
Imperial College of Science,
Technology and Medicine

Department of Computing

MEng Joint Mathematics and Computing

πActor
A π-Calculus Abstraction for Erlang

Author
Blaine Rogers
Cid: 00987225

Supervisors
Prof. Philippa Gardner

Dr. Emanuele D’Osualdo
Second Marker

Prof. Sophia Drossopoulou

June 20, 2018

Abstract

We propose a procedure for extracting a sound model of an Erlang
program in terms of πActor, a novel variant of the π-calculus. The
procedure is far from a direct source-to-source translation; in con-
structing the πActor model of a program, we rely on state-of-the-
art abstract interpretation techniques to model control and data flow.
We exploit a higher-order control-flow-analysis to produce an inter-
mediate finite state model, and then use that model to construct a set
of process reduction definitions for the infinite-state πActor model.
Communication and spawning behaviour is preserved between the
source program and the abstraction.

Our analysis enables the automatic verification of safety proper-
ties of Erlang programs that are unverifiable by previous approaches.
We illustrate how the concept of depth-boundedness applies to our
πActor model and show that for non-trivial and relevant example
programs, interesting coverability queries are decidable on our model.
The abstraction can also act as an aid to understand the communi-
cation behaviour of a program, or to visualise its communication
behaviour.

Acknowledgements

My sincerest and deepest thanks go to Dr. Emanuele D’Osualdo,
without whose guidance and support this project would not be any-
thing close to what it is. His ability to answer my often con-
fused or poorly informed questions while dealing with my constant
malapropisms is truly remarkable. He has also made the only cup of
coffee that I have ever enjoyed.
I would also like to thank Jonathan Sutton for his friendship through-
out my time at Imperial. You can tell a great friendship when you
and your friend look nothing alike, but people still get your names
confused. It has been a great four years.

“…if you believe textbooks, you’re liable to have the
following schema of research. If A is the question,
and B is the answer, then research is a direct
path. The problem is that if an experiment doesn’t
work, or a student gets depressed, it’s perceived as
something utterly wrong and causes tremendous
stress.

I teach my students a different schema. If A is
the question, B is the answer, and you start going,
and experiments don’t work, experiments don’t
work, experiments don’t work, experiments don’t
work, until you reach a place linked with negative
emotions where it seems like your basic assump-
tions have stopped making sense, like somebody
yanked the carpet beneath your feet. And I call
this place the cloud. Now you can be lost in the
cloud for a day, a week, a month, a year, a whole
career, but sometimes, if you’re lucky enough and
you have enough support, you can see in the mate-
rials at hand, or perhaps meditating on the shape
of the cloud, a new answer, C, and you decide
to go for it. And experiments don’t work, exper-
iments don’t work, but you get there, and then
you tell everyone about it by publishing a paper
that reads A arrow C, which is a great way to
communicate, but as long as you don’t forget the
path that brought you there.”

– Uri Alon, Why science demands a leap into the unknown.

Contents
1 Introduction 1

1.1 Motivation . 1
1.2 The actor model . 1
1.3 The π-calculus . 2
1.4 Contributions . 2
1.5 Outline . 3

2 Preliminaries 4
2.1 Notation . 4
2.2 Mathematical background . 4
2.3 A brief overview of Core . 5
2.4 Actor Communicating System (ACS) . 10
2.5 πActor . 11

3 An operational semantics for Core 17

4 Control flow analysis for Core 22

5 Generating the πActor model 25

6 Applications of the πActor model and model checking 28

7 Evaluation 30
7.1 Case studies . 30
7.2 Complexity . 38
7.3 Related work . 38

8 Conclusion 39
8.1 Future work . 39

9 References 40

A Concrete reduction rules for the Core semantics i

B Abstract reduction rules for the CFA iv

C Proof of soundness for the πActor model vii
C.1 A few useful lemmas . vii
C.2 The soundness theorems . xii

D Listings for Soter-Compatible Erlang equivalents of Core programs xxvii

1 Introduction
1.1 Motivation
Computer systems are becoming increasingly concurrent, particularly in the wake of the internet.
Systems designed on the internet are naturally concurrent; an internet application, even if running
sequentially on a single server, generally needs to interact concurrently with many independent
clients. As we delegate more important tasks to concurrent systems, the need arises for formalisms
that make it easier to design and reason about concurrent systems and for tools that can verify
their correctness.

It is important to establish that programs are correct. There have been many cases where
bugs in computer systems have resulted in loss of profits, loss of property and indeed loss of
life. The most widespread way of establishing program correctness is automated testing (unit or
otherwise), where programs or their components are run on various inputs and checked to see if
they give the appropriate output. This generally involves a large investment of time and effort
from the programmer, and results are usually poor. Testing can be used to detect bugs, but cannot
establish their absence in general. The traditional alternative to testing is to employ a team of
computer scientists to manually verify your code, which is expensive, tedious and error prone.
Hence, demand is growing for automatic verification techniques.

Verification problems are interesting because their purest forms are usually undecidable. A
typical verification problem is reachability: given two states for a system, is there an execution
path for that system that brings it from one to the other? An interesting concrete example of
reachability is the halting problem: suppose a program is started with a particular input; is there
an execution path that results in the program halting? For Turing-powerful systems, this problem
is undecidable, and unfortunately most systems used in practice are Turing-powerful. Hence, the
challenge in verification is to come up with an approximation of the system that is expressive
enough to describe interesting properties of the system, but not so expressive that verification
problems become undecidable or computationally infeasible.

In the context of verifying the behaviour of a program, this approximation takes the form of a
sound model of the program semantics. We define a function from states in the concrete execution
of the program to states in the execution of the abstract model, and declare the analysis to be
sound if every execution trace in the concrete execution has an abstract analogue. More precisely,
we would like that if we cannot reach an state in the abstract semantics, then we cannot reach any
of the states approximated by that abstract state in the concrete semantics. Properties that can
be verified using this notion of soundness are usually called ‘safety’ properties. We focus here on
coverability properties that express some error pattern. In a coverability query, we are given some
state A in a model and covering relation (a preorder) between model states and asked if for some
state B we can reach from A a state that covers B.

Properties that can be expressed in the form of coverability queries include:
• (unreachability of error locations) Is there a reachable state in which any actor is executing

some program location ℓ; is the state with one process that is executing ℓ coverable? ℓ could
be the location where an exception is thrown; if the query returns false, then we know that
the exception is never thrown.

• (mutual exclusion) Is there a reachable state in which more than one actor is executing the
location ℓ? configurations where at least two distinct actors are executing some program
location ‘l‘ (aka mutual exclusion)

• (k-boundedness of mailboxes) Is there a reachable state in which more than k messages are
in the mailbox of an actor?

• (address privacy) If there a reachable state in which at least two distinct actors both know
the address of some third actor?

1.2 The actor model
In the traditional threading model agents (threads) communicate by sharing state. This model is
generally considered difficult to reason about, as evidenced by the prevalence of race conditions

1

and deadlocks in multi-threaded code. An alternative is to have agents communicate by message-
passing; that is, sending each other messages containing only immutable data. This model tends
to be easier to reason about, from both programming and verification perspectives.

One language that implements message-passing concurrency is Erlang. Erlang is a dynamically-
typed impure functional language, originally implemented in Prolog for use in the telecommuni-
cations industry. Erlang implements the actor model; each process in an Erlang program has a
mailbox (a queue of messages), and processes send each other messages asynchronously by append-
ing them to each other’s mailboxes. The Erlang runtime has native support for distribution, which
has led to its use in a number of successful commercial large-scale projects, including Ericsson’s
telecom switches, Facebook’s chat, WhatsApp and Amazon’s SimpleDB.

It is difficult to verify Erlang programs. There are many sources of unboundedness in the state
space of an Erlang program: there are unboundedly many processes, each of which is equipped
with an unbounded execution stack and mailbox. Higher-order functions are first-class data, and
so unboundedly deep closures can be stored. Even if higher-order functions were not first class,
Erlang supports data structures that may be nested unboundedly deeply.

Some work has already been done on the verification of Erlang programs. In particular, the
Soter tool[8] verifies Erlang programs using an over-approximation in the style of [20]. However,
the abstraction used by Soter is quite coarse with regards to process identities. Soter abstracts the
processes in a program into a fixed number of classes, such that processes in the same class are
indistinguishable when sending messages. A message sent to process in one class might be received
by any other process in that class. This leaves us unable to verify many interesting properties.
For instance, a common model in client-server applications is that a client will send a request to
a server, including its address in the request. The server then responds privately to the client
by sending a message to that address. With the coarse abstraction proposed by Soter, we might
need to collapse all clients into a single process class, leaving us unable to verify the privacy of the
response.

1.3 The π-calculus
The π-calculus[19] is a process algebra. It is an extension of Milner’s CCS, reformulated to allow for
value-passing and mobility. In the π-calculus, all computation is expressed by the communication
of names between processes along channels. Every name can be used as a channel to communicate
on, and new, globally unique names can be dynamically at run time. The π-calculus seems a good
fit for an abstraction of Erlang more sensitive to process identities; one could give each process a
unique name representing its mailbox, creating a new unique name each time a process is spawned.

The π-calculus’s ability to create new unique names and send them between processes makes it
very powerful; in fact, it is Turing-powerful, and many verification problems (including coverability)
are undecidable for it. However, there are certain fragments of π-calculus for which interesting
verification problems are decidable. In particular, coverability is decidable for a fragment called
depth-bounded π-calculus[18].

With this in mind, we propose a variant of the π-calculus, πActor, carefully designed to be
particularly suited to modelling the behaviour of Erlang-style actor model programs.

1.4 Contributions
• We introduce πActor, a variant of the π-calculus designed for the express purpose of mod-

elling Erlang programs. This new calculus inherits decidability results from the π-calculus
but allows for the more direct representation of Erlang’s inspection of messages before receipt
and the easy manipulation of unbounded sets of names. We show that a number of interesting
safety properties are expressible in terms of coverability queries on πActor programs.

• We describe Core, a language with syntax and semantics designed to be as close as possible
to CoreErlang, with the notable exception that we do not include exception-handling logic.
We then propose a procedure for extracting a sound over-approximation of the semantics of
a Core program in terms of a πActor program, resulting in a non-uniform analysis. The
procedure is far from a direct source-to-source translation; in constructing the πActor model
of a program, we rely on state-of-the-art abstract interpretation techniques to model control

2

and data flow. Specifically, we exploit a higher-order control-flow-analysis following the
methodology of [20] to produce an intermediate finite state model, and then use that model
to construct a set of process reduction definitions for the infinite-state πActor model, a la
the procedure for ACS construction[9]. The extracted model preserves the crucial aspects of
concurrent actor computation while removing the complexities related to higher-order control
flow and complex algebraic datatypes. In so doing, it enables the automatic verification
of many safety properties of Erlang programs. The abstract πActor model is agnostic
with respect to the model-checking backend used to verify safety properties upon it. The
abstraction can also act as an aid to understand the communication behaviour of a program,
or to visualise its communication behaviour.

• The model-extraction procedure is proven formally to be sound with respect to the semantics
of the original program, in that every concrete execution trace is present in the abstract
model; the model is abstract in that it may contain spurious traces. This requires non-
trivial manipulation and exploitation of information obtained from the control-flow analysis.
In particular, the representation of unbounded data structure containing process ids in the
intermediate finite state model requires that we be able to manipulate unboundedly large sets
of process ids in the πActor model; this is our motivation for introducing native support
for sets into the calculus.

• We demonstrate how the analysis is a strict improvement in precision over the analysis of
Soter. Moreover, the complexity of the abstract model generation (though not of model
checking) is the same as that of Soter. We illustrate how the concept of depth-boundedness
applies to our πActor model and show that while the πActor model is not guaranteed to
be depth-bounded, it is for non-trivial and relevant example programs. We show, therefore,
that interesting coverability queries for those programs are decidable on our model.
To the best of our knowledge, our approach offers an analysis strategy that is able to be
precise with respect to actor addresses to a degree that is superior to any other analysis for
the actor model. Although the approach is demonstrated on the actor model, we believe
many of the concepts can be adapted to other forms of message-passing concurrency.

1.5 Outline
In section 2, we define non-standard notation, cover mathematical background including the formal
definition of coverability, give an informal overview of Core, and introduce ACS and πActor.
In sections 3 to 5, we describe the procedure to extract a πActor model from a Core source. In
section 6, we discuss applications of the πActor model and discuss the conditions under which
coverability is decidable for it. In section 7 we evaluate the model against the ACS through case
studies and give a brief review of related work. Finally, we conclude in section 8 and discuss
directions for future work.

3

2 Preliminaries
We begin this section by introducing some mathematical notation. We then give a brief overview
of Core, present ACS, an alternative model against which we evaluate our proposed technique,
and describe πActor which will be the target for our abstraction.

2.1 Notation
Definition 2.1 ([finite] power set). Let ℘(S) be the power set of S, and ℘̄(S) ⊆ ℘(S) be the set
of finite sets of elements of S (the ’finite power set’ of S).

Definition 2.2 (finite sequences). Take S∗ to be the set of finite sequences of elements of S. Let
ϵ ∈ S∗ be the empty sequence and let · be overloaded to mean append, prepend and concat for
sequences. That is, for x, x′ ∈ S and s⃗, s⃗′ ∈ S∗ we let · be right-associative with

• x · s⃗ being x prepended to s⃗,

• s⃗ · x being x appended to s⃗,

• x · x′ = x · (x′ · ϵ),

• s⃗ · s⃗′ being s⃗ concatenated with s⃗′.

For a finite sequence s⃗, we may write x ∈ s⃗. This should be taken to mean ‘x occurs at any
position in s⃗’, unless it occurs at the foot of a sum or product (or other iterator context). Where
s⃗ = s1 · . . . · sn, ∑

x∈s⃗

E = E[s1/x] + E[s2/x] + · · ·+ E[sn/x]∏
x∈s⃗

E = E[s1/x]× E[s2/x]× · · · × E[sn/x]

Where it will not cause confusion, we identify s ∈ S with s · ϵ ∈ S∗. The function len : S∗ → N
returns the length of a finite sequence. The function ⌊·⌋k : S∗ → S∗ truncates a sequence s⃗, keeping
its first k elements.

Definition 2.3 (sort). Let sort(S,R) be the function takes a finite set S and a linear ordering R
on S and produces the finite sequence of distinct elements of S, sorted according to R.

Definition 2.4 (finite partial functions). Let S ⇀ T be the set of finite partial functions from S
to T . For f, f ′ ∈ S ⇀ T , s, s1, . . . , sn ∈ S, t1, . . . , tn ∈ T , A ⊆ S, we write

• f(s) = ⊥ to mean that f is undefined at s.

• f [s 7→ t] to mean (λx.if x = s then t else f(x)), with f [s1 7→ t1, . . . , sn 7→ tn] shorthand for
f [s1 7→ t1] . . . [sn 7→ tn].

• f ∩A with A ⊆ S to mean (λx.if x ∈ A then f(x) else ⊥),

• f⊎f ′ when the domains of f and f ′ are disjoint to mean (λx.if f(x) ̸= ⊥ then f(x) else f ′(x)).

We write [] for the function that is everywhere undefined and use [s1 7→ t1, . . . , sn 7→ tn] as
shorthand for [][s1 7→ t1] . . . [sn 7→ tn].

2.2 Mathematical background
Definition 2.5 (transition system). A transition system is a triple (S,→, s) where → ⊆ S × S
is the transition relation and s ∈ S is the initial state. We write → ∗ for the reflexive transitive
closure of →.

Definition 2.6 (reachability problem). Given a transition system (S,→, s) and a query state
s′ ∈ S, the reachability problem is to determine if s →∗ s′.

4

Definition 2.7 (preordered transition system). A preordered transition system is a transition
system (S,→, s) paired with a preorder relation ⊑ ⊆ S × S (a preorder relation is a reflexive and
transitive relation).

Definition 2.8 (coverability problem). Given a preordered transition system (S,→, s,⊑) and a
query state s′ ∈ S, the coverability problem is to determine if there is a state s′′ ∈ S for which
s →∗ s′′ and s′′ ⊒ s. In the context of coverability queries, we read s′′ ⊒ s as ‘s′′ covers s’.

2.3 A brief overview of Core
We now introduce Core, a modular untyped functional language with actor-model concurrency
designed to closely resemble CoreErlang[3], the official intermediate representation of Erlang.

Definition 2.9 (Core modules). Fix an (infinite) set of atoms, nominally strings of ASCII char-
acters matching the regular expression

'([ˆ']|\َ')*'(/[0-9]+)?

such that 'spawn'/1, 'send'/2, 'self'/0, 'choice'/2, ,2/'׌ُُ' 'true', 'false' and 'infinity'
are atoms. Let atom range over this set of atoms. Fix also a set of ‘variable’ names V ranged over
by U and V , nominally strings of ASCII characters which are either alphanumeric or underscore
beginning with an upper case letter or an underscore, and a set of labels L ranged over by ℓ. Then
the set of Core modules M ranged over by m is given by the grammar in fig. 1, with the following
additional constraints:

• For every atom = U in the exports list, there is a (top level) definition for U in the body.

• No atom appears twice in the exports list.

• The module contains no free names. A name U is bound when it appears on the left side
of a definition in a module, let or letrec, when it appears in the argument list of a fun, or
when it appears in a pattern in a case or receive. A name is free if it is not bound.

Definition 2.10 (Core program). A Core program is a finite set of modules M ⊂ ℘̄(M) satis-
fying the following properties:

• No two modules in M have the same name. The name of a module is the atom that appears
after the word module.

• There is a module with the name 'main' which exports a nullary function at 'main'/0.

Remark. We assume from now on that bound variables and labels are unique throughout a program.
All programs can be trivially transformed such that this is the case. Note that this means that
every variable in a pattern or pattern list must be unique; patterns such as {A,A} which require
that A and A be equal must check for that equality in a guard. We identify a label ℓ with a node
in the abstract syntax tree of the program, and write ℓ : e to mean that e is the expression that
occurs at ℓ’s node. In listings of Core programs, we let % mark the start of a line of comment.

Our language Core differs from CoreErlang in several important ways:

• We remove support for

– the throwing and catching of exceptions. The fail expression can be thought of as
throwing an uncaught, untyped exception, and causes the running process to halt.

– numbers, characters, strings and binaries, and by extension any string manipulation,
arithmetic or binary processing.

– timeouts in receive expressions. All receive expressions behave as if they had a timeout
of 'infinity'.

• We remove all but the minimum support for guards in case and receive expressions. We
support only guards that test for equality.

5

m ∈ M ::= module atom0 [atom1 = U1, . . . , atomm = Um] defn1 . . . defnn end
defn ::= U = ℓ0 : fun (U1, . . . ,Un) ُ-> ℓ1 : e1

e, t ∈ E ::= U | atom | [] | <U1, . . . ,Un> | {U1, . . . ,Un} | [U|V]
| fun (U1, . . . ,Un) ُ-> ℓ : t | primop atom (V1, . . . ,Vn)
| apply U (V1, . . . ,Vn) | call U0 : U1 (V1, . . . ,Vn)
| let <U1, . . . ,Un> = ℓ0 : e0 in ℓ1 : e1 | letrec defn1 . . . defnn in e

| case <U1, . . . ,Un> of
<pat11, . . . ,pat1n> when guard1 ُ-> ℓ1 : e1

...
<patm1, . . . ,patmn> when guardm ُ-> ℓm : em

end

| receive
<pat1> when guard1 ُ-> ℓ1 : e1

...
<patm> when guardm ُ-> ℓm : em

end

| do ℓ1 : e1 ℓ2 : e2 | fail
pat ::= U | U = pat | atom | [] | {pat1, . . . ,patn} | [pat1|pat2]

guard ::= atom | U ׌ُُ V | guard1 ֽُ guard2

Figure 1: Specification for the syntax of Core.

• We enforce that the constructors <_,...,_>, {_,...,_} and [_|_] are applied only to names.
This allows the easy definition of a closure as a member of L × Env. By lucky coincidence,
this also prevents the nesting of valuelists.

• We enforce that case, apply, call and primop expressions are applied only to names. This
reduces the number and kind of continuations required in the concrete/abstract semantics.

The syntax chosen for Core is convenient for verification, but sometimes difficult to read. To
lighten the load on the reader, we introduce the following convenient shorthand: when ℓ : a is a
labelled expression that is not a name or a valuelist that occurs as a subexpression of ℓ′ : e where
a name is syntactically expected, then e is shorthand for

ℓ⋆ : let U⋆ = ℓ : a in ℓ′ : e[V ⋆/ℓ : a]

where V ⋆ is a fresh name and ℓ⋆ is a fresh label. For example,

ℓ0 : {ℓ1 : 'a', U, ℓ2 : primop 'self'/0 ()}
is short for ℓ⋆ : let V ⋆ = ℓ1 : 'a' in

ℓ0 : {V ⋆, U, ℓ2 : primop 'self'/0 ()}
is short for ℓ⋆ : let V ⋆ = ℓ1 : 'a' in

ℓ⋆⋆ : let V ⋆⋆ = ℓ2 : primop 'self'/0 () in
ℓ0 : {V ⋆, U, V ⋆⋆}

and the final one of these is a valid Core expression. We often omit labels where they are not
important.

Semantics

The full formal semantics for Core is given in section 3, but in the interest of making clear the
behaviour of Core, we give a sketch of a semantics here.

6

An environment ρ is a finite partial function from names to closures. A stack frame is one
of Let⟨U⃗ , ρ, e⟩ or Do⟨ρ, e⟩, where U⃗ ∈ V∗. A state in the computation of a Core program M
can be thought of as a set Π of processes running in parallel. A process ⟨e, ρ, s⟩ιm evaluates an
expression e in an environment ρ with a continuation stack s (a finite sequence of stack frames)
and a mailbox m containing unconsumed messages. ι is the process identifier (pid) of the process,
and each process in Π is distinguished by its pid. Purely functional computations performed by
each process are interleaved. Letting v range over process ids and the irreducible expressions
U , atom, [], <U1, . . . , Un>, {U1, . . . , Un}, [U|V] and fun (U_1, . . . , U_n) ُ-> e, we give
evaluation semantics thus:

• An apply U (V1, . . . , Vn) expression, when ρ closes U to an n-ary function, applies that
function to the values to which ρ closes V1, . . . , Vn and continues by executing its body: when
ρ(U) = (fun (V ′

1, . . . , Vn) ُ-> e, ρ′),

⟨apply U (V1, . . . , Vn), ρ, s⟩ιm ∥Π −→ ⟨e, ρ[V ′
i 7→ ρ(Vi)], s⟩ιm ∥Π

• A call U1 : U2 (V1, . . . , Vn) expression, when ρ closes U1 and U2 to atoms, when the
function exported by the module U1 at U2 is n-ary, applies that exported function to the
values to which ρ closes V1, . . . , Vn: when ρ(U1) = (atom1,_), ρ(U2) = (atom2,_), and there
is a module m in M of the form

module atom1 [. . . , atom2 = W, . . .] . . . W = fun (V ′
1, . . . , V ′

n) ُ-> e . . . end

let ρ′ be the initial environment for a module, the smallest environment such that for each
definition W = e in m, ρ(W) = (e, ρ′). Then

⟨call U1 : U2 (V1, . . . , Vn), ρ, s⟩ιm ∥Π −→ ⟨e, ρ′[V ′
i 7→ ρ(Vi)], s⟩ιm ∥Π

• A case <U⃗> of <pats1> when guard1 ُ-> e1 . . . <patsm> when guardm ُ-> em end checks its
head U⃗ against each of its clauses in ascending order. When it encounters the first i for which
U⃗ matches pati with substitution θ and satisfies guardi, it continues by executing ei with in
the environment extended with the substitution:

⟨case . . . end, ρ, s⟩ιm ∥Π −→ ⟨ei, ρθ, s⟩ιm ∥Π

• A letrec U1 = e1 . . . Un = en in e′ expression continues by executing e′ with environ-
ment ρ′, where ρ′ is the smallest environment containing ρ such that for each Ui = ei,
ρ′(Ui) = (ei, ρ

′). Note that the only expressions that can appear on the right hand side of
definitions in letrec expressions are of the form fun (_, . . . ,_) ُ-> _.

⟨letrec U1 = e1 . . . Un = en in e′, ρ, s⟩ιm ∥Π −→ ⟨e′, ρ′, s⟩ιm ∥Π

• A let <U1, . . . , Un> = e in e′ expression pushes a Let frame onto the stack and continues
by executing e:

⟨let <U1, . . . , Un> = e in e′, ρ, s⟩ιm ∥Π −→ ⟨e, ρ,Let⟨U1 · . . . · Un, ρ, e
′⟩ · s⟩ιm ∥Π

• A do e e′ expression pushes a Do frame onto the stack and continues by executing e:

⟨do e e′, ρ, s⟩ιm ∥Π −→ ⟨e, ρ,Do⟨ρ, e′⟩ · s⟩ιm ∥Π

• If a process is executing some value v, it inspects its stack. If the stack is empty, the process
terminates. Otherwise:

– if the stack is Do⟨ρ′, e⟩ ·s, the process continues by executing e with environment ρ and
stack s.

⟨v, ρ,Do⟨ρ′, e⟩ · s⟩ιm ∥Π −→ ⟨e, ρ′, s⟩ιm ∥Π

7

– if the stack is Let⟨U⃗ , ρ, ℓ⟩ ·s, the process continues by executing e with the environment
that results from assigning v to U⃗ in ρ′ and stack s.

⟨v = <U1, . . . , Un>, ρ,Let⟨V1 · . . . · Vn, ρ
′, e⟩ · s⟩ιm ∥Π

−→ ⟨e, ρ′[Vi 7→ ρ(Ui)], s⟩ιm ∥Π
⟨v ̸= <_, . . . , _>, ρ,Let⟨V, ρ′, e⟩ · s⟩ιm ∥Π

−→ ⟨e, ρ′[V 7→ (v, ρ)], s⟩ιm ∥Π

• The 'self'/0 primop returns the pid under which the process is running:

⟨primop 'self'/0 (), ρ, s⟩ιm ∥Π −→ ⟨ι, ρ, s⟩ιm ∥Π

• The 'spawn'/1 primop, when passed a nullary function, evaluates to a fresh pid ι′ and creates
a new process running the body of that function with pid ι′: When ρ(U) = (fun () ُ-> e, ρ′),

⟨primop 'spawn'/1 (U), ρ, s⟩ιm ∥Π −→ ⟨ι′, ρ, s⟩ιm ∥⟨e, ρ′, ϵ⟩ι
′

ϵ ∥Π

• The 'send'/2 primop, when passed a pid ι′ as its first argument, evaluates to its second
argument and appends its second argument to the mailbox of the process with pid ι′: When
ρ(U) = (ι,_), ρ(V) = (v, ρ′′),

⟨primop 'send'/2 (U, V), ρ, s⟩ιm ∥⟨e, ρ′, s′⟩ι
′

m ∥Π −→ ⟨v, ρ′′, s⟩ιm ∥⟨e, ρ′, s′⟩ι
′

m·(v,ρ′′)

• A receive <pat1> when guard1 ُ-> e1 . . . <patm> when guardm ُ-> em end blocks if the pro-
cess’ mailbox contains no messages that match any of the clauses. Otherwise, it acts like a
case expression whose head is the first message c in its mailbox that matches a clause in its
body with substitution θ with the additional side effect of consuming the message from the
mailbox:

⟨receive . . . end, ρ, s⟩ιm·v·m′ ∥Π −→ ⟨ei, ρθ, s⟩ιm·m′ ∥Π

• A fail expression causes the process running it to terminate. A process that terminates by
executing fail is said to have failed.

• If a process encounters a malformed expression (application of an n-ary function to m argu-
ments where n ̸= m, a case expression where the head does not match any clause, etc), the
process transitions to fail.

Remark. Note that sending is non-blocking, and that mailboxes are not First-In-First-Out (FIFO)
but First-In-First-Fireable-Out. Incoming messages are queued at the end of the mailbox, but the
message extracted by a receive construct is not necessarily the first.

Example 2.11 (publisher/subscriber). Listing 1 depicts a Core program that models a publish-
er/subscriber interaction. The program has two modules, 'publisher' and 'main'.

The 'publisher' module implements a publisher. A publisher acts a go-between for processes
that want to publish messages on a given topic and other processes that subscribe to messages on
that topic. The publishing processes needn’t know the identity or number of processes to whom
the message will be forwarded. When a process wants to subscribe to messages on a topic T , it
sends the publisher a {'sub', T, P} message, where P is the subscriber’s pid. When a process
wants to publish a message on topic T , it sends the publisher a {'pub', T, M}, where M is the
message to be published. The publisher forwards this message to every subscriber for that topic.

The public face of a publisher is a process running the Router function, which we will call the
router. The first argument to this function is an (arbitrarily long) list of pids of processes running
the Dispatcher function, which we call dispatchers. When the router receives a {'sub', T, P}
message, it spawns a new dispatcher responsible for forwarding messages on topic T to the process
with pid P and then loops, adding the new dispatcher to its list. When it receives a {'pub', T, M}
message, it forwards that message to every dispatcher. Note that it does using using Map, a higher-
order function.

8

module 'publisher' ['new'/0 = New]
% Spawns a new publisher.
New = fun () ُ->
primop 'spawn'/1
(fun () ُ-> apply Router ([]))

% Creates dispatchers and forwards
% them messages.
Router = fun (Dispatchers) ُ->
receive
<{'sub', Topic, P}> when 'true' ُ->
let <F> = fun () ُ->
apply Dispatcher (Topic, P)

in
let <D> = primop 'spawn'/1 (F) in
apply Router ([D | Dispatchers])

<M = {'pub', _, _}> when 'true' ُ->
let <G> = fun (Pid) ُ->
primop 'send'/2 (Pid, M)

in
do apply Map (G, Dispatchers)
apply Router (Dispatchers)

end

% Dispatches messages if they have
% the correct topic.
Dispatcher = fun (Topic, P) ُ->
receive
<M = {'pub', Topic_, _}>
when Topic ׌ُُ Topic_ ُ->
do primop 'send'/2 (P, M)
apply Dispatcher (Topic, P)

<_> when 'true' ُ->
apply Dispatcher (Topic, P)

end

% Maps F across L.
Map = fun (F, L) ُ->
case <L> of
<[]> when 'true' ُ-> []
<[X | Xs]> when 'true' ُ->
let <Y> = apply F (X) in
let <Ys> = apply Map (F, Xs) in
[Y | Ys]

end
end

module 'main' ['main'/0 = Main]
% Errors if it receives a message on
% the wrong topic.
Picky = fun (Topic) ُ->
receive
<{'pub', Topic_, _}>
when Topic ׌ُُ Topic_ ُ->
apply Picky (Topic)

<_> when 'true' ُ->
fail

end

% Create a new publisher, then spawns
% infinitely many picky subscribers,
% sending a message each time.
Main = fun () ُ->
let <P> =
call 'publisher' : 'new'/0 ()

in
apply SpawnPickies (P)

% Nondeterministically selects a
% topic (either 'a' or 'b').
% Spawns a picky subscriber for
% that topic, then sends a message
% on that topic.
SpawnPickies = fun (P) ُ->
let <Topic> =
primop 'choice'/2 ('a', 'b')

in
let <Q> =
primop 'spawn'/1
(fun () ُ-> apply Picky (Topic))

in
do primop 'send'/2
(P, {'sub', Topic, Q})

do primop 'send'/2
(P, {'pub', Topic, 'm'})

apply SpawnPickies (P)
end

Listing 1: A Core program that implements a publisher / subscriber interaction.

