
Cryptick - A Digital Asset Portfolio Management Platform
— Final Report —

Charith Amarasinghe, Simon Spurrier, Julian Vossen, Dimitris Nikolaou,
James Griffiths, Konstantin Hemker.

{ca508, ss19616, jv1914, dn1217, jrg17, knh116}@doc.ic.ac.uk

Supervisor: Prof. William Knottenbelt

Course: CO530, Imperial College London

16th May, 2018

Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 1

2 Specification 2
2.1 Description . 2
2.2 Use Case . 2
2.3 Product Requirements . 2
2.4 Risks . 3
2.5 Product Deliverables . 3

3 Design 3
3.1 Architecture Overview . 3
3.2 Strategy Execution (Cryptick) . 4
3.3 Front-end (Cryptock) . 6
3.4 Exchange Interaction (xWrap) . 8

4 Methodology 9
4.1 Development strategy . 9

4.1.1 Project Management . 9
4.1.2 Software Tools . 11
4.1.3 Development Workflow . 11

4.2 Subproblems . 14
4.2.1 Cryptick . 14
4.2.2 Front-end . 17
4.2.3 xWrap Methods . 18
4.2.4 Deployment . 20

4.3 Testing . 20
4.3.1 Testing Overview . 20
4.3.2 Approach . 21
4.3.3 Testing Modules . 21
4.3.4 Testing Risks & Notable Omissions . 23
4.3.5 Current Results . 23

4.4 Challenges . 24

M.Sc. Group Project Report 16th May, 2018

4.4.1 Architecture . 24
4.4.2 Wallet Management . 24
4.4.3 Poorly Documented Exchange APIs . 24
4.4.4 Testing Trading Strategies . 24

5 Group Work 25
5.1 Project Milestones . 25
5.2 Group Organisation . 26
5.3 Meeting Log . 26
5.4 Work Log . 26

6 Final Product 26
6.1 Project Summary . 26
6.2 Front-end Overview . 26
6.3 Strategy Overview . 28
6.4 Exchange Wrapper Overview . 32
6.5 Next steps for Cryptick . 33

Appendices 40

A Installation Instructions 40
A.1 System Requirements . 40
A.2 Installing Dependencies . 40

B xWrap API Documentation 41

C Strategy API 43

D Test coverage 45
D.1 Strategy coverage . 45
D.2 Front-end coverage . 47
D.3 xWrap coverage . 48

E Meeting Log 48
E.1 Commit Log . 50

E.1.1 Strategy . 50
E.1.2 Front-end . 50
E.1.3 xWrap . 51

E.2 Facts and Figures . 51

2

M.Sc. Group Project Report 16th May, 2018

1 Introduction

1.1 Background

The Digital Asset Boom1 Since Bitcoin was introduced in 2008, with a white-paper describing
the world’s first decentralised currency[12], its market cap has grown to over $100 billion and spawned
an asset class worth almost $1 trillion by the end of 2017[3].

Today, there are thousands of digital assets, attracting media attention across the world as they
challenge traditional ideas of money and exchange. However, the market for digital assets remains
highly volatile and relatively untouched by government regulation.

Institutional and Retail Adoption With the unprecedented increase in value of the digital asset
market during 2017, retail investment grew at an astonishing rate. Institutions, keen to meet this
demand and gain exposure to a volatile and lucrative asset class in an era of dormancy in traditional
markets, are starting to take notice.

1.2 Motivation

A Challenging Market The market for digital assets remains highly fragmented - a large number
of online only exchanges, operating in various jurisdictions, each offering a different subset of trading
pairs. Very rarely do two exchanges list the same price for a given trading pair because of differences
in fee structure and trading restrictions.

In most cases, despite the billions of dollars of daily trading volume, these markets are not subject
to traditional financial regulation. As a result exchanges are run with varying levels of competence
and are often subject to price manipulation.

Given these conditions, a need for a platform providing controlled and uniform access to these
markets has arisen. This makes the exchange of digital assets more straightforward and less risky,
optimising for price and speed.

Investment Industry Investment funds not only need to trade effectively but must maximise
returns. This may be on a long term basis, where funds should be allocated efficiently to minimise
unsystematic risk and gain exposure to outperforming assets, or a short term basis, using optimal
high-frequency trading algorithms to capture immediate profits.

Institutions require a reliable tool for portfolio allocation and trading strategy testing in the market
for digital assets.

Miners and Infrastructure Cryptocurrency miners drive the ecosystem and generate and hold
large amounts of crypto-currency. To stabilise their portfolio and grow their digital assets they need
automated portfolio balancing and a robust trading system that can deal with large volumes of trades
without impacting the market (trade slicing).

Other infrastructure providers, such as cryptocurrency payment services, need to manage their
digital asset holdings in a similar way, and be able to quickly find liquidity to serve customer’s needs
whilst minimising risk.

The Consumer For digital assets to experience true mass adoption there must be a consumer
level trading application for managing and investment a cryptocurrency portfolio, analogous to online
banking services today. Consumers must be able to optimise and control their own portfolio through
a user-friendly interface.

1In this section, and throughout this final report, some paraphrased and verbatim content from the first[21] and
second[22] reports is included without further citation.

1

M.Sc. Group Project Report 16th May, 2018

2 Specification

2.1 Description

The Cryptick platform is a portfolio management tool for cryptocurrencies. It incorporates an al-
gorithm to auto-diversify a portfolio in real time and respond to market events and market micro-
structure. The platform provides a unified interface to different exchange to overcome the fragmented
market. Users are able to monitor the performance of their portfolio through a web dashboard and
tweak parameters to reflect their desired portfolio composition. More advanced users are also be able
to write their own trading strategy and test its functionality using a backtest environment [21].

2.2 Use Case

There are two major use cases for the Cryptick platform:

Cryptocurrency Portfolio Diversification The first type of user is one that typically has a
constant stream of income in a cryptocurrency (e.g. a mining company) and wants to diversify
their holdings into a variety of other currencies with minimal effort to reduce cluster risk. Cryptick
leverages a capital allocation theory named Markowitz Portfolio Theory that has been heavily used
in the financial markets over the past half century. The theory argues that investors can optimise the
risk-return ratio of their portfolios through diversifying across different assets (i.e. cryptocurrencies),
benefiting from the imperfect correlation between those assets. Based on this theory, the user provides
Cryptick with their current portfolio and the platform suggests multiple optimal portfolio mixes which
which the user can select.

Cryptocurrency Trading Strategy Backtesting The second type of user is typically a more
sophisticated cryptocurrency investor who wants to have an environment to backtest and execute
their trading strategies. This customer will purchase the software package as a virtual appliance and
install it on a host with local network access. An administrator will then configure the software with
API keys for cryptocurrency exchanges, wallet addresses and the currency types allowed for trade.
The customer (or their authorised employees) will then be able to view their portfolio balances, choose
a target portfolio from choices presented by the software, and start a trading process that would trade
towards the selected target.

2.3 Product Requirements

All of the minimum requirements set at the onset of this project were met. Additionally, the majority
of stretch goals were also met. What follows is a list of the requirements met, the last two bullets of
which state the stretch goals that were met [21].

• A strategy for portfolio diversification, grounded in Markowitz Portfolio Theory, parametrised
by a client-specified risk level, and tested on historical data.

• A trading system which interfaces with live exchanges to receive market data and issues appro-
priate orders determined by the strategy to an exchange mock which allows paper-trading.

• An interactive browser-based dashboard for visualisation of the current state of the portfolio
and strategy, and for adjusting parameters of the strategy through UI controls.

• Support for data from cryptocurrency exchanges Bitfinex, GDAX and Poloniex.

• Support cryptocurrencies Bitcoin, Bitcoin Cash, Litecoin, Ethereum, ZCash and Monero.

• Implement a trading architecture which supports other strategy types - for example, arbitrage
strategies through the unified exchange interface.

• In-application strategy backtesting facilities.

• Central management and logical partitioning of exchange wallets.

2

M.Sc. Group Project Report 16th May, 2018

2.4 Risks

A high level view of the risks faced in this project are listed below:

• Markowitz Portfolio Theory was developed based on traditional financial markets which are
significantly less volatile than cryptocurrencies. It is possible that digital asset market behaviour
does not conform to traditional financial modelling posing a moderate risk to the project - deeper
research is required [7].

• The trading and simulation features depend on external data. Hence, there is a moderate risk
of external data sources becoming unavailable.

2.5 Product Deliverables

• An application that is supposed to be long-running in a headless environment, which fetches
real-time market data, evaluates this data using a trading strategy, and sends orders to virtual
exchanges accordingly.

• A browser-based interface for the above described application which provides inputs for user de-
fined strategy parameters, a visualisation of the portfolio’s state, and trade execution monitoring
[21].

3 Design

3.1 Architecture Overview

The broad function of the Cryptick platform makes system architecture critical in building an exten-
sible and maintainable product. The Separation of Concerns principle was applied to determine the
three primary modules of the platform: exchange interaction (xWrap), strategy execution (Cryptick)
and front-end (Cryptock).

For overall application structure, a micro-service architecture was selected, as the exchange interac-
tion and strategy execution components best benefited from two concurrency patterns (coroutines and
threading) that would not integrate together in a single monolithic structure. Though the front-end
could be hosted by one of the other components, it was decided to make it a dedicated micro-service
in order to simplify development. Further reasoning behind this choice is discussed in Section 4.4. An
initial high-level diagram for the system architecture is shown in Figure 1.

Strategy Execution (Cryptick) Cryptick is a framework for writing and testing Python-based
cryptocurrency trading strategies using a simple, easy-to-use API. Individual strategies run inside
dedicated processes and have their lifecycle managed by a main Cryptick process. Strategies are able
to create and update UI components visible from the front-end through an API layer made available
by Cryptick (Table 6 - Appendix B), as well as call the xWrap API to connect the strategy execution
to the available cryptocurrency exchanges (Table 5 - Appendix B). The user of the platform can choose
either to use provided strategies (e.g. the efficient frontier strategy) or write their own strategy using
the APIs.

Front-end User Interface (Cryptock) Cryptock is a React-based web interface that displays the
status and operation of running Cryptick strategies and enables wallet-management. It connects to
both back-end components (Cryptick/xWrap) to post strategy information, wallet balances and order
streams. Information is available to the user at different levels:

• Strategy-level: information per run

• User-level: aggregated information about all strategies and wallets

• Market-level: general cryptocurrency market information

3

M.Sc. Group Project Report 16th May, 2018

Figure 1: High Level Design Diagram

Exchange Interaction (xWrap) xWrap builds an abstraction layer to multiple cryptocurrency
exchanges and manages the lifecycle of buy/sell orders and the collection of pricing data. It additionally
provides a simulated trading mode (termed ‘paper’ trading) atop supported exchanges in order to test
strategies in a sandbox environment without risking real money.

3.2 Strategy Execution (Cryptick)

Requirements The following requirements for the strategy execution engine are derived from the
project requirements:

• Support execution of different trading strategies

• Communicate with the exchange interface (xWrap) to receive exchange data and manage orders

• Simulate the execution of trading strategies using historical data (backtesting)

• Expose strategy management API to the front-end

In addition to the above requirements, the ease of operation and usability without the front-end
for strategy developers was prioritised.

Design Overview Figure 2 provides a high-level overview of the strategy runner architecture. A
server process provides an HTTP API for the front-end and creates processes for executing strate-
gies. Each of these instantiations has a central communication node - the message hub - as well as
communication interfaces and the strategy logic itself.

Internal Dataflow The message hub serves as distributor for all data in the trading system and is
handled by each strategy block. The exchange wrapper can connect to the message hub through an
adapter and send or receive messages through a fixed message format. The chosen format of messages
exchanged over the hub is similar to JSON-RPC 2.0, which specifies two message formats.

• Notification/Call: specifies ‘method’ and ‘response method’ fields.

{

"mhubrpc": "0.0.1",

4

M.Sc. Group Project Report 16th May, 2018

Figure 2: Strategy runner design

"method": "exchange.order",

"params": ["bitfinex", "eth_usd", 10000],

"response_method": "1231709"

}

• Result/Error: specifies ‘response method’ from initial call in ‘method’ field. Example:

{

"mhubrpc": "0.0.1",

"method": "1231709",

"result": "success"

}

As shown in the above example of a trade order being sent, hierarchical method names of the format
’provider.method’ were used. The provider of a message is usually the name of a data provider (e.g.
’twitter’,’exchange’). The method would be the action executed on the provider, such as sending off
an order.

Using a central message hub enables auditing the information flow. For this purpose, the strategy
runner provides a web dashboard, which shows all messages that went through the message hub
for each strategy run. The dashboard is a small single-page application based on AngularJS, which
is hosted by the same server which provides the HTTP API as described later in this section. A
screenshot of the dashboard is shown in figure 14 in the results section.

Strategy Logic All trading logic for a strategy is encapsulated in a single class. On instantiation,
the strategy class registers callback functions for messages of interest with the message hub. Within
these callbacks, the strategy can react to messages such as exchange events, user actions or periodic
self-scheduled triggers. Such reactions can range from simple internal state updates to placing orders
by sending appropriate messages to the message hub.

This strict encapsulation of the trading logic makes it easy to implement new strategies and support
the execution of arbitrary trading strategies. Moreover, encapsulating the trading logic is also required
for backtesting, where the exact same trading logic needs to be simulated using historical exchange
data.

5

M.Sc. Group Project Report 16th May, 2018

UI Components UI components establish a bidirectional communication between a user and a
strategy run. These components consist of a format specification and a data array and can be rendered
by the front-end according to a defined set of supported component types. A strategy can create
and update components by posting messages to the message hub. The UI component manager has
registered callbacks for these messages and writes the component data to the local filesystem. For
each component, a JSON file holds the format specification, and a CSV file stores the data itself. We
chose simple files over database management systems according to the design priority of low operational
complexity to enable strategy developers to run Cryptick easily. When users log to components, they
can directly inspect the data in CSV files. Advantages of DBMS diminish in this setting where only
a single writer instance (UIComponentManager) writes to the data for each run, the total data volume
is low and the data structure is simple.

For the communication from the user to the strategy, the front-end can post data to individual
components. These posts are then converted into valid message hub messages and forwarded via the
message hub socket interface.

CLI As users should be able to develop new trading strategies without running the front-end server,
the strategy runner comes with a command-line interface (CLI) itself. Using this CLI, the user can
run single strategy instantiations by specifying the mode and initial conditions. For example, the
following command will start a backtest run of a strategy called HodlStrategy, for a specified time,
with a initial balance of 10000 USD:

python -m cryptick.run HodlStrategy -m backtest --gdax-usd 10000 \

-s '01-01-2018' -e '16-05-2018'

Using the CLI, a strategy will run synchronously in the console.

API Server Given the requirement of exposing the strategy execution management to the front-
end, the strategy runner provides an HTTP API server to manage strategy runs. With this API, the
front-end can request available strategies, instantiate and terminate runs, and communicate with the
running strategies. The full API documentation can be found in the appendix.

As opposed to the CLI, the API server will start strategies asynchronously, by creating separate
processes for each strategy run.

Backtesting For backtesting, a run process is instantiated with an exchange simulator instead of
the XWrapInterface. Hence, the exchange simulator provides callbacks for all the messages which
would normally be send to xWrap. The simulator requests historical exchange data from xWrap to
simulate order matching and determine the corresponding prices.

3.3 Front-end (Cryptock)

Design Overview The main design of the front-end is shown in Figure 3 and shows both internal
dataflows through the front-end as well as the building blocks required for communication with the
strategy and the exchange wrapper. The control and data flow of the front-end is discussed in the
following section and a more detailed discussion about implementation considerations is included in
section 4.

Reducer All state management happens through the reducer, which keeps track of the state of the
application and specifies how the application’s state changes in response to actions. This is just a
composition of pure functions from state-to-state. The initial state of the application is stored in the
reducer as an immutable object whose members are aligned with the format expected by the xWrap
and front-end API.

6

M.Sc. Group Project Report 16th May, 2018

Figure 3: Front-end design

Actions Fundamentally, all communication throughout the application occurs through actions.
State updates may only occur in response to actions, whose types are matched on to produce the
desired effect. Actions can be triggered by any part of the application upstream of the reducer, such
as upon loading a UI component, on receipt of websocket communication, or by user interaction (e.g.
onClick, onHover, etc.). Actions consist of types and payloads of information, used for updating the
application’s state, or intercepted by middleware (in our case, sagas) to perform intermediate trans-
formations or effects (most notably, AJAX requests). An example of an action would be adjusting the
portfolio weights on the efficient frontier strategy using the sliders component. As soon as this action
is dispatched, the reducer, which is listening for all actions, matches on this action type and updates
the state of the application corresponding to its payload. Actions within the Redux architecture are
the only source of information for the reducer, leading to consistent state management with a single
source of truth.

Container Components and Selectors Container components manage the data used by the UI.
Using container components separated from the rendering (UI) components separates the process of
data-fetching and rendering for each component. Any state updates broadcast by the reducer are
heard by container components, which map the state of the application (and in our case, router
state) to the required properties of the UI component. The main upside of separating rendering and
container components is that components can be re-used more easily and the rendering component
is not concerned with state management. Containers themselves use selectors to efficiently compute
derived data from application state. This efficiency is achieved through memoisation and functional
composition, allowing the functions to be called on every state update, but only being fully evaluated
if the inputs have changed. The reselect library was chosen for selectors.

UI Components The container components map the state of the application to the properties of
the rendering components that were built using React in conjunction with Google’s Material-UI. All
chart representations were rendered using react-chartjs-2. Rendering components also provide an
interface to the actions available to the user (see above).

Sagas Sagas are a relatively old concept from the database world to manage state-updating trans-
actions, but novel in the front-end development context. For our application, sagas act as ’database’
middleware, sitting just in front of the reducer. These listen for particular action types which are used

7

M.Sc. Group Project Report 16th May, 2018

to communicate requests for API-calls and fork threads to perform these calls asynchronously, or sit
waiting for socket communication, before dispatching actions denoting API success or failure to the
reducer. This isolates all network side-effects to this portion of the app. Redux-saga is employed as
an implementation of the saga concept in our application.

API Interaction API interaction is done with the help of two front-end servers. Each front-end
server serves the application itself and associated assets, and talks to the back-end services. One
front-end server serves assets for the live-trading version of the application, and communicates with
the live-trading xWrap service. The other does the same but for paper and backtest trading. Both
of these server instances speak to the same instance of the Cryptick strategy runner micro-service,
as that instance manages all trading modes of strategies. These front-end server instances act as
amalgamation of proxy servers and static-asset servers, built in a fairly simple manner with express.

