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Abstract

Instagram allows over 800 million users to communicate with each other using a
visual vocabulary of images and videos. This visual communication includes high-
quality content creators sharing content over a diverse set of niche topics specific to
Instagram. Despite this fact, there are no reliable methods to navigate Instagram
topically, e.g. search for content creators by niche topic. This work aims to provide
a first attempt at establishing topical structure for Instagram. To achieve this, we
present an architecture for classifying content creators on Instagram into their niche
topics of content over a large custom-curated taxonomy. The nature of Instagram
results in unique challenges to the task of topic inference and classification. For
instance, the noisy, sparse and unreliable nature of text on Instagram degrades the
performance of state-of-the-art topic inference, modelling and discovery approaches.

The topics of content creators inferred by this architecture are exposed to end-users
through a variety of products, resulting in the additional challenge of achieving both
high precision and recall classification. The proposed architecture solves the vast ar-
ray of challenges by designing three independent components. The first component
aims to solve the challenge of discovering the niche topics that are posted about
on Instagram. To this end we design a novel topical local community detection (T-
LCD) algorithm to discover niche and tightly knit communities of topically coherent
content creators. These communities are utilised to enumerate the vast diversity of
topics that are posted about on Instagram. Finally, using these discovered topics, we
curate a custom taxonomy of hundreds of topics. With the taxonomy, we developed
an ensemble of classifiers to infer the topics of content creators with high-precision
(topical seeds). The ensemble model aggregates multiple topical signals (features) of
a content creators’ Instagram account to mitigate the noisy and unreliable features.
We showed that we were able to achieve high-precision classification of a content
creator c, despite the noisy and unreliable features, by aggregating the inferred top-
ics of all content creators u follows. This is a central hypothesis of this work: a
content creator c of topic t follows majority content creators of topic t. The topical
seeds are then used to spread topics across the content creator graph using a custom
designed label spreading algorithm. Our algorithm is designed using various novel
observations made about the nature of relationships between content creators on
Instagram. The spreading of topics solve the issue of low recall of a high-precision
classifier, resulting in a fully topically labelled content creator graph.

We show experimentally that our architecture performs extremely well over a hand-
curated dataset of labelled content creators. The architecture presented in this work
is deployed in production and used to achieve high-performing social media adver-
tising campaigns. The architecture is continuously evaluated in real-time through a
user-facing topical content creator search engine.
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Introduction 1
1.1 Motivation

1.1.1 Crowd Driven Innovation on Instagram

Instagram’s Unique Vocabulary for Visual Expression. Instagram is a visual
OSN with 800 million users [37] on which 95 million photos are uploaded each day
[2]. In addition to Instagram’s scale, it provides a unique vocabulary, which empow-
ers users to inter-inspire and communicate complex visual ideas in ways which were
not possible before. Utilising this new visual form of expression [20], youth are now
building a digital self at the same pace as their physical and emotional ones.

Inspiration and Creative Growth. Consequently, users have been enabled to
connect at scale, specifically, forming (tight) topical hubs of extremely talented
content creators1. These content creators have now been able to inter inspire each
other, leading to the formation of new creative fields. Furthermore, high-quality
content is being produced on a diverse range of topics, ranging from fashion
illustrators (Sub-Figure 1.1b), to artists who paint directly onto humans (Sub-Figure
1.1c) to cultures around moving the human body (Sub-Figure 1.1a). The formation
of these topics is a key motivator for this work, which provides us with a unique
means to study how people interact, communicate and collaborate over these topics
at scale.

1.1.2 Improvements to the Platform

At this point, we have discussed the existence of a diverse array of topical user
generated content2 (UGC) on Instagram. We now continue to present a means to
utilise these insights to create various real-world applications. To begin, we discuss
applications for business, then continue into users and content creators motivations.

Discovering and Reaching a Wider Audience. Looking at the platform in
terms of achieving business goals, brands and content creators aim to grow their
audiences to new relevant users. Intuitively, the most effective means to achieve this
is through collaborations and word of mouth recommendations. For instance, a Yoga
content creator may create a series of Instagram posts with a Yoga brand. In these

1Content Creator of topic t: Someone who produces high quality content predominantly of topic
t.

2Content generated by users on social media platforms [78]
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(a) @portal.ido - A culture around movement

(b) @edgar_artis - A fashion illus-
trator

(c) @alexameadeart - A artist who
literally paints human beings

Figure 1.1: A sample of UGC from three different topical content creators on Insta-
gram

posts, the content creator may promote brand, thereby exposing the brand to the
Yoga content creators highly-relevant audience. In order to achieve this, users would
need to attempt to navigate the (currently) un-organised platform to find relevant
collaborators. A brand/content creator may want to search for content creators to
collaborate with, or may want an application to automatically recommend content
creators to them with similar content to their own and their audience interests.
Hence, this navigation of topical Instagram content creators can manifest itself in
two forms: search or recommendations.

The Search for Content Creators in Niche Topics. At the present moment,
there are no features on the platform (or elsewhere) that enable users to find con-
tent creators by topic, for instance to discover Miniature Art content creators. At
the writing of this dissertation, Instagram provides a means to search by hash-
tag, whereby a searcher is presented with the posts that include the hashtag. To
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demonstrate this, the results from searching the hashtag #miniatureart on Insta-
gram includes posts by people who (i) produce content of miniature art, (ii) may
have only made one post about miniature art (an art gallery for instance) or (iii)
a user who is not relevant to miniature art and solely aims to become popular by
making themselves more discoverable by other users. Due to (ii) and (iii), searching
via hashtags is a unreliable/noisy means to discover topical content creators. Addi-
tionally we note that hashtag search provides results for posts, not topical content
creators.

Recommendations. Instagram offers “suggestions” when viewing the profile of a
user, providing recommendations to the user. This often provides unsatisfactory
results for the purpose of finding similar content creators, which can be demon-
strated in Figure 1.2. In this scenario, the user is a painter who paints directly
on the human body (Figure 1.1c), so one would desire to be recommended similar
painters. Figure 1.2 shows that Instagram has recommended two painters, an ac-
tress, a nature/world photographer, a contemporary art museum, an art gallery and
street art community page as the top 8 suggested accounts. From the perspective
of finding similar painters, Instagram’s similar feature has under-performed. From
our observations, and Instagram’s paper on Discovering Topical Authorities [54], we
believe the suggestions feature has two prominent flaws that make it unsuitable for
discovering content creators. These are:

Popularity
Bias

It is somewhat biased by popularity, providing results including
popular topical authorities (e.g. National Geographic and art gal-
leries). We aim to not only discover topical “authorities” but those
creators that are not well known but still produce relevant, high
quality topical content. The discussion on authorities is continued
in Section 4.4.2.1.

User Attributes
Bias

The algorithm provides recommendations biased also by user at-
tributes (e.g. location and previous behaviour), as opposed to solely
topical similarity. This is effective for the purpose of personalised
recommendations on a social network, but not for topical content
creator discovery. We propose a recommendation system similar
to Pinterest’s recently published paper on their recommendation
system Pixie [19] and work by Singh and Surendran [71], which
performed biased random walks. In our work we perform topically
biased random walks on the content-creator graph.

Proposed Solution. In this work we propose a scalable, novel architecture to dis-
cover niche content-creators and automatically classify them into a custom-curated
taxonomy of hundreds of topics with high-precision (>90%). This architecture is
evaluated rigorously against ground truth datasets and user feedback and used to
implement a variety of user and business applications. More specifically, it is used in
search engines, recommender systems and advertising campaigns. The details of the
applications are discussed in more detail below and in Chapter 7. Our practical aim
for this work is to provide a unique means to navigate the topical world of Instagram.
For this practical aim to be achieved we implement and deploy our architecture into

10



Figure 1.2: Instagram’s suggested users based on @alexameadeart

production, where it is applied to a dataset of millions of content-creators. These
real-world applications provide us a means to continuously and iteratively improve
our architecture based on feedback collected from end-users. For evaluation of our
user-facing applications see Chapter 7.

User Interest Modelling and Recommendations. Utilising our architecture,
we implement user-interest modelling and recommendation systems. User interests
modelling is the process of determining the topical interests of a user (Section 2.2.
More formally, it can be described as the function I:

I(U) = {t ∈ T | InterestedIn(U, t)}

where T represents the set of topics described by our taxonomy. A user’s interest are
predicted by performing inferences based on the content creators they follow. This is
based on the hypothesis that a user follows a content-creator of topic t then the user
is likely to be interested in t. The predicted user interest can be used to make further
recommendations to the user, showing them undiscovered content-creators that they
are likely to be interested in. Eksombatchai et al. [19] have shown experimentally
that user engagement on Pinterest was improved up to 50% after improving their
recommendation algorithm. This was due to recommending previously undiscov-
ered content. We believe the same also holds on Instagram where a large number of
exceptionally talented content creators remain undiscovered. Additionally, to fur-
ther emphasise the importance of a new form of recommendations, we highlight the
recent and inspiring findings of Stoica et al. [75], that Instagram’s recommendation
algorithm exacerbates “the under-representation of certain demographic groups at
the top of the social hierarchy“. Specifically, through rigorous analysis of mathemat-
ical models and a recent Instagram dataset, they found “an algorithmic glass ceiling
that exhibits all properties of the metaphorical social barrier that hinders groups
like women or people of colour from attaining equal representations”.

Targeted Advertisement. From a purely business standpoint, this architecture
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can be used for highly-effective targeted advertising, with the aim of maximising
return-on-investment of campaigns by advertising only in the places where the view-
ers are most likely to be interested in the advertisement.

1.2 Key Challenges and Solutions

As discussed above, the nature of Instagram’s visual content along with the large
number of active users has enabled a range of content creators to form across a
diversity of fields. The high level aim is to discover topical content creators and
classify them with high-precision into their main topics of content. In this section
we describe the most prominent challenges we face to achieve this goal. Addition-
ally we present reasoning as to why previous work would not perform in this setting.

1.3 Relevant Taxonomy Construction

In order for this architecture to be used by end-users, content-creators must be clas-
sified into a set of unambiguous and interpretable topics. It is important to note that
the fine-grained topics that exist on Instagram are not previously known, hence there
does not exist a pre-defined taxonomy suitable for Instagram. Taxonomies used by
other applications and businesses, e.g. IAB Taxonomy3 are not suitable for this
work as they do not capture the interesting topics that exist on Instagram, and
contain many irrelevant categories (e.g. “Personal Loans”). Additionally, Lee et al.
[41] observed that popular user interest topics differ amongst Instagram, Twitter
and Tumblr - for instance a user may share posts about fashion on Instagram and
politics on Twitter. This provides a unique challenge of creating a taxonomy that
captures as many niche topics on Instagram as possible. To solve this challenge, a
large proportion of past work has used a topic modelling approach. This approach
implements a statistical model to discover abstract “topics” that occur in a collec-
tion of documents. Topic modelling groups related keywords together to form topics,
these groups then must be interpreted and labelled. For instance, it may form a
group called Topic08 with keywords {“Cat”, “Dog”, “Horses”}, which could then
be manually labelled as “Animals”. A human annotator would have to attempt to
deduce a topic label from a list of words with their associated probabilities. This
results a large cognitive overload and consequently, noisy topic labels. Additionally,
topic modelling approaches often merge topics together, which is undesirable in our
use case as we aim to capture niche topics. To exemplify this, topic modelling may
merge the topics “Bohemian Fashion” and “Bohemian Decor ” due to the similar
vocabulary with which they are discussed. Through experimentation we found that
state-of-the-art topic models were only able to discover high-level topics like “Pho-
tography” and “Travel” in our sparse and noisy text. These drawbacks renders these
methods used by previous research unsatisfactory for our work.

3https://www.iab.com/guidelines/taxonomy/
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Figure 1.3: A visualisation of the tightly knit topical communities of content creators
(nodes) generated by our seed expansion community detection algorithm. An edge
between nodes indicates the following relation and a community is labelled by a
colour.

Our Solution. In order to combat the non-trivial problem of discovering and or-
ganising the vastness of topics that exist on Instagram, we undertook an approach
which combined manual curation along with exploratory approaches. Specifically we
started by utilising existing taxonomies and knowledge bases to provide the ground-
work of a general taxonomy. Next, to enrich our taxonomy with the niche and hidden
topics that on Instagram we undertook a community detection approach. The bene-
fit of community detection algorithms in this setting is that the connections between
users provides much richer information than the text on profiles. Specifically, this
involved devising a novel seed expansion algorithm utilising several hypotheses we
made about our dataset to form highly-connected communities of topically coherent
content-creators. For instance Figure 1.3 shows a visualisation of one of our gen-
erated graphs. The communities detected in the graph shown include niche topics
such as Drag Queens, Rabbits, Minimalist Lifestyle and Modern Bohemian Fashion.
Each of these communities is then used to discover hidden topics on Instagram to
enrich our taxonomy. Finally, to ensure that subjectivity did not bias the curation
of this taxonomy, we collaborated with a team of Instagram experts at Filli Studios.
The details of our approaches and results are presented in Chapter 3.
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1.3.1 Accurate Reasoning in a Highly Deceptive and Noisy
World

Poor Topical Signals4. High-precision content classification faces unique chal-
lenges because unlike ordinary documents, textual features on Instagram are cre-
ated informally by biased humans, which renders them sparse, noisy and unreliable.
Sparsity of textual features refers to the fact that large portion of users often have
empty biographies and short post captions. Conversely, those users who have non-
sparse textual features are frequently unreliable and noisy. For instance, as Pal
et al. [54] noted, it can be easily observed that users often create non-topical posts
like their social lives. It is also common that users will discuss topics that they are
interested in, but are not content creators of e.g. one may write in their biogra-
phy “Wine lover”, but the topic of her content is about her poems. In conclusion,
traditional text-based methods and topical modelling (Section 2.2) cannot be solely
employed for this work. In Section 4.3.1 we take an in depth analysis of various
topical signals of an Instagram profile, including hashtags, emojis and hyperlinks to
external websites and how we can utilise them to determine the topical content of a
content creator with high-precision.

Non-Topical Users and Self-Presentation on OSNs. A prominent issue of
classifying content creators lies in the abundance of non-topical and passive users.
If we were to adopt previous approaches that only use the text on a profile, then
we would achieve low-precision topic identification due to large amounts of noise.
This noise is predominantly caused due to normal and non-topical users, who are
sometimes confused with content creators in our dataset. The problem we observe
with normal users stems from a phenomenon called self-presentation, where people
exhibit ideal self-image through their posts and hence their profile features (text)
may indicate that they are topical content creators, but in truth, they are not. This
noise would have major negative impact on downstream applications, where it is of
importance to find high-quality content creators in specific topical fields. The idea
of self-presentation is presented by Goffman [28], where he concludes that people
are actors on a “social stage” who actively create an impression of themselves. In
this social world, we put on a “front” in order to project a certain image of ourselves
(call this part of our “social identity”). Impression management involves projecting
an “idealised image” of ourselves. This has also been observed literature, where
Shakespeare wrote that “All the world’s a stage”5.

Conclusions and Solutions. To account for the noise at an individual content
creator’s level, we undertake an aggregation approach. Decision Aggregation (DA)
in combination with strong hypotheses about the social connections of content cre-
ators and users is a central theme of this work. Some examples include: aggregating
user features to discover topics in topical communities ; majority weighted voting to
classify biographies and websites ; hard voting ensemble on multiple user features to
achieve high-precision and aggregated, biased random walks to model a users inter-
ests. Instead of using the text in a biography of a user u as the only topical signal,
one could aggregate all the biographies of the content creators that u follows, provid-

4An indicator of a user producing content on about§ topic
5As You Like It, Act II, Scene VII [All the world’s a stage]. William Shakespeare, 1564 - 1616
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ing a more robust topical signal. This solution may mitigate the Poet - “Wine lover”
problem demonstrated above. This method of aggregation is based on the hypoth-
esis that the poet is likely to follow other poets. Previous literature has shown that
similar approaches are highly effective in settings that involve modelling user inter-
ests based on noisy features [88], dealing with noisy experts [66] and heterogeneous
data [18].

1.4 End-User Requirements

Information Retrieval systems are only useful if the data has clear, accurate and
detailed organisational structure. Additionally, the labelling system should have
high coverage6. This leads to two important requirements we set out to achieve:

• High-Precision. The architecture should only label a content creator u with
a topic t if it is certain that u produces content of topic t.

• High-Coverage. To enable users to discover high-quality content creators,
we must aim to have high coverage, having labels which are likely to cover as
many types of content creators as possible.

• High-Recall. Labelling as many content creators with niche topics as possi-
ble. Recall measures how well a model finds all relevant cases in a dataset.

The details of these metrics and how we used them is described in detail in Sec-
tion 4.5.2. The requirements of high-precision, high-recall and high-coverage make
this work particularly difficult. The first requirement is typically satisfied with an
abstaining classifier, only returning a prediction if the classifier is sufficiently confi-
dent. High-recall can be achieved through sacrificing some precision. We solve this
challenge with a multi-component architecture that utilises specific domain-relevant
information and hypotheses we take about users on Instagram. With our hypotheses
and insight about the platform, we customise state-of-the-art algorithms to build
highly-refined components that attempt to maximise their own metrics. These com-
ponents are then combined into an architecture that aims to achieve the maximal
combination of the metrics. Specifically, we first curate a custom taxonomy to cap-
ture the fine grain topics on Instagram to achieve high-coverage of topics, that is
used by a pipeline that labels content creators with topics with high-precision and
very little supervision.

Achieving High-Recall. This small labelled dataset is used to classify the remain-
der of content creators who have sparse and unreliable textual features. To achieve
this, we propose a novel semi-supervised learning (GB-SSL) approach, whereby top-
ics are smoothly spread from labelled content creators across the follower graph.
State of the art topical authority discovery [54] shows the success utilising of local
and global assumptions about graph connections between users. In their work, in
addition to the rest of the research around GB-SSL on OSNs they utilise the idea of
homophily7 to apply these algorithms to graphs of users. We further this approach

6The proportion of the data which is labelled
7Homophily is the property also known as "birds of a feather ock together", which describes

that people who share similar attributes group together.
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by making a stronger assumption about connections between users: by only consid-
ering content creators. Using variations of Hypothesis 1, we spread labels across the
graph of content creators. Chapter 5 provides details of our implementation and
evaluation against competing supervised and semi-supervised algorithms. After us-
ing our GB-SSL algorithms, we achieve high-recall, high-precision and high-coverage.
Initial evidence of the validity of Hypothesis 1 can be intuitively observed in Figure
1.3, where tightly connected topical communities form when content creators are
grouped by social connections.

Hypothesis 1. If two content creators are connected on Instagram then they are
likely to produce content of similar topic.

The Impossibility of Training Data Acquisition. It is important to note that
acquiring high-quality training data over a large taxonomy for the classifiers de-
scribed above is a non-trivial task. Typically, past work has utilised crowd-sourced
human annotators, for instance Amazon Turk8. Due to the size of our taxonomy and
the cognitive overload it would impose on the human annotators and other issues
discussed in Section 4.2.1, this approach is ill-suited to our work. Additionally, the
platform and previous work provides no means of providing topically labelled data
for Instagram which is relevant to our work. We discuss how we tackle this problem
in Chapter 4.

Large Taxonomy. Lastly, building a multi-label classifier over a large taxonomy of
related labels provides many unique challenges. As highlighted by [26], these chal-
lenges are due to exponential growth of combinations of labels to take into account
and also to the computational cost of building and querying the models. In addition,
multi-label data usually present features such as high dimensional, unbalanced data,
and dependencies between labels. See Chapter 4 to see the details of how we solved
this challenge of multi-labelled topic classification.

1.5 Contributions

Overview of Our Work. The first component of our architecture is used to assist
in curating a growing taxonomy of hundreds of topics covering both niche and high
level topics that are highly relevant to user generated content (UGC) on Instagram
through topical community detection algorithms (Chapter 3). Next we determine
labels of some content creators (seeds) for each topic with high-precision through
an automatic seed detection and classification pipeline (Chapter 4). With the seed
content creators, and Hypothesis 1, the labels are spread across a graph of content
creators resulting in a fully labelled graph of high precision, recall and coverage
(Chapter 5). An overview of this architecture is visually presented in Figure 1.4.
Finally, we instantiate this architecture in the form of recommender systems and
user topic modelling applications through random walks on a bipartite graph con-
necting the content-creator and user graphs (Chapter 7).

To summarise, we list our contributions below, classified into three categories: Re-
search (R), Business/Societal (B) and Engineering (E) Contributions. Each begins
with their unique identifier.

8https://www.mturk.com/
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Figure 1.4: A visual overview of the architecture presented and developed in this
work. Components 1, 2 and 3 refer to Chapters 3, 4 and 5 respectively.

• TAX B, R, E A first attempt to constructing a taxonomy which captures a
large portion of topical content on Instagram

• T-LCD R A novel algorithm topical local community detection algorithm for
niche topical communities of content creators

• CLF R A first attempt to classify content creators on Instagram, with high-
precision into a large taxonomy of potential topics

• LBL-DATA E A robust pipeline to automatically label content creators of high-
precision topics with minimal supervision

• TS-LS R A novel modification of the label spreading algorithm that spreads
topical labels across a graph of content creators

• ARCH E A scalable architecture to infer the topics of Instagram content cre-
ators, deployed in production and used in multiple real-world applications

• SEARCHB, E Develop and deploy a search engine allowing users to navigate the
topical content on Instagram, specifically providing the first content creator
search engine with niche topics in a variety of fields

• RECOM B, E A topical content creator recommendation system, allowing users
and brands to find new high-quality content creators

17



Background 2
This work presents a means to solve the problem of high-precision topic classification
of Instagram content creators across a large custom-curated taxonomy. To achieve
this we present the research and development of architecture which is comprised
of many independently developed components. Each component aims to solve a
problem in a unique and mostly independent way. Specifically, we draw inspiration
from previous work in range of fields and provide novel modifications, insights and
approaches to solve the core objectives of this work. This leads to the challenge of
concisely presenting the related work of a wide array of fields.

Independently Modular Structure. Furthermore, we aim to present our work
in a way that allows the user to draw inspiration and insight from an independent
component of our architecture, without being encumbered by related work from
other components. For instance, imagine a reader’s aim were to understand how
to utilise graph-based semi supervised learning to classify UGC into niche topics
with small amount of labelled data. In this scenario they would be directed to
Chapter 5 without having to traverse the content of other chapters or a lengthy and
unrelated background section. Table 2.1 presents an overview the fields explored in
each component.

Table 2.1: Fields covered in this work.

Component Fields

Taxonomy Construction Hidden Topical Community Detection on OSNs

High Precision Topic In-
ference

Topical Classification of UGC, User Interest In-
ference/Modelling, Website Classification, Semi-
Supervised Learning

Label Spreading Graph Based Semi-Supervised Learning

User and Business Appli-
cations

Recommendation Systems, Search Engines

To ensure readers have the ability to utilise this work in a independent and modular
manner, we aim to only provide a holistic background in this section. We include
specialised and relevant background and related work in each chapter i.e when we
begin to solve a new challenge.
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This purpose chapter is to provide to the reader: (i) an understanding where this
work sits in the current research, (ii) how we address current challenges in a unique
and novel way, finally (iii) how each component of our architecture is inspired by
previous work. To achieve this we provide a concise overview of the journey of public
incremental advances in the fields most related to ours.

2.1 The Data

Limit Collection to Content Creators. This work focuses on collecting only
content creators as passive users generally do not have a main topic of content. To
be do so we define Algorithm 1 which attempts to use domain relevant measures like
engagement and number of followers. We calculate a users approximate engagement
with Equation 3.25. The algorithm follows from the intuition that the less popular
a content creators is the higher their engagement must be. We found that these
heuristics generated excellent results. This was decided on based on the hypotheses
that content creators are more likely to be content creators than “normal” passive
users. We chose to filter based on local properties, that are relevant to the platform.
The main motivations for this are (i) to limit the computational complexity at this
stage and (ii) to utilise features directly relevant to our platform. Note that it
is not a high-priority to eliminate false-positives at this stage, only to filter out a
proportion of users who are likely not to be content creators.

Algorithm 1 Content Creator Filterer
Input: User U ’s properties: number of followers Fin and engagement E
Output: Boolean: Whether the user is likely to be a content creator
Sxxl ← Fin ≥ 200000
Sxl ← Fin ≥ 100000 and E ≥ 0.005
Sl ← Fin ≥ 50000 and E ≥ 0.01
Sm ← Fin ≥ 20000 and E ≥ 0.02
Ss ← Fin ≥ 10000 and E ≥ 0.04
Sxs ← Fin ≥ 5000 and E ≥ 0.05
Sxxs ← Fin ≥ 2500 and E ≥ 0.10
return Sxxl or Sxl or Sl or Sm or Ss or Sxs or Sxxs

2.2 User Interest Identification and Modelling

User modelling is the most related field to topical content classification and is defined
by Zhou et al. [91] as “the process of acquiring, extracting and representing the
features of user”. The process of user interest inference/detection/prediction is a
subset of user modelling/profiling. Using Zhou et al. [91]’s definition we establish
the following:

Definition 1. User interests inference/modelling (UII) is the process of ac-
quiring, extracting and representing the interests of user.

The problem of inferring the interests of users can be defined as determining the
function I:
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I(U) = {t ∈ T | InterestedIn(U, t)}

where T is a set of possible topics that a user on Instagram may be interested
in. User interest inference is particularly similar to our work as it typically sets
out to infer a users interests via various topical signals: indications that a user is
interested in a topic. In our work we aim to use topical signals to infer the topics of
the content produced by a user on Instagram, hence draw inspiration from the field
of user interest inference. The key difference between our field of content creator
classification and UII is that of the interpretation of topical signals. For instance,
we can infer that a user who includes “Wine lover” in her biography is interested
in Wine, but we cannot infer that the user produces content about wine. This
makes our problem particularly challenging in that we must more meticulously utilise
topical signals, attempting to eliminate such false positives. This work provides a
unique outlook to the field of UII and content creator classification, providing more
accurate topical signals by studying the relationships between content creators and
other users. In the following sections we describe the various dimensions that have
been explored in tackling user interest inference and how they inform this work.

2.2.1 Textual Topical Signals

2.2.1.1 Leveraging Knowledge Bases

It is possible to represent a users text and in-turn interests by conceptual nodes
and their relationships constructed using pre-existing knowledge bases (KB) for ex-
ample Wikipedia. A concept can be an entity, category or class from a KB. This
approach is referred to as concept-based interests that involves entity extraction
and linking. Due wide range of applications of knowledge bases, there has been ef-
fort in automatically constructing large scale general-purpose structured knowledge
bases that describe concepts, their semantic categories and relationships between
them. Popular constructions include DBPedia 1 and Wikidata 2, where on Wiki-
data, the concept National Football League (NFL) has statements that link it to
other concepts in the KB, such as instance_of:Professional_Sports_League,
sport:American_Football and main_category:National_Football_League 3.