9

A dispatcher filters the messages it receives for relevancy before they are forwarded to a sub-
scriber. Note the use of the guard Topic ׌ُُ Topic_ 1. Erlang is unusual in that it allows us to
inspect the data in messages before they leave the mailbox. If the equality check Topic ׌ُُ Topic_
fails, the message is returned to the mailbox and the next clause/message is checked.

The 'main' module sets up a system of publishers and subscribers. The subscribers are processes
running the function Picky, which loops if receives a {'pub', T, M} message on the topic T that
it is expecting, or fails if it receives any other message. The Main function creates a publisher using
an inter-module call expression, then calls SpawnPickies. We will see later that Core supports
fully dynamic inter-module calls and behaviours using a callback module; both the module to call
and the function to call on that module can be varied at run-time.

The SpawnPickies function starts by calling a new primop, 'choice'/2. Occasionally we may
introduce new simple primitive operators like this one, usually to provide some nondeterminicity.
The 'choice' family is one of these. 'choice'/n is an n-ary operator that reduces nondetermin-
istically to any one of its arguments. SpawnPickies continues by spawning a picky subscriber for
the chosen topic, subscribing to to messages on that topic and sending a message on that topic. It
then loops.

An interesting correctness property of this code is that it is error-free, or more precisely that
each subscriber receives only messages on the topic to which it subscribes.

2.4 Actor Communicating System (ACS)
We now present the Actor Communicating System (ACS) model, first introduced in [9]. ACS is an
abstraction for actor-model programs with an infinite state semantics for which reachability and
coverability are decidable.

Definition 2.12 (Actor Communicating System). An Actor Communicating System (ACS) is a
sextuple (P,Q,M,R, ι0, q0) where P is a finite set of pid-classes, Q is a finite set of control states,
M is a finite set of messages, ι0 ∈ P is the pid-class of the initial process, q0 ∈ Q is the initial state
of the initial process and R is a finite set of rules of the form ι : q

λ−→ q′ where ι ∈ P , q, q′ ∈ Q and
λ a label in one of four possible forms:

• τ : a process with pid-class ι performs an internal transition from q to q′

• ?m where m ∈ M : a process with pid-class ι transitions from q to q′ by consuming a message
of type m from its mailbox.

• ι′!m where ι′ ∈ P , m ∈ M : a process with pid-class ι transitions from q to q′, sending a
message of type m to a process of pid-class ι.

• νι′.q′′ where ι′ ∈ P , q′′ ∈ Q: a process with pid-class ι transitions from q to q′ and spawns a
process with pid-class ι′ in control state q′′.

We can think of an ACS as an abstraction for actor model programs like those of Core. The
control states play the role of the triple of expression, environment and stack, with the caveat that
there can be only finitely many of them. M is an abstraction on data. In Core there are an
infinite number of messages that can be sent; consider the function

F = fun (P, M) ُ-> let <M_> = M in do primop 'send'/2 (P, M_) apply F (P, M_)

so apply F (P, 'atom') sends the messages 'atom', {'atom'}, {{'atom'}}, … to the pid bound to
P . In VAS these must be abstracted to some finite set of messages.

The pid-classes are an abstraction on pids. ACS can track how many processes of each pid-class
are in each control state, but cannot distinguish between them during send or receive procedures.
A message sent to a process whose pid is in pid-class ι might arrive in the mailbox of any process
whose pid is in ι. This is the main source of imprecision that we try to correct for in the πActor
model.

1Erlang has two equality operators, == and .׌ُُ == ignores types when comparing numbers, but ׌ُُ does not, so
1 == 1.0 but 1 ̸ُ ׌ُ 1.0. Though in Core we ignore numbers and arithmetic, our intention is that clause guards
should respect types when checking if two terms are equal, and so we use the symbol .׌ُُ

10

ACS Rule r VAS Rule r
ι : q

τ−→ q′ [(ι, q) → −1, (ι, q′) → +1]

ι : q
?m−−→ q′ [(ι, q) → −1, (ι, q′) → +1, (ι,m) 7→ −1]

ι : q
ι′!m−−−→ q′ [(ι, q) → −1, (ι, q′) → +1, (ι′,m) 7→ +1]

ι : q
νι′.q′′−−−−→ q′ [(ι, q) → −1, (ι, q′) → (ι′, q′′) 7→ +1]

Table 1: The transformation r 7→ r.

The semantics we will give for ACS makes liberal use of counter abstractions. Mailboxes in
ACS’ semantics discard the ordering of messages, but keep a counter for the number of occurrences
of each message in the mailbox. Instead of tracking the execution state of each process, the ACS
keeps a counter for the number of processes of each pid in each control state.

Note that ACS is an over-approximation. Consider an ACS with a pid-class ι, three control
states q, q′ and q′′, and two rules ι : q

?a−→ q′ and ι : q
?b−→ q′′. With a FIFFO mailbox, a process in

pid-class ι with a mailbox c · a · b can only transition to q′′: although both a and b can be fired,
a appears before b in the mailbox. In the semantics we will give, the mailbox is abstracted to the
counters [a 7→ 1, b 7→ 1, c 7→ 1], with no information about the ordering. So in our semantics, the
process can transition nondeterministically to either q or q′′. The traces in the FIFFO semantics
remain, but an additional spurious traces appear.

The semantics for ACS is given in terms of a Vector Addition System (VAS, also known as a
Petri net).

Definition 2.13 (Vector Addition System). A Vector Addition System V is a pair (I,R) where I
is a finite set of indices (called the ‘places’ of the VAS) and R ⊆ ZI is a finite set of rules. A rule
is just a vector of integers of dimension |I| indexed by the elements of I.

A VAS V = (I,R) induces a transition system JVK (NI ,↷, v0) where ↷ = {(v, v + r) : v ∈
NI , r ∈ R, v + r ∈ NI}. We write v ≤ v′ when for all i in I, v(i) ≤ v′(i).

Theorem 2.14. The coverability problem is decidable for VAS.[14]

Definition 2.15 (semantics for ACS). The semantics of an ACS A = (P,Q,M,R, ι0, q0) is the
transition system induced by the VAS V = (I,R) where I = P × (Q ⊎M) and R = {r : r ∈ R}
where the transformation r 7→ ∖ is given in table 1.

Given a state v ∈ JV K, the components v(ι, q) counts the number of processes in the pid-class
ι in state q and the component v(ι,m) counts the number of messages of type m in the (joint)
mailbox for pid-class ι.

Since coverability is decidable for the VAS semantics, we can check any safety property that is
expressible via coverability on the ACS including

• unreachability of error statements, i.e. v(ι, qerr) = 1 is uncoverable.

• mutual exclusion, i.e. v(ι, qcritical) = 2 is uncoverable.

• boundedness of mailboxes, i.e. states with
∑

m∈m v(ι,m) = k are uncoverable.

2.5 πActor
We turn now to πActor, which we will use as the target for our abstraction. πActor is a variant
of the polyadic π-calculus[19], which in turn is an extension of Milner’s CCS[2]. Its syntax is
influenced by that of the mailbox calculus[6].

Definition 2.16 (πActor). Fix an infinite set of names N ranged over by a, b, c, s, t, x, y and a
set of set names S ranged over by A,B,C. Fix also a set of message tags M ranged over by m, n
and a set of process names P ranged over by Proc. Let the set of πActor terms T ranged over
by P,Q,R be given by the grammar in fig. 2

11

P,Q,R ∈ T ::= 0 | fail | s ∈ A | P ∥Q | M | Proc[s1, . . . , sn |A1, . . . , Am] | νs.P | νA.P

M,N ::= π.P | [X1, . . . , Xm].P | M +N

π ::= τ | let s ∈ A | let A = B ∪ C | s?m(A1, . . . , An)[X1, . . . , Xm] | s!m⟨A1, . . . , An⟩
X ::= A ∩B ̸= ∅

Figure 2: Specification for the syntax of πActor.

A πActor program is a pair (P,∆) where P ∈ T and ∆ a finite set of process definitions of
the form

Proci[s1, . . . , sn |A1, . . . , Am] := Mi

such that there are no free set names in P or any definition in ∆ and for every term of the form
Proc[s1, . . . , sn |A1, . . . , Am] in P or any Mi, there is exactly one process definition of the form
Proc[x1, . . . , xn |B1, . . . , Bm] = N in ∆.

When m = 0, we write Proc[s1, . . . , sn |A1, . . . , Am] as Proc[s1, . . . , sn] and
s?m(A1, . . . , An)[X1, . . . , Xm] as s?m(A1, . . . , An). When I = i1, . . . , in, we write

∏
i∈I Pi for

Pi1 ∥ . . . ∥Pin and
∑

i∈I πi.Pi for πi1 .Pi1 + · · · + πin .Pin . Terms of the form M are called ‘se-
quential’ terms. When

s⃗ = s1 · . . . · sn, A⃗ = A1 · . . . ·Am

we may write νs⃗, νA⃗, Proc[s⃗ | A⃗], s!m⟨S⃗⟩ or s?m(A⃗)[X1, . . . , Xl]. These should be taken as
shorthands for νs1. · · · .νsn, νA1. · · · .νAm, Proc[s1, . . . , sn |A1, . . . , An], s!m⟨A1, . . . , Am⟩ and
s?m(A1, . . . , Am)[X1, . . . , Xl] respectively. In restrictions, we use juxtapositions for the overloaded
append/concatenate ·.

We may write a set {x1, . . . , xn} in place of a set name A. A term P = Proc[s⃗ | . . . , {x1, . . . , xn}, . . .]
is shorthand for νA.(Proc[s⃗ | . . . , A, . . .] ∥

∏
i xi ∈ A), where A ̸∈ fv(P).

Definition 2.17 (bound and free names). The name s is bound in νs.P , let s ∈ S.P and
Proc[. . . , s, . . . | . . .] := M . The set name A is bound in νA.P , let A = B∪C.P , s?m(. . . , A, . . .)[. . .].P
and Proc[. . . | . . . , A, . . .] := M . A name is free if it is not bound, and we write fv(P) for the set
of free names of P .

Definition 2.18 (normalisation). A set of definitions ∆ is said to be in normalised if every
definition

Proc[s1, . . . , sn |A1, . . . , Am] :=
∑
i∈I

πi.Pi

is such that each Pi contains no sums. A process P ∈ T is said to be normalised if it contains no
sums.

Remark 2.18.1. Every process and set of definitions can be normalised while remaining semantically
equivalent. See fig. 3 for an example. From now on we consider only normalised πActor programs.

Semantics

Intuitively, a sequential process acts like a thread running finite-control sequential code. The
prefixes have the following meanings:

• τ represents an internal transition.

• [S1 ∩ T1 ̸= ∅, . . . , Sn ∩ Tn ̸= ∅] represents a check against each of the guards Si ∩ Ti ̸= ∅. If
any guard fails, the process cannot continue.

• s!m⟨A1, . . . , An⟩ represents sending a message of type m containing name sets A1, . . . , An on
the channel with name s.

12

νss′.νA.(P[s |A] ∥ s′ ∈ A
∥νs′′.νB.(s!m⟨B⟩.0 ∥ s′′ ∈ B))

P[s |A] := s?m(B).let s′ ∈ B.s′!n⟨A⟩.0

νss′.νA.(P[s |A] ∥ s′ ∈ A
∥νs′′.νB.(Q[s |B] ∥ s′′ ∈ B))

P[s |A] := s?m(B).P′[s |A,B]

P′[s |A,B] := let s′ ∈ B.P′′[s, s′ |A,B]

P′′[s, s′ |A,B] := s′!m⟨A⟩.0
Q[s |B] := s!m⟨B⟩.0

Figure 3: The two programs above are equivalent. The program on the right is normalised.

• s?m(A1, . . . , An)[B1 ∩ C1 ̸= ∅, . . . , Bm ∩ Cm ̸= ∅] represents receiving a message of type m
containing name sets A1, . . . , An on the channel with name s and binding each Si to Ai, then
checking the guards Bi ∩ Ci ̸= ∅. If any guard fails, the message is not received and the
process cannot transition.

• let s ∈ A represents nondeterministically selecting a name from S and binding it to s before
continuing.

The term τ.(P ∥Q) represents spawning a process P and continuing as Q, although the roles of P
and Q are interchangeable.

Processes in the π-calculus communicate synchronously over named channels. If a process is
trying to send a message, it cannot do so unless another process is ready and willing to receive
it. A non-blocking send like the 'send'/2 primop of Core can be achieved by spawning a process
that performs the blocking send. The names sent in name sets in messages can be used as the
names of channels for later communication after they are extracted using let.

Restrictions νs are used to make channel names private. In the program

νs. (s!m⟨B⟩.P ∥ s?m(A).Q) ∥ s?m(A).R,

s!m⟨B⟩.p may synchronise with s?m(A).Q to produce νs.(P ∥Q[S/A]) ∥ s?m(A).R, but it cannot
synchronise with s?m(A).R since s?m(A).R falls outside of scope of the restriction νs.

These notions in mind, we define structural congruence for πActor programs, which iden-
tifies syntactically different programs with semantically equivalent behaviour. We then use this
structural congruence to define concisely the semantics of πActor.

Definition 2.19 (structural congruence). Structural congruence ∆≡ for πActor programs with
definitions ∆ is the smallest congruence closed by α-conversion of bound names, commutativity
and associativity of ∥ and + with 0 as the neutral element, commutativity and associativity of ∪
with ∅ as the neutral element, commutativity of ∩, and the following laws:

νs.0 ∆≡ 0 νA.0 ∆≡ 0

νx.νy.P
∆≡ νy.νx.P νA.νB.P

∆≡ νB.νA.P νx.νA.P
∆≡ νA.νx.P

if s ̸∈ fv(P), P ∥νs.Q ∆≡ νs.(P ∥Q)

if A ̸∈ fv(P), P ∥νA.Q
∆≡ νA.(P ∥Q) P ∥ s ∈ A

∆≡ P

and if Proc[y1, . . . , yn |B1, . . . , Bm] := M ∈ ∆,

Proc[x1, . . . , xn |A1, . . . , Am]
∆≡ M [x1 · . . . · xn/y1 · . . . · yn][A1 · . . . ·Am/A1 · . . . ·Am]

Remark 2.19.1. We omit ∆ in ∆≡ when it is unimportant or obvious from context.
Definition 2.20 (standard form). A π-calculus term P is said to be in standard form if it is in
the form νs1 · · · sn.νA1 · · ·Am.(Q1 ∥ . . . ∥Ql) where Q1, . . . , Ql are non-0 sequential processes, fail
or some si ∈ A, each si occurs free in some Qj , and each Ai occurs free in some Qj . We write Tsf
for the set of terms in standard form.

13

Theorem 2.21. Every πActor term is structurally congruent to a term in standard form.

Remark 2.21.1. Every term in a normalised program in standard form is of the form νs⃗.νA⃗.(Q1 ∥ · · · ∥Qn)
where each Qi is fail, sj ∈ A or of the form Proc[s1, . . . , sm |A1, . . . , Al].

Definition 2.22 (normal form). A term P ∈ T is in normal form if it is normalised and in standard
form. A definition set ∆ is in normal form if it is normalised and each definition in ∆

Proc[s1, . . . , sn |A1, . . . , Am] :=
∑
i∈I

πi.Pi

is such that each Pi is in standard form. A πActor program (P,∆) if P and ∆ are in normal
form.

We write M =
∑

i∈I πi.Pi ∈ Tnf if each Pi ∈ Tsf.

Definition 2.23 (reduction semantics for πActor). The reduction semantics for a normalised
πActor program with definitions ∆ in normal form is given by a transition system with transitions
P

∆
−↠ Q if

P
∆≡ τ .νy⃗.νC⃗.P ′ +M ∈ Tnf

νx⃗.νB⃗.(P ∥Q) ∈ Tsf
∆
−↠ νx⃗y⃗.νB⃗C⃗.(P ′ ∥Q)

(Tau)

P
∆≡ let t ∈ A.νy⃗.νC⃗.P ′ +M ∈ Tnf Q = s ∈ A

νx⃗.νB⃗.(P ∥Q ∥R) ∈ Tsf
∆
−↠ νx⃗y⃗.νB⃗C⃗.(P ′[s/t] ∥Q ∥R)

(Let)

P
∆≡ let A = B ∪ C.νy⃗.νC⃗ ′.P ′ +M ∈ Tnf Q =

∏
i∈I si ∈ B ∥

∏
j∈J tj ∈ C

R ̸= z ∈ B ∥R′ R ̸= z ∈ C ∥R′ Q′ =
∏

i∈I si ∈ A ∥
∏

j∈J tj ∈ A

νx⃗.B⃗′.(P ∥Q ∥R) ∈ Tsf
∆
−↠ νx⃗y⃗.νAB⃗′C⃗ ′.(P ′ ∥Q ∥Q′ ∥R)

(Union)

P
∆≡ [A1 ∩B1 ̸= ∅, . . . , An ∩Bn ̸= ∅].νy⃗.P ′ +M ∈ Tnf Q =

∏n
i=1(si ∈ Ai ∥ si ∈ Bi)

νx⃗.(P ∥Q ∥R) ∈ Tsf
∆
−↠ νx⃗ · y⃗.(P ′ ∥Q ∥R)

(Match)

P
∆≡ s!m⟨A1, . . . , An⟩.νy⃗.νB⃗′.Q+MP ∈ Tnf

P ′ ∆≡ s?m(B1, . . . , Bn)[C1 ∩ C ′
1 ̸= ∅, . . . , Cm ∩ C ′

m∩ ̸= ∅].νz⃗.νC⃗ ′.Q′ +MP ′ ∈ Tnf
R1 =

∏n
i=1

∏
j∈Ji

tj ∈ Ai R3 =
∏n

i=1

∏
j∈Ji

tj ∈ Bi

R2 ̸= a ∈ Ai ∥R′ R1 ∥R2 ∥R3 =
∏m

i=1(si ∈ Ci ∥ si ∈ C ′
i) ∥R′

νx⃗.νA⃗′.(P ∥P ′ ∥R1 ∥R2) ∈ Tsf
∆
−↠ νx⃗y⃗z⃗.νB1 · · ·BnA⃗

′B⃗′C⃗ ′.(Q ∥Q′ ∥R1 ∥R2 ∥R3)
(Sync)

P
∆≡ P ′ ∈ Tsf P ′ ∆

−↠ Q′ Q′ ∆≡ Q

P
∆
−↠ Q

(Equiv)

Remark 2.23.1. We omit ∆ in
∆
−↠ when it is unimportant or obvious from context.

Example 2.24. In shorter hand, we have τ .P ↠ P and

• νA.(s!m⟨A⟩.Q ∥ s′ ∈ A) ∥νB.s?m(B).P ↠ νA.(Q ∥ s′ ∈ A) ∥νB.(P ∥ s′ ∈ B).

• [{s} ∩ {s, t} ̸= ∅].Q ≡ νAB.([A ∩B ̸= ∅].Q ∥ s ∈ A ∥ s ∈ B ∥ t ∈ B)
↠ νAB.(Q ∥ s ∈ A ∥ s ∈ B ∥ t ∈ B).

• If P[s |A] := let s′ ∈ A.P′[s, s′ |A], then P[s | {s1, . . . , sn}] ↠ P′[s, si | {s1, . . . , sn}] for
each i = 1, . . . , n.

14

• If P[s |B,C] := let A = B ∪ C.P′[s |A] and S, T ∈ ℘̄(N), then P[s |S, T]↠ P′[s |S ∪ T].

We will often write Proc[s⃗ | . . . , B∪B′, . . .] as shorthand for νA = B∪B′.Proc[s⃗ | . . . , A, . . .]
for some fresh A. When we have a rule like Proc′[s⃗ |A,A′] := π.Proc[s⃗ |S ∪ S′], we write for
S, S′ ∈ ℘̄(N) write Proc′[s⃗ |S, S′]|Q ↠ Proc[s⃗ |S ∪ S′]!Q′ as if it were a one-step transition.
This is a harmless abuse of notation that along with our set argument shorthand will greatly
increase the legibility of πActor programs.

Coverability

We define a preorder on πActor terms using the term embedding relation. Informally, a term P
is embedded in a term Q if Q is the parallel composition of P ′ with some other terms, where P ′

and P have the same structure but the set constructs in P ′ may be supersets of their corresponding
set constructs in P .

Definition 2.25 (preorder for sequences ⊑ ⊆ S∗ ×S∗)). When ≤ is an ordering on S, then when
x⃗, y⃗ ∈ S∗, x⃗ = x1, . . . , xn, y⃗ = y1, . . . , ym, we have x⃗ ⊑ y⃗ iff m = n and for i = 1, . . . , n, xi ≤ yi.

Definition 2.26 (term embedding ⊑). Let P,Q ∈ T and ∆ a definition set such that (P,∆) and
(Q,∆) are normalised πActor programs. Then P ⊑ Q if and only if

P ≡ P ′ ∈ Tsf, P ′ = νx⃗.νB⃗(P1 ∥ · · · ∥Pn),

and Q ≡ Q′ ∈ Tsf, Q′ = νx⃗y⃗.νB⃗C⃗(P1 ∥ · · · ∥Pn ∥R).

Remark 2.26.1. Equivalently, when S, T ∈ ℘̄(N)∗,

P ≡ P ′ ∈ Tsf, P ′ = νx⃗.(P1 ∥ · · · ∥Pn),

and Q ≡ Q′ ∈ Tsf, Q′ = νx⃗y⃗.(Q1 ∥ · · · ∥Qn ∥R),

and Pi = Proci[z⃗ | S⃗], Qi = Proci[z⃗ | T⃗], S⃗ ⊑ T⃗ or Pi = Qi = fail.

(where we take ⊆ as the ordering for sets).
This allows us to define coverability for πActor programs.

Definition 2.27 (coverability for πActor programs). Given a πActor program (P,∆) and a
query state Q ∈ T, the coverability problem is to determine if there is a state Q′ ∈ T for which
P

∆
−↠ Q′ and Q′ ⊒ Q.

This notion of coverability allows us to express all of the safety properties that can be expressed
using an ACS and more:

• unreachability of errors: fail is uncoverable.

• mutual exclusion:

– if we simply wish that no two processes be executing the same definition / program
location simultaneously, we can check the uncoverability of

Critical[s1, . . . , sn | ∅, . . . , ∅] ∥Critical[s′1, . . . , s′n | ∅, . . . , ∅]

– if we want something more precise, say that no two processes are writing to the same re-
source at the same time, we can ask for more precision with respect to process definition
arguments by checking the uncoverability of, say,

Write[s | {r}] ∥Write[s′ | {r}]

• boundedness of mailboxes for individual processes: if we adopt the convention that each pro-
cess has a unique name s that represents its mailbox, that processes only perform receives on
their unique s, and that processes only use non-blocking sends (Sendm[s

′ |S1, . . . , Sm] ∥P ′)
where

Sendm[s |A1, . . . , Am] := s!m⟨A1, . . . , Am⟩.0,

15

we can then check that the number of messages of type m in the mailbox of any process
is bounded above by k by checking the uncoverability of Sendm[s | ∅, . . . , ∅]k, where P i is
the parallel composition of i copies of P . As for mutual exclusion, we can be more precise
with respect to message contents (arguments to the process definition Sendm). If we would
like to be more specific with regards to which mailbox is bounded, we can include the rele-
vant processes in our uncoverability query: P[s, t1, . . . , tn |S1, . . . , Sn] ∥Sendm[s | ∅, . . . , ∅]k
checks the k-boundedness of messages of type m in the mailbox of processes that cover
P[s, t1, . . . , tn |S1, . . . , Sn].

Relationship with classical π-calculus

We have designed πActor with the aim to use it as an abstraction for the behaviour of Core pro-
grams. Our desire is that each send/receive in the abstraction should correspond to a send/receive
in the original program, so the communication topology is not polluted by the need to represent
control flow or data structures with process communication. However, we would also like to be able
to represent programs that maintain unbounded data structures containing pids. To this end, we
introduce sets to the calculus as method of collapsing multiple pids into a single class, in a similar
manner to the ACS (but with more flexibility). Our slightly odd receive-with-match syntax gives
us the ability to model Erlang style inspection of messages before receipt, without needing to use
multiple π-calculus sends and receives to represent the process.

We realise that this results in a syntax and semantics that might feel significantly different to
the classical π-calculus with which the reader may be more familiar, and one might reasonably ask
how the two of them relate. πActor can be encoded into classical π-calculus, and vice-versa. The
polyadic π-calculus with match has the syntax

P,Q ::= 0 | M | P ∥Q | Proc[s1, . . . sn] | νs.P
M,N ::= π.P | [x = y].P | [x ̸= y].P | M +N

π ::= τ | x(s1, . . . , sn) | x̄⟨s1, . . . , sn⟩

and the reduction semantics P
∆
−↠ Q if

P
∆≡ τ .νy⃗.P ′ +M ∈ T′

nf

νx⃗.(P ∥Q) ∈ T′
sf

∆
−↠ νx⃗ · y⃗.(P ′ ∥Q)

(Tau′)
P

∆≡ [X].νy⃗.P ′ +M ∈ T′
nf X

νx⃗.(P ∥Q) ∈ T′
sf

∆
−↠ νx⃗ · y⃗.(P ′ ∥Q)

(Match′)

P
∆≡ s̄⟨t1, . . . , tn⟩.νy⃗.Q+MP ∈ T′

nf P ′ ∆≡ s(a1, . . . , an).νz⃗.Q
′ +MP ′ ∈ T′

nf

νx⃗.(P ∥P ′ ∥R) ∈ T′
sf

∆
−↠ νx⃗ · y⃗ · z⃗.(Q ∥Q′[t1 · . . . · tn/a1 · . . . · an] ∥R)

(Sync′)

P
∆≡ P ′ ∈ T′

sf P ′ ∆
−↠ Q′ Q′ ∆≡ Q

P
∆
−↠ Q

(Equiv′)

πActor can be encoded into the polyadic π-calculus with match2 by treating sets as collections
of processes. Introduce definitions

Member[x, s] := s̄.⟨x⟩.Member[x, s]
Union[s, s′, t] := s(x).t̄⟨x⟩.Union[s, s′, t] + s′(x).t̄⟨x⟩.Union[s, s′, t]

Intersect[s, s′, a] := s(x).s′(y).([x = y].z̄⟨⟩+ [x ̸= y].Intersect[s, s′, a])

The selection prefix let y ∈ S then becomes a receive s(y), and the match [S ∩ T ̸= ∅].P becomes
νa.(Intersect[s, t, a] ∥ a().P).

2Though not in a way that preserves depth-boundedness.

16

3 An operational semantics for Core
In this section we give a concrete semantics for Core programs. We use a time-stamped CESK*

machine3 following an approach by Van Horn and Might[20], and taking cues from [9]. This will
result in an abstract interpretation that is both parametric and sound by construction.

Definition 3.1 (machine states). Let a state in the semantics be S = ⟨π, µ, σv, σk⟩ ∈ State with

S ∈ State := Procs × Mailboxes × ValueStore × KontStore
π ∈ Procs := Pid ⇀ ProcState

µ ∈ Mailboxes := Pid ⇀ Mailbox
σv ∈ ValueStore := (ClosureAddr ⇀ Closure)× (PidAddr ⇀ Pid)
σk ∈ KontStore := KontAddr ⇀ Kont.

An element of Procs associates a process with pid ι with its local state q = ⟨f, ρ, c, t⟩ ∈ ProcState
where

q ∈ ProcState := Pid ⊎ L ⊎ ValueAddr × Env × KontAddr × Time.
Its components are:

• the focus, f , which may be a pid, a value address or the label of some subterm of a program.

• an environment ρ which maps names to value addresses,

ρ ∈ Env := V ⇀ ValueAddr.

• a continuation address, which points to a continuation in the store. The continuation indi-
cates what to evaluate next when the current evaluation produces a value.

• a time-stamp, representing the history of the process’ computation up until this point.

An element of Mailboxes associates a process with pid ι with is mailbox. A mailbox is a finite
sequence of value addresses:

m ∈ Mailbox := ValueAddr∗.
The mailbox is supported by the operations

mmatch : (pat × guard)∗ × Mailbox × Env × ValueStore
→ (N× ValueAddr × (V ⇀ Value)× Mailbox)⊥

enq : ValueAddr × Mailbox → Mailbox

mmatch takes a list of clauses (a clause is a pattern and a guard), a mailbox, the current environ-
ment and the current store and returns the index of the matching pattern, a substitution witnessing
the match, and the mailbox resulting from the extraction of the matched message. enq enqueues
a message into a mailbox. As we are modelling FIFFO mailboxes, we set enq(a,m) = m · a and
mmatch((p1, g1) · . . . · (pm, gm),m, ρ, σv) = (i, a, θ,m1 ·m2) when

m = m1 · a ·m2, ∀a′ ∈ m1∀j : match(pj , gj , a′, ρ, σv) = ⊥,

θ = match(pi, gi, a, ρ, σv) ∀j < i : match(pj , gj , a, ρ, σv) = ⊥

and ⊥ otherwise, where match(p, g, a, ρ, σv) seeks to match the value stored at a in σv against the
pattern p producing witnessing substitution θ and checks that the guard g holds in ρθ and σv.

An element of ValueStore is a partitioned store whose first part associates closure addresses
with closures and whose second associates pid addresses with pids. Through a harmless abuse
of notation, we let σv(x) refer to the first partition when x is a closure address and the second
when x is a pid address. The reason for this partitioning will become clear when we discuss the
construction of addresses. An element of KontStore is a store that associates continuation addresses
with continuations.