3.4 Exchange Interaction (xWrap)

The project specification calls for a trading system which is capable of fetching live data from cryp-
tocurrency exchanges and virtually trading according to real-time market conditions in paper trading
mode. Exchange API formats can differ significantly and offer different levels of functionality to users,
and a unified abstraction would make extending the system in the future much easier.

The xWrap service acts as a local cryptocurrency exchange, transparently handing orders to the
GDAX, BitFinex and Poloniex APIs while providing high level management and error recovery ca-
pability to client applications. It is built atop a single high performance asynchronous event loop
that services network connections, handles events and carries out scheduled tasks. What follows is a
discussion of key design concepts; full documentation is bundled with this report and made available
in the appendix.

Figure 4: Simplified Diagram of xWrap

Design The component diagram for the xWrap service is shown in figure 4. The service is packaged
as a Python module and requires CPython version 3.6 or later on MacOS or Linux. A brief description
of the various components follows.

API Layer The API layer is a set of functions which expose the core functionality of xWrap to
client services. Consult the xWrap documentation in the appendix for a full list of supported API
methods. These functions are implemented in the service.ExchangeWrapper class.

8

M.Sc. Group Project Report 16th May, 2018

HTTP REST API The HTTP API module translates incoming HTTP requests into API calls on
the API layer. The HTTP server is provided by the sanic library for Python and the API stubs are
specified in the http server module.

WebSocket RPC API The RPC API module translates incoming RPC requests into API calls on
the API layer. This is implemented by the rpc.RpcInterface and wsock server.WebsocketServer

classes.

Config The Config module provides a global configuration to all other modules. Variables can be set
either through a JSON configuration file, or in certain cases, overridden by OS environment variables.
Example configuration variables include ports for serving APIs, security credentials for exchange API
access and tradeable currencies. The Config module allows for flexible configuration of the xWrap
service when deployed.

Exchange Adapters The exchange adapters form the core of the exchange interaction tasks. These
are implemented as Python modules in the exchange package which abstracts the Web APIs for
different providers into a unified set of Python methods. The modules also spawn and maintain
recurring tasks that poll exchanges for certain types of data. For exchanges delivering Level 2 market
data, exchange adapters additionally subscribe to push APIs to maintain real-time exchange order
books.

Logical Wallets Logical wallets allow the logical partitioning of exchange wallets into wallet sets.
This allows users to sandbox portions of funds held on exchanges to a single strategy and ensure that
strategies are limited to seeing and using only those allocated funds. This functionality is implemented
in the models.VirtualWallet and logical wallet.LogicalWalletManager classes.

4 Methodology

4.1 Development strategy

4.1.1 Project Management

To ensure the timely completion of the project, Agile software development was used. Agile specifies
an iterative and flexible approach to the development of lean software that requires the regular input
of members of all teams.

In particular, two key Agile frameworks called Scrum and Kanban were employed. Scrum focuses
on breaking down the development work into blocks and completing them in an iterative fashion
within a set time limit. Each iteration is called a Sprint and the time of each Sprint is set by the
Scrummaster (in our case the team leader)[16]. We chose small iterations of two weeks as this size
of time frame allowed us to be more adaptive. Scrum also entails regular quick meetings to track
progress. Therefore, we met on average twice a week for a total of four times per sprint. The Kanban
framework places its focus on the visualisation of the blocks that are created on every sprint and this
was very valuable in tracking progress within each sprint.

Agile was chosen mainly due to its adaptive and iterative nature. Moreover, some team members
previously worked on projects using these techniques. The implementation of Agile was made on
Asana, a software that allows us to easily use Scrum and Kanban. Figure 5 is a snippet of the
Cryptick Kanban board on the 22/02/2018.

9

M.Sc. Group Project Report 16th May, 2018

F
ig

u
re

5:
K

an
b

an
B

oa
rd

22
/0

2/
20

18
.

10

M.Sc. Group Project Report 16th May, 2018

4.1.2 Software Tools

Programming Language The choice of programming language, unless constrained by application
specific requirements, is largely determined by the skill-base of the organisation2. For this project,
the ability to easily interface with third-party web services and perform fixed-precision computation
on large datasets is critical. Python was chosen as the main back-end development language due to
the team’s past experience and for its strong library support in the above areas.

Computer Resources As the end-product is a web application, the only external resources required
are servers for hosting the application and any supporting services. No special compute or storage
requirements were needed and the Department of Computing’s Apache CloudStack virtualisation
platform was used to create VMs. The Cryptick platform is hosted on 3 VMs, one for production, one
for development and one for the time-series database. A fourth VM provides a GitLab CI Runner for
Continuous Integration.

Software Packages The final product (section 6) depends on a number of third-party libraries
and services. Associated license requirements can pose significant limitations on commercial use.
Open-source dependencies should thus be licensed under a BSD-style or similarly permissive license
that permits free commercial use without any restrictions on the end-product. Web services to be
used, such as cryptocurrency exchanges, will be priced on a per-transaction commission or subject to
volume-pricing agreements. These costs will be unavoidable for any participant in the ecosystem.

Version Control and Code Review Git has been chosen as the version control system for this
project. This is largely due to the wide familiarity with Git within the team. Alternative tools such as
Mercurial and SVN pose no specific advantage within the scope of this project. GitLab and Imperial’s
GitHub Enterprise were evaluated for hosting a co-ordinating repository, code review functionality, a
bug tracker and support for continuous integration. GitLab was selected due to simpler CI integration
with GitLab Runner.

4.1.3 Development Workflow

Workflow A structured workflow forms an integral part of managing day-to-day collaborative soft-
ware development. It primarily guides the effective use of version control software, issue trackers
and code review processes to ensure the creation of high quality, readily deployable code. Given the
size of the team, a branch-review-merge strategy is proposed2 as it maps smoothly with the built-in
code-review functionality on GitLab[20]. In this model, a new feature is developed in its own branch
by one or more developers. When a feature is completed, the primary developer will raise a merge
request to the upstream branch and resolve any merge conflicts that have developed. The subsequent
diff will be brought up for approval by the maintainer of the upstream branch. A merge request that
passes this review process will be merged upstream. Figure 6 shows an example review of a merge
request using GitLab.

Continuous Delivery and Continuous Integration CI/CD practices enforce rapid releases of
code to production environments and incremental changes to software. Such a system is adopted
in-line with modern best practice in order to achieve highly visible iterative progress. Figure 7 shows
an extract of the GitLab CI system for the xWrap process. Branches failing tests or missing coverage
need to be fixed before they can be merged upstream.

Development Practices Various project-specific practices such as Git workflow, code style, commit
strategy, documentation requirements and test practices are documented and maintained within a
central docs repository on GitLab.

2Certain assertions in this section are based on the teams experiences or observations from industry.

11

M.Sc. Group Project Report 16th May, 2018

F
ig

u
re

6:
G

it
L

ab
M

er
ge

R
eq

u
es

t

12

M.Sc. Group Project Report 16th May, 2018

F
ig

u
re

7:
G

it
L

ab
C

I
P

ip
el

in
es

13

M.Sc. Group Project Report 16th May, 2018

Internal Communications Team communications were largely carried out through the Slack plat-
form. In addition to providing convenient web and mobile applications, Slack allowed the creation of
‘Channels’ for each workstream. This enabled interested parties to passively monitor design discus-
sions on parallel streams as well as to keep a log of all discussions. The support for chat bots also
enabled integration with third-party services such as GitLab and Sentry.IO.

Metrics and Error Reporting As large parts of the Crytpick platform are long running processes,
bugs can cause errors or unexpected behaviour at any time, and developers might not always notice
them. As such, error reporting and proactive monitoring are key to identifying issues and fixing them.
Two major strategies were adopted to address this requirement: The third-party Sentry.IO service[5]
is used to log and alert on runtime exceptions and the Prometheus monitoring system[14] is used to
instrument key sections of code to monitor for critical variables such as response times, error rates
and message counts[15]. Figure 8 shows the dashboard of the Sentry.IO web application and Figure 9
shows graphs of some of the metrics monitored on the xWrap service.

Documentation APIs for the Cryptick platform are documented using Python Doc-Strings and
text files in Markdown format. The Python sphinx library is used to generate HTML and PDF
documentation from these sources. The reference documentation attached in the appendix to this
report was generated in this manner.

4.2 Subproblems

As mentioned in section 3, the main workstreams of the project were broken down according to
its subproblems - the strategy, the exchange wrapper and the front-end. On top of these general
subproblems, the main overarching subproblems are discussed in the following, namely integration of
the three workstreams and deployment of the Cryptick platform.

4.2.1 Cryptick

Portfolio Diversification Strategy The Markowitz Portfolio Theory was used as the portfolio
diversification method. This theory is very commonly applied to traditional financial portfolios (e.g.
bonds, stocks) and as such it was trusted by the Cryptick team.

Input The strategy receives two inputs. The first one is the Open-High-Low-Close data of the
supported cryptocurrency on a 5 minute interval over the past 180 days. The strategy does not need
to communicate with any exchanges as the xWrap component of Cryptick collects and adjusts the
data. Therefore, the strategy communicates with xWrap and collects the data needed. The second
input is from the users of the platform. When diversifying their portfolio the user is asked to specify
a risk/return trade-off.

Data Processing The strategy then processes the data and generates 10,000 portfolios with
random weights over the cryptocurrencies selected. For these 10,000 portfolios an expected return
and a variance is calculated based on the historic prices. The return of a portfolio is calculated as the
weighted average of the historic returns. The portfolio variance is calculated by taking into account
portfolio weights and the correlation coefficient between the portfolio assets [10]. The formula for
portfolio variance can be found in the equation below.

V ariance =

N∑
i=1

N∑
j=1

(wj ∗ ρij) ∗ (wi)

wi :weight of asset i

N :number of assets in portfolio

ρij :correlation coef. between asset i and j

(1)

14

M.Sc. Group Project Report 16th May, 2018

F
ig

u
re

8:
S

en
tr

y.
IO

D
as

h
b

oa
rd

15

M.Sc. Group Project Report 16th May, 2018

F
ig

u
re

9:
P

ro
m

et
h

eu
s

S
ta

ts
fo

r
x
W

ra
p

R
en

d
er

ed
in

G
ra

fa
n

a

16

M.Sc. Group Project Report 16th May, 2018

Figure 10: The Efficient Frontier Curve.

For each random portfolio, a Sharpe ratio is calculated which reflects the return earned in excess of
the risk free rate. As a risk free rate, a semi-annual return of 3% was used as that appears to be the
rate of US 10Y bonds [1]. It follows that the portfolio with the highest Sharpe ratio should be the one
selected assuming that the investor is willing to take any level of risks. The formula for the Sharpe
ratio is given below [11].

Sharpe ratio =
(r̄p − rf)

σp

rf :risk free asset

r̄p :mean portfolio return

σp :portfolio standard deviation

(2)

Output Out of the 10,000 portfolios, the ones with the highest return for every level of risk
are determined. These portfolios are said to create the efficient frontier as it would be inefficient for
investors to choose any portfolios other than these. An illustration of the random portfolios and the
Efficient Frontier can be viewed in Figure 10. The strategy writes all these portfolios that make up the
Efficient Frontier together with their expected return, variance and Sharpe ratio into a UI component
which is then displayed on the front-end. It also adds the covariance matrix between all selected
cryptocurrencies together with all single-asset portfolios for recomputing metrics for user-specified
portfolios.

4.2.2 Front-end

The methods used to meet the requirements of the front-end application are described below. While
these are to an extent touched upon by the content of 3.3, we here go into more detail as to the methods
used to overcome both intellectual and technical problems, and alternatives that were considered.

17

M.Sc. Group Project Report 16th May, 2018

Virtualising the UI One of the significant challenges faced by the front-end has been maintaining
responsiveness in the face of large and unpredictable volumes of data from back-end sources, both in
stream- and batch-form. These two forms of data-source have different requirements for maintaining
responsiveness: streams require being able to handle unpredictable frequency of messages effectively,
while batch data requires being able to process large volumes of data and update the UI without
resulting in noticeable slowdown. Both of these requirements are satisfied through a combination of
virtualising the UI and batching updates to the actual DOM based on a ’virtual’ DOM. The displaying
of large quantities of batch data is mitigated through the use of virtual tables, which render only as
much data as is visible, calculated according to scroll position.

Unified Theming While CSS lays the foundation for web-UI styling, operating on a team-project
requiring consistent theming while also having granular control over how the theme is expressed in
particular components exposes its inadequacy as a way of managing styling in itself. To remedy
this, we used the high-level Material UI library for React to enable automatic theme- and styling-
injection, as well as access to a consistent set of pre-styled components. This provides a basic set of
building-block components all determined by a single theme configuration. If properties of the theme
are changed, these changes propagate down through the entire application. Moreover, when needed,
theme properties can be overriden by particular components. This enables a uniformly styled UI,
where components designed by team members automatically adopt the theme of the application.

Unidirectional data-flow & Immutability To facilitate an easy division-of-labour between mem-
bers of the front-end team and reduce mental overhead, a strict unidirectional data-flow and pub-sub
architecture was adopted for data management. This is implemented through the Redux library. All
communication is done through a single channel (via actions), and actions may only be dispatched
from outside of the data-store. While this leads to greater initial overhead in setting the project up, it
has enabled us to easily reason about the project as time has gone on. Utilising seamless-immutable

to enforce immutability throughout the project has also ensured the absence of bugs caused by state-
mutation due to side-effecting functions in other parts of the project.

Development server One of the challenges of developing the front-end in tandem with the back-
end has been managing data-dependencies for the development process. Thus rather than initially
developing against the changing back-end, we have primarily developed against sample data in our
production server, and transitioned to live servers once the project was bootstrapped.

4.2.3 xWrap Methods

Some of the key design decisions were already outlined in section 3.4. On top of these design choices,
the following methods were used in the implementation of the exchange wrapper.

Paper Trading As xWrap must support both paper and live trading on an exchange, it was desir-
able to reduce code duplication between these two modes of operation. Lightweight subclasses were
considered but this would require additional work from a developer adding support for a new exchange,
thus the two modes of operation were implemented via dynamic inheritance at start-up, whereby the
exchange adapter selection can be overwritten with simulation routines when an exchange is loaded in
‘paper’ trading mode. Trades are matched against real-time order books maintained via subscriptions
to level 2 trading data, and as such have a high degree of accuracy.

Easing Client Development Developing for an API only web service is sometimes difficult during
the early stages of a project due to the absence of a user friendly interface to test API calls. From
the API developers perspective, it is also difficult to spot the nuances of API usage and address any
design issues pro-actively. To overcome this obstacle, xWrap provides its own web-based dashboard
to allow users to view data and perform most core operations. This dashboard as shown in section
6.4 uses the same APIs as client micro-services and serves as a reference example for API usage.

18

M.Sc. Group Project Report 16th May, 2018

Event Loop The xWrap service is largely I/O driven, acting as both a client and server, and car-
rying out tasks when certain events are triggered (a new level opens on a cryptocurrency order book,
an order is filled by an exchange, etc.). An Event Loop design pattern lends itself well to this type
of application, allowing programmers to segment behaviour into tasks triggered by events (incom-
ing/outgoing messages, timer ticks, etc.). Python provides a number of libraries to implement such
a loop ranging from the DIY solutions around the select() system call to fully fledged frameworks
such as Tornado. For the design of xWrap, three main approaches were considered for implementing
an event loop:

Worker Threads Threads are a popular concurrency primitive. Any parallelism advantages
however are nullified thanks to the CPython Global Interpreter Lock (GIL) which prevents parallel
execution of Python bytecode. Moreover, threaded applications can be notoriously difficult to debug
when data races occur, and are in this respect inferior to the following solutions.

Custom Asynchronous Loop The select() system call and newer alternatives such as epoll
and libuv provide a versatile mechanism to implement non-blocking I/O. This combined with a simple
task manager can be used to implement a basic event loop in Python. The downside is that any I/O
participant must declare and manage callbacks whenever it waits on I/O and the management of these
callbacks can become tedious and difficult to debug.

AsyncIO The asyncio library was added in Python 3.4 to provide a more programmer friendly
approach to asynchronous programming in Python. The library adds a new programming paradigm
to the language and thus presents a steep learning curve to even experienced Python programmers.
However, it presents the most elegant solution to the problem of an event loop, as Python functions
can be transformed into asynchronous tasks through addition of a single keyword. The downside
however is that co-routines (as created by asyncio) do not support pre-emption and thus tasks must
voluntarily yield execution for other tasks to run. Any blocking operations inside a co-routine will
block the entire process. The lack of pre-emption however has an advantage in simplifying the process
of mutual exclusion, as context switches are solely under the control of the programmer.

After prototyping each implementation option, the asyncio option was selected as it presented the
most modern and concise solution to designing an event loop. Some tasks such as rate limited HTTP
operations are simpler to express with blocking I/O, and the Python built-in concurrent.futures li-
brary was used to synchronise threads and co-routines. The third-party janus library further provides
a queue implementation that provides both synchronous and async friendly access.

Storing Time-Series Data Strategies require historic market data in order to compute metrics
such as asset risk. These volumes of data can span multiple years and cannot be queried from
exchanges on-demand. Thus the xWrap service must collect and store them such that they can be
later queried by strategies. This data is indexed by time and can potentially reach volumes of a few
hundred datapoints per minute.

A number of specialised Time-Series Databases (TSDB) and relational databases were considered
for storing this data and PostgreSQL and InfluxDB were shortlisted for consideration. InfluxDB was
selected for use mainly due to its simplicity and ease-of-use compared to PostgreSQL which required
additional tuning for the expected volumes of data.

Simulated Trading It is impossible to model true market impact - the reaction the market would
have to your trading activity. However, assuming any market impact is negligible - that an individual’s
trading activity is insignificant compared to traded volume over the period of their order - a paper or
back-testing trading environment has value for testing trading strategies, particularly those focussing
mostly on high frequency, short term trades.

At a level as granular as a a level 2 order book, it is necessary to maintain control over what
live liquidity ”should be” available to prevent trading against the same liquidity twice. A record of

19

M.Sc. Group Project Report 16th May, 2018

past virtual trades was implemented that matches off with incoming orders as they update the locally
maintained book.

Matching Logic The virtual exchange implements a matching engine according to a typical central
limit order book[17]. Orders are matched according to price time priority - virtual orders they are
always traded at the best available price. Any order not immediately executable sits ”on the book”
until it matches against an incoming order. We model this by maintaining a record of open order
which may match against new updates to the order book.

Four order types are available: limit order, market order, fill or kill (FOK) and immediate or cancel
(IOC). These are the most commonly used order types on live exchanges. A limit order will execute
the order up to a specified price limit and will remain ”on the book” until it is matched or cancelled.
A market order executes the full size of the order at the best currently available price. An IOC order
trades all available size up to a specified limit and cancels the residual. A FOK order will trade the
entire size of the order up to the limit or cancel the order.