Bag of concepts. A users interests can be represented by a bag of concepts. Con-
cepts that can be directly extracted from a users profile (e.g. in a bio [54] or captions
[69]) are commonly called primitive interests . This representation for modelling
interest topics has been shown to be more effective than previously proposed repre-
sentation (e.g. bag of keywords) [44, 58].

Semantic Enrichment. In combination with the bag of concepts approach, it is
possible to infer deduced or propagated interests to enrich the set of concepts. For
instance, knowing that someones primitive interests are the concepts dbpedia:The_Wombats
and dpedia:The_Black_Keys, we can use the relationships of concepts in DBpedia
to augment the interests profile with dbpedia:Indie_rock through the ontology

1http://wiki.dbpedia.org/
2https://www.wikidata.org/wiki/Wikidata:Main_Page
3https://www.wikidata.org/wiki/Q1215884
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dbpedia-owl:genre. The Table 2.2 shows how Piao and Breslin [59] exemplifies
this method with a Tweet. DBpedia provides additional information that can be
used to enrich the user interest profile, e.g. related entities. Peña et al. [55] use mul-
tiple knowledge bases to enrich a user profile by checking if categories from multiple
sources are relating to the same concept using Dbpedia’s categorySameAs property.
The authors describe an example whereby they first extract the category “Music”,
from the URL soundcloud.com using OpenDNS4. They then use DBpedias catego-
rySameAs property to enrich the profile with the new concepts dbpedia:Streaming
and dbpedia:Social_networking_services.

Table 2.2: Manually extracted DBPedia concepts from a sample tweet [59]

Tweet Primitive Interests Deduced/Propagated In-
terests

My Top 33 #lastfm
Artists: Eagles of
Death Metal (14), The
BlackKeys (6) and The
Wombats (6) #mm

dbpedia:The_Wombats,
dbpedia:The_Black_Keys

dbpedia:Indie_rock

Bag of Categories. It is also common to ground interest topics on categories from
a pre-existing knowledge base [47, 53, 54, 60]. The authors of [53] used DBpedia to
extract concepts from text in the form of categories. In their work they also exploited
the structure of the DBpedia category graph to create a discounting strategy into the
relevance of an extracted category to the user’s interests. [54] used expert curator
within the OSN studied to convert a large list of top-level Wikipedia categories into a
subset of whitelisted categories relevant to their problem. In [60], the standard model
of bag of categories is extended to use both categories and entities as a interests
modelling strategy. For instance they would extract the entity dbpedia:Apple_Inc
and category dbpedia:Category:Electronics_companies. Furthermore within
the context of Google+ link recommendation, the authors showed that category
and entity based performs better than just entity based.

Discussions. In conclusion, concepts and categories from a predefined KB have
been shown to provide an effectively represent user interest, and provide useful
features to enrich the user interest profile further. To consider this approach we
highlight an important bottleneck within this approach: the ability to accurately
extract concepts from text on Instagram. It is not the case in practice that the
exacted concepts are as “clean” as Table 2.2, for instance Table 2.3 shows the con-
cepts extracted from an House Plants content creator’s biography using DBpedia
Spotlight entity extraction and linking API [15]. In the example in Table 2.3, the
inferred interests in the next stage. In order to use this approach as a stepping
stone to classify the topical content of curators we require the linking to be ex-
tremely accurate. In conclusion, the approaches highlighted in this section mostly

4A domain tagging service
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extract concepts from a profile, enrich them then use them as topics to represent a
users interests. From experiments we have found that using this approach does not
meet our core requirement of high-precision. For this reason, we draw inspiration
from the work presented in this section to improve the accuracy of our labelled data
extraction pipeline in Chapter 4 and to improve the quality communities generated
by our topical community detection algorithm in Section 3.2.

Table 2.3: Noisy Concept Extraction.

Bio DBPedia Concepts

Beyond Sunflowers Greening
The Great Indoors - For all
your urban jungle and house-
plant needs.

Helianthus, The_Great_Indoors_(TV_series),
Jungle, Houseplant

2.2.1.2 Topic Models

One of the most common approaches employed within interest inference in OSNs is
an unsupervised one. It is often employed when topics are unknown: the cold-start
problem where topic vectors need to be created. These methods learn topics from a
(often large) set of text documents. Topic modelling is a statistical model that uses
word co-occurrence in documents to cluster words into related topics. For instance
Latent Dirichlet Allocation (LDA), a statistical generative method that discovers
topics and represents them by word probabilities. This method can use the words
in new documents to infer topics, generating a probability distribution over top-
ics. Pu et al. [62] combined methods described in Section 2.2.1.1, whereby they
found Wikipedia categories for keywords and key-phrases in topics extracted from
LDA. They found this method improved on traditional topic modelling approaches,
specifically it produced more accurate, meaningful and coherent interest topics. This
further validates the benefit of utilising knowledge bases in topic extraction.

A variation of LDA, namely Labelled Latent Dirichlet Allocation (L-LDA) is em-
ployed by [6] that constricts topic models in the same was as LDA, but in a su-
pervised manner. L-LDA is supervised by providing each document with a label,
constraining the topic model to use only those topics that correspond to a docu-
ment’s label set. Their method included running L-LDA on tweets selecting 300
of the most common hashtags from tweets to represent topic labels. Through this
method, they discovered 300 topics, each containing the most frequent (≈ 50) words
in that topic. Once determining topics, they defined categories from Pinterest cat-
egory graph and attempted to map topics to these top level categories by using
AMT5, whereby each Turker would assign categories to each generated topic. Quer-
cia et al. [63] use L-LDA to classify the topic Tweets with the aim of user interest
inference. They showed that L-LDA outperforms a SVM classifier with the task
of Twitter profile classification. Despite the improvement, L-LDA suffers from the
same issues as standard LDA from subjective labelling other problems of merging

5https://www.mturk.com/
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of similar topics, as described below.

Merging of
Topics.

Similar topics are often merged together, e.g. nature photography
and landscape photography. This is unideal for inferring niche in-
terests over our taxonomy.

Ambiguous
Labels.

The output of topic models is a list of groups of words with ar-
bitrary titles (e.g. topic01, topic02.. etc). It is down to the user
to manually label these groups. Raw topics clusters are highly
un-interpretable, and hence can easily be poorly subjectively la-
belled. For instance, the topic modelling approach may form a
group called Topic08 with keywords of high probability = {“Cat”,
“Dog”, “Horses”}, that could then be manually labelled as “Ani-
mals”. These topics are hard to interpret and hence are difficult to
manually label unambiguously, e.g. Topic08 could have also been
subjectively interpreted as “Pets”. Due to the vastness of topics
on Instagram and the problems described above, it would result
in large error when labelling topics that would propagate errors to
later stages of my architecture. Additionally, our end-to-end system
would be directly used by users, that makes it of a large importance
to have topic labels that are easy to interpret and accurate.

Discussion. Xin ZHAO et al. [85] state that the short nature of Tweets limit
the performance of standard LDA, we expect a similar observation holds for short
Instagram text. Finally, Mehrotra et al. [46] describe that implementations of LDA
applied to Twitter content produces mostly incoherent topics. Due to the short and
informal nature of text on Instagram latent topic modelling techniques such as LDA
will have significantly worse performance than when applied to longer and more
semantically rich documents like blog posts and news articles. There has been work
that has aimed to acquire higher quality data that can be associated with Tweets
to then be fed into an LDA model. For instance recent work by Nigam et al. [52]
describes a topic identification pipeline that extracts nouns from tweets then feeds
them into the Google search engine, building larger text documents for that they
performed LDA with. Inspired by this and other similar work, we used a similar
aggregation approach whereby we use the website linked to an Instagram to acquire
higher quality data. In conclusion, the drawbacks described LDA unsuitable make
it unsuitable for this work.

2.2.1.3 Dictionary Approaches

Spasojevic et al. [73] address some of the issues discussed above with the quality of
text on OSNs by using curated dictionaries and whitelisted mappings, converting
the text on a profile into high-quality topics. Specifically, they first extract n-grams
from the text on a users profile and map them to a bag-of-phrases using an internal
dictionary mapping n-grams to phrases. Next they map the bag-of-phrases to a
bag-of-topics based on exact match and rule based synonyms.
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Discussion. This method provides high-precision topic extraction with minimal
false-positives, however requires a large amount of human labour to curate high-
quality n-gram -> phrase and phrase -> topic maps. For this reason, and to
promote scalability, we only use hand-curated maps in those components that require
high-precision. Specifically, we adopt an approach inspired Co Training [8], whereby
one of our classifiers can be used (with some supervision) to create keyword ->
topic maps (another classifier). Our methods are described in Section 4.4.

2.2.2 Leveraging Internal Structures

Often OSNs include organisational structures whereby users can group together
content or users. These structures can provide means to (i) identify and repre-
sent relevant interest topics for the OSN and (ii) acquire pre-labelled data. Utilising
such structures can solve some of the issues that stem from bag-of-words approaches.

Twitter Lists. A common structrue leaveraged for user interest modelling on
Twitter is Twitter Lists, where users can curate a List of Twitter accounts. When
creating a List, a user specifies a name and an optional description. For example
the account @BarackObama could be added to the Lists “Politics”, “Celebs” and
“Government” created by various users. Further, users can subscribe to many Lists
created by themselves or others. Utilizing this information, [3, 25] define interests
by the names of lists that users create. Lists can continue to be used to infer the
interests of an expert6 user u by extracting the frequent words that appear in the
names and descriptions of Lists they appear in. The topics of @linuuxfondation can
be inferred by this technique as “Tech”, “Linux” and “Software”.

Facebook and Pinterest. Outside of Twitter, Cinar et al. [12] use the predefined
Pinterest Category Graph and Jiamthapthaksin and Aung [36] are able to define
user interest topics through Facebook Pages’ tagged categories. For example Cinar
et al. [12] represents a users interests as a frequency distribution over the categories
the users pins are tagged as.

Discussion. Unlike Twitter, Facebook and Pinterest, Instagram provides no pub-
lic information about a users likes (defined by topics) and only has functionally
to search by hashtags or usernames. Employing a method that utilises the hashtag
search feature on Instagram was proposed by Ferrara et al. [22] to model user’s inter-
est topics. This approach involves searching Instagram for a hashtag representing
a category, for example https://instagram.com/explore/tags/football/ lists
posts that include the hashtag #football. This method suffers from category co-
hesion, appropriateness and polysemy. Category cohesion and appropriateness is
mostly caused because people often tag photos with a variety of hashtags and don’t
exclusively produce content in that area. We discuss this issue in more detail in
Section 4.2.2 with a detailed illustration of our solutions.

6Ghosh et al. [25] defines a user u as an expert within a topic t if and only if u occurs in at
least 10 Lists of topic t.
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2.3 Entity Linking and Extraction

2.3.1 Preliminaries

Throughout this work we utilise knowledge bases in order to improve the perfor-
mance of various of our algorithms. In particular, we use Wikipedia articles/cate-
gories to ground keywords upon. Many of our components that external knowledge
bases require the functionality to find mentions to Wikipedia articles/categories in
text. Figure 2.1, illustrates both the process of entity extraction and linking (EEL)
and the difficulties provided by the short, noisy and informal nature of Tweets (and
similarly Instagram captions). For instance, in Figure 2.1 t1 lacks the context to
confidently link “Bulls” to “Chicago Bulls”, this problem is often called entity disam-
biguation. Most frequently in the context of interest analysis and topic classification,
research use external APIs are used to perform entity extraction and linking. To
demonstrate this, Piao and Breslin [57, 58] use Aylien API7 to extract primitive in-
terests as concepts from documents. However, the rate limits imposed by such APIs
are to restrictive to my work, where we aim to have an initial set of content creators
of the magnitude 106. Moreover, most external APIs aren’t tailored to capture the
detail and nuances of concepts that appear on a platform like Instagram.

Figure 2.1: An illustration of the tweet entity linking task. Named entity mentions
detected in tweets are in bold; candidate mapping entities for each entity mention
are ranked by their prior probabilities in decreasing order; true mapping entities are
underlined [70].

Mention Detection. As a preliminary, we use Guo et al. [31]’s definition of mention
detection as “the task of extraction surface form candidates that can link to an entity
in the domain of interest”. In Figure 2.1 the mention “Bulls” is detected in tweet t1.

2.3.2 Domain Specific Linkers

To improve the performance of off-the-shelf entity linkers in specific domains there
has been work in combining simple hand-curated rules with the results of multiple
entity linkers. Ruiz and Poibeau [68] obtained higher precision and recall through
string matching rules.

7http://aylien.com
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2.3.3 Challenges of Entity Linking in OSNs

Guo et al. [31] reason that the performance of entity linking suffers in OSNs (partic-
ularly micro-blogs) due to the mention detection part of the process. This problems
of poor mention detection and entity disambiguation can be derived from the short,
noisy and informal nature text with little context. To address these problems, Guo
et al. [31] propose a method of combining both entity linking and mention detection
into one end-to-end optimisation problem.

Discussions. The two key takeaways here are (i) the nature of text on OSNs
makes it difficult to effectively extract mentions and (ii) the short nature of this text
provides very little context for an entity linker to disambiguate between different
possible candidate mappings. To tackle (i) we aggregate the results from multiple
entity linkers (Section 2.3.5). We found this method to be very effective, through
direct observation and experiments we observed that DBPedia Spotlight matches
more uni-gram keywords whereas Dexter is effective in extracting big-grams, that
can be seen in Figure 2.4. In particular, DBPedia Spotlight uses an entity linker
that was unable to detect the entity “Vintage Fashion” due to the informal nature of
it’s mention (all caps). In conclusion, using multiple linkers will assist in increasing
the number of concepts successfully extracted. To tackle (ii) there has been work in
combining multiple contexts around the text, that include combining multiple tweets
on a profile and considering their inferred interests [70]. This approach was shown
to been shown to be effective in solving some issues with entity disambiguation,
so we experiment with aggregation techniques in Section 4 in attempt to improve
performance of entity linking.

Table 2.4: Comparing the concepts extracted and linked by two entity linkers: DB-
Pedia Spotlight and Dexter. In particular, Dexter performs better on bi-grams than
DBPedia Spotlight

Biography DBPedia Spotlight Results Dexter Results

VINTAGE
FASHION | no
filter photos,
Paris lover

Vintage_clothing,
Photographic_filter, Paris

Photo, Paris

2.3.4 Voting Schemes

Ruiz and Poibeau [68] discuss that entity linking has inconsistent performance over
various domains, where different annotators have strengths and weaknesses in each
domain. They continue to show how combining the outputs of multiple entity linkers
with a voting weighting scheme improves annotation results across four test-corpora.

Discussions. We acknowledge that using a voting weighting scheme over the out-
puts of multiple entity linkers can significantly improve precision, but we tackle the
problem of precision in a later step with a dictionary approach (Section 4.4). For
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this reason we do not apply a weighting scheme to the outputs of our entity linkers
to maximise the amount of candidates our entity linker generates.

2.3.5 Conclusions

Prioritisation. Despite EELs its effect on the performance on various components
of our system we limit the amount of attention we spend on improving EELs perfor-
mance in our domain. Our reasoning for this is as follows: (i) EEL is not the focus
of our work and (ii) EEL is a complex problem with many challenges [43].

Combining Entity Linkers. In order to improve performance of EEL whilst
minimising time spent, we decide to take the approach combining multiple entity
linkers. In this work we combine the extracted concepts from the following open
source entity linking and extraction frameworks: DBPedia Spotlight [14], Dexter
[10], Fast Entity Linker [5] and TagMe API 8. Our practical implementation of
combining these entity linkers is described in Section 4.4.4.

2.4 Text Vectorisation

Effective natural language processing is an important pre-requisite of the success
of many components of our architecture. Specifically, we use the techniques de-
scribed in this section to create high-quality vectors from the text on Instagram.
Here we provide a brief overview of the techniques we considered in achieving text
vectorisation.

2.4.1 Bag-of-Words

The most simplest method of vectoring text is by using word frequencies in the form
of bag-of-words. To generate a bag of words we first define a fixed length vector with
the same size of a pre-defined dictionary. Each index in the vector corresponds to a
word in the dictionary. To then acquire the vector for a document we would count
the number of times a word in the dictionary appears in the document and increment
it’s corresponding entry in the vector. For example with a dictionary defined as {A,
it, and, fashion, portrait, photography, photographer} and we were to vectorise the
document “A fashion photographer and portrait photographer”, we would generate
(1, 0, 1, 1, 1, 0, 2).

Discussion. At this point we can motivate the importance of effective text-preprocessing
to improve the quality of our text vectors. For instance, by converting text to lower
case will prevent the need for storing two entries for each word, and consequently
not capturing the relationships between documents effectively, e.g. the documents A
Photographer and a photographer with no text-preprocessing would have completely
different bag-of-word vectors. We discuss the text processing methods we employ in
Section 2.5. There is one major drawback with a bag-of-words approach: it doesn’t
capture the semantic meaning of the text by ignoring the context in which words
appear. To tackle this we progress to the next approach: tf-idf.

8https://sobigdata.d4science.org/web/tagme/tagme-help
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2.4.2 TF-IDF

Term Frequency-inverse Document Frequency (TF-IDF) measures how important
important a term (word) is to a document within a collection documents (corpus).
To construct a tf-idf vector for a document we construct a fixed length vector in the
same way described above, but instead of an index corresponding to the frequency
of a word, it is the tf-idf score. We calculate the score for a word wi for a document
dj as follows:

score(wi, dj) = tf(wi, dj) · idf(wi) (2.1)

where tf(wi) represents the term frequency of wi: the number of times word wi
occurs in document dj and idf(wi) weighting the score with the inverse document
frequency: the number of times word wi occurs in all documents (the corpus). With
this equation we can intuitively observe that words with high frequency in many
documents will have a low score, while those with high frequency in a specific doc-
ument but low frequency in all documents will have high relevance (score) for that
document.

Discussion. TF-IDF makes a major improvement on bag-of-words by considering
context. However, this method has limited applications in areas where the corpus
changes size and it doesn’t consider the relationship between words.

2.4.3 Word Embeddings (Word2Vec)

Word Embeddings are dense vector representations of words in low dimensional
vector space. They were popularised by Word2Vec [48] where they introduced a
new model for distributed words using neural networks. Word vectors produced by
these models preserve the semantic similarity between words. For example, the word
embeddings learnt from a large amount of data by the Word2Vec model encodes the
relationships between the words “king”, “man”, “woman” and “queen” in the following
way:

v(king)− v(man) + v(woman) ≈ v(queen) (2.2)

where v(wi) is the vector embedding of the word wi. Vectors which preserve these
semantic relationships provide high-quality representations of text.

2.4.4 Document Embeddings (Doc2Vec)

In our applications we use text which is longer than just a single word. These se-
quences of words (documents) provide additional context to learn the semantics of
words. This motivates the consideration of a means to create document embeddings.
Le and Mikolov [40] proposed Doc2Vec, which learns document emdbeddings jointly
with word embeddings. Doc2Vec was shown to outperform many other methods of
generating document vectors [39].
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(a) PV-DM training diagram [40] (b) PV-DBOW training diagram [40]

Figure 2.2: Doc2Vec Training Models

Similar to Word2Vec, Doc2Vec learns vector representations of a word by looking at
words context, additionally it includes a new vector to the context, which represents
the paragraph. Doc2Vec has two models: Distributed Bag of Words (PV-DBOW)
and Distributed Memory Model (PV-DM).

PV-DM vs PV-DBOW. In PV-DM 2.2a (a), a shallow neural network is trained
on a “fake task”, which attempts to predict a centre word using context words and
a context paragraph. Whereas in PV-DBOW 2.2b (b), the paragraph vectors are
obtained by through a training procedure whereby a neural network predicts a prob-
ability distribution of words in a paragraph given a randomly-sampled word from the
paragraph. The original paper recommends the PV-DM model as being superior.

2.5 Text Preprocessing

In order to extract the highest quality vectors it is understood that the raw text
should undergo informed text-preprocessing. This section describes some of the ap-
proaches we undertook in this work.

Emojis. Emojis often encode useful information (usually topical information), for
this reason we undergo methods to encode emojis such that they can be used by
our text models. Specifically we use the Emoji library9 which converts emojis into
distinct tokens, a form which our text algorithms can use.

Text Normalisation and Stripping. In most scenarios we apply the following
normalisation and stripping pipeline: (1.) convert text to lower case, (2.) remove
emails and urls, (3.) remove punctuation, (4.) remove stop words, and finally (5.)
remove tokens smaller than 2 characters in length. It is worth noting that we added
a set of custom stop words which we occur frequently in the text in our domain that
provide no value.

Lemmatisation. Lemmatisation in linguistics is the process of grouping together
the inflected forms of (a word) for analysis as a single item [17]. For example, the
verb “to walk” may appear as “walk”, “walked”, “walks”, “walking”, all of which have

9https://pypi.org/project/emoji/
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the lemma “walk”. By reducing words to their lemmas we can intuitively reason that
the performance of text models like bigrams (Section 2.5.0.1) and word embeddings
will be significantly improved. We utilise the lemmatiser from the SpaCy10 library.
We decide to use a lemmatiser over a stemmer as lemmatisation provides more read-
able words to assist in interpretability. In the most of our work because we often
need to manually explore the results of our text models, which makes lemmatiser a
better fit.

Frequency Filtering. For building topic models or similarity models we filter out
words at extremes, e.g. any words which occur in less than 20 of the documents or
those which occur in more than 70% of the documents in the corpus. This helps
filter out common words which may negatively impact our results.

2.5.0.1 Bigrams

During this work we found that using bigrams [49] were an effective pre-processing
step to improve the quality of text classification tasks and text models like Doc2Vec.
This is expected as they intuitively encode more information than unigrams, e.g.
the seperate unigrams Fashion Photography are less specific than the bigram Fash-
ion_Photography.

Implementation. We create two separate bigram models using the Gensim library
11, one for the text on websites and the other with text in biographies. We created
two bigram models so each was able to capture the relevant semantics for the in-
dividual contexts. To create a bigram we combined all the text gathered for the
specific context, e.g. all 500k biographies were provided to model. The model learns
a score for all pairs of words, essentially learning which pairs of words are more likely
to occur together than not. The score for a pair of words is calculated intuitively
using the equation below:

score(wi, wj) =
count(wiwj)

count(wi)× count(wj)
(2.3)

where count(wiwj) represents the amount of times which the amount of times words
wi and wj one after the other in all documents and count(wi) as the number of times
word wi occurs by itself in all documents.

10https://spacy.io/api/lemmatizer
11https://radimrehurek.com/gensim/models/phrases.html
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Taxonomy Construction 3
3.1 Background

A taxonomy refers to a hierarchical categorisation in which relatively well-defined
classes are nested under broader categories. This creates a formal description and
specification of topics. These then provide a standard format to define topics across
multiple end-user applications.

Motivation. Without a clear and consistent taxonomy of topics, users cannot be
categorised into their content types or interest. This categorisation is a prerequisite
for our user search and recommendations applications (Chapter 7). In conclusion,
the more accurate, low-level and relevant the taxonomy, the higher coverage we
our classification algorithms will achieve and in-turn the more effective the end-user
applications.

3.2 Topical Community Detection

3.2.1 Background and Related Work

In this component, we aim to find topical sub-graphs in our network of content
creators where the sub-graphs are more densely connected than the rest of the net-
work. For the purpose of interpretability we also aim for the sub-graphs to have
little overlap. We will work with the intuitive definition of a community as a cluster
of vertices such with more internal edges than those which are external. Addition-
ally, we will make a distinction between strong and weak communities, whereby a
strong community is one where each node has more connections within the commu-
nity than with the rest of the graph. In a weak community C, the sum of all degrees
within C is larger than the sum of all degrees toward the rest of the network [64].
Community detection (CD) algorithms can be categorised broadly into two types:
global and local. Global algorithms typically perform better as they have access
to the whole graph at once, where they are able to utilise both local and global
information. However, due to the size of the content creator graph, huge computa-
tional resources are required for global algorithms. As optimality is not a priority
in this component, the computational overhead of global CD algorithms becomes
unjustifiable. Therefore, I will focus on developing local CD (LCD) algorithm where
each community can be grown independently, allowing for a parallel and on-demand
sub-graph discovery. In this context, LCD algorithms focus on the sub-graph that
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is under study and it’s immediate neighbourhood.

Local Community Detection (LCD). There has been a large effort in detecting
community structure in complex networks [13, 51] using modularity optimisation
and minimisation of cuts using spectral methods [82]. Following the adoption of the
definition of community we presented above, the most popular algorithms are centred
around optimising a quality measure known as “modularity” (and local modularity).
Modularity is the measure for strength of a division of a network into communities.
Su et al. [76] continue to define that a graph has ambiguous community structure
when it contains some weak communities and discuss that modularity based CD al-
gorithms are effective in detecting communities in complex networks with all strong
communities but not those with ambiguous structure. Additionally, it is unable to
detect small communities as it suffers a resolution limit [27]. It has been shown that
most ties in social networks are weak [21] and we believe through direct observation
that, like other social network datasets, that our dataset contains predominantly
weak communities, i.e. has ambiguous community structure.

Topical Community Detection. The works described above focus on using struc-
tural properties of graphs and hence generate communities associated with incoher-
ent semantic topics. This makes them unsuitable for discovering topics. In order
to overcome this limitation, there has been work in using topic modelling tech-
niques such as LDA [7] or AT [74] with the goal of discovering topical communities.
For example Zhou et al. [90] proposes Community-User-Topic, that extends LDA,
discovering communities using the semantics of content. These methods that use
topic modelling technique are heavily reliant on the quality of textual content in
the medium studied. As discussed in length in this work, the text on Instagram
is noisy, sparse and unreliable, which renders these methods inappropriate for the
goal of discovering topical communities on Instagram. To overcome these issues we
provide a local topical community detection algorithm which uses both structural
and textual information to discover topical communities on Instagram.

Hierarchical Community Detection. Following the hierarchical nature of our
taxonomy, we hypothesise that there exists a similar hierarchical structure to the
communities which exist on Instagram. For the purpose of niche topic discovery, it
remains a priority to develop an algorithm to generate smaller leaf level communi-
ties, as opposed to those which represent top-level topics/categories. Practically, if
we naively find seeds based on attributes such as node degree (Equation 3.2), we
will end up with seeds which will grow into general topics. For instance, a pho-
tographer like @nk7 is followed by photographers in a wide range of photographic
disciplines and hence has a large degree in our network. Traditional methods of
seed selection like [76, 81], greedily pick seeds from the graph in order of decreas-
ing degree. Methods like this will pick users like @nk7 as seeds, where @nk7 would
be grown into a large, general community of photographers. This can be observed
in Figure 3.1 whereby we grew a small number of communities around seed nodes
chosen with high-degree. Inspection of these communities visually and analytically
indicates that these represent general topics like “Home” and “Fitness”. We tackle
this issue by devising various quality functions for communities (Sections 3.2.4 and
3.2.5) and for seeds (Section 3.2.6). Specifically, the seed quality functions allow us
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Figure 3.1: The visualisation here represents a graph of content creators, where
each colour is a community, a node is a content creator and an edge represents the
“following” relation. This is an example of communities which form when poor seeds
are selected, i.e. those communities grown from seeds with large degree.

to better assess the “likelihood” of a content creator to be grown into a niche topical
community. Content creators are then greedily selected as seeds based on an order-
ing on the quality functions we define. Consequently, we are able to grow smaller
and more niche communities which represent potential leaf nodes in our taxonomy.