3CESK stands for Control, Environment, State and (K)ontinuation

17

Closures are pairs of program labels and environments. Closures include both closed lambdas
(which is standard) and constructor applications. A value is either a closure or a pid.

Closure := L × Env, Value = Closure ⊎ Pid

A continuation κ ∈ Kont takes one of the following forms:

1. Stop, which represents ordinary termination.

2. Let⟨U1·. . .·Un, ℓ, ρ, c⟩, which represents the context E[let <U1, . . . , Un> = [] in e′] where
ρ closes ℓ : e to e′ and c is the address of the continuation representing the enclosing evaluation
context E.

3. Do⟨ℓ, ρ, c⟩, which represents the context E[do [] e′] where ρ closes ℓ : e to e′ and c is the
address of the continuation representing the enclosing evaluation context E.

Addresses, Pids and Timestamps

Though the machine supports arbitrary representations of time-stamps, addresses and pids, we
follow the lead of [9] and present an instance based on contours. A contour is a string of program
labels:

t ∈ Time := L∗

The initial contour is the empty sequence ϵ, and the tick function updates the contour of the
process by prepending the label under focus, which always labels an apply or call expression.

tick : L × Time → Time, tick(ℓ, t) = ℓ · t

We pull a trick with value addresses that will be extremely useful when constructing the
πActor model. We give pids and closures separate address spaces, and embed the pid addresses
reachable from the environment of a closure into the address of that closure. Addresses for pids
are represented by quadruples containing the pid of the storing process, the variable to which the
address will be assigned, the time stamp at the time of the assignment and the pid stored at the
address. Addresses for closures are represented by pentuples containing the pid of the storing
process, the variables to which the address will be assigned, the time stamp at the time of the
assignment, the data stored at the address and the set of pid addresses reachable from the closure.
Continuation addresses are represented by pentuples containing the pid of the storing process,
the label at the time of storing, the time stamp at the time of storing, the environment at time
of storing and the set of pid addresses reachable from the continuation to be stored (through its
environment / continuation address), or ⋆ which is the address of the initial continuation Stop.

PidAddr := Pid × V× Time × Pid
ClosureAddr := Pid × V× Time × Data × ℘̄(PidAddr)

a ∈ ValueAddr := PidAddr ⊎ ClosureAddr
c ∈ KontAddr := {⋆} ⊎ (Pid × L× Time × Env × ℘̄(PidAddr))

The data domain d ∈ Data is the set of terms of the following grammar, representing Core
data structures:

d ∈ Data ::= ι | atom | fun | [] | {d1, . . . , dn} | [d1|d2]

The function res : ValueStore × Value → Data resolves all the pointers in a closure through the
store σ, returning the corresponding closed term:

res(σv, ι) = ι

res(σv, (ℓ : e, ρ)) = e[U/ res(σv, σv(ρ(U))) : U ∈ fv(e)]

New addresses are allocated by extracting the relevant components from the execution state:

18

Definition 3.2 (new, pidaddrs).

newpa : Pid × V× ProcState → PidAddr
newpa(ι, U, ⟨ι′,_,_, t⟩) = ⟨ι, U, t, ι′⟩

newca : Pid × V× ProcState × Data × Env → ClosureAddr
newca(ι, U, ⟨_,_,_, t⟩, d, ρ) = ⟨ι, U, t, d, pidaddrs(ρ)⟩
newka : Pid × ProcState× → KontAddr
newka(ι, ⟨ℓ, ρ, c, t⟩) = ⟨ι, ℓ, ρ, t,pidaddrs(ρ) ∪ pidaddrs(c)⟩

Where the helper function pidaddrs is given by

pidaddrs(ρ) =
∪

{pidaddrs(a) : a ∈ Im ρ}

pidaddrs(a = ⟨ι, U, t, ι′⟩) = {a}
pidaddrs(a = ⟨ι, U, t, d, I⟩) = I

pidaddrs(c = ⋆) = ∅
pidaddrs(c = ⟨ι, ℓ, ρ, t, I⟩) = I

pidaddrs(q = ⟨ℓ, ρ, c, t⟩) = pidaddrs(ρ) ∪ pidaddrs(c)
pidaddrs(q = ⟨ι, ρ, c, t⟩) = pidaddrs(ρ) ∪ pidaddrs(c)
pidaddrs(q = ⟨a, ρ, c, t⟩) = pidaddrs(a) ∪ pidaddrs(ρ) ∪ pidaddrs(c)

Pids are identified with the contour of the 'spawn'/1 primop that generated them:

ι ∈ Pid := L × Time

The generation of a new pid is defined as

newpid : Pid × L× Time → Pid
newpid((ℓ

′, t′), ℓ, t) = (ℓ, tick∗(t, tick(ℓ′, t′)))

where tick∗ is an extension of tick that prepends a whole contour to another. The pid ι0 = (ℓ0, t0)
is the pid associated with the starting process.

The transition system

Definition 3.3 (concrete semantics of Core programs). The concrete semantics of a Core pro-
gram M is given by a transition system (State,→, init(M)), where the transition relation → is
given by the rules in appendix A, some of the more interesting examples of which are presented
in fig. 4. The function shrink restricts the domain of an environment to the free variables of an
expression:

shrink : Env × E → Env, shrink(ρ, e) = ρ ∩ fv(e)

Before defining init, we introduce functions

modenv : ℘̄(M)× Atom → Env⊥,
exports : ℘̄(M)× Atom × Atom → L⊥.

modenv takes a program M and a module name and constructs the initial environment for the
module with that name in M. That is,

module atom [. . .] U1 = ℓ1 : Un = ℓn : . . . end ∈ M
⇐⇒ modenv(M, atom) = [U1 7→ ⟨ι0, U1, t0, fun, ∅⟩, . . . , Un 7→ ⟨ι0, Un, t0, fun, ∅⟩]

If M is not a valid program, or there is no module in M with name atom, then modenv(M, atom) =
⊥. exports takes a program M, a module name and a function name and returns the label

19

corresponding to the definition of the corresponding exported function in the named module.
That is,

module atom0 [. . . , atom1 = U, . . .] . . . U = ℓ : end ∈ M
⇐⇒ exports(M, atom0, atom1) = ℓ

If M is not a valid program, or there is no module in M with name atom0, or atom1 does not appear
in the exports list of the module with name atom0 in M, then exports(M, atom0, atom1) = ⊥.

These functions in hand, we are ready to define the initial state.

Definition 3.4 (init). Let the initial state of a program M, init(M), be ⟨π0, µ0, σv0 , σk0
⟩ where

ℓ = exports(M, 'main', 'main'/0), ℓ : fun () ُ-> ℓ0 : . . . end,
π0 = [ι0 7→ ⟨ℓ0,modenv(M, 'main'), ⋆, t0⟩],
µ0 = [ι0 7→ ϵ],

G = {(atom, U, ℓ) : module atom [. . .] . . . U = ℓ : end ∈ M},

σv0 =
⊎

(atom,U,ℓ)∈G

[⟨ι0, U, t0, fun, ∅⟩ 7→ ⟨ℓ,modenv(M, atom)⟩],

σk0
= [⋆ 7→ Stop],

20

Apply

if π(ι) = ⟨ℓ, ρ, c, t⟩
ℓ : apply U (V1, . . . ,Vn)

σv(ρ(U)) = ⟨ℓ′, ρ′⟩
ℓ′ : fun (V ′

1, . . . ,V
′
n) ُ-> ℓ′′ end

ρ′′ = ρ′[V ′
1 7→ ρ(V1), . . . , V

′
n 7→ ρ(Vn)]

then π′ = π[ι 7→ ⟨ℓ′′, ρ′′, c, tick(ℓ, t)⟩]

Call

if π(ι) = ⟨ℓ, ρ, c, t⟩
ℓ : call U1 : U2 (V1, . . . ,Vn)
σv(ρ(U1)) = ⟨ℓ : atom1, []⟩
σv(ρ(U2)) = ⟨ℓ : atom2, []⟩
ρ′ = modenv(M, atom1)

ℓ′ = exports(M, atom1, atom2)

ℓ′ : fun (V ′
1, . . . ,V

′
n) ُ-> ℓ′′ end

ρ′′ = ρ′[V ′
1 7→ ρ(V1), . . . , V

′
n 7→ ρ(Vn)]

then π′ = π[ι 7→ ⟨ℓ′′, ρ′′, c, tick(ℓ, t)⟩]

Push-Let

if π(ι) = q = ⟨ℓ, ρ, c, t⟩
ℓ : let <U1, . . . , Un> = ℓ′, ℓ′′

κ = Let⟨U1 · . . . · Un, ℓ
′′, ρ, c⟩

c′ = newka(ι, q)

then π′ = π[ι 7→ ⟨ℓ′, ρ, c′, t⟩]
σ′
k = σk[c

′ 7→ κ]

Pop-Let-Closure

if π(ι) = q = ⟨ℓ : v, ρ, c, t⟩
σk(c) = Let⟨U · ϵ, ℓ′, ρ′, c′⟩

ρℓ = shrink(ρ, ℓ)
a = newca(ι, U, q, res(σv, ⟨ℓ, ρℓ⟩), ρℓ)

ρ′′ = ρ′[U 7→ a]

then π′ = π[ι 7→ ⟨ℓ′, ρ′′, c′, t⟩]
σ′
v = σv[a 7→ ⟨ℓ, ρℓ)⟩]

Receive

if π(ι) = ⟨ℓ, ρ, c, t⟩
ℓ : receive

<pat1> when guard1 → ℓ1;
...

<patm> when guardm → ℓm
end

clausei = (pati, guardi)

clauses = clause1 · . . . · clausem
mmatch(clauses, µ(ι), ρ, σv) = ⟨i, a, ρ′,m⟩

then π′ = π[ι 7→ ⟨ℓi, ρ ⊎ ρ′, c, t⟩]
µ′ = µ[ι 7→ m]

Spawn

if π(ι) = ⟨ℓ : primop 'spawn'/1 (U), ρ, c, t⟩
σv(ρ(U)) = ⟨ℓ′, ρ′⟩

ℓ′ : fun () ُ-> ℓ′′ end
ι′ = newpid(ι, ℓ, t)

then π′ = π [ι 7→ ⟨ι′, ρ, c, t⟩
ι′ 7→ ⟨ℓ′′, ρ′, ⋆, t0⟩]

Send

if π(ι) = ⟨ℓ : primop 'send'/2 (U,V), ρ, c, t⟩
σv(ρ(U)) = ι′

then π′ = π[ι 7→ ⟨ρ(V), ρ, c, t⟩]
µ′ = µ[ι′ 7→ enq(ρ(V), µ(ι′))]

Self

if π(ι) = ⟨ℓ : primop 'self'/0 (), ρ, c, t⟩
then π′ = π[ι 7→ ⟨ι, ρ, c, t⟩]

Figure 4: Some transition rules for the concrete semantics. Each rule specifies a transition
⟨π, µ, σv, σk⟩ → ⟨π′, µ′, σ′

v, σ
′
k⟩. Unless otherwise stated in the “then” part of the rule, we have

that π = π′, µ = µ′, σv = σ′
v and σk = σ′

k. We let the variable v ∈ E range over irreducible
expressions, excluding valuelists and fail; that is, atom, nil, tuple, list and lambda expressions.

21

4 Control flow analysis for Core
We construct the πActor model via a traditional control flow analysis. The only sources of infinity
in the state space are the domains Data, where we can nest structures infinitely deep4, Mailbox,
where we may have an infinitely long queue of unprocessed messages, and Time, where we may
have contours of infinite length. If we finitise these domains, State becomes finite and reachability
becomes decidable for (State,→, init(M).

Again following [9], we leave the abstraction of these basic domains as parameters of the ab-
straction and state the conditions they must satisfy for guaranteeing soundness of the overall
analysis.
Definition 4.1 (basic domains abstraction). A basic domains abstraction is a triple I = (D,T,M)
consisting of a data, a time and a mailbox abstraction defined as follows:

(i) A data abstraction is a triple D = (D̂ata, αd, r̂es) where D̂ata is a flat (discretely ordered)
domain of abstract data values and

αd : Data → D̂ata, r̂es : Ŝtore × V̂alue → ℘̄(D̂ata)

and αd is monotonic.

(ii) A time abstraction is a triple T = (T̂ime, αt, t̂ick, t̂0) where T̂ime is a flat domain of abstract
contours, t̂0 ∈ T̂ime and

αt : Time → T̂ime, t̂ick : L × T̂ime → T̂ime

and αt is monotonic.

(iii) A mailbox abstraction is a septuple M = (M̂ailbox,≤m,⊔m, αm, ênq, ϵ̂, m̂match) where
(M̂ailbox,≤m,⊔m) is a join-semilattice with least element ϵ̂ ∈ M̂ailbox and

αm : Time → T̂ime, ênq : ̂ValueAddr × M̂ailbox → M̂ailbox

m̂match : (pat × guard)∗ × M̂ailbox × Ênv × Ŝtore → ℘̄(N× (V ⇀ V̂alue)× M̂ailbox)

and αm and ênq are monotonic on mailboxes.
Given a basic domains abstraction (D,T,M), we define an interpretation of the other domains

thus:

Ŝ ∈ Ŝtate := P̂rocs × ̂Mailboxes × ̂ValueStore × ̂KontStore

π̂ ∈ P̂rocs := P̂id ⇀ ̂ProcState

µ̂ ∈ ̂Mailboxes := P̂id ⇀ M̂ailbox

σ̂v ∈ ̂ValueStore := (̂ClosureAddr ⇀ Ĉlosure) ⊎ (̂PidAddr ⇀ P̂id)

σ̂k ∈ ̂KontStore := ̂KontAddr ⇀ K̂ont

q̂ ∈ ̂ProcState := P̂id ⊎ L ⊎ ̂ValueAddr × Ênv × ̂KontAddr × T̂ime

ι̂ ∈ P̂id := {ι̂0} ⊎ (L × T̂ime), ι̂0 := t̂0

ρ̂ ∈ Ênv := V ⇀ ̂ValueAddr
̂PidAddr := P̂id × V× T̂ime × P̂id

̂ClosureAddr := P̂id × V× T̂ime × D̂ata × ℘̄(̂PidAddr)

â ∈ ̂ValueAddr := ̂PidAddr ⊎ ̂ClosureAddr

ĉ ∈ ̂KontAddr := {⋆} ⊎ (P̂id × L× T̂ime × Ênv × ℘̄(̂PidAddr))

V̂alue := P̂id ⊎ (L × Ênv)
4The infiniteness of the set of atoms is not relevant, since only finitely many atoms can appear in the source of a

program, and the infiniteness of the set of pids is due to the infiniteness of the Time domain, so will become finite
as Time does.

22

and we equip each with an abstraction function defined by an appropriate pointwise extension.
For example,

αa : ClosureAddr → ̂ClosureAddr
αa(⟨ι, U, t, d, I⟩) = ⟨αι(ι), αU (U), αt(t), αd(d), {αPidAddr(a) : a ∈ I}⟩

We will call all of them αCFA without confusion. The abstract domain K̂ont is the pointwise
abstraction of Kont and we use the constructs Ŝtop, L̂et⟨_,_,_,_⟩ and D̂o⟨_,_,_⟩ for the
abstractions of Stop, Let⟨_,_,_,_⟩ and Do⟨_,_,_⟩ respectively. The abstract functions n̂ewca,
n̂ewpa, n̂ewka and n̂ewpid and the helper function ̂pidaddrs are defined exactly as their concrete
versions, but on the abstract domains.

When B is a flat domain, the abstraction of a partial map C = A ⇀ B to Ĉ = Â → ℘̄(B̂) is
defined as

αC(f) := (λâ ∈ Â.{αB(b) : (a, b) ∈ f, αA(a) = â})

where the preorder on Ĉ is f ≤Ĉ ĝ ⇐⇒ ∀â : f̂(â) ⊆ g(â).
The operations that support the new abstract domains need to resemble the operations on their

concrete counterparts. The correctness conditions below must be satisfied by their instances.
Definition 4.2 (sound basic domains abstraction). A basic domains abstraction I = (D,T,M),
D = (D̂ata, αd, r̂es), T = (T̂ime, αt, t̂ick, t̂0), M = (M̂ailbox,≤m,⊔m, αm, ênq, ϵ̂, m̂match) is sound
only if the following conditions are satisfied:

αt(tick(ℓ, t)) ≤ t̂ick(ℓ, αt(t))

σ̂v ≤ σ̂′
v ∧ d̂ ≤ d̂′ =⇒ r̂es(σ̂v, d̂) ≤ r̂es(σ̂′, d̂′)

∀σ̂v ≥ αCFA(σv) : αd(res(σv, d)) ∈ r̂es(σ̂v, αCFA(d))

αm(enq(d,m)) ≤ ênq(αCFA(d), αm(m)), αm(ϵ) = ϵ̂

and if mmatch(clauses,m, ρ, σv) = (i, a, θ,m′) then ∀m̂ ≥ αm(m), ∀σ̂v ≥ αCFA(σv), ∃m̂′ ≥ αm(m
′)

such that
(i, αCFA(a), αCFA(θ), m̂

′) ∈ m̂match(clauses, m̂, αCFA(ρ), σ̂v)

Once the abstract domains are fixed, the rules that define the abstract transition relation are
straightforward abstractions of the concrete rules.
Definition 4.3 (abstract semantics for Core). Given a basic domains abstraction the abstract
(CFA) semantics for a Core program M are given by a transition system (Ŝtate, ⇝, αCFA(init(M)),
where the transition relation ⇝ is given by the rules in appendix B. The abstract equivalents of
the rules presented in fig. 4 are presented in fig. 5.

Theorem 4.4 (soundness for CFA). Given a sound basic domains abstraction, if S, S′ ∈ State,
S → S′ and αCFA(S) ≤ u, then there exists u′ ∈ Ŝtate such that αCFA(S

′) ≤ u′ and u⇝ u′.
Proof. omitted. We refer the reader to the proof of Theorem 2 in [9].

Theorem 4.5 (decideability of CFA). Given that a sound basic domains abstraction is finite,
then the derived abstract transition system is finite. It is also decidable given that the auxiliary
operations are computable.

Throughout this report, we will use the mailbox abstraction

Mset = (℘̄(̂ValueAddr),⊆,∪, αset
m , ênqset, ∅, m̂matchset), where

αset
m (m) := {αCFA(d)|d ∈ m}, ênqset(d̂, m̂) := {d̂} ∪ m̂

m̂matchset(clauses, m̂, ρ̂, σ̂v) := {(i, â, θ̂, m̂) : d̂ ∈ m̂, θ̂ ∈ m̂atch(pi, gi, d̂, ρ̂, σ̂v)}

The time abstraction will be some Tk = ({s : s ∈ L∗, len(s) ≤ k}, αk
t , t̂ickk, t0), where αk

t (s) = ⌊s⌋k
and t̂ickk(ℓ, t̂) = ⌊ℓ · t̂⌋k, the usual time abstraction for a k-CFA. We will usually use the trivial
data abstraction D̂ata0 = ({†}, r̂es†) where r̂es(σ̂v, d̂) = † for all σ̂v, d̂, but may use any k-deep
data abstraction Dk. All of these abstractions are sound.

23

Abs-Apply

if π̂(ι̂) ∋ ⟨ℓ, ρ̂, ĉ, t̂⟩
ℓ : apply U (V1, . . . ,Vn)

σ̂v(ρ̂(U)) ∋ ⟨ℓ′, ρ̂′⟩
ℓ′ : fun (V ′

1, . . . ,V
′
n) ُ-> ℓ′′ end

ρ̂′′ = ρ̂′[V ′
1 7→ ρ̂(V1), . . . , V

′
n 7→ ρ̂(Vn)]

then π̂′ = π̂ ⊔ [ι̂ 7→ {⟨ℓ′′, ρ̂′′, ĉ, t̂ick(ℓ, t̂)⟩}]

Abs-Call

if π̂(ι̂) ∋ ⟨ℓ, ρ̂, ĉ, t̂⟩
ℓ : call U1 : U2 (V1, . . . ,Vn)
σ̂v(ρ̂(U1)) ∋ ⟨ℓ : atom1, []⟩
σ̂v(ρ̂(U2)) ∋ ⟨ℓ : atom2, []⟩

ρ̂′ = m̂odenv(M, atom1)

ℓ′ = exports(M, atom1, atom2)

ℓ′ : fun (V ′
1, . . . ,V

′
n) ُ-> ℓ′′ end

ρ̂′′ = ρ̂′[V ′
1 7→ ρ̂(V1), . . . , V

′
n 7→ ρ̂(Vn)]

then π̂′ = π̂ ⊔ [ι̂ 7→ {⟨ℓ′′, ρ̂′′, ĉ, t̂ick(ℓ, t̂)⟩}]

Abs-Push-Let

if π̂(ι̂) ∋ q̂ = ⟨ℓ, ρ̂, ĉ, t̂⟩
ℓ : let <U1, . . . ,Un> =ℓ′, ℓ′′

κ̂ = L̂et⟨U1 · . . . · Un, ℓ
′′, ρ̂, ĉ⟩

ĉ′ = n̂ewka(ι̂, q̂)

then π̂′ = π̂ ⊔ [ι̂ 7→ {⟨ℓ′, ρ̂, ĉ′, t̂⟩}]
σ̂′
k = σ̂k ⊔ [ĉ′ 7→ {κ̂}]

Abs-Pop-Let-Closure

if π̂(ι̂) ∋ q̂ = ⟨ℓ : v, ρ̂, ĉ, t̂⟩

σ̂k(ĉ) ∋ L̂et⟨U · ϵ, ℓ′, ρ̂′, ĉ′⟩
ρ̂ℓ = shrink(ρ̂, ℓ)

d̂ ∈ r̂es(σ̂v, ⟨v, ρ̂ℓ⟩),

â = ̂newvadata(ι̂, U, q̂, d̂, ρ̂ℓ)
then π̂′ = π̂ ⊔ [ι̂ 7→ {⟨ℓ′, ρ̂′[U 7→ â], ĉ′, t̂⟩}]

σ̂′
v = σ̂v ⊔ [â 7→ {⟨ℓ, ρ̂ℓ⟩}]

Abs-Receive

if π̂(ι̂) ∋ ⟨ℓ, ρ̂, ĉ, t̂⟩
ℓ : receive clause1; . . . ;clausen end

clauses = clause1 · . . . · clausen
m̂match(clauses, µ̂(ι̂), σ̂v) ∋ ⟨i, â, ρ̂′, m̂⟩

clausei = <pati> when guardi ُ-> ℓi

then π̂′ = π̂ ⊔ [ι̂ 7→ {⟨ℓi, ρ̂ ⊎ ρ̂′, ĉ, t̂⟩}]
µ̂′ = µ̂ ⊔ [ι̂ 7→ m̂]

Abs-Spawn

if π̂(ι̂) ∋ ⟨ℓ : primop 'spawn'/1 (U), ρ̂, ĉ, t̂⟩
σ̂v(ρ̂(U)) ∋ ⟨ℓ′, ρ̂′⟩

ℓ′ : fun () ُ-> ℓ′′ end

ι̂ = ⟨ℓ′, t̂′⟩

ι̂′ = ⟨ℓ, t̂ick
⋆
(t̂, t̂ick(ℓ′, t̂′))⟩

then π̂′ = π̂ ⊔ [ι̂ 7→ {⟨ι̂′, ρ̂, ĉ, t̂⟩}
ι̂′ 7→ {⟨ℓ′′, ρ̂′, ⋆, t̂0⟩}]

Abs-Send

if π̂(ι̂) ∋ ⟨ℓ : primop 'send'/2 (U,V), ρ̂, ĉ, t̂⟩
σ̂v(ρ̂(U)) ∋ ι̂′

then π̂′ = π̂ ⊔ [ι̂ 7→ {⟨ρ̂(V), ρ̂, ĉ, t̂⟩}]
µ̂′ = µ̂ ⊔ [ι̂′ 7→ ênq(ρ̂(V), µ̂(ι̂′))]

Abs-Self

if π̂(ι̂) ∋ ⟨ℓ : primop 'self'/0 (), ρ̂, ĉ, t̂⟩
then π̂′ = π̂ ⊔ [ι̂ 7→ {⟨ι̂, ρ̂, ĉ, t̂⟩}]

Figure 5: Abstract equivalents of the rules presented in fig. 4. As in the concrete semantics, each
rule specifies a transition ⟨π̂, µ̂, σ̂v, σ̂k⟩ → ⟨π̂′, µ̂′, σ̂′

v, σ̂
′
k⟩. Unless otherwise stated in the “then”

part of the rule, we have that π̂ = π̂′, µ̂ = µ̂′, σ̂v = σ̂′
v and σ̂k = σ̂′

k. We let the variable v ∈ E
range over irreducible expressions, excluding valuelists and fail; that is, atom, nil, tuple, list and
lambda expressions.

24

5 Generating the πActor model
Definition 5.1 (Active components). We note that every transition rule R for S → S′ in the
concrete semantics begins by specifying some q = ⟨f, ρ, c, t⟩ = π(ι). and ends by associating a new
local state q′ = ⟨f ′, ρ′, c′, t′⟩ with ι in π′, i.e. q′ = π′(ι). We call (ι, q, q′) the active components
of the transition S → S′ by R. The same is true (modulo abstraction) for rules in the abstraction
semantics; that is, every abstract transition rule Abs-R for Ŝ ⇝ Ŝ begins by specifying some
q̂ = ⟨f, ρ̂, ĉ, t̂⟩ ∈ π̂(ι̂). and ends by associating a new local state q̂′ = ⟨f ′, ρ̂′, ĉ′, t̂′⟩ with ι̂ in π̂′, i.e.
q̂′ ∈ π̂′(ι̂). We call (ι̂, q̂, q̂′) the active components of the transition Ŝ ⇝ Ŝ′ by Abs-R.

Definition 5.2 (setname, setname′). Fix some total order <̂VA on abstract pid addresses. Fix
two disjoint families of set names A,A′ ⊂ S, A ∩ A′ = ∅, |A| = |A′| = | ̂PidAddr|. Let < be some
total order on S with A ∈ A, A′ ∈ A′ =⇒ A < A′. and let setname be an isomorphism from
(̂PidAddr, <̂VA) to (A, <) and setname′ an isomorphism from (̂PidAddr, <̂VA) to (A′, <). That is,

∀â, â′ ∈ ̂PidAddr, â = â′ ⇐⇒ setname(â) = setname(â′)
â <̂VA â′ ⇐⇒ setname(â) < setname(â′)
â <̂VA â′ ⇐⇒ setname′(â) < setname′(â′)

Definition 5.3 (defs). For a Core program M and a sound basic domains abstraction I, the
definition set ∆ = defs(M) is the smallest set of πActor definitions such that the following holds:

Consider the CFA semantics given I, (Ŝtate,⇝, αCFA(init(M))). For each Ŝ ∈ Ŝtate such
that αCFA(init(M)) ⇝∗ Ŝ, Ŝ = ⟨π̂, µ̂, σ̂v, σ̂k, For every transition Ŝ ⇝ Ŝ′ by the rule Abs-Send
with active components (ι̂, q̂, q̂′), where q̂ = ⟨ℓ : primop 'send'/2 (U,V), ρ̂, ĉ, t̂⟩ and ρ(U) = â, ∆
contains

Sendâ[s
′ | args] := s′!â⟨args⟩.0,

args = sort({setname(â′) : â′ ∈ pidaddrs(â)}, <)

For every abstract process state q̂ = ⟨f, ρ̂, ĉ, t̂⟩ ∈
∪

Im π̂,

• If f = ℓ : fail, ∆ contains
q̂[s | args] := τ .fail

• Else if there is no abstract transition in the CFA with active components (ι̂, q̂, q̂′), ∆ contains

q̂[s, s′ | args] := 0, f ∈ P̂id
q̂[s | args] := 0, otherwise

• Else if there is an abstract transition in the CFA with active components (ι̂, q̂, q̂′), ∆ contains

q̂[s, s′ | args] :=
∑

P, f ∈ P̂id

q̂[s | args] :=
∑

P, otherwise

In all of the above cases,

args = sort({setname(â) : â ∈ pidaddrs(q̂)}, <)

and P is the smallest set of sequential terms in T for which all of the following is true:
For each transition Ŝ ⇝ Ŝ′ by rule Abs-R with active components (ι̂, q̂, q̂′),

• If Abs-R is Abs-Name, Abs-Letrec, Abs-Push-Let, Abs-Push-Do, Abs-Bad-Apply,
Abs-Bad-Call, Abs-Bad-Case, Abs-Bad-Spawn, Abs-Bad-Send or Abs-Bad-Pop-
Let then P contains τ .q̂′[s | args].

25

• If Abs-R is Abs-Apply, Abs-Call, Abs-Pop-Let-Closure, Abs-Pop-Let-ValueAddr
or Abs-Pop-Do, then then P contains τ .q̂′[s | args′], where

args′ = sort({setname(â) : â ∈ pidaddrs(q̂′)}, <).

• If Abs-R is Abs-Pop-Let-Pid, where f = ι̂′ and â = n̂ewpa(ι̂, U, q̂), then P contains
τ .q̂′[s | args′], where

B1 · . . . ·Bm = sort({setname(â′) : â′ ∈ pidaddrs(q̂′)}, <),

args′ = T1 · . . . · Tm, Ti =


Bi ∪ {s′}, Bi ∈ args, Bi = setname(â)
Bi, Bi ∈ args, Bi ̸= setname(â)
{s′}, Bi ̸∈ args, Bi = setname(â)
∅ Bi ̸∈ args, Bi ̸= setname(â)

• If Abs-R is Abs-Case, where ⟨i, θ̂⟩ is the selected match, and guardi is the guard of the
matched pattern, then let

G = {(â′, â′′) : â′ = (ρ̂θ̂)(U), â′′ = (ρ̂θ̂)(V), â′, â′′ ∈ ̂PidAddr, U ׌ُُ V appears in guardi}

then P contains [conds].q̂′[s | args], where

conds = sort({A1 ∩A2 ̸= ∅ : (â′, â′′) ∈ G,A1 = setname(â′), A2 = setname(â′′)}, <∩)

where <∩ orders terms of the form A1 ∩A2 ̸= lexicographically by (A1, A2).

