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Abstract

Logic Programming is a declarative programming paradigm, where knowledge about
the world is encoded into a computer system by symbolic rules. Traditionally, infer-
ence based on these rules has been done by symbolic manipulation. In this work
we explore how inference from logic programs can be done by linear algebraic al-
gorithms instead. We build upon previous work on matrix characterization of Horn
propositional programs and show how it can be modified to realize a fully differen-
tiable deductive process. We then consider normal programs and describe how the
concept of program reducts can be realized linear algebraically. A new algorithm
for non-monotonic deduction, based on linear algebraic reducts and differentiable
deduction, is then presented. Finally, we show how to extend these results to First-
Order Predicate Logic.
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Chapter 1

Introduction

Logic Programming has long played a central role in Artificial Intelligence. Logic
programs allow us to encode knowledge about the world in a way that is under-
standable to a computer system and yet is also readable by human beings. From
such a knowledge base, an intelligent system can infer further rules and facts about
the world, which can in turn support future decision making by itself or by end users.

Traditionally, inference from logic programming has been achieved by means of sym-
bolic manipulation. Prolog, for instance, is a popular language for that purpose. Its
interpreter answer queries by means of matching symbols (oftern through a process
called unification). First, a goal term (symbol) is matched with the head of a clause
in the program. Then, the body terms of said clause become new goals that must
be proved (Bratko, 2001). Answer Set Programming is another paradigm of logic
programming, which focuses instead on searching for (stable) models of a program.
Answer Set solvers often combine symbolic deduction with a cominatorial search
over the space of possible models (see, for instance, Gebser et al. (2012)).

Linear Algebra has also played a major role in Artificial Intelligence. Statistical ma-
chine learning is often based on linear algebraic operations, describing observations
(samples) as elements of a vector space, and then learning functions over such vector
spaces for inference purposes. In recent years, Deep Neural Network models have
been highly successful in learning distributions over data by means of layering linear
mappings with non-linear operations (Liu et al., 2017). Yet, logic programming is
one area of Al where linear algebraic approaches have not received much attention.

There are several reasons to consider linear algebra as a mathematical framework
for logic programming. First, the success of Deep Learning has accelerated the de-
velopment of GPU-based hardware for Al. Such hardware is especially designed for
efficient computation of operations such as matrix multiplication, which can be eas-
ily parallelized. Developing algorithms that take advantage of these operations could
greatly improve the efficiency of logic programming.

Second, there are many linear algebraic operations that may be beneficial in the de-
velopment of more efficient algorithms. Examples include dot products, outer prod-
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ucts, projections, matrix inversion, matrix decompositions such as SVD and Schur,
to name a few.

Finally, in recent years there has been increased interest in bridging the gap between
symbolic Al and neural networks (Besold et al., 2017). Combining neural networks
with logic programs has several appealing advantages. Logic programs allow for in-
ference in the domain of small sample size - a domain where deep learning currently
finds difficult to learn in. Logic programs also allow for easy transfer learning and
inclusion of prior knowledge. A linear algebraic framework for logic programs is a
natural first step towards neural-symbolic integration to overcome these problems.

While work on a linear algebraic approach for logic programming has so far been
limited, two important contributions have been made recently. Sato (2017a) pro-
poses to encode the truth value of predicates in high-order tensors, and shows that
it leads to efficient computation of transitive closure relation. Sakama et al. (2017)
provide a characterization of Horn, disjunctive and normal programs using matrix
and third-order tensors. In our work, we build upon these ideas and provide three
main contributions of our own.

First, we adjust the deductive algorithm by Sakama et al. (2017) to realize a com-
pletely differentiable process of deduction for Horn programs, which could prove
useful in realizing the goal of neural-symbolic integration.

Second, we take a different approach from Sakama et al. (2017) towards deduction
in normal programs. While their approach used an exponential-size third-order ten-
sor to allow exact computation of all stable models of a program, we instead provide
a linear algebraic characterization of program reducts for stable semantics (Gelfond
and Lifschitz, 1988). Combining the differentiable deductive process with a matrix-
based characterization of reducts allows us to develop an entirely new algorithm for
non-monotonic reasoning, based on the Newton-Raphson method for root search
(Parker and Chua, 1989).

Third, we build upon both the works of Sato (2017a) and Sakama et al. (2017) to
show how a full linear algebraic characterization of First-Order Predicate logic can
be achieved.

This report is structured as follows: Chapter 2 provides background information
about logic programming, high-order tensors and work by other author on linear
algebraic logic programming. Chapter 3 describes a restriction that we impose on all
programs considered in this work. Proofs are provided that this restriction is without
loss of generality. Chapter 4 deals with the monotonic case for logic programming,
and expands the work of Sakama et al. (2017) to a differentiable form of deduction
by means of root search.
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Chapter 5 moves on the non-monotonic case, where a linear algebraic characteri-
zation of program reducts is given. The differentiable formulation of the deductive
process is then shown to be applicable here as well. Chapter 6 studies several simple
programs and illustrates how deduction as root search works in practice.

Chapter 7 introduces a new formulation of First-Order logic programs in terms of
high-order tensors. Chapter 8 surveys related work. Chapter 9 discusses possible of
extensions of this work to the case of web-scale knowledge bases. Finally, chapter
10 provides a summary of this work and a look at future research directions.




Chapter 2

Background

In this chapter, we provide background information needed to understand the rest
of this work. This work deals with theoretical issues in logic programming and how
they may be realized in a linear algebraic framework, so a through discussion of
logic programming follows.

We begin with the monotonic case of Horn propositional logic programs, their syn-
tax and semantics. We then describe how non-monotonic deduction is formulated
in logic programming using negation-as-failure and normal programs. There is less
general agreement to the semantics of normal programs, and we describe here sev-
eral common approaches. We then proceed from the propositional case of logic
programs to First-Order Predicate Logic, which is more often used when writing pro-
grams. Since some parts of our work involve high-order tensors, we provide some
basic definitions, before turning our attention to how previous works have dealt with
providing a linear algebraic characterization of logic programming.

2.1 Logic Programming

Logic Programming is a declarative form of programming, which aims to turn formal
logic into computable programs. In logic programs, knowledge about a problem
domain is formalized into a set of clauses of the form:

h(-bl,bg,...,bn (21)

where h; is called the head of the clause and can be thought of as being a symbol
defined by the clause. by, bs, ..., b, are atoms (or literals) that consist of the body of
the clause. The clause can then be read as “h is true if all of by, bo, ..., b,, are true”. We
use the symbol <+ for implication, and commas is a shorthand shorthand notation
for ’logical and’ (also written as A). A special kind of clause is a fact, written as:

h (2.2)
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which states that A is unconditionally true. Finally, a program can also have con-
straints. These are often used to filter out 'undesirable’ situations, and are expressed
as clauses with | as their head. However when we explicitly write a constraint we
omit L. So, for instance, if we would like to rule out both p and ¢ being true at the
same time, we write:

< pq (2.3)

A program can be thought of as a knowledge base. Typically a user is interested in
querying against such a knowledge base. For instance, we may ask if a specific atom
h can be inferred from the program, or if the program is even consistent to begin
with, meaning non of the integrity constraints are broken. Traditionally, symbolic
interpreters are used for such tasks.

2.1.1 Horn Propositional Programs

In propositional logic, each atom expresses a proposition, which can be either true
or false. For instance, if the atom p stands for the statement “Socrates is a man” and
the atom ¢ stands for “Socrates is mortal”, then a statement like “If Socrates is a man
then Socrates is mortal” can be encoded as:

q<p (2.4

Formally, consider an alphabet ¥ = {L, T,py,po,...,pn}. L and T are two special
symbols that are always in our alphabet. | is a symbol representing ‘False’ while T
represents ‘True’. Other symbols are called atoms or propositional variables.

Definition 2.1.1. A Horn clause or Horn rule is a sentence over ¥ U {<-}U{, } of the
form:

h(—bl,bg,...,bn (2.5)
Where h, by, ...,b, € X

We often denote a rule such as above with the letter r. h is called the head of the
clause and we denote head(r) = h. The set of atoms {by, bs, ..., b, } is called the body
of the rule and is denoted by body(r).

Definition 2.1.2. A fact is a Horn clause r where body(r) = {T}.

Definition 2.1.3. A definite clause is a Horn clause r where head(r) # L. If head(r) =
1 the Horn clause is called a constraint.

Definition 2.1.4. A Horn program is a set of Horn clauses. If the program contains
only definite clauses, it is instead called a definite program.

5
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So far we have been describing the syntax of Horn programs. We now move on
to describing the semantics of programs, that is, the truth-values of atoms in the
program.

Definition 2.1.5. The Herbrand Base of a program P, denoted Bp, is the set of atoms
that appear in the program, including | and T.

For simplicity, we often assume ¥ = Bp. That is, our alphabet contains only the
atoms that are needed for the program.

Definition 2.1.6. An interpretation I of a program P is a subset of Bp that contains
T.

So we always have T C I C Bp. [ can be thought of as an assignment of truth
values to the atoms in the Herbrand base. When writing I explicitly we usually omit
T. Hence the “empty interpretation” is semantically identified with {T}.

Definition 2.1.7. An interpretation [ is inconsistent if 1 € I. Otherwise [ is consis-
tent.

Since 1 is semantically identified with ‘False’, inconsistent interpretations are not
desirable. Instead, we look for interpretations that ‘follow’ the rules of the program.

Definition 2.1.8. An interpretation [ is said to satisfy a Horn clause r if body(r) C I
implies head(r) € I. If a consistent interpretation / satisfies all of the clauses of a
program P, we say it is a model of P . A satisfiable program is one that has a model.
Otherwise, it is unsatisfiable.

We are interested in models of a program P. Van Emden and Kowalski (1976)
showed that a definite program always has a model.

Definition 2.1.9. A model M of program P is called minimal if no proper subset of
M is a model of P.

If a Horn program is satisfiable, then it has a single minimal model (Van Emden and
Kowalski, 1976). All other models therefore contain this model.

Definition 2.1.10. The minimal model of a satisfiable Horn program P is called the
Least Herbrand Model of P and is denoted LH M (P).

Definition 2.1.11. Given a program P, the Immediate Consequence operator Tp is
defined over consistent interpretations as follows:

Tp : 27 — 2Pr (2.6)
Tp(I) = {head(r)|r € P, body(r) C I}

!Note that a constraint is satisfied by I if its body is false in I.
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In essence, Tp(I) is everything that can be deduced from 7 in one step. Tp can be
concatenated to achieve multiple step deduction:

(D)
T3 (1)

I 2.7)
Tp(T3(I))

Note that we assume our programs always (implicitly) contain the clause T « T,
since without such a clause the output of 7> may not contain T and hence would
not be an interpretation. Van Emden and Kowalski (1976) showed that for a large
enough n, T5(0) is a fixed point of the Immediate Consequence operator, and that
fixed point coincides with the Least Herbrand Model. Therefore, to compute all the
consequences of a knowledge base, it is sufficient to compute the powers of Tp up
to the fixed point.

2.2 Non-Monotonic Logic Programming

In realistic cases we often need a way of talking about a negation of an atom. In
classical logic, the negation of an atom p is often denoted —p and is understood to
mean “p is false” (i.e. p can inferred to be false). From the point of view of logic
programming, it is difficult to show a statement to not be true. Our knowledge of the
world may simply not be sufficient enough to decide. Instead, in logic programming
we introduce the notion of negation-as-failure. Under this viewpoint, if p cannot be
shown to be true from our knowledge base, it is assumed to be false. This is some-
times referred to as the “closed world assumption”. To differentiate from classical
negation, we write a negation-as-failure literal as not p.

Definition 2.2.1. A normal clause or normal rule is a sentence over X U {«<}U{, } U
{not} of the form:

h < by, by, ..., b,,n0t ¢, NOt ¢, ..., NOL C;y, (2.8)
Where h,bl,bQ, ...,bn,Cl,CQ, iy Cm € >

The atoms by, b, ..., b, are referred to as the “positive body” and are denoted body ™ (r) =
{b1, s, ..., b, }. Similarly, the atoms ¢y, ¢, ..., ¢, are known as the “negative body” and
we denote body (1) = {c1, 2y vy Cm }-

Definition 2.2.2. A normal program is a set of normal clauses.

Definition 2.2.3. An interpretation [ is said to satisfy a normal clause r if body™ (1) C
I and body~ (r) N I = () implies head(r) € I.

A Horn clause is a special case of a normal clause where m = 0. Hence, Horn and
definite programs are a special case of normal programs.

We are still interested in models of the program, namely, those interpretations that
satisfy all the clauses of the program. However, with the introduction of negation,

7
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our knowledge base is no longer monotonic - introduction of new facts can invali-
date previous acquired knowledge.

Example. Consider the following three programs:

p < not ¢ (2.9)
p < not ¢ (2.10)
q <

p < not q (2.11)
q < notp

For the first program, a query for p should return “True” since ¢ cannot be deduced
from the program. In the second program, however, ¢ has been added as a fact, so a
query for p should now return “False”. p, that was once thought to be true, became
false given new information.