Our Algorithm. We devise an algorithm that finds important nodes and uses them
as seed nodes {s1, s2, ..., sk}, which are grown into independent clusters {C1, C2, ..., Ck}
using custom defined quality functions. Specifically,

1. A seed set of important content creators are found, using criteria to ensure
seeds are well separated and topically independent. We combine traditional
definitions of importance with domain relevant statistics (e.g. likes, followers
and tags) which guide our seed selection algorithm.

2. Each seed content creator is grown into a community C in parallel by greedily
selecting nodes which are in the neighbours of C, and adding them to C if
it improves the quality of C. The nodes are greedily selected using various
quality functions we define over a community.

3.2.2 Algorithm Setup and Objectives

To guide the construction of the communities and selection of seeds, we define a set
of intuitive objectives:
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Criteria 1. Communities should have small overlap of users

Criteria 2. Communities cover as many topics as possible

Criteria 3. Each community should define a unique topic

3.2.3 Preliminaries
Setup. A directed graph G = (V,E) which consists of content creators V and
the edges between them E. The existence of a edge (u, v) ∈ E indicates that
u follows v. We define a cluster Ci as a subset of vertices in V , Ci ⊆ V . Let
E(C) = {(u, v) ∈ E|u, v ∈ C}. In this chapter, we use the terms cluster and com-
munity interchangeably.

Neighbourhood. The neighbourhood of u represents all nodes that are adjacent
to u:

N(u) = {v|(u, v) ∈ E} ∪ {v|(v, u) ∈ E} (3.1)

Consequently, the degree of a node can be defined as

deg(u) = |N(u)| (3.2)

which measures the number of connections it has to other nodes.

Volume. The volume of a cluster C is sum of all degrees in C:

vol(C) =
∑
v∈C

deg(v) (3.3)

Bridges. We define bridges(Ci, Cj) as the set of directed edges between clusters Ci
and Cj:

bridges(Ci, Cj) = {(u, v)|u ∈ Ci, v ∈ Cj, (u, v) ∈ E} (3.4)

Cut. The cut of a C is defined as the number of bridges between C and V \ C:

cut(C) = |bridges(C, V \ C)| (3.5)

3.2.4 What makes a Good Cluster?
In this section we provide a detailed presentation of methods of evaluating the qual-
ity for individual clusters, along with practical considerations. Our definitions will
be guided by the criteria outlined in Section 3.2.2, ensuring our seeds are grown into
niche topical communities.

Conductance. Our first quality measure is one which measures the probability
that a node u in C, after a one-step random walk leaves C.
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conductance(C) =
cut(C)

min(vol(C), vol(V \ C))
(3.6)

Equation 3.6 requires computation on the whole graph to calculate vol(V \ C). In
order to eliminate this computational heavy requirement we assume that the clus-
ters we generate are always much smaller than the whole graph. This allows us to
re-formulate conductance as shown below:

conductance(C) =
cut(C)

vol(C)
(3.7)

Intuitively, we aim to build community where the probability for a node to leave the
community after a one-step random walk is minimum, hence minimum conductance.
Yang and Leskovec [87] show that conductance is a good measure to capture the
structure of ground-truth communities. For this reason, in our algorithm (Algorithm
4) we only add a candidate node to the community if its addition results in a smaller
conductance.

Density. We can measure how tightly knit a C is with density, defined as

density(C) =
|E(C)|

|C| · (|C| − 1)
(3.8)

Structural Similarity. Inspired by Cosine Similarity, the similarity between two
nodes u and v can be computed as [34]:

sw(u, v) =
2 · w(u, v) +

∑
x∈N(u)∪N(v)w(u, x) · w(v, x)√∑

x∈N(u)w
2(u, x) ·

√∑
x∈N(v)w

2(v, x)
(3.9)

This equation is used later in Section 3.2.5 to define the topical similarity of two
nodes. For an un-weighed graph G(V,E), the similarity function can be simplified
from the observation that w(u, v) = 1 if (u, v) ∈ E and 0 otherwise, giving:

s(u, v) =
|N(u) ∩N(v)|√
|N(u)| · |N(v)|

(3.10)

Internal & External Similarity. We can now use the definition of similarity
above to define the internal similarity of a cluster C:
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Sint(C) =
∑

(u,v)∈E(C)

s(u, v) (3.11)

and the external similarity as

Sext(C) =
∑

(u,v)∈B(C)

s(u, v) (3.12)

where B(C) = bridges(C, V \ C).

Tightness. Huang et al. [35] use the definitions of similarity defined above to in-
troduce tightness of a cluster C as:

tightness(C) =
Sint(C)

Sint(C) + Sext(C)
(3.13)

The tightness of a community C will increase when C has high internal similarity
and low external similarity.

Tightness Gain. In order to use tightness during seed expansion, Huang et al. [35]
show that the tightness gain of adding a node u to C can be defined as:

τ(C, v;α) =
Sext(C)

Sint(C)
− α · Sext(C, v)− Sint(C, v)

2 · Sint(C, v)
(3.14)

with

Sint(C, u) =
∑

v∈N(u)∩C

s(u, v) (3.15)

Sext(C, u) =
∑

(u,v)∈B(C)

s(u, v) (3.16)

where α is a parameter which controls the proportion of external similarity of can-
didate node v, larger values of α yield smaller communities [35]. Using Equation
3.14, nodes can be stored in a priority queue, enabling an algorithm to extract the
best candidate in O(1) time. Under the conditions where speed is a priority, one
could store nodes in a priority queue based on the following score function [32]:

score(C, u) =
1

degree(u)

∑
v∈N(u)∩C

w(u, v) (3.17)
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Adapted from Equation 3.11, the score is normalised by the degree of the node, this
ensures that the score is not biased to those nodes with high degree. Additionally,
this normalises ensures that, provided that 0 ≤ w ≤ 1 then 0 ≤ score ≤ 1. Note
that to take structural similarity of nodes into consideration one could use Equation
3.9 as the weight function w or, for a lower computational complexity, it can be
defined by an edge similarity based on pre-computed node attributes. Practically,
by storing candidate nodes in a priority queue ordered by score, we ensure that we
are adding nodes in order of their likelihood to take the growing community in a
direction where we have larger normalised internal similarity between nodes.

Updating Scores. When a new node z is a added to the community, the scores of
the nodes in queue must be updated. Fortunately, the only nodes who’s scores are
updates are the neighbours of z, with their scores updated simply as follows:

score′(C, u, z) =
1

deg(u)

∑
v∈N(u)∩C∪{z}

w(u, v) (3.18)

=
1

deg(u)

∑
v∈N(u)∩C

w(u, v) +
1

deg(u)
w(u, z) (3.19)

= score(C, u) +
1

deg(u)
w(u, z) (3.20)

where score(C, u) is the old pre-calculated score.

3.2.5 Topical Quality Measures
To ensure that our clusters are formed with topically coherent content creators, we
incorporate topical similarity into our quality measures. In this section we aim to
form a weight function w to define the topical similarity of two content creators. We
can then use this function in the equations defined in Section 3.2.3. Those which
are of particular use are:

Weighted Structural Similarity. The weight function can be used in Equation
3.9 to combine both structural similarity (the neighbourhoods) and topical similarity.

Topical Density.

topical-density(C) =

∑
(u,v)∈E(C)w(u, v)

|C| · (|C| − 1)
(3.21)

Topical Conductance. Inspired by the definition of conductance in Equation 3.7
we define a measure the topical conductance of a cluster C. We define it as

topical-cond(C) =

∑
(u,v)∈B(C)w(u, v)

volw(C)
(3.22)
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where B(C) = bridges(C, V \ C) and

volw(C) =
∑
v∈C

degw(v) (3.23)

with degw as a trivial extension of deg by summing the weights of edges as opposed
to the number of edges [32].

Utilising Text. To determine the topical similarity between two nodes (content
creators), we utilise the text which can be derived from the profile. From previous
experiments and reasoning in Section 2.2, we decide not use use captions or hashtags
as they are often poor topical indicators and provide too much noise. Instead, we
use the text in the biography, as we have found this to be the highest quality topical
indicator.

The Problem of Sparsity. The only prominent issue with using the biography
here is sparsity, where some users have empty biographies, or very little text. This
prevents us from calculating the topical similarity between content creators where
one has a sparse biography.

Solution. In order to account for the issue that some users will have sparse biogra-
phies we provide some flexibility in our algorithm to allow nodes with no measures
of topical similarity to be added to the community. Specifically, we add nodes to a
priority queue of candidates using score function defined in Equation 3.17 which
uses a topically weighted similarity between nodes. In this scenario nodes with
sparse biographies will be placed lower in the priority queue, but still will have the
opportunity to be considered to be added to the cluster. When a candidate is de-
queued, it is only added to the community if the conductance of the community
with the node added is smaller than the conductance previous. With this condition,
many high-ranking nodes in the queue may be rejected, leaving sparse nodes to be
considered. By combining conductance and topical score ordering in this way we are
able to both utilise the connections between content creators (Hypothesis 1) with
their topical similarity to ensure dense, topically coherent communities are foremd.

Vectorising Text. Here we describe how we use state-of-the-art natural language
processing techniques to define high-quality feature vectors from the biographical
text which allow us to use the hidden semantics of our domain to compute the
similarity between two biographies. To obtain high-quality vectors representing
the biographies we build a Doc2Vec model (Section 2.4.4) with 500k pre-processed
(Section 2.5) biographies of content creators, which captures the semantics of the
text in our specific domain. Additionally, we created a bigram phrases [49] model
which was used during the pre-processing step which greatly improved the quality of
the text features. The details of how we built this model can be found in Section 2.4.
With this model we can compute the similarity of two content creators biographies by
first inferring their vector representation using our Doc2Vec model, then computing
the cosine similarity between these vectors. Our methods of computing topical
similarity between two content creators is summarised in Algorithm 2.
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Algorithm 2 Computing Topical Similarity of two Biographies
Input: Biography of first content creator b1, biography of second content creator
b1, infer vector function vec using Doc2Vec model

Output: Semantic similarity 0 ≤ w ≤ 1 of biographies
t1 ← pre-process b1
t2 ← pre-process b2
v1 ← vec(t1)
v2 ← vec(t2)
w ← s(v1, v2) using cosine similarity function

3.2.6 Determining Optimal Seeds

Coverage. To satisfy Criteria 2 and the high-coverage requirement outlined in
Section 1.4, seed content creators should have different topical content. To ensure
that new seed content creators have different topics to those which are already in
the seed set, we compare topical features of a content creators. As discussed pre-
viously, most profiles contain noisy, sparse and unreliable text. Consequently, if we
use the text on the content creators profile we may end up adding a horse-riding
content creators who’s biography states “I love ice cream” as a seed, when there
already exists a horse-riding seed in the set. Instead, we use the title and descrip-
tion metadata of the website linked to on their profile. Our assumptions here are
that (i) the website linked to a content creators profile has similar content to the
content creators content and (ii) the title and description metadata of websites are
more reliable topical indicators. Note we only consider content creators as seeds if
they have a website linked to their profile. In conclusion, we first obtain the vector
representation of a content creators website and metadata text using text vectori-
sation methods described in Section 3.2.5. Using these vectors we ensure that a
content creator is only added to the seed set if it’s vector is sufficiently dis-similar
to the content creators’ vectors in the current seed set. Dis-similarity is determined
experimentally, but typically the threshold resides between 0 and 0.1. This process
ensures that each content creator in the seed set are topically independent.

Overlap and Uniqueness. To satisfy Criteria 1 and 3 we take a similar approach
to [24] by ensuring seeds do not occur in the neighbourhoods of other seeds. The
neighbourhood of a seed can be defined as all nodes that can be reached via h hops.

Heuristic Quality Functions. To define quality we use domain relevant heuristics.
Intuitively one might be tempted to consider page-rank like algorithms to determine
the quality of nodes, however this often surfaces fake accounts or celebrities on
Instagram, neither of which are good candidates for seeds. In order to define the
quality of a seed content creator we must first introduce the idea of engagement. On
Instagram, a content creator may create posts (of images or videos), which other
users can engage with; by engage we refer to liking or commenting. We can now
define a content creator engagement by the proportion of users which follow them
that engage with their content, as

E(U) =

∑
p∈P (U)(plikes + pcomments)

Fin(U)
(3.24)
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where P (I) represents the set of posts of a user U , plikes, pcomments are the number of
likes and comments a post p has, and Fin(U) denotes the number of users that follow
U . To make Equation 3.24 more concise and reduce the computational complexity,
we approximate engagement by the following equation:

E(u) =
ave-likes(u)

Fin(u)
(3.25)

where ave-likes(u) is the average number of likes over k posts. Equation 3.25 is
grounded on the assumptions that plikes >> pcomments and the standard deviation
over the last k posts is low.

QD(u) =
δin(I)

Fin(u)
(3.26)

QE(u) = E(u) (3.27)

QÊ(u) =
QE(u)

Fout(u)
(3.28)

Equation 3.28 captures that a content creator who has high engagement and doesn’t
follow many people is likely to be of high quality. This helps remove noise but
eliminating “fake” content creators who follow lots of people in attempt to get “follow-
backs”1. Similarly, engagement is taken into consideration to remove users who
gained a large following from following users then un-following them soon after.
These users will have a large following but low average likes - hence poor engagement
(QE). We also face the challenge of eliminating those users who “purchase” likes,
these are called “fake likes”. Those users who purchase fake likes have very high
“engagement”, as a consequence of the number of likes they acquire whilst staying
at a relatively low followers size. To account for this we introduce two measures of
quality which takes into consideration their followers:

QFB(u) =
1∑
v∈δin

1[v → u] (3.29)

where 1[cond] is the indicator random variable which is 1 if cond is true, 0 otherwise
and v → u is true if v follows u. Equation 3.29 measures the proportion of a user’s
followers follow them back, under the assumption that if a user is of high quality
then the users which they follow will likely follow them back.

QFS(u) =
1

δin

1

Fin(u)

∑
v∈δin

Fin(v) (3.30)

In Equation 3.30 we determine the average number of followers a user’s following
has, e.g. if u is followed by v who has 1000 followers and w who has 2000 followers,
then QFS(u) = 1500. Finally, we normalise and combine the metrics above to form
a function in Equation 3.31 which indicate the importance of a user u. The hyper-
parameters α, β, γ and δ allow us to control how each individual measure of quality

1When a user follows another with the aim to get the other to follow them back - not because
they authentically enjoy the others content.
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effects the final result.

Q(u) = αQD(u) + βQÊ(u) + γQFB(u) + δQFS(u) (3.31)

Algorithm 3 demonstrates how we use the quality functions we defined in this section
to select seeds from a graph of content creators.

Algorithm 3 Seed Selection Algorithm
Input: Graph G(V,E), number of seeds k
Output: seed set S
S = ∅
N = ∅
Sort V by Q (Equation 3.31)
while |S| < k do
u← pop(V )
if u /∈ N then
S ← S ∪ {u}
N ← N ∪N(u)

end if
end while

3.2.7 Seed Expansion Algorithm

This section outlines the seed expansion algorithm which utilises the insights in
Sections 3.2.4 and 3.2.5. Inspired by [32, 35] we greedily select a node from a
candidates generated by the neighbours of the nodes in the community. The selection
from the candidates is with the maximum score and only added to the community if
they improve the conductance of the community. We use conductance to determine
whether a node should be added to the community for the reasons discussed in
Section 3.2.4 including the fact that Yang and Leskovec [87] show that conductance is
a good measure to capture the structure of ground-truth communities. The priority
queue in Algorithm 4 is sorted by score (Equation 3.17) where the scores of the
candidates are updated following the rule described in Equation 3.20. Note that
we store node similarities in a cache once calculated for the first time to prevent
re-calculation.

3.2.8 Evaluation

3.2.8.1 Discovered Topics

Inferred Topics. With the community documents we were able to extend our tax-
onomy to fine grained topics, for instance Tourism → Icelandic Tourism in Figure
3.2 and Lifestyle → Men’s Lifestyle → Gentlemen’s Lifestyle in Figure 3.3 (topics
which were not present in pre-defined ones).
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Algorithm 4 Topical Seed Expansion Algorithm
Input: Initial seed s, maximum size of community k
Output: Topical community C based on
C = {s}
Initialise priority queue Q = N (s)
while |C| < k and do
n← pop(Q)
if conductance(C ∪ n) < conductance(C) then
C ← C ∪ {n}
update scores in Q
Q ← Q∪N (n)

end if
end while

Observations about Text Quality. Through visual feature extraction in this
chapter we were able to provide some evidence to our hypotheses about the text on
Instagram. The text relating to the Icelandic Tourism accounts was of higher quality
as most of the content-creators were brands and had a requirement to convey them-
selves clearly on Instagram. Just as frequently we had communities similar to the
one in Figure 3.3, where the text is (i) noisy: lack of semantic clarity, the language
differs highly from the standard form, (ii) sparse: empty biographies (those which
display None) and (iii) inconsistent/unreliable: the text contains more topically un-
related words to those which are topically related (e.g. “Welcome to the club”).

Ground Truth Content Creators. In addition to discovering topics, we used
these communities to select a list of high quality seed accounts for each topic, which
are used as ground truth for evaluation purposes in topic inference and classification
algorithms in Section 4.5.

Figure 3.2: A community of content creators of topic “Islandic Tourism”
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Figure 3.3: A community of content creators of topic “Gentlemen’s Lifestyle”

3.2.8.2 Visualisations

Due to the hands on nature of this task, we provide a less rigorous evaluation in this
chapter than others. Here we combined a manual exploration approach of evaluation
with a numerical one, with emphasis on visualisations to gain an intuition of the
results. We used implementations which directly query an embedded Neo4j Graph2,
as opposed to those implemented to read graph data from a file. This was to allow
us to skip the (very time consuming) steps of exporting graphs, converting them into
a acceptable format then reading the results back into Neo4j. The graph libraries
write results back directly to the properties of neo4j nodes, allowing us to export
nodes into Gephi format by querying nodes in certain communities with ease. All
visualisations were created in Gephi using the Fruchterman Reingold force-directed
layout algorithm [23]. It is worth noting that some seeds selected had poor connect-
edness (from missing data) and so were grown into very small communities.

Results. The two visualisations in Figure 3.4 are two graphs of communities gener-
ated from two separate seed sets. We make the observation that communities don’t
tend to join together, which indicates that our methodology of selecting well sepa-
rated seeds works effectively. Specifically, we selected seeds that don’t occur in the
neighbourhood of other seeds. Additionally we can see visually that the communities
are generally small and tightly knit, which indicates that small, niche communities
were discovered.

3.2.8.3 Evaluation Setup

Prior to running the community detection algorithms we determined the largest
strongly connected components to remove the possibility of degenerate communities
surfacing (e.g. 1-2 node communities). A graph is said to be strongly connected [77]
if every node is reachable from every other node. For these experiments we randomly
sampled a graph of 500k content creators using the sampling method described be-
low. Our algorithm started with a set of 20 seed content creators for instance, one
the seeds is shown in Figure 3.6. These seeds were grown into communities with a
specified maximum community size of 300 (parameter k in Algorithm 1.3).

2https://github.com/neo4j-contrib/neo4j-graph-algorithms
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Figure 3.4: In this visualisation of two separate graphs, nodes represent content cre-
ators, edges between them represent the “following” relation and a colour represent
a community. The two visualisations represent two different sets of communities
generated from two different sets of seeds. This visualisation provides evidence
that our seed expansion algorithm is able to create well separated communities, i.e.
those who are not within each others neighbourhoods, hence providing us the best
opportunity to discover niche topics.

Sampling Method. We used a similar sampling algorithm to The Forest Fire
(FF) [42], inspired by the work on temporal graph evolution. This sampling method
randomly picks a seed node and begins “burning” outgoing links. The nodes on the
other ends of burnt links have a change to burn their own links. This process is
repeated recursively.

Metrics. We compare our algorithm to popular community detection algorithms:
Label Propagation [65] and Louvain Modularity [6]. To compare the algorithms we
use the following metrics:

Conductance Defined by Equation 3.7, we measure the conductance of the com-
munities as it defines intuitively the quality of a community. Addi-
tionally, Yang and Leskovec [87] show that conductance is a good
measure to capture the structure of ground-truth communities.

Topical
Coherence

We define topical coherence by Equation 3.32, where s(u, v) is cal-
culated by the cosine similarity of the document embeddings of the
biographies of u and v (as described in Algorithm 2). This allows
us to measure how well the algorithms generate communities that
are able to achieve our goal of topic discovery.

Community
Size

We also measure the average size of the communities generated as it
is important that we generate smaller communities for the purpose
of niche topic discovery.
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coherence(C) =
1

|C|
∑

(u,v)∈E(C)

s(u, v) (3.32)

3.2.8.4 Results

Size and Topical Coherence. The distribution of size in Table 3.1 show that
our algorithm discovers smaller communities on average than the other communi-
ties. This is intuitively expected as we set a limit on the size of the communities
generated by our algorithm, however, even with the cap on size it still terminates
before reaching the maximum community size. Early termination, along with a low
topical coherence indicates that it successfully finds communities of niche topical
content creators. Contrasting to the other algorithms, the average community size
is extremely large, with low average topical coherence. Through these results and
visualisations created with Gephi, we conclude that the communities found by tra-
ditional CD algorithms are (i) friendship groups and (ii) about general topics. An
example of friendship groups can be seen in Figure 3.5, whereby the users are Youtu-
bers who post content about topics ranging from Fifa to Beauty. Their friendships
can be deduced by observing that they co-create Youtube videos together as a part
of their “lifestyle” content.

Conductance. Our algorithm generates higher conductance than Louvain which
is expected as we don’t prioritise minimsing conductance in our algorithm. We
highlight that we expect that our high coherence can often be caused by adding
“popular”3 users to a community early on in the growth process, thereby drastically
increasing the external node degree. When popular users are added, it becomes
unlikely that the algorithm will add enough of the neighbours to the community due
our sorting on topical coherence which results in a permanently higher conductance.

Figure 3.5: Non-topical community detected by Louvain Modularity CD.

3.2.8.5 Example Community

Here we show an example of a (seed, community) pair, where a “Van Life” content
creator @gabriellenelson_ (Figure 3.6) is found during the seed selection process
and grown into the community presented in Figure 3.7.

3Those with a large degree
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Table 3.1: Performance of our LCD algorithm compared to two popular CD algo-
rithms.

Metric Algorithm Mean Standard Devia-
tion

Topical Coherence

Our Algorithm 0.6710 0.0452

Louvain 0.1254 0.0311

LP 0.2319 0.04074

Size

Our Algorithm 86.5 59.54

Louvain 7971.76 12282.32

LP 1973.2 3551.4

Conductance

Our Algorithm 0.6710 0.1239

Louvain 0.5619 0.1064

LP 0.7126 0.0195

3.3 Final Taxonomy

Storage of Taxonomy. We created the taxonomy in Google Sheets where it can
be accessed programmatically via Google Sheets API7. This allowed us to create an
automatic pipeline which is run whenever there are changes to the taxonomy. This
pipeline ensures the changes are propagated through our architecture, the overview
of the steps which it performs for a new topic t are outlined below. The details of
each step is explained in Chapter 4.

1. Populate concept-topic dictionary with techniques described in Section 4.4.3

2. Generate predicted topics Td for content creators using concept-topic dictio-
nary classifier

3. Automatically collect labelled websites of topic t and train classifier with new
dataset (Section 7)

4. Deploy website classifier

5. Label content creators with that are inferred by ensemble learner

3.3.1 Taxonomy Details

This section shows a snapshot of the current taxonomy deployed, it is worth noting
that the taxonomy is continuously growing as the team finds new topics and new
methods of topic discovery are employed. We attempt to map each topic in our
taxonomy to a concept/category on DBPedia, which helps us at later stages define

7https://developers.google.com/sheets/api/
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Figure 3.6: A Van Life content creator chosen by our seed selection algorithm

semantic similarity between topics by utilising external knowledge bases. An ex-
tract of our taxonomy is shown in Figure 3.8. At the writing of this dissertation our
taxonomy has the following statistics:

• 431 unique topics

• A maximum depth of 5 tiers, e.g. Arts → Visual Art → Applied Arts →
Graphic Design → Typography

3.4 Future Work

Random Walks. The data used in this work, as discussed previously exhibits a
large amount of noise and hence it seems appropriate to expand seeds into com-
munities via random walks. Random walks allows us to capture the small fuzzy
topical communities which occur often in Instagram. Here a fuzzy community is
one which shows poor community structure. Additionally, Abrahao et al. [1] discov-
ered that communities that are found in in practice are most similar to those that
random-walk based algorithms extract. This was achieved by applying a variety of
community detection algorithms to a many large scale network datasets. To improve
our algorithms performance on detecting ambiguous community structure, inspired
by [76, 81], we plan to introduce some randomness into our LCD algorithm to better
discover weak communities.
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Figure 3.7: A document containing the aggregated features of the Van Life discov-
ered community from the seed in Figure 3.6. These aggregated features include the
most frequent terms and bigrams4 in the biographies of the users, the “top users”5 in
the community and the most frequently tagged users6 by the users in the community

Figure 3.8: An extract of our taxonomy stored in Google Sheets.
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High Precision Topic Inference
Pipeline 4
4.1 Introduction

In this section we present a component of our architecture to tackle the problem
of acquiring high-precision labelled content creators. These content creators are
then used in the label spreading algorithm presented in Chapter 5 to spread labels
from the small number of labelled content creators across the graph achieving high-
recall. Consequently, our aim in this section is not to have high-recall, but high-
precision. We refer to the labelled content creators acquired in this section as topical
seeds as they act as seeds in the label spreading stage. This chapter describes an
approach to topical classification of social media profiles, combining state of the
art approaches from related work and various novel additions which has enabled us
to automatically acquire high-precision seeds for each topic in our taxonomy with
minimal supervision.