• If Abs-R is Abs-Receive, where ⟨i, â, θ̂, m̂⟩ is the selected match, and guardi is the guard
of the matched pattern, then let

G = {(â′, â′′) : â′ = (ρ̂θ̂)(U), â′′ = (ρ̂θ̂)(V), â′, â′′ ∈ ̂PidAddr, U ׌ُُ V appears in guardi}

setnameclausei
(â) =

{
setname′(â) setname(â) appears in a pattern in clausei
setname(â) otherwise

then P contains

s?â(recargs)[conds].q̂′[s | args′], where
recargs = sort({setname′(â′) : â′ ∈ pidaddrs(â)}, <)

â1 · . . . · âm = sort(pidaddrs(q̂′), <)

Bi = setname(âi)
B′

i = setname′(âi)

args’ = T1 · . . . · Tm, Ti =


Bi ∪B′

i, Bi ∈ args, B′
i ∈ recargs

Bi, Bi ∈ args, B′
i ̸∈ recargs

B′
i, Bi ̸∈ args, B′

i ∈ recargs
∅, Bi /∈ args, B′

i /∈ recargs
conds = sort({A1 ∩A2 ̸= ∅ : A1 = (â′, â′′) ∈ G, setnameclausei(â

′), A2 = setnameclausei(â
′′)}, <∩)

where <∩ orders terms of the form A1 ∩A2 ̸= lexicographically by (A1, A2).

• If Abs-R is Abs-Self, then P contains τ .q̂′[s, s | args].

• If Abs-R is Abs-Spawn, where π̂′ = π̂ ⊔ [ι̂ 7→ {q̂′}, ι̂′ 7→ {q̂′′}] then P contains

τ .νs′.(q̂′[s, s′ | args] ∥ q̂′′[s′ | args′]), where
args′ = sort({setname(â) : â ∈ pidaddrs(q̂′′)}, <)

26

• If Abs-R is Abs-Send, where f = ℓ : primop 'send'/2 (U,V), let a = setname(ρ̂(U)), â =
ρ̂(V). then P contains

let s′ ∈ a. (Sendâ[s
′ | args′] ∥ q̂′[s | args])

where args′ = sort({setname(â) : â ∈ pidaddrs(ρ̂(V))}, <).

These process definitions for M in hand, we are ready to define the abstraction function.

Definition 5.4 (name). Fix a family of names I ⊂ N with |I| = |Pid|. and let name be a bijection
from Pid to I.

Definition 5.5 (απ). Let S = ⟨π, µ, σv, σk⟩ ∈ State be a state in the concrete semantics of M.
Let domπ = {ι1, . . . , ιn}. Let s⃗ = name(ι1) · . . . · name(ιn). Then

απ(S) = νs⃗. (απ(π) ∥απ(µ))

απ(π) =
∏

ι∈domπ

απ(π(ι), ι)

απ(q, ι) =

{
q[name(ι),name(ι′) | args(q)], q = ⟨ι′, ρ, c, t⟩
q[name(ι) | args(q)], otherwise

απ(µ) =
∏

ι∈domµ

∏
a∈µ(i)

SendαCFA(a)[name(ι) | args(a)]

where

args(q) = T1 · . . . · Tm

â1 · . . . · âm = sort(pidaddrs(αCFA(q)), <̂VA)

Ti = {name(ι) : a = ⟨_,_,_, ι⟩ ∈ pidaddrs(q), αCFA(a) = âi},

args(a) = T1 · . . . · Tm

â1 · . . . · âm = sort(pidaddrs(αCFA(a)), <̂VA)

Ti = {name(ι) : a′ = ⟨_,_,_, ι⟩ ∈ pidaddrs(a), αCFA(a
′) = âi}.

Remark 5.5.1. (απ(init(M)),defs(M)) is a normalised πActor program in standard form.

Theorem 5.6 (soundness for πActor abstraction). Given a sound basic domains abstraction and
a Core program M, if S, S′ ∈ State such that init(M) → S → S′ and P ⊒ απ(S) then there exists
P ′ ⊒ απ(S

′) with P
∆
−↠

∗
P ′.

Proof. See appendix C

27

6 Applications of the πActor model and model checking
Now that we have constructed our πActor model and proved it sound, we would like to make use
of it. One can imagine using the model as a program meaning discovery tool, running it through
a π-calculus simulator like Stargazer[7] to explore the program’s communication topology. Our
primary concern here, however, is the automatic verification of safety properties, expressible by
negative coverability queries. Can we use the πActor model for this purpose?

Unfortunately, the π-calculus is Turing powerful, and so reachability and coverability are not
decidable for arbitrary π-calculus processes, and since there is an obvious encoding from the π-
calculus to πActor, we have that reachability and coverability are also not decidable for πActor.

Theorem 6.1. Coverability and reachability are, in general, undecidable for πActor programs.

Proof. either by encoding of π-calculus into πActor or the encoding of a two-counter machine
into πActor.

However, there is a class of π-calculus programs for which coverability is known to be decidable:
depth-bounded programs[18].

Definition 6.2 (nestν). The nesting of restrictions in a process, nestν , is given by

nestν(0) = nestν(fail) = nestν(s ∈ A) = nestν(M) = 0 nestν(νs.P) = 1 + nestν(P)

nestν(νA.P) = 1 + nestν(P) nestν(P ∥Q) = max(nestν(P),nestν(Q))

Definition 6.3 (depth). The depth of a term P ∈ T is the minimal nesting of restrictions across
all terms its congruence class; depth(P) = min({nestν(P ′) : P ≡ P ′})

Example 6.4. All of these processes are in the same congruence class:

P = νss′wxyz.(P[s | {w, x, y}, {w, z}] ∥Q[s′ | {x}, {s}]),
= νss′wxyz.νABCD(P[s |A,B] ∥w ∈ A ∥x ∈ A ∥ y ∈ A ∥w ∈ B ∥ z ∈ B ∥

∥Q[s′ |C,D] ∥x ∈ C ∥ s ∈ D),

P ′ = νsx.(νwyz.νAB.(P[s |A,B] ∥w ∈ A ∥x ∈ A ∥ y ∈ A ∥w ∈ B ∥ z ∈ B)
∥νs′.νCD.(Q[s′ |C,D] ∥x ∈ C ∥ s ∈ D)),

P ′′ = νsx.(νAB.(P[s |A,B] ∥νw.(w ∈ A ∥w ∈ B) ∥x ∈ A ∥νy.y ∈ A ∥νz.z ∈ B)
∥νs′.νCD.(Q[s′ |C,D] ∥x ∈ C ∥ s ∈ D)),

nestν(P) = 10, nestν(P ′) = 7, nestν(P ′′) = 5. P ′′ has the shallowest nesting of restrictions of any
process in its congruence class, so depth(P) = depth(P ′) = depth(P ′′) = 5.

Definition 6.5 (depth-boundedness). A term P ∈ T is depth-bounded if there exists some kD ∈ N
such that for every term P ′ ∈ T such that P ↠∗ P ′, depth(P ′) ≤ kD.

Theorem 6.6. If P ∈ T is depth-bounded, then the coverability problem is decidable for P .

Proof. Term embedding ⊆ can be shown to be a well quasi-ordering for depth-bounded π-calculus
terms, and so depth-bounded π-calculus can be shown to be a Well-Structured Transition System
(WSTS) for which coverability is decidable[13, 18, 22]. The proofs for the pure π-calculus can be
rewritten for our πActor with only minor adjustments.

Unfortunately, we also have the following result:

Theorem 6.7. It is undecidable to determine whether an arbitrary term P ∈ T is depth-bounded.

We therefore seek a class of terms for which depth-boundedness is decidable, and a way to coerce
our πActor model such that it is a member of this class. A good candidate may be hierarchical
programs. T -compatibile[10], programs are one such class. T -compatibility is a type system, where
typeable terms are depth bounded and typeability is decidable for arbitrary pi-calculus processes.
Such a type system could be easily modified to operate on πActor terms. Although there has

28

been no formal development of the idea, it has been proposed that T -compatibility could be used
to gracefully [11, p. 131].

A model checking procedure could be implemented by first running our analysis to generate
a πActor abstraction, then checking if the abstraction is T − compatible. If it is (and so the
abstraction is depth-bounded), we can encode the model into π-calculus and use a model checker
for depth bounded π-calculus such as Picasso[1] to verify the property.

29

InitPid

@01

@20
τ

@26
τ

@27
νPid26.@31

τ

@10

τ

@05
τ

@14
Pid26!'ping'

τ

@11

τ

Pid26

@31

@35
τ

@36
νPid35.@33

@37
?'ping'

@37
Pid35!'ping'

Pid35

@33

Figure 6: ACS for the program in Listing 2 using a 0-CFA with a 1-depth data abstraction and
a mailbox abstraction that ignores the order and number of messages received. Since in a 0-CFA
the time domain collapses to a singleton, we omit all reference to it.

7 Evaluation
7.1 Case studies
We start with a very simple example, to demonstrate the πActor abstraction, and the ways in
which it differs from our primary point of comparison, the ACS semantics.

Definition 7.1 (generated ACS). [9] Given a Core program M, a sound basic domains abstrac-
tion I = (T,M,D) and a sound data abstraction Dmsg = (M̂sg, αmsg, r̂esmsg) for messages, the
ACS generated by M, I and Dmsg is defined as

(P̂id, ̂ProcState, M̂sg, R, αCFA(ι0), αCFA(π0(ι0)))

where init(M) = ⟨π0, µ0, σv0 , σk0⟩ and the rules in R are defined by cases as follows. If for Ŝ, Ŝ′ in
the abstract semantics of M and Ŝ ⇝ Ŝ′ by the rule Abs-R with active components (ι̂, q̂, q̂′),

• If Abs-R is Abs-Receive where â is the abstract message matched by m̂match and m̂ ∈
r̂esmsg(σ̂v, â), then

ι̂ : q̂
?m̂−−→ q̂′ ∈ R

• If Abs-R is Abs-Send where â is the abstract message that is sent, ι̂′ is the pid-class of the
recipient and m̂ ∈ r̂esmsg(σ̂v, â), then

ι̂ : q̂
ι̂′!m̂−−−→ q̂′ ∈ R

• If Abs-R is Abs-Spawn where ι̂′ is the pid-class of the spawned process and q̂′′ is the process
that that becomes associated with it during the transition then

ι̂ : q̂
νι̂′.q̂′′−−−−→ q̂′ ∈ R

• Otherwise,
ι̂ : q̂

τ−→ q̂′ ∈ R

To reduce the complexity of our analysis, we always perform a global store widening on the
CFA, as described in [20]. We often use Soter[8] to verify ACS versions of presented examples.

30

Map send over a list of pids of arbitrary length

Consider first the program in Listing 2. Let M be the set containing only the module 'main'.
In our analysis, we use the basic domains abstraction I = (D0, T0,Mset). The generated ACS
is given diagrammatically in Figure 6. The πActor abstraction for the program is given by
(νs.@20[s | ∅],defs(M) where defs(M) is the following set of definitions:

@20[s |A] := τ .@10[s |A] + τ .@261[s |A]

@261[s |A] := τ .νs′.(@351[s′] ∥ @262[s, s′ |A])

@262[s, s′ |A] := τ .@20[s |A ∪ {s′}]
@10[s |A] := τ .@11[s] + τ .@05[s |A]

@11[s] := 0
@05[s |A] := let s′ ∈ A.(Sendâ[s

′] ∥ @10[s |A])

@351[s] := τ .νs′.(@33[s′] ∥ @352[s, s′])
@352[s, s′] := τ .@36[s | {s′}]
@36[s |B] := s?a.@37[s |B]

@37[s |B] := let s′ ∈ B.Sendb̂[S]

@33[s] := 0

Sendâ[s] := s!â.0
Sendb̂[s] := s!b̂.0

(in the above, we collapse definitions of the form Proc[s | args] := τ .Proc′[s | args] by replacing
all occurrences of Proc[s | args] with Proc′[s | args]. We perform this simplification procedure
on all πActor listings.)
Remark. The πActor abstraction is quite legible (once the definition collapse has been performed).
It discards information about control flow and makes clear the information about communication
between processes.

We can see from this example that the translation does just as poorly as the ACS with regards
to representing data structures of arbitrary depth; this is expected, since they use the same CFA
abstraction to model control flow. However, it performs better with respect to the identities in
Pid35. In essence, in the πActor abstraction each process maintains its own copy of each process
class, and can distinguish when sending between pids that it knows up to their pid class, whereas
in the derived ACS, there is a single global copy of each pid-class.

In this example, in the πActor abstraction, processes spawned at label @26 executing the
process definition @351 each have a distinct B set, which will only ever contain one name. When
that process eventually continues with the definition @37, we can be certain that the s′ chosen from
B will be the same s′ that was generated in the body of @351. We therefore have that processes
spawn at label @35 executing the definition @33 will only ever have one message waiting in their
mailbox; that is, the term @33[s] ∥Sendb̂[s] ∥Sendb̂[s] is uncoverable. In the ACS semantics, we
cannot even specify this property; the closest we can come is to ask whether the joint mailbox for
the pid-class Pid35 is bounded, which it is not; we can verify this by running Soter on the program
in Listing 7 (appendix D).

It is not all good news, however; due to the coarseness of the CFA with regards to data, the
initial process @20[s | ∅] is not able to distinguish between the processes spawned at @26 executing
@351. In the concrete semantics, we have that the mailboxes for processes spawned at @26 will only
ever contain one message, but in the πActor abstraction those mailboxes may contain arbitrarily
many messages.

The πActor program generated for this program is depth-bounded. To see this, consider the
reduction sequence:

νs.@20[s | ∅]↠ νs.@261[s | ∅]↠ νss′.(@262[s, s′ | ∅] ∥ @351[s′])↠ νss′.(@20[s | {s′}] ∥ @351[s′])
↠∗ νss′s′′.(@20[s | {s′, s′′}] ∥ @351[s′] ∥ @351[s′′])

≡ νA.(νs.@20[s |A] ∥νs′.(@351[s′] ∥ s′ ∈ A) ∥νs′′.(@351[s′′] ∥ s′′ ∈ A))

While the set A grows unboundedly in size, the process grows only in breadth, not depth.

31

module 'main'
['main'/0 = Main]
Main = @00: fun () ُ->

@01: let <Ping> =
@02: fun (Pid) ُ->

@03: let <M> = @04: 'ping' in
@05: primop 'send'/2 (Pid, M)

in
@06: let <Pids> = @07: apply GetList () in
@08: apply Map (Ping, Pids)

Map = @09: fun (F, L) ُ->
@10: case <L> of

<[X | Xs]> when 'true' ُ->
@12: let <Y> = @13: apply F (X) in
@14: let <Ys> = @15: apply Map (F, Xs) in
@16: [Y | Ys]

<_> when 'true' ُ-> @11: []
end

GetList = @17: fun () ُ->
@18: let =

@19: let <True> = 'true' in
@20: let <False> = 'false' in
@21: primop 'choice'/2 (True, False)

in
@22: case of

<'true'> when 'true' ُ-> @23: []
<_> when 'true' ُ->

@25: let <P> = @26: primop 'spawn'/1 (Proc) in
@27: let <Ps> = @28: apply GetList () in
@29: [P | Ps]

end
Proc = @30: fun () ُ->

@31: let <Proc_> = @32: fun () ُ-> @33: 'ok' end in
@34: let <Pid_> = @35: primop 'spawn'/1 (Proc_) in
@36: receive <A> when 'true' ُ->

@37: primop 'send'/2 (Pid_, A)
end

end

Listing 2: A program that maps a function that sends a ping message to its argument over a list
of pids of arbitrary length.

32

Locked resources

In the listings for this section, we omit labels where they are not important for the (condensed)
translation.

Consider now the program given in Listings 3 to 5. This program is a variant on the Soter
example reslock, but where many clients communicate with many resources. Note Core’s support
for the rich dynamic module system of Erlang; the 'reslock' module is parameterised on another
module whose name is given only at runtime.

Let M be the set that contains only the modules 'main', 'cell' and 'reslock'. Given the
basic domain abstraction I = (D0, T0,Mset), the πActor abstraction of this program, once it
has been simplified, might look like (νs.Main@01[s],defs(M)) where defsM contains the following
definitions:

Main@01
1[s] := τ .Main@01

1[s] + τ .Main@02
1[s]

Main@02
1[s] := τ .0 + τ .Reslock@01[s]

Main@01
2[s |C] :=

τ .Main@01
2[s |C] + τ .Main@02

2[s |C]
Main@02

2[s |C] :=
τ .Main@02

1[s] + τ .Main@03[s |C]
Main@03[s |C] :=

τ .νs′.(Reslock@08[s
′ |C] ∥Main0[s, s

′ |C])
Main0[s, s

′ |C] := τ .Main@02
2[s |C]

Main@04[s |C] := τ .Reslock@15[s |C]
Main@05[s |C] := τ .Reslock@13[s |C]
Main@06[s |C] := τ .Reslock@11[s |C]

Reslock@01[s] :=
τ .νs′.(Reslock@02[s

′] ∥Reslock0[s, s
′])

Reslock0[s, s
′] := τ .Main@01

2[s | {s}]
Reslock@02[s] := s?a(S′

2).Reslock@03[s |S′
2]

Reslock@03[s |S2] := Reslock1[s, s |S2]
Reslock1[s, s

′ |S2] := Reslock@04[s | {s′}, S2]
Reslock@04[s |S0, S2] :=

let s′ ∈ S2.(Sendb[s
′ |S0] ∥Reslock@05[s |S0])

Reslock@05[s |S2] :=
s?c(S′

3)[S2 ∩ S′
3 ̸= ∅].Reslock@02[s]

+s?d(S′
5)[S2 ∩ S′

5 ̸= ∅].Reslock@06[s |S2, S
′
5]

+s?e(S′
4)[S2 ∩ S′

4 ̸= ∅].Reslock@05[s |S2]
Reslock@06[s |S2, S5] :=

τ .Reslock2[s, s |S2, S5]
Reslock2[s, s

′ |S2, S5] :=
τ .Reslock@07[s | {s′}, S2, S5]

Reslock@07[s |S1, S2, S5] :=
let s′ ∈ S2.(Sendf[s

′ |S1] ∥Reslock@05[s |S2])
+let s′ ∈ S2.(Sendg[s

′ |S1] ∥Reslock@05[s |S2])

Reslock@08[s |C] := τ .Reslock3[s, s |C]
Reslock3[s, s

′ |C] := τ .Reslock@09[s | {s′}, C]
Reslock@09[s |S2, C] :=

let s′ ∈ C.(Senda[r |S2] ∥Reslock@09[s |C])
Reslock@10[s |C] :=
s?b(S′

0)[R ∩ S′
0 ̸= ∅].Main@04[s, s |C]

Reslock@11[s |C] := τ .Reslock4[s, s |C]
Reslock4[s, s

′ |C] := τ .Reslock@12[s | {s′}, C]
Reslock@12[s |S3, C] := let s′ ∈ C.Sendc[s

′ |S3]
Reslock@13[s |C] := τ .Reslock5[s, s |C]
Reslock5[s, s

′ |C] := τ .Reslock@14[s | {s′}, C]
Reslock@14[s |S4, C] :=

let s′ ∈ C.(e[s′ |S4] ∥Main@06[s |C])
Reslock@15[s |C] := τ .Reslock7[s, s |C]
Reslock7[s, s

′ |C] := τ .Reslock@16[s | {s′}, C]
Reslock@16[s |S5, C] :=

let s′ ∈ C.(Sendd[s
′ |S5] ∥Reslock@17[s |C])

Reslock@17[s |C] :=
s?f(C ′)[C ∩ C ′ ̸= ∅].Main@05[s |C ∪ C ′]
+s?g(C ′)[C ∩ C ′ ̸= ∅].Main@05[s |C ∪ C ′]

We would like to verify that no two processes are executing the critical section at the same time,
if those two processes are communicating with the same resource. As with the previous example,
the ACS does not give us the means to specify this property. The closest it can get is to ask whether
any two processes with pid-class Main@03 are executing the critical section simultaneously, which
of course there are even in safe runs of the program. The appropriate query for the πActor model
is to ask whether any two processes are executing process definitions in the critical section with
C arguments that intersect, e.g. Main@04[s | {c}] ∥Reslock@14[s

′ | {c}] is uncoverable, for any
pair of process definitions in the critical section. The πActor model can also be used to verify
depth-boundedness of mailboxes for the incrementing processes, which for similar reasons cannot
be verified on the ACS.

Observe that we can verify these properties because we make use of both halves of mobility:

33

module 'reslock'
['new'/2 = New
, 'acquire'/1 = Acquire
, 'release'/1 = Release
, 'tell'/2 = Tell
, 'ask'/2 = Ask
]

New = fun (ModName, InitState) ُ->
let <Proc> = fun () ُ-> apply Unlocked (ModName, InitState) in
@01: primop 'spawn'/1 (Proc)

Unlocked = fun (ModName, State) ُ->
@02: receive <{'acquire', Pid}> when 'true' ُ->

let <Msg> = {'acquired', @03: primop 'self'/0 ()} in
do @04: primop 'send'/2 (Pid, Msg)
apply Locked (ModName, State, Pid)

end

Locked = fun (ModName, State, Owner) ُ->
@05: receive

<{'release', Pid}> when Pid ׌ُُ Owner ُ->
apply Unlocked (ModName, State)

<{'request', Pid, Req}> when Pid ׌ُُ Owner ُ->
let <Result> = call ModName : 'handle_request'/2 (State, Req) in
case <Result> of

<{'ok', NewState}> when 'true' ُ->
apply Locked (ModName, NewState, Owner)

<{'reply', NewState, Reply}> when 'true' ُ->
let <Msg> = {'reply', @06: primop 'self'/0 (), Reply} in
do @07: primop 'send'/2 (Owner, Msg)
apply Locked (ModName, NewState, Owner)

end
end

Acquire = fun (Res) ُ->
do @09: primop 'send'/2 (Res, {'acquire', @08: primop 'self'/0 ()})
@10: receive <{'acquired', Res_}> when Res_ ׌ُُ Res ُ-> 'ok' end

Release = fun (Res) ُ->
do @12: primop 'send'/2 (Res, {'release', @11: primop 'self'/0 ()})
'ok'

%% Sends a request without waiting for a reply.
Tell = fun (Res, Req) ُ->

do @14: primop 'send'/2 (Res, {'request', @13: primop 'self'/0 (), Req})
'ok'

%% Sends a request and waits for a reply.
Ask = fun (Res, Req) ُ->

do @16: primop 'send'/2 (Res, {'request', @15: primop 'self'/0 (), Req})
@17: receive <{'reply', Res_, Reply}> when Res_ ׌ُُ Res ُ-> Reply end

end

Listing 3: A module depicting a locked resource behaviour.

34

module 'cell'
['handle_request'/2 = Handle
, 'new'/1 = New
, 'acquire'/1 = Acquire
, 'release'/1 = Release
, 'read'/1 = Read
, 'write'/2 = Write
]
Handle = fun (State, Req) ُ->

case <Req> of
<'read'> when 'true' ُ-> {'reply', State, State}
<{'write', NewState}> when 'true' ُ-> {'ok', NewState}

end
New = fun (InitValue) ُ-> call 'reslock' : 'new'/2 ('cell', InitValue)
Acquire = fun (Cell) ُ-> call 'reslock' : 'acquire'/2 (Cell)
Release = fun (Cell) ُ-> call 'reslock' : 'release'/2 (Cell)
Read = fun (Cell) ُ-> call 'reslock' : 'ask'/2 (Cell, 'read')
Write = fun (Cell, X) ُ-> call 'reslock' : 'tell'/2 (Cell, {'write', X})

end

Listing 4: A module that instantiates the behaviour in the 'reslock' module with a read/write
cell as the enclosed resource.

module 'main'
['main'/0 = Main]
Main = fun () ُ->

let <N> = apply GetPeano () in
apply Repeat (N, fun () ُ->

let <Cell> = call 'cell' : 'new'/1 ('zero') in
let <M> = apply GetPeano () in
apply Repeat (M, fun () ُ->

@03: primop 'spawn'/1 (fun ُ-> apply Inc (cell))
))

GetPeano = fun () ُ->
@01: case <primop 'choice'/2 ('true', 'false')> of

<'true'> when 'true' ُ-> 'zero'
<_> when 'true' ُ-> {'succ', apply GetPeano ()}

end
% Performs N calls of the nullary function F
Repeat = fun (N, F) ُ->

@02: case <N> of
<{'succ', M}> when 'true' ُ->

do apply F ()
call Repeat (M, F)

<_> when 'true' ُ-> 'ok'
end

Inc = fun (Cell) ُ->
do call 'cell' : 'acquire'/1 (Cell)
%% begin critical section
@04: let <X> = call 'cell' : 'read'/1 (Cell) in
@05: do call 'cell' : 'write'/2 (Cell, {'succ', X})
%% end critical section
@06: call 'cell' : 'release'/1 (Cell)

end

Listing 5: Main module for the reslock example.

35

processes can learn the names of other processes, but also forget them. Consider the πActor
analogue of the Locked/Unlocked routine, process definitions Reslock@02 through Reslock@07.
When a process makes a successful transition from Reslock@02, it gains knowledge of the set name
S2, representing the set of pids that the resource considers to own the lock. When it transitions
from Reslock@05 be receiving a c message, it forgets the set S2. We can use this to show that a
resource process only ever considers one process to be the owner of the lock at any time.

This πActor program is also bounded in depth. At a point in the execution of the program,
the set of processes looks something like this: the root process has knowledge of the pid of at most
one cell process, and spawns new incrementer processes, immediately forgetting their ids. The
resource process is either unlocked, and so knows only its own id, or locked, and knows the id of
one incrementer process. There are unboundedly many incrementer processes for each resource,
all of which know the pid for that resource. So the term looks something like

νri.(νs0.Root[s0 | {ri}] ∥νtij .(Res[ri | {tij}] ∥ Inc[tij | {ri}]) ∥
∏

k ̸=j νtik.Inc[tik | {ri}])
∥
∏

k ̸=i νrk.(νtkj .(Res[rk | {tkj}] ∥ Inc[tkj | {rk}]) ∥
∏

l ̸=j νtkl.Inc[tkj | {rk}])

Which, while unbounded in breadth, is certainly bounded in depth.

A note about value addresses

Suppose a process with id pid0 is running Foo:

Foo = fun () ُ->
receive <A> when 'true' ُ->

receive when 'true' ُ->
apply F (A, B)

end
end

We would like to distinguish in the abstraction between the pid stored at A and the pid stored
at B. In most cases we can, but suppose the two are stored at the same value address; perhaps they
are being sent by a process running Bar with environment ρ[P 7→ a], store σv[a 7→ pid0]:

Bar = fun (P) ُ->
let <Q> = primop 'spawn'/1 (G) in
do primop 'send'/2 (P, Q)
apply Bar (P)

In the current translation, this gives rise to the following process definitions:

Foo0[s] := s?q(Q′).Foo1[s |Q′]

Foo1[s |Q] := s?q(Q′).Foo2[s |Q ∪Q′]

Foo2[s |Q] := τ .F[s |Q]

Bar0[s |P] := τ .νs′.(G[s′]|Bar1[s |P, {s′}])
Bar1[s |P,Q] := let s′ ∈ P.(Sendq[s

′ |Q].Bar2[s |P,Q])

Bar2[s |P,Q] := τ .Bar0[s |P]

Notice that the continuation as F in the definition of Foo2 has only one set-valued argument;
the distinction between the pids received first and second is removed. This distinction might be
worth preserving. For instance, suppose F is defined along the lines of

F = fun (X, Y) ُ-> if (X ׌ُُ Y) then fail else 'ok' end

where
if guard then ℓ1 : e1 else ℓ2 : e2 end

36

is equivalent to
let <U∗

1 > = 'ok' in
case <U∗

1 > of
<'ok'> when guard ُ-> ℓ1 : e1
<'ok'> when 'true' ُ-> ℓ2 : e2

end
where U∗

1 fresh.
The source program is clearly error-free, since we send each pid only once and no two pids are

equal. But the translation where
F[s |Q] := [Q ∩Q ̸= ∅].fail + τ . · · ·

is clearly not.
In attempting to solve this problem, we notice that value addresses serve two purposes in the

concrete semantics: they represent both the shape of the data and the location where it is stored.
We can decouple these purposes by increasing the size of the value address space to become

PidAddr = (Pid × L× V× Time)2 × Pid
PidAddr = (Pid × L× V× Time)2 × Data × ℘̄(PidAddr)

where the first Pid×L×V×Time represents the pid, program location, variable and time at which
the value was first stored and the second Pid×L×V×Time represents the pid, program location,
variable and time at which the value was most recently assigned. We illustrate by demonstrating
the new assignment process. Consider

@01: let <X> = @02: primop 'spawn'/1 (F) in
@03: let <Y> = @04: {X} in
@05: 'ok'

Then we have the following trace in the concrete semantics:
⟨π[ι 7→ ⟨@01, ρ, c, t⟩], µ, σv, σk⟩

→⟨π[ι 7→ ⟨@02, ρ, ⟨ι, @01, ρ, t⟩, t], µ, σv, σ
(1)
k = σk[⟨ι, @01, ρ, t⟩ 7→ KLet⟨@01, X, @03, ρ, c⟩]⟩

→⟨(π(1) = π[ι′ 7→ ...])[ι 7→ ⟨ι′, ρ, ⟨ι, @01, ρ, t⟩, t⟩], µ, σv, σ
(1)
k ⟩

→⟨π(1)[ι 7→ ⟨@03, ρ(1) = ρ[X 7→ ⟨ι, @01, X, t, ι, @01, X, t, ι′⟩], c, t⟩],
µ,

σ
(1)
v = σv[⟨ι, @01, X, t, ι, @01, X, t, ι′⟩ 7→ ι′],

σ
(1)
k ⟩

→⟨π(1)[ι 7→ ⟨@04, ρ(1), ⟨ι, @03, ρ, t⟩, t⟩], µ, σ(1)
v , σ

(2)
k = σ

(1)
k [⟨ι, @03, ρ, r⟩ 7→ KLet⟨@03, Y, @05, ρ, c⟩⟩]⟩

→⟨π(1)[ι 7→ ⟨@05, ρ(1)[X 7→ ⟨ι, @03, Y, t, ι, @03, Y, t, ι′⟩], c, t⟩],
µ,

σ
(1)
v [⟨ι, @03, Y, t, ι, @03, Y, t, {ι′}, {ι′}⟩ 7→ ⟨@04, [X 7→ ⟨ι, @01, X, t, ι, @03, Y, t, ι′⟩]⟩,

⟨ι, @01, X, t, ι, @03, Y, t, ι′⟩ 7→ ι′],

σ
(2)
k ⟩

Notice that when the the second assignment happens, the value addresses necessary to reconstruct
the value being stored at Y are copied, and the data stored at them duplicated.