The situation is made even worse in the third program. Given the third program, if
we were to query for the truth value of p, we would not be able to return an answer.
This is because deducing the truth value of p requires deducing the truth-value for
q first, which requires deducing the truth value of p again. We therefore enter an
infinite loop (in Prolog this is referred to as “Floundering”). The underlying cause
of this problem is that our program no longer has a single minimal model. Instead
there are two: {p} and {q}. Neither of these models stands out as special. To resolve
this problem, we would have to consider different kinds of semantics other than
minimality.

2.2.1 Supported Models

The immediate consequence operator can be extended to the case of normal pro-
grams:

Tp:2°r — 2Pr (2.12)
Tp(I) = {head(r)|r € P, body™(r) C I, body (r)NI =10}

Unlike the case of definite programs, computing the powers of Tx(()) is not guaran-
teed to arrive at a fixed point. What are the fixed points then?

Definition 2.2.4. We say a model M of program P is supported if for every p € M
there exists a rule r € P such that head(r) = p, body™ (r) C M and body~ (r)N M = 0.

In supported models, every atom is ’explained’ by some rule of the program.
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Proposition 2.2.1. Let P be a normal program. Tp(M) = M if and only if M is a
supported model.

Proof. Suppose M = Tp(M). Then for every rule r € P, if body™(r) C M and
body~(r) N M = () then head(r) € M. Hence M is a model. Suppose now that
p € M. Since M = Tp(M) then there exists a rule » € P such that head(r) = p,
body™(r) C M and body~ (r) N M = (). Hence M is supported.

Now, suppose M is a supported model. Since M is a model, body™*(r) C M and
body~(r) N M = () implies head(r) € M. Hence Tp(M) C M. Suppose p € M. Then
there exists a rule r € P such that head(r) = p, body™ (r) C M and body~ (r)N M = (),
therefore p € Tp(M). Thus M = Tp(M). O

The concept of supported can induce models that are not intuitively desirable. For
instance, for the following program:

Pq (2.13)
q<p

Supported models are () and {p, ¢}. The latter model may seem problematic since
it is not explained by any ’external’ observation - {p, ¢} is deduced since {p, ¢} is
assumed. To address this issue, the concept of well-supported models is introduced:

Definition 2.2.5. A model M of program P is said to be well-supported if there exists
a well-founded ordering? < of Bp such that: If h € M, there exists a rule r € P such
that body™ (r) € M, body~ (r) N M = () and for every b; € body™ (r) we have b; < h.

Well-supported models, by definition, are always supported models. In the example
program above, () is a well-supported model, but {p, ¢} is not, since any well-founded
ordering over {p, ¢} would not satisfy the condition that an atom in the head must
be greater than an atom in the body.

2.2.2 Stable Semantics

Definition 2.2.6. Let P be a normal program and / be an interpretation. The reduct
of P with respect to I is a Horn program P’ constructed as follows: For each r € P,
if body=(r) NI = (, then add a clause ' to P! such that head(r') = head(r) and
body(r") = body™ (r).

Intuitively, P! is constructed by deleting the rules of P such that I does not satisfy
their negative body. Then, for the remaining rules, delete their negative body (that
I does satisfy).

Definition 2.2.7. Let P be a normal program. M is a stable model of P if M =
LHM(PM),

2A well-founded ordering < over a set A is a total ordering such that every non-empty subset of A
has a least element. (Ciesielski, 1997)

9
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Remark 2.2.1. The minimal model of a Horn program is stable.

Stable models are indeed models of the program. In addition, stable models are
always minimal. Stable semantics forms the basis of Answer Set Programming. In
the Answer Set Programming paradigm, a problem domain is formulated as a normal
logic program such that its stable models correspond to desired solutions. Finding a
stable model of a normal program is in general N P-complete (Dantsin et al., 2001).

Proposition 2.2.2. M is a stable model of a program P if and only if M is a well-
supported model of a program P.

The proposition is proven by Fages (1991). Hence stable models are also supported
models, and are therefore fixed points of Tp.

Example Consider the following three program:

P q (2.19)
q<p

p<yq

q<p (2.15)
T <—notq

p < notp (2.16)

The first program has two supported models but only one is stable: (). The second
program has two supported models as well: {p,q} and {r}, but only the latter is
stable. The third program has no supported models at all, and hence no stable
models either.

2.2.3 Stratified Programs

Definition 2.2.8. A normal program P is stratified if there exists a partitioning of
the program into strata:

P=FRUPU..UPF (2.17)

Such that for every p € Bp, every clause with p as its head is contained in a single
strata, and for every clause r € P, we have:

e If b € body™ (r) then every clause with b as its head is contained in {J,, P;.

e If ¢ € body~ (r) then every clause with c as its head is contained in {J,_, P;.

10
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The idea behind stratifying a program is that each stratum only depends on previous
ones, so they can be considered in sequence, and that computing a model for each
part is efficient. For instance:

p < not q
g < notr (2.18)
r <

We divide the program into 3 strata {r <—} U {q <— not r} U {p < not ¢}. Then we
can compute a model M, = {r} for {r <}, then assuming the model M, we can
compute a model M; = M, for {r <} U {q < not r}. Finally, assuming M; we can
compute M, = {r,p} for the entire program.

Proposition 2.2.3. A stratified program P has a unique stable model.

The proposition is proven by Gelfond and Lifschitz (1988). Hence in the case of
stratified programs, we can avoid ambiguity regarding the model of the program.
The model can also be efficiently computed as described above.

2.3 First-Order Logic

Propositional programs are not scalable in many scenarios. Logic Programs are usu-
ally written in ‘First-Order Predicate logic’. This kind of formalism allows us to in-
troduce variables to capture general relations. For instance, the statement “All men
are mortal” can be written as:

mortal(X) < man(X) (2.19)

Where X is a variable that is ‘universally quantified’, meaning the relation holds for
all possible values for X. So for X = socrates we have:

mortal(socrates) <— man(socrates) (2.20)

mortal and man are called predicate symbols, while socrates is called a constant. X
is called a variable. In addition, we may have function symbols such as succ in the
following example:

odd(X) « even(succ(X)) (2.21)

odd and even are predicate symbols since the atoms odd(X) and even(X) can be as-
signed values of true and false. succ(X), being a function, produces another term
instead and cannot be assigned such values. Following conventions, variable names

11
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begin with a capitalized letter, while predicates, function and constant symbols are
all lower case.

Formally, we consider an alphabet ¥ containing a set of symbols called predicate, a
set of variable symbols, a set of constants and a set of function symbols.

Definition 2.3.1. A term over L is a constant, a variable or a function f(¢1, s, ..., t)
where ¢4, o, ..., t;, are terms. A term is ground if it does not contain variables.

Definition 2.3.2. An atom is a symbol of the form p(¢, s, ..., t;) where p is a pred-
icate symbol from ¥ and ¢, s, ..., t; are terms. The number of terms in an atom is
called the arity of the predicate.

A predicate symbol always has the same arity, in every atom it appears. Propositional
symbols are in essence predicates with arity O (sometimes called O-ary predicates).
A predicate with arity 1 is called unary, and with arity 2 - binary. In general, k arity
predicates are called k-ary.

Clauses in the First-Order case are of the same form as in the propositional case,
except that atoms can now have any arity. In particular, variables may appear in any
atom as terms. Variables in the head are are assumed to be universally quantified,
while variables in the body are assumed to be existentially quantified. A First-Order
clause reverts to the propositional case if all predicates are 0O-ary. Another way to
revert to propositional logic is by grounding:

Definition 2.3.3. The grounding of a clause r is a set of all clauses produced by
replacing each variable with some ground term over ..

Even with a finite alphabet, grounding may produce an infinite set of clauses. For
instance, the set of natural numbers can be represented in a logic program using
the following language: A unary predicate nat(), representing the proposition that
a term is a natural number, the constant symbol 0, and the function symbol succ(j
used to produce the successor of a number. Over this alphabet, we can write the

clause:

nat(X) < (2.22)

which, when grounded, produces an infinite set of clauses:

nat(0) «
nat(succ(0)) <+ (2.23)
nat(succ(succ(0)) +

If, besides limiting ourselves to a finite alphabet, we also restrict our programs to
the case of no function symbols (so-called Function-Free Predicate Logic), then the
grounding of a clause is assured to be finite.

12
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Definition 2.3.4. The grounding of a program P, denoted ground(P), is a program
constructed by grounding all of the clauses of P.

ground(P) is therefore a propositional program.

Definition 2.3.5. The Herbrand domain of a program P is the set of all terms that
can be constructed from function symbols and constants. Elements of the Herbrand
domain are often called entities.

Under this definition, the constant symbols of our programs receive a semantic
meaning by directly associating them with entities in the Herbrand domain. As be-
fore, we can ensure the Herbrand domain is finite by not allowing function symbols.

Definition 2.3.6. The Herbrand base of a program is the set of all grounded atoms
that can be constructed by predicate symbols and entities of the Herbrand domain,
in addition to the symbols T and .

As before, an interpretation is a subset of the Herbrand base that contains T. All
definitions from the propositional case naturally extend to First Order logic.

2.4 Tensors

Our definitions in this section follow Kolda and Bader (2009). In the context of
Computer Science, tensors are multidimensional arrays. A tensor A € RN >Nex..xNi
of is of order K. Its elements are therefore indexed by K numbers: A;;, ;.. The
various dimensions of the array are called its modes.

A Oth order tensor is a scalar, and has no index. We denote scalars by a lower case
letter a« € R. A 1st order tensor is a vector which is denoted by a bold lower case
letter v € RY. We use the convention that v is a column vector, and its transpose vT
is therefore a row vector. A 2nd order tensor is a matrix which is denoted by a bold
upper case letter D € RV1*M2 and its transpose is denoted DT. A tensor of order 3
or above is called a high order tensor.

o e, 1 1 1 2 2 2
Definition 2.4.1. Let 7' €¢ RYNUN2X>XN and § ¢ RNlX]j?X‘;XNKQ 1be tensors. T}21e
outer product of 7 and S, denoted T'0 S is a tensor Q € RNt * N2 X XN X NixNz .. Npep
with elements:

Quiy.ar 2.2, = Lty Seig.2, (2.24)

So the outer product of tensor X of order K, and tensor Y of order K, is a K| + K3
order tensor. In particular, the outer product of two vectors v and w is a matrix, and
is denoted:

vou=v-u' (2.25)
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2.4. TENSORS Chapter 2. Background

A tensor can also be thought of as a linear algebraic entity constructed by performing
an outer product operation on vectors. For instance, if:

T=v'ov?0.. 00K (2.26)

then T is a K-th order tensor with elements:

T o =ovlo2. ok (2.27)

1112...1K 21 712 1K

Example. For the following three vectors:

0
vl = H vi= 1| = {_111 (2.28)
3

T = v! o v? o v3 is a R2*3*2 tensor. We have:

T =viv?vd =1-0-(=1)=0 Ty =viv?vd=1-0-1=0
Tio1 =vjvsvi =1-1-(=1) = —1 Ty =vivavs =1-1-1=1
Tz = vjvsv; =1-3-(=1) = -3 Tz =vjvsvs =1-3-1=3 (2.29)
Toy =vi?3 =2.0-(=1) =0 Tyo=vi0?02 =2-0-1=0
Tyo1 = vavav =2-1-(—1) = —2 Ty = v2v§v2 =2-1-1=2
Tos1 = vov3v; =2-3 - (—1) = —6 Togy = vov3vs =2-3-1=6

T as written above is a rank 1 tensor, since it can be written as a single outer product
of K vectors. In general, a tensor will require summing over many such products.
The most general form of a K-th order tensor is:

Z irip...ig € i, © e o..o BK (230)

12 Tk
i1 712u B

Where {efk f: * , are the standard basis vectors of the k-th vector space.

Definition 2.4.2. Let X, Y € RNt *N2x..xNk The dot product of X and Y is defined
as:

Z Xi1,iz,...,iKY;Liz,...,iK (2.31)

11,02, K

The dot product always produces a scalar. In the case of two vectors v,u € R", the
dot product is equivalent to the regular dot product v"u. Note that in the case where

14
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X and Y are matrices, the dot product as defined here is different from the matrix
product, since the dot product produces a scalar rather than a matrix. For instance:

(el BB B = €[ &) 13 1)) - 2

=2-24+3-6+4-4+6-1=288

One useful identity of the dot product is:

(v'ov?o..ov¥ utou?o.ouf) = (v)Tu' - (V)T (V)T (2.33)

For instance:

<H ° E] ’ m ° m> =[1 2] m [2 3] m = (2.34)

=(1-64+2-1)(2-4+3-1) =288

2.5 Matrix Representation of Horn Programs

Sakama, Inoue and Sato (Sakama et al., 2017) offer a characterization of Horn
propositional programs as matrices. Their work serves as a basis for the rest of
this report, and so we bring here a brief summary of their results, before giving
a different but equivalent formulation in the next chapter. Programs that can be
mapped to matrices are those that satisfy a multiple definitions condition.