This matching logic is typical of major trading venues across asset classes.

Maintaining Real-Time Order Books Maintaining live local order books allows high frequency
trading strategies to be thoroughly tested and to competitively trade live. It also provides better
pricing information for strategy analysis and ensures that trade execution achieves an optimal price
in live trading and a realistic price during testing.

A live order book type was created with a universal message format for book updates and trades,
incorporating double trade protection. At least 100 price levels are maintained for every traded
currency on every supported exchange, with size aggregated at each level. A snapshot provides the
order book baseline and update messages are pushed from the exchange over a websocket interface as
soon as the exchange’s order book changes.

4.2.4 Deployment

Motivations for Docker Deploying micro-services , dependencies and configuration can introduce
significant systems administration overhead. Docker containerisation was adopted to minimise this
overhead and speed up deployment. Each micro-service component is packaged with its own Dock-
erfile which defines how to build a container for that service. These individual containers are then
orchestrated with the docker-compose tool in order to bring up the entire Cryptick platform with
a single command-line invocation. This process makes deployment far more convenient than with
manual installation and management of individual components.

4.3 Testing

4.3.1 Testing Overview

As mentioned in section 3, the project was broadly split into three main components - the strategy,
an exchange wrapper and a front-end web interface. For testing, the three components are unit
tested individually and integration tested against the predefined API contracts, resulting in a high
test coverage and confidence in each component [2]. The final end-to-end testing will then attempt to
capture any contractual disagreements between the three micro-services by running in paper trading
mode. This simulates a real trading environment and captures the full range of functionality and
behaviour by trading virtual assets according to real exchange data. The three test types used for the
Cryptick platform are summarised below:

Unit Tests These are white-box tests that are performed on individual functions and methods in
isolation. The completeness of the unit tests was measured by looking at total code coverage
(see section 4.3.5). Unit tests were kept relatively simple and rely on mock functions to mimic
the behaviour of external dependencies.

20

M.Sc. Group Project Report 16th May, 2018

Integration Tests These tests check the links between unit tested objects and/or external services
(databases, web APIs) to ensure that the individual components of a micro-service work together
correctly. They are most commonly grey-box tests and have a lower reliance on mocks.

System Testing These black-box tests verify the functionality of the entire application. As the
prior stages would verify the correctness of individual blocks to a significant extent, end-to-end
tests seek to verify that the application functions at a high level. It is achieved by running the
application against typical use cases and evaluating the resulting behaviour against expected
outcomes.

4.3.2 Approach

• Designing test cases: Design of test cases depended heavily on the component of the project
that was being tested. At a high level, the design of every test was composed of the input data,
the order of execution of the test cases and the output of the test.

• Preparing test data: Test data was prepared in order to ensure high coverage with the use
of credible, reliable and most of all representative data. Additionally, keeping the size of the
data to a minimum level was also an objective.

• Running tests with mock data: The tests were first run with no data to ensure correct test
behaviour. That was followed by testing with invalid data to ensure that correct errors would
be raised. The last step was running the test with a valid dataset and ensuring no errors were
raised.

• Interpreting results: To interpret the results, the design of the test had already specified an
expected outcome with which the test result would be compared. An error was raised if there
was a mismatch between the two.

4.3.3 Testing Modules

Exchange Wrapper (xWrap)

Testing Suite xWrap tests were written using the Python standard library unittest module
which provided a powerful testing framework as well as a mocking facility (via unittest.mock in
Python3). The nose2 package was used as a test-runner to run the test-suite and generate branch
and line coverage with coverage.py. A GitLab CI [6] script runs unit and integration tests on every
commit and alerts users via Slack and Email of any failures.

Unit & Integration Testing Unit tests were written with in-depth knowledge of the under-
lying code (white box) and individual tests were designed to cover method-level scope. These tests
were designed primarily to test correct business logic as well as to ensure robust error-handling on
unexpected input/output. In order to test methods independently of their dependencies, Mock objects
which synthesised return values were used to replace them. In Python, mocking was easily achieved
by way of monkey patching code within test fixtures.

Integration tests take a grey-box or black-box approach to testing and rely on minimal knowledge of
internal structure. The aim is to test combinations of unit-tested components for correct functionality.
Integration tests for xWrap range from testing the integration of independent test units to the testing
of xWrap as a stand-alone micro-service.

Challenges xWrap interacts with a number of external web services. In testing, this posed a
significant challenge as live services could not be relied upon in tests. Several options were evaluated,
but ultimately mocking was used to fake web requests and respond with pre-recorded API responses.

The use of asyncio for cooperative multitasking with co-routines added additional complexity to
the testing process as unittest does not natively support testing co-routines. Following a common

21

M.Sc. Group Project Report 16th May, 2018

workaround for the unittest framework, a lightweight async wrapper was implemented to simplify
the test implementation [8]. For integration tests, a server thread was spawned with its own event
loop for code under test while the test fixture ran in the main thread. Interactions between the two
were performed over local network connections and threadsafe queues.

Current Status & Improvements The exchange wrapper currently achieves 90% code cov-
erage and 85% branch coverage through unit and integration tests. Most of the untested lines are in
error handling code for system level functions such as thread and socket handling. These facilities will
need to be mocked in order to achieve coverage or extensively code-reviewed as the underlying events
that trigger them are difficult to simulate inside test fixtures.

Strategy (Cryptick)

Testing Suite As the trading strategy framework, cryptick, builds on an identical technology
stack as the exchange wrapper, it was decided to adapt the same testing suite. A similar GitLab Con-
tinuous Integration (CI) chain was also configured using Python’s unittest, nose2 and coverage.py

modules.

Unit testing White-box unit tests are used on a single class or function scope to ensure each
individual part’s correctness. This is particularly crucial for the logic of the trading strategy itself.
Without appropriate unit tests, potentially severe errors in the trading logic are hard to identify.
For strategy testing, outputs generated from historical data were compared against against manually
computed values to test the correctness of the implementation.

Challenges Large changes in code structure can occur regularly in early stages of the Agile de-
velopment process. As a result, a very fine-grained unit test suite could become obsolete in subsequent
iterations. Therefore, an adaptive approach to unit testing was selected such that tests increase in
granularity as the codebase matures.

Current Status & Improvements The strategy component currently achieves 65% code cov-
erage through unit and integration tests. Some lines of code are currently untested as they have been
added to adhere to functionality that will be implemented in later stages of production. It is projected
that once this functionality is added, the strategy component will achieve 80% code coverage.

Front-end (Cryptock)

Testing Suite The primary testing technology used on the front-end is Facebook’s Jest. This
was chosen for its powerful mocking capabilities and simple integration with React (the front-end UI
library). Enzyme, a library for shallow rendering, is used to aid UI-testing.

Unit Testing The most crucial aspects of the application (state management and inter-component
communication) are given the most focus in unit-testing, though all units are thoroughly tested
through white- and black-box tests (for those components using external libraries which were not
mocked or stubbed out). API units were tested with the help of a mock adapter for our Ajax library
(axios-mock-adapter).

GUI Testing GUI testing was performed iteratively with each new feature addition. As the
front-end was designed in accordance with Google’s Material-UI guidelines, it can be considered a
composition of tried-and-tested components, and thus we needed only test this composition of GUI
elements, rather than needlessly starting from the ground up.

22

M.Sc. Group Project Report 16th May, 2018

Challenges The main challenge for testing the frequently-changing front-end has been the same
as that mentioned in 4.3.3. Namely, the challenge has been striking a balance between the test suite
being sufficiently coarse to describe application functionality across rapid iterations and sufficiently
fine so as not to pass trivially. Accordingly, smoke-tests were employed during the early stages of
development until a more concrete structure was settled on, at which point more comprehensive tests
were written.

End to End Testing End-to-end testing is currently performed by running the system in ’paper’
mode. Due to the different languages and environments (docker containers) that the individual micro-
services run in, coverage cannot be measured in this scenario. It is proposed to implement a custom
automated end-to-end test suite once interface APIs stabilise. However, as mentioned in Section 4.3.1,
the high coverage of individual services minimises the importance of these tests.

4.3.4 Testing Risks & Notable Omissions

The testing methods used so far do not cover comprehensive end-to-end functionality, but are
unit-specific to each of the three work streams. This is due to the development workflow which is
optimised for time. End-to-end functionality will be black-box tested at a later stage with a fully
integrated product.

Some code was ’smoke-tested’ to ensure stability and basic functionality at this stage of devel-
opment. This will be further verified in future testing to ensure code correctness.

4.3.5 Current Results

A summary of code coverage for the project is seen below. Full output from the coverage tools are
included in Appendix D.

Table 1: Project Coverage Summary
Work Unit Line Count Line Coverage Branch Count Branch

Coverage

Exchange wrapper (xWrap) 2405 82% 690 85%
Strategy (Cryptick) 1401 70%
Front-end (Cryptock) (66%) 67% 50%

23

M.Sc. Group Project Report 16th May, 2018

4.4 Challenges

Many challenges were encountered and overcome during the development process of the Cryptick
platform. A selection of these challenges and the means by which they were addressed are discussed
below.

4.4.1 Architecture

The Cryptick platform is composed of multiple components which have widely differing functionality
(e.g. strategy development, exchange management, user interface, etc...). Developing these function-
alities in parallel inside a monolithic architecture leads to multiple organisational bottlenecks and
requires a high degree of coordination between work streams. In addition this approach complicates
testing as code units are often tightly coupled with each other and require heavy use of mocking for
testing.

This challenge was overcome by organising the project in a micro-service architecture. This de-
sign approach allowed the full functionality of the project to be divided into three smaller standalone
sub problems that could be independently solved. Pre-defining application programming interfaces
(APIs) between these units during early development and regular integration testing mitigated the
risk of incompatibility between sub-units at final integration.

4.4.2 Wallet Management

Cryptocurrency can be stored on hardware cold wallets, hot/cold software wallets or on cryptocur-
rency exchanges. The Cryptick platform currently supports exchange wallets only, and a challenge
arises in partitioning funds held on these wallets between strategies that may be executing in parallel.
The supported exchanges do not provide any wallet management capability within a single customer
account. In addition, transferring funds between cryptocurrency wallets can incur significant transfer
fees and introduce processing delays.

This issue was addressed by implementing a logical wallet feature in the xWrap service. A strat-
egy can create a set of logical wallets and allocate funds to them from any unallocated exchange
wallet balances. xWrap ensures that any trades generated by the strategy are accepted only if the
logical wallets hold sufficient balance. Trades leading to movements or holds of funds on exchange
wallets are reflected on logical wallets by the xWrap service ensuring consistency with exchange be-
haviour. On termination, the strategy can deactivate a logical wallet set and allow users to reallocate
those funds to another strategy run.

4.4.3 Poorly Documented Exchange APIs

Certain cryptocurrency exchanges were found to have inaccurate API documentation and, in some
cases, non functional APIs. This posed a risk to the implementation of key features of the Cryptick
platform. The unpredictable availability of the Bitfinex API and the undocumented nature of the
Poloniex websocket API are examples of this challenge.

In all cases, these challenges were overcome by workarounds at the cost of reduced capability or
accuracy. Though non-ideal, the effects of these mitigations are systematic to any cryptocurrency
trading software that utilises the affected exchanges and cannot be resolved until the underlying bugs
are fixed.

4.4.4 Testing Trading Strategies

Unit-testing strategies posed a challenge as, in most cases, extensive mocking was required for the
supply of user input (as provided by the front-end) and trade execution (as provided by xWrap).
Mocking extensively in this way was not feasible within the time constraints of the project.

24

M.Sc. Group Project Report 16th May, 2018

This challenge was overcome through a combination of two approaches. Firstly, the backtest fea-
ture allowed for the verification of the correctness of a strategy across large timescales. Secondly,
integration tests were built to incorporate a running instance of the xWrap service and fake user input
from the front-end. The latter tests covered the minutiae of trade execution and response, while the
former covered algorithmic correctness. This two-pronged approach allowed for a high test confidence,
but also complicated the test coverage reports.

5 Group Work

5.1 Project Milestones

At the start of the project, an initial milestone table was set to track internal deadlines. The status
at the conclusion of the project is shown in Table 2.

Table 2: Project Milestones
Milestone Due Date Completed

Finalise high-level architecture 31/01/2018 30/01/2018
Specify interfaces between components 09/02/2018 06/02/2018
Exchange: Receive exchange data streams
Front-end: Basic dashboard 01/02/2018
Exchange: Make historical OHLC data available 16/02/2018 16/02/2018
Strategy: Send visualisations to front-end
Strategy: Efficient Frontier strategy making orders 23/02/2018 28/02/2018
Exchange: Simulate orders on a virtual exchange 23/02/2018 28/02/2018
Front-end: Display strategy visualisations
Exchange: Send logs to front-end
Front-end: Display exchange logs 02/03/2018 03/03/2018
Strategy: Backtest Efficient Frontier

Second Report 05/03/2018 04/03/2018

Final integration
Product meets minimum requirements 10/03/2018 15/03/2018
Front-end: render live data from server
Exchange: message hub communications

Strategy: general backtesting environment 30/03/2018 14/04/2018
Exchange: live trading 14/04/2018 Not complete
Front-end: front-end finalised 28/04/2018 15/05/2018

Final product 30/04/2018 15/05/2018
Finalise documentation 30/04/2018 11/05/2018
Final report 16/05/2018 15/05/2018

After the high-level architecture was finalised and the interface between components specified, the
focus moved to implementation. OHLC (open-high-low-close) data was made available to the trading
strategy, a key dependency for the strategy work stream. This was followed by basic integration of the
platform, whereby the efficient frontier portfolio strategy was able to place paper trading orders on a
virtual exchange. This integration milestone lagged behind its due date but, due to an extensible and
robust code base, the accelerated forward timeline meant that the critical schedule remained mostly
unchanged [22].

Completing the final integration took longer than planned. The minimum requirements mentioned
in the specification section were all met by mid-March, relatively close to deadline that was set from
the initial planning. The majority of the remaining stretch goals were also met, however, that only
took place with a two week delay relative to initial deadline. The only goal that was not met by the

25

M.Sc. Group Project Report 16th May, 2018

time of the report submission was the live trading feature. However, it is planned to implement this
functionality by the date of the software demonstration.

5.2 Group Organisation

Workstreams As shown by table 5.2, this project consists of three major workstreams, each with
two team members responsible for primary implementation and scheduling. This approach allows for
pair programming and development collaboration between workstreams in the Scrum Sprints. Sub-
team members have been allocated based on previous experience and personal preference. Regular
code reviews with the full team were used in order to coordinate between workstreams in addition to
the Scrum and Kanban practices.

Table 3: Parallel work streams
Workstream Team Members

Trading System Charith Amarasinghe, Simon Spurrier
Front-end & UI Konstantin Hemker, James Griffiths
Portfolio strategy Julian Vossen, Dimitris Nikolaou

5.3 Meeting Log

Through the course of the project, a number of well-documented meetings were held which are sum-
marised in Appendix D. After each meeting, notes were circulated via email to each member and To
Dos were assigned on Asana. As the group was relatively close-knit outside of university, there were
numerous undocumented discussions and meetings in less formal settings.

5.4 Work Log

On top of the group meetings, the most representative proxy of the time expenditure of each work-
stream spent on each topic is the commit history. Note that on top of the git history, there were some
code review sessions and pair programming sessions that contributed to the total time expenditure in
table 5.4. A commit history over time with the relevant milestones is available in Appendix D.

6 Final Product

6.1 Project Summary

The Cryptick platform implements a fully featured cryptocurrency trading suite, incorporating a
default portfolio diversification strategy, support for custom strategies, a web-based front-end, and a
unified exchange interface (xWrap).

Adherence to spec All aspects of the core specification were met. This in addition to key stretch
goals which complete the back-testable strategy architecture.

6.2 Front-end Overview

Run configuration The final front-end has a tab-based routing system connected by a navigation
bar at the top of each page (see Figure 11). The landing page is the run configuration page (Fig.
11) and allows the user to view its recent runs, add wallets and start a new strategy run. Using the
drop-down menus and sliders, the user can allocate its wallet balances from the different exchanges
to that run. Strategies can be started in three modes, as discussed in the previous sections - paper
trading, backtesting and live trading.

26

M.Sc. Group Project Report 16th May, 2018

Table 4: Work Log by Topic
Workstream/Topics Time expenditure (in man hrs)

General
Idea generation & spec 37
High level design 14
Project admin 23
Report writing 163
Group Meetings 280

Subtotal 517

Strategy
Vis. to front-end 30
EF making orders 42
EF backtest 10
Final API spec 30
General backtesting env 50
MessageHub integration 20
Full integration 40
Tests 25

Subtotal 247

Front-end
Basic dashboard 38
Strategy visualisations 31
Render Orderbook 5
Render live data 20
Strategy API calls 15
Wallet management 28
Full integration 50
Tests 32

Subtotal 302

xWrap
Overall architecture 19
Recv. data streams 35
OHLC data available 27
Virtual exchange 51
Logical wallets 32
Dashboard 16
Strategy API 29
Live book 36
Full integration 38
Tests 15

Subtotal 298

Total 1364

Strategy Tracker Once a run has started, a new strategy overview tab appears displaying details
about that run. Figure 12 shows the strategy overview page of a running efficient frontier strategy.
The blue lines on the graph show the weight history of the portfolio, i.e. the ”path” it took to reach the
efficient frontier. The efficient frontier is made up of the red points marked in the graph, where each
point can be selected to start the diversification process towards those portfolio weights. To provide
full customizability of the portfolio, the slider components in Figure 12 allow for the full customisation
of the target portfolio. Moreover, actions can be dispatched that pause or update the strategy based
on the current selection. Any update that is selected must be confirmed in an extra pop-up window

27

M.Sc. Group Project Report 16th May, 2018

before trading starts based on the selection. The strategy page also has an overview of the orderbook
which displays trades that were executed based on that strategy (Fig. 18).

Overview page The overview page carries any information relevant to the user across all strategies.
These include things such as trades executed, wallet distribution across strategies and performance
metrics of their strategies. At the time of writing, this page only displayed the trading data (order-
book), but it is expected to be completed by the date of the software demonstration.

Further features To further improve the front-end’s functionality one could implement an in-
browser editor e.g. through codemirror [13] which allows the user to utilise the API supplied by the
front-end to implement custom trading strategies. The functionality on the back-end already exists as
a command-line tool, where it is possible write a strategy.py file that leads to the execution of this
strategy through the MessageHub and the exchange wrapper. Therefore, providing a clean interface
of this functionality to the user would be of great value.