Using this new address allocation scheme, the translation above becomes
Foo0[s] := s?q1(Q

′
0).Foo1[s |Q′

0]

Foo1[s |Q0] := s?q2(Q
′
1).Foo2[s |Q0, Q

′
1]

Foo2[s |Q0, Q1] := τ .F[s |Q0, Q1]

Bar0[s |P] := τ .νs′.(G[s′]|Bar1[s |P, {s′}])
Bar1[s |P,Q] := let s′ ∈ P.(Sendq[s

′ |Q].Bar2[s |P,Q])

Bar2[s |P,Q] := τ .Bar0[s |P]

F[s |Q0, Q1] := [Q0 ∩Q1 ̸= ∅].fail + τ . · · ·

37

which is error-free. Formalising this new address allocation procedure and exploring more ways
that we can exploit address allocation to gain precision is left as future work.

7.2 Complexity
The price we pay for such a precise abstraction is a drastic increase in complexity. If we use a
global store widening, we can compute the πActor abstraction in cubic time with respect to the
size of the program[20], the same time complexity as the computation of an ACS. However, model
checking for the πActor abstraction (when the relevant problem is even decidable), is currently
much less efficient. To the best of our knowledge, no efficient algorithm for computing coverability
for depth-bounded systems has been discovered and the exact complexity for checking coverability
for depth bounded systems is an open problem, but exponential space is a lower bound[22].

7.3 Related work
In our analysis, we use abstract interpretation to bootstrap our way to a more powerful infinite-
state abstraction, which we model-check using an infinite-state procedure. In [4], Colby presents
a technique based purely on abstract interpretation that gives rise to a non-uniform analysis (an
analysis more precise with respect to pids than our CFA) for concurrent ML. This technique is
only effective in programs where the lifetime of processes is clearly linked to a recursive structure
in the program.

In [21, 12], powerful frameworks are presented for the abstract interpretation of languages sim-
ilar to the π-calculus which support non-uniform analyses. Typically, unique pids are represented
by sequences of symbols analogous to contours. Standard abstraction techniques are applied until
the only source of unboundedness in the model is the length of these contours, which are then
abstracted using numerical domains. Such approaches do not yield an abstract model, giving only
a yes/don’t know answer. However, in principle they could be applied to the πActor programs
produced by our analysis.

[15] presents a type system that is able to decide deadlocks for the π-calculus, which is im-
plemented in the TyPiCal tool. In principle, this tool can be applied to πActor models, which
amounts to applying the TyPiCal approach to Erlang.

Session types are a very successful approach to specifying and verifying concurrent communi-
cation protocols. However, this requires the developer to specify the global protocol that a system
should implement, a global type. This is a detailed description of the sequence of communica-
tions between the parties involved in the protocol. A well-formed global type implies a number
of desirable properties of the protocol. The global type is projected into local types, a type that
specifies the actions each single party should implement. The code implementing each party can
be type-checked against the local type; if the check is passed, then the whole program conforms
to the global type, inheriting its desirable properties. Recently, there has been some effort in
finding ways to exploit session types for program analysis/verification by extracting a session type
from the program to be verified. [17, 16] apply this approach to Go programs. The first of these
extracts types that are a variant of CCS, a predecessor to π-calculus without mobility, and hence
models pids more coarsely than our approach. The second is restricted to programs that are es-
sentially finite state, whereas our approach produces a more precise model from any program and
can precisely analyse infinite-state models thanks to depth-bounded model checking.

Our analysis is essentially a whole-program approach to verification, and is not very scalable.
One can use a modular approach to improve scalability. A popular such approach is Rely/Guar-
antee, where components of a program are given a Rely condition specifying the changes in the
shared environment that the component can tolerate while continuing to function correctly and a
Guarantee condition specifying the effects the component has on the shared environment. In the
actor model, the Rely/Guarantee framework could be instantiated by considering the contents of
actor’s mailboxes as the environment. The rely condition for an actor’s behaviour would specify
conditions that should hold on the contents of its mailbox and the guarantee condition would
specify the effects of the actor in terms of messages sent and new actors spawned. In the context
of abstract interpretation, this approach simply leads to more efficient methods of computing the
fixed point for the CFA[5].

38

8 Conclusion
Our aim was to develop a sound abstraction for Erlang that is precise with respect to process
identities, but for which many safety properties remain decidable. We have been by and large
successful in this endeavour.

We have created πActor, a variant of the π-calculus designed for the express purpose of mod-
elling Erlang programs, and shown that a number of interesting safety properties are expressible
in terms of coverability queries on πActor programs.

We have formally specified a procedure for extracting a πActor program from a Core pro-
gram, and proved it to be a sound abstraction of the semantics of the Core program.

We illustrated how the concept of depth-boundedness applies to our πActor model and showed
that for non-trivial and relevant example programs, interesting coverability queries are decidable
on our model. This includes mutual exclusion for the multiple locked resources example, and
mailbox boundedness for a class of programs in the map send example. As such, we have enabled
the automatic verification of safety properties of Erlang programs which cannot be expressed on
Actor Communicating Systems or other equivalent formalisms. To the best of our knowledge, our
approach offers an analysis strategy that is able to be precise with respect to actor addresses to a
degree that is superior to any other analysis for the actor model.

8.1 Future work
At present, no tool has been implemented that performs either the model generation procedure
or the automatic verification using our model. The implementation of such a tool is left as future
work.

In section 7, we hint at a technique for coercing πActor programs into depth boundedness
using T -compatibility. Investigating, formalising and implementing this technique is future work.
Alternatively, we could investigate alterations to the CFA that cause it to produce a πActor
model that is always verifiable.

The πActor model puts us in a good position here to explore the trade-offs between abstraction
of the model and precision of properties: the pi-model gives us a precise abstraction, but is not
always verifiable. The simpler the source program, the more likely the πActor model is to be
in some class of systems with rich decidable properties. For complex programs for which the
properties we are interested in are not decidable for the πActor model, all hope might not be
lost. We notice the following interesting property: If one deletes all restrictions from the πActor
model (or equivalently, moves all restrictions to the highest level), we arrive at a model extremely
similar to the ACS, for which, for example, LTL is decidable. It may be possible, by changing the
locations of the restrictions in the πActor program (making sure to perform such a procedure in
a sound way), to slide between the high precision but low decidability/feasibility of the πActor
model and the low precision but high decidability/feasibility of the ACS. Exploring this further is
another direction for future work.

39

9 References
[1] PICASSO: a PI-CAlculus-based Static SOftware analyzer. https://dzufferey.github.io/

picasso/pub.html.

[2] Luca Aceto, Kim G Larsen, and Anna Ingólfsdóttir Brics. An Introduction to Milner’s CCS.
BRICS, Department of Computer Science, Aalborg University, 2005. http://www.cs.auc.dk/
�luca/SV/intro2ccs.pdf.

[3] Richard Carlsson, Björn Gustavsson, Erik Johansson, Thomas Lindgren, Sven-Olof Nyström,
Mikael Pettersson, and Robert Virding. Core Erlang 1.0.3 language specification. 2004.

[4] Christopher Colby and Christopher. Analyzing the communication topology of concurrent
programs. In Proceedings of the 1995 ACM SIGPLAN symposium on Partial evaluation and
semantics-based program manipulation - PEPM ’95, pages 202–213, New York, New York,
USA, 1995. ACM Press. http://portal.acm.org/citation.cfm?doid=215465.215592.

[5] Patrick Cousot and Radhia Cousot. Modular Static Program Analysis. pages 159–179.
Springer, Berlin, Heidelberg, 2002. http://link.springer.com/10.1007/3-540-45937-5_13.

[6] Ugo de’Liguoro and Luca Padovani. Mailbox Types for Unordered Interactions. 1 2018.
http://arxiv.org/abs/1801.04167.

[7] Emanuele D’Osualdo. Stargazer: A Pi-Calculus Simulator.

[8] Emanuele D’Osualdo, Jonathan Kochems, and C.-H. L. Ong. Soter: an Automatic Safety
Verifier for Erlang. In AGERE! ’12, pages 137–140. ACM, 2012.

[9] Emanuele D’Osualdo, Jonathan Kochems, and C. H. Luke Ong. Automatic Verification of
Erlang-Style Concurrency. 3 2013. http://arxiv.org/abs/1303.2201http://dx.doi.org/10.
1007/978-3-642-38856-9_24.

[10] Emanuele D’Osualdo and Luke Ong. A type system for proving depth boundedness in the
pi-calculus. 2 2015. http://arxiv.org/abs/1502.00944.

[11] Emanuele D’Osualdo. Verification of Message Passing Concurrent Systems. PhD thesis,
University of Oxford, 2015.

[12] Jérôme Feret. Abstract interpretation of mobile systems. The Journal of Logic and Algebraic
Programming, 63(1):59–130, 4 2005. https://www.sciencedirect.com/science/article/pii/
S1567832604000062.

[13] A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere! Theoretical
Computer Science, 256(1-2):63–92, 4 2001. http://linkinghub.elsevier.com/retrieve/pii/
S030439750000102X.

[14] R. M. Karp and R. E. Miller. Parallel Program Schemata. Journal of Computer and system
Sciences, page 147–195, 1969.

[15] Naoki Kobayashi and Naoki. A New Type System for Deadlock-Free Processes. In Proceedings
of the 17th international conference on Concurrency Theory, pages 233–247. Springer-Verlag,
2006. http://link.springer.com/10.1007/11817949_16.

[16] Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. A static verification
framework for message passing in Go using behavioural types. In Proceedings of the 40th
International Conference on Software Engineering - ICSE ’18, pages 1137–1148, New York,
New York, USA, 2018. ACM Press. http://dl.acm.org/citation.cfm?doid=3180155.3180157.

[17] Julien Lange, Nicholas Ng, Bernardo Toninho, Nobuko Yoshida, Julien Lange, Nicholas Ng,
Bernardo Toninho, and Nobuko Yoshida. Fencing off go: liveness and safety for channel-based
programming. ACM SIGPLAN Notices, 52(1):748–761, 1 2017. http://dl.acm.org/citation.
cfm?doid=3093333.3009847.

40

https://dzufferey.github.io/picasso/pub.html
https://dzufferey.github.io/picasso/pub.html
http://www.cs.auc.dk/∼luca/SV/intro2ccs.pdf.
http://www.cs.auc.dk/∼luca/SV/intro2ccs.pdf.
http://portal.acm.org/citation.cfm?doid=215465.215592
http://link.springer.com/10.1007/3-540-45937-5_13
http://arxiv.org/abs/1801.04167
http://arxiv.org/abs/1303.2201 http://dx.doi.org/10.1007/978-3-642-38856-9_24
http://arxiv.org/abs/1303.2201 http://dx.doi.org/10.1007/978-3-642-38856-9_24
http://arxiv.org/abs/1502.00944
https://www.sciencedirect.com/science/article/pii/S1567832604000062
https://www.sciencedirect.com/science/article/pii/S1567832604000062
http://linkinghub.elsevier.com/retrieve/pii/S030439750000102X
http://linkinghub.elsevier.com/retrieve/pii/S030439750000102X
http://link.springer.com/10.1007/11817949_16
http://dl.acm.org/citation.cfm?doid=3180155.3180157
http://dl.acm.org/citation.cfm?doid=3093333.3009847
http://dl.acm.org/citation.cfm?doid=3093333.3009847

[18] R Meyer. On boundedness in depth in the pi-calculus. In Foundations of Software Science
and Computation Structures, pages 477–489, 2008.

[19] Robin Milner and David Walker. A Calculus of Mobile Processes, I.
1992. https://ac.els-cdn.com/0890540192900084/1-s2.0-0890540192900084-main.
pdf?_tid=11c29b64-003d-11e8-a101-00000aacb360&acdnat=1516712472_
00171fbc66e1863f2e06a06d1d28f632.

[20] David Van Horn and Matthew Might. Abstracting Abstract Machines. In International
Conference on Functional Programming, pages 51–62, 7 2010. http://arxiv.org/abs/1007.
4446.

[21] Arnaud Venet. Automatic Determination of Communication Topologies in Mobile Sys-
tems. pages 152–167. Springer, Berlin, Heidelberg, 1998. http://link.springer.com/10.
1007/3-540-49727-7_9.

[22] Thomas Wies, Damien Zufferey, and Thomas A. Henzinger. Forward Analysis of Depth-
Bounded Processes. In Proceedings of the 13th international conference on Foundations of
Software Science and Computational Structures, pages 94–108. Springer-Verlag, 2010. http:
//link.springer.com/10.1007/978-3-642-12032-9_8.

41

https://ac.els-cdn.com/0890540192900084/1-s2.0-0890540192900084-main.pdf?_tid=11c29b64-003d-11e8-a101-00000aacb360&acdnat=1516712472_00171fbc66e1863f2e06a06d1d28f632
https://ac.els-cdn.com/0890540192900084/1-s2.0-0890540192900084-main.pdf?_tid=11c29b64-003d-11e8-a101-00000aacb360&acdnat=1516712472_00171fbc66e1863f2e06a06d1d28f632
https://ac.els-cdn.com/0890540192900084/1-s2.0-0890540192900084-main.pdf?_tid=11c29b64-003d-11e8-a101-00000aacb360&acdnat=1516712472_00171fbc66e1863f2e06a06d1d28f632
http://arxiv.org/abs/1007.4446
http://arxiv.org/abs/1007.4446
http://link.springer.com/10.1007/3-540-49727-7_9
http://link.springer.com/10.1007/3-540-49727-7_9
http://link.springer.com/10.1007/978-3-642-12032-9_8
http://link.springer.com/10.1007/978-3-642-12032-9_8

“That’s all folks!”
– Brian Mitchell

A Concrete reduction rules for the Core semantics
Each rule specifies a transition ⟨π, µ, σv, σk⟩ → ⟨π′, µ′, σ′

v, σ
′
k⟩. Unless otherwise stated in the

“then” part of the rule, we have that π = π′, µ = µ′, σv = σ′
v and σk = σ′

k. We let the variables
v, vi ∈ e range over irreducible expressions, excluding valuelists and fail; that is, atom, nil, tuple,
list and lambda expressions. We also assume a known label ⊗ : fail.

The rule Case depends on the helper function

cmatch : (Pat∗ × Guard)∗ × V∗ × Env × ValueStore → (N× (V ⇀ ValueAddr))⊥

which takes a sequence of clauses, a value address and a value store and if there is a match returns
the index of the matched clause in the sequence and a substitution witnessing the match. If there
is no match, cmatch returns ⊥. The full definition is given below.

Definition A.1 (cmatch). cmatch is given in terms functions cmatch′, pmatch, gmatch and
unifiable.

cmatch(clauses,names, ρ, σv) = cmatch′(1, clauses,names, ρ, σv)

cmatch′(j, ϵ,names, ρ, σv) = ⊥
cmatch′(j, (pat1 · . . . · patn, guard) · clauses, U1 · . . . · Un, ρ, σv)

=


⟨j, ρ1 ⊎ · · · ⊎ ρn⟩, ⊥ ̸= ρi = pmatch(pati, ρ(Ui), σv),

gmatch(guard, ρ ⊎ ρ1 ⊎ · · · ⊎ ρn, σv)

cmatch′(j + 1, clauses,names, ρ, σv), otherwise
pmatch(U, a, σv) = [U 7→ a]

pmatch(U = pat, a, σv) =

{
[U 7→ a] ⊎ ρ ⊥ ̸= ρ = pmatch(pat, a, σv)

⊥ otherwise

pmatch(atom, a, σv) =

{
[] ⟨ℓ : atom, []⟩ = σv(a)

⊥ otherwise

pmatch([], a, σv) =

{
[] ⟨ℓ : [], []⟩ = σv(a)

⊥ otherwise

pmatch({pat1, . . . ,patn}, a, σv) =


ρ1 ⊎ · · · ⊎ ρn ⟨ℓ : {V1, . . . , Vn}, ρ⟩ = σv(a),

⊥ ̸= ρi = pmatch(pati, ρ(Vi), σv)

⊥ otherwise

pmatch([pat1|pat2], a, σv) =


ρ1 ⊎ ρ2 ⟨ℓ : [V1|V2], ρ⟩ = σv(a),

⊥ ̸= ρi = pmatch(pati, ρ(Vi), σv)

⊥ otherwise
gmatch(atom, ρ, σv) = (atom = 'true')

gmatch(U ׌ُُ V, ρ, σv) = unifiable(ρ(U), ρ(V), σv)

gmatch(guard1 ֽُ guard2, ρ, σv) = gmatch(guard1, ρ, σv) ∧ gmatch(guard2, ρ, σv)

unifiable(a, a′, σv) = (σv(a) = σv(a
′))

∨(σv(a) = ⟨ℓ : atom, []⟩ ∧ σv(a
′) = ⟨ℓ′ : atom, []⟩)

∨(σv(a) = ⟨ℓ : [], []⟩ ∧ σv(a
′) = ⟨ℓ′ : [], []⟩)

∨(σv(a) = ⟨ℓ : {U1, . . . ,Un}, ρ⟩
∧σv(a

′) = ⟨ℓ′ : {V1, . . . ,Vn}, ρ′⟩
∧(∀i ∈ {1 . . . n}.unifiable(ρ(Ui), ρ

′(Vi), σv))
∨(σv(a) = ⟨ℓ : [U1|U2], ρ⟩

∧σv(a
′) = ⟨ℓ′ : [V1|V2], ρ′⟩

∧unifiable(ρ(U1), ρ
′(V1), σv)

∧unifiable(ρ(U2), ρ
′(V2), σv))

i

Name

if π(ι) = ⟨ℓ : U, ρ, c, t⟩
then π′ = π[ι 7→ ⟨ρ(U), ρ, c, t⟩]

Apply

if π(ι) = ⟨ℓ, ρ, c, t⟩
ℓ : apply U (V1, . . . ,Vn)

σv(ρ(U)) = ⟨ℓ′, ρ′⟩
ℓ′ : fun (V ′

1, . . . ,V
′
n) ُ-> ℓ′′ end

ρ′′ = ρ′[V ′
1 7→ ρ(V1), . . . , V

′
n 7→ ρ(Vn)]

then π′ = π[ι 7→ ⟨ℓ′′, ρ′′, c, tick(ℓ, t)⟩]

Call

if π(ι) = ⟨ℓ, ρ, c, t⟩
ℓ : call U1 : U2 (V1, . . . ,Vn)
σv(ρ(U1)) = ⟨ℓ : atom1, []⟩
σv(ρ(U2)) = ⟨ℓ : atom2, []⟩
ρ′ = modenv(M, atom1)

ℓ′ = exports(M, atom1, atom2)

ℓ′ : fun (V ′
1, . . . ,V

′
n) ُ-> ℓ′′ end

ρ′′ = ρ′[V ′
1 7→ ρ(V1), . . . , V

′
n 7→ ρ(Vn)]

then π′ = π[ι 7→ ⟨ℓ′′, ρ′′, c, tick(ℓ, t)⟩]

Letrec

if π(ι) = q = ⟨ℓ, ρ, c, t⟩
ℓ : letrec U1 = ℓ1; . . . ; Un = ℓn in ℓ′

ai = newca(ι, Ui, q, fun, shrink(ρ, ℓi))
ρ′ = ρ[U1 7→ a1, . . . , Un 7→ an]

then π′ = π[ι 7→ ⟨ℓ′′, ρ′, c, t⟩]
σ′
v = σv[a1 7→ ⟨ℓ1, shrink(ρ′, ℓ1)⟩,

...
an 7→ ⟨ℓn, shrink(ρ′, ℓn)⟩]

Case

if π(ι) = ⟨ℓ, ρ, c, t⟩
ℓ : case <U1, . . . ,Un> of

<pat11, . . . ,pat1n> when guard1 → ℓ1;
...

<patm1, . . . ,patmn> when guardm → ℓm
end

clausei = (pati1 · . . . · patin, guardi)

clauses = clause1 · . . . · clausem
cmatch(clauses, U1 · . . . · Un, ρ, σv) = ⟨i, ρ′⟩

then π′ = π[ι 7→ ⟨ℓi, ρ ⊎ ρ′, c, t⟩]

Receive

if π(ι) = ⟨ℓ, ρ, c, t⟩
ℓ : receive

<pat1> when guard1 → ℓ1;
...

<patm> when guardm → ℓm
end

clausei = (pati, guardi)

clauses = clause1 · . . . · clausem
mmatch(clauses, µ(ι), ρ, σv) = ⟨i, a, ρ′,m⟩

then π′ = π[ι 7→ ⟨ℓi, ρ ⊎ ρ′, c, t⟩]
µ′ = µ[ι 7→ m]

Self

if π(ι) = ⟨ℓ : primop 'self'/0 (), ρ, c, t⟩
then π′ = π[ι 7→ ⟨ι, ρ, c, t⟩]

Spawn

if π(ι) = ⟨ℓ : primop 'spawn'/1 (U), ρ, c, t⟩
σv(ρ(U)) = ⟨ℓ′, ρ′⟩

ℓ′ : fun () ُ-> ℓ′′ end
ι′ = newpid(ι, ℓ, t)

then π′ = π [ι 7→ ⟨ι′, ρ, c, t⟩
ι′ 7→ ⟨ℓ′′, ρ′, ⋆, t0⟩]

Send

if π(ι) = ⟨ℓ : primop 'send'/2 (U,V), ρ, c, t⟩
σv(ρ(U)) = ι′

then π′ = π[ι 7→ ⟨ρ(V), ρ, c, t⟩]
µ′ = µ[ι′ 7→ enq(ρ(V), µ(ι′))]

Push-Do

if π(ι) = q = ⟨ℓ : do ℓ′, ℓ′′, ρ, c, t⟩
κ = Do⟨ℓ′′, ρ, c⟩
c′ = newka(ι, q)

then π′ = π[ι 7→ ⟨ℓ′, ρ, c′, t⟩]
σ′
k = σk[c

′ 7→ κ]

Pop-Do

if π(ι) = ⟨v, ρ, c, t⟩
or π(ι) = ⟨f, ρ, c, t⟩, f ∈ Pid ⊎ ValueAddr

σk(c) = Do⟨ℓ′, ρ′, c′⟩
then π′ = π[ι 7→ ⟨ℓ′, ρ′, c′, t⟩]

ii

Push-Let

if π(ι) = q = ⟨ℓ, ρ, c, t⟩
ℓ : let <U1, . . . ,Un> =ℓ′, ℓ′′

κ = Let⟨U1 · . . . · Un, ℓ
′′, ρ, c⟩

c′ = newka(ι, q)

then π′ = π[ι 7→ ⟨ℓ′, ρ, c′, t⟩]
σ′
k = σk[c

′ 7→ κ]

Pop-Let-Closure

if π(ι) = q = ⟨ℓ : v, ρ, c, t⟩
σk(c) = Let⟨U · ϵ, ℓ′, ρ′, c′⟩

ρℓ = shrink(ρ, ℓ)
a = newca(ι, U, q, res(σv, ⟨ℓ, ρℓ⟩), ρℓ)
then π′ = π[ι 7→ ⟨ℓ′, ρ′[U 7→ a], c′, t⟩]

σ′
v = σv[a 7→ ⟨ℓ, ρℓ)⟩]

Pop-Let-Pid

if π(ι) = q = ⟨ι′, ρ, c, t⟩
σk(c) = Let⟨U · ϵ, ℓ′, ρ′, c′⟩

a = newpa(ι, U, q)

then π′ = π[ι 7→ ⟨ℓ′, ρ′[U 7→ a], c′, t⟩]
σ′
v = σv[a 7→ ι′]

Pop-Let-ValueAddr

if π(ι) = ⟨a, ρ, c, t⟩
σk(c) = Let⟨U · ϵ, ℓ′, ρ′, c′⟩

then π′ = π[ι 7→ ⟨ℓ′, ρ′[U 7→ a], c′, t⟩]

Pop-Let-ValueList

if π(ι) = ⟨ℓ : <U1, . . . ,Un>, ρ, c, t⟩
σk(c) = Let⟨U ′

1 · . . . · U ′
n, ℓ

′, ρ′, c′⟩
ρ′′ = ρ′[U ′

1 7→ ρ(U1), . . . , U
′
n 7→ ρ(Un)]

then π′ = π[ι 7→ ⟨ℓ′, ρ′′, c′, t⟩]

Bad-Apply

if π(ι) = ⟨ℓ, ρ, c, t⟩
ℓ : apply U (V1, . . . ,Vn)

σv(ρ(U)) = ⟨ℓ′, ρ′⟩
ℓ′ ̸ : fun (V ′

1, . . . ,V
′
n) ُ-> ℓ′′ end

then π′ = π[ι 7→ ⟨⊗, ρ, c, t⟩]

Bad-Call

if π(ι) = ⟨ℓ, ρ, c, t⟩
ℓ : call U1 : U2 (V1, . . . ,Vn)
and σv(ρ(U1)) ̸= ⟨ℓ : atom1, []⟩
or σv(ρ(U2)) ̸= ⟨ℓ : atom2, []⟩
or σv(ρ(U1)) = ⟨ℓ : atom1, []⟩
σv(ρ(U2)) = ⟨ℓ : atom2, []⟩

and ⊥ = modenv(M, atom1)

or ⊥ = exports(M, atom1, atom2)

or ℓ′ = modenv(M, atom1)

and ℓ′ ̸= : fun (V ′
1, . . . ,V

′
n) ُ-> ℓ′′ end

then π′ = π[ι 7→ ⟨⊗, ρ, c, t⟩]

Bad-Case

if π(ι) = ⟨ℓ, ρ, c, t⟩
ℓ : case <U1, . . . ,Un> of

<pat11, . . . ,pat1n> when guard1 → ℓ1;
...

<patm1, . . . ,patmn> when guardm → ℓm
end

clausei = (pati1 · . . . · patin, guardi)

clauses = clause1 · . . . · clausem
cmatch(clauses, U1 · . . . · Un, ρ, σv) = ⊥

then π′ = π[ι 7→ ⟨⊗, ρ, c, t⟩]

Bad-Spawn

if π(ι) = ⟨ℓ : primop 'spawn'/1 (U), ρ, c, t⟩
σv(ρ(U)) = ⟨ℓ′, ρ′⟩

ℓ′ ̸ : fun () ُ-> ℓ′′ end
then π′ = π[ι 7→ ⟨⊗, ρ, c, t⟩]

Bad-Send

if π(ι) = ⟨ℓ : primop 'send'/2 (U,V), ρ, c, t⟩
σv(ρ(U)) ̸= ι′

then π′ = π[ι 7→ ⟨⊗, ρ, c, t⟩]

Bad-Pop-Let

if π(ι) = ⟨f, ρ, c, t⟩
σk(c) = Let⟨U ′

1 · . . . · U ′
n, ℓ

′, ρ′, c′⟩
and f ∈ L, f : <U1, . . . ,Um>, m ̸= n

or f ∈ L, f : v, n ̸= 1

or f ∈ Pid ⊎ ValueAddr, n ̸= 1

then π′ = π[ι 7→ ⟨⊗, ρ, c, t⟩]

iii

B Abstract reduction rules for the CFA
Each rule specifies a transition ⟨π̂, µ̂, σ̂v, σ̂k⟩ → ⟨π̂′, µ̂′, σ̂′

v, σ̂
′
k⟩. As with the concrete rules, unless

otherwise stated in the “then” part of the rule, we have that π̂ = π̂′, µ̂ = µ̂′, σ̂v = σ̂′
v and σ̂k = σ̂′

k.
The rules Abs-Case and Abs-Bad-Case depend on the helper function

̂cmatch : (Pat∗ × Guard)∗ × ̂ValueAddr × ̂ValueStore → ℘((N, Ênv)⊥)

which takes a sequence of clauses, a value address and a value store and returns a set containing,
for each possible match from a resolution of that value address, the matched clause in the sequence
and a substitution witnessing the match. If there is a resolution of the address for which there is
no match, ⊥ is also in the returned set. Note that ̂cmatch discards the ordering of clauses and
returns all possible matches for the value addresses provided. This is a simple way of ensuring that
the CFA is sound.

iv

Abs-Name

if π̂(ι̂) ∋ ⟨ℓ : U, ρ̂, ĉ, t̂⟩
then π̂′ = π̂ ⊔ [ι̂ 7→ {⟨ρ̂(U), ρ̂, ĉ, t̂⟩}]

Abs-Apply

if π̂(ι̂) ∋ ⟨ℓ, ρ̂, ĉ, t̂⟩
ℓ : apply U (V1, . . . ,Vn)

σ̂v(ρ̂(U)) ∋ ⟨ℓ′, ρ̂′⟩
ℓ′ : fun (V ′

1, . . . ,V
′
n) ُ-> ℓ′′ end

ρ̂′′ = ρ̂′[V ′
1 7→ ρ̂(V1), . . . , V

′
n 7→ ρ̂(Vn)]

then π̂′ = π̂ ⊔ [ι̂ 7→ {⟨ℓ′′, ρ̂′′, ĉ, t̂ick(ℓ, t̂)⟩}]

Abs-Call

if π̂(ι̂) ∋ ⟨ℓ, ρ̂, ĉ, t̂⟩
ℓ : call U1 : U2 (V1, . . . ,Vn)
σ̂v(ρ̂(U1)) ∋ ⟨ℓ : atom1, []⟩
σ̂v(ρ̂(U2)) ∋ ⟨ℓ : atom2, []⟩

ρ̂′ = m̂odenv(M, atom1)

ℓ′ = exports(M, atom1, atom2)

ℓ′ : fun (V ′
1, . . . ,V

′
n) ُ-> ℓ′′ end

ρ̂′′ = ρ̂′[V ′
1 7→ ρ̂(V1), . . . , V

′
n 7→ ρ̂(Vn)]

then π̂′ = π̂ ⊔ [ι̂ 7→ {⟨ℓ′′, ρ̂′′, ĉ, t̂ick(ℓ, t̂)⟩}]

Abs-Letrec

if π̂(ι̂) ∋ q̂ = ⟨ℓ, ρ̂, ĉ, t̂⟩
ℓ : letrec U1 = ℓ1; . . . ; Un = ℓn in ℓ′

σ̂v(ρ̂(U)) ∋ ⟨ℓ′, ρ′⟩
âi = ̂newvadata(ι̂, Ui, q̂, αd(fun), shrink(ρ̂, ℓi))

ρ̂′ = ρ̂[U1 7→ â1, . . . , Un 7→ ân]

then π̂′ = π̂ ⊔ [ι̂ 7→ {⟨ℓ′′, ρ̂′, ĉ, t̂⟩}]
σ̂′
v = σ̂v ⊔ [â1 7→ {⟨ℓ1, shrink(ρ̂′, ℓ1)⟩},

...
ân 7→ {⟨ℓn, shrink(ρ̂′, ℓn)⟩}]