Definition 2.5.1. We say a Horn program P satisfies a multiple definitions (MD) con-
dition if for every two clauses r, and r if head(r1) = head(r3) then either |body(r)| =
1 or |body(ry)| = 1.3

Intuitively, the Multiple Definitions condition means every symbol can only be de-
fined by one clause with more than one atom in its body. Any other clause which
defines it must have a single body atom. Every Horn program can be mapped to a
program that satisfies the MD condition. In the next chapter, we will give the exact
details. For now, consider the example:

p<q,r
p < s,t (2.35)
P u

p violates the MD condition. To fix this, we can add an auxiliary variable:

3This is a slightly looser condition than the one imposed in (Sakama et al., 2017), but it retains
the correctness of the mapping.

15



2.5. MATRIX REPRESENTATION OF HORN PROGRAMS Chapter 2. Background

P gq,r
p <+ s,t (2.36)
P u
p<m
And the violation has been removed. We can do so for all violating clauses. Next,
Sakama et al describe how to map interpretations to vectors. Suppose our Herbrand

base has NV atoms: {p; = L,p, = T,...,pn}. Then each atom can be mapped into a
vector using the one-hot encoding. So for example, in the program:

p<q,r

q+—t

T (2.37)
t< s

— S

The Herbrand base has 7 atoms: {L, T,p,q,r,t, s}. These could be mapped into the
standard base of R” using the one-hot encoding:

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
vt=10] o' =10 oP=|0] i=|1]| v = |0 (2.38)
0 0 0 0 1
0 0 0 0 0
0] 0] 0] 0] 0]
- -
0 0
0 0
vi= 10 v5= |0
0 0
1 0
_0_ _1_

An interpretation like {p, ¢, s} can then be encoded into a vector by setting the ap-
propriate entries to 1:

vPast —

(2.39)

R OO~ = O
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Chapter 2. Background  2.5. MATRIX REPRESENTATION OF HORN PROGRAMS

Note that since interpretations always contain T, the second entry of the vector is
always set to 1.

A program with a Herbrand base of size N is embedded into a matrix in RV*V,
We denote the matrix representing a Horn program P as D”. Each clause in P is
embedded into D” using its elements. The row of the element corresponds to the
head of the clause while the body elements correspond to columns. More formally,
if head(r) = p; and body(r) = {pj;,, Pj,, ---, 0j, } then:

1
DE =DF =.. =D =~ (2.40)

ij1 1j2 ) in n
In addition, rules of the form p; <~ 1 and T < p; are assumed to implicitly be part
of the program, as they represent 'False implies everything’ and 'Everything implies
True’, respectively. These are also encoded into the matrix. All other elements are
set to 0. For the program above, we have:

100000O01
1111111
1004 1200
1000010 (2.41)
1100000
100000O01
1000 0 0 0]

The first column corresponds to the clauses: | «+— L, T+ 1, p+ 1, q+ L, r« 1,
t« 1l and s« L.

Similarly, the second row correspondsto: T «— L, T« T, T < p, T < q, T <1,
T t, T ¢ s.

DT = 1 corresponds to the constraint | «+ s. DIy = 1 corresponds to the clause
q + t and D[, = 1 corresponds to ¢ + s. The fact r «+ is encoded by DZ, = 1. Finally

the clause p < ¢, r is represented by Df, = Di; = 3 together.
Define:
1 >1
Hi(z) = { . i; . (2.42)

Proposition 2.5.1. Let P be a Horn program satisfying the MD condition and D
its matrix representation. Let I, J be interpretations. Then J = Tp(I) if and only if
v’/ = H\(D"v') where H, is applied element-wise.

We prove this proposition in the next chapter once we present our own formalism.
For now we see that LH M (P) can be computed linear algebraically by starting with
vo = v” and at each step computing vy, = H,(D"v;,) until a fixed point is reached.

17



Chapter 3

Multiple Definitions

Before we turn our attention to a linear algebraic formulation of Logic Programming,
we need to address the question of Multiple Definitions. As mentioned in section 2.5,
the Matrix Representation suggested by Sakama et al. (2017) assumes that a Horn
program follows a multiple definitions condition. The condition is required to ensure
deduction is performed correctly. In this work, we consider not only Horn programs
but also normal programs, so the condition must first be extended.

In this chapter, we provide some new notation that will be useful for the rest of the
work. We then extend the MD condition to case of normal clauses and provide a
transformation from an arbitrary program to one satisfying the condition. Finally,
we show that considering only the class of programs satisfying the MD condition
does not lose generality.

3.1 Notation

We denote the number of elements in the Herbrand base as N, and the number of
clauses in our program as R. Clauses will be indexed by a small r. If we consider a
single clause in our program:

h" < b}, b, ..., b, -, not ¢}, not c;, ...,not ¢, . (3.1)

n’o

we see it is comprised of three parts: the head A", the positive body which we de-
note B" = {b,0,...,b", } and the negative body C" = {c],c}, ..., ¢ . }. To make our
formulation more simple, we will need to impose the restriction that both B” and
C" are not empty. This can be done by replacing an empty positive body with {T}
(which is a set trivially contained in every interpretation), and an empty negative
body with { L} (which is independent of any consistent interpretation). Note that in
our notation |B"| =n" > 1 and |C"| =m" > 1.

For concision, clauses can be represented in triplet form (h", B", C"). Facts are there-

fore of the form (h",{T},{L}) and constraints are of the form (L, B",C"). Horn
clauses are those that have C" = {1}. A program can now be seen as a set of
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triplets. For example, the reduct of program P with respect to interpretation / is the
program:

Pl ={(i",B" {L}) | (W, B".C") € P, INC" =0} (3.2)

3.2 Defining the Condition

Definition 3.2.1. Given a program P, the definitions of an atom p € Bp is the set of
rules with p in their head. We denote:

def(p) = {r € P|head(r) = p} (3.3)
Definition 3.2.2. A rule r € P is long if |body™(r)| + |body~(r)| > 2.

Definition 3.2.3. The long definitions of p is the set of long rules with p in their
head. We denote:

longdef(p) = {r € Plhead(r) = p, |body™ (r)| + |body~ (r)| > 2} (3.4)

Definition 3.2.4. A normal program P satisfies the multiple definitions condition
(MD condition) if for every p € Bp we have |longdef(p)| < 1. In other words, p is
the head of at most one long rule.

For every normal program P, there exists an equivalent program P’ that satisfies
the multiple definitions condition. P’ can be constructed as follows: For every
p € Bp such that |longdef(p)| > 1, suppose {r; = (p, B‘,C")} be a set of all the
rules in longdef(p) except one. Replace each r; in P with two rules: (p;, B, C") and
(p,{pi},{L}). The resulting program P’ satisfies the MD condition.

3.3 Proof of Equivalence

Suppose we are given an arbitrary normal program P. We transform it to a program
P’ satisfying the MD condition by the procedure outlined above. The following set
of propositions ensure that searching for models of P’ is essentially equivalent to
searching for models of P, and that once a model M’ of P’ is found, a very simple
operation can transform it to a model M of P. Furthermore, the condition of being
a supported or stable model is retained in this transformation.

Proposition 3.3.1. Let M’ be a model of P'. Then M = M'N Bp is a model of P.

Proof. Let r € P. We must show M satisfies r. If r € P’ we know that )M’ satisfies
r meaning that if body™(r) € M’ and body~ (r) N M’ = () then head(r) € M’'. In
addition, since r € P then head(r) € Bp, body™*(r) C Bp and body~(r) C Bp. So M
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satisfies r as well.

Otherwise, suppose r ¢ P’. Then from the construction of P’, there exists two
rules r1,7 € P and an auxiliary symbol p such that r = (p,body™(r), body~(r))
and r, = (head(r),{p},{L}). M’ satisfies both r; and rs. If body™(r) C M’ and
body~(r) N M" = () then p € M’ and since M’ is consistent then head(r) € M’.
Since r € P, as before, this implies M satisfies . Otherwise, if body™(r) € M’ or
body~(r) N M’ # () then M satisfies r again (trivially).

O

Proposition 3.3.2. Let M be a model of P. Then there exists a model M’ of P’ such
that M = M’ N Bp.

Proof. We construct M’ as follows: All elements of M are in M’ and if there exists
a clause r € P’ such that M’ does not satisfy it, then add head(r) to M'. M’ is now
trivially a model of P’. Now, for such a clause r that M did not satisfy, since M is a
model of P, then r is not in P. Now M trivially satisfies auxiliary rules where the
body is an auxiliary variable, so r cannot be a rule of that form. It must be the case
then that r is an auxiliary rule with head(r) ¢ Bp. Since this is true for all such rules
r, we have M = M’ N Bp. O

Finding models of P’ is therefore equivalent to finding models of P.

Proposition 3.3.3. Let M’ be a supported model of P'. Then M = M’ N Bp is a
supported model of P.

Proof. We know M is a model. Let p € M. We must show there exists a clause r € P
such that head(r) = p, body™ (r) C M and body~(r) N M = (.

Since p € M’ and M’ is supported there exists a clause » € P’ such that head(r) =
p, body*(r) € M’ and body~(r) N M’ = (. If r € P, then body™(r) C M and
body~(r) N M = (), as required. If »r ¢ P then from the construction of P, it is of
the form (p, {¢},{L}) such that ¢ ¢ Bp, hence ¢ € M’'. In addition there exists a
rule r = (¢, B, C) such that B C Bp and (p, B, C) is in P. Note that this is the only
clause with ¢ as its head. Since M’ is supported, we have B C M’ and C N M’ = (.
So B C M and C N M = (), as required. O

Proposition 3.3.4. Let M be a supported model of P. Then there exists a supported
model M' of P’ such that M = M’ N Bp.

Proof. Construct M’ as in the proof of 3.3.2. We know M’ is a model of P’ and
M = M'N Bp. Let p € M'. If p € M then there exists » € P such that head(r) = p
and body™(r) € M and body~ (r) N M = (. If r € P’ then p is supported. Otherwise,
there exist rules (p, {¢},{L}) and (¢, B,C) in P’ such that ¢ ¢ Bp and B C M and
CNM = (. Hence ¢ € M, and p is supported. Finally, if p ¢ M, then by the
construction of M’ there exists a rule r such that head(r) = p and body™(r) C M’
and body~(r) N M = 0. O

Proposition 3.3.5. Let M’ be a stable model of P'. Then M = M'N Bp is a stable
model of P.
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Proof. We know M is a supported model. To be well-supported, all that remains
is to show a well-founded ordering over Bp as the definition requires. Since M’ is
a well-supported model, there exists a well-founded ordering > over Bp: such that
for every p € M’ there exists a clause r € P’ with head(r) = h, body™(r) C M,
body~(r) N M" = () and for every b; € body™(r) we have p > b,. The same relation
> is also suitable for M, since if p € M, then if r € P then the condition for
> is satisfied, and if not then from the construction of P’, there exist two rules
(p,{q},{L}), {q,body™ (r),body~ (r)). Then for every b; € body™(r) we have p > q > b;
as required. O

Proposition 3.3.6. Let M be a stable model of P. Then there exists a stable model M’
of P’ such that M = M' N Bp.

Proof. Construct M’ as in proposition 3.3.2. We know M’ is a supported model, so
to show it is well-supported it is enough to show a well-founded ordering over Bp
as required by the definition. Such an ordering exists for M over Bp. We need only
to extend this ordering for any atom ¢ € M\ Bp. This is simple to do, since for such
an atom there exist two rules (p, {¢},{L}) and (¢, B, C) that were constructed for
the program P’ out of a rule (p, B, C) in the original program P. Now, since ¢ € M’,
M’ is a supported model and (g, B, C) is the only rule with ¢ as its head, we need to
make sure that for every b € B we have ¢ > b. Now, for the original rule (p, B, C),
it may be the case that we also need to ensure that p > b (if this is the rule that
satisfies the well-ordering condition for p). In such a case we must also ensure that
p > ¢, but such an ordering can always be found since Bp: is a countable set. O

Example Consider the program:

p<qb

q<pb

p<bc (3.5)
b+

C <

The program has a well-supported model {b, ¢, p, ¢}, with one possible ordering being
g > p > b > c. Since it violates the MD condition, we transform it to:

p1<q,b

P11

q+pb (3.6)
p<+b,c

b«

C <

The model as constructed in the proof would be {b, ¢, p, ¢, p1}. To arrive at an order-
ing, we only need to ensure p; > ¢ and p; > b. Since p is already supported by the
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clause p < b, ¢, pi’s location in the ordering does not affect it. It is simple to find
such an ordering since our set of symbols is finite: p; > ¢ > p > b > ¢. Now, consider
this program:

p<+br

p<<q,r

q < p,r (3.7)
T <

b+

The well-supported model is {p, b, 7, q} for ordering ¢ > p > b > r. After the trans-
formation we have:

P b,r

p< D

p<q,r (3.8)
q<pr

<

b«

The well-supported model is {p;, b, 7, p,¢q}. This time, we need p; > b > r but since
p’s location in the ordering was dependent on the rule that was replaced, we also
require that p > p;. This is again easy to achieve since our Herbrand base is finite:
qg>p>p >b>r.