6.3 Strategy Overview

The strategy component supports the execution of different trading strategies, by communicating
with xWrap to obtain data and execute trades. The strategy can simulate the execution of trading
strategies using historical data in a backtest environment. Strategies may either be pre-defined (e.g.
efficient frontier diversification) or user-defined.

Event-Driven Backtesting Cryptick implements event-driven backtesting which grants significant
advantages over conventional approaches. This means high frequency trading strategies, triggered
by particular events, are truly backtestable, assuming no market impact. This is in contrast to
popular open source alternatives to Cryptick, where trading logic is periodically executed in a loop,
independent of any events or market conditions. Cryptick also support periodic execution by self-
scheduling periodic trigger events. As all communication during trading and trading simulations is
routed through a central message hub, the system is easily auditable. A screenshot of the message
hub dashboard displaying some messages is shown in Figure 14.

28

M.Sc. Group Project Report 16th May, 2018

F
ig

u
re

11
:

C
on

fi
gu

ri
n
g

a
ru

n
on

th
e

fr
on

t-
en

d

29

M.Sc. Group Project Report 16th May, 2018

F
ig

u
re

12
:

S
tr

at
eg

y
O

ve
rv

ie
w

P
ag

e

30

M.Sc. Group Project Report 16th May, 2018

F
ig

u
re

13
:

F
ro

n
t-

en
d

O
ve

rv
ie

w
P

ag
e

31

M.Sc. Group Project Report 16th May, 2018

Figure 14: Message Hub Dashboard

User-Defined Strategies Cryptick supports development of custom strategies by the user which
may utilize the back-testable architecture and interface with other services of the platform.

Efficient Frontier The strategy module includes a default diversification strategy based on Markowitz
portfolio theory. The existing portfolio is automatically diversified towards a risk-return optimal point,
based on user preferences.

6.4 Exchange Wrapper Overview

xWrap provides a uniform interface to GDAX, Bitfinex, and Poloniex for virtual trading in all sup-
ported currency pairs. It implements a live order book and corresponding double trade protection
for exchanges that reliably support a live level 2 websocket data feed. An independent dashboard
provides additional order monitoring and execution capabilities.

Data gathered from exchanges is available to other platform components and stored for future
analysis and use in back-testing.

Virtual Exchange xWrap implements a virtual exchange with central limit order book matching
logic, that matches trades against live market data from supported exchanges. It supports FOK, IOC,

32

M.Sc. Group Project Report 16th May, 2018

limit and market orders in all trade-able currencies. This includes management of virtual wallets for
each exchange and currency.

Dashboard An interactive dashboard allows the user to manually manage orders and monitor trad-
ing activity. It is also useful for audit purposes and platform debugging. Additionally, the user may
view and manage virtual wallets.

Live Order Books It was not possible to provide a live order book for Poloniex or Bitfinex due
to poor quality or non-existent documentation. For example, Poloniex do not officially support or
document their push API at all. In these cases, a polled order book is used and immediate double
trading is prevented with a trading time delay.

Live trading Comprehensive live trading on-exchange was not implemented due to time and re-
source constraints. However, it is demonstrable as a proof of concept.

Data management The exchange wrapper stores exchange data and live book update data that
it uses in normal operation. This data is accessible to other platform components for analysis and
testing.

6.5 Next steps for Cryptick

Assuming future implementation of live trading, whilst reliably operational, the project was con-
strained by time and resource, so the platform cannot be guaranteed for operation in a live business
environment in its current state. However, with further development, the platform could be developed
into a stable, viable product for financial applications.

Several options exist for the future of Cryptick:

• Open source - Relinquish ownership and allow the open source community to continue devel-
opment.

• Private use - Use the platform for trading personal funds or as a basis for a trading business.

• Develop as product - Develop the product for use as a supported financial application for
institutional or retail users.

• Sell codebase - Sell the codebase as-is or with some further development.

33

M.Sc. Group Project Report 16th May, 2018

F
ig

u
re

15
:

x
W

ra
p

E
x
ch

an
ge

S
ta

tu
s

34

M.Sc. Group Project Report 16th May, 2018

F
ig

u
re

16
:

x
W

ra
p

O
rd

er
L

is
t

35

M.Sc. Group Project Report 16th May, 2018

F
ig

u
re

17
:

x
W

ra
p

W
al

le
t

L
is

t

36

M.Sc. Group Project Report 16th May, 2018

F
ig

u
re

18
:

x
W

ra
p

L
og

s

37

M.Sc. Group Project Report 16th May, 2018

References

[1] Bloomberg. U.s.-10y yield, May 2018. https://www.bloomberg.com/quote/USGG10YR:IND.

[2] Toby Clemson. Testing strategies in a microservice architecture, November 2014.
https://martinfowler.com/articles/microservice-testing/.

[3] CoinMarketCap. Global charts - total market capitalisation & restriction map, January 2018.
https://coinmarketcap.com/charts/.

[4] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software Architec-
tures. PhD thesis, University of California, Irving, 2000.

[5] Inc. Functional Software. Sentry.io website, May 2018. https://sentry.io/welcome/.

[6] GitLab. Gitlab ci documentation, May 2018. https://docs.gitlab.com/ee/ci/.

[7] Rodrigo Gomez-Grassi. Markowitz portfolio optimization for cryptocurrencies in catalyst,
September 2017. https://blog.enigma.co/markowitz-portfolio-optimization-for-cryptocurrencies-
in-catalyst-b23c38652556.

[8] Manuel Grinberg. Unit testing asyncio code, February 2017.
https://blog.miguelgrinberg.com/post/unit-testing-asyncio-code.

[9] JSON-RPC Working Group. Json-rpc 2.0 specification, January 2013.
http://www.jsonrpc.org/specification.

[10] Investopedia. Portfolio variance, January 2013. https://www.investopedia.com/terms/p/portfolio-
variance.asp.

[11] Investopedia. Sharpe ratio, January 2014. https://www.investopedia.com/terms/s/sharperatio.asp.

[12] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Unpublished, October 2008.

[13] CodeMirror Project. Codemirror project, May 2018. https://github.com/codemirror/CodeMirror.

[14] Bjrn Rabenstein. Prometheus: Monitoring at soundcloud, January 2015.
https://developers.soundcloud.com/blog/prometheus-monitoring-at-soundcloud.

[15] Rancher. Red method for prometheus monitoring - 3 key metrics for monitoring, July 2017.
https://rancher.com/red-method-for-prometheus-3-key-metrics-for-monitoring/.

[16] Ken Schwaber. Agile Project Management with Scrum (Microsoft Professional). 2004.

[17] Gary Shorter. The central limit order book (clob) option for linking u.s. stock markets, 2000.

[18] S. Spurrier and C. Amarasinghe. xwrap documentation 0.4.3.
https://www.doc.ic.ac.uk/project/2017/530/g1753006/xwrap docs/v0.4/, April 2018.

[19] Talin. Pep 3102 – keyword-only arguments, April 2006. https://www.python.org/dev/peps/pep-
3102/.

[20] Emily von Hoffmann and GitLab. Demo - mastering code review with gitlab, March 2017.
https://about.gitlab.com/2017/03/17/demo-mastering-code-review-with-gitlab/.

[21] Julian Vossen et al. Digital asset portfolio management platform - report one. Unpublished,
January 2018.

[22] Julian Vossen et al. Digital asset portfolio management platform - report two. Unpublished,
January 2018.

38

M.Sc. Group Project Report 16th May, 2018

Glossary

backtesting Backtesting is the process of mocking a strategy run in paper trading mode over past
time, usually in order to test its performance before live trading. 26

CLI Command-line interface. 6

DBMS Database Management System. 6

efficient frontier The efficient frontier is the most efficient portfolio mix of any combination of assets
that optimises for risk (std. dev.) and return. 17

FOK Fill or kill order. The order is immediately executed in its full size at its limit or is cancelled.
20

high-frequency trading A style of trading whereby a large number of orders are placed in a short
period of time that may respond to market conditions at very fast speeds. 1

IOC Immediate or cancel order. The order is executed against all liquidity priced better than its
limit and any residual is cancelled. 20

limit order An order executed against any liquidity better than the limit. Any amount not traded
will remain on the order book at the limit price. 20

live trading Trading real money on real exchanges. 20

logical wallet Logical partition of funds within an exchange wallet. 9

market cap The number of shares of a stock multiplied by the quantity issued. Taking inspiration
from this, the market capitalisation of a cryptocurrency is the value of one unit multiplied by
the number of units in circulation. 1

market order An order executed in its full size at the best available price at time of execution. 20

order book A record of buy and sell orders with price and size, ordered by price and time of order
submission. 9

paper trading Paper trading is a trading feature that attempts to reproduce all features of a live
trading market so that a user may practice or test trade behaviour without financial risk. 20

portfolio A portfolio is a grouping of financial assets, usually comprising of many different trade-able
assets on financial markets, such as a stocks, bonds, and cryptocurrencies. 1

run A strategy run is an instantiation of a runnable. Note that there can be multiple runs of a single
runnable. 44

runnable Runnable strategies are the set of all strategies available to the user that he can start. 44

trading pair Commonly referred to as currency pair is the quotation and pricing structure of the
currencies traded in the foreign exchange market. An example of a trading pair would be
USD/EUR or BTC/ETH in this context. 1

UI User interface. 2

virtual wallet A simulated exchange wallet. 33

39

M.Sc. Group Project Report 16th May, 2018

Appendices

A Installation Instructions

A.1 System Requirements

It is recommended that the host environment meets the following requirements:

• A dual-core CPU running at 2GHz or higher

• Minimum 4GB of RAM (2GB if InfluxDB hosted seperately)

• Ubuntu 16.04 or later (Ubuntu 16.04 LTS recommended)

• CPython 3.6 or later

• Docker CE 1.8 or later

• Docker Compose 1.21.2 or later

• InfluxDB (OSS) 1.5.0 or later

• NodeJS 9.0 or later

A.2 Installing Dependencies

Each host machine should have the required dependencies installed. The easiest way to accomplish
this is by using the scripts in the devops package bundled with this project.

InfluxDB and Cryptick can be co-located on the same VM, but due to InfluxDB’s greedy memory
allocation, it is best if it is hosted on a dedicated VM when used in production.

Deployment

1. To run Cryptick, InfluxDB and xWrap, the easiest solution is to use the bundled docker-compose.yml

file.

docker-compose build

2. To bring up the services:

docker-compose up

3. This should bring up the services on the ports 4200 (xWrap RPC), 4242 (xWrap HTTP API),
5726 (Cryptick API) and 8086 (InfluxDB). These can be tested by:

curl localhost:5726/runnables

curl localhost:4242/xwrap/v1/status

4. To run the cryptick front-end, npm must be installed and a reverse proxy must should be used:

cd cryptick

npm install

npm build-paper

npm serve-paper

5. The front-end server will now be up on port 8200. Proxy this to port 80 (or for testing, use
reverse SSH tunneling).

ssh -L 8200:localhost:8200 remote_server_address

40

M.Sc. Group Project Report 16th May, 2018

Table 5: xWrap API Methods
API call RPC HTTP Description R/W

echo Y N Echoes parameters W
make order Y Y Creates a Order W
cancel order Y Y Cancels an Order W
get exchanges Y Y Gets exchanges and statuses R
get pricing Y Y Get average pricing for all active pairs R
get wallet set Y Y Get state of a wallet set R
create wallet set Y Y Allocate a new wallet set W

B xWrap API Documentation

Exchange Interaction API The Exchange Interaction API is supplied by the xWrap microservice
and is consumed by both strategy instances and the Front-end UI. To support both these use-cases, a
RPC based and HTTP based API is provided. The main xWrap API methods are outlined in Table
5, detailed documentation can be found in the xWrap Reference Documentation[18].

RPC API RPC API allows connected clients to execute methods on the xWrap service as if they
were local function calls. This functionality requires a message format that encodes a function name,
arguments list and return value into a network packet, and stub functions that marshal and unmarshal
Python function calls into these messages.

Multiple RPC implementations were evaluated including gRPC, XML-RPC and JSON-RPC. The
JSON-RPC format transported over WebSockets was eventually selected due to its simplicity and wide
platform support. The tinyrpc library for Python is used for standards compliant message serialisation
and de-serialisation.

JSON-RPC allows the transport of method arguments either as a list (positional arguments in
Python) or a dictionary (keyword arguments in Python), but not both. It was decided to utilise
keyword arguments across all RPC APIs in order to reduce the risk of mistakenly swapping arguments
in a function call. An example Python client API call is shown below:

wallet = xwrapapi.get_wallet(exchange="gdax", base="BTC", wallet_set_id=2)

When executed, the stub function for get wallet will encode the specified parameters into a
JSON-RPC message and send it to the server via the RPC websocket. The serialised wire-format of
the above call is as follows:

{

"jsonrpc": "2.0",

"id": 1,

"method": "get_wallet"

"args": {"exchange": "gdax", "base": "BTC"}

}

The server decodes this message and maps it to an internal Python function call. This server-side
method is declared with the signature get wallet(self, *, exchange, base). This definition uses
Python keyword only argument syntax and will result in the remote call failing if there is an argument
mismatch[19]. An example server response is shown below.

{

"jsonrpc": "2.0",

"id": 1,

"result": {"balance": "100.0", "id": 9}

}

41

M.Sc. Group Project Report 16th May, 2018

After de-serialisation on the client-side, the wallet variable will now be set to the python dict
{"balance": "100.0", "id": 9}. The JSON-RPC standards document can be consulted for a
more detailed description of the protocol[9].

HTTP API The HTTP API provides easy access to most data held by the xWrap service such as
wallet balances and open orders. Each exposed API method maps to a URI on a xWrap HTTP server
and request parameters can be passed as part of the URI structure. For example, the get wallet

API could be invoked via the HTTP API as a simple HTTP GET call as follows:

GET /xwrap/v1/wallets/gdax/BTC HTTP/1.1

Host: cloud-vm-45-137.doc.ic.ac.uk

Connection: keep-alive

With the matching response:

HTTP/1.1 200 OK

Content-Type: application/json

Connection: Closed

{"balance": "100.0", "id": 9}

API calls that fetch data from the server are implemented by HTTP GET methods while calls that
change or add data to the server are implemented with HTTP POST. APIs were designed with REST
(Representational State Transfer) concepts in mind, but adherence to these concepts was not strict[4].

The API version in the URL string allows backward incompatible changes to API formats to be
deployed without breaking support for existing clients.

Notifications The xWrap service generates notification messages whenever it becomes aware of an
update from one or more upstream services such as cryptocurrency exchanges or data providers. JSON-
RPC provides a convenient mechanism to deliver these messages to clients (JSON-RPC notifications),
however the HTTP 1.1 protocol does not provide a mechanism to push data from the server to clients
in this way. The SocketIO library is thus used to serve notifications to HTTP clients by way of
WebSocket connections initiated through the HTTP server.

Alternatives The choice of building JSON-RPC over Websocket and HTTP APIs as discussed
above was mainly due to their simplicity and cross-platform capability in a micro-service environment.
Several other RPC formats and transports were considered such as:

Message Queue (Transport) Message Queues are a common method of inter-process communica-
tion in a microservice environment. Options range from brokered queues such as RabbitMQ
to lightweight decentralised alternatives such as NSQ or ZMQ. However, as the microservices
described above are not to be used in a clustered environment, message queues would add un-
necessary overhead for little benefit.

TCP Network Sockets (Transport) Plain TCP sockets could be used for transporting API call
payloads, however this introduces new requirements such as message framing (if streaming API
calls) and the implementation of an additional compatibility layer for web browser clients. The
WebSocket and HTTP protocols do not have these disadvantages.

MsgPack or Protobuf RPC (Format) MsgPack and Protobuf are alternative means to serialise
RPC calls over the wire. Both would result in much shorter message lengths and, in the latter
case, means of defining a strict schema. The disadvantage of both however is the lack of human
readability. As all the above microservices operate on a single machine, the additional data
overhead has negligible impact.

42

M.Sc. Group Project Report 16th May, 2018

gRPC (Transport+Format) gRPC is a powerful framework for developing cross-platform, cross-
language RPC services using Protobuf and HTTP/2. However, its design requires the automated
generation of stub code at both client and server and adds additional dependencies. As the
APIs being built are mainly for internal use in a non-cluster environment, it was thought that
employing gRPC would add too much development overhead.

C Strategy API

The strategy API is implemented via HTTP GET and PUT calls.

Table 6: Cryptick API Routes
API call Description

GET/runnables Gets list of runnable strategies
GET/runs Get list of all runs and their status
GET/runs/run-id Get details on a run
GET/runs/run-id/components Get list of all UI components created by a run

with given ID
GET/runs/run-id/messages Returns all messages that went through the mes-

sage hub during a run
PUT/runnables/runnable-name/start Runs a strategy with given name and returns

run-ID
PUT/run/run-id/stop Stops the run with given ID
PUT/runs/run-id/components/component-id Send json-encoded data to specific component

HTTP GET API calls GET methods allow the front-end to query data on running and runnable
strategies. GET methods are called by front-end components when rendering to query relevant data.
A full list of GET methods can be found in Table 1 as well as the full documentation (citation
needed). An example response from the back-end for querying the actively running strategies would
be the following:

GET /runs HTTP/1.1

Host: localhost

Connection: close

HTTP/1.1 200 OK

Content-Type: application/json

Connection: Closed

{

"demostrategy_1": {

"mode": "backtesting",

"run_id": "demostrategy_1",

"running": false,

"strategy": "DemoStrategy"

},

"echostrategy_0": {

"mode": "paper",

"run_id": "echostrategy_0",

"running": false,

"strategy": "EchoStrategy"

},

"efficientfrontier_0": {

43

M.Sc. Group Project Report 16th May, 2018

"mode": "live",

"run_id": "efficientfrontier_0",

"running": false,

"strategy": "EfficientFrontier"

}

}

Note that by differentiating between runnables and running strategies, the API allows for creating
multiple runs (instantiations) of one type of runnable. For example, if a user wanted to run multiple
efficient frontier strategies at the same time, this would be possible by creating multiple runs of a
runnable strategy type ”EfficientFrontier”.