Abs-Case

if π̂(ι̂) ∋ ⟨ℓ, ρ̂, ĉ, t̂⟩
ℓ : case U of clause1; . . . ;clausen end

clauses = clause1 · . . . · clausen
̂cmatch(clauses, ρ̂(U), σ̂v) ∋ ⟨i, ρ̂′⟩

clausei = <patsi> when guardi ُ-> ℓi

then π̂′ = π̂ ⊔ [ι̂ 7→ {⟨ℓi, ρ̂ ⊎ ρ̂′, ĉ, t̂⟩}]

Abs-Receive

if π̂(ι̂) ∋ ⟨ℓ, ρ̂, ĉ, t̂⟩
ℓ : receive clause1; . . . ;clausen end

clauses = clause1 · . . . · clausen
m̂match(clauses, µ̂(ι̂), σ̂v) ∋ ⟨i, â, ρ̂′, m̂⟩

clausei = <pati> when guardi ُ-> ℓi

then π̂′ = π̂ ⊔ [ι̂ 7→ {⟨ℓi, ρ̂ ⊎ ρ̂′, ĉ, t̂⟩}]
µ̂′ = µ̂ ⊔ [ι̂ 7→ m̂]

Abs-Self

if π̂(ι̂) ∋ ⟨ℓ : primop 'self'/0 (), ρ̂, ĉ, t̂⟩
then π̂′ = π̂ ⊔ [ι̂ 7→ {⟨ι̂, ρ̂, ĉ, t̂⟩}]

Abs-Spawn

if π̂(ι̂) ∋ ⟨ℓ : primop 'spawn'/1 (U), ρ̂, ĉ, t̂⟩
σ̂v(ρ̂(U)) ∋ ⟨ℓ′, ρ̂′⟩

ℓ′ : fun () ُ-> ℓ′′ end

ι̂ = ⟨ℓ′, t̂′⟩

ι̂′ = ⟨ℓ, t̂ick
⋆
(t̂, t̂ick(ℓ′, t̂′))⟩

then π̂′ = π̂ ⊔ [ι̂ 7→ {⟨ι̂′, ρ̂, ĉ, t̂⟩}
ι̂′ 7→ {⟨ℓ′′, ρ̂′, ⋆, t̂0⟩}]

Abs-Send

if π̂(ι̂) ∋ ⟨ℓ : primop 'send'/2 (U,V), ρ̂, ĉ, t̂⟩
σ̂v(ρ̂(U)) ∋ ι̂′

then π̂′ = π̂ ⊔ [ι̂ 7→ {⟨ρ̂(V), ρ̂, ĉ, t̂⟩}]
µ̂′ = µ̂ ⊔ [ι̂′ 7→ ênq(ρ̂(V), µ̂(ι̂′))]

Abs-Push-Do

if π̂(ι̂) ∋ q̂ = ⟨ℓ : do ℓ′, ℓ′′, ρ̂, ĉ, t̂⟩

κ̂ = D̂o⟨ℓ′′, ρ̂, ĉ⟩
ĉ′ = n̂ewka(ι̂, q̂)

then π̂′ = π̂ ⊔ [ι̂ 7→ {⟨ℓ′, ρ̂, ĉ′, t̂⟩}]
σ̂′
k = σ̂k ⊔ [ĉ′ 7→ {κ̂}]

Abs-Pop-Do

if π̂(ι̂) ∋ ⟨v, ρ̂, ĉ, t̂⟩,
or π̂(ι̂) ∋ ⟨f, ρ̂, ĉ, t̂⟩, f ∈ Pid ⊎ ValueAddr

σ̂k(ĉ) ∋ D̂o⟨ℓ′, ρ̂′, ĉ′⟩
then π̂′ = π̂ ⊔ [ι̂ 7→ {⟨ℓ′, ρ̂′, ĉ′, t̂⟩}]

v

Abs-Push-Let

if π̂(ι̂) ∋ q̂ = ⟨ℓ, ρ̂, ĉ, t̂⟩
ℓ : let <U1, . . . ,Un> =ℓ′, ℓ′′

κ̂ = L̂et⟨U1 · . . . · Un, ℓ
′′, ρ̂, ĉ⟩

ĉ′ = n̂ewka(ι̂, q̂)

then π̂′ = π̂ ⊔ [ι̂ 7→ {⟨ℓ′, ρ̂, ĉ′, t̂⟩}]
σ̂′
k = σ̂k ⊔ [ĉ′ 7→ {κ̂}]

Abs-Pop-Let-Closure

if π̂(ι̂) ∋ q̂ = ⟨ℓ : v, ρ̂, ĉ, t̂⟩

σ̂k(ĉ) ∋ L̂et⟨U · ϵ, ℓ′, ρ̂′, ĉ′⟩
ρ̂ℓ = shrink(ρ̂, ℓ)

d̂ ∈ r̂es(σ̂v, ⟨v, ρ̂ℓ⟩),

â = ̂newvadata(ι̂, U, q̂, d̂, ρ̂ℓ)
then π̂′ = π̂ ⊔ [ι̂ 7→ {⟨ℓ′, ρ̂′[U 7→ â], ĉ′, t̂⟩}]

σ̂′
v = σ̂v ⊔ [â 7→ {⟨ℓ, ρ̂ℓ⟩}]

Abs-Pop-Let-Pid

if π̂(ι̂) ∋ q̂ = ⟨ι̂′, ρ̂, ĉ, t̂⟩

σ̂k(ĉ) ∋ L̂et⟨U · ϵ, ℓ′, ρ̂′, ĉ′⟩
â = ̂newvapid(ι̂, U, q̂)

then π̂′ = π̂ ⊔ [ι̂ 7→ {⟨ℓ′, ρ̂′[U 7→ â], ĉ′, t̂⟩}]
σ̂′
v = σ̂v ⊔ [â 7→ ι̂′]

Abs-Pop-Let-ValueAddr

if π̂(ι̂) ∋ ⟨â, ρ̂, ĉ, t̂⟩

σ̂k(ĉ) ∋ L̂et⟨U · ϵ, ℓ′, ρ̂′, ĉ′⟩
then π̂′ = π̂ ⊔ [ι̂ 7→ {⟨ℓ′, ρ̂′[U 7→ â], ĉ′, t̂⟩}]

Abs-Pop-Let-ValueList

if π̂(ι̂) ∋ ⟨ℓ : <U1, . . . ,Un>, ρ̂, ĉ, t̂⟩

σ̂k(ĉ) = L̂et⟨U ′
1 · . . . · U ′

n, ℓ
′, ρ̂′, ĉ′⟩

ρ̂′′ = ρ̂′[U ′
1 7→ ρ̂(U1), . . . , U

′
n 7→ ρ̂(Un)]

then π̂′ = π̂ ⊔ [ι̂ 7→ {⟨ℓ′, ρ̂′′, ĉ′, t̂⟩}]

Abs-Bad-Apply

if π̂(ι̂) ∋ ⟨ℓ, ρ̂, ĉ, t̂⟩
ℓ : apply U (V1, . . . ,Vn)

σ̂v(ρ̂(U)) ∋ ⟨ℓ′, ρ̂′⟩
ℓ′ ̸ : fun (V ′

1, . . . ,V
′
n) ُ-> ℓ′′ end

then π̂′ = π̂ ⊔ [ι̂ 7→ {⟨⊗, ρ̂, ĉ, t̂⟩}]

Abs-Bad-Call

if π̂(ι̂) ∋ ⟨ℓ, ρ̂, ĉ, t̂⟩
ℓ : call U1 : U2 (V1, . . . ,Vn)
and σ̂v(ρ̂(U1)) ∋ ⟨ℓ ̸ : atom1, []⟩
or σ̂v(ρ̂(U2)) ∋ ⟨ℓ ̸ : atom2, []⟩
or σ̂v(ρ̂(U1)) ∋ ⟨ℓ : atom1, []⟩
σ̂v(ρ̂(U2)) ∋ ⟨ℓ : atom2, []⟩

and ⊥ = modenv(M, atom1)

or ⊥ = exports(M, atom1, atom2)

or ℓ′ = modenv(M, atom1)

and ℓ′ ̸= : fun (V ′
1, . . . ,V

′
n) ُ-> ℓ′′ end

then π̂′ = π̂ ⊔ [ι̂ 7→ {⟨⊗, ρ̂, ĉ, t̂⟩}]

Abs-Bad-Case

if π̂(ι̂) ∋ ⟨ℓ, ρ̂, ĉ, t̂⟩
ℓ : case U of clause1; . . . ;clausen end

clauses = clause1 · . . . · clausen
̂cmatch(clauses, ρ̂(U), σv) ∋ ⊥

then π̂′ = π̂ ⊔ [ι̂ 7→ {⟨⊗, ρ̂, ĉ, t̂⟩}]

Abs-Bad-Spawn

if π̂(ι̂) ∋ ⟨ℓ : primop 'spawn'/1 (U), ρ̂, ĉ, t̂⟩
σ̂v(ρ̂(U)) ∋ ⟨ℓ′, ρ̂′⟩

ℓ′ ̸ : fun () ُ-> ℓ′′ end

then π̂′ = π̂ ⊔ [ι̂ 7→ {⟨⊗, ρ̂, ĉ, t̂⟩}]

Abs-Bad-Send

if π̂(ι̂) ∋ ⟨ℓ : primop 'send'/2 (U,V), ρ̂, ĉ, t̂⟩

σ̂v(ρ̂(U)) ∋ v, v ̸∈ P̂id
then π̂′ = π̂ ⊔ [ι̂ 7→ {⟨⊗, ρ̂, ĉ, t̂⟩}]

Abs-Bad-Pop-Let

if π̂(ι̂) ∋ ⟨f, ρ̂, ĉ, t̂⟩

σ̂k(ĉ) ∋ L̂et⟨U ′
1 · . . . · U ′

n, ℓ
′, ρ̂′, ĉ′⟩

and f ∈ L, f : <U1, . . . ,Um>, m ̸= n

or f ∈ L, f : v, n ̸= 1

or f ∈ P̂id ⊎ ̂ValueAddr, n ̸= 1

then π̂′ = π̂ ⊔ [ι̂ 7→ {⟨⊗, ρ̂, ĉ, t̂⟩}]

vi

C Proof of soundness for the πActor model
Theorem 5.6 (soundness for πActor abstraction). Given a sound basic domains abstraction and
a Core program M, if S, S′ ∈ State such that init(M) → S → S′ and P ⊒ απ(S) then there exists
P ′ ⊒ απ(S

′) with P
∆
−↠

∗
P ′.

Proof. Readily follows from Theorems C.1 and C.2.

Theorem C.1. for any πActor program (P,∆), if P ⊑ P ′ and P ↠∆ Q then there exists Q′

with P ′ ↠∆ Q′ and Q′ ⊒ Q.

Proof. Readily follows from Definitions 2.23 and 2.26.

Theorem C.2. For some program M, let S, S′ ∈ State such that init(M) →∗ S → S′. Then there
exists P ∈ T with απ(S)↠defs(M) P and P ⊒ απ(S

′).

It is Theorem C.2 that we will spend the rest of this section proving.

C.1 A few useful lemmas
Let S = ⟨π, µ, σv, σk⟩ ∈ State, S′ = ⟨π′, µ′, σ′

v, σ
′
k⟩ ∈ State be concrete states in the semantics of

the program M. We are interested in proving Theorem 5.6. We start by proving a few useful
lemmas.

Lemma C.3. pidaddrs(a) ⊆ pidaddrs(a′) =⇒ pidaddrs(αCFA(a)) ⊆ pidaddrs(αCFA(a
′))

Proof. Trivial by construction.

Lemma C.4. If

pidaddrs(q′) ⊆ pidaddrs(q)
σv ∩ pidaddrs(q′) = σ′

v ∩ pidaddrs(q′)

then if

args = sort({setname(â) : â ∈ pidaddrs(αCFA(q))}, <)

args′ = sort({setname(â) : â ∈ pidaddrs(αCFA(q
′))}, <)

we have
args′[args(q)/args] ⊒ args(q′).

Proof. Let args(q) = T1 · . . . · Tp, args(q′) = T ′
1 · . . . · T ′

q where

â1 · . . . · âp = sort(pidaddrs(αCFA(q)), <̂VA)

Ti = {name(ι) : a = ⟨_,_,_, ι⟩ ∈ pidaddrs(q), αCFA(a) = âi}
â′1 · . . . · â′q = sort(pidaddrs(αCFA(q

′)), <̂VA)

T ′
i = {name(ι) : a = ⟨_,_,_, ι⟩ ∈ pidaddrs(q′), αCFA(a) = â′i}

Now Lemma C.3 gives us that pidaddrs(αCFA(q
′)) ⊆ pidaddrs(αCFA(q)), which in turn gives us

∀i∃j.â′i = âj and A ∈ args′ =⇒ A ∈ args. A1 · . . . ·An = args =⇒ (Ai = Aj ⇐⇒ i = j), so

args′ = filter(args, (λA.{addr(A) ∈ pidaddrs(αCFA(q
′))})),

args′[args(q)/args] = T ′′
1 · . . . · T ′′

q ,

T ′′
i = {name(ι) : a = ⟨_,_,_, ι⟩ ∈ pidaddrs(q), αCFA(a) = â′i}.

So if T ′
i ⊆ T ′′

i , we are done.
Suppose a ∈ pidaddrs(q′), αCFA(a) = â′i. Then a ∈ pidaddrs(q), αCFA(a) = â′i. Now

σv ∩ pidaddrs(q′) = σ′
v ∩ pidaddrs(q′)

gives us σv(a) = ι ⇐⇒ σ′
v(a) = ι. So s ∈ T ′

i =⇒ s ∈ T ′′
i and T ′

i ⊆ T ′′
i .

vii

Corollary C.5. If

pidaddrs(q′) = pidaddrs(q)
σv ∩ pidaddrs(q′) = σ′

v ∩ pidaddrs(q′)

then args(q) = args(q′).

Proof. Let

args = sort({setname(â) : â ∈ pidaddrs(αCFA(q))}, <),

args′ = sort({setname(â) : â ∈ pidaddrs(αCFA(q
′))}, <).

pidaddrs(q) = pidaddrs(q′), pidaddrs(αCFA(q
′)) = pidaddrs(αCFA(q))

=⇒ pidaddrs(q′) ⊆ pidaddrs(q), pidaddrs(αCFA(q
′)) ⊆ pidaddrs(αCFA(q))

so by Lemma C.4, we have
args′[args(q)/args] ⊒ args(q′).

Let

â1 · . . . · âp = sort(pidaddrs(αCFA(q)), <̂VA),

â′1 · . . . · â′m = sort(pidaddrs(αCFA(q
′)), <̂VA).

Clearly if pidaddrs(αCFA(q)) = pidaddrs(αCFA(q
′)), then by Lemma C.3 p = q and âi = â′i. So

args = args′ and
args′[args(q)/args] = args(q).

Hence args(q) ⊒ args(q′). But this argument in symmetric in q, q′, σv and σ′
v, so we have also that

args(q) ⊑ args(q′). So args(q) = args(q′) (this is easy to check from the definition of ⊑).

Lemma C.6. Suppose that for some finite set of pids I, for ι ∈ domπ such that ι ̸∈ I, we have
π(ι) = π′(ι) and

σv ∩ pidaddrs(π(ι)) = σ′
v ∩ pidaddrs(π(ι)).

Let domπ \ I = {ι1, . . . , ιn}, domπ ∩ I = {ι′1, . . . , ι′m}, domπ′ ∩ I = {ι′′1 , . . . , ι′′l }. Let s⃗ =
name(ι1) · . . . · name(ιn), s⃗′ = name(ι′1) · . . . · name(ι′m), s⃗′′ = name(ι′′1) · . . . · name(ι′′l). Then

απ(S) = νs⃗.νs⃗′.(απ(π ∩ I) ∥Processes ∥απ(µ))

απ(S
′) = νs⃗.νs⃗′′.(απ(π

′ ∩ I) ∥Processes ∥απ(µ
′))

Processes = απ(π ∩ (domπ \ I))

Proof. Let domπ \ I = J , domπ ∩ I = I ′, domπ′ ∩ I = I ′′. We have that for ι ∈ J , απ(π(ι), ι) =
απ(π

′(ι), ι) by Corollary C.5. Now

απ(π) =
∏

ι∈domπ

απ(π(ι), ι)

= (
∏
ι∈I′

απ(π(ι), ι)) ∥
∏
ι∈J

απ(π(ι), ι)

= απ(π ∩ I) ∥Processes

απ(π
′) =

∏
ι∈domπ

απ(π
′(ι), ι)

= (
∏
ι∈I′′

απ(π
′(ι), ι)) ∥

∏
ι∈J

απ(π
′(ι), ι)

= (
∏
ι∈I′′

απ(π
′(ι), ι)) ∥

∏
ι∈J

απ(π(ι), ι)

= απ(π
′ ∩ I) ∥Processes

viii

So

απ(S) = νs⃗.νs⃗′. (απ(π) ∥απ(µ))

= νs⃗.νs⃗′.(απ(π ∩ I) ∥Processes ∥απ(µ))

απ(S
′) = νs⃗.νs⃗′′. (απ(π

′) ∥απ(µ
′))

= νs⃗.νs⃗′′.(απ(π
′ ∩ I) ∥Processes ∥απ(µ

′))

Lemma C.7. Suppose that for some finite set of pids I, for ι ∈ domµ such that ι ̸∈ I, we have
µ(ι) = µ′(ι) and for a ∈ µ(ι),

σv ∩ pidaddrs(a) = σ′
v ∩ pidaddrs(a).

Let domµ \ I = J . Then

απ(µ) = απ(µ ∩ I) ∥Mail
απ(µ) = απ(µ

′ ∩ I) ∥Mail
Mail = απ(µ ∩ J)

Proof. As above. Use Corollary C.5 and equivalence for π-calculus terms.

Lemma C.8. and for some finite set of pids I, for ι ∈ domπ such that ι ̸∈ I, we have π(ι) = π′(ι)
and

σv ∩ pidaddrs(π(ι)) = σ′
v ∩ pidaddrs(π(ι)),

and for another finite set of pids J , for ι ∈ domµ such that ι ̸∈ I, we have µ(ι) = µ′(ι) and for
a ∈ µ(ι),

σv ∩ pidaddrs(a) = σ′
v ∩ pidaddrs(a),

there exists P ∈ T with

απ(π ∩ I) ∥απ(µ ∩ J)↠ P,

P ⊒ απ(π
′ ∩ I) ∥απ(µ

′ ∩ J),

then there exists P ′ such that απ(S)↠ P ′, P ′ ⊒ απ(S
′).

Proof. Let domπ \ I = J = {ι1, . . . , ιn}, domπ ∩ I = I ′ = {ι′1, . . . , ι′m}, domπ′ ∩ I = I ′′ =
{ι′′1 , . . . , ι′′l }, Let s⃗ = name(ι1) · . . . · name(ιn), s⃗′ = name(ι′1) · . . . · name(ι′m), s⃗′′ = name(ι′′1) · . . . ·
name(ι′′l). By Lemmas C.6 and C.7 we have that

απ(S) = νs⃗.νs⃗′.(απ(π ∩ I) ∥απ(µ ∩ J) ∥Processes ∥Mail)
απ(S

′) = νs⃗.νs⃗′′.(απ(π
′ ∩ I) ∥απ(µ

′ ∩ J) ∥Processes ∥Mail)

απ(π ∩ I) ∥απ(µ ∩ J)↠ P , P ⊒ απ(π
′ ∩ I) ∥απ(µ

′ ∩ J) implies

P ≡ νs⃗′′′.((
∏

ι∈domπ∩I

Pι) ∥(
∏

ι∈domµ∩J

Mι) ∥R) where

∀ι ∈ I, Pι ⊒ απ(π
′(ι), ι)

∀ι ∈ J, Mι ⊒
∏

a∈µ′(ι)

SendαCFA(a)[name(ι) | args(a)]

απ(S)↠ P ′ = νs⃗.νs⃗′.νs⃗′′′.((
∏

ι∈domπ∩I

Pι) ∥(
∏

ι∈domµ∩J

Mι) ∥R ∥Processes ∥Mail)

And clearly this P ′ ⊒ απ(S
′).

Definition C.9. A value address a is relevant in some store σv if a ∈ domσv and σv(a) ∈ Pid.

ix

Remark C.9.1. Colloquially, a value address is relevant in a store if a pid is stored at that value
address in that store.
Lemma C.10. If S = ⟨π, µ, σv, σk⟩ is such that init(M) →∗ S for some program M, then

σv(a) ∈ Pid ⇐⇒ a ∈ domσv ∧ a ∈ PidAddr

Proof. Proceed by induction on the number of transitions from init(M) to S. That is, if init(M) →∗

S then init(M) →n S for some n ∈ N, and we induct over n.
Base case: Suppose S = init(M). Recall Definition 3.4:

Definition 3.4 (init). Let the initial state of a program M, init(M), be ⟨π0, µ0, σv0 , σk0
⟩ where

ℓ = exports(M, 'main', 'main'/0), ℓ : fun () ُ-> ℓ0 : . . . end,
π0 = [ι0 7→ ⟨ℓ0,modenv(M, 'main'), ⋆, t0⟩],
µ0 = [ι0 7→ ϵ],

G = {(atom, U, ℓ) : module atom [. . .] . . . U = ℓ : end ∈ M},

σv0 =
⊎

(atom,U,ℓ)∈G

[⟨ι0, U, t0, fun, ∅⟩ 7→ ⟨ℓ,modenv(M, atom)⟩],

σk0
= [⋆ 7→ Stop],

Clearly, Imσv0 ∩ Pid = ∅ and domσv ∩ PidAddr = ∅.
Inductive step: Suppose init(M) →n−1 S′ = ⟨π′, µ′, σ′

v, σ
′
k⟩ with S′ → S. Then

(σ′
v(a) ∈ Pid ⇐⇒ a ∈ domσ′

v ∧ a ∈ PidAddr)
=⇒ (σv(a) ∈ Pid ⇐⇒ a ∈ domσv ∧ a ∈ PidAddr).

Proceed by case analysis on the rule used to make the transition S′ → S. If σ′
v = σv, the

implication follows trivially. So we need only consider rules that alter the value store, i.e. Letrec,
Pop-Let-Closure and Pop-Let-Pid.

• If the transition was made by Letrec, then

σv = σ′
v[a1 7→ ⟨ℓ1, shrink(ρ′, ℓ1)⟩,

...
an 7→ ⟨ℓn, shrink(ρ′, ℓn)⟩]

where ai = newvadata(ι, Ui, q, fun, shrink(ρ, ℓi)). So σv differs from σ′
v at at most a1, . . . , an.

Clearly, a1, . . . , an do not have σv(ai) ∈ Pid and a1, . . . , an /∈ PidAddr. Assume

σ′
v(a) ∈ Pid ⇐⇒ a ∈ domσ′

v ∧ a ∈ PidAddr.

Then
a ̸∈ PidAddr =⇒ σ′

v(a) ̸∈ Pid.
Hence a1, . . . , an not relevant in σ′

v. So since σv differs from σ′
v at at most a1, . . . , an and

a1, . . . , an not relevant in either σv or σ′
v, and

σ′
v(a) ∈ Pid =⇒ a ∈ PidAddr,

if σv(a
′) ∈ Pid, we have a′ /∈ {a1, . . . an} so σv(a

′) = σ′
v(a

′) and hence σ′
v(a

′) ∈ Pid, so
a′ ∈ PidAddr. So

σv(a) ∈ Pid ⇐⇒ a ∈ domσv ∧ a ∈ PidAddr.

• If the transition was made by Pop-Let-Closure, then σv = σ′
v[a 7→ ⟨ℓ, shrink(ρ, ℓ)⟩] where

a = newvadata(ι, U, q, res(σv, ⟨ℓ, shrink(ρ, ℓ)⟩), shrink(ρ, ℓ)). So σv differs from σ′
v at at most

a. Clearly, σv(a) ̸∈ Pid and a ̸∈ PidAddr. Again, assuming

σ′
v(a) ∈ Pid ⇐⇒ a ∈ domσ′

v ∧ a ∈ PidAddr.

we have that σv(a) ̸∈ Pid. So since σv differs from σ′
v at at most a and a not relevant in

either σv or σ′
v, it is clear that

σv(a) ∈ Pid ⇐⇒ a ∈ domσv ∧ a ∈ PidAddr.

x

• If the transition was made by Pop-Let-Pid, then σv = σ′
v[a 7→ ι′] where a = newvapid(ι, U, q).

So σv differs from σ′
v at at most a. Clearly, σv(a) ∈ Pid and a ∈ PidAddr. Assume

σ′
v(a) ∈ Pid ⇐⇒ a ∈ domσ′

v ∧ a ∈ PidAddr.

So if σv(a
′) ∈ Pid, either a′ = a and a ∈ PidAddr by definition or a′ ̸= a and σv(a

′) = σ′
v(a

′)
so σ′

v(a
′) ∈ Pid and a′ ∈ PidAddr. So

σv(a) ∈ Pid ⇐⇒ a ∈ domσv ∧ a ∈ PidAddr.

Corollary C.11. If S = ⟨π, µ, σv, σk⟩, S′ = ⟨π′, µ′, σ′
v, σ

′
k⟩ ∈ State such that init(M) →∗ S,

init(M) →∗ S′. Then if S → S′ by any rule other than Pop-Let-Pid, σv ∩ {a : σv(a) ∈ Pid} =
σ′
v ∩ {a : σ′

v(a) ∈ Pid}.

Proof. Clearly if σv = σ′
v the result holds trivially. So we need only consider the rules that alter

σv, i.e. Letrec, Pop-Let-Closure and Pop-Let-Pid. By Lemma C.10 and the contrapositive,
we have that

a /∈ PidAddr =⇒ σv(a) ̸∈ Pid, (1)
a /∈ PidAddr =⇒ σ′

v(a) ̸∈ Pid. (2)

• If the transition was made by Letrec, then

σ′
v = σv[a1 7→ ⟨ℓ1, shrink(ρ′, ℓ1)⟩,

...
an 7→ ⟨ℓn, shrink(ρ′, ℓn)⟩]

where ai = ⟨ι, Ui, fun, t⟩. So σ′
v differs from σv at at most a1, . . . , an. By 1 and 2, we have

that a1, . . . , an not relevant in σv or σ′
v. Assume a′ ∈ dom(σv ∩ {a : σv(a) ∈ Pid}). So

σv(a
′) ∈ Pid and hence a′ ̸= a1, . . . , an. So σ′

v(a
′) = σv(a

′), so

(σv ∩ {a : σv(a) ∈ Pid})(a′) = (σ′
v ∩ {a : σ′

v(a) ∈ Pid})(a′).

Assume a′ ∈ dom(σ′
v ∩ {a : σv(a) ∈ Pid}). So σv(a

′) ∈ Pid and hence a′ ̸= a1, . . . , an. So
σ′
v(a

′) = σv(a
′), so

(σv ∩ {a : σv(a) ∈ Pid})(a′) = (σ′
v ∩ {a : σ′

v(a) ∈ Pid})(a′).

• If the transition was made by Pop-Let-Closure, then σ′
v = σv[a 7→ ⟨ℓ, shrink(ρ, ℓ)⟩] where

a = ⟨ι, U, res(v, ρ, σv), t⟩. So σ′
v differs from σv at at most a. By 1 and 2, we have that a not

relevant in σv or σ′
v. Assume a′ ∈ dom(σv ∩ {a : σv(a) ∈ Pid}). So σv(a

′) ∈ Pid and hence
a′ ̸= a. So σ′

v(a
′) = σv(a

′), so

(σv ∩ {a : σv(a) ∈ Pid})(a′) = (σ′
v ∩ {a : σ′

v(a) ∈ Pid})(a′).

Assume a′ ∈ dom(σ′
v ∩ {a : σv(a) ∈ Pid}). So σv(a

′) ∈ Pid and hence a′ ̸= a. So σ′
v(a

′) =
σv(a

′), so
(σv ∩ {a : σv(a) ∈ Pid})(a′) = (σ′

v ∩ {a : σ′
v(a) ∈ Pid})(a′).

Definition C.12 (Accessible addresses). Let σk
↪−→ ⊂ KontAddr2 be the relation with

c σk
↪−→ c′ ⇐⇒ σk(c) = Let⟨_,_,_, c′⟩ ∨ σk(c) = Do⟨_,_, c′⟩.

Let σk
↪−→∗ be the reflexive transitive closure of σv

↪−→.
The set of continuation addresses accessible from a continuation address c or a process state

q = ⟨f, ρ, c, t⟩ in a store σk is given by

accessiblek : KontAddr × KontStore → ℘̄(KontAddr)
accessiblek(c, σk) = {c′ : c σk

↪−→∗ c′}
accessiblek : ProcState × KontStore → ℘̄(KontAddr)
accessiblek(⟨f, ρ, c, t⟩, σk) = accessiblek(c, σk)

xi

Let σv
↪−→ ⊂ (ValueAddr ⊎ Env)2 (read x σv

↪−→ y as ‘y directly accessible from x via σv’) be the
relation with

a σv
↪−→ ρ ⇐⇒ σv(a) = ⟨ℓ, ρ⟩,

∀σv, ρ σv
↪−→ a ⇐⇒ a ∈ Im ρ

so σv
↪−→ forms a directed bipartite graph on ValueAddr and Env. Then σv

↪−→2 ⊂ ValueAddr2 ⊎ Env2;
that is, it relates value addresses with value addresses and environments with environments. Let
σv
↪−→2∗ be the reflexive transitive closure of σv

↪−→2.
The set of value addresses accessible from a value address v, an environment ρ, a continuation

address c, or a process state q = ⟨f, ρ, c, t⟩ in a store σv, σk is given by

accessiblev : ValueAddr × ValueStore → ℘̄(ValueAddr)
accessiblev(a, σv) = {a′ : a σv

↪−→2∗ a′}
accessiblev : Env × ValueStore → ℘̄(ValueAddr)

accessiblev(ρ, σv) =
∪

{accessiblev(a, σv) : ρ
σv
↪−→ a}

accessiblev : KontAddr × ValueStore × KontStore → ℘̄(ValueAddr)
accessiblev(c, σv, σk)

= (
∪
{accessiblev(ρ

′, σv) : c
′ ∈ accessiblek(c, σk), Let⟨_,_, ρ′,_⟩ = σk(c

′)})
∪ (
∪
{accessiblev(ρ

′, σv) : c
′ ∈ accessiblek(c, σk), Do⟨_, ρ′,_⟩ = σk(c

′)})
accessiblev : ProcState × ValueStore × KontStore → ℘̄(ValueAddr)
accessiblev(⟨f, ρ, c, t⟩, σv, σk) = accessiblev(f, σv) ∪ accessiblev(ρ, σv) ∪ accessiblev(c, σv, σk)

where accessiblev(f, σv) = ∅ when f ̸∈ ValueAddr.