We see then that looking for supported and stable models of the transformed pro-
gram P’ is equivalent to searching for models of our original program. We can
therefore assume from this point on, without loss of generality, that we are only
dealing with programs that satisfy the MD condition. If this is not the case, we can
simply apply the transformation as a preprocessing step.
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Chapter 4

Monotonic Deduction

We begin by considering the Monotonic case for deduction. The mapping by Sakama
et al. (2017) described in section 2.5 provides the framework for this simple case.
Under that framework, one-step deduction is realized by first applying a linear map-
ping (matrix multiplication) followed by a non-continuous operation.

In this chapter, we first rewrite the representation of Sakama et al. (2017) in vector
format. Such notation would be helpful when we extend the approach to the non-
monotonic case. We also provide a full proof of the correctness of the representation,
using this format.

Next, we describe how the non-continuous operation can be replaced by a differen-
tiable one. The differentiable operation is dependent on a choice of two parameters,
which we call Threshold and Temperature. Exact inference can be maintained under
this new operation for a suitable choice of the parameters. We show the conditions
for exact inference and prove the correctness of the approach. We end the chapter by
showing an example of how differentiable deduction can be used to find a supported
model of a given Horn program.

4.1 Matrix Representation

Suppose we are given a program P satisfying the MD condition. We denoted the
number of clauses in P as R, and the size of the Herbrand base as N. We can also
define an ordering over Bp by specifying indices for each atom: Bp = {p; = L, ps =
T,ps3,...,pn}. We assign | the index 1 and T the index 2.

We map each element of Bp to a vector in RY using the one-hot encoding. Hence,

if the standard base of R” is {ej, ey, ...,en} then we assign for p; € Bp the vector
vPi = ¢;. A set of atoms A (not necessarily containing T) is mapped to:

v = Zv” (4.1)

peEA
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So v# € {0,1}" and we have:
o Ifp; € A, v = (vP)To? = 1.
o Ifp; & A, v = (vP)To? = 0.

Note that since an interpretation I always contains T, we would have v! = 1 and if
vl =1 then [ is inconsistent.

We can now define the matrix representation of a Horn program. A rule r of P is of
the form (h", B",{L}). We denote |B"| = n’. P is mapped to a matrix D” ¢ RV*V
and is given by:

Df = Zn—v TP (4.2)

reP

The above can be seen to be equivalent to:

=) v Z (4.3)

pEBp head(r)

Where the first summation is over the Herbrand base, and for each atom in the
Herbrand base we sum over the rules of P that define it. For example, if P is the
following program:

p<q
pr (4.4)
r 4 (4.5)
D7 is written as in equation 4.2 as:
D" = v (v")T + 0P (v!)T + P (") + v (v")T (4.6)

and as in equation 4.3 as:

D" =v" - 0"+ v (v +0” [(v)T 4 (v")T] + 0! 0T+ 0" (v')T (4.7)

Another way to write D is using matrix multiplication instead of summation. Con-
sider all the head vectors {v" }/ ;. We can stack these vectors in order as columns
of a matrix. Denote this matrix H. So we have H;, = v!". Similarly, we can consider
the sequence of body vectors after they have been d1V1ded by the size of the body:

LoP } . These too can be stacked into a matrix B, making sure to retain the
same order of rules as in H. So we have B;, = —v”". Note that H, B € RV*%_ It

can be shown that:

Z

DY = HBT (4.8)
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Proof.
R R 1 R 1
(HBT)Z] = ZHergr — Z Fvlhrvfr _ Z F (vhr( BT)T)IJ — (4.9)
r=1 r=1 r=1
_ i R" (2 B™\T DP
o Z nrv (Iv ) v
r=1 ij

]

The next proposition shows the correctness of the matrix representation. Namely,
multiplying the matrix D’ with an interpretation vector and applying the operation
H, realises application of T’p.

Proposition 4.1.1. Let I and J bet two interpretations. J = Tp(I) if and only if
v/ = H (D" - v'), where H, is applied element-wise.

Proof. Denote u = H,(D" - v'). Note that:

:qup-Hl( 25 (anJ) (4.10)

Hence:

(v”)Tu:H1< > (UBHJ) (4.11)

head(r)=p

Now, suppose J = Tp(I). If p € J, then (v?)Tv’/ = 1 and there exists a rule
(p,B",{L}) € P such that B~ C I. Therefore (v®)Tw! = n" which implies
H, > W) = 1 and therefore (v?)Tu = 1.

head(r)=p
If p ¢ J then for every rule (p, B",{L}) € P, B" Z I. Since P satisfies the MD condi-
tion, for every rule except at most one we have |B"| = 1 and therefore (v?")Tv! = 0.

If there exists a rule (p, B",{L}) such that |B"| > 1 then, since B" ¢ I, we have

(vP")Tv" < n’. Therefore H, > %) = 0 and (v?)Tu = 0. All of these
head(r)=p

together imply u = v”.

Conversely, suppose that v’/ = H,(D* -v'). Since we know that v"?!) = H, (D" .v"),
then we necessarily have v/ = v”?(!), From the definition of the vector representa-

tion of a set of atoms, this implies J = Tp(I).
O
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With the matrix representation we have a linear algebraic method to compute the
Least Herbrand Model of any given Horn program. Moreover, a matrix representa-
tion could theoretically allow the combination of prior knowledge in the form of a
logic program into a loss function. Notice, however, that the H; operation is not dif-
ferentiable (or even continuous), so the resulting loss function would not be differ-
entiable either. To address this, we next consider replacing H; with a differentiable
function.

4.2 Differentiable Deduction

H, has several differentiable approximations (Bracewell, 2000). Here we consider
replacing H,; with a sigmoid function. Other options may also be possible, but as our
intention here is to demonstrate that a differentiable form of matrix-based deduc-
tion is possible, we leave consideration of alternative approximations to future work.

Given constants 0 < v < 1 and 7 > 0, we define:

1

Y—x

- - (4.12)
1+4+e=

0r,r ()

~v is a ’confidence threshold’ which represents a boundary between values represent-
ing 'True’ (x > ) and 'False’ (x < 7). 7 is called 'temperature’. The values of v and 7
must be carefully picked, or the approximation will not produce correct results. For
instance, suppose P has as its longest rule:

W B AL A A, (4.13)

n"—1

We must set v > ==
be classified as 'True’.

or partially satisfied bodies may cause the head to incorrectly

Clearly we must pick our values carefully. Suppose an atom p € Bp is the head of
R, rules in P. We assume the first of these rules, (p, B}, {}), is of length | B!| = n..
Since P satisfies the MD condition, the rest are of length one, and are of the form
(p,{br},{L}) for r = 2 ... R,. The rules that may affect the truth value of p are
therefore represented by the matrix:

R
1 1 - '

D? = mvp(vBP)T + E VP (v)T (4.14)
D r=2

For differentiable deduction to work, we require that:
o If Bl CTorb)elthen (v")7- 0, ,(D"-v') > 7.

o If Bl I and b}, ¢ I for all b}, then (v?)T - 0, (D" - v') < 7.
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Now:

lej Tayl .
=0, (—(v nz Y + Z(vbP)T'vI) P (4.15)
p

So our conditions become B" C [ or b € [ if and only if:

1 R
(’UB”)T’UI Zp boNT
O'%-,— (T + - (’U p)T'U > Y (416)

This condition is not trivial to satisfy. For instance, suppose all of v!’s entries corre-
sponding to B, are set to values greater than v, and all the entries corresponding to

(v7P)ToT
nj,

br are set to 0. This only guarantees o, ( ) > 3. To remedy this, we introduce

two new constants 0 < 7+ < v < v" < 1. ~* represents an upper-bound for ’False’
and v" a lower-bound for "True’. Our requirements now become:

1. If for every b € B", (v*)™w' > 4T or (v%)Tw’ > ~T for some 07, then

(W PP)To! & boNT o1 T
Onr "—é+2(v p)To' | > ',

1=2

2. If there exists p € B" such that (v”)Tv’ < ~ and for every b, we have

(v%)Tv! < 4+, then o, ((v LCAANE Z(vbp)T'vI) <7t

T
n
P r=2

First, we denote:

Byl
r= T S ! (4.17)
p r=2

Looking at condition 1, if for every b € B” we have (v°)Tv’ > 4T then (v%)Tv! >
nl-~". Since (v%)Tv’ > 0 we are guaranteed that z > ". Similarly, if (v%)Tv’ > 47
we are also guaranteed x > ~v'. Hence condition one is equivalent to demanding:

>~ = oy (z) > AT (4.18)

This gives an upper bound for 7 as follows:

1 1

Y=

= — >
1+€WT$>'YT1+€ p

_ (4.19)

0rr(2)

27



4.2. DIFFERENTIABLE DEDUCTION Chapter 4. Monotonic Deduction

1 T
>y e T< (4.20)

l14+e = 1“(%_1)

Note that for 7 > 0 to be true, we require in equation 4.20 that y" > 1.

The second condition is more complicated. In the worst case scenario, in our long
rule all elements in the body except one are true. The upper bound for "True’ entries
in v’ is ’1” and the upper bound for ’False’ entries is v+, so we have as an upper
bound:

nl—1 -
(%)To! < 22— 4 1 4.21)
np n

In addition, all short rules must have their body set to false, which means (v )Tv! <
v+ for all R, — 1 short rules. Putting it all together we get an upper bound for z:

nzl> -1 1 1A 1
r< 5+ (5 +R,—1)y =z (4.22)
n n
p p
So condition two becomes:
r<zt = oy (7) < vt (4.23)

Similar to condition one, we get:

1 1
0-'777—('27) = y—=z < — 1 (4.24)
L+er z<at |4~
1 1 v—azt
— <y & T<—
14 In(sF —1)
nl—
7= = (G Ry~ 1yt
& 1< . = (4.25)
For equation 4.25, we now require that v+ < 1 and:
nl—1 1
Y- —(—1+Rp—1)7L>0
nP ’I'Lp
N - nll,fl
L np
PN (4.26)
! it Ry =1
Which, as noted in the beginning, requires v > "i’;l.

Putting all of these conditions together, we must set v,v*,~v" and 7 such that:
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4.2. DIFFERENTIABLE DEDUCTION

1_
ny 1
1
Tp

}.

2. v" > max {%,’y}.

1. v > max, {

R
i : 1 n
3. v <m1np{2, 1+R§71}

: y—y
4. 7 < mmp{ln -

To show one possible solution that satisfies the above conditions, denote:

n = max{n,}
P

n—1

We need to set v >

n

_ n_ : 1
v = 5. In either case we have v > 3.

We can then set:

And:

The temperature can then be set as:

r= mgx{Rp} (4.27)

n=1l  Two possible solutions, for example, are v = “~2 and
n n

T:min{ ’71—’71— s
hl(,y_T_ )

yr-2 (4.28)
i (4.29)
el (L= 1)yt

Definition 4.2.1. Suppose v,u € [0,1]Y and let 0 < 4+ < 4" < 1. We say v and u

are semantically equivalent if for all 1 <i < N:

1. v; >~ if and only if u; > ~'.

2. v; < v+ if and only if u; < ~*.

. T
In such a case we write v Nj/l u.

Intuitively, semantically equivalent vectors represent the same interpretation. The
next proposition ensures our differentiable method correctly performs deduction.
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4.3. DEDUCTION AS ROOT SEARCH Chapter 4. Monotonic Deduction

Proposition 4.2.1. Let P be a Horn program and D" its matrix representation. Let I

. . T T
be an interpretation. Suppose u ~_ v'. Then H\(D" - v') ~1; 0,,(D" - u).

Proof. Denote v/ = H,(D” - v') and let p € Bp. Suppose (v?)Tv’ = 1. Then
there exists a rule » € P such that head(r) = p and for all b € body™(r) we have
(v*)Tv! = 1. Hence for all b € body™ (r) we have (v°)Tu > ' and as we’ve seen, for
a suitable choice of v and t we are assured o, ;(D" - u) > 47 as required.

Suppose now that (v?)Tv’ = 0. Then for every rule such that head(r) = p, there
exists at least one atom b € body™(r) such that (v*)Tv! = 0 and hence (v°)Tu < ¥
We are therefore assured o, ,(D” - u) < 7F. O

Define the sequence:
1. oMo = iT},

2. vMv = g (DY - vMi1),

If P is satisfiable, we know that v* Nﬁ v HM(P) for a large enough k.

4.3 Deduction as Root Search

Proposition 4.3.1. Let P be a Horn program. Then M is a supported model if and
only if v = H,(D"v™).

