ(σ8)) ∈ C.A(β).FS
pc = 14 −→(θ(σ8), 256) ∈ C.A(β).FS
6 ≥ pc < 20 −→∀σ 6= σ8. (

(σ ∈ ws −→ (θ(σ8), β.rcγ(σ8)) ∈ C.A(β).SWS)
(σ 6∈ trace_ f rame(β, φ) −→ closed(C, A(β), {σ}))
(σ ∈ trace_ f rame(β, φ) \ ws −→

(θ(σ), β.rcγ(σ)) ∈ C.A(β).FS)
)

)

Where pc = β.pcγ
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1 β.st = IDLE && β.st = EXECUTE
2 GarbageCollection<β>:
3 {
4 β.st := COLLECT
5 ms := ∅
6

7 // Marking as unreachable
8 for σ such that O(σ) = β || β.rc > 0:
9 ms := ms[σ→ U]

10

11 // Tracing and marking locally accessible as reachable
12 for σ ∈ trace_this(β) ∪ trace_frame(β.frame):
13 ms := ms[σ→ R]
14

15 // Marking owned and globally accessible as reachable
16 for σ such that O(σ) = β && β.rc > 0:
17 ms := ms[σ→ R]
18 // Collection
19 pass // Begin loop
20 for σ such that ms(σ) = U:
21 if O(σ) = β:
22 C.heap := C.heap[σ→ ⊥]
23 β.rc := β.rc[σ→ ⊥]
24 else:
25 tmp := β.rc(σ)
26 β.rc(σ) := 0
27 O(σ).qu.push(orca(σ: −tmp))
28

29 pass // End of loop
30

31 if β.frame = ∅:
32 β.st := IDLE
33 else:
34 β.st := EXECUTE
35 }

begin(Drop, A(β), {θ(σ)|ms[σ] = U ∧O(σ) 6= β})

mid(Drop, A(β), θ(σ))

end(Drop, A(β), {θ(σ)|ms[σ] = U ∧O(σ) 6= β})

Figure 27: MGC - Mapping from ORCA1 send pseudocode to CALF events.

Definition 9.6 (Fine Grained Correspondence for Garbage Collection).

Let Σ = {σ|ms[σ] = U ∧O(σ) 6= β}
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(FGCGC)A
θ (β, γ, C) , β.stγ = COLLECT → (

pc < 19∨ pc > 29 −→closed(C|A(β))

20 ≤ pc < 26 −→(θ(σ20), β.rcγ(σ20)) ∈ C.A(β).SWS
pc = 25 −→tmp = β.rcγ(σ20)

pc = 26 −→(θ(σ20), tmp) ∈ C.A(β).SWS
pc = 27 −→(θ(σ20), 0) ∈ C.A(β).FS
19 ≥ pc < 29 −→∀σ 6= σ20. (

(σ 6∈ Σ −→ closed(C, A(β), {σ}))
(σ ∈ Σ ∧ β.rcγ(σ) 6= 0 −→

(θ(σ9), β.rcγ(σ9)) ∈ C.A(β).SWS
(σ ∈ Σ ∧ β.rcγ(σ) = 0 −→

(θ(σ), 0) ∈ C.A(β).FS)
)

)

Where pc = β.pcγ

Definition 9.7 (Fine Grained Correspondence for Garbage Collection).

FGCA
θ (β, γ, C) ,

β.stγ = RECEIVE −→ (FGCRecv)A
θ (β, γ, C)

∧β.stγ = RECEIVE_ORCA −→ (FGCRecvOrca)A
θ (β, γ, C)

∧β.stγ = SEND −→ (FGCSend)A
θ (β, γ, C)

∧β.stγ = COLLECT −→ (FGCGC)A
θ (β, γ, C)

∧β.stγ = IDLE −→ closed(C|A(β))

∧β.stγ = EXECUTE −→ closed(C|A(β))

9.4 Mapping Configurations Elements

We start by defining a mapping Gmsgs
θ from an ORCA1 message queue to a CALF message queue

using the object mapping θ.

Definition 9.8 (Message mapping).