4.2 Challenges

4.2.1 The Impossibility of Human-Annotation
To ensure for high precision in the label propagation stage of this framework, it is
imperative that quality is prioritised over quantity when acquiring labelled content
creators. Typically, in this setting one would acquire labelled data through human
labelling procedures, for instance crowd-sourced market like Amazon Turk1. We
reason that this approach is not appropriate to acquire labelled data over a large
taxonomy of hundreds of niche topics due to the following reasons:

1. Expensive. To obtain accurate labels over a diverse set of topics would
require hundreds of hours and millions of pounds.

2. Cognitive Overload. As Yang et al. [88] pointed out, large taxonomies
present huge cognitive overload where a human annotator would have to retain
all topics in memory to identify the relevant ones for each content creator.
This would likely result with content creators only labelled with a small set of
correct topics.

3. Human Bias. It would often be the case that humans would be inclined
to label content creators with topics that they are most familiar with, and

1https://www.mturk.com
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consequently are best at recognising. Additionally, due to the diversity of the
taxonomy, many annotators would not be familiar with many topics, hence
resulting in a limited set of correct labels.

In conclusion, we decided to not follow the industry standard of human annotation
in order to obtain labelled data.

4.2.2 Unavailability of Labelled Data

Unlike other OSNs (e.g. Youtube, Pinterest), there is no underlying reliable topic
structure, which makes it near impossible to obtain high-quality labelled data di-
rectly from the platform. It is worth noting that Instagram provides a means for
users to label themselves with a “business category”. Despite the existence of busi-
ness categories, Instagram does not provide features whereby users can find busi-
nesses/other users by category. We believe Instagram does not provide this feature
due to the issues described in the next section (Section 4.2.2.1). For reasons de-
scribed in this section we are unable to utilise business categories for high-precision
topical inference. Additionally, due to the under-researched nature of Instagram
there exists no public pre-labelled datasets, as opposed to Twitter where there are
a plethora of methods and datasets to acquire labelled data (Section 2.2.2).

4.2.2.1 Business Categories

Instagram allows business users to assign a category to their account, which indicates
to users the category of their “business”. Any user can become a business account
and assign themselves a category, consequently we found that the majority of content
creators and famous content creators have a business category. Unfortunately we
discovered through sampling and analysing 500k users with their business categories
that there are two highly disabling issues which prevent us from utilising them in
our work. These are:

• Unreliability. We found that users often inaccurately label themselves. For
instance, we found users frequently labelled themselves as topics which they
were unrelated to, e.g. a skateboarder labels themselves as “Tourism Com-
pany”. We manually counted the number of correctly labelled categories in a
random sample of 500 accounts and found only approximately 63% were had
correct labels.

• Lack of Specificity. The popular topics in the taxonomy of business cate-
gories lack the depth and specificity we require when labelling content creators.
The majority of content creators in a sample of 150k users self-labelled them-
selves as categories like Public Figure, Community Account and Public Blog
(Figure 4.1).

Conclusions. Due to the issues described above we were unable to use Instagram
business categories for the goal of high-precision niche topic classification. To this
end, we devise methods of collecting labelled data through other means.
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Figure 4.1: Most popular business categories used by a sample of 150k users.

4.2.3 Text on Online Social Networks

The issues of text noise, sparsity and unreliability are most prominent in this sec-
tion, particularly because we’re attempting to extract topics from the text on content
creators profiles. In this section we briefly give an example of the three challenges
associated with text on Instagram and an overview of how we tackle them.

Noise. Some common attributes of “noisy” social media text are: spelling mis-
takes, abbreviations, poor grammar, unicode characters and over-use of punctuation.
These issues make it very difficult to generate textual features of the same quality
which are used in other text classification domains e.g. news articles or blogs. In an
attempt to mitigate the problems associated with noisy text, we first undergo heavy
text-preprocessing (including spell checking). Secondly we only consider concepts
extracted from the text, limiting the textual features extracted to only the “impor-
tant” parts of text, thus filtering out a lot of the noise.

Sparsity. As Pal et al. [54] noted, Instagram is a visual platform, so algorithms
that depend purely on text data do not perform well. The text we are dealing with
here is short and often missing. To reduce the effects of sparsity and brevity, we
use aggregation techniques, to achieve this we extract the text from the website
linked to the profile. For instance if a Youtube account provided as the website, we
concatenate the text on the Instagram profile with the text extracted from Youtube
profile.

Unreliability. This is a unique challenge that is faced by this work, which the task
of user interest inference (Section 2.2) does not suffer with to the same extent. To
demonstrate this, consider a Poet who has a biography which includes “Wine lover.”.
We can confidently infer that the poet’s interests include Wine, but in the context
of topical content classification, Wine would be incorrect. Instead we aim to classify
the content of the creator as Poetry. Pal et al. [54] referred to this issue as misleading
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topical signals. Pal et al. [54] solve this issue by aggregating all the biographies of
the users who follow an account then look at the frequencies of topical mentions to
assign topics to the user in question. Considering that the average number of follower
in our dataset is 64, 140, with just under three million content creators we would
have to collect, store and process approximately 192, 000, 000, 000 users, which make
this method of followers aggregation infeasible with our resources. Due to the scale
of data required, we take a different approach to solving the issue of unreliability
in Section 4.4.2.1 which doesn’t require the same amount of data and is based on
stronger hypotheses with the aim of improving on Pal et al. [54]’s ideas. In addition
to aggregation based on new hypotheses, we use a hard voting ensemble approach
to improve the reliability of our predictions, where we only label a content creator
as a topic if multiple classifiers agree on the same topic. These classifiers are built
using independent features of a content creators profile, hence provide independent
topical signals. We combine these classifiers into a High-Precision Topic Inference
Pipeline described in Section 4.3.

4.2.4 Low Accuracy Concept Extraction

As a part of this section we explore methods similar to those described in Section
2.2.1.1: extracting primary interests (topics) from biographies. In these approches,
one would attempt to extract keywords/candidates from text and link them to a
knowledge base, e.g. extract the bigram “Fashion Photography” and link it to the
Wikipedia/DBPedia category Fashion_photography. These linked concepts are
then used as topics for a user. We describe challenges which directly effect this
work, having an impact on high-precision topic extraction. The most common case
is a concept is extracted from text which is not relevant to the text, which is caused
by poor performance in the entity extraction and linking framework. Incorrect
extraction and linking would lead to misclassifying a content creators topic, thereby
lowering precision. The most prominent challenges we face are described below:

Table 4.1: Examples of extracted concepts from content creators biographies using
TagMe Api.

Bio Extracted Concepts

Ceramics Paintings Tas-
mania, Australia Visit
website online store

Ceramic_art, Cave_painting, Tasmania, Australia,
Online_shopping

Ceramic PRO Pottery, Azerbaijanis

London based, email to
visit studio. I am teach-
ing ceramic workshops in
August.

London, Email, Ceramic, Workshop

In-Accurate Often concepts will be linked to keywords in the text which are
not indicative of that concept. This frequently occurs due to
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spelling mistakes on noisy social media text. We dampen the
effects of this challenge though using multiple linkers and us-
ing the extracted concepts which are most consistent across all
linkers.

False Positives Using techniques of user interest identification, the last biogra-
phy in Figure 4.1 would be labelled as the topic. Computers
from the extracted concept Email. In this section we aim to
eliminate these false positives through using multiple features
from a profile to come to a consensus on “correct” topical labels.

Large Vocabulary Multiple concepts relate to the same topic, e.g. in Figure 4.1
three biographies with the same reference to the keyword ce-
ramic produced different concepts. We observe this same effect
caused by the large and unique vocabulary on Instagram (e.g.
slang). The result of this issue comes when attempting to de-
fine a mapping between concepts and topics, one cannot simply
use the concept alone as the topic, i.e. in the example above,
if Ceramic_art were used as the topic, then only one of the ex-
amples in Figure 4.1 would be labelled correctly. To solve this
we undergo manual and automatic methods of building a dic-
tionary, creating a mapping between concepts and topics. This
dictionary will contain mappings like Ceramic_art→ Ceramics
and Pottery → Ceramics. The details of the automatic and
manual methods we undertook to build this dictionary is de-
scribed in Section 4.4.

4.3 High-Precision Topic Inference Pipeline

4.3.1 Topical Signals Identification
A topical signal from a content creator is an indication that they post content of
certain topics. The indication can be deduced from the information on their profile,
for instance the content creators in Figure 4.1 provide topical signals indicating they
produce content about Ceramics. In order to build classifiers on users features we
begin by providing an overview of the topical signals of an Instagram account and
means of measuring how accurately they provide an indication of the users topic
of content. We acknowledge the existence of other features than those explored in
this section, such as images, captions, tagged users and hashtags, but choose to not
include them at this stage due to time limitations. It is worth noting, that inspiring
work by Pal et al. [54] discovered that the followers of an authority (analogous to
content creator in some respects) are good indicators of the topic of the content
creator, for instance a footballer will have a large proportion of their audience being
interested in football. We explore the topical signal of followers separately in Sec-
tion 4.4.2.1 whereby we provide several extensions to their approach, forming more
reliable signals through stronger hypothesise. Table 4.2 shows the dimensions of
an account that we believe are feasible to explore, both computationally and under
our time constraints. In this figure we demonstrate topical (T) and non-topical (NT)
examples of each signal, providing the topics which would be inferred all cases.
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Table 4.2: Topical Signals that we utilise of an Instagram profile. In this table
we contrast between topical and non-topical examples of a signal. A topical signal
starts with T and non-topical NT, for instance “T Biography” is a Topical Biography
example. The non-topic signals are examples of why a single classifier may perform
poorly. The website topics inferred are from the description and title metadata of
the website.

Type Signal Example Topics Inferred

T

Biograpy Kinderbuch & Editorial Il-
lustration children’s books
& editorial illustration Harz
Mountains, Germany

Illustration,
Editorial
Illustration,
Children’s Books,
Mountains

Website https://www.
juliachristians.de/

Illustration

NT
Biography “Confusingly loud introvert

who loves coffee”
Coffee

Website http://www.lizlizo.com/ Fashion Blog

Observations. The most important observation from this short analysis of topi-
cal signals is that there are consistencies amongst the topical signals provided by
website and biography of the same user. The examples under the topical signals
come from the same user i.e. the first is an illustrator for a children’s book. In
the typical examples, both the biography and the website’s metadata indicate that
the most precise user’s topical signal is Illustration. Additionally, the extracted
topic Editorial Illustration can be further inferred with higher confidence as
it is a sub-category of the extracted topic Illustration in the taxonomy. This
multi-stage propagation of topics is left to further work. We can further deduce
from these examples that there are cases where the topical signals from multiple
features of a profile do not align. In these cases we should abstain from classifying
the content creator to ensure that our goal of high-precision is met.

Utilisation of Topical Signals. Here we provide an overview of how these topical
signals can be utilised to infer the topics of a content creator.

Concepts in
Biography.

Concepts are extracted from a biography and classified into topics
using a high-precision dictionary approach. For instance the concept
Pottery in a biography will be classified by the dictionary as the topic
Ceramics.

Website. Instagram users have the ability of entering a url which is displayed on
their profile page as their “website”. For instance, an account which
posts about hand-made cards would use a url to their Etsy2 shop.

2https://www.etsy.com/
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Here, we hypothesise that a content creators website is a good indi-
cator of the content creators topic. This hypothesis is explored in
Section 4.6. In order to determine the topic of the website, we hand-
selected a set of common websites which have API endpoints. The
API endpoints allows us to deterministically and confidently classify
some websites into topics in our taxonomy. An example could include
a “Lo-Fi House” music artist who has their website url as an artist
page on Spotify, through which we can determine their music genre
to be “Lo-Fi House”. Websites outside of our hand-picked API set are
classified using a state of the art text-classification approach.

Emojis in
Biography.

It is often the case that the use of topical emojis in biographies are
a good indicator of the topic of a content creator. This works partic-
ularly well with sports, where a basketball player includes basketball
relevant emojis in their biography. To infer topics from emojis in our
pipeline, we utilised services like EmojiNet [83] to create a whitelisted
mapping, converting emojis to potential topics. Due to time restric-
tions we leave the incorporation of emoji classification to our future
work.

4.3.2 Pipeline Overview

This section describes an overview of the components of our high-precision topic
inference pipeline. Figure 4.2 provides a visual description of how a content creator
would be processed by the pipeline. The pipeline comprises of the following compo-
nents:

Hard Voting Ensemble. Identified topical signals often have low-precision. Due
to the strict requirement of seeds to have high-precision, we abstain from labelling
a content creator if all classifiers don’t agree. Specifically, only content creators
with a website and a biography are considered. We adopt a hard voting ensemble
approach, where each predicted topic t is considered separately and rejected if both
Equations 4.1 and 4.2 don’t hold. This results in a set of high precision, low recall
set of seed content creators for all topics in the taxonomy. The values for minw and
minb are determined experimentally.

p(t|website) >minw (4.1)
p(t|bio) >minb (4.2)

The equations above indicate the probability of predicting a topic given a website
or biography.

Example Journey of a Classified Content Creator. For the reader to gain
a better understanding of our pipeline we provide an example of how the topic
Illustration is inferred from a content creator in Figure 4.2 with biography
“Kinderbuch & Editorial Illustration children’s books & editorial illustration Harz
Mountains” and website https://www.juliachristians.de/. We encourage the
user to follow the example through Figure 4.2. We will refer to the content creator
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used in this example as C. The streaming user C is first checked if they have both
a website and non-sparce biography, if this condition is not met, C is ignored. Oth-
erwise, the website and bio are classified with their corresponding classifiers. With
these predictions, we filter out those inferred topics which do not satisfy both Equa-
tions 4.1 and 4.2. The remaining topics are then confidently assigned to C and used
to self-train our bio-classifier. An overview of self-training is described in Section
4.3.3.

Figure 4.2: Pipeline to achieve high-precision topic inference. A content creator
follows through the pipeline left to right, where the topics extracted on the far right
in blue are those which the pipeline is sufficiently confident about.

4.3.3 Co Training & Self-Training
Previously we described the challenges with acquiring labelled content creators un-
der each category. Labelled content creators are needed to build a biography classi-
fier, which is used in conjunction with other classifiers to achieve the wider goal of
high-precision. We utilise two semi-supervised learning methods in order to, with
minimal supervision generate labelled content creators to continuously improve the
performance of the biography classifier. The two methods we employ are Self Train-
ing (using pseudo labels) and Co Training.

Self Training. Self-training is the process of using a models output to train itself.
By training the model on a small amount of labelled data one can use the initial
model to predict the labels of unlabelled data to re-train itself. These predicted
labels are called pseudo-labels. This process works particularly well when the model
predicts with high-precision, which in our case, we take many steps to ensure. An
overview of how we employ self training is described in Figure 4.3.

Co Training. Co-Training [8] can be used when available data features are redun-
dant and we can train multiple classifiers based on disjoint features. For example,
an Instagram profile has a website and biography, which are two disjoint features.
The classifiers are then used to train each other. We apply this idea in a similar
way to self training, whereby the website classifier having access to abundance of
labelled data can be used to predict the topic of a content creator, which can be
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used as “training data” for the bio classifier.

Figure 4.3: A visual demonstration of self training.

Co-Training in Our Setting. We identify multiple independent features of con-
tent creators which can be used as indicators of their topical content. These include
biography and website. We utilise this observation, along with the idea of co-training
to bootstrap the process of classifying the topics biographies in Section 4.4. Specif-
ically we build a website classifier, for which we are able to collect labelled data for
and use this to find the predicted topics for all content creators. We then select those
which have been classified with sufficiently high confidence to be used as labelled
data to “train” our biography classifier. The details of this process is provided in
Section 4.4.3.2.

4.4 Topical Dictionary Based Classification of Bi-
ographies

In this section we describe our methods to generate a dictionary, which creates a
mapping from concepts which are extracted from biographies to topics, e.g. the
dictionary might contain an entry mapping the concept Pottery to Ceramics. This
dictionary provides us with a means to extract topical signals from biographies with
high confidence.

4.4.1 Background
Linked Open Data and Our Taxonomy. In our taxonomy we include attributes
of each topic. This includes the the DBPedia page/category which relates to each of
our topics (equivalent to the Wikipedia page/category name) , e.g. the topic Nude
Photography will have the attribute dbpedia as Nude_photography3.

Querying Linked Open Data. This allows us to utilise the power of linked open
data to improve our algorithms, for instance knowing that Nude_photography is a
subject of Category:Nude_photography that has broader categories of Category:Photography
and Category:Nude_art. All of the information derived previously can be directly

3http://dbpedia.org/page/Nude_photography
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SELECT ?subject ?label
WHERE {
cat:Nude_photography skos:broaderOf ?subject .
?subject rdfs:label ?label .
?subject rdf:type skos:Concept .

}

Listing 4.1: SPARQL query to get determine the broader subject of the category
Nude_photography

queried using SPARQL. SPARQL is the most popular query language and protocol
for Linked Open Data on the web or for semantic graph databases. It is also com-
monly refered to as RDF triplestores. Listing 4.1 programmatically demonstrates
the example described above using a SPARQL query.

WordNet and Synonyms. WordNet [50] is a large lexical database of English.
Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive synonyms
(synsets), each expressing a distinct concept [84]. We use the derivationally re-
lated forms property on WordNet to assist in disambiguating text in biographies.
According to WordNet Glossary [79], derivationally related forms are terms in differ-
ent syntactic categories that have the same root form and are semantically related.
We use this feature to normalise terms like “photographer” and “photography” to
the same term “photography”. We found that applying this normalisation we were
able to greatly improve the accuracy of our text models. Additionally we use this
database to acquire synonyms for a word which assists us in the process of building
our concept→ topic dictionary in Section 4.4.3.

4.4.2 Extensions to Related Work

4.4.2.1 Authority Discovery

In order to discover the topic of an authority, Pal et al. [54] extract topics from the
biographies of all of an authorities followers. These topics are then aggregated to-
gether to provide inferred topics with their corresponding probabilities. As discussed
previously, the data overhead of this approach is overwhelmingly large. Particularly
in our work, where content creators usually have a large number of followers, we
would need to collect and processes the followers of many popular accounts. Con-
cretely, the average number of followers in our dataset is 64, 140, with just under
three million content creators we would have to collect, store and process approx-
imately 192, 000, 000, 000 users, which is infeasible with the resources we have. To
extent this idea to improve it’s effectiveness we present the original hypothesis and
present our extension:

Hypothesis 2 (Pal et al. [54]’s Hypothesis). An authority on topic t has a signifi-
cantly higher proportion of followers interested in t.

To present our hypothesis and its expected effectiveness we briefly describe how Pal
et al. [54] utilised their hypothesis to perform the sub-task of estimating the topic
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of an authority. In their work they used named entity detection to extract entities
from biographies which might refer to possible interests and filter the entities using
a white listed category set they curated. This whitelisted set is a pruned list of
top-level Wikipedia categories. With the extracted topics they compute topic fre-
quencies to assign topics to authorities with probabilities. Other than the scalability
problem, we now outline additional issues with this approach and the extensions we
propose to mitigate them.

Issues. In our work, we aim to determine the topics of content creators of all sizes
(5k followers to 20M followers). This presents the possibility of having content cre-
ators who have a small number of followers which are predominantly passive/normal/non-
topical users who’s biographies provide a lot of noise. Our introduction discusses in
great length that these passive users often exhibit “ideal self-presentation”, thereby
providing noisy and unreliable topical signals from followers biographies. Through
preliminary investigation of a sample of smaller content creators we observed that
this approach of aggregation is often inaccurate. An additional observation we make
is that there consistently is a proportion of users which follow a smaller content cre-
ator who are content creators themselves. Furthermore, these followers who are
content creators share very similar topics to the content creator they follow. This
follows from the core hypothesis of this work (Hypothesis 1). We summarise this
issue as noisy topical signals from followers.

Our Extensions. To improve the approach we described above we propose an
extended hypothesis which provides more robust topical signals and hence higher
precision in our components.

Hypothesis 3 (Our Hypothesis - Variation 1). A content creator of topic t has a
significantly higher proportion of followers interested in t who are content creators.

In summary, we aggregate the topical signals extracted from content creators who
follow a content creator in order to infer their topic. We additionally explore the
following hypothesis:

Hypothesis 4 (Our Hypothesis - Variation 2). A content creator of topic t follows
a significantly higher proportion who produce content of topic t content creators.

Our second variation is one which can be used in the same way our first is. We
assess the effectiveness of each hypothesis in the evaluation Section 4.5 by building
various models utilising each hypothesis and evaluating with ground-truth data.

4.4.3 Dictionary Construction
Here we attempt to address the issues described in Section 4.2.4 where concepts
extracted from biographies are often in-accurate and have a large vocabulary. We
tackle these issues with a conservative rule-based dictionary approach similar to
Spasojevic et al. [73] described in Section 2.2.1.3. This includes creating a dictionary
D which maps concepts to topics, i.e. c → t. In order to achieve this we have the
challenge of accurately determining which concepts extracted from a biography can
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be used as a topical indicators. It is worth noting that this mapping is not known
prior to this work, particularly for our custom taxonomy.

4.4.3.1 Automatic Methods using Open Linked Data

As a part of our research we explored the effectiveness of using open linked data (e.g.
DBPedia) to increase the recall of our dictionary, effectively solving the large vocab-
ulary challenge described in Section 4.2.4. Briefly, this challenge surfaces from the
fact that keywords will be linked to concepts in the text which are not a direct match
for the topics in our taxonomy (e.g. a mention of the concept dbpedia:Pottery
refers to the topic dbpedia:Ceramics). In order to assist in the generation of our
dictionary we explored the following:

Synonyms. Multiple concepts relate to the same topic, e.g. in Figure 4.1,
three bios with the same reference to the keyword ceramics links
different concepts. This is as a consequence of the disambigua-
tion processes of the entity linkers we use. We are able to au-
tomatically populate our dictionary with synonyms from exter-
nal databases. In this process we first extract synonyms of a
topic in our taxonomy, for instance the synonyms of “ceram-
ics” are {“pottery”, “pots”, “china”, “terracotta”}. Next we link
the synonyms to concepts, e.g. “pots” = dbpedia:Pottery us-
ing techniques described in Section 4.4.4. Finally we create
a mapping in our dictionary from the concept its topic, e.g.
dbpedia:Pots → Ceramics. It is worth noting that the con-
cept dbpedia:Pots is rarely extracted from biographies, but the
concept dbpedia:Pottery is, so this mapping has a small num-
ber of hits4. We provide a solution to this issue with utilising
semantic relationships.

Semantic
Relationships.

Using relationships in linked open data find concepts which may
(i) find synonyms and (ii) find the topic (subject) of a concept.
The owl:sameAs relationship between concepts assist in (i), for
example dbpedia:Ceramics owl:sameAs dbpedia:Pottery. Ad-
ditionally the relationships dbo:wikiPageDisambiguates and
dbo:wikiPageRedirects assists in solving the dbpedia:Pots is-
sue described above as dbpedia:Pots dbo:wikiPageDisambiguates
dbpedia:Pottery. Finally the skos:broader is useful for (ii).

All mappings extracted from the above methods are added to our dictionary auto-
matically.

Conclusions. Using the methods above we are able to generate a dictionary which
maps concepts to topics that are within our taxonomy. This dictionary is used as
a substitute to poor-precision text classification techniques by utilising linked open
data. Using this dictionary, we are able to extract topics from biographies with
high-precision. After informal manual evaluation we observed that our dictionary
was missing some common concepts which were extracted from the text specific to

4Number of times it is used
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our domain (Instagram biographies). To solve this issue we devised an algorithm to
enhance the dictionary, and improving the frequency it matched concepts extracted
from biographies.

4.4.3.2 Bootstrapping and Enhancing the Dictionary with Self-Training
and Co-training

We propose Algorithm 5 to enhance our concept-topic dictionary with minimal false-
positives. It’s important at this point that we highlight that this approach requires
some human guidance. The reason we were willing to spend human labour is to
ensure that we do not add entries to the dictionary which result in false-positives.
Again, due to the requirements of downstream applications for users and businesses,
we aim to limit the amount of false-positives as much as possible. Our procedure of
enhancing our dictionary can be broken down into the following steps:

1. Co-Training and Self-training. Utilising the ideas in Section 4.3.3 we employ
a co-training and self-training approach to acquire high-precision labelled content
creators from a small amount of initial labelled data inspired by Yang et al. [88]. To
employ co-training we use our website classification pipeline in Section 4.6 to use one
of the independent features of an Instagram profile (website). With these classified
content creators we select those which are labelled with the highest confidence. We
refer to these content creators as pseudo labels. To further gather pseudo labels we
use self-training, whereby the dictionary classifier boostraps itself by continuously
attempting to classify content creators, and adding those labelled content creators
to the pool of pseudo labels. This process is intuitively named self training as the
model gathers labelled data to “train” itself. Concepts are then extracted from high-
confidence labelled content creators’ biographies. Prior to extracting concepts we
pre-process the biographies which involves: removal of links and emails and bigram
extraction as described in Section 2.5.0.1.

2. Concept Aggregation. We now aggregate extracted concepts from all biogra-
phies of content creators in each topic, providing the most frequent concepts for
each topic. To exemplify this, imagine a set of content creators were classified using
the co-training and self-training described above, with concepts C extracted from
the biographies and grouped by frequency i.e. C = {(c1, f1), (c2, f2), ...} with pairs
corresponding to (concept, freq).

3. Concept to Topic Dictionary Construction. Next we hand-extract con-
cepts from C which are indicative of the topic. Using these hand-picked concepts
Ct = {c1, c2,..., ck} we create a mapping from ck ∈ Ct → t.

Example. To demonstrate this process, we took 135 content creators which were
labelled as Ceramics by co-training and self-training and found the concepts in their
biographies. Figure 4.4 shows the most frequent 8 concepts. From this analysis we
manually added a mapping {Ceramic_art, Pottery, Ceramic, Ceramic_engineering} →
Ceramics. The concept Ceramic_engineering is an example of the case we dis-
cussed above where concepts were extracted due to the uniqueness of the text in
biographies. This mapping would not have been found using the automatic tech-
niques of dictionary generation discussed above.
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Algorithm 5 Concept→ Topic Dictionary Construction
Input: Topics T , minimum confidence k and current dictionary D
Output: Enhanced Concept→ Topic dictionary D
D = {}
for topic in T do
Ut ← content creators labelled topic t with minimum confidence k by co-training
and self-training
B ← biographies of all content creators in Ut
Pre-process biographies in B
C ← concepts extracted from B and grouped by frequency
C ← filter(C) Here human annotators pick those concepts which correctly
represent topic
for c in C do
D [topic]← D [topic] ∪ {c}

end for
end for

Figure 4.4: Top concepts found in 135 Ceramic content creators biographies.

4.4.4 Practical Implementation

At this point we have theoretical methods of generating a dictionary mapping con-
cepts to topics. In this section we describe software engineering techniques to create
the components required to practically generate our dictionary.