Lemma C.13. If S = ⟨π, µ, σv, σk⟩, ∈ State such that init(M) →∗ S, Then

1. for all a ∈ domσV ,

(a) if a′ ∈ accessiblev(a, σv) then pidaddrs(a′) ⊆ pidaddrs(a)
(b) if a′ ∈ pidaddrs(a) then a′ accessiblev(a, σv).

2. for all c ∈ domσk, if c′ ∈ accessiblevk(c, σk) then pidaddrs(c′) ⊆ pidaddrs(c)

and the same hold in the abstract semantics.

Proof. This can be shown by induction, but should be true by construction.

C.2 The soundness theorems
Theorem C.2. For some program M, let S, S′ ∈ State such that init(M) →∗ S → S′. Then there
exists P ∈ T with απ(S)↠defs(M) P and P ⊒ απ(S

′).

Proof. Let S = ⟨π, µ, σv, σk⟩, S′ = ⟨π′, µ′, σ′
v, σ

′
k⟩. Proceed by case analysis on the rule used to

make the transition S → S′.

• Suppose S → S′ by the rule Name, with active components (ι, q, q′). Let I = {ι}; clearly if
ι′ ̸∈ I, π(ι′) = π′(ι′), and

σv ∩ pidaddrs(π(ι′)) = σ′
v ∩ pidaddrs(π(ι′)),

. We also have µ = µ′, so by Lemma C.8 we have that to show there exists P such that
απ(S) ⇝ P , P ⊒ απ(S

′) it is enough to show that there exists P such that απ(q, ι) ↠ P ,
P ⊒ απ(q

′, ι).

απ(q, ι) = αCFA(q)[name(ι) | args(q)],
απ(q

′, ι) = αCFA(q
′)[name(ι) | args(q′)].

xii

Since the transition was made by Name, we have that αCFA(S) ⇝ αCFA(S
′) by the rule

Abs-Name with active components (αCFA(ι), αCFA(q), αCFA(q
′)). So if

args = sort({setname(â) : â ∈ pidaddrs(αCFA(q))}, <)

we have a process definition in the abstraction

αCFA(q)[s | args] := τ .αCFA(q
′)[s | args] + . . .

So
αCFA(q)[name(ι) | args(q)]
↠ αCFA(q

′)[name(ι) | args][args(q)/args]
≡ αCFA(q

′)[name(ι) | args(q)].

So if args(q) = args(q′), we are done. By Corollaries C.5 and C.11 it is enough to show
pidaddrs(q) = pidaddrs(q′), pidaddrs(αCFA(q)) = pidaddrs(αCFA(q

′)).
q = ⟨ℓ : U, ρ, c, t⟩ and q′ = ⟨ρ(U), ρ, c, t⟩. Since ρ(U) ∈ Im ρ we have

pidaddrs(q′) = pidaddrs(ρ(U)) ∪ pidaddrs(ρ) ∪ pidaddrs(c)

= pidaddrs(ρ(U)) ∪
(∪

{pidaddrs(a) : a ∈ Im ρ}
)
∪ pidaddrs(c)

=
(∪

{pidaddrs(a) : a ∈ Im ρ}
)
∪ pidaddrs(c)

= pidaddrs(ρ) ∪ pidaddrs(c)
= pidaddrs(q).

• Suppose S → S′ by the rule Letrec, with active components (ι, q, q′). Let I = {ι}; clearly if
ι′ ̸∈ I, π(ι′) = π′(ι′) and since σv = σ′

v ∩ domσv, σk = σ′
k pidaddrs(π(ι′)) = pidaddrs(π(ι′)).

(σ′
v = σv[a1 7→ x1, . . . an 7→ xn] where a1, . . . , an ̸∈ domσv by construction and trivially all

addresses pidaddrs from π(ι′) are in domσv again by construction). So by Lemma C.8 we
have that to show there exists P such that απ(S) ⇝ P , P ⊒ απ(S

′) it is enough to show
that there exists P such that απ(q, ι)↠ P , P ⊒ απ(q

′, ι).

απ(q, ι) = αCFA(q)[name(ι) | args(q)],
απ(q

′, ι) = αCFA(q
′)[name(ι) | args(q′)].

Since the transition was made by Letrec, we have that αCFA(S) ⇝ αCFA(S
′) by the rule

Abs-Letrec with active components (αCFA(ι), αCFA(q), αCFA(q
′)). So if

args = sort({setname(â) : â ∈ pidaddrs(αCFA(q))}, <)

we have a process definition in the abstraction

αCFA(q)[s | args] := τ .αCFA(q
′)[s | args] + . . .

So as in the previous case,

αCFA(q)[name(ι) | args(q)]
↠ αCFA(q

′)[name(ι) | args(q)].

So if args(q) = args(q′), we are done. By Corollaries C.5 and C.11 it is enough to show
pidaddrs(q) = pidaddrs(q′).
q = ⟨ℓ, ρ, c, t⟩, q′ = ⟨ℓ′′, ρ′, c, t⟩, ρ′ = ρ[U1 7→ a1, . . . , Um 7→ am], ai = newvadata(ι, Ui, q, fun, shrink(ρ, ℓi))
where a1, . . . , am /∈ domσv, U1, . . . , Um /∈ dom ρ by construction. So pidaddrs(ai) = pidaddrs(shrink(ρ, ℓi))

xiii

by Definition 3.2, and it is easy to show pidaddrs(shrink(ρ, ℓi)) ⊆ pidaddrs(ρ).

pidaddrs(q′) = pidaddrs(ρ′) ∪ pidaddrs(c)

=
(∪

{pidaddrs(a) : a ∈ Im ρ′}
)
∪ pidaddrs(c)

=

(∪
i

pidaddrs(ai)
)

∪
(∪

{pidaddrs(a) : a ∈ Im ρ}
)
∪ pidaddrs(c)

= pidaddrs(ρ) ∪ pidaddrs(c)
= pidaddrs(q).

• Suppose S → S′ by the rule Push-Let, with active components (ι, q, q′). Then by Lemma C.8
we have that to show απ(S)↠ απ(S

′) it is enough to show απ(q, ι)↠ απ(q
′, ι).

απ(q, ι) = αCFA(q)[name(ι) | args(q)],
απ(q

′, ι) = αCFA(q
′)[name(ι) | args(q′)].

Since the transition was made by Push-Let, we have that αCFA(S)⇝ αCFA(S
′) by the rule

Abs-Push-Let with active components (αCFA(ι), αCFA(q), αCFA(q
′)). So if

args = sort({setname(â) : â ∈ pidaddrs(αCFA(q))}, <)

we have a process definition in the abstraction

αCFA(q)[s | args] := τ .αCFA(q
′)[s | args] + . . .

So as in the above cases,

αCFA(q)[name(ι) | args(q)]↠ αCFA(q
′)[name(ι) | args(q)].

and if args(q) = args(q′), we are done. By Corollaries C.5 and C.11 it is enough to show
pidaddrs(q) = pidaddrs(q′).
q = ⟨ℓ, ρ, c, t⟩, q′ = ⟨ℓ′, ρ, c′, t⟩, c′ = newka(ι, q) = ⟨ι, ℓ, t, ρ, pidaddrs(ρ) ∪ pidaddrs(c)⟩.

pidaddrs(q′) = pidaddrs(ρ) ∪ pidaddrs(c′)
= pidaddrs(ρ) ∪ pidaddrs(ρ) ∪ pidaddrs(c)
= pidaddrs(q).

• Suppose S → S′ by the rule Push-Do, with active components (ι, q, q′). Then by Lemma C.8
we have that to show απ(S)↠ απ(S

′) it is enough to show απ(q, ι)↠ απ(q
′, ι).

απ(q, ι) = αCFA(q)[name(ι) | args(q)],
απ(q

′, ι) = αCFA(q
′)[name(ι) | args(q′)].

Since the transition was made by Push-Do, we have that αCFA(S)⇝ αCFA(S
′) by the rule

Abs-Push-Do with active components (αCFA(ι), αCFA(q), αCFA(q
′)). So if

args = sort({setname(â) : â ∈ pidaddrs(αCFA(q))}, <)

we have a process definition in the abstraction

αCFA(q)[s | args] := τ .αCFA(q
′)[s | args] + . . .

So as in the above cases,

αCFA(q)[name(ι) | args(q)]↠ αCFA(q
′)[name(ι) | args(q)].

and if args(q) = args(q′), we are done. By Corollaries C.5 and C.11 it is enough to show
pidaddrs(q) = pidaddrs(q′).
q = ⟨ℓ, ρ, c, t⟩, q′ = ⟨ℓ′, ρ, c′, t⟩, c′ = newka(ι, q) = ⟨ι, ℓ, t, ρ, pidaddrs(ρ) ∪ pidaddrs(c)⟩.

pidaddrs(q′) = pidaddrs(ρ) ∪ pidaddrs(c′)
= pidaddrs(ρ) ∪ pidaddrs(ρ) ∪ pidaddrs(c)
= pidaddrs(q).

xiv

• Suppose S → S′ by Bad-Apply, Bad-Call, Bad-Case, Bad-Spawn, Bad-Send or Bad-
Pop-Let with active components (ι, q, q′). Then by Lemma C.8 we have that to show
απ(S)↠ απ(S

′) it is enough to show απ(q, ι)↠ απ(q
′, ι).

απ(q, ι) = αCFA(q)[name(ι) | args(q)],
απ(q

′, ι) = αCFA(q
′)[name(ι) | args(q′)].

Since the transition was made by Bad-Apply, Bad-Call, Bad-Case, Bad-Spawn, Bad-
Send or Bad-Pop-Let, we have that αCFA(S)⇝ αCFA(S

′) by Abs-Bad-Apply, Abs-Bad-
Call, Abs-Bad-Case, Abs-Bad-Spawn, Abs-Bad-Send or Abs-Bad-Pop-Let with ac-
tive components (αCFA(ι), αCFA(q), αCFA(q

′)). So if

args = sort({setname(â) : â ∈ pidaddrs(αCFA(q))}, <)

we have a process definition in the abstraction

αCFA(q)[s | args] := τ .αCFA(q
′)[s | args] + . . .

So as in the above cases,

αCFA(q)[name(ι) | args(q)]↠ αCFA(q
′)[name(ι) | args(q)].

and if args(q) = args(q′), we are done. By Corollaries C.5 and C.11 it is enough to show
pidaddrs(q) = pidaddrs(q′). Since q = ⟨ℓ, ρ, c, t⟩, q′ = ⟨⊗, ρ, c, t⟩, this holds trivially by
definition.

• Suppose S → S′ by the rule Apply, with active components (ι, q, q′). Then by Lemma C.8
we have that to show απ(S)↠ απ(S

′) it is enough to show απ(q, ι)↠ απ(q
′, ι).

απ(q, ι) = αCFA(q)[name(ι) | args(q)],
απ(q

′, ι) = αCFA(q
′)[name(ι) | args(q′)].

Since the transition was made by Apply, we have that αCFA(S)⇝ αCFA(S
′) by the rule Abs-

Apply with active components (αCFA(ι), αCFA(q), αCFA(q
′)). So we have a process definition

in the abstraction

αCFA(q)[s | args] := τ .αCFA(q
′)[s | args′] + . . .

args = sort({setname(â) : â ∈ pidaddrs(αCFA(q))}, <)

args′ = sort({setname(â) : â ∈ pidaddrs(αCFA(q
′))}, <)

So

αCFA(q)[name(ι) | args(q)]↠ αCFA(q
′)[name(ι) | args′][args(q)/args]

and if args′[args(q)/args] ⊒ args(q′), we are done. By Lemma C.4 and Corollary C.11 it is
enough to show pidaddrs(q) ⊇ pidaddrs(q′).
q = ⟨ℓ, ρ, c, t⟩, q′ = ⟨ℓ′′, ρ′′, c, tick(t, t′)⟩, ρ′′ = ρ′[V ′

1 7→ ρ(V1), . . . , V
′
n 7→ ρ(Vn)], ⟨ℓ, ρ′⟩ =

σv(ρ(U)).
Since ρ′ accessible from ρ in σv it follows by Lemma C.13 that pidaddrs(ρ′) ⊆ pidaddrs(ρ).
Each ρ(Vi) also has pidaddrs(ρ(Vi)) ⊆ ρ. So pidaddrs(ρ′′) ⊆ pidaddrs(ρ) and

pidaddrs(q′) = pidaddrs(ρ′′) ∪ pidaddrs(c)
⊆ pidaddrs(ρ) ∪ pidaddrs(c)
= pidaddrs(q).

• Suppose S → S′ by the rule Call, with active components (ι, q, q′). Then by Lemma C.8
we have that to show απ(S)↠ απ(S

′) it is enough to show απ(q, ι)↠ απ(q
′, ι).

απ(q, ι) = αCFA(q)[name(ι) | args(q)],
απ(q

′, ι) = αCFA(q
′)[name(ι) | args(q′)].

xv

Since the transition was made by Call, we have that αCFA(S)⇝ αCFA(S
′) by the rule Abs-

Call with active components (αCFA(ι), αCFA(q), αCFA(q
′)). So we have a process definition

in the abstraction

αCFA(q)[s | args] := τ .αCFA(q
′)[s | args′] + . . .

args = sort({setname(â) : â ∈ pidaddrs(αCFA(q))}, <)

args′ = sort({setname(â) : â ∈ pidaddrs(αCFA(q
′))}, <)

So

αCFA(q)[name(ι) | args(q)]↠ αCFA(q
′)[name(ι) | args′][args(q)/args]

and if args′[args(q)/args] ⊒ args(q′), we are done. By Lemma C.4 and Corollary C.11 it is
enough to show pidaddrs(q) ⊇ pidaddrs(q′).
q = ⟨ℓ, ρ, c, t⟩, q′ = ⟨ℓ′′, ρ′′, c, tick(t, t′)⟩, ρ′′ = ρ′[V ′

1 7→ ρ(V1), . . . , V
′
n 7→ ρ(Vn)], ρ′ =

modenv(M, atom1), σv(ρ(U1)) = ⟨ℓ : atom1, []⟩,
As ρ′ is produced by modenv, we have that Im ρ′ ∩ PidAddr = ∅ and a ∈ Im ρ′ =⇒
pidaddrs(a) = {}. So

pidaddrs(ρ′′) =
∪

{pidaddrs(a) : a ∈ Im ρ′′}

=
(∪

{pidaddrs(a) : a ∈ Im ρ′}
)
∪
∪
i

pidaddrs(ρ(Vi))

= ∅ ∪
∪
i

pidaddrs(ρ(Vi))

⊆ pidaddrs(ρ)

So as in the previous case, pidaddrs(q′) = pidaddrs(q).

• Suppose S → S′ by the rule Pop-Let-Closure, with active components (ι, q, q′). Then by
Lemma C.8 we have that to show απ(S)↠ απ(S

′) it is enough to show απ(q, ι)↠ απ(q
′, ι).

απ(q, ι) = αCFA(q)[name(ι) | args(q)],
απ(q

′, ι) = αCFA(q
′)[name(ι) | args(q′)].

Since the transition was made by Pop-Let-Closure, we have that αCFA(S) ⇝ αCFA(S
′)

by the rule Abs-Pop-Let-Closure with active components (αCFA(ι), αCFA(q), αCFA(q
′)).

So we have a process definition in the abstraction

αCFA(q)[s | args] := τ .αCFA(q
′)[s | args′] + . . .

args = sort({setname(â) : â ∈ pidaddrs(αCFA(q))}, <)

args′ = sort({setname(â) : â ∈ pidaddrs(αCFA(q
′))}, <)

So

αCFA(q)[name(ι) | args(q)]↠ αCFA(q
′)[name(ι) | args′][args(q)/args]

and if args′[args(q)/args] ⊒ args(q′), we are done. By Lemma C.4 and Corollary C.11 it is
enough to show pidaddrs(q) ⊇ pidaddrs(q′).
q = ⟨ℓ, ρ, c, t⟩, q′ = ⟨ℓ′, ρ′′, c′, t⟩, ρ′′ = ρ′[U 7→ a], Let⟨U ·ϵ, ℓ′, ρ′, c′⟩ = σk(c), a = newvadata(ι, U, t, res(σv, ⟨ℓ, shrink(ρ, ℓ)⟩), shrink(ρ, ℓ)).
So by Definition 3.2 we have pidaddrs(a) = pidaddrs(shrink(ρ, ℓ)),

pidaddrs(ρ′′) = pidaddrs(a) ∪ pidaddrs(ρ′) = pidaddrs(shrink(ρ, ℓ)) ∪ pidaddrs(ρ′).

By construction, pidaddrs(c) = pidaddrs(ρ′) ∪ pidaddrs(c′). So

pidaddrs(q) = pidaddrs(ρ) ∪ pidaddrs(c)
= pidaddrs(ρ) ∪ pidaddrs(ρ′) ∪ pidaddrs(c′)
⊇ pidaddrs(shrink(ρ, ℓ)) ∪ pidaddrs(ρ′) ∪ pidaddrs(c′)
= pidaddrs(ρ′′) ∪ pidaddrs(c′)
= pidaddrs(q′).

xvi

• Suppose S → S′ by the rule Pop-Let-ValueAddr, with active components (ι, q, q′). Then
by Lemma C.8 we have that to show απ(S)↠ απ(S

′) it is enough to show απ(q, ι)↠ απ(q
′, ι).

απ(q, ι) = αCFA(q)[name(ι) | args(q)],
απ(q

′, ι) = αCFA(q
′)[name(ι) | args(q′)].

Since the transition was made by Pop-Let-ValueAddr, we have that αCFA(S)⇝ αCFA(S
′)

by the rule Abs-Pop-Let-ValueAddr with active components (αCFA(ι), αCFA(q), αCFA(q
′)).

So we have a process definition in the abstraction

αCFA(q)[s | args] := τ .αCFA(q
′)[s | args′] + . . .

args = sort({setname(â) : â ∈ pidaddrs(αCFA(q))}, <)

args′ = sort({setname(â) : â ∈ pidaddrs(αCFA(q
′))}, <)

So

αCFA(q)[name(ι) | args(q)]↠ αCFA(q
′)[name(ι) | args′][args(q)/args]

and if args′[args(q)/args] ⊒ args(q′), we are done. By Lemma C.4 and Corollary C.11 it is
enough to show pidaddrs(q) ⊇ pidaddrs(q′).
q = ⟨a, ρ, c, t⟩, q′ = ⟨ℓ′, ρ′′, c′, t⟩, ρ′′ = ρ′[U 7→ a], Let⟨U ·ϵ, ℓ′, ρ′, c′⟩ = σk(c), So pidaddrs(ρ′′) =
pidaddrs(a) ∪ pidaddrs(ρ′). By construction, pidaddrs(c) = pidaddrs(ρ′) ∪ pidaddrs(c′). So

pidaddrs(q) = pidaddrs(a) ∪ pidaddrs(ρ) ∪ pidaddrs(c)
= pidaddrs(a) ∪ pidaddrs(ρ) ∪ pidaddrs(ρ′) ∪ pidaddrs(c′)
⊇ pidaddrs(a) ∪ pidaddrs(ρ′) ∪ pidaddrs(c′)
= pidaddrs(ρ′′) ∪ pidaddrs(c′)
= pidaddrs(q′).

• Suppose S → S′ by the rule Pop-Let-ValueList, with active components (ι, q, q′). Then by
Lemma C.8 we have that to show απ(S)↠ απ(S

′) it is enough to show απ(q, ι)↠ απ(q
′, ι).

απ(q, ι) = αCFA(q)[name(ι) | args(q)],
απ(q

′, ι) = αCFA(q
′)[name(ι) | args(q′)].

Since the transition was made by Pop-Let-ValueList, we have that αCFA(S)⇝ αCFA(S
′)

by the rule Abs-Pop-Let-ValueList with active components (αCFA(ι), αCFA(q), αCFA(q
′)).

So we have a process definition in the abstraction

αCFA(q)[s | args] := τ .αCFA(q
′)[s | args′] + . . .

args = sort({setname(â) : â ∈ pidaddrs(αCFA(q))}, <)

args′ = sort({setname(â) : â ∈ pidaddrs(αCFA(q
′))}, <)

So

αCFA(q)[name(ι) | args(q)]↠ αCFA(q
′)[name(ι) | args′][args(q)/args]

and if args′[args(q)/args] ⊒ args(q′), we are done. By Lemma C.4 and Corollary C.11 it is
enough to show pidaddrs(q) ⊇ pidaddrs(q′).
q = ⟨ℓ, ρ, c, t⟩, q′ = ⟨ℓ′, ρ′′, c′, t⟩, ρ′′ = ρ′[U ′

1 7→ ρ(U1), . . . , U
′
n 7→ ρ(Un)], Let⟨U ′

1 · . . . ·
U ′
n, ℓ

′, ρ′, c′⟩ = σk(c), So

pidaddrs(ρ′′) =
(∪

i

pidaddrs(ρ(Ui))

)
∪ pidaddrs(ρ′) ⊆ pidaddrs(ρ) ∪ pidaddrs(ρ′).

xvii

By construction, pidaddrs(c) = pidaddrs(ρ′) ∪ pidaddrs(c′). So

pidaddrs(q) = pidaddrs(ρ) ∪ pidaddrs(c)
= pidaddrs(ρ) ∪ pidaddrs(ρ′) ∪ pidaddrs(c′)
⊇ pidaddrs(ρ′′) ∪ pidaddrs(c′)
= pidaddrs(q′).

• Suppose S → S′ by the rule Pop-Do, with active components (ι, q, q′). Then by Lemma C.8
we have that to show απ(S)↠ απ(S

′) it is enough to show απ(q, ι)↠ απ(q
′, ι).

απ(q, ι) = αCFA(q)[name(ι) | args(q)],
απ(q

′, ι) = αCFA(q
′)[name(ι) | args(q′)].

Since the transition was made by Pop-Do, we have that αCFA(S) ⇝ αCFA(S
′) by the rule

Abs-Pop-Do with active components (αCFA(ι), αCFA(q), αCFA(q
′)). So we have a process

definition in the abstraction

αCFA(q)[s | args] := τ .αCFA(q
′)[s | args′] + . . .

args = sort({setname(â) : â ∈ pidaddrs(αCFA(q))}, <)

args′ = sort({setname(â) : â ∈ pidaddrs(αCFA(q
′))}, <)

So

αCFA(q)[name(ι) | args(q)]↠ αCFA(q
′)[name(ι) | args′][args(q)/args]

and if args′[args(q)/args] ⊒ args(q′), we are done. By Lemma C.4 and Corollary C.11 it is
enough to show pidaddrs(q) ⊇ pidaddrs(q′).
q = ⟨ℓ, ρ, c, t⟩, q′ = ⟨ℓ′, ρ′, c′, t⟩, Do⟨ℓ′, ρ′, c′⟩ = σk(c), By construction, pidaddrs(c) =
pidaddrs(ρ′) ∪ pidaddrs(c′). So

pidaddrs(q) = pidaddrs(ρ) ∪ pidaddrs(c)
= pidaddrs(ρ) ∪ pidaddrs(ρ′) ∪ pidaddrs(c′)
⊇ pidaddrs(ρ′) ∪ pidaddrs(c′)
= pidaddrs(q′).

• Suppose S → S′ by the rule Pop-Let-Pid, with active components (ι, q, q′). Then by
Lemma C.8 we have that to show απ(S)↠ απ(S

′) it is enough to show απ(q, ι)↠ απ(q
′, ι).

q = ⟨ι′, ρ, c, t⟩, so

απ(q, ι) = αCFA(q)[name(ι),name(ι′) | args(q)],
απ(q

′, ι) = αCFA(q
′)[name(ι) | args(q′)].

Since the transition was made by Pop-Let-Pid, we have that αCFA(S)⇝ αCFA(S
′) by the

rule Abs-Pop-Let-Pid with active components (αCFA(ι), αCFA(q), αCFA(q
′)). So we have a

process definition in the abstraction

αCFA(q)[s, s
′ | args] := τ .αCFA(q

′)[s | args′] + . . .

args = sort({setname(â) : â ∈ pidaddrs(αCFA(q))}, <)

B1 · . . . ·Bm = sort({setname(â′) : â′ ∈ pidaddrs(αCFA(q
′))}, <),

args′ = T1 · . . . · Tm, Ti =


Bi ∪ {s′}, Bi ∈ args, Bi = setname(â′),∈
Bi, Bi ∈ args, Bi ̸= setname(â′)
{s′}, Bi ̸∈ args, Bi ̸= setname(â′)
∅ Bi ̸∈ args, Bi ̸= setname(â′)

xviii

So

αCFA(q)[name(ι),name(ι′) | args(q)]↠ αCFA(q
′)[name(ι) | args′][args(q)/args]

and if args′[args(q)/args] ⊒ args(q′), we are done.
q = ⟨ι′, ρ, c, t⟩, q′ = ⟨ℓ′, ρ′′, c′, t⟩, ρ′′ = ρ′[U 7→ a], Let⟨U · ϵ, ℓ′, ρ′, c′⟩ = σk(c), a =
newvapid(ι, U, q) = ⟨ι, U, t, ι′⟩. So

pidaddrs(ρ′′) = pidaddrs(a) ∪ pidaddrs(ρ′) = {a} ∪ pidaddrs(ρ′).

By construction, pidaddrs(c) = pidaddrs(ρ′) ∪ pidaddrs(c′). So pidaddrs(q) = pidaddrs(ρ) ∪
pidaddrs(ρ′)∪pidaddrs(c′), pidaddrs(q′) = {a}∪pidaddrs(ρ′)∪pidaddrs(c′). Since a is fresh
by construction we have a ̸∈ Im ρ, pidaddrs(q) ∩ pidaddrs(q′) = pidaddrs(ρ′) ∪ pidaddrs(c′).
Now

args′[args(q)/args] = T ′′
1 · . . . · T ′′

m[args(q)/args]
args(q) = T1 · . . . · Tm

â1 · . . . · âm = sort(pidaddrs(αCFA(q)), <̂VA)

Ti = {name(ι′′) : a′ = ⟨_,_,_, ι′′⟩ ∈ pidaddrs(q), αCFA(a
′) = âi}, args(q′) = T ′

1 · . . . · T ′
p

â′1 · . . . · â′p = sort(pidaddrs(αCFA(q
′)), <̂VA)

T ′
i = {name(ι′′) : a′ = ⟨_,_,_, ι′′⟩ ∈ pidaddrs(q′), αCFA(a

′) = â′i}

Clearly since name is an order isomorphism we have m = p, so if T ′′
i [args(q)/args] ⊆ T ′

i for
each i then args′[args(q)/args] ⊒ args(q′) and we are done.
αCFA(q) = ⟨αCFA(ι

′), αCFA(ρ), αCFA(c), αCFA(t)⟩, αCFA(q
′) = ⟨ℓ′, αCFA(ρ

′), αCFA(c
′), αCFA(t)⟩.

Let â = n̂ewvapid(αCFA(ι), U, αCFA(q)) = ⟨αCFA(ι), U, αCFA(t), αCFA(ι
′)⟩ be the value ad-

dress constructed by Abs-Pop-Let-Pid. Clearly αCFA(a) = â. Continue by cases on the
construction of Ti:

– Suppose Bi ∈ args and Bi = setname(αCFA(a)). Then T ′′
i = Bi ∪ {s′}. Since Bi ∈ args

there is some âj ∈ pidaddrs(αCFA(q)) with setname(aj) = Bi, so

T ′′
i [args(q)/args] = Tj∪{s′} = {name(ι′′) : a′ = ⟨_,_,_, ι′′⟩ ∈ pidaddrs(q), αCFA(a

′) = âj}∪{s′}

But {s′} = {name(ι′)} = {name(ι′′) : a′ = ⟨_,_,_, ι′′⟩ ∈ pidaddrs(a), αCFA(a
′) =

αCFA(a)} Since setname an isomorphism, we have â′i = αCFA(a) = âj so

T ′′
i [args(q)/args] = {name(ι′′) : a′ = ⟨_,_,_, ι′′⟩ ∈ pidaddrs(q) ∪ pidaddrs(a), αCFA(a

′) = â′i}
pidaddrs(q) ∪ pidaddrs(a) = pidaddrs(ρ) ∪ pidaddrs(ρ′) ∪ pidaddrs(c′) ∪ {a}

⊇ pidaddrs(ρ′) ∪ pidaddrs(c′) ∪ {a}
= pidaddrs(q′), so

T ′′
i [args(q)/args] ⊇ {name(ι′′) : a′ = ⟨_,_,_, ι′′⟩ ∈ pidaddrs(q′), αCFA(a

′) = â′i}
= T ′

i

– Suppose Bi ∈ args and Bi ̸= setname(αCFA(a)). Then T ′′
i = Bi. Since Bi ∈ args there

is some âj ∈ pidaddrs(αCFA(q)) with setname(aj) = Bi, so

T ′′
i [args(q)/args] = Tj = {name(ι′′) : a′ = ⟨_,_,_, ι′′⟩ ∈ pidaddrs(q), αCFA(a

′) = âj}

Since setname an isomorphism, we have â′i = âj and â′i ̸= αCFA(a). So

T ′′
i [args(q)/args] = {name(ι′′) : a′ = ⟨_,_,_, ι′′⟩ ∈ pidaddrs(q), αCFA(a

′) = â′i}
T ′
i = {name(ι′′) : a′ = ⟨_,_,_, ι′′⟩ ∈ pidaddrs(q′), αCFA(a

′) = â′i}
= {name(ι′′) : a′ = ⟨_,_,_, ι′′⟩ ∈ pidaddrs(q′) \ {a}, αCFA(a

′) = â′i}
pidaddrs(q) = pidaddrs(ρ) ∪ pidaddrs(ρ′) ∪ pidaddrs(c′)

⊇ pidaddrs(ρ′) ∪ pidaddrs(c′)
= pidaddrs(q′) \ {a}, so

T ′′
i [args(q)/args] ⊇ T ′

i

xix

– Suppose Bi ̸∈ args and Bi = setname(αCFA(a)). Then T ′′
i = {s′} and T ′′

i [args(q)/args] =
{s′} Since setname an isomorphism, we have â′i ̸= αCFA(a). Now {s′} = {name(ι′)} =
{name(ι′′) : a′ = ⟨_,_,_, ι′′⟩ ∈ {a}, αCFA(a

′) = â′i}. Since

pidaddrs(q′) = pidaddrs(ρ′) ∪ pidaddrs(c′) ∪ {a},
pidaddrs(q) ∩ pidaddrs(q′) = pidaddrs(ρ′) ∪ pidaddrs(c′),

clearly if a′ ∈ pidaddrs(q′) and a′ ̸= a then a′ ∈ pidaddrs(q). Then by construction
αCFA(a

′) ∈ pidaddrs(αCFA(q)) But then αCFA(a
′) = âj for some j and setname(âj) ∈

args. So since Bi = setname(â′i), Bi ̸∈ args, by the contrapositive we must have â′i ̸=
αCFA(a

′) for all a′ ∈ pidaddrs(q′), a′ ̸= a. So

T ′
i = {name(ι′′) : a′ = ⟨_,_,_, ι′′⟩ ∈ pidaddrs(q′), αCFA(a

′) = âj}
= {name(ι′′) : a′ = ⟨_,_,_, ι′′⟩ ∈ {a}, αCFA(a

′) = âj}
= {s′} = T ′′

i [args(q)/args]

– Suppose Bi ̸∈ args and Bi ̸= setname(αCFA(a)). This case is impossible, since Bi =
setname(â′i), â′i ∈ pidaddrs(αCFA(q

′)), so â′i = αCFA(a
′) for some a′ ∈ pidaddrs(q′) by

construction. But by arguments in the above cases, this a′ is in neither pidaddrs(q) ∩
pidaddrs(q′) nor {a}, so a′ /∈ pidaddrs(q′), a contradiction.