Gmsgs
θ ([]) = []

Gmsgs
θ (app(∅) : xs) = λι.0 ++ Gmsgs

θ (xs)

Gmsgs
θ (app((_, ψ)) : xs) = (1dom(ψ) ◦ θ−1) ++ Gmsgs

θ (xs)

Gmsgs
θ (orca((σ : x)) : xs) = fσ,x ++ Gmsgs

θ (xs)

where fσ,x(y) =

{
x y = θ(σ)

0 otherwise

9.5 Relation

We define a relation between two configurations γ and C via some actor mapping A and object
bijection θ. The relation states the following
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• Based on A and θ the models agree on ownership.

• Based on the mapping of messages, the models agree on the message queues of all actors.

• There is a fine grained correspondence of all the actor states.

• Whenever the CALF model is closed for some actor and object, the corresponding reference
counts in both models are equal, based on the mappings of actors and objects.

Definition 9.9 (CALF Correspondence Relation).

RA
θ (γ, C) ⇐⇒

(∀σ. γ.heap(σ) 6= ⊥ −→ O(θ(σ)) = A(O(σ)))
∧ ∀β. C.A(β).msgs = Gmsgs

θ (β.msgsγ)

∧ ∀β. FGCγ
θ (β, γ, C)

∧ closed(C, X) −→ ∀β, ι ∈ X. β.rcγ(θ
−1(ι)) = C.A(β).rc(ι)

This correspondence should be preserved under execution of the larger model. So if γ is
related to some CALF configuration C and γ ; γ′ then there is some C′ such that C ; C′ and γ′

is related to C′.

γ C

γ′ C′
RA

θ (γ
′, C′)

RA
θ (γ, C)

(;ORCA1 ) (;CALF )

Proposition 9.10 (Preservation of Relation).

γ ; γ′ ∧ RA
θ (γ, C) −→ ∃C′, θ′. (RA

θ′(γ, C) ∧ C ; C′ ∧ RA
θ′(γ

′, C′))

We argue that if there is a relation between γ and C and γ ; γ′ by executing a line of pseu-
docode that maps to a CALF event e then C ;e C′ that corresponds to γ′. We have the more
complex condition on the mappings to take into account non deterministic allocations and map-
ping them onto CALF objects.

Proof. Cases

1. We are allocating a new object σ′ i.e. γ.heap(σ′) = ⊥:

If γ and C are related with θ then we are looking for some θ′ such that the following holds.

(∀σ. γ.heap(σ) 6= ⊥ −→ θ(σ) = θ′(σ)) ∧O(θ(σ′)) = A(O(σ′))

That is, θ and θ′ agree for all objects in γ and θ′ maps the new object to some ι′ such that ι′

has the correct owner up to A.

But there are an infinite number of θ′ that satisfy the first condition, and there must be one
that maps σ′ to the owner specified in the second.
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2. We are executing some behaviour or mutating some heap object:

CALF fundamentally does not retain information about object states or relations between
them, so these are no-ops in CALF .

Specifically, these do not change any message queues or mutate any reference counts so will
not affect the relation.

3. We are removing some object:

This is similar to the above, removing an object has no meaning in CALF .

4. We are executing some ORCA method with a code mapping

Receive Orca

• Enter method: the only thing we need to check is that the fine grained condition is
maintained. Before receiving we must have been in an idle states so the fine grained
condition on γ and C states that C is closed with respect to A(β). But this is all we
require at the beginning of the method for the fine grained condition on γ′ and C′. We
know as there is no event mapping though that C = C′.

• Line 5 (Pop): The begin receive event pops off the message queue. This means that
the transition C ; C′ and γ ; γ′ act by removing a message from a message queue.
We know from the message mapping that these two messages are related by θ and
A, and the actor specified by γ’s transition is precisely A(β). From this we argue
that the message queue mapping is preserved. Also for the fine grained condition
the postcondition of this begin event on A(β) places the reference count, object and
message value into the RWS. For all other objects the reference counts in both C′ and
γ′ are unaffected.This satisfies the fine grained condition for θ(σ).

• Line 6 (RC increment): The reference count is updated in ORCA1 and the value is taken
into the finalise set in CALF , we can that this satisfies the fine grained condition.

• Line 7 (Pass and end): The reference count is set to a non-bottom value in γ′. C′ has
the A and θ equivalent reference count set to the future set of C, which we know by the
fine grained condition to be what is being set in γ′. So we restore closed(C′|A(β)) and
all reference counts are equivalent for β.

• Leave method: Similar to entering, we just need to check the fine grained condition.
But we know that C = C′ and closed(C, A(β)).

The entering and leaving of methods will follow similar arguments so we will omit them.