Proof. Follows immediately from propositions 2.2.1 and 4.1.1 O]

Given a program P, define the mapping:

F(v) =0,.(D" v) - v (4.31)

Supported models of P correspond to roots of F. We can therefore search for such
models by finding the roots of F. Here we consider using the Newton-Raphson
algorithm for this task (Parker and Chua, 1989). Suppose J, is the Jacobian of F’ at
point v. The Newton-Raphson algorithm starts with some initial point v°, and at the
k-th step of the algorithm performs:

VM =oF — J L F(v¥) (4.32)

To avoid inverting a matrix, we can instead solve the following equation:

J o (V" —0F) = —F(v*) =" — 0, (D" - v") (4.33)

To find the difference v 1 — v*.
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Here we show the derivation of the Jacobian. For simplicity of notation, we omit the
superscript from v*. We have:

aF('U)Z 8077(DP1J)Z- 87% aUvT(DP’U)i

S R T N L
Where:
1=y
dij _{ 0 it (4.35)
Now:
N
01+(D"v); = 0,.( > Dfivy) (4.36)
k=1
And:
do, (z) 1
T o @)(1 - 00 ()) (4.37)
Hence:
a Z levk

P Z P 25 (DPv)i(1— o, (DPw)) - =L =

1 p Ovy,

= —03-(D"0)i(1 — 0, (D)) Z DiZ= (4.38)
J

1
= ;U%T(DP'U)Z‘(l —0,-(D"v);) - ZD KOk =

1
= ~03(D"0);(1 = 0 (D)) D}

Putting it all together:

1
¥0'%.,-(DP’U)Z'(1 - O—’Y,T(Dpv)i)Dg; - 5ij (439)

To write the above in matrix form, we introduce the notation diag(u) for the diag-
onal matrix with main diagonal entries taken from vector u. Then:

Jij —

Jy = %diag (04-(DFv) x (1 =0, .(D"v))) - D" -1 (4.40)

Where X is element-wise multiplication between vectors, and 1 is a vector with all
entries set to 1.
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Chapter 5

Non-Monotonic Deduction

In this chapter we move from the monotonic case of logic programming to the non-
monotonic one. Stable semantics forms the basis of Answer Set Programming, and
so we wish to leverage the methods developed in the previous chapter to search for
stable models. In the case of normal programs, however, a direct matrix representa-
tion is more complicated. Sakama et al. (2017) mapped normal programs into third
order tensors, but their size was exponential in the number of clauses.

In this chapter, we take a different approach to normal programs by using the con-
cept of reducts to construct matrix representations. The differentiable approach from
section 4.2 is then extended to the reduct case, and conditions on the parameters
are shown. We next consider a vector mapping similar to section 4.3, and derive
the Jacobian for the reduct case. We finish the chapter by exploring a few example
programs that show how the algorithm fares in practice.

5.1 Reduct Matrix

Suppose we are given a normal program P = {(h", B",C")}£ | and an interpretation
M. We would like to construct a matrix representation of the reduct PV, It is pos-
sible to compute the reduct program P symbolically and, as it is a Horn program,
construct its matrix representation as described above. However, we would like a
completely linear algebraic characterization of reducts instead.

Consider a single clause (h", B", C"). Recall that |C"| = m" and note:

. MTCT_ mr Mﬂcr:(b
Meaning that:
1—-o")\ [1 MNnC =0
HI( mr “10 MnCr£0 (5-2)
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So we can use the term M to ‘turn off’ clauses where M N C" # (). In

particular, given an arbitrary interpretation /, we have:

(1—o")T” 1 . e\ [W" BTCI, MNCT =0
Hl(T‘Fv W) ) =1 0 BrgTorMNC"#10 (5.3)

We therefore propose to encode a normal clause as:

M\T,,C"
M 1 — v TU T T
D" = %’Uh (’UB )T (54)
n'm
Assuming P satisfies the MD condition, we can sum over all the clauses to construct
a matrix representation of the reduct PV:

cr

ZDT -y (S AN (5.5)

nmr
reP

Which, analogously to equation 4.3, is equivalent to:

= w Y Bty 5.6)
n’”mT
pEBp head(r)=p
Note that if P is a Horn program, meaning C" = {1} for all r, then for a consistent
(1—v)T0C"

interpretation I we always have -~———— = 1, and the definition of D"’ reduces to
the regular representation of the Horn program D”.

Example: Consider the program:

p < not q
g < not r (5.7)
r <
We have:
[0] 0] [0]
0 1 0
o =P = |1 vB =0T = |0 ¢ =l = |0 (5.8)
0 0 1
u 10 10
[0] [0] 0]
; 0 ; 1 0
v =v?= |0 P =0l = |0 ¢ = ol = |0 (5.9)
1 0 0
10 10 1]
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0 0 1
0 1 0
" =" = |0 B =T = |0 0@ =t = |0 (5.10)
0 0 0
1 0 0
Suppose we are given the interpretation {p,r}. Then:
0 1
1 0
P = |1 1?7 = |0 (5.11)
0 1
1 0
Each clause is now encoded into a matrix. For the clause ‘p < not ¢’ we have:
=1
75 O N\
0
1 00 1 0]-10
1] 19
1 0
(1 - ’v{p’r}>T’UC hl Bl O
e e RERIOE
0
000 0O
000 00O
=10 1000 (5.12)
000 O0@O0
0 00O0©O0
For ‘q + not r’ we have:
iO
75 O N\
0
1 00 1 0]-]0
ol 10
0
(1 - ’v{p’T}>T’UC2 h2 BQ 1
B e e R IDE
0
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000O0O0
00000
=10 0 0 0 O (5.13)
00 0O0O0
000O0O0
Finally, for r < we have:
=1
1\
0
1 00 1 0]-10
0 0
0
(1 — ol . 0
e ) i o1 |
1
000O0O0
000O0O0
=10 0000 (5.14)
00 0O0O0
01 000
Adding these together, in addition to encoding ‘T < T,not 1’, we get:
00 0O0O0
01 000
D" =10 100 0 (5.15)
00000
01 000
which represents the Horn program:
p (5.16)
T4

as desired. We next show the correctness of the reduct mapping.

Proposition 5.1.1. Suppose P is a normal program satisfying the MD condition and
let I, J, M be interpretations. Then J = Tpx (1) if and only if v/ = Hy(D"" v') where
H; is applied element-wise.

Proof. Denote u = Hy(D” Mol ). Similarly to equation 4.11 of Horn program case,
for any p € Bp we have:
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(v")To = H1< 3y (- ”M)T"’CT(”BT)T”I) (5.17)

n"m”
head(r)=p

Suppose J = Tpu(I). If p € J, then (vP)Tv’ = 1 and there exists a rule (p, B', { L}) €

PM such that B" C I and M NC" = {). Therefore (v?")Tv! = n" and (1 — vM)T0"" =

m” which implies Hl( > (1”M)T7;ZT(UBT)T“I) = 1 and therefore (v?)Tu = 1. If
head(r)=p

p & J then (vP)Tv’ = 0 and for every rule r = (p, B",C") € P, one of the following

applies:

e r is the only long rule with p as its head, and either B” ¢ [ and hence
(vP)Tv! < n"or C"N M # () and hence (1 — vM)™w% < m". Either way
l—vM)T'UCT(vBT)TvI <1

we have !

e r is a short rule and either B” ¢ I and hence (v?")Tv! =0 or C" N M # () and
1—17M)TvCT(UBT)TUI -0

hence (1 — v™)Tv®" = 0. Either way we have

We hence get Hl( > (1_”AI)T$Z,,§”BT)T”I) = 0 which means (v?)Tu = 0. All of
head(r)=p

these together imply u = v”.

Conversely, suppose v/ = H, (D" v!). We know that v7e» () = H,(D"" v'), which
means v’/ = v”p»(), From the definition of the vector representation of a set of
atoms, this implies J = Tpa (I).

O

Example: Continuing from the example above, where M = {p,r}, suppose I = ().
Then J = {p,r}. Now, consider an atom in J such as p. (v?)Tv’ = 1 (it is the entry
for p in v”/, so we must show that (v?)Tu = 1. Since p € J, there is a rule with p as
its head that is satisfied. This is the rule p + not ¢. Because of this rule, we have:

i i G )¢ (v7")T0

— = (5.18)
n"m”" n'm
head(r)=p
=1 =1
0 1
1 00 1 0]-[0f[0 1 00 0]-|0
1 0
0 0
= :1
1-1

So the rule that satisfies p causes the argument of H; to be at least 1, and hence
(v?)Tu = 1. This can similarly be shown for » (and T, through the implicit rule
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T < T,not 1). For ¢, we have ¢ ¢ J, meaning any rule with ¢ as its head was not
satisfied. In our example, there is only one short rule with ¢ as its head: ¢ < not r.
Short rules that are not satisfied always contribute 0 to the H;’s argument as we can
see:

=0 =1
0 1
1 00 1 0]-|0f[0 1 00 0]-]0
0 0
1 — oY TyC? (B* )Ty 1 0
Sl il i bl —0 (5.19)
n2m? 1-1

So in our case we see that H; receives 0 as an argument and hence (v?)Tu = 0.

Long rules that are not satisfied can contribute 0 or a positive number less than 1,

—o{Prh)TC" YTo?

since both & — and (”B:LT are upper bounded by 1. This means that as
long as an atom is defined by one long rule at the most, and none of the rules are
satisfied, then the argument for H; is less than 1. However, if ¢ were defined by
multiple long rules, their contributions can add together to a sum greater than 1,
and ¢ would be incorrectly assigned 1. Hence the MD condition is necessary.

5.2 Differentiable Reducts

Just as was the case with Horn programs, we can replace H; in our deduction op-
eration above with a sigmoid o, .. As before, we need to introduce two additional
constants 0 < vt < v < 4T < 1, and derive bounds for these values.

Suppose there are Rp clauses with p € B, as their head. At most one of these rules
is long, denote it (p, B}, C}). The rest are short rules of the form (p, {7}, {c}) for
r = 2 ... Rp. Given an interpretation M, the reduct representation of these rules is:

1 _ M T C; 1 Rp T '
D = B8 P o4 31— o et ()T (5.20)
npmp r=2

Given an interpretation /, which may be different from A/, we have:

' 1 — oM)TuCh (BT 7 A
O'%T(DPMUI) = aw(( v’) ;v l(v Jlv + Z(l — vM)T'vCP(vbP)T'vI) v? (5.21)
niml —

Denote:
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1— oMl (BTl 2 -
T = ( )nlml( ) + Z(l — vM)Ty% (v%)To! (5.22)
PP r=2
We require:
1
e If B, C Tand C} N M = then o, -(x) > +'. B} C I implies (”BZQT”I >~ and

Cl
C’;ﬂM:(Dimplies% >1—~t.

e If 0 € I'and ¢, ¢ M then o, .(z) > ~4". b} € I implies (v")Tv’ > ~T and
¢’ ¢ M implies (1 — vM)Tv% > 1 — %,

The two conditions above can be summarized by:
x> (1—7)y" = o, (x) >~ (5.23)
Then we get an upper bound for 7 by:

1 1

T xTr) = e — > 5.24
O_’Y, ( ) 1 + e’yTz x>(1—'yi)'y—r 1 + 67_(1_:L),\/T ( )
1 — (1= AN~ T
> & 7<] U=y )1 (5.25)
e (2~ 1)

As was the case of Horn programs, we require in 5.25 that 4" > % but also v <
(1=

Next, we consider the case when p is not satisfied. For the long rule <p, B;, C’;> one
of the following conditions apply:

1 : (wPP)Tul  nl—lqyt (1—vM)ToCp
e B, ¢ I. In this case we have i~ < 2 —"and ; <1.
p Tp mp
. M7, Ch 1_T Bl
e C!' N M +# 0. In this case we have 3=v )" ~ ™=7 apg )0 <9
p my, my, ny

In addition, for all R, — 1 short rules one of the following applies:
o b’ ¢ I. In this case we have (v%)Tv! < 4% and (1 — v™)Tv% < 1.

e ¢/ € M. In this case we have (1 — v™)Tv% <1 —~" and (v7)To! < 1.
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Putting it all together, we have:

—1—i—fy m

T < max{ - } + (R, — 1) max {fyL, 1-— fyT} £t (5.26)
n
p
And we require:
<zt = 0. (2) <yt (5.27)
So we get an upper bound for 7 by:
1 1
oy (z) = — < — (5.28)

14 e In(=r —1)
nll,fl+'yL mll,f'yT L T
fy—max{ —, —I— }—(Rp—l)max{’y 1 — }
&S 1< = —
(5.29)
And for equation 5.29 we require 4+ < 1 but also:
v > max{ P il ,—2 17 } + (R, — 1) max{y, 1 —+"} (5.30)
np mp
For this inequality to have a solution, v would have to be strictly greater than both
ny 71 Ild
P 17

Putting it all together, we select v, v+, ~ ", 7 such that:

1

1. ’y>maxp{ m”—l}

nl ) ml
p
2. y < (I—=7)y".