HTTP PUT API calls PUT methods are usually used to start and stop runnables/running strate-
gies or to adjust the portfolio weights of a running strategy. The full list of PUT methods can be
found in Table 1 and a sample request to start a backtest run can be found below:

PUT /runnables/HodlStrategy/start HTTP/1.1

Host: localhost

Content-Type: application/json

Connection: close

{

"mode": "backtest",

"start": 1523003864,

"end": 1523823864,

"balances": [

{

"exchange": "gdax",

"base": "USD",

"balance": 1000

},

{

"exchange": "gdax",

"base": "BTC",

"balance": 10

}

]

}

44

M.Sc. Group Project Report 16th May, 2018

D Test coverage

D.1 Strategy coverage

Figure 19: Strategy - Unit Test Coverage Report

45

M.Sc. Group Project Report 16th May, 2018

Figure 20: Strategy - Integration Test Coverage Report

46

M.Sc. Group Project Report 16th May, 2018

D.2 Front-end coverage

Figure 21: Front-end (Cryptock) - Test Coverage Report

47

M.Sc. Group Project Report 16th May, 2018

D.3 xWrap coverage

Figure 22: xWrap - Test Coverage Report

E Meeting Log

Table 7: Meeting log

� Date Topic Main issues Ext. present

30 min 20/04/2018 Next Steps for
Cryptick

Final Integration, post-
project use

W. Knottenbelt,
S. Werner

2h 11/04/2018 Integration Report 3 to dos, final deadline
to dos

None

2h 30/03/2018 Integration API issues, L3 orderbook,
wallet management

None

48

M.Sc. Group Project Report 16th May, 2018

Continuation of Table 7

� Date Topic Main issues Ext. present

3h 24/03/2018 Workstreams Currency conversion issues,
L3 orderbook, Strategy back-
testing

None

2h 21/03/2018 Integration Wallet Management, detailed
API discussion, etc.

None

30 min 14/03/2018 Progress update Individual workstreams on
track, final implementation

W. Knottenbelt

2h 28/02/2018 Report 2 Finalising report 2 None
4h 21/02/2018 Integration, Testing,

Backtesting
Integrating xWrap with Strat-
egy, Testing strategies, Back-
tester

None

4h 18/02/2018 Interaction front-end
with strategy

xWrap update, MessageHub
status, Web Socket clients

None

3h 13/02/2018 Workstream commu-
nication

MessageHub implementation None

3h 09/02/2018 Workstream commu-
nication

Data exchange strategy to
front-end, paper trading
GDAX, web socket clients

None

4h 05/02/2018 Detailed functional-
ity per workstream

MessageHub format, min API
spec, strategy backtesting,
front-end data requirements

None

30 min 25/01/2018 Project Outline Expand on main project ob-
jectives

W. Knottenbelt

2h 21/01/2018 Report Report 1, further architecture
decisions

None

3h 17/01/2018 Further implementa-
tion

Further implementation,
front-end wireframes, xWrap
optimisation

None

3h 14/01/2018 Further implementa-
tion

Efficient frontier discussion,
data wish lists, communica-
tion of workstreams (message-
Hub)

None

4h 11/01/2018 Starting implemen-
tation

Implementing the efficient
frontier, High-level archi-
tecture, Report One To
Dos

None

2h 09/01/2018 Term outline Main project schedule and
milestones, election of respon-
sibilities

None

2h 18/12/2017 Internal Project
Kick-off

Problem breakdown, overview
of trading processes, value
chain of the product

None

49

M.Sc. Group Project Report 16th May, 2018

E.1 Commit Log

E.1.1 Strategy

Figure 23: Strategy - Commit History January 17th 2018 - May 15th 2018

E.1.2 Front-end

Figure 24: Front-end - Commit History January 17th 2018 - May 15th 2018

50

M.Sc. Group Project Report 16th May, 2018

E.1.3 xWrap

Figure 25: xWrap - Commit History January 17th 2018 - May 15th 2018

E.2 Facts and Figures

Figure 26: Cryptick - Facts and Figures

51

xWrap Documentation
Release 0.6.0

May 16, 2018

CONTENTS

1 Contents 3
1.1 Getting Started . 3
1.2 Strategy API . 5
1.3 Frontend API . 6
1.4 Exposed Functions . 10
1.5 Notifications . 17
1.6 exchange_wrapper package . 20

HTTP Routing Table 41

Python Module Index 43

Index 45

i

ii

xWrap Documentation, Release 0.6.0

The xWrap module provides a web-service that abstracts different trading and wallet management APIs from cyp-
tocurrency exchanges to a common RPC friendly API. The wrapper seeks to bridge the different capabilities provided
by upstream exchanges such that client code can largely be exchange agnostic.

xWrap also provides basic paper trading functionality against supported cryptocurrency exchanges.

CONTENTS 1

xWrap Documentation, Release 0.6.0

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Getting Started

To run xWrap in development make sure a valid virtual environment is activated with atleast Python 3.6.

build the dashboard
$ cd dashboard/
$ npm install
$ npm run build

$ virtualenv --python=/usr/bin/python3 env
$. env/bin/activate
$ pip install -r requirements.txt
$ export INFLUXDB_DSN="influxdb://influx.cryptick.fun/cryptick"
$ export SQLITE_DB="xwrap.db"
$ python -m exchange_wrapper.service init_db $SQLITE_DB
$ python -m exchange_wrapper.service run --config /path/to/config.json

For production environments, use the docker image.

1.1.1 Configuration

The xWrap service can be configured via environment variables and a configuration file.

Configuration JSON File

Use the settings-sample.json file in the root directory as a starting point. The configuration file sets the
available currencies and exchange classes to load.

{
"currencies": [
"ZEC",
"BTC",
"ETH",
"USD",
"XMR",
"LTC",
"USDT",
"BCH"

],

(continues on next page)

3

xWrap Documentation, Release 0.6.0

(continued from previous page)

"exchanges": {
"gdax": {

"mode": "paper",
"class": "exchange_wrapper.exchange.gdax.GDAXExchange"

},
"poloniex": {

"mode": "paper",
"class": "exchange_wrapper.exchange.poloniex.PoloniexExchange"

},
"bitfinex": {

"mode": "paper",
"class": "exchange_wrapper.exchange.bitfinex.BitfinexExchange"

}
}

}

Required Environment Variables

SQLite

SQLite is used to store order state information and wallet transactions. the SQLITE_DB environment variable must
be set to a path for the database file.

To setup the initial database:

$ export SQLITE_DB="/path/to/xwrap.db"
$ python -m exchange_wrapper.service init_db $SQLITE_DB
Create Table for WalletSet
Create Table for Order
Create Table for WalletLine
Create Table for VirtualWallet
Create Table for Trade

Influx DB (Optional)

InfluxDB is used for logging various time-series datapoints such as historical tick data and logs of wallet balances. To
enable InfluxDB support, a DSN must be supplied via the INFLUXDB_DSN environment variable.

export INFLUXDB_DSN="influxdb://influx.local:8086/cryptick"

If InfluxDB is not configured the following features will be unavailable:

• get_ohlc API calls on exchange

• get_wallet_history API calls

API Endpoint Listen IPs and Ports

xWrap currently exposes a RPC interface and a REST/SocketIO interface. The listen IP and port can be configured
via environment variables. By default the services will listen for global traffic (binding to 0.0.0.0) and the RPC
service will be on port 4200 and the REST/SocketIO service on port 4242.

4 Chapter 1. Contents

xWrap Documentation, Release 0.6.0

export RPC_HOST="172.16.0.3"
export RPC_PORT="2000"
export WEB_HOST="172.16.2.3"
export WEB_PORT="2001"

1.1.2 Running Tests

Use nose2 to run tests.

. env/bin/activate
nose2 --with-coverage

1.1.3 Building a Docker Image

$ docker build -t xwrap .

1.2 Strategy API

The strategy connects to xWrap via a Websocket Stream that supports the JSON-RPC protocol.

Messages on the stream interface should be assumed to be asynchronous. I.e. responses may be out of order. See the
spec.

JSON-RPC supports two main types of message:

• A remote procedure call where the message will elicit a response

• A notification where the notification will not be responded to

Methods accessible via this RPC are described here

1.2.1 Request Format

Each message expecting a response should have a unique id generated by the client. This id will be used to match
requests to responses and must be unique to the connection.

{
"jsonrpc": "2.0",
"method": "make_order",
"params": {...},
"id": 240

}

The params object contains the call specific parameters. If id is omitted, the message is considered to be a
notification and will not elicit a response.

1.2. Strategy API 5

http://www.jsonrpc.org/specification

xWrap Documentation, Release 0.6.0

1.2.2 Response Format

On success:

{
"jsonrpc": "2.0",
"result": "accepted",
"id": 240

}

On failure:

{
"jsonrpc": "2.0",
"error": {
"code": -32000,
"message": "Insufficient balance in wallet",

},
"id": 240

}

1.3 Frontend API

The frontend can utilise a read-only API to observe the status of xWrap.

1.3.1 REST Endpoints

The following REST endpoints are served by a sanic web server.

Provides a HTTP API to xWrap

exchange_wrapper.http_server.create_new_order(request)

POST /xwrap/v1/orders/new
Maps to make_order()

exchange_wrapper.http_server.deactivate_wallet_set(request)

POST /xwrap/v1/wallets/new
Maps to deactivate_wallet_set()

exchange_wrapper.http_server.get_allocated_wallet_sets(request)

GET /xwrap/v1/wallets/allocated
Maps to get_allocated_wallet_set()

exchange_wrapper.http_server.get_book(request, exchange, pair)

GET /xwrap/v1/(str: exchange)/book/
str: pair Maps to get_book()

exchange_wrapper.http_server.get_exchange_pricing(request, exchange)

6 Chapter 1. Contents

xWrap Documentation, Release 0.6.0

GET /xwrap/v1/(str: exchange)/pricing
The best bid offer from the exchange (exchange).

Example request:

GET /xwrap/v1/gdax/pricing HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json

{
"BCH_BTC":{
"bid":0.1145,
"ask":0.1204

},
"BCH_USD":{
"bid":1259.33,
"ask":1273.73

}
}

Status Codes

• 200 OK – no error

• 404 Not Found – there’s no such exchange

exchange_wrapper.http_server.get_ohlc(request, exchange, pair)

GET /xwrap/v1/ohlc/(str: exchange)/
str: pair OHLC data for the specified exchange and pair.

Returned datapoints have the following format: [time, low, high, open, close, volume, received_at]

Example request:

GET /xwrap/v1/ohlc/gdax/BTC_USD HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json

{
"exchange": "gdax",
"pair": "BTC_USD",
"generated_at": 1520551670
"points": [
[1520525700,9879.59,9879.59,9857.2,9857.21,19.04536155,1520551661]

]
}

1.3. Frontend API 7

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

xWrap Documentation, Release 0.6.0

Query Parameters

• start – an integer unix timestamp in seconds

• end – an integer unix timestamp in seconds

• received_before – an integer unix timestamp to filter by received_at

• freq – frequency of datapoints - valid are highest and daily

Status Codes

• 200 OK – no error

• 400 Bad Request – start or end set to a non-integer value

• 503 Service Unavailable – underlying backend database not reachable/configured

exchange_wrapper.http_server.get_total_wallet_sets(request)

GET /xwrap/v1/wallets/total
Maps to get_total_wallet_set()

exchange_wrapper.http_server.get_unallocated_exchange(request)

GET /xwrap/v1/wallets/unallocated_exchange
Maps to :py:meth:‘~exchange_wrapper.service.ExchangeWrapper. get_unallocated_per_exchange

exchange_wrapper.http_server.get_unallocated_wallet_sets(request)

GET /xwrap/v1/wallets/unallocated
Maps to get_unallocated_wallet_set()

exchange_wrapper.http_server.get_wallet_set(request, set_id)

GET /xwrap/v1/wallets/(int: set_id)
Maps to get_wallet_set()

exchange_wrapper.http_server.get_wallet_set_history(request, set_id)

GET /xwrap/v1/wallets/history/(int: set_id)
Get history of wallet set state.

Example request:

GET /xwrap/v1/wallets/history/4 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json

{
"timestamp":1523146996.0901162624,
"run_id":"test02",
"id":4,

(continues on next page)

8 Chapter 1. Contents

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4

xWrap Documentation, Release 0.6.0

(continued from previous page)

"current":{
"timestamp":1523146996.0630502701,
"description":"Logical Wallet for Run: test02",
"id":4,
"run_id":"test02",
"wallets":[
{
"currency":"BTC",
"exchange":"gdax",
"id":30,
"balance":"883",
"available":"883",
"hold":"0",
"present_value":{
"available_usd":"6167023",
"balance_usd":"6167023",
"hold_usd":"0"

}
},
...

],
"type":"logical"

},
"data":[
[
1523146633,
{
"currency":"BTC",
"id":"30",
"balance":882.93316402,
"available":882.93316402,
"hold":0,
"present_value":{
"balance_usd":6125560.7293481147,
"available_usd":6125560.7293481147,
"hold_usd":0

}
},
...

]
]

}

Status Codes

• 200 OK – no error

• 404 Not Found – Cannot find wallet set with id

• 503 Service Unavailable – underlying backend database not reachable/configured

exchange_wrapper.http_server.get_wallet_sets(request)

GET /xwrap/v1/wallets/sets
Maps to get_all_wallet_sets()

exchange_wrapper.http_server.list_exchanges(request)

1.3. Frontend API 9

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4

xWrap Documentation, Release 0.6.0

GET /xwrap/v1/exchanges
Maps to get_exchanges()

exchange_wrapper.http_server.list_open_orders(request)

GET /xwrap/v1/orders/open
Maps to list_open_orders()

exchange_wrapper.http_server.list_recent_orders(request)

GET /xwrap/v1/orders/recent
Maps to list_recent_orders()

exchange_wrapper.http_server.main(request)

GET /xwrap/v1/status
Maps to get_status()

exchange_wrapper.http_server.make_logical_transaction(request)

POST /xwrap/v1/wallets/virtual/transaction
Maps to add_virtual_wallet_tx()

exchange_wrapper.http_server.make_transaction(request)

POST /xwrap/v1/wallets/new
Maps to create_wallet_set()

exchange_wrapper.http_server.metrics(request)
Metrics endpoint for prometheus.

exchange_wrapper.http_server.notify(sender, *, notification, payload)
Callback for notifications to be sent to socketio clients.

exchange_wrapper.http_server.uri_map(request)

GET /uri_map
Returns a list of URIs and the docstring of the handler.

1.3.2 SocketIO Channels

Notifications described here are broadcast on SocketIO channels. The channel name will be the notification name, eg:
order or trade.

1.4 Exposed Functions

xWrap exposes a number of functions to client code via a JSON-RPC or REST interface. Both API mechanisms
expose the same underlying python functions as described here. These function calls only accept keyword arguments
and will use Keyword-Only Arguments as specified in PEP 3102.

connection_id is a special keyword argument inserted by xWrap to all method calls. It is used in situations where
the function call can result in later asynchronous notifications that need to be sent to originating connection.

10 Chapter 1. Contents

notifications.html

xWrap Documentation, Release 0.6.0

1.4.1 Common Conventions

• A pair is represented in the format BASE_QUOTE where BASE and QUOTE will be valid currency codes.

• An exchange value must correspond to the name of a loaded exchange.

• If an API call that specifies an exchange parameter is made before that exchange is in the ready state, the
API call will raise an error.

1.4.2 Utility Functions

Get Status (get_status)

ExchangeWrapper.get_status(**kwargs)
Get the status of xWrap and configuration information.

Returns: A dict with status information.

{
"status": "online",
"version": "0.4.1",
"config": {

"currencies": ["BTC", "LTC", "USD"],
"exchanges": ["gdax"]

}
}

Echo (echo)

Will echo any parameters that this method is called with to the sender as a response. Use to test RPC interfaces.

Eg: calling echo(foo="bar", baz=9) will return a dict {"foo": "bar", "baz": 9}.

ExchangeWrapper.echo(*, connection_id, **kwargs)
Echos sent keyword arguments back to the sender.

Echo Notify (echo_notify)

Will echo any parameters that this method is called with to the sender as a notification. Use to test notifications.

Eg: calling echo_notify(foo="bar", baz=9) will return a dict {"status": "ok",
"receivers": 2} if there were 2 receivers listening for notifications. Each receiver would receive a
echo_ret notification with the payload {"foo": "bar", "baz": 9}.

ExchangeWrapper.echo_notify(*, connection_id, **kwargs)
Creates an echo_ret notification with the sent keywords.

Returns: A dictionary with “status”: “ok” and the number of notification receivers that would receive this
notification.

1.4.3 Exchange Functions

1.4. Exposed Functions 11

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

xWrap Documentation, Release 0.6.0

Get Exchanges (get_exchanges)

ExchangeWrapper.get_exchanges(*, mode=None, **kwargs)
Return a list of dictionaries describing the registered exchanges on this server.

Args:

param mode Filters the exchanges by their mode. Valid modes are paper or live.

Returns: A list of dict’s corresponding to exchanges supported by the system.

• exchange: The exchange id.

• class: The python class handling the exchange.

• status: The status of the exchange.

• pairs: A list of pairs supported by the exchange.

• currencies: List of currencies supported by the exchange.

• mode: The mode the exchange is loaded in.

[
{

"exchange": "gdax",
"class": "xwrap.exchange.gdax.GDAXExchange",
"status": "starting",
"pairs": ["BTC_USD", "LTC_USD"],
"currencies": ["BTC", "LTC", "USD"],
"mode": "paper"

},
...

]

A few notes:

• See get_status() in the Exchange class for valid state values.

• If the exchange status is not ready then some data might be out of date, and api calls can fail.

• type can be paper or live. A paper exchange will simulate trades against real-time orderbooks.

1.4.4 Wallet Functions

Get Wallet Set (get_wallet_set)

ExchangeWrapper.get_wallet_set(set_id=None, aggregate_only=False, **kwargs)
Return the wallet set with the specific ID.

Get All Wallet Sets (get_all_wallet_sets)

ExchangeWrapper.get_all_wallet_sets(aggregate_only=False, **kwargs)
Get all the active wallet sets on the exchange.

Returns: A dict of WalletSet objects keyed by id.

Example:

12 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

xWrap Documentation, Release 0.6.0

{
"1": [WalletSet Object],
"2": [WalletSet Object],
"3": [WalletSet Object],
"total": [WalletSet Object],
"unallocated": [WalletSet Object],
"allocated": [WalletSet Object],

}

The total, unallocated and allocated wallet sets are described in the corresponding sibling function docu-
mentation.

A WalletSet object is represented as:

{
"timestamp": 153998293,
"description": "This is a set of logical wallets",
"id": 1,
"wallets": [

[Wallet Object],
[Wallet Object],
[Wallet Object]

],
"type": "logical"

}

A Wallet object is represented as:

{
"currency": "IOTA",
"exchange": "bitfinex",
"id": 24,
"balance": "1000000.00",
"available": "1000000.00",
"hold": "0.00",
"present_value": {

"balance_usd": "10.00",
"available_usd": "10.00",
"hold_usd": "0.00"

}
}

See _wallet_to_dict() for field descriptions.