Receive

• Line 7 (Pop): We modify the message queues of γ and C in the same way on actors
that are related by A. As C ; C′ all the non zero entries in the message are entered
into the RWS. Similarly as γ ; γ′ all entries in the application message are put into
the working set. These two sets objects are related by θ and the message mapping.
Because of this we can argue that for all elements in the working set their θ-equivalent
object is in the RWS, and all others are unaffected. Therefore we have the fine grained
condition on γ′ and C′.

• Line 9 (Loop start): We check the fine grained condition for γ′ and see a new σ9 ∈ ws
is defined in γ′, but the conditions we require are satisfied by all σ ∈ ws in γ.

• Line 10 (Update RC on owned): C ; C′ by adding to the future set the previous refer-
ence count minus the received reference count. γ ; γ′ by setting the reference count
to its value minus one. We know from the fine grained condition that the received
reference count in the RWS for C is one. Therefore this operation gives the new fine
grained condition.
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• Line 11 (Update RC on unowned): Similar to Line 10.

• Line 12 (Remove from working set): We check the fine grained condition for γ′ and see
that we require for σ9 that θ(σ9) is in the future set, but we have that from γ.

• Line 14 (Update frame): C ; C′ by setting the reference counts to the value in the
finalise set. We then know from the fine grained condition on C that all reference
counts not in this set are non-bottom, so closed(C′|A(β)). Then as before, we argue
this preserves the equivalence of reference counts up to the mappings A and θ.

Send

• Line 7 (trace working set): γ ; γ′ by tracing the object σ and storing that set into the
variable ws. C ; C′ by considering the elements in that set under the action of θ. C′

has the reference count for these corresponding objects in A(β) set to ⊥ and moves
their values into the sending working set. But this corresponds with the fine grained
condition.

• Line 8 (loop start): C = C′, we just check the fine grained condition as γ ; γ′. All the
constraints we have on σ8 in γ′ we have on all σ ∈ ws for γ.

• Line 10 (Update RC on owned): C ; C′ by adding to the future set the previous
reference count minus one. γ ; γ′ by setting the reference count to its value minus
one. This maintains the fine grained condition.

• Line 12 (Update RC on unowned and RC not one): Similar to above.

• Line 14 (Push message): As γ ; γ′ β sends an orca message to the owner of σ8 to in-
crease the reference count by 256. As C ; C′ A(β) puts a message onto O(θ(σ8)’s mes-
sage queue for negative 256 for θ(σ8). We know on C and γ that O(θ(σ8)) = A(O(σ8))
and so the equivalence of message queues is preserved.
As well as this the finalise set of γ′ is set to contain (θ(σ8), 256) which fulfils the fine
grained condition.

• Line 15 (Update RC on unowned and RC one): As γ ; γ′ the reference count for σ8 is
set to 256, from the fine grained condition we know that for A(β) (θ(σ), 256) is in the
finalise set, and C = C′ so this just equalises those values.

• Line 16 (Remove from working set): From the fine grained condition σ8 satisfies all the
requirements for an object outside the working set. So the fine grained condition is
preserved.

• Line 20 (Send): γ ; γ′ by sending a message to some actor β′ with the frame φ. C ; C′

by sending a message to A(β′) with the θ-translated trace of φ. From the definition of
Gmsgs

θ we can see this preserves the message queue equivalence.
Also from the fine grained condition on C we have closed(C′|A(β) so the reference
counts must match, but we also have that from the fine grained condition on C.

Garbage Collection All the cases are similar to ones seen in the other methods, we omit this
case for brevity.

9.6 Pullback Invariants

With the relation RA
θ the invarients on CALF induce pullback invariants on ORCA1 . However

these invariants only talk about the reference counts, we now need to relate these to accessibility.
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Definition 9.11 (Pullback).

Pullback(γ, C) , ∃A, θ. RA
θ (γ, C) ∧ C � ♦

Proposition 9.12 (Pullback Preserved).

γ ; γ′ ∧ Pullback(γ, C) −→ ∃C′. (Pullback(γ′, C′) ∧ C ; C′) (1)

Proof. We know from Proposition 9.10 that there exists some C′, θ′ such that RA
θ′(γ

′, C′). This
configuration C′ is also well formed as C ; C′. We know from Proposition 8.31 that C′ � ♦ holds
- but this is exactly Pullback(γ′).

Theorem 9.13.