Redis. From [67], “Redis is an open source (BSD licensed), in-memory data struc-
ture store, used as a database, cache and message broker”. Redis uses key-value
stores to store data with pairs of a key and an associated value. This makes it
particularly useful to hold our dictionary. Notably, our dictionary will be queried
in high-volume so speed is imperative, this makes Redis a much better fit than a
NOSQL document database like MongoDB.

WordNet. To query WordNet, and subsequently get the derivationally related
forms and synonyms we implemented an API in Python. This API uses NLTK [4]
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to query WordNet and Flask5 to serve the endpoints.

Concept Extraction. As described in Section 2.3 we combine multiple entity link-
ers to improve the results of our entity extraction and linking process. Note that
entities are extracted and linked to concepts. Specifically we create a Node.js API
which acts as a facade, wrapping all the entity linkers into a single API endpoint
which we use. Exploiting Node.js’ non-blocking I/O model we are able to efficiently
gather results from all entity linkers asynchronously, making this approach feasible
when requiring high load.

Text Pre-Processing and Feature Extraction. To develop text classifiers in
this section we employ a pre-processing and feature extraction pipeline similar the
one used in our website classification section. For the pre-processing step we first
convert tokens to lower case and run them through a stemmer6. Following the
normalisation steps we remove stop words, punctuation and tokens less than two
characters in length. With the pre-processed tokens we build a Doc2Vec model
which is used to create feature vectors from the text documents.

Final Dictionary Classifier. Our dictionary classifier is deployed to a Node.js
backed Express server which exposes an endpoint which takes a user as an input
and returns the predicted topics. This application handles collecting aggregated
concepts (as described in Section 4.4.2.1) from an efficient Cypher query Listing
4.2. In order to improve efficiency we pre-extract concepts from all content creators
biographies and add them as a property to the corresponding node in Neo4j. Once
we have obtained the concepts from all neighbourhood biographies of a user the
application queries Redis (dictionary) to extract matches to topics. These inferred
topics are grouped based on frequency, i.e. T = {(t1, f1), ..., (tk, fk)} where ti is an
inferred topic and fi is the frequency for which ti was inferred from biographies of
the users neighbourhood.

Determining Topics from Predictions. For evaluation purposes, in Section 4.5
we only attempt to predict one topic for a content creator, under the assumption
that they have one predominant topic of content. Hence in our single-prediction
models for evaluation purposes we take the first leaf-node predicted topic with the
highest probability. In our deployed model and as a part of future work we explore
(and will explore) methods of enabling our dictionary classifier to predict multiple
topics. To achieve this we began experimenting with two methods of inferring topics
from predictions: (i) taking highest weighted probability and (ii) “topic expansion”.
In this work we provided implementations of these methods but more engineering
and research must be undertaken prior to rigorous evaluation. We present the high-
level overview of the approaches here:

(i) Inferring via Probabilities. The probability/confidence of a topic ti is calcu-
lated as Equation 4.3, as the frequency it was extracted divided by the total number
of topics inferred. An important observation is that the biographies of content cre-
ators usually include common topics like fashion and lifestyle, which may lead our

5http://flask.pocoo.org/
6http://www.nltk.org/howto/stem.html
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classifier assigning high probabilities to popular topics for most content creators. To
account for this we discount topics by multiplying the result by a scaling factor δi.
This scaling factor indicates the popularity of topic ti, thereby allowing more niche
topics to be assigned. With these probabilities we return the topics with sufficiently
high probability (≥ ε, determined experimentally).

p(ti|T ) = δi
fi∑

(tj ,fj)∈T fj
(4.3)

(ii) Topic Expansion. Here we aim to use the predicted topic with the highest con-
fidence to determine whether those topics with lower confidence should returned. We
present Algorithm 6 which summarises our implementation of this approach. This
approach essentially adds a topic ti to the final predicted set if ti has sufficiently
high probability in the original predictions and satisfies one of the following condi-
tions: (I) it is sufficiently similar to the topic with highest probability t0 or (II) ti
is beneath t0 in the taxonomy tree. Additionally, inspired by Yang et al. [88] we
use ancestor inclusion: if content creator has topic t, then it should also have topic
t′ if t′ is an ancestor of t in our taxonomy. For example if Nature Photography
is predicted then Photography and Nature will be included in the final set of top-
ics. Note that here we refer to an ontology as opposed to a taxonomy. We aim to
completely convert our taxonomy into an ontology in future work as topics often
have two parents, similar to Nature Photography. For the purposes of research
and exploration we created a smaller ontology with some topics in our taxonomy to
implement the ideas discussed here. To calculate similarity between two topics we
considered two methods:

Concept
Similarity

Topics in our taxonomy have associated DBPedia pages, for in-
stance the Ceramics has metadata associating it to the DBPedia
page dbpedia:Ceramics. This enables us to compute semantic
similarity between these topics (concepts) by utilising information
from external knowledge bases.

Shared
Neighbours

Looking at topic similarity from a different perspective we used a
social graph based approach to calculate similarity. We achieved
this by determining the overlap of content creators in each topic.
Specifically we first created a set of content creators which repre-
sent each topic which we refer to as Nt. This set was created by
expanding each labelled content creator of topic t (in the set Ct) into
its neighbourhood and aggregated all neighbourhoods together to
form Nt, as shown in Equation 4.4. With a set of content creators
for each topic we compute the similarity of two topics as defined in
Equation 4.5.

Nt =
⋃
c∈Ct

neighbours(c) (4.4)

sim(t1, t2) =
N1 ∩N2

N1 ∪N2

(4.5)
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Algorithm 6 Topic Expansion Algorithm
Input: Predicted topics T = {t1, ..., tk}, their corresponding probabilities P =
{p1, ..., pk}, minimum probability εp and minimum topical similarity εs

Output: Final inferred topics T̂ = {t1, ..., tj}
n← len(T )

if n == 0 then
return ∅

end if

t0 ← T [0]
if n == 1 then
return {t0}

end if

T̂ ← {}
i← 1
while pi > εp and sim(t0, ti) > εs and i < n do
T̂ ← T̂ ∪ {ti}
i← i+ 1

end while

T̂ ← T̂ ∪ include-ancestors(T̂ )

return T̂
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MATCH u - [: FOLLOWS] - v RETURN v

Listing 4.2: Efficient Neo4j Cypher query to find all nodes within the node step
neighbourhood of node n

From our initial experiments we found that using the Shared Neighbours approach
to be a more expressive and accurate measure of similarity of topics.

4.5 Quantitative Evaluation

4.5.1 Setup
Ground Truth Dataset. In order to evaluate our methods against those proposed
in previous work, we curated a ground truth dataset of labelled content creators.
Due to the requirement of high-precision we highlight the importance of having
a high-quality ground truth dataset to measure the precision of our models. To
achieve this, we hand-curated the dataset with experts at Filli Studios 7 where we
peer-reviewed each others topical labels for content creators. As this task by nature
is highly time consuming, we limited the topics we would gather content creators
for to a randomly selected 20 topics. We then found 150 content creators for each
of these topics. We believe a dataset of this size will be sufficient to achieve the goal
of comparing our model to previous work and measuring how well we met our goal
of high-precision.

Comparison of Models. In addition to comparing our model to previous work
we use this section to explore variations of hypotheses described in Section 4.4.2.1
to determine which performs best.

4.5.2 Precision and Recall Metrics
To measure whether we satisfied our of high-precision goal for this section, we quan-
tify out results using the following metrics: precision, recall and F1 score. To ensure
for high-precision we employed an abstaining classification approach, whereby our
classifiers would not predict anything if they weren’t sufficiently confident. The met-
rics recall and consequently F1 score do not typically account for missing predictions.
Recall, by definition should measure the models ability to to find all relevant data
points of interest. To do so, we provide a definition of the unmodified equation of
recall when applied to content creator topic classification:

recallt =
TPt

TPt + FNt

(4.6)

where TPt represents the true positives of topic t: those content creators classified as
topic t when their correct topic was indeed t. FNt is the number of false negatives
of topic t: the number of content creators which were labelled as topic t by the

7http://fillistudios.com
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model, but their topic was another. With this definition (as implemented by all
standard libraries like Scikit Learn8), the occasions where a content creator is not
labelled anything are ignored. This largely over-estimates the value of precision. In
our work we use the symbol ⊥ to represent the empty topic. To measure the empty
topic in our metrics we count the number of times a content creator of topic t is
classified as nothing (⊥), this frequency is calculated for each class and represented
by Mt. For instance if 10 content creators of label t were not classified as anything,
then Mt = 10. Furthermore, in this evaluation we use Equation 4.7 as the definition
of recall of a topic t.

recallmt =
TPt

TPt + FNt +Mt

(4.7)

Our measure of precision remains the same as the standard definition where it
intends to measure the proportion of data points the model classifies as relevant
which were actually relevant. Concretely:

precisiont =
TPt

TPt + FPt
(4.8)

where TPt has the same definition as above and FPt signifies false positives of t,
which in this work represents the number of content creators of topic t which are
not labelled by the model as t. With recall and precision we define F1 score which
combines both into one metric by taking the harmonic mean of precision and recall.
It is defined by the following equation:

F t
1 = 2 ∗ precisiont ∗ recall

m
t

precisiont + recallmt
(4.9)

note that we include our definition of recall, thereby taking into consideration the
unclassified content creators. Finally, for all topics we average the precision, recall,
F1 and missed to provide metrics to measure the overall effectiveness of a model:

recallm =
1

|T |
∑
t∈T

recallmt (4.10)

precision =
1

|T |
∑
t∈T

precisiont (4.11)

F1 =
1

|T |
∑
t∈T

F t
1 (4.12)

missed =
1

|T |
∑
t∈T

Mt (4.13)

4.5.2.1 Dictionary Approach Comparisons

Here we present variations of our dictionary model for which we will evaluate in
order to determine which performs the best. Each model is grounded upon a differ-
ent hypothesis, therefore, as a result of comparing the models we determine which
hypothesis is strongest.

8http://scikit-learn.org/stable/index.html
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Baseline Single User
Biographical Dictionary
Classifier (BIO-SIN-DICT)

This method extracts concepts from a content creators
biography and uses the dictionary built in Section 4.4.3
to infer the topics of a user. This model is used as a base-
line as it’s the most simplest and that which is used by
much of related work.

Followers Biographical
Dictionary Classifier
(BIO-AGG-DICT-IN)

This method extracts topics of a single user in the same
way as BIO-SIN-DICT) but does so for all content cre-
ators that follow the content creator U attempting to be
classified. These topics are aggregated to determine the
most likely topic for U . The implementation details are
described in Section 4.4.4. This is built upon Hypothesis
3.

Following Biographical
Dictionary Classifier
(BIO-AGG-DICT-OUT)

This model follows the same approach as BIO-AGG-DICT-IN
except we use Hypothesis 4 by inferring topics from the
biographies which the content creator follows.

Neighbourhood
Biographical Dictionary
Classifier
(BIO-BOTH-DICT-OUT)

To predict the topics of a content creator U , this model
uses the U ’s neighbourhood of content creators, i.e. all
content creators which U is followed by and that U fol-
lows.

4.5.2.2 Results

Baseline. Table 4.3 shows the results from conducting the experiments described
above. Our first observation is that our baseline model BIO-SIN-DICT performs
significantly worse than our best performing model. The low recall is the result
which we expected due to the sparsity of the text in biographies, where the classifier
fails to predict a topic for bios which are empty or have a small amount of text.
Additionally, the low precision verifies our hypothesis that the text in Instagram
biographies is noisy: the classifier isn’t consistently able to find concepts (and con-
sequently topics) in biographies.

Aggregation Methods. In comparison to methods which employ aggregation, we
see that both precision and recall are improved. This is the result we expected as
it mitigates the effects of noise and sparsity by providing more information to the
classifiers.

The Goal of High-Precision. The results for our best model have exceptionally
high precision which verify the success of the steps we undertook to ensure high-
precision was achieved. Additionally, we observe that recall is consistently mediocre,
which is as expected and will be tackled in Chapter 5.

Insights and Conclusions. BIO-AGG-DICT-BOTH which uses the neighbourhood
around a content creator to form inferences appears to have the lowest precision
of the three aggregated models but has the highest recall, indicating larger con-
text provides more opportunity to form inferences but leads to lower precision.
BIO-AGG-DICT-OUT which utilises Hypothesis 4 outperforms BIO-AGG-DICT-IN, which
reflects Hypothesis 3 which provides evidence of the superiority of Hypothesis 4. We
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conclude with this result that the best topical indicator our of those we have studied
is the content creators which a user follows. This important observation leads to
key design decisions in our recommendation system.

Table 4.3: Precision, Recall and F1 score for the dictionary models over a ground-
truth labelled dataset. The recall measured here takes into consideration the empty
topic ⊥ which captures when the model predicts no label.

Model Precision Recall F1

BIO-SIN-DICT 0.82 0.28 0.42

BIO-AGG-DICT-IN 0.89 0.42 0.57

BIO-AGG-DICT-BOTH 0.86 0.59 0.70

BIO-AGG-DICT-OUT 0.92 0.56 0.70

4.5.3 Model Comparison

From the issues described in Section 4.2.3 relating to the text in OSNs, we expect
a traditional text classification approach to be ineffective in this context. To verify
this hypothesis we build two text classifiers in attempt to classify the topical content
of an Instagram account and compare the results to the best model in the previous
section:

Baseline Single User
Biographical Text
Classifier
(BIO-SIN-TEXT).

A classifier is trained with the text of a content creators
biography. The text is passed through a token-level text-
preprocessing and feature generation pipeline described
in 4.4.4. We use this model as the baseline as it is the
simplest and most widely adopted approach.

Followers Biographical
Text Classifier
(BIO-AGG-TEXT-OUT).

As suggested by prior research (Section 4.4.2.1), the ag-
gregation of textual features provides the state-of-the-
art interest inference. To extend the ideas in previous
work, we use the hypothesis that a connection between
content creators is more indicative of homophily than
a connection between normal users. Specifically, to com-
pare this method to ours we aggregate the biographies
of all the content creators which the content creator fol-
lows into a document. This document is then used in the
same way as BIO-SIN-TEXT to generate textual features.

4.5.3.1 Results

Baseline Observations. The results of these experiments are presented in Ta-
ble 4.4. We suspect that the bio text classifier baseline performs worse than than
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BIO-SIN-DICT baseline for the dictionary classifier as the model was only trained
on a small labelled dataset. We highlight this point as the validation for the reasons
we decided to build a dictionary classifier for our final model as opposed to a text
classifier: a dictionary approach performs better than text classification approaches
in domains lacking in labelled data.

Aggregation Observations. With the aggregated approaches the model has more
data to learn how to predict topics, but still performs worse than our dictionary
approach. This again provides evidence for the noisiness of social media text and the
effectiveness of the measures we undertook to ensure high-precision. We believe with
sufficiently large amounts high-quality training data and a carefully selected and fine
tuned text classification pipeline one can achieve good precision with biographical
topic classification, however as we have highlighted before, this approach cannot be
undertaken in this work due to the inability to acquire labelled data.

Table 4.4: Precision, Recall and F1 score for the best performing dictionary model
and bio text classifiers over a ground-truth labelled dataset. The recall measured
here takes into consideration the empty topic ⊥ which captures when the model
predicts no label.

Model Precision Recall F1

BIO-SIN-TEXT 0.43 0.28 0.34

BIO-SIN-DICT 0.82 0.28 0.42

BIO-AGG-TEXT-OUT 0.62 0.31 0.41

BIO-AGG-DICT-OUT 0.92 0.56 0.70

4.6 Website Classification

In this section we present the development and evaluation of of a multi-label website
classifier. Our method combines website classification with those similar to Kinsella
et al. [38], where API endpoints are exploited to accurately extract the topical con-
tent of the page, for instance querying the Amazon Product API to determine the
category of a book linked by an author. We extend their approaches by utilising ex-
ternal API’s to a larger extend and provide state-of-the art classification techniques
to predict topics over our custom taxonomy. Our website classification pipeline is
outlined in Figure 4.5. In this figure we show the usage of a whitelisted map and
blacklist of urls. The blacklist is list of popular websites which provide high false-
positive rate or those which are not relevant, e.g. links to Paypal. We also create a
whitelisted map, containing entries of the form (host, topic), if the url has a host in
the whitelisted map, then it’s corresponding topic is returned. The whitelisted map
is used when a host has a specific topic but the content on it’s page provides no
additional information, e.g. 21buttons.com refers to a fashion website but provides
no information about the type of fashion.
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Figure 4.5: Webpage Classification Pipeline

4.6.1 Related Work

User Interest Identification through Hyperlink Extraction. Kinsella et al.
[38] showed that a fruitful attempt to enrich a user interest profile exploits related
metadata from hyperlinks to external websites, such as Youtube videos, news ar-
ticles and Amazon products. Kinsella et al. [38] showed that the use metadata
from hyperlinked documents improves topic classification on forums and Twitter.
In order to compare the effectiveness of metadata sources they constructed several
features from text, for which they would compare the results from classifiers using
each feature. Some feature extraction methods discussed: 1. Content (without
URLs): original post with hyperlinks removed, 2. HTML: text parsed from linked
documents and 3. Metadata: external meta data retrieved from the hyperlinks of
the post. Metadata is extracted using the API of the website linked (if applicable).
For example, requesting the Youtubue Videos API 9 for the Ted talk video titled
Do schools kill creativity? | Sir Ken Robinson returns the category Education and
tags include TED, Talks, creativity and schooling. Metadata can be extracted
from hyperlinks using domain tagging services. OpenDNS, a crowdsorucing plat-
form provides this service, whereby a community tag domains with category and
vote for their correctness, eventually converging to an accurate tag. As an illustra-
tion, nintendo.com is tagged as Games 10.

Discussion. Clearly exploiting hyperlinks would improve the performance when

9https://developers.google.com/youtube/v3/docs/videos/list
10https://domain.opendns.com/nintendo.com
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inferring topics of Instagram users, where this method provides the most rich and
relevant metatdata when the websites linked provide APIs. This method is less
effective on Instagram as it only allows users to post hyperlinks to their biography
and/or website11, as opposed to the captions of their photos. This restricts the
amount of hyperlinked metadata that can be extracted from an individuals profile.
Fortunately, most users provide hyperlinks in their website field referring to their
work/hobbies. This often manifests in the form of their other social media accounts
(most often Youtube channels) and personal websites. In our work we take inspi-
ration from Kinsella et al. [38] by utilising API endpoints but do not concatenate
the metadata of webpage in the same way they do. Instead we train two separate
classifiers: one on the webpage metadata and the other on the text in the profiles
biography. As discussed previously, this is to meet our aim of high-precision topic
classification via an ensemble classification approach.

4.6.2 An analysis of hyperlinks on Instagram

Intuitively, we should expect that the hyperlinks used by content creators should
be consistent with their topics of content. Additionally we expect that there are
types of hyperlinks which occur more frequently than others, for instance links to
Youtube. To explore these hypothesise we randomly sampled 8k content creators
who have the website field populated on their profile and performed the following
analysis:

• Hosts Aggregation Analysis. We mapped the hyperlinks to the host of
urls of the form scheme://host:port/path?query. For instance the url https:
//www.etsy.com/shop/cwpoet?ref=search_shop_redirect gets mapped to
etsy.com (with “www.” removed). The purpose of this analysis is to deter-
mine if there are any common hosts which are used that we can create a
high-precision classification components for. An API driven high-precision
classification component is a module of the pipeline whereby it takes a url
of a specific domain (e.g. Spotify) and attempts to extract topics from the
API endpoint associated with the domain. Additionally a component handles
determining whether the topic is an accurate signal for the content creator,
this process is described below under Section 4.6.3.

• Per Host Analysis. Once frequent hosts are determined we manually explore
each to determine what information we can extract from the host. For instance
we create graphs like those in Figure 4.6, which allow us to decide on which
types of links will provide the most accurate topical signals. For instance
we ignore those Spotify links which are to a users Spotify (Figure 4.6b) as
the content creator is likely just sharing their Spotify account, as opposed to
providing a signal that they are a music artist. This is an important step in
our pipeline to ensure high-precision as these common API links occur very
frequently (Figure 4.5).

11Users are able to enter a hyperlink which is displayed publicly displayed on their profile as
their “website”.
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Table 4.5: Top 15 hosts which appear in a sample of 8k content creators.

Host Frequency

youtube.com 1165

facebook.com 362

instagram.com 132

linktr.ee 130

twitter.com 92

soundcloud.com 70

app.21buttons.com 66

vimeo.com 58

smarturl.it 48

amazon.com 46

itunes.apple.com 41

open.spotify.com 37

21buttons.com 36

etsy.com 35

gofundme.com 31

4.6.3 Determining Accurate Hyperlink Signals on Instagram

Through exploring the structure of urls we are able to find those which are most
likely to have content aligned with the content creators topic. For instance, a con-
tent creator may provide a link to Spotify of the structure https://open.spotify.
com/track/XXX or https://open.spotify.com/artist/XXX. We can deduce that
the latter is likely to be an artist, whereas the former may be a content creator of
another content type posting a track the are fond of. Utilising this observation we
are able to query the Spotify API to determine the genre of the artist link, which can
be used as the topic of the content creator with high-confidence. In conclusion, we
explore various common websites and their url structures in order to generate a set
of sub-classifiers for specific websites which we can exploit urls for high-confidence
topical labels. Through this process we selected 100 hosts for which we are able to
extract accurate topical signals from using a per-host topic extraction module.

Insights

• Only 4% of a random sample of 529934 content creators do not have a website
linked to their Instagram profile.

• Our of a random sample of 500 content creators, 96% of them have websites
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(a) Types of iTunes links. (b) Types of Spotify links.

Figure 4.6: The most common types of links that are used by content creators
within specific hosts. For example, the link type “Podcast” refers to a link with the
following form: https://itunes.apple.com/gb/podcast/{podcast-name}/{id}.

relevant to their topic of content. This statistic was arrived at by enumerating
the 500 users by hand to determine whether their website is relevant.

• Sparsity of Instagram biographies can be tackled by aggregating information
from links to other social media sites like Youtube, Facebook and Twitter. For
example Youtube and Twitter both offer biographies which we are able to use
in conjunction with the Instagram bio.

4.6.4 Automatic Labelled Data Collection

Demand for Labelled Data. We use a convolutional neural network to capture
the complexity of our data. These complexities lie in our high-dimensional embed-
dings and in the nuances in differentiating between similar topics. For instance,
being able to differentiate between a Fashion Photographer and Fashion Designer.
These models large amount of labelled data in order to capture the complex relations.

RelatedWork & Approaches. Typically one would use publicly available datasets
to train a website classifier (e.g. DMOZ 12). However due to our custom taxonomy,
we are faced with a unique challenge of collecting labelled data accross niche cat-
egories. Note that in future work we will explore the use of public datasets (e.g.
DMOS) to provide labels for some relevant topics.

Utilising Pinterest. To tackle this problem we utilise data collected from Pinter-
est13. Pinterest is of particular interest to us as it allows users to search for Pins
with generic queries like Handcrafted Jewelry. A Pin is a visual bookmark contain-
ing a title, description, a link, and an image or a video [19]. Fortunately, the title
and description of a pin are often the metadata from the link the pin is referring to;
exactly the features which we use in classifying websites in content creators hyper-
links. This allowed us to collect labelled urls (and their metadata) for each topic in
our taxonomy. This process of labelled data collection is summarised in Algorithm
7.

12http://dmoz-odp.org
13http://pinterest.co.uk/
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Algorithm 7 A module to collect labelled urls (webpages) for each topic in our
taxonomy
Input: Topics T
Output: Labelled urls U
U ← {}
for topic in T do
Pt ← all pins from querying Pinterest for topic
for p ∈ Pt do
u← url in p
t← title of p
d← description of p
U ← U ∪ {(u, t, d)}

end for
end for

4.6.5 Webpage Feature Extraction
The textual features of a webpage that we use include the title and description
metadata tags. The reason we decided to only use these is to reduce the complexity
of this stage, in order to reach a proof-of-concept. Additionally, this metadata
is provided by Pinterest for each pin, so this eliminates the need for us to make
a request to each website to gather this information, reducing the computational
overhead of this stage. We explore various other methods of feature extraction in
future work (Section 4.10.4).

4.7 Design Choices

Once the classifier has been built we are able to predict the topic of a website given
its description and title metadata. In our website/webpage classification pipeline
(Figure 4.5) we first attempt to classify the website by using APIs as they give the
most reliable and fine grained topical signals, e.g. an artists Spotfiy page will tell
us confidently their music genre but his biography is unlikely to do so. In the cases
where the website doesn’t fall into our website API classification module we use
the text classification model in this section. At this point we make an important
observation which we made during our exploration process: the text from websites
provide a significant noise, this observation is verified in our evaluation (Section
4.8.4). We mitigate this issue in the same way we did for the dictionary classifier,
by utilising Hypothesis 4. This leads to our first design choice for this module:

Design Choice 1. To predict the topic of a content creator U utilise the websites
of the content creators that U follows.

Aggregation Techniques. Having made the above design choice we must design
the best means to use this extra information to improve the precision of our pre-
dictions. Initially we considered combining the feature vectors extracted from the
websites of all the content creators into one feature space. This could be achieved
by (i) averaging the document vectors or (ii) simply augmenting the features, i.e.
stacking them on top of each other. These methods have some significant draw-
backs. Firstly, in (i), by averaging the document vectors we would loose a significant
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amount of semantic information (which document vectors were built to preserve!).
Secondly, augmenting features in (ii) would result in an inconsistent feature space
due to the varying number of neighbours a content creator has, we could consider
capping the feature size with padding and trimming techniques, but we would not
capture a significant amount of important data. From this reasoning we decide that
it is not justifiable to combine feature vectors. To this end, we make our second
design choice:

Design Choice 2. Aggregate the noisy predictions from all websites via weighted
majority voting. Specifically, we predict the topics of the websites of all content
creators which a content creator U follows in a parallel manner. Furthermore, we
calculate the probability of U being assigned a topic t based on the frequency of which
the topic was predicted. When a users website is classified, we store it in a cache to
reduce latency by reducing repeated computations.

To evaluate the effectiveness of our design choices in this section we compare models
that make topic predictions by (i) using only a content creators website and (ii) by
using the websites of all content creators the content creators follows. The results
from this comparison can be found in Section 4.8.4.

4.8 Convolutional Neural Networks for Webpage
Classification

The goal of this module of our topic inference pipeline is to (i) automatically collect
labelled data for each topic in our taxonomy and use the labelled data to (ii) train
a custom designed a website classifier that uses both API endpoints and a one-
dimensional convolutional neural network (1D CNN) based on modern NLP pre-
processing and feature extraction. It is worth noting that the CNN also acts as a
feature-extracting architecture (described below). To provide a detailed report on
the process of building and optimising our 1D CNN and feature extraction would
be excessive to include in this writeup as it is not the focus of the ideas we aim to
convey in this work. To this end, we provide a high-level overview of our techniques
and results on building our website classification pipeline. Additionally, we provide
details our practical implementation interwoven through this section as opposed to
describing the libraries and software engineering in a separate part of this writeup.