3. v > max, { max { “2— _lﬂ }’W;WT} + (R, — 1)max {7*+,1 - VT}}
p

P

4. 47 >

NI—= N

5. 9t <

n171+'yl ’mlf'yT
(1—~L)~T 'y—max{ b, }—(Rp—l)max{'yJ-71—'yT}
6. T < min ’7(17)7 "p mpl
p ln(’y—-l——l) ’ ln(_YT—l)
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To show one possible solution, denote:

n = m;xx{n}o, m.} r= mI;aX{Rp} (5.31)
We can set v = ";% or v = ., for example. We can also decide that vt <1 =7,
So condition 3 becomes:
n—v" T
V> — +(r—1)1—-~v") (5.32)
Which gives us:
T r—"
> — 5.33
¥ T (5.33)
So we can set:
1 r—vy 1
T=_(1 — 1 - 5.34
! 2( +mw{%wg—l’z}) (539
And:
1 T
= 5(1 -7") (5.35)
And finally:
T:min{v (1 il 77 . 1(7" 7 } (5.36)

The following proposition ensures our differentiable operator correctly realizes ap-
plication of Tpx on an interpretation.

Proposition 5.2.1. Let P be normal program and I, M interpretations. Suppose u Nﬁ

v!. Then H,(D""v') ~77 0, ,(D""w).
Proof. Denote v/ = H,(D" - v') and let p € Bp. Suppose (v”)Tv’ = 1. Then there
exists a rule r € P such that head(r) = p and for all b € body™ (r) we have (v*)Tv! =1
and for all ¢ € body~(r) we have (v°)Tv! = 0. Hence for all b € body™(r) we have
(v*)Tu > 4" and for all ¢ € body~(r) we have (v)Tu < v* and as we’ve seen, for a
suitable choice of v and 7 we are assured o, , (D" " u) > ' as required.

Suppose now that (v?)Tv’ = 0. Then for every rule such that head(r) = p one of the
following occurs:
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e There exists at least one atom b € body™(r) such that (v®)Tv! = 0 and hence
(v")Tu < 4. For a suitable choice of parameters we are assured o, (D" -
u) <yt

e There exists at least one atom ¢ € body~(r) such that (v¢)Tv! = 1 and hence
(v°)Tu > ~". For a suitable choice of parameters we are assured o, , (D" "
u) <yt

5.3 Searching for Stable Models

Proposition 5.3.1. Let P be a normal program. Then M is a supported model of P if
and only if v™ = H,(DP" vM).

Proof. It is easy to see that Tpu (M) = Tp(M). The proposition then follows imme-
diately from propositions 2.2.1 and 5.1.1. ]

As was the case with Horn programs, we can define a mapping based on the above
proposition to turn deduction into root search. This time, however, the matrix DY’
depends on the input vector v. We denote:

v 1 - T CT ™ T
D" =% %vh (07T (5.37)
reP

Then our mapping is now:

F(v)=0,,.(D"v)—v (5.38)

Deriving the Jacobian starts off very similar to section 4.3. The derivation starts to
deviate at:

N
v 0> DI
do, (D" v); 1 2 Dii v

I DP” (1 — DP'” AN k=1 5.
(9Uj TU%T( v)i( U%T( v);) (9Uj - (5.39)

Since now DJ” depends on v. We therefore have to use the product rule for differ-
entiation:

a Z D ik Uk; N v N v
i aDi » OU oD~ .
i DP ik DP 5.
(%] z; ( ik v ) z; ( aﬂj Vg + ik 51@]) ( 40)

Now:
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o
DY =Y (1) - {m] (5.41)
ik

nrm”
reP

So:

oDL” o1 — )T [o" (0BT o [V (VBT
IVik ) — cr |2 \Y ) 49
=3 S ] T [, e

Hence:

N v N r T
0Dj; Pv Pv o [vM (07T
Z ( avj Vg + D'Lk 5k3> = Dij — Z Z (Uj |:W:| " Uk) = (543)

k=1 k=1 reP
ooy (o [ )
n"m’ )
reP ?
_ o (07 ) To ()T
=D =) — )
repP v

So the Jacobian is given by:

1 ” v v " (0P To(v)T
JZ] = ;0-’777'<DP v)’b(]‘ - o-’YyT(DP ’v)l) ) <D£ - [Z nlml ) - 5@]

reP ij

(5.44)

Which in matrix form can be written as:

Gt a0 LA

nm”

1 U x4 x4
J, = ~diag (o, (D" v) x (1 - 0,,(D""v))) - (DP -ye
T
repP

(5.45)
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Chapter 6

Case Studies

In this chapter we study how the algorithm developed in section 5.3 works in prac-
tice. A deduction algorithm based on real-valued and differentiable interpretations
requires a different intuition to algorithms based on symbolic reasoning alone. To
develop this intuition, we explore three different cases.

The first case study explores a basic non-monotonic deductive task. We explore the
effects of temperatures on convergence to stable models and see we get high conver-
gence rates when 7 is set to relatively high values. We then study a simple stratified
program to ensure our algorithm correctly converges to its unique stable model.
Finally, we examine a larger non-monotonic program to develop intuition on how
convergence changes when dependency between atoms becomes more complicated.

6.1 Case Study 1

Consider the following program:

p < notgq
¢ < notp (6.1)

The program has four interpretations: 0, {p}, {¢} and {p,q}. Two of these are sup-
ported (and stable) models: {p} and {¢}. Note that, even though this program is very
simple, it embodies two main challenges in non-monotonic deduction: The fact that
addition of new information invalidates previously acquired information (adding ¢
to an interpretation invalidates p being true), and the fact that there is no special
model (neither {p} nor {¢} stands out as a preferred). It is therefore worthwhile to
study how differentiable deduction fares in this case.

Suppose we wish to find stable models of the program. If we work symbolically, we
need to perform a search over the space of interpretations. One very simple strategy
is to guess an initial interpretation and check if it is stable by computing the Least
Herbrand Model of the reduct. For the two stable models, we find the fixed point
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immediately after applying 7Tp. For the other two interpretations, a fixed point is
never found since:

Tr({}) = {p, ¢} (6.2)
Tp({p.q}) = {}

We therefore have a 50% chance of finding a stable model in this manner. To explore
the Newton-Raphson method for deduction, we consider the following algorithm:

Algorithm 1 Newton-Raphson Deduction

Require: ¢ > 0, MaxK > 1,0<y<1,7>0
Pick an initial vector:

a,B~UI0,1] (6.3)

™ L = O

repeat
ok
Solve J 1 (v — vF) = vF — o (D" - wF)
until |[o"! —vF||; < eork > MaxK
if k < MazK then

return v”

else

return ‘FAIL
end if

Algorithm 1 begins by selecting a consistent interpretation at random. The values
for p and ¢ are chosen from a uniform distribution over [0, 1]. At each iteration it
performs a Newton-Raphson step. e is a threshold parameter to test for convergence
to a root. MaxK is the maximum number of iterations before stopping, to ensure
halting in case the algorithm does not converge. The algorithm can return an un-
desirable output under two scenarios: First, it may not converge to a root. Second,
even if a root is found, it may not correspond to a supported model. We therefore
seek to establish what the probability of finding a stable model is.

To answer this question, we implemented the algorithm, and tested how often we
were able to converge to a stable model. We fixed the values of v and 7 and repeated
the experiment 1000 times, each time starting from a different initial vector (selected
randomly as described above). To test further the effect of temperature on success
rate, we fixed v = % and varied the temperature, repeating the experiment 1000
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times for each one. The proposed solution from equation 5.36 suggests the value of
7 should not exceed 0.1422, so we varied its value from 0.01422 to 0.1422.

Success Rate for Finding Stable Models forp « not g, q « notp

0.8

0.7

0.6

0.5

0.4

0.3 1

Success Rate

0.2

0.1

0.0

T T T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

T

Figure 6.1: Success rate for finding a stable model, given a temperature. v was fixed to
a value of 0.5. Temperatures were varied from 0.01422 to 0.1422.

Graph 6.1 shows a clear picture of the algorithm’s performance. For temperatures
up to about 0.0782, we fail to find any models. For higher temperature, however,
the success rate increases steadily (the line is jagged only due to randomness in the
initial vector pick), up to about 80% for the highest temperatures tested.

Most importantly, we can see from figure 6.1 that our chance of success can be much
higher than 50%. To better understand for which initial values we converge, another
experiment was performed. We repeated the algorithm above yet again, but instead
of selecting initial vectors at random, we divided the unit square [0, 1] x [0, 1] in p— ¢
space into a 1000 x 1000 grid, iterating over all points on the grid. In this manner, we
can test convergence for each point and get a full picture of the convergence map in
the unit square. For each point, we observed four possible outcomes:

1. The algorithm converged to the stable model {p}.
2. The algorithm converged to the stable model {¢}.

3. The algorithm converged to a third root that does not correspond to an inter-
pretation. In this case both p and ¢ had a final value of about £ (equivalent to
1—7). We refer to this as p and ¢ being 'undecided’, in analogue to the concept
of 'unknown’ atoms in well-founded semantics (Van Gelder et al., 1991).

4. The algorithm did not converge to a root. We refer to this as finding none’.

The following charts show the convergence map for a few different temperature
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values. Each point has been coloured according to outcome of the algorithm, as
described above.

Convergence forp « notqg, q « notp
with y = 0.50, T = 0.0782

10
q
Found {q}
0.8
0.6 Found {p}
o4 p,q undecided
0.2
Found none
0.0
0.0 0.2 0.4 0.6 0.8 1.0
P

Convergence forp « notqg, g « notp
with y = 0.50, T = 0.0853

/_\ | Found {q}

10

Found {p}

p,q undecided

Found none

0.0 0.2 0.4 0.6 0.8 1

p
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Convergence forp « notqg, q « notp
with y = 0.50, T = 0.1422

10

Found {q}

Found {p}

p.q undecided

Found none

Figure 6.2: Convergence map for three different temperature values. The p and ¢ axis
indicate their initial value in v°. The colour indicates to which point the algorithm
converged, if at all.

The top figure exemplifies the change that occurs in the temperature range of 0.7 to
0.8. For lower temperatures, the algorithm never converges. The chart here shows
that at about 0.0782 the algorithm is already converging for many points, but mostly
to a third, undesirable root.

The next figure shows that by the time a temperature reaches 0.0.853, convergence
to stable models increased substantially, and divergence is almost disappearing. At
this point, the algorithm still finds the third root more than others. This changes
in the last figure, where stable models are clearly dominating, explaining the high
percentage of success we see in figure 6.1.

Some questions naturally arise when one looks at these figures. First, the meaning of
the third root is worthy of some consideration. It can be seen to be a consequence of
the program’s symmetry. Indeed, were the root not there, an algorithm beginning at
(p,q) = (0,0) and searching for a root could only converge to {p} or {¢}. However,
neither of these models is preferable to the other, so such a scenario cannot arise.
As an example, suppose we search for a root by performing gradient descent over
|| F'(v*)||>. We must converge to some local minimum in this scenario, but that local
minimum cannot be {p} or {¢} due to symmetry, and hence a third minimum exists.
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We do not here give a full theoretical treatment for the origins of the third root.
We speculate, however, that there is some connection to the well-founded model of
the program (Van Gelder et al., 1991). In well-founded semantics, interpretations
are three-valued, meaning that in addition to ‘True’ and ‘False’, atoms may also be
assigned a value of 'Unknown’ (or ‘Undecided’). Under such semantics, the pro-
gram we are considering has a unique well-founded model where both p and ¢ are
‘undecided’, since neither can be shown to definitively be true. We leave the study
of the connection between the third root and the well-founded model to future work.

A fact that may be surprising to the reader, when looking at the top figure, is that the
algorithm does not appear to converge to {p} or {¢} even when it appears to start
from {p} or {¢} ((1,0) and (0, 1) respectively). The explanation for this is simple:
(1,0) and (0, 1) are not in fact the roots. Instead, the roots are points very close to
(1,0) and (0,1). This is because the sigmoid function never outputs 0 or 1 but can
output values close to them. What we are seeing is a prime example of numerical
instability - when the temperatures are very low, the determinant of the Jacobian is
very high (this can be seen in equation 5.45, where the temperature is in the denom-
inator). This causes the algorithm to act erratically and ‘overshoot’ the root, even
when it begins close to it.

Finally, the reader may also wonder why initial points that are closer to one stable
model may end up converging to another one. For instance, in the bottom map the
initial point (p,q) = (0.3,0.7) is clearly closer to {¢} but in fact the algorithm from
that point converges to {p}. This phenomenon is best understood when one looks at

the topology of ||F(v")||z = ||o, (D' - v*) — v¥||, over the unit square:

Norm Map forp « notq, g « notp
with y = 0.50, T = 0.1422

Figure 6.3: A plot of ||F(v¥)||> on the unit square. The two roots corresponding to

stable models can be clearly seen, as well as the third root at (3, ). As we move from a
stable model towards the third root, the direction of the slope changes.
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Looking closely at the plot of the norm of F', we can see that even when one moves
closer to one of the stable models such as {¢}, the slope at that point may be di-
rected towards the third root. A Newton-Raphson step would therefore be towards

(p,q) = (3, 3), not towards {q}. However, a step may ‘overshoot’ that root, and end

up closer to {p}. It will then converge to {p} rather than (1, 3).
Convergence Map Temperatures and Description

10

q

0.8

0.01422 < 7 < 0.0711
For low temperatures, the algorithm
never converges. Hence the entire
map is filled with a single colour for
’Found None’.