For more information on field values see documentation for WalletSet and VirtualWallet.

Get Allocated Wallets (get_allocated_wallet_set)

ExchangeWrapper.get_allocated_wallet_set(**kwargs)
Get a aggregate of all active wallet sets aggregated by currency.

Returns: A WalletSet object as described in get_all_wallet_sets().

Get Unallocated Wallets (get_unallocated_wallet_set)

ExchangeWrapper.get_unallocated_wallet_set(**kwargs)
Get a wallet set of unallocated exchange funds aggregated by currency.

1.4. Exposed Functions 13

xWrap Documentation, Release 0.6.0

Get All Wallets (get_total_wallet_set)

ExchangeWrapper.get_total_wallet_set(**kwargs)
Get the total funds (allocated+unallocated). This will equal the aggregate of exchange wallet balances.

Create Wallet Set (create_wallet_set)

ExchangeWrapper.create_wallet_set(*, run_id, wallets, **kwargs)
Create a new wallet set.

Args:

param run_id The strategy_run_id to associate this set with.

param wallets A list of Wallet objects.

Each Wallet object in the wallets list must contain the following fields: exchange, currency and
allocation.

Example:

{
"run_id": "my_great_run_01",
"wallets": [

{
"exchange": "gdax",
"currency": "USD",
"allocation": "500.0"

},
{

"exchange": "gdax",
"currency": "LTC",
"allocation": "5.0"

},
{

"exchange": "gdax",
"currency": "ETH",
"allocation": "10.0"

},
]

}

Returns: A dict with the id of the new wallet set.

{ "id": 5 }

If the wallet cannot be allocated, then an error response will be returned:

{"error": "error message"}

Possible errors are:

• insufficient funds: Infsufficient unallocated funds.

• bad wallet config: One or more bad wallet/exchange pairs

1.4.5 Order Functions

14 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

xWrap Documentation, Release 0.6.0

Make Order (make_order)

ExchangeWrapper.make_order(*, connection_id, run_id, exchange, client_oid, type, pair, size, side,
wallet_set_id=None, limit=0, cancel_after=0, **kwargs)

Make an order on the specified exchange.

Args:

param exchange Identifier for the exchange.

param connection_id Identifier for connection sending this request. Use to deliver Trade and
Order notifications.

param client_oid Unique identifier for this order from the client.

param run_id identifier for a strategy instance.

param wallet_set_id Wallet Set to run this transaction on.

param side buy or sell

param type A valid order type string.

param pair A pair name supported by this exchange.

param size Order size.

param limit Order limit value for limit orders.

param cancel_after Seconds after which this order should cancel.

param **kwargs Other keyword arguments which are ignored.

Returns: A tuple (status, message) is returned. If status returns as invalid or rejected then
message will return a descriptive reason.

Several different order types are supported:

• limit: Standard limit order that is good till cancelled

• limit-immediate-cancel: Cancels the remaining size on an order instead of putting on the book

• limit-fill-kill: Rejects the order if the entire size cannot be matched

• market: Executed at the best price available

Of the above, only the plain limit order will be left on the order book.

List Open Orders(list_open_orders)

ExchangeWrapper.list_open_orders(**kwargs)
Get a list of open orders.

Returns: A list of Order objects, eg:

[
{

"id":30,
"created_at":"2018-04-07T02:29:58.933222",
"wallet_set_id":2,
"exchange":"gdax",
"client_order_id":"8eed73b3-309c-4153-b6e5-0735b484aad3",
"run_id":"asda",
"type":"limit",

(continues on next page)

1.4. Exposed Functions 15

xWrap Documentation, Release 0.6.0

(continued from previous page)

"pair":"LTC_USD",
"size":"1",
"side":"buy",
"limit":"200",
"cancel_after":0,
"status":"done",
"done_reason":"filled",
"done_at":"2018-04-07T02:29:59.119495",
"exchange_at":"2018-04-07T02:29:59.070921",
"last_updated_at":"2018-04-07T02:29:32.387727",
"filled_size":"1",
"avg_price":"117.55"

},
...

]

The field descriptions are described in Order.

List Recent Orders(list_recent_orders)

ExchangeWrapper.list_recent_orders(*, include_open=False)
Get a list of open orders.

Returns: A list of Order objects. See list_open_orders for example.

1.4.6 Pricing Functions

Convert to USD (convert_to_usd)

ExchangeWrapper.convert_to_usd(*, currency, value, side=’bid’)
Convert the specified currency value into USD.

Args:

param currency A currency code to convert into USD.

param value The value to convert.

Returns: The converted currency value. If the currency cannot be converted None will be returned.

Get Book (get_book)

ExchangeWrapper.get_book(*, exchange, pair, **kwargs)
Get the recent order book snap.

Args:

param exchange A valid exchange.

param pair A exchange on the pair.

Returns: A dict with asks and bids keys that reference lists of [level, size].

Example:

16 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict

xWrap Documentation, Release 0.6.0

{
"bids": [

[290, 0.01],
[291, 0.01],
...

],
"asks": [

[300, 0.01],
[301, 0.01],
...

]
}

Get Pricing (get_pricing)

ExchangeWrapper.get_pricing(*, exchange, **kwargs)
Returns pricing from an exchange.

See exchange documentation for how this is computed.

Args:

param exchange The exchange name.

Returns: A dict with pair ids as keys and {"bids": value, "asks": value} as values:

{"ETH_USD": {"bids": 105, "asks": 102}, ...}

1.4.7 Virtual Wallet Functions

Add Virtual Wallet Transaction (add_virtual_wallet_tx)

ExchangeWrapper.add_virtual_wallet_tx(*, exchange, base, movement, wallet_id=None,
**kwargs)

Add a transaction to a paper exchange virtual wallet.

Args:

param exchange Identifier for the exchange.

param base Currency for the selected wallet.

param movement The credit (positive) or debit (negative) amount.

param wallet_id Virtual wallet Id. Optional.

param **kwargs Other keyword arguments which are ignored.

Returns: Returns the id for the wallet trasaction. This id can be used with the modify_vwallet_line()
call.

1.5 Notifications

xWrap generates notifications to certain events such as executed trades or completed orders that client code may wish
to subscribe to.

In the sections titles below, the notification name is shown in monospace.

1.5. Notifications 17

xWrap Documentation, Release 0.6.0

1.5.1 Order Status

Order (order)

Order notifications are issued on the creation or update of an order placed by a make_order command. They contain
the following fields which are generated by the to_dict().

Order.to_dict()
Encode an order as a dict.

Keys:

• id: xWrap Order ID

• created_at: Timestamp for order creation (ISO8601 format)

• wallet_set_id: Wallet Set ID (Optional)

• exchange: Exchange name

• client_order_id: Client Order ID

• run_id: Run ID associated with this order

• type: Order type (Options: limit, immediate-or-cancel limit-fill-kill, market)

• pair: A pair in BASE_QUOTE format (BTC_USD)

• size: Order size

• side: Order size (buy or sell)

• limit: Limit price (if market order, then 0)

• cancel_after: Seconds after which orders automatically cancel

• status: Order status

• done_reason: Descriptive reason for status

• done_at: Timestamp at which order closed (ISO8601 format)

• exchange_at: Timestamp at which order arrived at exchange

• last_updated_at: Timestamp for last order update

• filled_size: Size of order which has been filled

• avg_price: Average price for fill

Trade (trade)

Trade notifications are issued at every fill from an exchange.

Trade.to_dict()
Encode trade as a dict.

Keys:

• client_order_id: Client Order ID

• run_id: Run ID for the order associated with this trade

• type: Type of Order associated with this Trade

• side: Side for associated Order

18 Chapter 1. Contents

exposed_functions.html
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

xWrap Documentation, Release 0.6.0

• pair: Pair for associated Order

• exec_amount: Size of this trade

• exec_price: Amount this trade executed at

• fee: Exchange fee for this order

• maker: True if this order was a liquidity maker

• ext_id: Exchange ID for this trade (if any)

1.5.2 General

Log Messages (logmessages)

Log Messages are issued from the python logging library. Any messages from the xwrap logger greater or equal to
WARNING or any messages from the user logger are emitted by default.

Example:

{
"created":1523120885.1184688,
"filename":"virtual.py",
"funcName":"trade_executor",
"levelname":"INFO",
"levelno":20,
"lineno":188,
"module":"virtual",
"msecs":118.4687614440918,
"name":"user.orders.test01",
"pathname":"./exchange_wrapper/exchange/virtual.py",
"process":3067,
"processName":"MainProcess",
"relativeCreated":15570915.82942009,
"thread":139932965160256,
"threadName":"MainThread",
"message":"Order 1faaae49-64bf-4dc5-847b-b4a92fd791fc is done"

}

Exchange Status (exchstatus)

Exchange notifications are issued when an Exchange changes state.

Example:

{
"exchange": "gdax",
"from": "starting",
"to": "ready"

}

1.5. Notifications 19

xWrap Documentation, Release 0.6.0

1.6 exchange_wrapper package

1.6.1 Subpackages

exchange_wrapper.util package

Submodules

exchange_wrapper.util.token_bucket module

Token Bucket —

Implement a token bucket algorithm to rate limit connections. This implementation will be local to a thread and will
provide a method that can block until a token is available.

Does not support bursts.

class exchange_wrapper.util.token_bucket.TokenBucket(tokens_per_second)
Bases: object

request_token()
Decrements token and returns if tokens are available. Otherwise blocks until a token can be awarded.

Module contents

exchange_wrapper.util.dec2str(decimal_value, dp=8)

exchange_wrapper.util.dt_to_msts(dt)

exchange_wrapper.util.dt_to_str(dt)

exchange_wrapper.util.dt_to_ts(dt)

exchange_wrapper.util.fnmatch_dicts(param, ref)

1.6.2 Submodules

1.6.3 exchange_wrapper.client module

class exchange_wrapper.client.Client(name=’generic’)
Bases: object

add_virtual_wallet_tx(exchange, base, amount)

cancel_order(exchange, client_order_id)

get_wallets()

limit_buy(exchange, pair, size, limit, oid=None, type=’limit’)

limit_sell(exchange, pair, size, limit, oid=None, type=’limit’)

parse_recv(json_str)

exchange_wrapper.client.collate_responses(resp, ws)

exchange_wrapper.client.execute_via_rpc(ws_url, client, rpc_msg, timeout=0.5, fil-
ter_notifications=None)

20 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

xWrap Documentation, Release 0.6.0

exchange_wrapper.client.websocket_query(url, message, count=1)

exchange_wrapper.client.websocket_query_timeout(url, message, timeout)

1.6.4 exchange_wrapper.config module

class exchange_wrapper.config.Config(envvar_config_key=’env’)
Bases: object

get(key, default=None, cast=None)

getenv(key, default=None, cast=None)

load(config_file_path)

exchange_wrapper.config.cast_bool(value)

exchange_wrapper.config.recursive_update(old_dict, new_dict)

1.6.5 exchange_wrapper.connection module

Models a HTTP connection to an exchange. Accepts requests in a queue and pushes data to the exchange based on a
rate-limit.

class exchange_wrapper.connection.Connection(name, config, server_address=”,
max_queue=0, rate_limit=None)

Bases: object

config is a dict containing secrets for HMAC auth

init()
Init the session and test API?

run()
Start the worker thread

send_request(method, endpoint, priority=99, **kwargs)
Enqueue a HTTP request for dispatch to the server.

Args: method (str): A valid HTTP method. endpoint (str): The endpoint path on the server. **kwargs:
a list of keyword arguments to past the underlying

requests.Request constructor.

Returns: Returns a (concurrent.futures.Future) object for the request if sufficient space was
available in the queue, otherwise returns None. The Future’s value will be set to requests.
Response object on completion of the request.

send_request_async(*args, loop=None, **kwargs)

stop()

exception exchange_wrapper.connection.ConnectionError(e)
Bases: Exception

exchange_wrapper.connection.connection_worker(connection)
Thread to process requests on a connection

1.6. exchange_wrapper package 21

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future
https://docs.python.org/3/library/exceptions.html#Exception

xWrap Documentation, Release 0.6.0

1.6.6 exchange_wrapper.db module

class exchange_wrapper.db.BaseModel(*args, **kwargs)
Bases: peewee.Model

DoesNotExist
alias of BaseModelDoesNotExist

id = <peewee.AutoField object>

1.6.7 exchange_wrapper.http_server module

Provides a HTTP API to xWrap

class exchange_wrapper.http_server.HttpServer(xwrap, host, port)
Bases: object

notify_connect(sid)

start()

exchange_wrapper.http_server.create_new_order(request)

POST /xwrap/v1/orders/new
Maps to make_order()

exchange_wrapper.http_server.deactivate_wallet_set(request)

POST /xwrap/v1/wallets/new
Maps to deactivate_wallet_set()

exchange_wrapper.http_server.get_allocated_wallet_sets(request)

GET /xwrap/v1/wallets/allocated
Maps to get_allocated_wallet_set()

exchange_wrapper.http_server.get_book(request, exchange, pair)

GET /xwrap/v1/(str: exchange)/book/
str: pair Maps to get_book()

exchange_wrapper.http_server.get_exchange_pricing(request, exchange)

GET /xwrap/v1/(str: exchange)/pricing
The best bid offer from the exchange (exchange).

Example request:

GET /xwrap/v1/gdax/pricing HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

22 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#object

xWrap Documentation, Release 0.6.0

HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json

{
"BCH_BTC":{
"bid":0.1145,
"ask":0.1204

},
"BCH_USD":{
"bid":1259.33,
"ask":1273.73

}
}

Status Codes

• 200 OK – no error

• 404 Not Found – there’s no such exchange

exchange_wrapper.http_server.get_exchange_unallocated(request)

exchange_wrapper.http_server.get_ohlc(request, exchange, pair)

GET /xwrap/v1/ohlc/(str: exchange)/
str: pair OHLC data for the specified exchange and pair.

Returned datapoints have the following format: [time, low, high, open, close, volume, received_at]

Example request:

GET /xwrap/v1/ohlc/gdax/BTC_USD HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json

{
"exchange": "gdax",
"pair": "BTC_USD",
"generated_at": 1520551670
"points": [
[1520525700,9879.59,9879.59,9857.2,9857.21,19.04536155,1520551661]

]
}

Query Parameters

• start – an integer unix timestamp in seconds

• end – an integer unix timestamp in seconds

• received_before – an integer unix timestamp to filter by received_at

1.6. exchange_wrapper package 23

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

xWrap Documentation, Release 0.6.0

• freq – frequency of datapoints - valid are highest and daily

Status Codes

• 200 OK – no error

• 400 Bad Request – start or end set to a non-integer value

• 503 Service Unavailable – underlying backend database not reachable/configured

exchange_wrapper.http_server.get_total_wallet_sets(request)

GET /xwrap/v1/wallets/total
Maps to get_total_wallet_set()

exchange_wrapper.http_server.get_unallocated_exchange(request)

GET /xwrap/v1/wallets/unallocated_exchange
Maps to :py:meth:‘~exchange_wrapper.service.ExchangeWrapper. get_unallocated_per_exchange

exchange_wrapper.http_server.get_unallocated_wallet_sets(request)

GET /xwrap/v1/wallets/unallocated
Maps to get_unallocated_wallet_set()

exchange_wrapper.http_server.get_wallet_set(request, set_id)

GET /xwrap/v1/wallets/(int: set_id)
Maps to get_wallet_set()

exchange_wrapper.http_server.get_wallet_set_history(request, set_id)

GET /xwrap/v1/wallets/history/(int: set_id)
Get history of wallet set state.

Example request:

GET /xwrap/v1/wallets/history/4 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json

{
"timestamp":1523146996.0901162624,
"run_id":"test02",
"id":4,
"current":{
"timestamp":1523146996.0630502701,
"description":"Logical Wallet for Run: test02",
"id":4,
"run_id":"test02",
"wallets":[

(continues on next page)

24 Chapter 1. Contents

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4

xWrap Documentation, Release 0.6.0

(continued from previous page)

{
"currency":"BTC",
"exchange":"gdax",
"id":30,
"balance":"883",
"available":"883",
"hold":"0",
"present_value":{
"available_usd":"6167023",
"balance_usd":"6167023",
"hold_usd":"0"

}
},
...

],
"type":"logical"

},
"data":[
[
1523146633,
{
"currency":"BTC",
"id":"30",
"balance":882.93316402,
"available":882.93316402,
"hold":0,
"present_value":{
"balance_usd":6125560.7293481147,
"available_usd":6125560.7293481147,
"hold_usd":0

}
},
...

]
]

}

Status Codes

• 200 OK – no error

• 404 Not Found – Cannot find wallet set with id

• 503 Service Unavailable – underlying backend database not reachable/configured

exchange_wrapper.http_server.get_wallet_sets(request)

GET /xwrap/v1/wallets/sets
Maps to get_all_wallet_sets()

exchange_wrapper.http_server.list_exchanges(request)

GET /xwrap/v1/exchanges
Maps to get_exchanges()

exchange_wrapper.http_server.list_open_orders(request)

1.6. exchange_wrapper package 25

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4

xWrap Documentation, Release 0.6.0

GET /xwrap/v1/orders/open
Maps to list_open_orders()

exchange_wrapper.http_server.list_recent_orders(request)

GET /xwrap/v1/orders/recent
Maps to list_recent_orders()

exchange_wrapper.http_server.log_404(request, exception)

exchange_wrapper.http_server.main(request)

GET /xwrap/v1/status
Maps to get_status()

exchange_wrapper.http_server.make_logical_transaction(request)

POST /xwrap/v1/wallets/virtual/transaction
Maps to add_virtual_wallet_tx()

exchange_wrapper.http_server.make_transaction(request)

POST /xwrap/v1/wallets/new
Maps to create_wallet_set()

exchange_wrapper.http_server.metrics(request)
Metrics endpoint for prometheus.

exchange_wrapper.http_server.notify(sender, *, notification, payload)
Callback for notifications to be sent to socketio clients.

exchange_wrapper.http_server.on_connect(sid, environ)

exchange_wrapper.http_server.uri_map(request)

GET /uri_map
Returns a list of URIs and the docstring of the handler.

1.6.8 exchange_wrapper.logical_wallet module

class exchange_wrapper.logical_wallet.LogicalWalletManager(xwrap)
Bases: object

get_allocated()

get_exchange_total()

get_unallocated()

get_unallocated_per_exchange()

get_wallet_set(id)

get_wallet_sets(type)

26 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#object

xWrap Documentation, Release 0.6.0

1.6.9 exchange_wrapper.matching module

exchange_wrapper.matching.match_limit_order(book, side, size, limit)
Execute limit order in paper trading environment.

exchange_wrapper.matching.match_market_order(book, side, size)
Execute market order in paper trading environment.