4.8.1 Convolutional Neural Networks for Text Classification

CNN’s Effectiveness in Text Classification. Typically the most common and
particularly successful text classification approach involves word embeddings to rep-
resent words and Convolutional Neural Networks (CNN) for classifying documents.
Goldberg [29] describe that the non-linearity of the neural network in addition to
the high-quality, easy to integrate pre-trained word embeddings “often leads to su-
perior classification accuracy”. Additionally, Goldberg [29] extends his discussion by
describing that neural networks with convolutional and pooling layers word particu-
larly well in document classification. This is because they are excellent at extracting
salient features (tokens or sequences of tokens) regardless of where they appear in
the document. Intuitively, being able to learn what sequences of tokens (words) are
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good indicators of a topic, independent of their ordering is incredibly powerful.

CNNs Introduction. First we define a convolution in this context as applying
sliding window function to a matrix. Now, CNNs can be seen as several layers of
convolutions with nonlinear activation functions like ReLU or tanh applied to the
results. We refer to a fully-connected layer as a reference to a typical feed-forward
neural network layer which connects each input neuron to the output neuron in the
next layer. CNNs use convolutions over the input layer as opposed to considering
each neuron at a time, this convolution creates the input for the next layer. Pool-
ing14 is often applied in between the convolution layers to reduce the dimensions of
the features. The last layer of a CNN is always a fully connected layer which acts
as a classifier with its inputs as the high-level features learnt from the convolutional
layers.

CNNs for NLP Tasks. Sliding windows are typically applied to a matrix of image
pixels for vision tasks. The input to our task (NLP) text classification are sentences
or documents represented as a matrix. Each row of the matrix corresponds to one
token (usually word), which is represented by the word embedding using a model
like word2vec15 and GloVe16. For example, the convolution can slide over windows
containing 3 tokens (words) at a time.

4.8.2 Tooling, Text-Preprocessing and Feature Extraction

Pre-Processing. We begin in a Jupyter Notebook which provided a means for
fast data exploration. Using libraries including NLTK17, Gensim18 we were able to
convert our noisy and diverse text into consistent and clean features. During pre-
processing we followed a standard pipeline whereby we removed punctuation, stop
words19 and words with less than 2 characters.

Feature Extraction and Vectorisation. It is often recommended that pre-
trained word vector models (for instance GloVe) should be used when the amount of
data available is small. However due to our specific domain, whereby our vocabulary
is sufficiently different to that of the pre-trained models. We suspect that we would
have many out of vocabulary words, which are given the same word vector values and
hence not capturing all the available information in our documents. Furthermore,
limiting the amount of out-of-vocabulary words will greatly improve the accuracy
of our models. In conclusion we build our own word vector models using the text
collected in Section 4.6.4. We refrain from the details of how we built and evaluated
this model as it is not the focus of this work. It is worth noting that research on
dealing with out of vocabulary words is an active area [16, 33, 61], which we aim to
explore in future work.

14http://ufldl.stanford.edu/tutorial/supervised/Pooling/
15https://code.google.com/archive/p/word2vec/
16https://nlp.stanford.edu/projects/glove/
17https://www.nltk.org/
18https://radimrehurek.com/gensim/
19Stop words are commonly used words, such as “the”

77

http://ufldl.stanford.edu/tutorial/supervised/Pooling/
https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://www.nltk.org/
https://radimrehurek.com/gensim/


4.8.3 Convolutional Neural Network Architecture

In order to utilise the benefits of CNNs for text classification described in this sec-
tion we use a 1D CNN built in Keras20 with Theano21 as the backend. We perform
an analysis on our document size and decide on a 5000-word sequence size as the
maximum. Those documents which contain more words are truncated, and those
with less words are padded with zeros. Given that our word embeddings model
has a vocabulary of 100, the input to our CNN should be of dimension 5000× 100.
Keras CNN’s take an embedding matrix to convert a sequence of tokens (document)
into an embedding. We utilise this to provide a means of converting our documents
into features which are compatible with CNNs. Algorithm 8 describes our method
creating the embedding matrix (similar to that described in an article by Keras [11]).

Algorithm 8 Embedding matrix calculation to be used to convert text documents
into features compatible with a CNN.
Input: Word to index mapW withWlen and word embeddings E of dimension Edim
Output: Embedding MatrixM of dimension Edim x Wlen

InitialiseM with dimension Edim x Wlen as all zeros
for (word, i) in W do
if word in vocab of E then
M← E [i]

end if
end for

4.8.4 Evaluation

4.8.4.1 Setup

To evaluate our website classifier we undergo two approaches: (i) evaluate on held-
out test set of labelled websites acquired through Pinterest data collection and (ii)
hand-curated ground truth dataset of labelled content creators as described in Sec-
tion 4.5. The purpose of including (ii) as well as (i) is to assess how well the websites
on Pinterest generalise to those on Instagram.

Metrics. We use the same metrics as the evaluation of our dictionary classifier:
precision, recall (modified to include the empty topic ⊥) and F1, with a particular
focus on precision as it is the requirement of this component to achieve high precision.

Comparisons. Here we present variations of our website model for which we will
evaluate in order to determine the that which performs the best. From the results in
Section 4.5, we concluded that the best aggregation model was by using the content
creators a user follows. Hence we build an aggregated model by combining the
predictions for all the content creators that a content creator C follows in order to
infer C’s topic.

20https://keras.io/
21http://www.deeplearning.net/software/theano/
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Baseline Single User
Website Classifier
(WEB-SIN)

This model uses the content creators website to infer a
topic. This model is used as a baseline as it is the most
simplest and that which is used by much of related work
(only using local features).

Website Classifier on Held
Out Data
(WEB-TEST-DATA)

This represents the results from evaluating out website
classifier on a held-out (30%) dataset of labelled websites
collected from Pinterest.

Followers Website
Classifier (WEB-AGG-OUT)

This method extracts topics of a single user in the same
way as WEB-SIN) but does so for all content creators that
content creator U follows. These topics are aggregated
to determine the most likely topic for U . This is built
upon Hypothesis 4 and the fact that results in Section
4.5 show that this hypothesis is the best performing.

4.8.4.2 Results

Table 4.6: Precision, Recall and F1 score for the website classifier models over a
dataset of 100 topics collected from Pinterest. The recall measured here takes into
consideration the empty topic ⊥ which captures when the model predicts no label.

Model Precision Recall F1

WEB-TEST-DATA 0.88 0.72 0.792

WEB-SIN 0.50 0.34 0.41

WEB-AGG-OUT 0.82 0.66 0.73

BIO-AGG-DICT-OUT 0.92 0.56 0.70

Aggregation Model. Again we observe in Table 4.6 the non-aggregated classifier
performs significantly worse than the aggregated one due to noise and sparsity issues
due to issues with the title and description metadata of the websites.

Pinterest data VS Instagram data. When evaluating our model against our
labelled content creators dataset we get similar performance to that of the held-out
pinterest data. This indicates that our hypothesis that hyperlinks in Pinterest pins
are similar to those on content creators profiles.

Website vs Dict Model. When comparing our best performing website classi-
fication model to the our best performing bio classification model we observe that
the bio model performs better. We believe this is due to the following reasons: (i)
a simple webpage feature extraction module and (ii) lack of diverse training data.
We combat these issues in future work by using more sophisticated feature extrac-
tion methods (Section 4.10.4) and other means of labelled data acquisition (Section
4.10.5).

79



4.9 Final Ensemble Model Evaluation

High-Precision Requirement. To the end of achieving this components goal of
high-precision we combine the classifiers built in previous sections in the form of
a hard voting ensemble. Concretely, we only classify a content creator as a topic
in this component if both the topics predicted using the website classifier and bio
dictionary classifier agree.

Comparison Models. For comparison models we use the individual classifiers
separately. Additionally we create a variation on the ensemble model which predicts
the topic that has the highest probability after averaging the probability from each
model. We use these comparisons to find the model which produces results with
precision as close to 1 as possible.

Metrics and Dataset. We use the same metrics for those used when evaluating
our website classifier and bio dictionary classifier: precision, recall and F1 score.
Similarly, we use the same hand-curated dataset of labelled content creators to
evaluate our models on.

4.9.1 Results

The results in Table 4.7 shows that ensemble model successfully achieves our goal
of high precision, improving on the stand alone classifiers BIO-AGG-DICT-OUT and
WEB-AGG-OUT by at least 0.07 precision. We notice a drop in recall which we expected
and sacrifice in order to ensure our the topical seeds provided to our label spreading
algorithms are of high quality. From manual exploration we found that this model
does not achieve a precision of 1 due to some content creators who are poorly
connected and have sparse biographies, i.e. those who follow few other content
creators or have content creators in their neighbourhood with sparse biographies.
This can be mitigated by abstaining to classify those poorly connected content
creators.

Table 4.7: Precision, Recall and F1 score for the ensemble classifier model over a
dataset of hand labelled content creators in 20 topics. The recall measured here
takes into consideration the empty topic ⊥ which captures when the model predicts
no label.

Model Precision Recall F1

BIO-SIN-TEXT 0.43 0.28 0.34

WEB-AGG-OUT 0.82 0.66 0.73

BIO-AGG-DICT-OUT 0.92 0.56 0.70

ENSEMBLE 0.99 0.43 0.60
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4.10 Future Work

4.10.1 Other Topical Signals
In this component we used three features of an Instagram account to extract topical
signals: the biography, website and their social connections to other content creators.
To increase both recall and precision we will explore extracting other topical signals
from an Instagram account, these include: emojis, captions, images/videos, likes
and comments.

4.10.2 Multi-Stage Topic Inference
The examples under the topical signals come from the same user i.e. the first is
an illustrator for a children’s book. In the typical examples, both the biography
and the website’s metadata indicate that the most precise user’s topical signal is
Illustration. Additionally, the extracted topic Editorial Illustration can be
further inferred with higher confidence as it is a sub-category of the extracted topic
Illustration in the taxonomy. This multi-stage propagation of topics is left to
further work.

4.10.3 Out of Vocabulary Word Embeddings
It is often recommended that pre-trained word vector models (for instance GloVe)
should be used when the amount of data available is small. However due to our
specific domain, whereby our vocabulary is sufficiently different to that of the pre-
trained models. We suspect that we would have many out of vocabulary words,
which are given the same word vector values and hence not capturing all the avail-
able information in our documents. Furthermore, limiting the amount of out-of-
vocabulary words will greatly improve the accuracy of our models. In conclusion we
build our own word vector models using the text collected in Section 6. We refrain
from the details of how we built and evaluated this model as it is not the focus of
this work. It is worth noting that research on dealing with out of vocabulary words
is an active area [16, 33, 61], which we aim to explore in future work.

4.10.4 Webpage Feature Extraction
With the aim of improving the performance of our website classifier we will explore
new methods of webpage feature extraction to provide more complex and rich fea-
tures to our models. This may include using the content on the page, e.g. the text
in important heading tags (H1, H2). We aim to explore methods like [56, 72].

4.10.5 Labelled Website Data Collection
In order to improve the results of of CNN website classifier we aim to continue to
devise new methods of collecting labelled data. One such method includes using
Google to acquire large quantities of labelled data automatically. We outline the
approach we have explored and tend to implement formally:

• Determine popular Google keywords associated with each topic
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• Search for the associated keywords in Google and collect the top n results for
each topic.

• Download the HTML content for each page and store (HTML, Topic) in
database

All (HTML, Topic) pairs can then be processed and used as labelled data for our
machine learning models.
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Label Spreading 5
5.1 Introduction

Objectives. At this point we have collected a small set of high-quality labelled
content creators using our High-Precision Topic Inference Pipeline. As shown in
the evaluation section, this pipeline achieved high-precision but was unsuccessful in
labelling a large enough proportion of the content creators (low recall). This sec-
tion aims to spread the labels from these initial content creators with graph based
semi-supervised learning (GB-SSL) algorithms, utilising strong hypotheses about the
structure of our data, thereby achieving high-recall whilst retaining high-precision.

Semi-Supervised Learning (SSL). Semi-supervised learning is a class of super-
vised learning which make use of unlabelled data in training. In a SSL problem,
the data X (n = X) can be divided into two sets of points XL = {x1, ..., xl} and
XU = {x1, ..., xu}. Where XL have a corresponding label set Yl = {y1, ..., yl} and
the set of labels YU for XU are unknown, yi ∈ C for a predefined set of classes C.
Also n = l+u and typically l� u. The goal of a SSL algorithm is to use the labelled
data and relations between labelled and unlabelled data to estimate the labels YU.

Graph Based Semi-Supervised Learning (GB-SSL). GB-SSL methods are
similar to standard SSL methods whereby they utilise unlabelled and labelled data
but where the data is represented by a graph, with a node for each labelled and unla-
belled example. The graph is usually constructed using standard domain knowledge
e.g. U1 follows U2, or defining a similarity metric e.g. U1 and U2 have N likes in
common.

Labelling on Instagram. GB-SSL algorithms are very suitable to be applied to
the propagation of interests on Instagram. This is because (i) it is difficult to col-
lect accurate labels on Instagram, hence only a small proportion of users can be
labelled and (ii) the connections between Instagram users (specifically content cre-
ators) can be formed into a high quality graph (discussed in Section 5.1.3) describing
relationships between labelled and unlabelled users.

5.1.1 Assumptions

In comparison to supervised learning (SL) there are certain assumptions which,
when held, are utilised by SSL algorithms that use the unlabelled data improve
performance on SL algorithms. It might happen that using the unlabelled data
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degrades the prediction accuracy by misguiding the inference, which occurs when
assumptions are not met. Later we discuss in what ways these assumptions are
considered in related literature and how with some reasoning and observations of
connections between content creators, they can utilised to improve on past interest
analysis literature. We now provide an overview of the assumptions these algorithms
are grounded upon and how we can satisfy them maximally in our context.

The Continuity/Smoothness Assumption. If two points xi and xj are close,
then the should share the same label or have similar labels yi and yj.

Assumption 5.1.1 (Semi-Supervised Continuity Assumption). If two points xi and
xj in a high-density region are close, then they should share the same label or have
similar labels yi and yj.

The Cluster Assumption. If new points which have the same or similar labels
form clusters we could use unlabelled data to find the boundary of each cluster more
accurately.

Assumption 5.1.2 (Cluster Assumption). The data tend to form discrete clusters,
and points in the same cluster are more likely to share a label.

5.1.2 Content Creators and Influencers
Up to now, we have defined content creators on Instagram as those users producing
high-quality content in a specific topic. From a different perspective, they can be
seen intuitively as social influencers, whereby they have a (large) audience for whom
they are able to persuade by virtue of their authenticity and reach. In this section,
we consider Instagram influencers and Instagram content creators as synonyms.

5.1.3 Homophily vs Influence
Here we discuss how the above assumptions apply in the context of Instagram in
order to apply GB-SSL algorithms within Instagram. By reviewing how different
literature has attempted to satisfy the assumptions and through social science the-
ory we will establish a design decision which will be conducive to highly accurate
GB-SSL algorithms. To start we outline prerequisite definitions.

Homophily is the property also known as "birds of a feather flock together", which
describes that people who share similar attributes group together. These attributes
include interests, age, gender and geographical location. This principle has been
studied in the context of social networks extensively [45], establishing that similarity
breeds connection. Let U1 and U2 be individuals, then Homophily states that:

SimilarAttribtes(U1, U2)→ Connected(U1, U2) (5.1)

where SimilarAttribtes(U1, U2) is a binary function which is interpreted as U1 and
U2 have similar attributes.

Social Influence can occur when one’s emotions, opinions, or behaviours are af-
fected by others. Within the context of Instagram, we argue that a user in the large
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majority of cases, follow an influencer who they do not know if they are interested
in the topic of the influencers content. For example, someone would only follow a
graphics designer that they didn’t know if they were interested in graphics design.
Additionally, influence3rs commonly only follow a select few users. From observa-
tions of influencers we have observed that in most cases they follow a small carefully
selected number of other users which are highly indicative of their interests and/or
content they upload, e.g. graphics design influencers tend to follow other graphics
design influencers. We reason this is most likely because they often do not follow
friends/family members and use Instagram as a creative platform, hence seek for
inspiration related to their creative expertise. More concretely, this phenomenon
can be summarised as follows: let I be an social influencer and U be another user,
then:

Assumption 5.1.3. Influences(I, U)→ InterestedInContent(U, I)

where InterestedInContent(U1, U2) is a binary function which reads U1 is interested
in the content of U2 and a stronger assumption about influencers:

Assumption 5.1.4. Influences(I, U) ∧ isInfluencer(U)→ SimilarInterests(I, U)

where SimilarInterests(U1, U2) is a binary function which is interpreted as U1 and
U2 have similar interests.

Application of Homophily to Instagram. It has is been proposed previously
that GB-SSL algorithms like label spreading are used to propagate labels across a
graph of connected user nodes through the following relation. As discussed above,
these algorithms only perform well when specific assumptions are satisfied. In the
context of OSNs, Assumptions 5.1.2 and 5.1.1 have commonly been accepted to hold
with a belief that the principle of Homophily is a sufficient justification. However,
Homophily provides an implication in the reverse direction to what Assumption 5.1.2
requires. More specifically, the common mis-interpretation [80, 86] of Homphily
amongst literature is that:

Assumption 5.1.5. Connected(U1, U2)→ SimilarInterests(U1, U2)

We reason, from intuition and experience that:

Assumption 5.1.6. Within popular OSN, users are less often connecting with peo-
ple with shared interest and more so with friends and family.

Under Assumption 5.1.6, people who are connected do not necessarily share similar
interests because they are simply using the platform as a social means to commu-
nicate with their friends and family. Therefore, both the robustness of Assumption
5.1.5, and consequentially the performance of GB-SSL algorithms which utilise it
degrade. From these observations, we form the design choice:

Design Choice 3. For GB-SSL algorithms to produce the best results, assumptions
5.1.2 and 5.1.1 have to hold as strongly as possible. In order to achieve this, we will
use only a graph of influencers, where connections are described by the “following”
relation. This leads from from assumption 5.1.4, concluding that influencers would
mostly be inclined to follow one another if they were interested in each-others content
(e.g. golf influencers mostly follow other golf influencers). This produces a high
quality graph based on strong assumptions.
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To further validate Design Choice 3, imagine a GB-SSL algorithm is applied to the
whole user graph: normal users follow family and friends, which forces the algorithm
to propagate interest topic labels amongst friends and family. Clearly this is not
often the case, especially in terms of creative interests, hence the algorithm would
have propagated labels incorrectly.

Exploiting Influencers to Determine Interests. From assumption 5.1.6 and
equation 5.1.3, it is possible to conclude that a users interests are defined most
accurately by not the users they follow but by the influencers they follow. To re-
iterate, in most cases, users follow influencers (content creators) because they are
interested in the influencers topical content. Hence this leads to:

Design Choice 4. Once the label spreading has completed on the influencer graph,
one can infer the interests of a normal user by grouping the topic labels of the
influencer the user follows. This insight is utilised in in our recommendation system,
for example U follows influencers who’s labels are nature photography, landscape
photography, fitness and calisthenics. we would infer that U ’s interests are a
combination of the labels.

We now move onto discussing more formally, algorithms to perform label propaga-
tion across the graph of influencers.

5.1.4 Types of Semi-Supervised Learning

Given a set of l examples x1, . . . , xl ∈ X with corresponding labels y1, . . . , yl ∈ Y
and u unlabelled examples xl+1, . . . , xl+u ∈ X:

Definition 2 (Transductive Learning). The goal of transductive learning is to infer
the labels for the given unlabelled data xl+1, . . . , xl+u.

Definition 3 (Inductive Learning). The goal of inductive learning is to infer the
function f : X→ Y, which can be used to predict the labels of a new x.

Transductive learning cannot predict the labels of new data after training, to over-
come this, a variety of methods can be used. For instance, a K-Nearest Neighbours
approach takes a new x, and infers its label as a combination of the labels of its
neighbours in the graph. This will be explored further during the implementation
stages.

5.1.5 Graph Construction

Graphs provide a representation of verticies and relationships between them. Here
we will define two types of graphs, binary and weighted.

Definition 4 (Binary Graph). Let G = G(V,E) be an undirected graph with edges
E and vertices V and adjacency matrix A ∈ {0, 1}|V |×|V | where

Aij =

{
1 if (i, j) ∈ E
0 otherwise
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Definition 5 (Weighted Graph). Let G = G(V,E) be an undirected graph with
edges E and vertices V and adjacency matrix A ∈ R|V |×|V | where.

Aij = w(i, j)

for some weight function w which defines how similar nodes i, j are. The weights are
usually constructed as a symmetric affinity matrixW ∈ |V |×|V | where wij = w(i, j).

5.1.6 Hard Clamping Label Propagation

Zhu and Ghahramani [92] provide a popular label propagation algorithm where
node’s labels are propagated to neighbouring nodes according to some distance func-
tion dij defining the distance between nodes i and j. It also ensures the original
labels are clamped at each iteration, which act as stable sources that propagate
labels through unlabelled nodes.

Preliminary Notation. Let the labelled data {(x1, y1), ..., (xl, yl)} be in the
form (feature, label) for y ∈ C where C is the set of predefined labels. Also let
the unlabelled data (features) be denoted as XU = {xl+1, ..., xx+u}, where l � u
and n = l + u. In this setup, similarity between nodes will be represented by the
Gaussian kernel function.

Probabilistic Transition Matrix. Now the weights between nodes has been
established, it is possible to define a probabilistic transition matrix. This matrix
P ∈ Rn×n which encodes Tij as the probability to jump from node u to j:

Pij = P (i→ j) =
wij∑n
k=1wik

(5.2)

Let Y ∈ [0, 1]n×C where a row is interpreted as the probability distribution over
labels for a node. Additionally, we defined YU be as a u × C matrix and YL as a
l×C matrix which represent the labels of nodes in the unlabelled and labelled sets
respectively.

The Algorithm Zhu and Ghahramani [92] describes the algorithm is as follows:

1. Propagate Y ← PY
2. Row-normalise Y
3. Clamp the labelled data. Repeat from step 1 until Y converges.

In Algorithm 9, line 5 propagates labels using probability distribution matrix defined
in Equation 5.2 and normalises Y . This essentially spreads labels along the local
structure. The normalisation ensures that the rows of Y represent a distribution
over classes. Line 6 ensures initial labels are preserved.

Fixed Point Solution. The algorithm was proved in the original paper to converge.
It was also shown to have a fixed point solution. Let P̄ij = Pij/

∑
k Pik, i.e. the row

normalised matrix of P , YL be the l×C matrix formed by the top l rows of Y (the
labelled data) and YU be the uu× C matrix of the remaining u rows. Finally, split
T̄ after the l-th row and l-th column into 4 sub matrices
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Algorithm 9 Label Propagation algorithm proposed in [92]
Input: Affinity matrix W
Output: Label Probability Matrix Ŷ
1: Compute diagonal degree matrix D by Dii ←

∑
jWij

2: Initialise Ŷ (0) ← (y1, ..., yl, 0, 0, ..., 0)
3: Compute probabilistic transition matrix P ← D−1W
4: Iterate

5: Ŷ (t+1) ← PŶ (t)

6: Ŷ (t+1)
l ← Y

(0)
l

7: until convergence

T̄ =

 T̄ll T̄lu

T̄ul T̄uu

 (5.3)

Now from the proof in [92], the fixed point equation to determine the labels YU is

YU = (I − T̄uu)−1T̄ulYL (5.4)

Discussion This method penalises any label assignment where two nodes connected
by a highly weighted edge are assigned different labels. Consequently, label propa-
gation aims to smooth labelling over the graph.

5.1.7 Soft Clamping Label Spreading

Zhou et al. [89] proposed a similar model to the basic Label Propagation algorithm
in Section 5.1.6, but uses affinity matrix based on the normalised graph Laplacian
and soft clamping across the labels. This soft clamping differs from the previous
algorithm in a key way: the labels of nodes XL are allowed to change during label
propagation, it doesn’t enforce smoothing across the graph. There is a potential
for noise in the data from the labelling stages: a small proportion of labels may be
incorrect or missing. Hence, by allowing labels to change slightly, may cause the
algorithm to converge to a more accurate labelling, this will be explored through
experimentation.

Algorithm 10 Label Spreading Algorithm proposed in [89]
Input: Affinity matrix W with Wii ← 0 and parameter α ∈ (0, 1)
Output: Label Assignment Matrix Ŷ
1: Compute diagonal degree matrix D with Dii ←

∑
jWij

2: Compute normalised graph Laplacian L← D−1/2WD−1/2

3: Initialise Ŷ (0) ← (y1, ..., yl, 0, 0, ..., 0)
4: Iterate

5: Ŷ (t+1) ← αLŶ (t) + (1− α)Ŷ (0)

6: until convergence
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5.1.8 Regularisation Framework
A graph regularisation method introduced by Zhou et al. [89] based on the soft
clamping iteration algorithm introduced in 5.1.7. Regularisation refers to the process
of finding a function (in our case matrix Ŷ ) which minimises a set of conditions
(objective function). Concretely we can define the cost function as follows,

C(Y ) =
1

2

( n∑
i,j=1

Wij

∥∥∥∥∥ 1√
Dii

Yi −
1√
Djj

Yj

∥∥∥∥∥
2

+ µ

n∑
i=1

∥∥∥Yi − Y (0)
i

∥∥∥2) (5.5)

where µ is the regularisation parameter and Y (0) is the initial label assignment
matrix. Now the most optimal label assignment matrix is

Y ? = arg min
Y

C(Y ) (5.6)

In Equation 5.5, the left and right hand terms correspond to the smoothness and
the fitting constraints, respectively. The smoothness constraint indicates that points
close to each other should have similar labels. The fitting constraint means good
classification should not change too much from the initial label assignment. Graph
Laplacian regularisation is effective because it constrains the labels to be consistent
with the graph structure.

5.2 Influencer Graph Structure

From the results in Chapter 4 we saw that the neighbourhood of an influencer acts
as a strong topical signal. To explore this further we created the visualisation in
Figure 5.2. The nodes in this visualisation represent influencers, where the coloured
ones are labelled by topic using the high-precision topic inference pipeline built in
the previous section. Those which are gray are unlabelled and were added to the
graph by taking the neighbours of the labelled influencers.

5.2.1 In Accordance with GB-SSL Assumptions
The visualisation in Figure 5.2 demonstrates evidence that the assumptions required
by GB-SSL are satisfied:

• Continuity Assumption: If two points xi and xj in a high-density region
are close, then they should share the sample label or have similar labels yi and
yj. It can be observed that labelled influencers appear closer to each other
if they have the same label than those who’s label differs. Moreover, groups
of influencers with the same label appear close to other groups of influencers
with similar labels, for instance Ocean, Nature Photography and Surfing all
appear near one another.