0.4

0.2

0.0

7 =0.0782

Around this temperature, the algo-
rithm begins to converge for some
values to p, g-undecided, which is the
dominating root.
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Convergence Map

Temperatures and Description

1.0

7 = 0.0853

Areas that result in no convergence
are shrinking, and the algorithm be-
gins to find stable models more often.
p, ¢-undecided is still dominating.

7 = 0.0996

The algorithm now converges from
every initial point, and stable models
are found most often, and at about
the same rate as p, g-undecided.

0.1138 < 7 < 0.1422

The algorithm converges to stable
models more often as the tempera-
ture increases. p,g-undecided areas
are shrinking.

Table 6.1: Convergence maps for different temperatures, along with a description of

convergence behaviour.
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6.2 Case Study 2

Consider now the following program:

p < not q
g < notr (6.4)
<

This program is stratified, and hence it has a unique stable model, namely {p,}.
In this case, it is also the only supported model. We would expect, then, that any
reasonable algorithm for deduction would always find this model, and hence it can
serve as a sanity-check of our algorithm. Indeed, when applying Algorithm 1 we
find 100% success rate no matter what initial values are given to p, ¢ and r and at all
temperatures from around 0.7 to 0.1422:

Success Rate for Finding Stable Models forp « notq, q « notr, r «

1.0 A

0.8

0.6

0.4

Success Rate

0.2

0.0 A

T T T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 0.1z 0.14

T

Figure 6.4: Success rate for finding a stable model, given a temperature. v was fixed to
a value of % Temperatures were varied from 0.01422 to 0.1422.

For temperatures below 0.7 we again see a similar behaviour to case 1. Namely, the
low temperatures lead to a Jacobian with very large determinant value, that fails
to converge to a root. This shows the importance of picking temperature values
carefully. In principle, the higher the temperature, the better the algorithm would
perform. For completion, we show a convergence map for 7 = 0.1422. For all points
the initial value for » was set to 0.
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Convergence forp « notq, g « notr, r «
withy=0.50,7=0.1422,r=0

0.8

Found {p,r}

0.6

0.4

Found none
0.2 4

0.0 T T T T
0.0 0.2 0.4 0.6 08 1.0

Figure 6.5: Convergence map for v = 3 and 7 = 0.1422. The p and ¢ axis indicate their
initial value in v°. The uniform colour indicates the algorithm always converged to the
unique stable model.

6.3 Case Study 3

Lastly, consider the following program:

p < notq
q < notr (6.5)
T <= Nnots
S <—notp

Like the program in case study 1, this program is both non-monotonic and has mul-
tiple stable models. Namely, both {p,r} and {¢, s} are stable models of the program.
Because of this, a theorem-prover like Prolog would flounder if the truth-value of
any atom is queried. Differently from case study 1, there is a dependency between
two atoms in a model. Namely, it is not enough to deduce that p is in a stable model
if r is not deduced at the same time. Similarly with ¢ and s. To see how algorithm 1
performs in this case, we again test for the success rate of finding stable models:
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Success Rate for Finding Stable Models
forp « notg, q « notr, r « nots, s « notp

0.8 1

0.6 1
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Success Rate
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Figure 6.6: Success rate for finding a stable model, given a temperature. v was fixed to
a value of % Temperatures were varied from 0.01422 to 0.1422.

We can see in this case very similar behaviour to 6.1. For low temperatures, up to
about 0.07, we see no convergence to a stable model. At about 7 = 0.07 we see
a sharp change, with the rate of convergence to a stable model rising steadily from
about 50% up to more than 90% by the time we reach 7 = 0.1422. This is a somewhat
better convergence rate than in case study 1.

To understand these results, we again turn to convergence maps. This time, how-
ever, a difficulty arises. Since there are four atoms of interest, the unit square we
considered in case study 1 becomes a four-dimensional hypercube here. To achieve
visualisation still, we resort to looking at section planes. We create a section plane
by fixing the initial values of  and s and only allowing the initial values of p and ¢
to vary. Once an initial point is chosen, the algorithm continues as usual, meaning
the values of r and s can change. We then note the result. As before, we observed
four possible outcomes:

1. The algorithm converged to {p,r}.
2. The algorithm converged to {q, s}.
3. The algorithm converged to a third root in which p, ¢, r, s are undecided.

4. The algorithm did not converge.

The convergence maps are listed in the following table. For this experiment we fixed
the values of the parameters as v = ; and 7 = 0.1422.
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The maps clearly show how most points do end up converging to one stable model
or the other. Further, we clearly see how the initial value of r and s affect the out-
come of the algorithm. When r is initially set to 0, we converge to the model {¢, s}
more often. This can be understood of being a consequence of the clause ¢ < not r
- r being assumed false ‘encourages’ ¢ to be true. Similarly, when r is set to 1, ¢ is
‘encouraged’ to be false and we converge to {p,r} more often. The initial value of s
also has effect on convergence, in that s being set to 1 allows for {¢, s} to be found
more often, but the effect is smaller compared to r.

One may wonder about this lack of asymmetry between r and s, given the symmetry
of the program. This is especially surprising when one considers that our program
has no special model - the program is perfectly symmetrical with respect to its two
stable models {p,r} and {¢, s}. Yet, if one one looks at the convergence maps above,
some asymmetry can be clearly seen. The maps for (r,s) = (0,0) and (r,s) = (1,1)
have somewhat similar structure but are clearly not a mirror image of each other.
The same can be seen for (r,s) = (1,0) and (r,s) = (0, 1).

In fact, the program does have one subtle asymmetry that arises when one fixes the
initial values of r and s. This asymmetry can best be appreciated when looking at
the program’s dependency graph (Apt et al., 1988):

Figure 6.7: Dependency graph of the program. An edge between atoms marked with -’
indicates a negative dependency. Asymmetry can be seen in the direction of the edges.

The dependency graph can be read as follows: Each atom is a node in the graph. An
edge from ¢ to p marked with ‘-’ means there is a clause in the program with p as its
head and with ¢ in the negative body (Apt et al., 1988). The asymmetry that we see
in the convergence map stems from the direction of the edges. Namely, there is an
edge from ¢ to p but there is no edge from p to ¢. This means that if ¢ is assumed
to be false, p is an immediate consequence, but the other way around is not true.
Instead, multiple steps are required to deduce p. This also explains why there is a
stronger dependency on r’s initial value than s - r affects ¢’s truth value immediately
while s requires two steps.
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Convergence Map r, s values
Convergence forp « notg, g « notr, r « nots, § « notp
. withy =0.50, 7=0.1422,r=0,5=0
q
Found {q,s}
Found {p,r} r=20
s=0
p,q,r,s undecided
Found none
Convergence for p & notq, g « notr, r < nots, s « notp
N withy =050,7=01422,r=0,5=1
q

Found {q,5}

08

w Found {p,r} r=20

s=1

" p,q,r,s undecided

02
Found none

U 0z 04 06 08 10

' ‘ ' ' ‘ Y
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Convergence Map r, s values
Convergence forp « notg, g « notr, r « nots, § « notp
e withy =050, 7= 0.1422,r=1,5=0
9 ———

Found {q,s}

03

w Found {p,r} r=1

s=0

H p,q,r,s undecided

02
Found none

0 02 0 06 08 10

' ‘ ' ' ‘ P
Convergence for p & notq, g « notr, r < nots, s « notp
b withy=050,1=01422,r=1,5=1
q
Found {q,5}
Found {p,1} r=1
s=1

p,q,r,s undecided
Found none

Table 6.2: Convergence maps for four different section planes.
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Chapter 7

First-Order Deduction

In previous chapters we have shown how Horn and normal programs can be char-
acterized using linear algebra in the propositional case. In realistic scenarios, logic
programs are often written using First Order Predicate logic instead of propositional
logic, which allows us to capture general rules using universally and existentially
qualified variables.

In this chapter, we show one possible way to extend the linear algebraic approach
from the propositional case to First Order. The ideas presented here have not yet
been implemented and tested, and so are provided as a theoretical framework only,
to be explored further in the future.

7.1 Grounding

Our linear algebraic description of Logic Programming can be extended from the
propositional case to function-free First-Order Predicate Logic. The most simple
method of extension is to simply ground the program. For instance, for the following
program:

p(X) + q(X)
p(a)
q(b)

We can assume our domain contains only constant symbols that appear in the pro-
gram and produce the following grounding:

— (7.1)
<_

a) < q(a)

(
(b) < q(b) (7.2)
(
(

S

a)
b)

=
T T

<
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The program is then transformed into the matrix:

L T pl@) pb) qla) q®)
Lt o0 O 0 0 0 ]
T 01 0 0 0 O
pla) 0 1 0 0 1 0
o) | O 0 O 0 0 1 (7.3)
qa) | O 0 O 0 0 0
qv) 1O 1 0 0 0 0 |

To be even more optimal, we can produce only the so-called “relevant grounding” -
only produce grounded symbols if they are the head of some rule. The advantage of
this method is its simplicity.

The disadvantage is that it loses the structure of the original program. Predicate
symbols and constants are no longer distinguished. Instead, they are merged into
a new symbol. For instance, the symbols p(a) and ¢(a) are no longer related, even
though they share the same constant a. Similarly, there is no relation between the
symbols p(a) and p(b), despite sharing the same predicate symbol. If, for instance,
we wish to differentiate a function with respect to the vector representation of a con-
stant such as a (see, for instance, Rocktiaschel and Riedel (2017)), we would not be
able to do so since a is no longer a symbol in the program. We therefore need an ap-
proach that separates between the vector representation of predicates and constants.

Grefenstette (2013) proposed to embed the semantics of function-free and quantifier-
free predicate calculus into High-Order tensors. Sato (2017a) extended the method
to include quantifiers. Using this representation, the truth-value of a first order
function-free formula can be evaluated under a given model. Unlike the linear al-
gebraic approach of Sakama et al. (2017) and the one provided in this work, no
method of computing a model of an entire program is given. We here build upon
their previous work to construct high-order tensor representations of first order logic
clauses, while providing a method to compute suitable models under such programs.

Suppose our program contains N predicate symbols {p; = L,ps = T,ps,...,py and
L — 1 entities {ey,es,...,e,_1}. We introduce a new entity e, for a total of L, the
purpose of which will be shown later.

7.2 The Unary Case

As an example, we begin by assuming our program only contains unary predicates.
We embed predicate symbols into one-hot vectors in RY, and entity symbols into
one-hot vectors in RZ. So, for the above program, we have predicates {1, T,p, ¢},
represented by:
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1 0 0 0
0 1 0 0
1_ T _ P _ q_
vi=1, v =1, v | 0 (7.4)
0 0 0 1
And entities {eg, a, b} represented by:
1 0 0
vo= (0] v'=[1| =0 (7.5)
0 0 1

If we wish to embed an interpretation / such as {p(a), ¢(b)}, we can do so by taking
the outer product of the predicate representation with the entity representation as
in:

T! =vP ov® +vl0v® =P - (v)T + 07 (V)T (7.6)

So now an interpretation is embedded as a matrix, rather than a vector as in the
propositional case. This leads to a problem, however. Interpretations also contain
the atom T, but T has no matrix representation. It is only represented as the vector
v', so it cannot be added into the interpretation as addition between vectors and
matrices is not defined. To remedy this, we use the new entity ey. ¢, intuitively
represents “no entity” or “the null entity” and is simply a place-holder when there
is no entity to insert. Using e;, we can turn propositional atoms such as T into
unary predicates represented by T (ey). Our interpretation is now represented as the
matrix:

T =T ov® + vPov® +vio® (7.7)

Next we turn our attention to clauses. Let’s consider the fact:

T p(a) < (7.8)

In the propositional case, the head of a rule was represented by a vector v". Here
instead it is given by a matrix 7" = v” o v®. The body is also a matrix representing
top: T2 = v" ov®. In the propositional case, a clause was transformed into a matrix
by taking the outer product of the head vector v" with the body vector v”. Here, a
clause is transformed into a fourth order tensor in the same manner:

D' =T"oT? = (vPov) o (v' ov®) (7.9)
Now, suppose we are given the empty interpretation 7% = v' o v*. We apply the

Tp operator as before, by taking the dot product between the tensor representing
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the body T2 and the interpretation 77, and applying H, element-wise. The result is
given by:

TTP®) — H; [Th . <TB,TI>} = H, [('Up owv?) - <'uT o veo,vT o veoﬂ = (7.10)
=H [(vPov”) - (v - (v°)w°)] = Hy [(vP ov®) - (1-1)] = v’ 00"
Tp(() therefore contains the atom p(a). To maintain T in the interpretation, we

must again add to our program the tautology ‘T < T,not |’ which is represented
by (v' ov®) o (v o v®).