1.6.10 exchange_wrapper.models module

class exchange_wrapper.models.Order(*args, **kwargs)
Bases: exchange_wrapper.db.BaseModel

Represent a cryptocurrency order

DoesNotExist
alias of OrderDoesNotExist

avg_price = <peewee.DecimalField object>

cancel_after = <peewee.IntegerField object>

client_order_id = <peewee.CharField object>

created_at = <peewee.DateTimeField object>

done_at = <peewee.DateTimeField object>

done_reason = <peewee.CharField object>

exchange = <peewee.CharField object>

exchange_at = <peewee.DateTimeField object>

filled_size = <peewee.DecimalField object>

get_quote_amounts()

get_wallets(wallet_set=None)
Returns the quote and base wallet from the wallet set.

Args:

param wallet_set A wallet set. If None given (default), will

use Order.wallet_set.

Returns: A tuple, (base_wallet, quote_wallet) which are VirtualWallet objects for the quote and
base currency respectively.

id = <peewee.AutoField object>

last_updated_at = <peewee.DateTimeField object>

limit = <peewee.DecimalField object>

logger

orders

pair = <peewee.CharField object>

remaining_size

settled = <peewee.BooleanField object>

1.6. exchange_wrapper package 27

xWrap Documentation, Release 0.6.0

side = <peewee.CharField object>

size = <peewee.DecimalField object>

status = <peewee.CharField object>

strategy_run_id = <peewee.CharField object>

to_dict()
Encode an order as a dict.

Keys:

• id: xWrap Order ID

• created_at: Timestamp for order creation (ISO8601 format)

• wallet_set_id: Wallet Set ID (Optional)

• exchange: Exchange name

• client_order_id: Client Order ID

• run_id: Run ID associated with this order

• type: Order type (Options: limit, immediate-or-cancel limit-fill-kill, market)

• pair: A pair in BASE_QUOTE format (BTC_USD)

• size: Order size

• side: Order size (buy or sell)

• limit: Limit price (if market order, then 0)

• cancel_after: Seconds after which orders automatically cancel

• status: Order status

• done_reason: Descriptive reason for status

• done_at: Timestamp at which order closed (ISO8601 format)

• exchange_at: Timestamp at which order arrived at exchange

• last_updated_at: Timestamp for last order update

• filled_size: Size of order which has been filled

• avg_price: Average price for fill

type = <peewee.CharField object>

unfilled_size

update_wallets(wallet_set=None)
Update the wallet_set associated with an order.

Args:

param wallet_set The wallet set to update, if this is set to None

(default) then the wallet_set from the Order object will be used.

wallet_lines

wallet_set = <ForeignKeyField: "order"."wallet_set">

wallet_set_id = <ForeignKeyField: "order"."wallet_set">

28 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict

xWrap Documentation, Release 0.6.0

class exchange_wrapper.models.Trade(*args, **kwargs)
Bases: exchange_wrapper.db.BaseModel

Represents a single trade that makes up an order

DoesNotExist
alias of TradeDoesNotExist

exec_amount = <peewee.DecimalField object>

exec_price = <peewee.DecimalField object>

ext_id = <peewee.CharField object>

fee = <peewee.DecimalField object>

id = <peewee.AutoField object>

maker = <peewee.BooleanField object>

order = <ForeignKeyField: "trade"."order">

order_id = <ForeignKeyField: "trade"."order">

order_type = <peewee.CharField object>

to_dict()
Encode trade as a dict.

Keys:

• client_order_id: Client Order ID

• run_id: Run ID for the order associated with this trade

• type: Type of Order associated with this Trade

• side: Side for associated Order

• pair: Pair for associated Order

• exec_amount: Size of this trade

• exec_price: Amount this trade executed at

• fee: Exchange fee for this order

• maker: True if this order was a liquidity maker

• ext_id: Exchange ID for this trade (if any)

class exchange_wrapper.models.VirtualWallet(*args, **kwargs)
Bases: exchange_wrapper.db.BaseModel

Funds put on hold will not be available to the user. So if a debit is held then that affects the ‘available’ balance
but not the ‘ledger’ balanceself. For a credit on hold, it does not affect the ‘available’ balance but does affect the
‘ledger’ balance.

DoesNotExist
alias of VirtualWalletDoesNotExist

address = <peewee.CharField object>

allocation = <peewee.DecimalField object>

available

balance

1.6. exchange_wrapper package 29

https://docs.python.org/3/library/stdtypes.html#dict

xWrap Documentation, Release 0.6.0

base = <peewee.CharField object>

exchange = <peewee.CharField object>

get_held_for(order)

hold

id = <peewee.AutoField object>

make_transaction(movement, order=None, held=False)

wallet_lines

wallet_set = <ForeignKeyField: "virtualwallet"."wallet_set">

wallet_set_id = <ForeignKeyField: "virtualwallet"."wallet_set">

class exchange_wrapper.models.WalletLine(*args, **kwargs)
Bases: exchange_wrapper.db.BaseModel

Represent a transaction in a walletself.

Variables

• date – Date column for when this transaction was created

• wallet_id – Id for this wallet

• movement – Transaction amount

• on_hold – If this transaction is being held (waiting for settlement)

• order – Order that this transaction relates to (if any)

DoesNotExist
alias of WalletLineDoesNotExist

date = <peewee.DateTimeField object>

id = <peewee.AutoField object>

movement = <peewee.DecimalField object>

on_hold = <peewee.BooleanField object>

order = <ForeignKeyField: "walletline"."order">

order_id = <ForeignKeyField: "walletline"."order">

wallet = <ForeignKeyField: "walletline"."wallet">

wallet_id = <ForeignKeyField: "walletline"."wallet">

class exchange_wrapper.models.WalletSet(*args, **kwargs)
Bases: exchange_wrapper.db.BaseModel

A set of logical wallet used by a strategy.

DoesNotExist
alias of WalletSetDoesNotExist

active = <peewee.BooleanField object>

aggregate
Returns a dict of wallets aggregated by currency.

created = <peewee.DateTimeField object>

description = <peewee.CharField object>

30 Chapter 1. Contents

xWrap Documentation, Release 0.6.0

get_wallet(exchange, currency)
Return the wallet for an exchange and currency from this set.

Args:

param exchange An exchange name.

param currency A currency code.

Returns: A Wallet if a matching wallet exists, otherwise None.

id = <peewee.AutoField object>

orders

run_id = <peewee.CharField object>

type = <peewee.CharField object>

wallets

1.6.11 exchange_wrapper.pair module

class exchange_wrapper.pair.Pair(x_id, base, quote, price_prec, min_order, max_order)
Bases: object

Models a cryptocurrency pair available on an exchange

Creates a Pair object. A pair string is defined as {base}_{order}.

For a sell: base is the currency you have, quote what you want For a buy: base is the currency you want,
quote what you have

For uniformity, this class maintains all currencies codes and pair codes in uppercase.

Args: x_id: An identifier for this pair from the exchange base: base currency for this pair quote: quote currency
for this pair price_prec: price precision for the quote in decimal places min_order: minimum size for any
order max_order: maximum size for any order

check_price(price)
Check if the given price does not exceed the precision provided by the exchange. To be used to check that
any limit prices sent to the exchange are valid.

Args: price: any numeric type or convertible string.

Returns: boolean: True if the price is within the precision requirements.

check_size(order_size)
Check if a given order_size is within the min and max order sizes specified.

Internally converts order_size to a fixed precision number. Should check that the order_size is a multiple
of the min_order.

Args: order_size: any numeric type or convertible string.

Returns: boolean: True if the order size is valid.

name()
Returns a currency pair in the format {base}_{quote}. All characters will be uppercase.

1.6. exchange_wrapper package 31

https://docs.python.org/3/library/functions.html#object

xWrap Documentation, Release 0.6.0

1.6.12 exchange_wrapper.rpc module

exception exchange_wrapper.rpc.ApiUsageError
Bases: Exception

data = None

jsonrpc_error_code = -32001

exception exchange_wrapper.rpc.MethodNotFoundError
Bases: Exception

data = None

jsonrpc_error_code = -32601

exception exchange_wrapper.rpc.ProcessingError
Bases: Exception

data = None

jsonrpc_error_code = -32002

class exchange_wrapper.rpc.RpcInterface(app_klass, config)
Bases: object

Creates a server object that will run an asyncio loop and host the one or more service classes.

audit_loop(scheduled_at)
Audit the event loop and log the latency (if any).

Args:

param scheduled_at The time at which this function was scheduled

on the loop via call_later

get_connection()

handle_message(connection_id, message_str)
Handle messages from a connection and hand them over an installed service. Pass back any response over
the originating connection.

Params:

connection_id: Id which can be used to address the connection this message arrived on.

message_str: The received message in string form.

on_connect_hook(callback)

on_disconnect_hook(callback)

run_forever()

send_to(conn_id, method, args, kwargs, one_way=False)

send_to_all(method, args, kwargs)

shutdown()
Shuts down the event loop.

32 Chapter 1. Contents

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object

xWrap Documentation, Release 0.6.0

1.6.13 exchange_wrapper.service module

class exchange_wrapper.service.ExchangeWrapper(wrapper)
Bases: object

Implements a service that gets data from cryptocurrency exchanges and provides RPC and PubSub interfaces
via an abstracted API format to interfact with the upstream exchanges.

add_virtual_wallet_tx(*, exchange, base, movement, wallet_id=None, **kwargs)
Add a transaction to a paper exchange virtual wallet.

Args:

param exchange Identifier for the exchange.

param base Currency for the selected wallet.

param movement The credit (positive) or debit (negative) amount.

param wallet_id Virtual wallet Id. Optional.

param **kwargs Other keyword arguments which are ignored.

Returns: Returns the id for the wallet trasaction. This id can be used with the
modify_vwallet_line() call.

allocate_to_wallet_set(*, wallet_set_id, exchange, base, movement)

cancel_order(*, exchange, client_order_id, **kwargs)
Request a cancellation of the specified order.

convert_to_usd(*, currency, value, side=’bid’)
Convert the specified currency value into USD.

Args:

param currency A currency code to convert into USD.

param value The value to convert.

Returns: The converted currency value. If the currency cannot be converted None will be returned.

create_wallet_set(*, run_id, wallets, **kwargs)
Create a new wallet set.

Args:

param run_id The strategy_run_id to associate this set with.

param wallets A list of Wallet objects.

Each Wallet object in the wallets list must contain the following fields: exchange, currency and
allocation.

Example:

{
"run_id": "my_great_run_01",
"wallets": [

{
"exchange": "gdax",
"currency": "USD",
"allocation": "500.0"

},
{

(continues on next page)

1.6. exchange_wrapper package 33

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list

xWrap Documentation, Release 0.6.0

(continued from previous page)

"exchange": "gdax",
"currency": "LTC",
"allocation": "5.0"

},
{

"exchange": "gdax",
"currency": "ETH",
"allocation": "10.0"

},
]

}

Returns: A dict with the id of the new wallet set.

{ "id": 5 }

If the wallet cannot be allocated, then an error response will be returned:

{"error": "error message"}

Possible errors are:

• insufficient funds: Infsufficient unallocated funds.

• bad wallet config: One or more bad wallet/exchange pairs

deactivate_wallet_set(*, wallet_set_id)
Deactivate a wallet set.

echo(*, connection_id, **kwargs)
Echos sent keyword arguments back to the sender.

echo_notify(*, connection_id, **kwargs)
Creates an echo_ret notification with the sent keywords.

Returns: A dictionary with “status”: “ok” and the number of notification receivers that would receive
this notification.

get_all_wallet_sets(aggregate_only=False, **kwargs)
Get all the active wallet sets on the exchange.

Returns: A dict of WalletSet objects keyed by id.

Example:

{
"1": [WalletSet Object],
"2": [WalletSet Object],
"3": [WalletSet Object],
"total": [WalletSet Object],
"unallocated": [WalletSet Object],
"allocated": [WalletSet Object],

}

The total, unallocated and allocated wallet sets are described in the corresponding sibling function
documentation.

A WalletSet object is represented as:

34 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

xWrap Documentation, Release 0.6.0

{
"timestamp": 153998293,
"description": "This is a set of logical wallets",
"id": 1,
"wallets": [

[Wallet Object],
[Wallet Object],
[Wallet Object]

],
"type": "logical"

}

A Wallet object is represented as:

{
"currency": "IOTA",
"exchange": "bitfinex",
"id": 24,
"balance": "1000000.00",
"available": "1000000.00",
"hold": "0.00",
"present_value": {

"balance_usd": "10.00",
"available_usd": "10.00",
"hold_usd": "0.00"

}
}

See _wallet_to_dict() for field descriptions.

get_allocated_wallet_set(**kwargs)
Get a aggregate of all active wallet sets aggregated by currency.

Returns: A WalletSet object as described in get_all_wallet_sets().

get_book(*, exchange, pair, **kwargs)
Get the recent order book snap.

Args:

param exchange A valid exchange.

param pair A exchange on the pair.

Returns: A dict with asks and bids keys that reference lists of [level, size].

Example:

{
"bids": [

[290, 0.01],
[291, 0.01],
...

],
"asks": [

[300, 0.01],
[301, 0.01],
...

]
}

1.6. exchange_wrapper package 35

https://docs.python.org/3/library/stdtypes.html#dict

xWrap Documentation, Release 0.6.0

get_exchanges(*, mode=None, **kwargs)
Return a list of dictionaries describing the registered exchanges on this server.

Args:

param mode Filters the exchanges by their mode. Valid modes are paper or live.

Returns: A list of dict’s corresponding to exchanges supported by the system.

• exchange: The exchange id.

• class: The python class handling the exchange.

• status: The status of the exchange.

• pairs: A list of pairs supported by the exchange.

• currencies: List of currencies supported by the exchange.

• mode: The mode the exchange is loaded in.

[
{

"exchange": "gdax",
"class": "xwrap.exchange.gdax.GDAXExchange",
"status": "starting",
"pairs": ["BTC_USD", "LTC_USD"],
"currencies": ["BTC", "LTC", "USD"],
"mode": "paper"

},
...

]

get_pricing(*, exchange, **kwargs)
Returns pricing from an exchange.

See exchange documentation for how this is computed.

Args:

param exchange The exchange name.

Returns: A dict with pair ids as keys and {"bids": value, "asks": value} as values:

{"ETH_USD": {"bids": 105, "asks": 102}, ...}

get_status(**kwargs)
Get the status of xWrap and configuration information.

Returns: A dict with status information.

{
"status": "online",
"version": "0.4.1",
"config": {

"currencies": ["BTC", "LTC", "USD"],
"exchanges": ["gdax"]

}
}

get_total_wallet_set(**kwargs)
Get the total funds (allocated+unallocated). This will equal the aggregate of exchange wallet balances.

36 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

xWrap Documentation, Release 0.6.0

get_unallocated_per_exchange(**kwargs)
Get the unallocated funds deaggregated by exchange.

Returns: The return of this function is a dict of dict objects:

Example:

{
"gdax": {

"BTC": WalletObject,
"LTC": WalletObject,
"USD": WalletObject

}
}

get_unallocated_wallet_set(**kwargs)
Get a wallet set of unallocated exchange funds aggregated by currency.

get_wallet_set(set_id=None, aggregate_only=False, **kwargs)
Return the wallet set with the specific ID.

handle_request(method, args, kwargs, connection_id)
Entry point for RPC calls.

init(config)

list_open_orders(**kwargs)
Get a list of open orders.

Returns: A list of Order objects, eg:

[
{

"id":30,
"created_at":"2018-04-07T02:29:58.933222",
"wallet_set_id":2,
"exchange":"gdax",
"client_order_id":"8eed73b3-309c-4153-b6e5-0735b484aad3",
"run_id":"asda",
"type":"limit",
"pair":"LTC_USD",
"size":"1",
"side":"buy",
"limit":"200",
"cancel_after":0,
"status":"done",
"done_reason":"filled",
"done_at":"2018-04-07T02:29:59.119495",
"exchange_at":"2018-04-07T02:29:59.070921",
"last_updated_at":"2018-04-07T02:29:32.387727",
"filled_size":"1",
"avg_price":"117.55"

},
...

]

The field descriptions are described in Order.

list_recent_orders(*, include_open=False)
Get a list of open orders.

1.6. exchange_wrapper package 37

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

xWrap Documentation, Release 0.6.0

Returns: A list of Order objects. See list_open_orders for example.

log_wallet_set(sender, *, wallet_set, key=’wallet_set_changes’)
Log wallet balances

make_order(*, connection_id, run_id, exchange, client_oid, type, pair, size, side, wallet_set_id=None,
limit=0, cancel_after=0, **kwargs)

Make an order on the specified exchange.

Args:

param exchange Identifier for the exchange.

param connection_id Identifier for connection sending this request. Use to deliver Trade
and Order notifications.

param client_oid Unique identifier for this order from the client.

param run_id identifier for a strategy instance.

param wallet_set_id Wallet Set to run this transaction on.

param side buy or sell

param type A valid order type string.

param pair A pair name supported by this exchange.

param size Order size.

param limit Order limit value for limit orders.

param cancel_after Seconds after which this order should cancel.

param **kwargs Other keyword arguments which are ignored.