Pullback(γ, C) ∧ β.stγ = COLLECT ∧O(σ) = β ∧ β.rcγ(σ) = 0

−→ (∀β′. β′.rcγ(σ) = 0)

Proof. We know that there is some A, θ, C such that RA
θ (γ, C). This gives us (FGCGC)A

θ (γ, C) and
it is clear that as σ is owned we have closed(C|A(β), {θ(σ)}).

Furthermore we know from the correspondence that θ(σ) is local to A(β) and that the refer-
ence counts β.rcγ(σ) and C.A(β).rc(θ(σ)) are the same.

Now from theorems on CALF , we have C � ♦ so C �WFC. This means that for all actors α in
C, C.α.rc(θ(σ)) = 0 so we have closed(C|{θ(σ)}).

This means that the actors in γ that map onto the actors in C must all have zero reference
count for σ.

9.7 Access

So we managed to prove properties of the reference counts in ORCA0 , but we have not given
them any meaning - we need to relate reference counts to accessibility.

This is great, but in our model we currently have no relationship between reference counts
and accessibility, the above theorem does not really mean anything.

In order for to relate the reference counts to accessibility we introduce the following invariant
similar to I3 in ORCA0 .

Definition 9.14 (Foreign Access).

IFA , AC(β, lp) = σ −→ β.rcC(σ) > 0

We assume that this can be proved in a similar way to I3 is proved in ORCA0 .

9.8 Evaluation

The fine grained relation conditions bear resemblance to the invariants about ghost variables we
defined for ORCAGhost . It is unfortunate that we require such a condition but we need to be
able to reason at every execution step the exact relation between related CALF configurations.
However, specifying this single line-by-line invariant alongside our proofs about CALF gives rise
to properties that required far more specification in ORCA0 .

Our original plan with this model was to define partial orders vγ and vC on ORCA1 and
CALF respectively. These would represent approximations on the states, so γ vγ γ′ would be in-
terpreted as “γ is more specific than γ′”. This in particular would be used to represent that when
CALF reference counts are ⊥, then the configuration has no information about what the value is.
We then defined functions between configurations such that they form a Galois Connection. Then
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properties on CALF would induce properties on ORCA1 . However, in models formed like this
execution is expected to be denoted by an order-preserving function, but that is not the case here.
When we apply begin events and end events we are explicitly manipulating the knowledge of
the program which means that this approach is not possible.

Returning back to our final formulation, in order to prove IFA it may be required to some of
the the logic we were trying to remove by building this model which is a shame.

Overall though, we can see how this approach could be used to modularise the reasoning
about a model, by building separate submodels for components and reasoning about these indi-
vidually.We view this formulation as a success and as a proof of concept for using this approach
for both reasoning with closures and for using submodels.
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10 Closure Invariants

10.1 Modal Logic

In this section we show how we can think of closures of configurations in terms of modal logic
and µ-calculus. Unfortunately we do not have any big theorems or results using this but we still
think it is interesting enough to mention here.

C1, C2

C1

C1 C2

C1, C2

Figure 28: Showing a Kripke frame where Cι denotes that the state is closed for the variable ι.

In order to prove the next results we define a modal logic through the construction of the follow-
ing Kripke frame (W, R): We fix some set of protocols, rules and an initial state. Then W is the set
of all valid histories. Then we define the relation R

Definition 10.1.

(H, H′) ∈ R ⇐⇒ H′ = H · e

where e is some event begin(p, α, X), mid(p, α, X) or end(p, α, X) and (·) is concatenation.
Then�p states that, for a given world (some valid history) then p holds at every possible next

execution state from that history.

If we fix C0 as our starting configuration and have a system of rules such that with a finite history
H if C0 ;H C then the closure of C is made up of dCe such that C ;H′ dCe with a finite history
H′. With this we can prove the following

Lemma 10.2. (∀H. C0 ;H C ∧ ∀dCe ∈ closure(C|X). P(dCe)) =⇒ νx(P ∨�x) is valid

Here ν is the µ-calculus greatest fixed point operator, and the =⇒ exists in some "meta logic"
showing the first order formula implying the validity of the modal one.

This states that if some property holds at all configurations in closures of X then either ex-
ecution continues forever execution eventually reaches a point where this holds no matter the
nondeterministic choice.