• Suppose S → S′ by the rule Case, with active components (ι, q, q′), where ⟨i, θ⟩ is the
selected match and guardi is the guard of the matched pattern. Then by Lemma C.8 we
have that to show απ(S)↠ απ(S

′) it is enough to show απ(q, ι)↠ απ(q
′, ι).

απ(q, ι) = αCFA(q)[name(ι) | args(q)],
απ(q

′, ι) = αCFA(q
′)[name(ι) | args(q′)].

Since the transition was made by Case, we have that αCFA(S) ⇝ αCFA(S
′) by the rule

Abs-Case with active components (αCFA(ι), αCFA(q), αCFA(q
′)), where ⟨i, αCFA(θ)⟩ is the

selected match. So if

args = sort({setname(â) : â ∈ pidaddrs(αCFA(q))}, <)

G = {(â′, â′′) : â′ = (αCFA(ρ) ⊎ αCFA(θ))(U), â′′ = (αCFA(ρ) ⊎ αCFA(θ))(V),

â′, â′′ ∈ ̂PidAddr, U ׌ُُ V appears in guardi}
conds = sort({A1 ∩A2 ̸= ∅ : (â′, â′′) ∈ G,A1 = setname(â′), A2 = setname(â′′)}, <∩)

we have a process definition in the abstraction

αCFA(q)[s | args] := [conds].αCFA(q
′)[s | args] + . . .

So if cond[args(q)/args] holds for every cond ∈ conds,

αCFA(q)[name(ι) | args(q)]↠ αCFA(q
′)[name(ι) | args(q)].

So if cond[args(q)/args] holds for every cond ∈ conds and args(q) = args(q′), we are done.
By Corollaries C.5 and C.11 for args(q) = args(q′), it is enough to show pidaddrs(q) =
pidaddrs(q′).
q = ⟨ℓ, ρ, c, t⟩, q′ = ⟨ℓi, ρ′′, c, t⟩, ρ′′ = ρ⊎θ, ⟨i, θ⟩ = cmatch(clauses, ρ(U), σv). From Definition
A.1, it is clear that Im θ ⊆ accessiblev(ρ, σv), and by construction if a′ ∈ accessiblev(a, σV)
then pidaddrs(a′) ⊆ pidaddrs(a). so pidaddrs(ρ) = pidaddrs(ρ′′). Now trivially pidaddrs(q) =
pidaddrs(q′).
Since S → S′ we have that ρ ⊎ θ satisfies every guard in guardi; that is, for each U ׌ُُ V
in guardi we have unifiable(ρ(U), ρ(V), σv). Each U ׌ُُ V in guardi with (ρ ⊎ θ)(U), (ρ ⊎
θ)(V) ∈ PidAddr =⇒ (αCFA(ρ) ⊎ αCFA(θ))(U), (αCFA(ρ) ⊎ αCFA(θ))(V) ∈ ̂PidAddr cor-
responds to an element of G and hence to some cond = A1 ∩ A2 ̸= ∅ in conds where

xx

A1 = setname((αCFA(ρ) ⊎ αCFA(θ))(U)), A2 = setname((αCFA(ρ) ⊎ αCFA(θ))(V)). Since
dom θ ⊆ accessiblev(ρ, σv) we have that A1, A2 ∈ args and so

cond[args(q)/args] = T ∩ T ′ ̸= ∅
T = {name(ι′) : a′ = ⟨_,_,_, ι′⟩ ∈ pidaddrs(q), αCFA(a

′) = (αCFA(ρ) ⊎ αCFA(θ))(U))}
⊇ {ι′}, (ρ ⊎ θ)(U) = ⟨_,_,_, ι′⟩

T ′ ⊇ {ι′′}, (ρ ⊎ θ)(V) = ⟨_,_,_, ι′′⟩

Since ρ ⊎ θ satisfies U ׌ُُ V , we have that σv((ρ ⊎ θ)(U)) = σv((ρ ⊎ θ)(V)), so ι′ = ι′′ and
T ∩ T ′ ̸= ∅.

• Suppose S → S′ by the rule Receive, with active components (ι, q, q′). Let I = {ι}; clearly
if ι′ ̸∈ I, π(ι′) = π′(ι′), µ(ι′) = µ′(ι′),

σv ∩ pidaddrs(π(ι′)) = σ′
v ∩ pidaddrs(π(ι′)),

and for a ∈ µ(ι′),

σv ∩ pidaddrs(a) = σ′
v ∩ pidaddrs(a),

Then by Lemma C.8 we have that to show απ(S)↠ απ(S
′) it is enough to show

απ(q, ι) ∥απ(µ ∩ {ι})↠ απ(q
′, ι) ∥απ(µ

′ ∩ {ι}).

απ(q, ι) = αCFA(q)[name(ι) | args(q)],
απ(q

′, ι) = αCFA(q
′)[name(ι) | args(q′)].

Let ⟨i, a, ρ′,m⟩ = mmatch(clauses, µ(ι), σv) be the pattern index, address, substitution and
new mailbox produced by mmatch during the transition and guardi be the guard of the
matched pattern. Then µ′(ι) = m, and by definition of mmatch this m is µ(ι) with the first
occurrence of a omitted. So

απ(µ ∩ {ι}) = SendαCFA(a)[name(ι) | args(a)] ∥απ(µ
′ ∩ {ι})

Since the transition was made by Receive, we have that αCFA(S) ⇝ αCFA(S
′) by the rule

Abs-Receive with active components (αCFA(ι), αCFA(q), αCFA(q
′)), where

⟨i, αCFA(a), αCFA(ρ
′), m̂⟩ = m̂match(clauses, αCFA(µ)(αCFA(ι)), αCFA(σv))

is the pattern index, address, substitution and new mailbox produced by m̂match during the

xxi

transition. So we have process definitions in the abstraction

αCFA(q)[s | args] := s?αCFA(a)(recargs)[conds].αCFA(q
′)[s | args′] + . . .

SendαCFA(a)[s | args′′] := s!αCFA(a)⟨args′′⟩.0,
args = sort({setname(â) : â ∈ pidaddrs(αCFA(q))}, <)

recargs = sort({setname′(â′) : â′ ∈ pidaddrs(αCFA(a))}, <)

â1 · . . . · âm = sort(pidaddrs(αCFA(q
′)), <)

Bi = setname(âi)
B′

i = setname′(âi)

args′′ = S1 · . . . · Sm, Si =


Bi ∪B′

i, Bi ∈ args, B′
i ∈ recargs

Bi, Bi ∈ args, B′
i ̸∈ recargs

B′
i, Bi ̸∈ args, B′

i ∈ recargs
∅, Bi /∈ args, B′

i /∈ recargs
args′′ = sort({setname(â′) : â′ ∈ pidaddrs(αCFA(a))}, <)

G = {(â′, â′′) : â′ = (αCFA(ρ) ⊎ αCFA(θ))(U), â′′ = (αCFA(ρ) ⊎ αCFA(θ))(V),

â′, â′′ ∈ ̂PidAddr, U ׌ُُ V appears in guardi}

setnameclausei(â) =

{
setname′(â) setname(â) appears in a pattern in clausei
setname(â) otherwise

conds = sort({A1 ∩A2 ̸= ∅ : (â′, â′′) ∈ G,A1 = setnameclausei(â
′), A2 = setnameclausei(â

′′)}, <∩)

So if cond[args(q)/args][args(a)/recargs] holds for every cond ∈ conds,

απ(q, ι) ∥απ(µ ∩ {ι}) ≡ αCFA(q)[name(ι) | args(q)]
∥SendαCFA(a)[name(s) | args(a)]
∥απ(µ

′ ∩ {ι})
≡ (name(ι)?αCFA(a)(recargs)[conds].αCFA(q

′)[s | args′] + . . .)[args(q)/args]
∥name(ι)!αCFA(a)⟨args(a)⟩.0
∥απ(µ

′ ∩ {ι})
↠ αCFA(q

′)[s | args′][args(q)/args][args(a)/recargs] ∥απ(µ
′ ∩ {ι})

So if cond[args(q)/args][args(a)/recargs] holds for every cond ∈ conds and args′[args(q)/args][args(a)/recargs] ⊒
args(q′), we are done.
q = ⟨ℓ, ρ, c, t⟩, ⟨i, a, θ,m⟩ = mmatch(clauses, µ(ι), σv). Since S → S′ we have that ρ⊎ θ satis-
fies every guard in guardi; that is, for each U ׌ُُ V in guardi we have unifiable(ρ(U), ρ(V), σv).
Each U ׌ُُ V in guardi with (ρ⊎θ)(U), (ρ⊎θ)(V) ∈ PidAddr =⇒ (αCFA(ρ)⊎αCFA(θ))(U), (αCFA(ρ)⊎
αCFA(θ))(V) ∈ ̂PidAddr corresponds to an element of G and hence to some cond = A1∩A2 ̸=
∅ in conds where A1 = setnameclausei((αCFA(ρ)⊎αCFA(θ))(U)), A2 = setnameclausei((αCFA(ρ)⊎
αCFA(θ))(V)). Since dom θ ⊆ accessiblev(a, σv) we for Ai that Ai ∈ args or Ai ∈ recargs. Let
Ii = pidaddrs(q) if Ai ∈ args and Ii = pidaddrs(a) if Ai ∈ recargs.

cond[args(q)/args][args(a)/recargs] = T ∩ T ′ ̸= ∅
T = {name(ι′) : a′ = ⟨_,_,_, ι′⟩ ∈ I, αCFA(a

′) = (αCFA(ρ) ⊎ αCFA(θ))(U))}
⊇ {ι′}, (ρ ⊎ θ)(U) = ⟨_,_,_, ι′⟩

T ′ ⊇ {ι′′}, (ρ ⊎ θ)(V) = ⟨_,_,_, ι′′⟩

Since ρ ⊎ θ satisfies U ׌ُُ V , we have that σv((ρ ⊎ θ)(U)) = σv((ρ ⊎ θ)(V)), so ι′ = ι′′ and
T ∩ T ′ ̸= ∅.
q = ⟨ℓ, ρ, c, t⟩, q′ = ⟨ℓi, ρ ⊎ ρ′, c′, t⟩, ⟨i, a, ρ′,m⟩ = mmatch(clauses, µ(ι), σv) Everything in ρ′

xxii

is accessible from a, so by construction pidaddrs(ρ′) ⊆ pidaddrs(a). So

pidaddrs(q) = pidaddrs(ρ) ∪ pidaddrs(c′),
pidaddrs(q′) = pidaddrs(ρ) ∪ pidaddrs(c′) ∪ pidaddrs(ρ′)

= pidaddrs(q) ∪ pidaddrs(ρ′)
⊆ pidaddrs(q) ∪ pidaddrs(a)

Now

args(q) = T1 · . . . · Tn

â1 · . . . · ân = sort(pidaddrs(αCFA(q)), <̂VA)

Ti = {name(ι′) : a′ = ⟨_,_,_, ι′⟩ ∈ pidaddrs(q), αCFA(a
′) = âi}, args(q′) = T ′

1 · . . . · T ′
m

â′1 · . . . · â′m = sort(pidaddrs(αCFA(q
′)), <̂VA)

T ′
i = {name(ι′) : a′ = ⟨_,_,_, ι′⟩ ∈ pidaddrs(q′), αCFA(a

′) = â′i} args(a) = T ′′
1 · . . . · T ′′

l

â′′1 · . . . · â′′l = sort(pidaddrs(αCFA(a)), <̂VA)

T ′′
i = {name(ι′) : a′ = ⟨_,_,_, ι′⟩ ∈ pidaddrs(a), αCFA(a

′) = â′′i }.

so if Si[args(q)/args][args(a)/recargs] ⊇ T ′
i for each i then args′[args(q)/args][args(a)/recargs] ⊒

args(q′) and we are done.
Continue by cases on the construction of Si:

– Suppose Bi ∈ args and B′
i ∈ recargs. Then Si = Bi ∪ B′

i. Since Bi ∈ args there
is some âj ∈ pidaddrs(αCFA(q)) with setname(âj) = Bi. Since B′

i ∈ recargs there
is some â′′k ∈ pidaddrs(αCFA(a)) with setname′(â′′k) = B′

i. setname and setname′ are
isomorphisms, â′i = âj = â′′k . So

Si[args(q)/args][args(a)/recargs] = Tj ∪ T ′′
k

= {name(ι′) : a′ = ⟨_,_,_, ι′⟩ = pidaddrs(q), αCFA(a
′) = â′i}

∪{name(ι′) : a′ = ⟨_,_,_, ι′⟩ = pidaddrs(a), αCFA(a
′) = â′i}

= {name(ι′) : a′ = ⟨_,_,_, ι′⟩ = pidaddrs(q) ∪ pidaddrs(a), αCFA(a
′) = â′i}

⊇ T ′
i = {name(ι′) : a′ = ⟨_,_,_, ι′⟩ = pidaddrs(q′), αCFA(a

′) = â′i}

– Suppose Bi ∈ args and B′
i ̸∈ recargs. Then Si = Bi. Since Bi ∈ args there is some âj ∈

pidaddrs(αCFA(q)) with setname(âj) = Bi. Since setname is a bijection, we have â′i =
âj . Suppose a′ ∈ pidaddrs(a). Then by construction αCFA(a

′) ∈ pidaddrs(αCFA(a)) But
then αCFA(a

′) = â′′k for some k and setname′(â′′k) ∈ recargs. So since B′
i = setname′(â′i),

B′
i ̸∈ recargs, by the contrapositive we must have â′i ̸= setname(αCFA(a

′)) for any
a′ ∈ pidaddrs(a).

pidaddrs(q′) = pidaddrs(q) ∪ pidaddrs(ρ′), pidaddrs(ρ′) ⊆ pidaddrs(a),

So

T ′
i = {name(ι′) : a′ = ⟨_,_,_, ι′⟩ ∈ pidaddrs(q′), αCFA(a

′) = â′i}
= {name(ι′) : a′ = ⟨_,_,_, ι′⟩ ∈ pidaddrs(q), αCFA(a

′) = âj}
= Tj = Si[args(q)/args][args(a)/recargs]

– Suppose Bi ̸∈ args and B′
i ∈ recargs. Then Si = B′

i. Since B′
i ∈ recargs there is

some â′′k ∈ pidaddrs(αCFA(a)) with setname′(â′′k) = B′
i. Since setname′ is a bijec-

tion, we have â′i = â′′k . Suppose a′ ∈ pidaddrs(q). Then by construction αCFA(a
′) ∈

pidaddrs(αCFA(q)) But then αCFA(a
′) = âj for some j and setname(âj) ∈ args. So since

Bi = setname(â′i), Bi ̸∈ args, by the contrapositive we must have â′i ̸= setname(αCFA(a
′))

for any a′ ∈ pidaddrs(q).

pidaddrs(q′) = pidaddrs(q) ∪ pidaddrs(ρ′), pidaddrs(ρ′) ⊆ pidaddrs(a),

xxiii

So

T ′
i = {name(ι′) : a′ = ⟨_,_,_, ι′⟩ ∈ pidaddrs(q′), αCFA(a

′) = â′i}
= {name(ι′) : a′ = ⟨_,_,_, ι′⟩ ∈ pidaddrs(ρ′), αCFA(a

′) = â′′k}
⊆ {name(ι′) : a′ = ⟨_,_,_, ι′⟩ ∈ pidaddrs(a), αCFA(a

′) = â′′k}
= T ′′

k = Si[args(q)/args][args(a)/recargs]

– Suppose Bi ̸∈ args and B′
i ̸∈ recargs. This case is impossible, since

pidaddrs(q′) = pidaddrs(q) ∪ pidaddrs(ρ′), pidaddrs(ρ′) ⊆ pidaddrs(a),

and by arguments in the above cases we have â′i ̸= setname(αCFA(a
′)) for any a′ ∈

pidaddrs(q) ∪ pidaddrs(a) ⊃ pidaddrs(q′). So we have a contradiction, and we must be
in one of the other cases.

• Suppose S → S′ by the rule Self, with active components (ι, q, q′). Then by Lemma C.8 we
have that to show απ(S)↠ απ(S

′) it is enough to show απ(q, ι)↠ απ(q
′, ι).

απ(q, ι) = αCFA(q)[name(ι) | args(q)],
απ(q

′, ι) = αCFA(q
′)[name(ι),name(ι) | args(q′)].

Since the transition was made by Self, we have that αCFA(S)⇝ αCFA(S
′) by the rule Abs-

Self with active components (αCFA(ι), αCFA(q), αCFA(q
′)). So we have a process definition

in the abstraction

αCFA(q)[s | args] := τ .αCFA(q
′)[s, s | args] + . . .

args = sort({setname(â) : â ∈ pidaddrs(αCFA(q))}, <)

So

αCFA(q)[name(ι) | args(q)]↠ αCFA(q
′)[name(ι) | args(q)]

and if args(q) = args(q′), we are done. By Corollaries C.5 and C.11 it is enough to show
pidaddrs(q) = pidaddrs(q′). Since q = ⟨ℓ, ρ, c, t⟩, q′ = ⟨ι, ρ, c, t⟩, this holds trivially.

• Suppose S → S′ by the rule Spawn, with active components (ι, q, q′). Let q′ = ⟨ι′, ρ, c, t⟩,
q′′ = π′(ι′). By construction ι′ ̸∈ domπ. Let I = {ι, ι′}; clearly if ι′′ ̸∈ I, π(ι′′) = π′(ι′′),

σv ∩ pidaddrs(π(ι′′)) = σ′
v ∩ pidaddrs(π(ι′′)),

We also have µ = µ′, so by Lemma C.8, to show απ(S) ↠ απ(S
′) it is enough to show

απ(q, ι)↠ απ(q
′, ι) ∥απ(q

′′, ι′).

απ(q, ι) = αCFA(q)[name(ι) | args(q)],
απ(q

′, ι) = αCFA(q
′)[name(ι),name(ι′) | args(q′)],

απ(q
′′, ι′) = αCFA(q

′′)[name(ι′) | args(q′′)],

Since the transition was made by Spawn, we have that αCFA(S) ⇝ αCFA(S
′) by the rule

Abs-Spawn with active components (αCFA(ι), αCFA(q), αCFA(q
′)). So we have a process

definition in the abstraction

αCFA(q)[s | args] := τ .νs′.(αCFA(q
′)[s, s′ | args] ∥αCFA(q

′′)[s′ | args′]) + . . .

args = sort({setname(â) : â ∈ pidaddrs(αCFA(q))}, <)
′ = sort({setname(â) : â ∈ pidaddrs(αCFA(q

′′))}, <)

xxiv

So
αCFA(q)[name(ι) | args(q)]↠ αCFA(q

′)[name(ι) | args(q)]

απ(q, ι) ≡ τ .νs′.(αCFA(q
′)[name(ι), s′ | args(q)]

∥αCFA(q
′′)[s′ | args′][args(q)/args′]) + . . .

↠ νs′.(αCFA(q
′)[name(ι), s′ | args(q)]

∥αCFA(q
′′)[s′ | args′][args(q)/args′])

≡ ν name(ι′).(αCFA(q
′)[name(ι),name(ι′) | args(q)]

∥αCFA(q
′′)[name(ι′) | args′][args(q)/args′])

as long as name(ι′) ̸∈ args(q). We have name(ι′) ̸∈ args(q), since this would require that
⟨_,_,_, ι′⟩ ∈ pidaddrs(q), and this cannot be since ι′ is fresh by construction. So if args(q) =
args(q′) and args′[args(q)/args′] ⊒ args(q′′), we are done. By Lemma C.4 and Corollaries C.5
and C.11 it is enough to show pidaddrs(q) = pidaddrs(q′), pidaddrs(q) ⊇ pidaddrs(q′′). Since
q = ⟨ℓ, ρ, c, t⟩, q′ = ⟨ι′, ρ, c, t⟩, the first of these holds trivially. For the second, note that
q′′ = ⟨ℓ′′, ρ′, ⋆, t0⟩, ⟨ℓ′, ρ′⟩ = σv(ρ(U)). So by construction pidaddrs(ρ′) ⊆ pidaddrs(ρ(U)) ⊆
pidaddrs(ρ) and

pidaddrs(q′) = pidaddrs(ρ′)
⊆ pidaddrs(ρ) ∪ pidaddrs(c)
= pidaddrs(q)

• Suppose S → S′ by the rule Send, with active components (ι, q, q′). Let
q = ⟨ℓ : primop 'send'/2 (U,V), ρ, c, t⟩,

ι′ = σv(ρ(U)). Let I = {ι}, J = {ι′}; clearly if ι′′ ̸∈ I, π(ι′′) = π′(ι′′),
σv ∩ pidaddrs(π(ι′′)) = σ′

v ∩ pidaddrs(π(ι′′)),
and if ι′′ ̸∈ J , µ(ι′′) = µ′(ι′′), and for a ∈ µ(ι′′),

σv ∩ pidaddrs(a) = σ′
v ∩ pidaddrs(a),

Then by Lemma C.8 we have that to show απ(S)↠ απ(S
′) it is enough to show

απ(q, ι) ∥απ(µ ∩ {ι′})↠ απ(q
′, ι) ∥απ(µ

′ ∩ {ι′}).

απ(q, ι) = αCFA(q)[name(ι) | args(q)],
απ(q

′, ι) = αCFA(q
′)[name(ι) | args(q′)].

Let ρ(V) = a. Then µ′(ι′) = enq(a, µ(ι′)) = µ(ι′) · a, so
απ(µ

′ ∩ {ι′}) = SendαCFA(a)[name(ι′) | args(a)] ∥απ(µ ∩ {ι′})

Since the transition was made by Send, we have that αCFA(S)⇝ αCFA(S
′) by the rule Abs-

Send with active components (αCFA(ι), αCFA(q), αCFA(q
′)), where αCFA(ι

′) = αCFA(σv)(αCFA(ρ)(U)).
So we have process definitions in the abstraction
αCFA(q)[s | args] := let s′ ∈ setname(αCFA(a)).

(
SendαCFA(a)[s

′ | args′] ∥αCFA(q
′)[s | args]

)
+ . . .

args = sort({setname(â) : â ∈ pidaddrs(αCFA(q))}, <), args′ = sort({setname(â) : â ∈ pidaddrs(αCFA(a))}, <).

So
απ(q, ι) ∥απ(µ ∩ {ι′}) ≡ αCFA(q)[name(ι) | args(q)] ∥απ(µ ∩ {ι})

≡ (let s′ ∈ (setname(αCFA(a))[args(q)/args]).(
SendαCFA(a)[s

′ | args′][args(q)/args]
∥αCFA(q

′)[name(ι) | args(q)]) + . . .)
∥απ(µ ∩ {ι})

↠ αCFA(q
′)[name(ι) | args(q)]

∥SendαCFA(a)[name(ι′) | args′][args(q)/args]
∥απ(µ ∩ {ι})

xxv

if name(ι′) ∈ setname(αCFA(a))[args(q)/args]. So if name(ι′) ∈ setname(αCFA(a))[args(q)/args],
args(q) = args(q′), args′[args(q)/args] ⊒ args(a), we are done. By Lemma C.4 and Corol-
laries C.5 and C.11 for the last two it is enough to show pidaddrs(q) = pidaddrs(q′),
pidaddrs(q) ⊇ pidaddrs(a).
If σv(a) = ι′, then by construction a = ⟨_,_,_, ι′⟩. Since a ∈ Im ρ w have pidaddrs(a) =
{a} ⊆ pidaddrs(ρ), so a ∈ pidaddrs(ρ) ⊆ pidaddrs(q). Now again by construction αCFA(a) ∈
pidaddrs(αCFA(ρ)) ⊆ pidaddrs(αCFA(q)). So setname(αCFA(a)) ∈ args and

setname(αCFA(a))[args(q)/args] = {name(ι′′) : a′ = ⟨_,_,_, ι′′⟩ ∈ pidaddrs(q), αCFA(a
′) = αCFA(a)}

So name(ι′) ∈ setname(αCFA(a))[args(q)/args].
q = ⟨ℓ, ρ, c, t⟩, q′ = ⟨a, ρ, c, t⟩. {a} ⊆ pidaddrs(q), so clearly pidaddrs(q) = pidaddrs(q′).

xxvi

D Listings for Soter-Compatible Erlang equivalents of Core
programs

% equivalent of the 'publisher' module
new() -> spawn(fun () -> router([]) end).

router(Dispatchers) ->
receive
{sub, Topic, P} ->
F = fun () ->
dispatcher(Topic, P)

end,
D = spawn(F),
router([D | Dispatchers]);

{pub, Topic, Msg} ->
M = {pub, Topic, Msg},
G = fun (Pid) -> Pid ! M end,
map(G, Dispatchers),
router(Dispatchers)

end.

dispatcher(Topic, P) ->
receive
{pub, Topic, Msg} ->
M = {pub, Topic, Msg},
P ! M,
dispatcher(Topic, P);

_ ->
dispatcher(Topic, P)

end.

map(F, L) ->
case L of
[] -> [];
[X | Xs] ->
Y = F(X),
Ys = map(F, Xs),
[Y, Ys]

end.

% equivalent of 'main' module
picky(Topic) ->
receive
{pub, Topic, _} ->
picky(Topic);

_ -> ?soter_error(bad_topic)
end.

main() ->
P = new(),
spawn_pickies(P).

spawn_pickies(P) ->
Topic = ?SoterOneOf(['a', 'b']),
Q = spawn(fun () -> picky(Topic) end),
P ! {sub, Topic, Q},
P ! {pub, Topic, m},
spawn_pickies(P).

Listing 6: Soter-compatible Erlang source for Listing 1.

xxvii

-uncoverable("mail␣>␣1").

main() ->
Ping = fun (Pid) -> Pid ! 'ping' end,
Pids = getList(),
map(Ping, Pids).

map(F, L) ->
case L of
[X | Xs] ->
Y = F(X),
Ys = map(F, Xs),
[Y | Ys];

_ -> []
end.

getList() ->
B = ?SoterOneOf(['true', 'false']),
ca\textit{}se B of
'true' -> [];
_ ->

P = spawn(fun() -> proc() end),
Ps = getList(),
[P | Ps]

end.

proc() ->
Pid_ = spawn(fun () -> ?label_mail("mail"), 'ok' end),
receive A -> Pid_ ! A end.

Listing 7: Soter-compatible Erlang source for Listing 2.

xxviii

% equivalent of the 'reslock' module
-module(reslock).

reslock_new(Handler, InitState) ->
spawn(fun () ->
unlocked(Handler, InitState)

end).

unlocked(Handler, State) ->
receive {acquire, Pid} ->
Pid ! {acquired, self()},
locked(Handler, State, Pid)

end.

locked(Handler, State, Owner) ->
receive
{release, Owner} ->
unlocked(Handler, State);

{request, Owner, Req} ->
Result = Handler(State, Req),
case Result of
{ok, NewState} ->
locked(ModName, NewState, Owner);

{reply, NewState, Reply} ->
Owner ! {reply, self(), Reply},
locked(ModName, NewState, Owner)

end
end.

reslock_acquire(Res) ->
Res ! {acquire, self()},
receive {acquired, Res} -> ok end.

reslock_release(Res) ->
Res ! {release, self()},
ok.

tell(Res, Req) ->
Res ! {request, self(), Req},
ok.

ask(Res, Req) ->
Res ! {request, self(), Req},
receive {reply, Res, Reply} -> Reply end.

% equivalent of the 'cell' module
handle(State, Req) ->
case Req of
read -> {reply, State, State};
{write, NewState} -> {ok, NewState}

end.

cell_new(InitValue) ->
Handler = fun reslock:handle/2
reslock_new(Handler, InitValue).

cell_acquire(Cell) -> reslock_acquire(Cell).
cell_release(Cell) -> reslock_release(Cell).
read(Cell) -> ask(Cell, read).
write(Cell, X) -> tell(Cell, {write, X}).

% equivalent of the 'main' module
main() ->
repeat(?any_peano(), fun () ->
Cell = cell_new(z),
repeat(?any_peano(), fun () ->
spawn(fun -> inc(Cell) end)

end) end).

repeat(N, F) ->
case <N> of
{s, M} -> F(), repeat(M, F);
_ -> ok

end.

inc(Cell) ->
cell_acquire(Cell),
?label(critical),
X = read(Cell),
write(Cell, {s, X}),
%% end critical section
cell_release(Cell).

Listing 8: Soter-compatible Erlang source for Listings 3 to 5.

xxix

	Introduction
	Motivation
	The actor model
	The pi-calculus
	Contributions
	Outline

	Preliminaries
	Notation
	Mathematical background
	A brief overview of Core
	Actor Communicating System (ACS)
	Pi-Actor

	An operational semantics for Core
	Control flow analysis for Core
	Generating the pi-Actor model
	Applications of the pi-Actor model and model checking
	Evaluation
	Case studies
	Complexity
	Related work

	Conclusion
	Future work

	References
	Concrete reduction rules for the Core semantics
	Abstract reduction rules for the CFA
	Proof of soundness for the pi-Actor model
	A few useful lemmas
	The soundness theorems

	Listings for Soter-Compatible Erlang equivalents of Core programs