Returns: A tuple (status, message) is returned. If status returns as invalid or rejected
then message will return a descriptive reason.

notify_wallet_set_update(sender, *, wallet_set)
Create a notification signal with the updated wallet set as JSON.

register_exchange(klass, name, config, mode, currencies)

shutdown()

subscribe_notifications(conn, connection_id)

unsubscribe_notifications(conn, connection_id)

exchange_wrapper.service.tag_type_exception(tag, typ, value)

1.6.14 exchange_wrapper.wallet module

class exchange_wrapper.wallet.Wallet(exchange, base, available, balance, on_hold, alloca-
tion=0)

Bases: object

Dumb object to hold wallet balances

allocation

available

balance

hold

38 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#object

xWrap Documentation, Release 0.6.0

1.6.15 exchange_wrapper.wsock_server module

A websocket server that can track multiple client connections.

class exchange_wrapper.wsock_server.WebsocketServer(message_handler)
Bases: object

add_on_connect_hook(callback)

add_on_disconnect_hook(callback)

handler(websocket, path)

make_server(host, port, **kwargs)

receive_handler(id, websocket, path)

run_server(*args, **kwargs)

send_handler(id, websocket, path)

send_to(id, message)

send_to_all(message)

shutdown()

exchange_wrapper.wsock_server.address_to_str(address_tup)

1.6.16 Module contents

1.6. exchange_wrapper package 39

https://docs.python.org/3/library/functions.html#object

xWrap Documentation, Release 0.6.0

40 Chapter 1. Contents

HTTP ROUTING TABLE

/uri_map
GET /uri_map, 10

/xwrap
GET /xwrap/v1/(str:exchange)/book/(str:pair),

6
GET /xwrap/v1/(str:exchange)/pricing, 6
GET /xwrap/v1/exchanges, 9
GET /xwrap/v1/ohlc/(str:exchange)/(str:pair),

7
GET /xwrap/v1/orders/open, 10
GET /xwrap/v1/orders/recent, 10
GET /xwrap/v1/status, 10
GET /xwrap/v1/wallets/(int:set_id), 8
GET /xwrap/v1/wallets/allocated, 6
GET /xwrap/v1/wallets/history/(int:set_id),

8
GET /xwrap/v1/wallets/sets, 9
GET /xwrap/v1/wallets/total, 8
GET /xwrap/v1/wallets/unallocated, 8
GET /xwrap/v1/wallets/unallocated_exchange,

8
POST /xwrap/v1/orders/new, 6
POST /xwrap/v1/wallets/new, 10
POST /xwrap/v1/wallets/virtual/transaction,

10

41

xWrap Documentation, Release 0.6.0

42 HTTP Routing Table

PYTHON MODULE INDEX

e
exchange_wrapper, 39
exchange_wrapper.client, 20
exchange_wrapper.config, 21
exchange_wrapper.connection, 21
exchange_wrapper.db, 22
exchange_wrapper.http_server, 22
exchange_wrapper.logical_wallet, 26
exchange_wrapper.matching, 27
exchange_wrapper.models, 27
exchange_wrapper.pair, 31
exchange_wrapper.rpc, 32
exchange_wrapper.service, 33
exchange_wrapper.util, 20
exchange_wrapper.util.token_bucket, 20
exchange_wrapper.wallet, 38
exchange_wrapper.wsock_server, 39

43

xWrap Documentation, Release 0.6.0

44 Python Module Index

INDEX

A
active (exchange_wrapper.models.WalletSet attribute), 30
add_on_connect_hook() (ex-

change_wrapper.wsock_server.WebsocketServer
method), 39

add_on_disconnect_hook() (ex-
change_wrapper.wsock_server.WebsocketServer
method), 39

add_virtual_wallet_tx() (exchange_wrapper.client.Client
method), 20

add_virtual_wallet_tx() (ex-
change_wrapper.service.ExchangeWrapper
method), 33

address (exchange_wrapper.models.VirtualWallet at-
tribute), 29

address_to_str() (in module ex-
change_wrapper.wsock_server), 39

aggregate (exchange_wrapper.models.WalletSet at-
tribute), 30

allocate_to_wallet_set() (ex-
change_wrapper.service.ExchangeWrapper
method), 33

allocation (exchange_wrapper.models.VirtualWallet at-
tribute), 29

allocation (exchange_wrapper.wallet.Wallet attribute), 38
ApiUsageError, 32
audit_loop() (exchange_wrapper.rpc.RpcInterface

method), 32
available (exchange_wrapper.models.VirtualWallet

attribute), 29
available (exchange_wrapper.wallet.Wallet attribute), 38
avg_price (exchange_wrapper.models.Order attribute), 27

B
balance (exchange_wrapper.models.VirtualWallet at-

tribute), 29
balance (exchange_wrapper.wallet.Wallet attribute), 38
base (exchange_wrapper.models.VirtualWallet attribute),

29
BaseModel (class in exchange_wrapper.db), 22

C
cancel_after (exchange_wrapper.models.Order attribute),

27
cancel_order() (exchange_wrapper.client.Client method),

20
cancel_order() (exchange_wrapper.service.ExchangeWrapper

method), 33
cast_bool() (in module exchange_wrapper.config), 21
check_price() (exchange_wrapper.pair.Pair method), 31
check_size() (exchange_wrapper.pair.Pair method), 31
Client (class in exchange_wrapper.client), 20
client_order_id (exchange_wrapper.models.Order at-

tribute), 27
collate_responses() (in module exchange_wrapper.client),

20
Config (class in exchange_wrapper.config), 21
Connection (class in exchange_wrapper.connection), 21
connection_worker() (in module ex-

change_wrapper.connection), 21
ConnectionError, 21
convert_to_usd() (exchange_wrapper.service.ExchangeWrapper

method), 33
create_new_order() (in module ex-

change_wrapper.http_server), 22
create_wallet_set() (ex-

change_wrapper.service.ExchangeWrapper
method), 33

created (exchange_wrapper.models.WalletSet attribute),
30

created_at (exchange_wrapper.models.Order attribute),
27

D
data (exchange_wrapper.rpc.ApiUsageError attribute), 32
data (exchange_wrapper.rpc.MethodNotFoundError at-

tribute), 32
data (exchange_wrapper.rpc.ProcessingError attribute),

32
date (exchange_wrapper.models.WalletLine attribute), 30
deactivate_wallet_set() (ex-

change_wrapper.service.ExchangeWrapper
method), 34

45

xWrap Documentation, Release 0.6.0

deactivate_wallet_set() (in module ex-
change_wrapper.http_server), 22

dec2str() (in module exchange_wrapper.util), 20
description (exchange_wrapper.models.WalletSet at-

tribute), 30
DoesNotExist (exchange_wrapper.db.BaseModel at-

tribute), 22
DoesNotExist (exchange_wrapper.models.Order at-

tribute), 27
DoesNotExist (exchange_wrapper.models.Trade at-

tribute), 29
DoesNotExist (exchange_wrapper.models.VirtualWallet

attribute), 29
DoesNotExist (exchange_wrapper.models.WalletLine at-

tribute), 30
DoesNotExist (exchange_wrapper.models.WalletSet at-

tribute), 30
done_at (exchange_wrapper.models.Order attribute), 27
done_reason (exchange_wrapper.models.Order attribute),

27
dt_to_msts() (in module exchange_wrapper.util), 20
dt_to_str() (in module exchange_wrapper.util), 20
dt_to_ts() (in module exchange_wrapper.util), 20

E
echo() (exchange_wrapper.service.ExchangeWrapper

method), 34
echo_notify() (exchange_wrapper.service.ExchangeWrapper

method), 34
exchange (exchange_wrapper.models.Order attribute), 27
exchange (exchange_wrapper.models.VirtualWallet at-

tribute), 30
exchange_at (exchange_wrapper.models.Order attribute),

27
exchange_wrapper (module), 39
exchange_wrapper.client (module), 20
exchange_wrapper.config (module), 21
exchange_wrapper.connection (module), 21
exchange_wrapper.db (module), 22
exchange_wrapper.http_server (module), 22
exchange_wrapper.logical_wallet (module), 26
exchange_wrapper.matching (module), 27
exchange_wrapper.models (module), 27
exchange_wrapper.pair (module), 31
exchange_wrapper.rpc (module), 32
exchange_wrapper.service (module), 33
exchange_wrapper.util (module), 20
exchange_wrapper.util.token_bucket (module), 20
exchange_wrapper.wallet (module), 38
exchange_wrapper.wsock_server (module), 39
ExchangeWrapper (class in exchange_wrapper.service),

33
exec_amount (exchange_wrapper.models.Trade at-

tribute), 29

exec_price (exchange_wrapper.models.Trade attribute),
29

execute_via_rpc() (in module exchange_wrapper.client),
20

ext_id (exchange_wrapper.models.Trade attribute), 29

F
fee (exchange_wrapper.models.Trade attribute), 29
filled_size (exchange_wrapper.models.Order attribute),

27
fnmatch_dicts() (in module exchange_wrapper.util), 20

G
get() (exchange_wrapper.config.Config method), 21
get_all_wallet_sets() (ex-

change_wrapper.service.ExchangeWrapper
method), 34

get_allocated() (exchange_wrapper.logical_wallet.LogicalWalletManager
method), 26

get_allocated_wallet_set() (ex-
change_wrapper.service.ExchangeWrapper
method), 35

get_allocated_wallet_sets() (in module ex-
change_wrapper.http_server), 22

get_book() (exchange_wrapper.service.ExchangeWrapper
method), 35

get_book() (in module exchange_wrapper.http_server),
22

get_connection() (exchange_wrapper.rpc.RpcInterface
method), 32

get_exchange_pricing() (in module ex-
change_wrapper.http_server), 22

get_exchange_total() (ex-
change_wrapper.logical_wallet.LogicalWalletManager
method), 26

get_exchange_unallocated() (in module ex-
change_wrapper.http_server), 23

get_exchanges() (exchange_wrapper.service.ExchangeWrapper
method), 35

get_held_for() (exchange_wrapper.models.VirtualWallet
method), 30

get_ohlc() (in module exchange_wrapper.http_server), 23
get_pricing() (exchange_wrapper.service.ExchangeWrapper

method), 36
get_quote_amounts() (exchange_wrapper.models.Order

method), 27
get_status() (exchange_wrapper.service.ExchangeWrapper

method), 36
get_total_wallet_set() (ex-

change_wrapper.service.ExchangeWrapper
method), 36

get_total_wallet_sets() (in module ex-
change_wrapper.http_server), 24

46 Index

xWrap Documentation, Release 0.6.0

get_unallocated() (exchange_wrapper.logical_wallet.LogicalWalletManager
method), 26

get_unallocated_exchange() (in module ex-
change_wrapper.http_server), 24

get_unallocated_per_exchange() (ex-
change_wrapper.logical_wallet.LogicalWalletManager
method), 26

get_unallocated_per_exchange() (ex-
change_wrapper.service.ExchangeWrapper
method), 36

get_unallocated_wallet_set() (ex-
change_wrapper.service.ExchangeWrapper
method), 37

get_unallocated_wallet_sets() (in module ex-
change_wrapper.http_server), 24

get_wallet() (exchange_wrapper.models.WalletSet
method), 30

get_wallet_set() (exchange_wrapper.logical_wallet.LogicalWalletManager
method), 26

get_wallet_set() (exchange_wrapper.service.ExchangeWrapper
method), 37

get_wallet_set() (in module ex-
change_wrapper.http_server), 24

get_wallet_set_history() (in module ex-
change_wrapper.http_server), 24

get_wallet_sets() (exchange_wrapper.logical_wallet.LogicalWalletManager
method), 26

get_wallet_sets() (in module ex-
change_wrapper.http_server), 25

get_wallets() (exchange_wrapper.client.Client method),
20

get_wallets() (exchange_wrapper.models.Order method),
27

getenv() (exchange_wrapper.config.Config method), 21

H
handle_message() (exchange_wrapper.rpc.RpcInterface

method), 32
handle_request() (exchange_wrapper.service.ExchangeWrapper

method), 37
handler() (exchange_wrapper.wsock_server.WebsocketServer

method), 39
hold (exchange_wrapper.models.VirtualWallet attribute),

30
hold (exchange_wrapper.wallet.Wallet attribute), 38
HttpServer (class in exchange_wrapper.http_server), 22

I
id (exchange_wrapper.db.BaseModel attribute), 22
id (exchange_wrapper.models.Order attribute), 27
id (exchange_wrapper.models.Trade attribute), 29
id (exchange_wrapper.models.VirtualWallet attribute), 30
id (exchange_wrapper.models.WalletLine attribute), 30
id (exchange_wrapper.models.WalletSet attribute), 31

init() (exchange_wrapper.connection.Connection
method), 21

init() (exchange_wrapper.service.ExchangeWrapper
method), 37

J
jsonrpc_error_code (ex-

change_wrapper.rpc.ApiUsageError attribute),
32

jsonrpc_error_code (ex-
change_wrapper.rpc.MethodNotFoundError
attribute), 32

jsonrpc_error_code (ex-
change_wrapper.rpc.ProcessingError attribute),
32

L
last_updated_at (exchange_wrapper.models.Order

attribute), 27
limit (exchange_wrapper.models.Order attribute), 27
limit_buy() (exchange_wrapper.client.Client method), 20
limit_sell() (exchange_wrapper.client.Client method), 20
list_exchanges() (in module ex-

change_wrapper.http_server), 25
list_open_orders() (exchange_wrapper.service.ExchangeWrapper

method), 37
list_open_orders() (in module ex-

change_wrapper.http_server), 25
list_recent_orders() (ex-

change_wrapper.service.ExchangeWrapper
method), 37

list_recent_orders() (in module ex-
change_wrapper.http_server), 26

load() (exchange_wrapper.config.Config method), 21
log_404() (in module exchange_wrapper.http_server), 26
log_wallet_set() (exchange_wrapper.service.ExchangeWrapper

method), 38
logger (exchange_wrapper.models.Order attribute), 27
LogicalWalletManager (class in ex-

change_wrapper.logical_wallet), 26

M
main() (in module exchange_wrapper.http_server), 26
make_logical_transaction() (in module ex-

change_wrapper.http_server), 26
make_order() (exchange_wrapper.service.ExchangeWrapper

method), 38
make_server() (exchange_wrapper.wsock_server.WebsocketServer

method), 39
make_transaction() (ex-

change_wrapper.models.VirtualWallet
method), 30

make_transaction() (in module ex-
change_wrapper.http_server), 26

Index 47

xWrap Documentation, Release 0.6.0

maker (exchange_wrapper.models.Trade attribute), 29
match_limit_order() (in module ex-

change_wrapper.matching), 27
match_market_order() (in module ex-

change_wrapper.matching), 27
MethodNotFoundError, 32
metrics() (in module exchange_wrapper.http_server), 26
movement (exchange_wrapper.models.WalletLine

attribute), 30

N
name() (exchange_wrapper.pair.Pair method), 31
notify() (in module exchange_wrapper.http_server), 26
notify_connect() (exchange_wrapper.http_server.HttpServer

method), 22
notify_wallet_set_update() (ex-

change_wrapper.service.ExchangeWrapper
method), 38

O
on_connect() (in module exchange_wrapper.http_server),

26
on_connect_hook() (exchange_wrapper.rpc.RpcInterface

method), 32
on_disconnect_hook() (ex-

change_wrapper.rpc.RpcInterface method),
32

on_hold (exchange_wrapper.models.WalletLine at-
tribute), 30

Order (class in exchange_wrapper.models), 27
order (exchange_wrapper.models.Trade attribute), 29
order (exchange_wrapper.models.WalletLine attribute),

30
order_id (exchange_wrapper.models.Trade attribute), 29
order_id (exchange_wrapper.models.WalletLine at-

tribute), 30
order_type (exchange_wrapper.models.Trade attribute),

29
orders (exchange_wrapper.models.Order attribute), 27
orders (exchange_wrapper.models.WalletSet attribute),

31

P
Pair (class in exchange_wrapper.pair), 31
pair (exchange_wrapper.models.Order attribute), 27
parse_recv() (exchange_wrapper.client.Client method),

20
ProcessingError, 32

R
receive_handler() (exchange_wrapper.wsock_server.WebsocketServer

method), 39
recursive_update() (in module exchange_wrapper.config),

21

register_exchange() (ex-
change_wrapper.service.ExchangeWrapper
method), 38

remaining_size (exchange_wrapper.models.Order at-
tribute), 27

request_token() (exchange_wrapper.util.token_bucket.TokenBucket
method), 20

RpcInterface (class in exchange_wrapper.rpc), 32
run() (exchange_wrapper.connection.Connection

method), 21
run_forever() (exchange_wrapper.rpc.RpcInterface

method), 32
run_id (exchange_wrapper.models.WalletSet attribute),

31
run_server() (exchange_wrapper.wsock_server.WebsocketServer

method), 39

S
send_handler() (exchange_wrapper.wsock_server.WebsocketServer

method), 39
send_request() (exchange_wrapper.connection.Connection

method), 21
send_request_async() (ex-

change_wrapper.connection.Connection
method), 21

send_to() (exchange_wrapper.rpc.RpcInterface method),
32

send_to() (exchange_wrapper.wsock_server.WebsocketServer
method), 39

send_to_all() (exchange_wrapper.rpc.RpcInterface
method), 32

send_to_all() (exchange_wrapper.wsock_server.WebsocketServer
method), 39

settled (exchange_wrapper.models.Order attribute), 27
shutdown() (exchange_wrapper.rpc.RpcInterface

method), 32
shutdown() (exchange_wrapper.service.ExchangeWrapper

method), 38
shutdown() (exchange_wrapper.wsock_server.WebsocketServer

method), 39
side (exchange_wrapper.models.Order attribute), 27
size (exchange_wrapper.models.Order attribute), 28
start() (exchange_wrapper.http_server.HttpServer

method), 22
status (exchange_wrapper.models.Order attribute), 28
stop() (exchange_wrapper.connection.Connection

method), 21
strategy_run_id (exchange_wrapper.models.Order at-

tribute), 28
subscribe_notifications() (ex-

change_wrapper.service.ExchangeWrapper
method), 38

48 Index

xWrap Documentation, Release 0.6.0

T
tag_type_exception() (in module ex-

change_wrapper.service), 38
to_dict() (exchange_wrapper.models.Order method), 28
to_dict() (exchange_wrapper.models.Trade method), 29
TokenBucket (class in ex-

change_wrapper.util.token_bucket), 20
Trade (class in exchange_wrapper.models), 28
type (exchange_wrapper.models.Order attribute), 28
type (exchange_wrapper.models.WalletSet attribute), 31

U
unfilled_size (exchange_wrapper.models.Order attribute),

28
unsubscribe_notifications() (ex-

change_wrapper.service.ExchangeWrapper
method), 38

update_wallets() (exchange_wrapper.models.Order
method), 28

uri_map() (in module exchange_wrapper.http_server), 26

V
VirtualWallet (class in exchange_wrapper.models), 29

W
Wallet (class in exchange_wrapper.wallet), 38
wallet (exchange_wrapper.models.WalletLine attribute),

30
wallet_id (exchange_wrapper.models.WalletLine at-

tribute), 30
wallet_lines (exchange_wrapper.models.Order attribute),

28
wallet_lines (exchange_wrapper.models.VirtualWallet at-

tribute), 30
wallet_set (exchange_wrapper.models.Order attribute),

28
wallet_set (exchange_wrapper.models.VirtualWallet at-

tribute), 30
wallet_set_id (exchange_wrapper.models.Order at-

tribute), 28
wallet_set_id (exchange_wrapper.models.VirtualWallet

attribute), 30
WalletLine (class in exchange_wrapper.models), 30
wallets (exchange_wrapper.models.WalletSet attribute),

31
WalletSet (class in exchange_wrapper.models), 30
websocket_query() (in module exchange_wrapper.client),

20
websocket_query_timeout() (in module ex-

change_wrapper.client), 21
WebsocketServer (class in ex-

change_wrapper.wsock_server), 39

Index 49