• Cluster Assumption: The data tend to form discrete clusters, and points in
the same cluster are more likely to share a label. It is clear that the influencers
have formed discrete clusters of topics where nodes within the same cluster (in
most cases) have the same topic label.
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5.2.2 Challenges

Additionally, this visualisation provides an introduction into the types of challenges
which are faced in this chapter.

Under Represented Topics. If a topic is un-represented then an influencer will
be labelled the closest to what is captured. For instance, if Doughnut Baking is
not represented in the taxonomy but Baking is, then a Doughnut Baker influencer
would be labelled as baking from the information the graph has. On exploring the
graph in Figure 5.2 and manually exploring the classifications generated by label
propagation tests we discovered the majority of incorrect classifications were due to
the issue described here. This can be mitigated by iteratively improving the cover-
age of our taxonomy and propagating new topics through our architecture.

Similar Topics. Figure 5.2 shows that both plant based food and baking lie very
close to each-other, which makes the algorithm less effective in classifying between
them. We deem this acceptable in some scenarios as some bakers labelled by our
topic inference pipeline may be plant based bakers. To mitigate this in the scenar-
ios where the topics are not shared we aim to gather a sufficient amount of topical
seeds, hypothesising that with more nodes, there will be more opportunity for clearer
structure, i.e. independent clusters to form.

Popular Accounts/Topics. Popular users1 within popular topics2 tend to con-
nect different clusters of topics which provide noise in the label spreading. This
is caused by the global nature of the algorithm, where labels will be spread from
one topical community through famous users into other topical communities. In
this work we remove nodes with high degree from our graph for which we spread
labels. The threshold for which we remove nodes is determined by determining the
degree distribution of nodes taking the upper x percentile of the distribution. We
determine x experimentally depending on the graph, for instance Figure 5.1 shows
the degree distribution of the graph in Figure 5.2, where the top 99th and 98th
percentiles constitutes to 2.2% and 10% respectively.

Label Flexibility. Often influencers will have inferred topics which are accurate
from a textual standpoint but are in-accurate from a human subjectivity standpoint.
Graph based data provides a different view into the topics of an influencer which
may lead to discrepancies amongst components of our architecture. For instance, our
topic inference pipeline inferred the topic Interior Design @perfectioninmotion’s,
however @perfectioninmotion is placed in a cluster of car content creators in the
following graph as @perfectioninmotion is a automotive wall decor content creator
and hence follows a large number of car content creators. If we were to use the hard
clamping variation of LP then our algorithm will only allow @perfectioninmotion to
be labelled as Interior Design. This leads to the following design choice:

Design Choice 5. Allow initial labelling of seed content creators to change through
a soft clamping propagation approach.

1Those users who are followed by a large number of users
2Those topics which are enjoyed by a variety of audiences
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Figure 5.1: The degree distribution of the graph in Figure 5.2
.

Soft clamping enables the initial label assignments to change, allowing @perfection-
inmotion to be labelled as both Cars and Interior Design based on the initial labels
and the labels propagated. This idea is explored in our evaluation (Section 5.3)
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Figure 5.2: A topical community graph of influencers as nodes and the edges between
representing the “following” relation, visualised with a Force Layout [23]. The graph
was generated by starting with a small number of labelled influencers and adding
the influencers in their neighbourhoods. This visualisation shows each topic as a
separate colour, with influencers and their edges coloured by their labelled topic. A
nodes size is reflective of its degree3. The large proportion of the graph is unlabelled,
with the colour grey.

5.3 Evaluation of the Label Spreading Algorithm

In this evaluation we aim to assess the recall of the standard label spreading algo-
rithms. We also aim to assess the extent we preserve precision and how well the
algorithm performs under scenarios of limited labelled data. We conclude this section
with challenges faced by the label spreading algorithm presented by Zhou et al. [89]
and describe how we provide novel additions to mitigate the challenges. To this end,
we use the same performance metrics as in Chapter 4: precision, recall and F1 score.
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5.3.1 High-Recall

Graph Setup. In order to run the label propagation algorithm we construct an
undirected adjacency matrix, initialised with all zeros which has entry Aij = 1 if
content creator with id i follows content creator with id j or j follows i and Aij = 2
if they both follow each-other.

Data Setup. Here we evaluate the algorithm spreading 50% of the labelled content
curators in the graph in Figure 5.2, with the remainder of the 50% of the labelled
content creators used to evaluate the performance. Specifically, in the initial label
matrix, only 50% of the nodes have labels where the label matrix has Lij = 1 if
content creator with id i has label j and 0 otherwise.

Metrics. Similar to the other sections, ground truth data enables us to use the
precision, recall and F1 metrics which align with the high-level goals discussed in
the introduction.

5.3.1.1 Results

Recall. As expected, the results in Table 5.1 this component have higher recall than
those in previous components. Those topics with lower recall (e.g. Coffee) appear to
have lower recall due to the multi-topic nature of the content creators in the topic.
For example, coffee content creators in this dataset are mostly coffee shops which
often produce content which includes: Coffee making, Interior Design of the coffee
shop, and about the Healthy Food which is sold in the shop. This result surfaces an
interesting observation about this algorithm: it predicts new topics. During future
work we will explore means of extracting the top n topics predicted by the label
propagation algorithm in order for cases like the coffee shop above to be labelled as
all potentially correct topics. In conclusion, this algorithm was able to spread the
labels from the small amount of lablled content creators to a large proportion of the
un-labelled content creators, achieving our goal of high-recall.

Precision. We are pleased to observe that a high-precision is also preserved. This
verifies the quality and effectiveness of our central hypothesis of this work: connected
content creators are likely to share similar topics. Specifically, this shows that our
hypothesis provides a topical signal with very little noise.

Connectedness of Nodes. Through exploration we observe that the topics with
low F1 score often have a low degree (poor connectedness), which limits the algo-
rithms effectiveness in spreading labels accurately. For instance, with highly related
topics like Interior Designers and Ceramic, with poorly connected Interior Design-
ers, we may end up spreading ceramics to interior designers due to the imbalance of
labels. We refer this issue as graph sparsity.

5.3.2 Robustness

To explore the semi-supervised LP algorithm’s effectiveness in scenarios of poor
supply of labelled data we compare the algorithm against the supervised bio text
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classification we built in Chapter 4. In this experiment we trained the same models
with varying training data size. Figure 5.3 shows the graph of these results, where
we start with training the models with 80% of the labelled data and incrementally
decrease it until 20% of the labelled data is used during training. It can be observed
that the supervised text classification models F1 score drops significantly, whereas
the semi-supervised LS’s score is only slightly affected. This demonstrates that using
a semi supervised method is particularly suitable in our scenario of classifying topics
with only a small number of labelled data points.

Figure 5.3: The F1 score of label spreading (LP) and a text classification model
(BIO-TEXT-AGG-OUT) as a function of the the amount of labelled data provided
to the models.

5.4 Our Label Spreading Algorithm

In the previous section we observed at multiple stages the issue of graph sparsity,
which leads to lower precision and recall with some topics. Additionally, through
further visualisations we realised that there are some content creators who are poorly
connected and follow other content creators out of interest. For example, a Portrait
Photographer ; may be poorly connected in the graph and follow a Coffee content
creator out of interest. This would lead to the algorithm spreading the coffee label
to a portrait photographer we call this problem dissimilar label spreading. In
order to mitigate both issues of graph sparsity and dissimilar label spreading we
propose a modification to the label propagation algorithm utilising topic similarity
and multiple graphs of content creators.

5.4.1 Insights

Tagged Users. In Chapter 3 during the construction of our taxonoy we generated
documents to represent communities of content creators. We observed that many
content creators within topically coherent communities often tagged each other and
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the same users. For example, many content creators in the van life community
in Figure 3.7 frequently tagged the same van life accounts including @vanlifers,
@vanlifediaries and @vanlifemovement with frequencies 34, 34, 29 respectively. We
utilise this observation to make the first design choice:

Design Choice 6. Use the highest tagged users of the labelled content creators to act
as “anchors” between poorly connected content creators and their respective strongly
connected topical cluster.

With this design choice we form a series of hypothesise outlined below:

Hypothesis 5. Design Choice 6 will enable our algorithm to spread labels through
the topical tagged users, mitigating graph sparsity.

Hypothesis 6. Design Choice 6 will provide additional structure to the graph, al-
lowing more distinct topical clusters to form, for which labels will be spread across.

To provide further evidence as to the validity of this argument, we attempt to reason
about these hypotheses through creating a visualisation of the same content creator
graph in Figure 5.2 but with the popular tagged users added. In Figure 5.4 we
present the graph with popular tagged users. We constructed the graph by first
adding the tagged users who were tagged by at least 35% of the labelled content
creators for each topic. Secondly, we added an edge between all labelled and un-
labelled content creators and the newly added tagged users.

Observation 1. It can be observed that the communities in the new graph appear
to be better separated, in particular, the baking and healthy food are a lot more
distinct than in the previous follower-only graph. This provides evidence to support
Hypothesis 6.

Observation 2. Additionally we note that there are nodes which provide topically
degenerate connections, linking topically distinct communities. For example in Fig-
ure 5.4 we draw the readers attention to the large node highlighted by the arrow.
The node is part of the (dark blue) community of coffee content creators and is
connecting both the coffee and portrait photography clusters. The communities are
topically dis-similar so we refer to this connection as a degenerate connection/bridge.
Degenerate bridges cause the issue of dissimilar label spreading described earlier.
The highlighted nodes size indicates that it has a large degree, hence is likely to
be a “famous” user. This validates our design choice to remove nodes within the
top x degree percentile. To further mitigate the issue of spreading labels through
degenerate bridges we make the next design choice of our label spreading algorithm:

Design Choice 7. Labels should not be spread between two nodes who have dis-
similar label distributions.

For example, the probability of “Baking” and “Healthy Food” to be co-assigned to the
same content creator should be larger than the probability of “Portrait Photography”
and “Baking” to be co-assigned.
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5.4.2 Algorithm Construction

Motivated by the insights in the previous sections we adapt Zhou et al. [89] regu-
larisation function to ensure that only coherent labels are spread, thereby reducing
dissimilar label spreading.

Original Algorithm. The regularisation framework/objective function presented
by Zhou et al. [89] in Section 5.1.8 consists of a loss function which encodes the
smoothness constraint : nearby nodes should have similar labels and the initial la-
belling constraint : initial label assignments should not change much.

Setup. We begin by defining two affinity matrices: a content creator graph W ∈
RN×N matrix where Wi,j = 1 if a content creator i follows j. The topic graph
T ∈ RL×L matrix which defines Ti,j as the similarity between topics i and j. Topic
similarity is determined using Sematch5, which computes the semantic similarity
between concepts. Each topic in our taxonomy has a corresponding DBPedia page
which can be used in the semantic similarity computation. Let F = (F1, .., FN)T =
(C1, ..., CL) be anN×Lmatrix denoting the final topics assignments for each content
creator, for example Fij represents the probability of content creator i being assigned
topic j. Let Y = (Y1, ..., YN)T be an N × L matrix representing the initial topic
assignments. Below we present the original regularisation framework proposed by
Zhou et al. [89]:

Ω(F ) =
1

2

( n∑
i,j=1

Wij

∥∥∥∥∥ Fi√
Dii

− Fj√
Djj

∥∥∥∥∥
2

︸ ︷︷ ︸
Smoothness constraint on users

+µ
n∑
i=1

‖Fi − Yi‖2︸ ︷︷ ︸
Initial labelling constraint

)
(5.7)

where µ is the regularisation parameter and Y (0) is the initial label assignment ma-
trix.

Label Smoothing. In order to utilise Design Choice 7 we add another regular-
isation term to Equation 5.7 to encode topic similarity. We refer to this as the
Smoothness constraint on topics, this ensures that if two topics have high similarity,
then they are likely to be assigned together for the same content creator. We can
express this formally by stating that the columns of F , (C1, ..., CL) which represent
the vectors of each topic should be similar if the topics are similar. This condition
is added to the original regularisation framework:

5https://github.com/gsi-upm/sematch
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Ω(F ) =
1

2

( n∑
i,j=1

Wij

∥∥∥∥∥ Fi√
Dii

− Fj√
Djj
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2

︸ ︷︷ ︸
Smoothness constraint on users

(5.8)

+
1

2
µ

n∑
i,j=1

Tij

∥∥∥∥∥ Ci√
D′ii
− Cj√

D′jj
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2

︸ ︷︷ ︸
Smoothness constraint on topics

)
(5.9)

+ η
n∑
i=1

‖Fi − Yi‖2︸ ︷︷ ︸
Initial labelling constraint

(5.10)

Where D and D′ are the diagonal matrices where Dii =
∑N

j=1Wij and Dii =∑N
j=1W

′
ij. The hyperparamters µ and η control how much weighting the regu-

larisation constraints in the formulation of F . The first term in Equation 5.8 can
be re-written into matrix form as demonstrated below:

1

2

N∑
i,j=1

Wij

∥∥∥∥∥ Fi√
Dii

− Fj√
Djj

∥∥∥∥∥
2

=
1

2

( N∑
i=1

F T
i Fi +

N∑
j=1

F T
j Fj − 2

N∑
i,j=1

WijF
T
i Fj√

DiDj

)
=

T∑
i

Fi −
N∑

i,j=1

Wij
F T
i Fj√
DiDj

= tr(F T (I −D−
1
2WD−

1
2 )F ) = tr(F TLF )

where L = I − D−
1
2WD−

1
2 i the Normalised Laplacian of the graph associated

with W . The second term in Equation 5.8 can be re-written similarly, providing a
Equation 5.8 in matrix form as follows:

Ω(F ) = tr(F TLuF ) + µtr(FLlF
T ) + η ‖F − Y ‖2 (5.11)

where Lu = I − D− 1
2WD−

1
2 and Lt = I − D′− 1

2TD′−
1
2 are the normalised Lapla-

cians of the user graph and label graph respectively. Now the most optimal label
assignment matrix is

F ? = arg min
F

Ω(F ) (5.12)

To determine the optimal we find the stationary point of Ω. By using the following
matrix properties below

∂tr(XTAX)

∂X
= (A+ AT )X (5.13)

∂tr(XAXT )

∂X
= X(A+ AT ) (5.14)
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and noting that Lu and Lt are symmetric matrices we are able to find the derivative
of Ω, hence the optimal topic assignment matrix F ?:

∂Ω

∂F

∣∣∣∣
F=F ?

= LuF
? + µF ?Ll + η(F ? − Y ) (5.15)

= 0 (5.16)

Which can be re-written as:

(Lu + ηI)F ? + µF ?Ll = µY (5.17)

that can be solved using numerical or iterative solutions of matrices in the form
AX +XB = C, where A ∈ Rm×m, B ∈ Rn×n and X,C ∈ Rm×n.

5.4.3 Evaluation of Our Label Spreading Algorithm
Graph Setup. We construct affinity matrices W and T as described in Section
5.4.2 and construct an initial label matrix with 50% of the same dataset as in Sec-
tion 5.3.1. Additionally we add the users tagged by at least 35% of the labelled
content creators for each topic. Secondly, we added an edge between all labelled
and un-labelled content creators and the newly added tagged users.

Data Setup. Here we evaluate the algorithm spreading 50% of the labelled content
curators in the graph in Figure 5.2, with the remainder of the 50% of the labelled
content creators used to evaluate the performance. Specifically, in the initial label
matrix, only 50% of the nodes have labels where the label matrix has Lij = 1 if
content creator with id i has label j and 0 otherwise.

Metrics. Similar to the other sections, ground truth data enables us to use the
precision, recall and F1 metrics which align with the high-level goals discussed in
the introduction.

Baselines. In order to assess how well our algorithm solved the issues we discussed
previously we compare it to the standard label spreading algorithm evaluated in
Section 5.3.1, we call this LS and ours TS-LS for Topical-Similarity Label Spreading.

Results. From Table 5.2 we can confirm that the design decisions made in the
previous sections indeed improve the algorithm by, for both precision (an increase
in 0.07) and recall (an increase in 0.06).

5.5 Future Work

5.5.1 Inductive Topic Inference
The label spreading algorithms we presented this chapter are transductive, whereby
they optimise an objective function to find the labels of the existing unlabelled data
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using the labelled and unlabelled data. These transductive algorithms do not have
the ability to handle new data. To handle new content creators we could use K-NN
methods whereby one would predict the labels of a new content creator by averaging
the labels of it’s nearest neighbours. This method lacks the global information that
label spreading utilises. In order for our algorithms to perform inductive label/topic
inference i.e. handling new content creators we aim to explore inductive algorithms
that utilise global information of the graph with the regularisation conditions we
introduced in our TS-LS algorithm. We start future work with the minimal optimi-
sation function defined in Equation 5.18 and continue to add regularisation terms
to improve the performance. The equation below aims to determine the new label
ŷ by minimising the objective function, where N represents the number of content
creators in the current graph and Wk indicates the adjacency matrix of the content
creator graph with the new node k included.

Ω(ŷ) =
N∑
j

W k
ij(ŷ − ŷj)2 + µŷ2 (5.18)
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Table 5.1: Precision, recall and F1 score for each topic achieved by the label spread-
ing algorithm.

Topic Precision Recall F1 score

Skateboarding 0.98 0.95 0.96

Nature Photography 0.89 0.76 0.82

Dogs 0.93 0.74 0.82

Tattoo 0.87 0.98 0.92

Baking 1.00 0.80 0.89

Interior Design 1.00 0.40 0.57

Painting 0.83 0.86 0.85

Ceramics 0.80 0.90 0.85

Portrait Photography 0.81 0.62 0.70

Surfing and Bodyboarding 0.90 1.00 0.95

Skiing 0.93 1.00 0.96

Plant Based 0.71 0.76 0.74

Wedding Photography 1.00 0.67 0.80

Climbing 0.83 0.96 0.89

Ocean 0.71 1.00 0.83

Coffee 0.86 0.67 0.75

Supercars 0.93 0.96 0.94

avg 0.87 0.86 0.86

Table 5.2: Precision, recall and F1 score achieved by the original label spreading
algorithm (LS) and our modification (TS-LS)

Algorithm Precision Recall F1 score

LS 0.87 0.86 0.86

TS-LS 0.94 0.92 0.93
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Figure 5.4: A topical community graph of influencers as nodes and the edges be-
tween representing the “following” relation and the “tagged” relation, visualised with
a Force Layout [23]. The graph was generated by starting with a small number of
labelled influencers and adding the influencers in their neighbourhoods. This vi-
sualisation shows each topic as a separate colour, with influencers and their edges
coloured by their labelled topic. A nodes size is reflective of its degree4. The large
proportion of the graph is unlabelled, with the colour grey.
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Data Collection and Storage 6
In this chapter we provide an overview of how we collected the data used in this work.
Additionally we describe how we utilised polygot persistence to effectively store the
data such the data storage technology is best chosen to satisfy our applications
demands.

6.1 Polygot Persistence

Polygot Persistence refers to the storing of data in multiple data storage technologies
such that each is chosen to fit the needs of individual components/applications of a
system. In this section we breifly describe the various data storage technologies in
our architecture (Figure 6.1).

6.1.1 Document Store: MongoDB

MongoDB is a document store which holds data in flexible, JSON-like documents,
meaning fields can vary from document to document and data structure can be
changed over time1. It is suitable for us to store the data from our data collectors
for the following reasons:

Evolving
Schema.

MongoDB’s schema-less nature is well suited to the dynamic and
inconsistent nature of the data we’re collecting.

Horizontal
Scaling.

As our data grows, MongoDB replica sets makes it very easy for us
to scale horizontally, adding more power and storage when needed.

Data
Collection
Format.

MongoDB is well suited to deal with the data format (JSON) ar-
riving into it from our data collection applications.

6.1.2 Graph Database: Neo4j

Our work heavily relies on fast graph queries (most frequent of which are neighbour-
hood queries and random walks). We didn’t want to force MongoDB (a document-
based data store) to handle these graph-style relationships because the implemen-
tation would have been costly and inefficient. Instead, we use a polyglot persistence
approach to capitalise on the strengths of each, deciding to use both MongoDB and
Neo4j together.

1https://www.mongodb.com/what-is-mongodb
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6.1.3 Full Text Search: Elasticsearch

Elasticsearch is a distributed search engine based on Lucene. It provides a dis-
tributed, multitenant-capable full-text search engine with an HTTP web interface
and schema-free JSON documents. Its JSON like storage and fast full text search
make it a particularly good choice to store our streaming data to be searched by the
end user.

6.2 Data Collection

6.2.1 Overview and Sampling Strategy

Challenges. The aim is to collect the profile data and graph data of content cre-
ators with minimal amount of HTTP requests to Instagram API. We aim to limit
the amount of requests because (i) we are limited by Instagram to a certain rate for
which we are able to send requests and (ii) to decrease the time required to collect
the large amount of data we require.

Solution. In order to collect the graph data from Instagram that this work required
we undertook a biased snowball sampling approach. Our approach starts with a seed
node (user) s and collects data from Instagram API (Section 6.2.3) as described in
Algorithm 11. The algorithm we designed is biased by prioritising data collection of
highly-engaged users, improving the likelihood of spending expensive API requests
on content creators.

Algorithm 11 Biased Snowball Sampling Algorithm
Input: Initial seed s
Output: Graph and profile data of a sample of Instagram content creators

Initialise priority queue Q = {s} ordered by engagement (Equation 3.24)
while |Q| is non-empty do
s← pop(Q)
F sout ← all users which s follows collected with API Endpoint 1
for u in F sout do
du ← profile data collected using API Endpoint 2
if du indicates that u is content creator then
Save du in Instagram profile MongoDB collection
pu ← most recent 14 posts collected from API Endpoint 3
Store posts pu in Instagram media collection
Calculate engagement and add to Q

end if
end for

end while

Result. Collected 2, 687, 894 content creators and 101, 747, 430 Instagram posts
over a two month period.
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6.2.2 Distributed Queues
In order to achieve the result described above (Section 6.2.1) we made various design
choices for our distributed data collection architecture. As the design of the tech
stack is not the focus of this work, we provide in this section only a brief overview
of our design choices and reasoning where appropriate.

Redis Backed Queue. To enable us to distribute our data collectors over a clus-
ter of servers, we had the challenge of enabling communication between them. This
communication was necessary for all data collectors to have access to the same pri-
ority queue described in Algorithm 11. To achieve this we created a server to host
a distributed queue built with well-maintained Node.js queue, BullJS 2 backed by a
Redis server. It is important to note that all components of our data collection and
data storage architecture were deployed to a VPC3, such that no external entities
could interfere with the internal services.

MongoDB Replica Set. To handle the large output from the data collectors we
deployed a replica set of MongoDB instances which provided redundancy and high
availability.

AWS Spot Instances. To deploy the data collection servers we used AWS spot
instances 4. This provided a significantly more economical way to run our data col-
lectors than on-demand instances. We typically scaled up the number of instances
in our fleet when the cost was low. Practically, we created a custom Amazon AMIs5
holding the code to ensure that a new spot instance correctly downloaded and run
the latest version of our data collection application.

Node.js. A profitable language choice for building our data collectors was JavaScript
run in Node.js6 run-time. This allowed us to fully utilise the power of network pro-
gramming with Node.js’ event-driven, non-blocking I/O model. Node.js, built to
handle async I/O from the ground up made it easy for us to achieve exceptional
performance when making API requests to Instagram and the wide array microser-
vices in our architecture.

6.2.3 Instagram API
We created various custom libraries which, when given data from the Instagram
API, formatted it then inserted it into MongoDB. The API endpoints we used are
summarised below. These libraries also handle adding new requests to the queue
described in Section 6.2.2 and determining whether a user is a content creator or a
normal/passive user. As data-collection is not the focus of this work we leave out
the details of what data is returned by the API’s and how we processed it.

API Endpoint 1 (/users/{user-id}/follows). Provides a paged response for the
users for which {user-id} follows.

2https://github.com/OptimalBits/bull
3https://aws.amazon.com/vpc/
4https://aws.amazon.com/ec2/spot/
5https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
6https://nodejs.org/en/
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API Endpoint 2 (/users/{user-id}). Provides basic profile information of {user-id},
for instance a users biography, full name and number of followers.

API Endpoint 3 (/users/{user-id}/media/recent). This endpoint provides the re-
cent media posted by {user-id} including information like the number of comments,
the number of likes, caption and users tagged in the post.

6.2.4 Streaming from MongoDB into Neo4j
The goal of this section is to outline how we synchronise a subset of data from Mon-
goDB to Neo4j. This allows us to stream data as it arrives to MongoDB into Neo4j,
keeping all our data stores in sync.

Streaming from MongoDB’s Oplog. MongoDB provides a library which is per-
fect for this use case: mongo-connector 7, this provides us with a means to listen
for all update operations in MongoDB and mirror them to other systems. mongo-
connector ensures that data is consistent across all data sources by tailing the Mon-
goDB oplog. This library provides a means to synchronise data with Elasticsearch
and Solr.

Mapping data from MongoDB to Neo4j. To facilitate synchronising data
from MongoDB to Neo4j we use Neo4j Doc Manager 8. This is built upon mongo-
connector and allows developers to create mappings between MongoDB and Neo4j.
Mappings need to be defined as documents stored in MongoDB are in a similar form
to JSON whereas the same data in Neo4j are stored as graphs.

Example. Figure 6.2 shows a sample of how documents in MongoDB are mapped
to Neo4j graph format. The Instagram profile data in the sample document in
Figure 6.2a mapps to a node (nk7) and stores the relevant properties within it.
Additionally, the same document has a list of users for which nk7 follows, our custom
mapping uses these to create relationships between the relevant nodes, for instance
it will create a FOLLOWS relationship between nk7 and tong.my. The document in
Figure 6.2b represents a post of nk7s, our mapper uses this information to create
the TAGGED relationship in Neo4j, indicating that nk7 tagged blackbab. If the tagged
relationship already exists (i.e. nk7 has tagged blackbab before) then the weight of
the relationship is incremented by one.

7https://github.com/mongodb-labs/mongo-connector
8https://github.com/neo4j-contrib/neo4j_doc_manager
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Figure 6.1: The main components of our architecture and applications.
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(a) Example of a BSON docu-
ment from the MongoDB Insta-
gram collection

(b) Example of a BSON docu-
ment from the MongoDB Insta-
gramMedia collection

(c) The nodes and relationships created in Neo4j from the MongoDB
documents in Figures 6.2a and 6.2b.