Proof. Let H be an arbitrary history, suppose for contradiction there is some finite path through
histories H0, . . . Hn such that Hn 6∈ closure(Hn|X), there is no infinite path from Hn and no finite
path to a closed history. This is a contradiction if Hn is not closed, there are events end(r1), . . . end(rm)
such that Hn++[end(r1), . . . end(rm)] is closed with this and all intermediate histories valid from
assumptions about the execution rules.

From this we define a property as a closure invariant.
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Definition 10.3 (Closure Invariant).

κP , νx(P ∨�x)

Then if we have some property true at a world when some conjunction of closure invariants
holds, then intuitively we can deduce this property of a system by reasoning only about the
properties that hold at closures.

Theorem 10.4 (Closure Definable).

ClosureDe f inable(p) , p ⇐⇒ (κQ1) ∧ (κQ2) · · · ∧ (κQn)

We believe that this is an interesting field for future development and can be applied to other
algorithms on actors and in concurrent and distributed contexts.

Conjecture. There is some set of condition on protocols and events such that all modal formulae that the
system models are closure definable.
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11 Conclusion

In conclusion we are pleased with the results that we produced from this project. The greatest
challenge ended up being looking at the Pony runtime source code both to understand the current
implementation and to when we tried to make changes. It took a long time of working through
the codebase to understand how the immutable object optimisation was handled. In the end we
focused on the theoretical aspects of the project, the source code may have played a role in this.

11.1 Dead Ends

During the process of the project we tried many ideas, inevitably leading to conceptual dead-
ends. We have described in other sections the iterative process that allowed us to develop many
of the definitions and results we have presented, but in order to reach this point we have thrown
out many ideas.

11.1.1 Haskell Simulation

As part of the project we built a Haskell simulation of the runtime to test different collection
algorithms. We believed this could have been used to produce quantitative benchmarks and
comparisons between algorithms without making changes to the Pony runtime.

The simulation contained a base representation of actors with heaps, objects and reference
counts and paths and a more advanced representation where we embedded the Pony capability
system in the Haskell type system. Using type families we were able to model the capabilities and
viewpointing system of Pony. If we wrote a program where an actor tries to read from a path,
then the program would only compile if the path had the correct capability.

Unfortunately however, the simulator went unused.

11.1.2 Pony Algebra

Before CALF we tried defining another minimalistic model, the “Pony Algebra” was an attempt to
reason about properties in a small actor context. This was inspired by the resource algebra defined
in Iris [Jung, 2018]. The Pony Algebra contained a composition operator ◦ defined when two
configurations were “compatible” with respect to object paths. For example two configurations
with disjoint actors referencing the same object with an Iso capability would not be compatible.

Then the operator would form a larger configuration by fusing its two arguments. The idea
was to form local properties that would hold under this fusion to become global properties.

C0 ◦ C1 = C2

C′0 ◦ C′1 = C′2

(;) (;) (;)

We would investigate properties that satisfy the following two conditions.

1. (Composition) P(c) ∧ P(c′) ⇐⇒ P(c ◦ c′)

2. (Execution Preservation) c ; c′ ∧ P(c)→ P(c′)

We then proved that global inaccessibility was such a property, however beyond this the
model seemed to have little use unfortunately.
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11.1.3 Separation Logic

Reasoning about a concurrent garbage collector seems the perfect domain for the application of
concurrent separation logic. In particular we looked at Iris [Jung, 2018] a framework proving
properties of concurrent separation logic using Coq. Unfortunately we did not have the time to
learn the tool to make useful progress.

11.2 Contributions

Regardless we feel the results we were able to gather from the project are valuable. We developed
ORCAGhost which we feel is an improvement over the previous model ORCA0 due to the removal
of technical definitions and simplification of invariants.

We managed to prove the soundness of the immutability optimisations, which should show
that the overall approach taken in the Pony runtime is correct. We also showed that the only place
where a memory leak can happen with this model is in an immutable object cycle across actors.

We managed to use reasoning about the closures of histories and configurations to both pro-
vide a clean submodel of ORCA and to show that the approach is possible. We believe that this
technique is very promising and could be applied to other algorithms - concurrent, actor based
or distributed.

Setting out on this project we aimed to prove the soundness and completeness of the ORCA
system as used in the Pony runtime and we have mostly succeeded at this.