Figure 6.2: Data stored across MongoDB and Neo4j
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User Applications 7
7.1 Architecture

Modularity is key for any multi-purpose architecture. For this reason we designed
our architecture and the environment surrounding it using a Microservices Architec-
ture. Each component of our architecture is implemented as a separate microservice
which has a well defined API which it must conform to. For instance, our dictionary
classifier is deployed separately to our website classifier, where they both have ex-
posed endpoints which can be queried via a HTTPS REST API. The design details
of our REST api are left out here for the sake of brevity. The overall design of our
architecture is described in Figure 6.1 where all of our services are deployed within
a VPC1 on AWS2. Two core benefits of designing it in this way is are:

Flexibility. If we were to change the way our dictionary classifier performs it’s
classification in a fundamental way, then as long as it still conformed to the API
specification then no other components would have to change.

Scalability. The distributed and replicated manner of our architecture design al-
lows us to scale each component as user demand increases. For instance, if the
demand on Elasticsearch is increased we are able to simply add a new node to our
cluster.

The data collection and storage is described in Chapter 6. Here we focus on the
design of our front end and back end of the search engine. The front end application
(search engine) is able to communicate with our Express API, which exposes an
endpoint which queries our Elasticsearch cluster. Note that our application is cur-
rently closed for public so requires correct login details to access the search engine.
We secure our applications by following this flow of authentication, whereby a user
must own a fresh access token to request our API server.

1https://aws.amazon.com/vpc/
2https://aws.amazon.com/
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7.2 Search Engine Implementation

7.2.1 React JS

A natural choice for the front end library for our search engine was React JS3. Below
we outline two of the most appealing features of this library:

1. Component First. React allows for the creation and use of re-usable, com-
posable and stateful components. With a rich developer community, this made
it extremely easy for us to incorporate open-source well-tested libraries, addi-
tionally it allowed us to re-use components across our application(s). Further-
more it provided a means for fast and consistent software engineering.

2. Virtual DOM. Previous to React, interactive applications that required ma-
nipulation of the DOM was very hard to do in a performant manner, usually
leading to sluggish user experiences with large code-bases for seemingly simple
and small applications. React solves this issue by providing a virtual DOM
that lives in memory. The developer directly interacts with the virtual DOM
and React automatically determines the most efficient way to apply the min-
imal number of changes to the real DOM. This provides an excellent user
experience and effortless development experience.

This library provides functionality to build front end components, however has lim-
ited out-of-the box design and functionality to build scalable web applications which
communicate with various APIs asynchronously. For this reason we utilised various
other libraries to assist in other parts of web development. An overview of our front
end design is inspired by a scalable open-source front end development boilerplate4.
We provided various modifications to this boilerplate for it to suit our specific needs.
These include (i) auth flow, allowing users to log in with their Google emails (only
verified emails are able to log in successfully) (ii) various theming modification,
among other modifications. An overview of the communication between various
components of our front end is described in Figure 7.1. We refrain from describing
details of the frontend implementation as this is not the focus of this work, however
we encourage an interested reader to visit the boilerplates readme5 to understand
how one could build a scalable front end application.

7.2.2 Express API

The responsibility of this NodeJS REST API server is intended to expose search
functionalities to our front end application. Our server was built with various pop-
ular design principles in mind. This server handles parsing requests from the front
end, forwarding them in the correct format to services like ElasticSearch and Neo4j
and finally returning the results to the front end in a consistent form. In addition,
our server handles all errors in a deterministic manner to provide useful report-
ing back to the user-facing application. Finally, this server is also responsible for

3https://reactjs.org/
4https://github.com/react-boilerplate/react-boilerplate
5https://github.com/react-boilerplate/react-boilerplate/blob/master/docs/
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handling feedback from the user application about the correctness of our classifica-
tions. It processes feedback requests from the front end and stores the results in a
MongoDB collection to be used to improve the quality of our classifiers.

7.3 Recommendation System

This section briefly describes the design and development of a proof-of-concept rec-
ommender system which uses the classifications made by our architecture. Given a
content creator as a query, it should provide the most topically related content
creators from millions of content creators in real time.

7.3.1 Design Choices

We start with outlining the key requirements we aim for our algorithm to satisfy.

Topical Relevance. The recommendations should not be biased by age, gender,
posting behaviours or any other user/engagement features. With the goal of pro-
viding better topical recommendations than the suggested feature on Instagram.
Additionally this will help prevent an algorithmic glass ceiling to be formed, as
described by Stoica et al. [75]. This leads to our first design choice

Design Choice 8. Recommendations are solely based on the topics of content cre-
ators.

In future work we aim to extend the features we use to recommend in order to im-
prove topical recommendations.

Real Time. The recommendations should happen in real-time and as quickly as
possible, i.e. utilise the most up to date information. This is key as our architecture
is fairly dynamic, whereby new topics are added to our taxonomy regularly, hence
providing more detailed topical classifications of content creators. Our requirement
of real-time recommendations leads to our second design choice:

Design Choice 9. We will not use recommendation algorithms which pre-compute
recommendations, instead we perform real-time graph traversal algorithms which are
independent of graph size by utilising Neo4j graph storage.

7.3.2 Algorithm

In our proof-of-concept algorithm we design it in a similar way to the Pixie Ran-
dom Walk algorithm presented by Eksombatchai et al. [19] and used in Pinterest
to recommend pins to users. We provide an overview of the features the algorithm
inspired by Eksombatchai et al. [19] below:

7.3.2.1 Biased Random Walks

Pixie performs biased random walks biased in a user-specific way. From Design
Choice 8 we aim to bias our random walks on the topics of content creators. To
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perform a biased random walk from node i we pick the node j in i’s neighbours
that has the largest cosine similarity between i and j’s topic vector. The topic vec-
tor of a node i is the row Fi in the topic assignment matrix F computed by our
label spreading algorithm. This provides high quality topic vectors which not only
provide information about a content creators predominant topic but the probability
distribution over all topics.

Implementation. We implement are algorithms in Java due to extensive open-
source community around Neo4j algorithms in Java. We used Neo4j Driver6, which
launches an embedded database allowing for low latency queries to the graph.

Algorithm 12 describes how we arrive at a set of recommendations from a query
content creator. The visit counts represent the number of times a content creator
is visited on a random walk, the higher the visit count, the more relevant a rec-
ommended content creator is. The function PickBiasedNode(N, c) picks a node c′
in c’s neighbourhood such that c and c′ have the largest cosine similarity between
their topic vectors. SampleWalkLength(α) samples a walk length depending on the
parameter α.

Algorithm 12 Topical Random Walk
Input: Query content creator q, nodes N , node-topics probability matrix F , num-

ber of random walk steps N , number of random walks α
Output: V visit counts of recommended content creators
1: V ← ∅
2: steps← 0
3: while steps ≤ N do
4: c← q
5: rwLen← SampleWalkLength(α)
6: for i to rwLen do
7: c′ ← PickBiasedNode(N, c)
8: V [c′] + +
9: c← c′

10: end for
11: steps← steps+ rwLen
12: end while

7.3.3 Evaluation

Due to time restrictions we were unable to perform rigorous evaluation on our rec-
ommendation system. In future work we aim to aim to extend our recommendation
system and perform comprehensive evaluation. For the time being, we perform a
subjective comparison of our recommendation system against Instagram’s suggested
feature. Tables 7.1, 7.2 and 7.3 show that our recommendation system consistently
provides topically relevant recommendations whereas Instagram’s suggested feature
seems to be biased to recommending friends of the query content creator or other
“famous” accounts.

6https://github.com/neo4j/neo4j-java-driver
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Table 7.1: Subjectively comparing our recommendation system to Instagram’s sug-
gestion feature. Each content creator is represented by a (username, topic) pair.
We are aiming to show that our recommendation system makes more topical recom-
mendations than Instagram’s suggestion feature. The query content creator in this
table is @_shootthephoto_, a Sports Photographer

Instagram’s Recommendations Our Recommendations

username topic username topic

vikkstagram Gaming trailjunkiephotos Sports
Photography

behzingagram Gaming bystith Football
Photography

sidemenclothing Merchandise
Company

erikwestbergphotography Outdoor Sports
Photography

realcalfreezy Gaming redbullillume Sports
Photography

pureminterr Gaming Fan
Account

jeffdivinephotographer Surf Photography

7.3.4 Future Work

7.3.4.1 User-Content Creator Recommendations.

We aim to extend our recommendation system to recommend topical content cre-
ators to a user. This would manifest in a similar way to our current algorithm
except it would perform graph traversal on a bipartite graph connecting the content
creators graph and user graph through various relationships, e.g. a user in the user
graph may follow x users in the content creator graph, thereby connecting the two
graphs with the following relation.

7.3.4.2 Multiple Weighted Content Creator Queries

We aim to extend this algorithm by incorporating the idea of multiple weighted
query content creators used in Pixie [19]. A weighted query set is a set of content
creators that a user follows, as opposed to a query containing just one content creator
creator. The weighting of a content creator c can be determined by how much a user
has recently engaged with c. Using this query set we can perform multiple random
walks from each content creator in the query set and use the combined visit counts
in order to make more relevant recommendations. A candidate content creator is
one which is found at the end of a random walk, when a candidate is reached we
consider it visited. Those candidates which are reached by many random walks by
many independent queries (within the same query set) are considered more relevant.
To encode this one could combine the visit counts from multiple queries using the
following equation proposed by [19]:
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Table 7.2: Subjectively comparing our recommendation system to Instagram’s sug-
gestion feature. Each content creator is represented by a (username, topic) pair.
We are aiming to show that our recommendation system makes more topical recom-
mendations than Instagram’s suggestion feature. The query content creato’s topic
is Skydiving (@ericpeterminze)

Instagram’s Recommendations Our Recommendations

username topic username topic

madymorrison Yoga nicwildandfree Skydiving

elizaxlara Lifestyle skydivids Skydiving

ginastiebitzofficial Model majid_moshfeghi Skydiving Pilot

berlinaaalter Sports skydivingposts SkyDiving

V [c] =
(∑
q∈Q

√
(Vq[c])

)
(7.1)
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Table 7.3: Subjectively comparing our recommendation system to Instagram’s sug-
gestion feature. Each content creator is represented by a (username, topic) pair.
We are aiming to show that our recommendation system makes more topical recom-
mendations than Instagram’s suggestion feature. The query content creator in this
table is @jatiputra, a Graphic Designer. This account is an example of where
Instagram provides a limited amount of recommendations (3).

Instagram’s Recommendations Our Recommendations

username topic username topic

natgeotravel Travel graphicdesignersclub Graphic Design

nasa Space douggraphics Graphic Design

unsplash Photography daily_minimal Minimal Graphic
Design

- - douggraphics Typography
Graphic Design

- - razvanvezeteu Graphic Design

Figure 7.1: An overview of how the components of our frontend communi-
cate. An interested reader can learn more by reading https://github.com/react-
boilerplate/react-boilerplate/blob/master/docs/ docs
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End-User Application and Holistic
Evaluation 8
8.1 Introduction

In this chapter we provide a holistic evaluation of our achievements. For the purpose
of clarity and relevance we provide a detailed per-component evaluation at the end
of each relevant chapter. To clearly describe an overview of our achievements, we
re-iterate our goals and contributions from our introduction. Each goal has an
associated unique identifier which we reference during the process of describing our
holistic evaluation in this chapter. Our are classified into three categories: Research
(R), Business/Societal (B) and Engineering (E) Contributions. Each begins with
their unique identifier.

• TAX B, R, E A first attempt to constructing a taxonomy which captures a
large portion of topical content on Instagram

• T-LCD R A novel algorithm topical local community detection algorithm for
niche topical communities of content creators

• CLF R A first attempt to classify content creators on Instagram, with high-
precision into a large taxonomy of potential topics

• LBL-DATA E A robust pipeline to automatically label content creators of high-
precision topics with minimal supervision

• TS-LS R A novel modification of the label spreading algorithm that spreads
topical labels across a graph of content creators

• ARCH E A scalable architecture to infer the topics of Instagram content cre-
ators, deployed in production and used in multiple real-world applications

• SEARCHB, E Develop and deploy a search engine allowing users to navigate the
topical content on Instagram, specifically providing the first content creator
search engine with niche topics in a variety of fields

• RECOM B, E A topical content creator recommendation system, allowing users
and brands to find new high-quality content creators
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8.2 The Narrative of Our Achievements

This work aimed to provide a first attempt to classify the niche topics of millions
of content creators on Instagram. In order to achieve this, we split the core goal
down into sub-problems which are each tackled by a separate component of our ar-
chitecture. These sub-problems are outlined by asking a series of research questions.
To ensure each component effectively solves its sub-problem, we perform extensive
reasoning about the challenges each component might face and how we might miti-
gate them. Finally we conclude the construction of each component with a relevant
evaluation showing how the component specifically solves the sub-problem it is con-
structed to solve. We started our research by observing that, in order to classify
content creators by topic, we must outline what the topics are, hence we aimed to
answer the first question:

How does one discover the niche topics that exist on Instagram and or-
ganise them in an interpretable manner?

Component 1: Taxonomy Creation via Topical Community Detection.
Through defining relevant evaluation metrics we were able to show that our topi-
cal local community detection algorithm (T-LCD) outperformed popular community
detection algorithms in finding small, tightly knit topical communities. Specifically
our method had 42% higher topical coherence than the next best alternative and an
average community size of 86.5 which indicates smaller niche communities, in com-
parison to the general topical communities of the next best algorithm with an average
size of 1973. In addition to the metrics we defined to evaluate our communities we
provided visualisations which present the same results in a more intuitive manner,
indicating that our communities are well separated, small and tightly connected.
Additionally, we generated various documents to display the topical communities
which were used by a team of Instagram marketing experts with the aim of novel
topic discovery, through this procedure we were able to empirically validate the
success of our T-LCD algorithm by discovering many niche topics which were previ-
ously undiscovered to extend our taxonomy. This resulted in a large (and growing)
extension to our initial taxonomy (TAX) which was built using public taxonomies
and knowledge bases. The goal of this component was to achieve high-coverage over
topics, which is achieved through continuous utilisation of approaches specified in
this component. Naturally, this led to the formation of our next question:

How can the content creators be classified into their topics of content
with high-precision?

Component 2: High Precision Topic Inference Pipeline. We recognised
that traditional methods proposed in past literature couldn’t answer this question
effectively due to the unique challenges posed by Instagram, end-user requirements
and the large taxonomy of topics. To this end, we determined the most accurate
topical signals of an Instagram account and extended the ideas in past work to define
a pipeline that infers the topics of content creators with high-precision. This pipeline
was built upon novel hypotheses that consider the relationships between content
creators which we showed through thorough evaluation to meet its goal of high-
precision exceptionally well (LBL-DATA). Specifically our best model, attempting to
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maximise precision through an ensemble of classifiers achieved a precision of 0.99
with an improvement of 0.56 precision against our baseline text classification model
over a ground truth dataset (Section 4.7). At this point we observe that our ensemble
classifier suffers from poor recall, and hence we face the challenge of answering the
final question:

How do we classify the topics of the remainder of the content creators
whilst preserving precision?

We answered this question by combining the limited amount of labelled data that
our pipeline acquired and richness of information in our content creator graph to
build a graph based semi-supervised learning (GB-SSL) algorithm. Specifically we
transform strong hypotheses and design choices into a concrete objective function
which can be optimised to generate a labelling matrix that assigns content creators
to a probability distribution over topics. We demonstrated experimentally that our
GB-SSL algorithm (TS-LS) obtains an F1 score 7% higher the standard approach
of label propagation (Section 5.3.1). Finally we performed experiments comparing
our algorithm against supervised methods showing that our method is significantly
less susceptible to varying availability of labelled data (Section 5.3.2). Finally, we
combined the components built into an architecture which is used to provide labelled
content creators to our search engine for topical content creators on Instagram (CLF,
ARCH).

8.3 Searching for Topical Content Creators

In order to to conclude our evaluation, we show how the architecture we developed
in this work achieved our core motivation: to provide a means to navigate the topical
world of Instagram. We demonstrate this by presenting a minimal viable version of
a topical content creator search engine (SEARCH). We compliment our search with
a proof-of-concept recommender system designed in Section 7.3, our algorithm per-
forms topically biased random walks on the content creator graph with the aim
of providing high-quality topical content creator recommendations from an initial
query content creator (RECOM). In order to gain an initial assessment of the quality
of our recommendations, we subjectively compare the recommendations made by
our system to Instagram’s suggested feature and found that the initial results show
our system provides more topically relevant recommendations (Section 7.3.3). Fig-
ure 8.1 provides an example query to our search engine. In this example, a user is
searching for Minimal Artists (red box). Notice that the results don’t necessarily
include text in their biographies which directly signal the topic Minimal Art, this
demonstrates topical classifications which were achieved by our label spreading stage.

Search Results. The content creators are shown below the search box, where
each panel shows public data from their Instagram profile including their username,
website (in bold), biography and various stats about their profile. As a part of the
statistics we include our calculation of engagement1, which indicates how engaged
the content creator is with their audience. Below the statistics, we present the most

1The average number of likes over last 9 posts divided by the number of followers.
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recent 6 posts to provide a visual means to search.

Infinite Scroll. The results (content creators) are displayed in the form of an in-
finite scroll, specifically as the user scrolls through content, more content is loaded
automatically. In comparison to pagination, infinite scrolling provides a more re-
sponsive experience, in that the user can efficiently browse an ocean of information
without having to wait for the page to pre-load.

8.3.1 Search Features

Our search engine provides an array of features that allow users to navigate the
database efficiently. Below we outline the features in our implementation:

Topic Search. A user is able to find content creators by selecting one or more
topics from our taxonomy for which the content creators topics should match.

Bio Search. This feature enables the user to perform a full text search on bi-
ographies, querying for phrases which (i) must occur, (ii) must not occur or (iii)
optionally occur in biographies. The optional occurrence simply ranks a search re-
sult higher if it matches, but does not enforce a match. Figure 8.2 demonstrates an
example bio query in combination with a topic search with the intention to discover
Ceramic Shops. Note that this figure exemplifies our partial matching feature which
can be enabled or disabled below the sliders. This allows a user to find content
creators who have a biography including the regular expression *shop*. One last
note is that we allow users to perform searches for phrases, which can be seen as
a synonym for ngram in this context. These allow users to find groups of words
that occur next to each-other, for instance if a user wanted to search for a ceramic
shop in London one could search bios for the phrases ceramic shop and London.
This query would return results including those bios with the two phrases occurring
at any position, but ensuring both ceramic and shop occurred one after the other
in the correct order. Our search results highlight the results in the biographies in
order to assist the user in finding relevant results. We implement a fast full text
search by indexing all content creators streaming from our data collector into our
Elasticsearch cluster (Section 6.1.3).

Graph Search. Here we provide an initial implementation of a graph search,
whereby a user can find the content creators one content creator follows or is fol-
lowed by. We believe it would be exceptionally useful for users when aiming to
explore circles of content creators, providing use cases for both users and businesses.
We query our Neo4j (Section 6.1.2) causal cluster via our REST API (Section 7.2.2)
to provide low latency graph queries to the user.

Filtering. When searching for content creators, a user, or more likely a business
may want to find content creators of a specific engagement or follower size which
can be achieved through various sliders in our front-end.

Location. In this application we provide an initial implementation of a feature we
plan to develop in the future work: location search. At this stage this application
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allows a user to find content creators by location through matching the most pop-
ular location tagged in all the content creators posts. This is particularly useful for
businesses and content creators where they would like to collaborate with content
creators who are frequently in the same area as them.

Figure 8.1: A screenshot demonstrating a search for Miniature Artists in our content
creator search engine. The query is entered in the red box and the results are shown
in the feed below the search box.

8.3.2 Experimental Evaluation
In order to perform effective experimental evaluation we aimed to design evaluation
methods that removed as many human biases as possible. We initially considered an
approach which was proposed in past research to evaluate topic inference/classifi-
cation, whereby a human reviewer would select the number of relevant topics for an
instance (e.g. document or content creator). This evaluation method would suffer
from the same cognitive overload as discussed previously where a reviewer would
have to enumerate an extremely large taxonomy to determine which to determine
which topics are relevant. Instead, we aimed to utilise corrective labelling inspired
by Yang et al. [88], whereby a human user determines whether a content creator
is correctly or incorrectly labelled. We began this process by building an indepen-
dent web application to gather this feedback by presenting users with a list randomly
sampled (content creator, topic) pairs, however we decided that this approach would
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Figure 8.2: A screenshot demonstrating a search for Ceramic Shops by utilising full
text biography search.

be excessive, particularly given the time restrictions.

Integrated User Feedback. Our instantiation of corrective labelling included in-
tegrating feedback mechanisms into our search engine, allowing users to provide
feedback continuously through the lifetime of the application. Specifically, a user
can “reject” a content creator if it is returned incorrectly when searching for a specific
topic, additionally one can provide positive feedback where they believe a content
creator is particularly well categorised. For instance, if a user was searching for
Painters but a Yoga content creator (Figure 8.3b) were returned in the search re-
sults, a user can click the reject button shown in the top right corner of the result
panel in Figure 8.3b. If a user believed that the content creators was effectively
classified, they might provide positive feedback by clicking the tick in the top left
corner of the same figure. This data is collected to provide feedback for what topics
our architecture are classified well.

Corrective Methods. This allows us to determine the degenerate topics and debug
issues, for example our dictionary classifier had a degenerate mapping between Fish
and Sushi which classified all fishermen as Sushi. The large number of rejections in
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fishermen lead to an investigation to remove this incorrect mapping. In future work
we aim to incorporate a more automatic approach to reacting to user feedback,
where the system could actively learn from its mistakes by retraining based on
batched user feedback. We present an example of the feedback we acquired from
users whilst interacting with the application in Figure 8.3a. Here we can observe that
Bohemian Decor is often incorrectly classified, whereas Tattoo has high positive to
negative ratio. In future work we aim to explore more rigorous evaluation methods
for our user application through collecting data over a large time span, where we’re
able to collect feedback across all topics. It is important to note also this form
of feedback is only useful for a single label classification problem, for multi-label
approaches we would ask the user to provide feedback on which topic the content
creator is falsely classified under. Through this feedback we established that our
architecture performs exceptionally well over most topics we performed evaluation
over, but far from finished. We discuss how we are continuing to extend this work
in future work (Section 9.1), for specific directions we aim to explore for the specific
components, we direct the reader to the future work sections of the relevant chapter.

(a) Results of the feedback collected from users on our
search engine. For each topic we show the number of
positive and negative feedback responses. A positive
response indicates that a content creator is incorrectly
classified, and negative indicates that the content cre-
ator is not indicative of the topic searched for.

(b) A content creator
panel including the feed-
back buttons for users
to provide positive and
negative classification of
a content creator.
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Conclusions 9
In this work we described a complete architecture for classifying Instagram accounts
into their topic of content, from the definition of user-facing products to the imple-
mentation details. This architecture and its accompanying products are deployed in
production and are used to achieve various business goals for Filli Studios, a social
media marketing agency. The individual components of the architecture are evalu-
ated in terms of precision and recall, showing that, with a high-coverage taxonomy,
it performs exceptionally well. Additionally we evaluate the architectures overall
performance through its user-facing product in the the form of user feedback. To
the best of our knowledge, this work is the first attempt in classifying the niche
topics of content creators on Instagram at scale.

We hope the architecture designed and implemented in this work provides insights
in how techniques from various fields can be applied to social media data science.
These techniques include spanning semantic web, community detection, supervised
and semi-supervised learning, among others. We found by combing insights from
many fields enabled us to effectively solve our challenge of discovering and classify-
ing topical content creators on Instagram.

Our future work is guided by the goal of improving precision and recall of our
components and the coverage of our taxonomy. The individual improvements to
each component can be found in their accompanying chapters.

9.1 Holistic Future Work

For the purpose of clarity and relevance, we provide a per-component detailed eval-
uation at the end of each chapter. In this section we provide a holistic approach,
whereby we consider only future work which is related to all the components as a
whole. A common observation we made during our evaluation procedures is that
the more niche the topic, the lower the precision we’re able to achieve. This we are
confident is mostly a consequence of the following observations:

• Generality of Topical Signals. The limited descriptive power of biographies
in providing topical signals of niche topics (e.g. Scuba Diving) prevented our
dictionary classifier to extract the niche topics.

• Noise from Entity Linkers. It was often the case that entity linkers used
in this work failed to link mentions to conepts in a knowledge base. One
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approach we aim to explore to mitigate this issue, and hence improve our
topical coverage is by extending our dictionary with phrases. For instance the
phrase yoga teacher would map to the topics Yoga and Fitness Instructor.

9.1.1 Reliance on High Coverage Taxonomy
In Chapter 4 we defined a component of our architecture which is able to identify
seed content creators for each topic in our taxonomy. The labels of the seed content
creators are then spread to the rest of the content creator graph using the algorithms
developed in Chapter 5. Through extending state-of-the-art methods, each compo-
nent individually has been shown both empirically and quantitatively to perform
extremely well for its designed purpose (i.e. high-precision and high-recall). It is
important to note that for the topic inference pipeline to infer the topics of seeds
with high-precision, the topics must be defined in our taxonomy, i.e. if a content
creator has the topic Van Life which is not in the taxonomy, they will not be labelled
(or be labelled a general category, e.g. Travel). Next, the label spreading algorithm
can only spread labels which are collected by the topic inference pipeline, and by
transitivity, represented by our taxonomy. Finally, users of the search engine appli-
cation will not be capable of indexing unrepresented topics and the recommendations
system may lack information to make “good” recommendations. In conclusion, later
components rely heavily on previous ones, in particular, all are grounded upon the
topical coverage of our taxonomy. Due to time restrictions we were unable to dis-
cover all possible possible topics and hence provide limitations in later components,
preventing maximal performance. Additionally, missing topics may result in some
false positives which can be observed through the following example:

Imagine a content creator C with topic Poetry who follows 35 Poets and
5 Music Artists, where Poetry was not represented in our taxonomy, but
Music Artist was. From this information, the topic inference pipeline
would gather seeds for Music Artist (but not unknown topic Poetry)
and the label spreading algorithm will infer that C is a Music Artist.

To eliminate these false positives we highlight the importance of the future work
involved in development of the taxonomy. In summary, we conclude that our evalu-
ations provide strong evidence that our architecture will infer the topics of content
creators with high precision and high recall, given the information it has. This mo-
tivates us continue to use our topical community detection algorithms to discover
topics and build a taxonomy which covers as many topics as possible.

9.1.2 Topical Similarity
Figure 5.2 shows an excellent snapshot of the expressive power of this work: the abil-
ity to determine topical similarity by measuring the similarity between the vector
representations of topical communities. This vector representation can be generated
by using graph embedding approaches like Node2Vec [30] which converts a graph
into low dimensional space whilst preserving graph properties and information. In-
terested readers are directed to an review on the field by Cai et al. [9]. One may use
this information to discover unexpected relationships between topics, or build an
API to provide a programmatic means of querying similarity between niche topics
on Instagram.
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