12 Further Work

We finish by giving some points of interest where the work we presented could be developed
further:

• An implementation of ORCAGhost+Val . An implementation would allow us to benchmark
the performance of the model against the current implementation. We theorised that in
scenarios with more sending and receiving than garbage collection but a quantitative study
would verify that. Also it may be that we value performance during sending and receiving
over performance in garbage collection which would make this the prefered algorithm.

• Cycle detection for objects. A cycle detection algorithm could be formulated, verified and
implemented. Adding this to ORCAGhost+Val would give a complete algorithm.

• Mechanising the proofs with some proof assistant. As mentioned earlier we looked at Coq
and Iris but were unable to make use of them within the project.

• Further development of reasoning on closures. Some interesting questions are

– When can a system be fully specified by its closures?

– How much information do you need to prove an arbitrary property on a story and
history system?
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Appendices

A ORCA0 I8

Definition A.1 (Actor States, Working sets, and Marks).

st∈State ::= IDLE | EXECUTE | SEND | RECEIVE | COLLECT
ws∈Workset = P(Addr)
ms∈Marks = Addr→ {R,U}

pc ∈ PC = [ 4..27 ]

Definition A.2 (Tracing). We define the functions
trace_this : Con�g×ActorAddr→ P(Addr)
trace_frame : Con�g×ActorAddr× Frame→ P(Addr)

as follows
trace_thisC(α) , {ι | ∃ f . AC(α, this. f )= ι}
trace_frameC(α, φ), {ι | ∃x ∈ dom(φ), f .AC(α, x. f )= ι}

Definition A.3 (Well-formed marking state). We define that an actor which is in state COLLECT
is well formed, i.e. C, α � COLLECT if all the following criteria are satisfied:
C, α � COLLECT⇔

initGC
α.stC = COLLECT

markU
6 < α.pcC < 12 →
(1) dom(ms) ⊆ DC(α) ∧
(2) ∀ι. ( ms(ι) = U −→ [ O(ι) = α ∨ α.rcC(ι) > 0 ] ) ∧
(3) ∀ι ∈ dom(ms).ms(ι) = U

trace
12 ≤ α.pcC < 15 →
(1) dom(ms) = DC(α) ∧
(2) ∀ι. [ ms(ι) = R −→ ∃lp.AC(α, lp) = ι ]

markR
15 ≤ α.pcC < 18 →
(1) dom(ms) = DC(α) ∧
(2) ∀ι. [ ∃lp.AC(α, lp) = ι −→ ms(ι) = R ] ∧
(3) ∀ι. [ ms(ι) = R −→ ( ∃lp.AC(α, lp)= ι ∨ O(ι)=α ∧ α.rcC(ι) > 0 ) ]

cll
18 ≤ α.pcC < 26 →
∀ι. [ ms(ι) = U −→

(1) [ ∀lp. AC(α, lp) 6= ι ] ∧
(2) [ O(ι) 6= α −→ α.rcC(ι) > 0 ] ∧
(3) [ O(ι) = α −→ α.rcC(ι) = 0 ] ].

For convenience, we define the following set:
DC(α) ≡ {ι | O(ι) = α ∨ α.rcC(ι) > 0}

Definition A.4 (I8). I8-exe C, α |= EXECUTE iff α.stC = EXECUTE
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I8-idle C, α |= IDLE iff α.stC = IDLE and α.frameC = ∅

Definition A.5. C, α |= RECEIVE iff

A α.stC = RECEIVE

B 8 ≤ α.pcC → ws ⊆ trace_frameC(α, φ)

C ∀ι, x, f .[ AC(α,−1.x. f ) = ι −→ LRCC(ι) > 0

E 8 < α.pcC −→
∀ι ∈ ws \ CurrAddrRcvC(α).

[ O(ι) = α →
a ∀n. QueueEffctC(α, ι, n) > 1
b ReachesC(α, ι, α.quC [j]) −→ ∀k ≤ j. QueueEffctC(α, ι, j) > 1
c α.quC [j] = orca(ι : z) −→ ∀k < j. QueueEffctC(α, ι, j) > 1
d ∃p, α′. α′ 6=α ∧ AC(α′, p) = ι −→ QueueEffctC(α, ι, k) > 1 ]

Definition A.6. C, α |= SEND iff

Q α.stC = SEND

R 9 ≤ α.pcC → ws ⊆ trace_frameC(α, φ)

S ∀ι, x, f .[ AC(α,−1.x. f ) = ι −→ LRCC(ι) > 0
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