Now that we can deal with facts, let’s consider the clause:

T p(X) < ¢(X) (7.11)

Because the variable X is universally quantified, the clause must be embedded into
our 4-order tensor for all entities:

D" = Z(’U” ov%)o (viowvY) = (7.12)

b b

=vPov®oviov® +vPov?oviov® +vPov’oviow

So if our interpretation is {p(a), q(b)} and is therefore embedded as 77 = v? o v* +
v? o v°, we can take the dot product to get:

vP o v . <vqove°,v7’ov“+vqovb> +
VP o v? - <'vq ov*, vPov® +vio 'vb> + (7.13)

v’ ov’ (viov’ vPov +viov’) = v’ o’

And applying H; doesn’t change the result, hence 7»(I) contains p(b). Now suppose
we had a clause of the form:

T p(X) + q(Y) (7.14)

The variable Y is understood as existentially quantified over the body. It is sufficient
therefore that an interpretation contain any atom ¢(e;,) to deduce all atoms of the
form p(e;). This is encoded into the tensor representation of the body by summing
over all entities, allowing any of them to be true to deduce the head, as follows:

DT — g rvp fe) veJ le) E ’Uq o) vejl = E 'l)p (@] vej @) vq @) 'Uejl (7.15)
€j

6]'1 ej,ejl

Finally, a more general definite clause:
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e h(X) <_b1<X)7b2(X)7"~7bn(X)7bn+1<X1)7-'-7bn+m(Xm) (716)

Is embedded into 4-order tensor by:

Drznim;vhovefo(gvbiovej—i- Zm: vaiove”) (7.17)

i=n+1 €j;

In this manner we can embed each clause in the program, one by one, into a 4-order
tensor, and by starting with the empty interpretation v ' ov®, we can iteratively apply
Tp, hence computing the Least Herbrand Model. Just as in the propositional case,
our program must satisfy the Multiple Definitions condition: Every grounded atom
must be defined by at most one long rule. For instance, in the following program:

pla) < q(a),r(b) (7.18)
P(X) « ¢(X), s(X)

p(a) is a symbol that is defined by multiple long clauses. p(b), however, is not, since
it is only the head of the clause p(b) < ¢(b),s(b). Note that having a predicate
defined by only one ungrounded clauses does not guarantee that the MD condition
is satisfied. For instance, if we replaced the ungrounded clause in the above program
with:

p(X) = q(X), s(Y)

p(b) would be multiply defined since it is the head of two grounded clauses:
p(b) < q(b), s(a) (7.19)

To ensure the MD condition is satisfied, we can introduce auxiliary variables as be-
fore. For instance, we can replace the above grounded clauses with:

p(b)1 + q(b), s(a

p(b)2 < q(b),s(b) (7.20)
p(b) < p(b)1

p(b) < p(b)a
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7.3 The Binary Case

The method outlined above can naturally be extended to k-ary predicates. An inter-
pretation / will be embedded into a (k + 1)-order tensor. So a symbol p(ay, as, ..., ax)
becomes associated with the tensor v” o v*' o ... o v*, and similarly to above, pro-
grams can be embedded as (2k + 2)-order tensors. However, the memory require-
ment to store a tensor is exponentially dependent on its order, making this method
intractable for large values of k. We therefore limit ourselves to the case of binary

predicates.
As an example of the binary case, consider the following set of facts (example from
Prolog Programming for Artificial Intelligence, chapter 1, Bratko (2001)):

parent(pam, bob) +
parent(tom, bob) <
parent(tom, liz) < (7.21)
parent(bob, ann) «

parent(bob, pat) <

parent(pat, jim) <

The facts are embedded into the tensor:

TP —patent , ,,pam ,Ubob o 'UT 0 v o v +

parent tom bob T

v ov Mo v”®ov' ocv®ov® +

VPN 6 M 6 pliZ 6 T o v o v + (7.22)

,Uparent o ,Ubob o ,Uann o UT 0 v o P +

pParent 4 ,Ubob o vPt o ’UT o v o v +

pPrent 5 opat ,Ujim ° ’UT 0 v o v
Unary facts need to be extended to binary, so:
female(pam) <+

male(tom) <« (7.23)
male(bob) <+

(7.24)
is embedded as:
TP :,Ufemale o pPAM 5 p® o ’UT o v o v +
,vrnale o ,Utom o v o ’UT 0 v o P +
,vmale o ,vbob ov® o ’UT 0 v o PO (725)
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A clause with universal quantifiers can be embedded by summing over entities:

child(X,Y") « parent(Y, X) (7.26)
ehild _ Z oM 5 €1 o &2 o PPN G 42 o &l (7.27)
6‘7'1 76‘7'2

And unary predicates are again extended:

mother(X,Y') < parent(X,Y), female(X) (7.28)

v _ 1 , _ 1 _
Tmother _ § : ,vmother o vl o V%2 o (évparent o0 V1 o VY2 + 5,Ufemale o VY1 o ,er)

€j1:€42

(7.29)

Existential quantifiers are again introduced by summing over entities in the body:

grandparent(X,Y’) < parent(X, Z), parent(Z,Y) (7.30)
Tgrandparent _ Z ,Ugrandparent o VY1 0 VY2 o (%vparent o V%1 o Vs + %,vparent 0 v o ,vejz)
ej17€j276j3
(7.31)

One can also introduce conditions on the variables, such as inequality, by removing
entities from the summation:

sibling(X,Y") < parent(Z, X ), parent(Z,Y), X #Y (7.32)
Tsibling _ Z ,Usibling o v%1 0 VY2 o (l,vparent o v%s o vl + l,vparent o v%s o ’Uej2)
2 2
€j1:€52+€j3 €51 7€ja
(7.33)
Finally, recursion can also be represented by a tensor:
ancestor(X,Y') < parent(X,Y) (7.34)
ancestor(X,Y) « parent(X, Z), ancestor(Z,Y)
rpancestor _ Z ACESIOT  01Ci1 o yCia o PANL  y€i1 o 4Cia |- (7.35)
€51:€d2
Z A0CESOT €51 o 9%z o (l,vparent o V%1 o v%s + l,vancestor o %3 o 'UejQ)
2 2
€51:€52€353
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7.4 The Non-Monotonic Case

If a First Order program contains normal rules, it is also possible to construct the
reduct of a program much in the same way as in the propositional case. Suppose we
are given a rule such as:

T h(X,Y) « p(X,Y),not ¢(X,Y) (7.36)

The corresponding definite rule has a 6-order tensor representation:

E " 0 V%1 0 VY2 0 VP o VYL o V2 (7.37)
6]‘178]'2

The negative body ¢(X,Y') has a third order tensor representation of its truth value:

T = Z v? o v o Y2 (7.38)
ejl,ejg
If a candidate stable model M is given, with tensor representation 7™, the reduct
rule is embedded as:

T = E <1 —TM vl0v% o vei2> v 0 v%1 0 v%2 0 VP 0 VYL 0 V2 (7.39)

€51 ,ej2

7.5 Discussion

In this chapter we provided a tensor-based method for representing First-Order logic
programs. Our method is based on a grounding of a program that retains the struc-
ture of the original atoms by separating predicate and entity vector representations.

Grounding the program has the advantage of providing a natural way of expressing a
wide variety of clauses, allowing universally and existentially quantified variables, as
well as special conditions such as inequality. This freedom of expression comes with
a disadvantage, however, as grounded programs potentially generates very large
programs.

If a program, satisfying the MD condition, contains NV predicate symbols and L en-
tity symbols, the space requirement in the binary case is O(N2L*). If it contains
R grounded clauses, constructing the tensor has a worst-case time complexity of
O(R - N - L?). Computing one-step deduction would take O(N2L*) (assuming a
non-sparse representation of the tensor) and the Least Herbrand Model of a Horn
program would then take O(N3L5).

To improve scalability, future implementations could use sparse tensor representa-
tions. Methods to provide grounding of clauses on a need-only basis may also be
developed.
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Chapter 8
Related Work

There are not many works that attempt to realize logic programming using linear
algebraic methods. Lin (2013) gives a linear algebraic treatment to SAT solving.
There are many works concerning relational learning by embedding entities of KBs
in a vector space, such as Socher et al. (2013), Yang et al. (2014), Rocktischel and
Riedel (2017). Serafini and Garcez (2016) introduce Real Logic as a formulation
of logical inference in a continuous space which can be realized by means of Logic
Tensor Networks. Cohen (2016) introduces TensorLog as a differentiable framework
for probabilistic logic. None of these are concerned with a linear algebraic treatment
of logic programming for exact inference.

In this chapter we provide a summary of those works most relevant to our own.
Namely, those works concerned with providing a linear algebraic theory for inference
from logic programs.

8.1 “Linear Algebraic Characterization of Logic Programs”
The original work by Sakama et al. (2017) regarding a matrix representation of a
Horn program provides the basis of our work. In their paper, Sakama et al. also
treat the case of disjunctive and normal programs. While in our work we chose not
to treat the case of disjunctive programs, in Sakama et al. (2017) these are reduced
into the Horn case by means of split programs. Each disjunctive clause of the form:
h1Vh2\/...hm<—b1,b2,...,bn (81)
is split into m Horn clauses:

hq %bl, bg, 7bn
hz <—b1, bz, ceey bn (82)

hm <—b1, bg, 7bn

65



Chapter 8. Related Work

Split programs are then created by incorporating one split Horn clause for each of
the original disjunctive clause. Since each split program is Horn, it can then be trans-
formed into a matrix, and these matrices are then stacked as the frontal slices of a
third-order tensor. Computing minimal models is then simply the matter of comput-
ing the Least Herbrand Model for each frontal slice, as described in section 2.5.

Normal programs are also treated, but unlike in our work, reducts are not consid-
ered. Instead, these are transformed into disjunctive programs by replacing a neg-
ative body atom such as ‘not ¢’ with an auxiliary head atom ec, adding a clause of
the form ec < ¢ and requiring that if ec is in a model then ¢ is as well. The minimal
models of the resulting disjunctive program can be shown to be the stable models of
the original.

While the third-order construction provides a systematic method to find all the sta-
ble models of a program, it suffers from a scalability problem, since in general a
disjunctive program has an exponential number of split programs, and storing and
manipulating the resulting tensor may not be achievable.

8.2 “Partial Evaluation of Logic Programs in Vector Spaces”

Sakama et al. (2018) build upon their previous and suggest several optimization for
matrix-based deduction. First, . and T are removed from the Herbrand base to
reduce the matrix size. The removal of | means the programs considered can no
longer have constraints (definite programs). T can be removed by adding the facts
of the program to the initial interpretation (instead of starting from the empty inter-
pretation), and for each fact p; + add instead the tautology p; < p; so that facts are
not forgotten.

The next suggested improvement is by a method the authors term column reduction.
The program is split into two: A Singly Defined program where every atom has a sin-
gle definition, and a Multiply Defined program where atoms are the heads of multiple
clauses. Clauses that multiply define an atom have their heads replaced by auxiliary
variables, and a new rule is added to define the original atom, whose body is a dis-
junction of those new variables. Hence we have removed multiple definitions of the
program at the cost of adding rules with disjunction in the body. Evaluation of 7p
by matrix multiplication can be done as usual for the Horn clauses of the program,
but columns corresponding to auxiliary variables can be removed, since these only
appear as the heads of rules. Evaluation of the auxiliary rules is then done at the
activation (non-linear) stage instead of the matrix multiplication stage. This results
in less steps when computing 7.

In addition to the optimisation above, the authors also consider how to perform par-
tial evaluation of the program (Lloyd and Shepherdson, 1991) using linear algebra.
They show that powers of the program matrix D" capture the concept of partial
evaluation when P is singly defined. This suggests partial evaluation can be used as
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a preprocessing step before computing the Least Herbrand Model in full.

It is possible that some of the techinques outlined in Sakama et al. (2018) would
be beneficial for our work as well. We leave the study and evaluation of these tech-
niques to future work.

8.3 “Towards a Formal Distributional Semantics: Simulating Log-
ical Calculi with Tensors”

Grefenstette (2013) described a tensor-based framework for quantifier-free predi-
cate logic, as a first step towards a linear algebraic characterization of formal se-
mantics in natural language. The author associated the symbols T and | with the
vectors [1,0]" and [0, 1]7. If the Herbrand domain has L entities, those were embed-
ded using one-hot encoding in RY. If p is a k-ary predicate, its truth value under
model M is embedded in the tensor:

p M 1 2 L M 1 2 L
T° = Z Cliyip.i, | ©€;, 0€,0...0€e; + Coirig.ip L O € 0€; O...0€e’
2211 ’6122 """ 1L1 111 222 """ ZLL
(8.3)
where
1 2 L
C]V[ o 1 p(eipeiga"-:e%) GM CM _1_61\/[ (8 4)
12190...07, — 1 2 2i1%9...07, 12122...2 .
122...0L 0 p(6i176i27"‘76iL) ¢M 122...0L 122...0L

The author also shows how the semantics of propositional logical connectors can be
embedded in second or third order tensors. Finally, the author provides a proof that
the semantics of universal and existential quantifiers cannot be captured using linear
mappings alone.

In chapter 7 we drew on the ideas from Grefenstette (2013) to provide a tensor-
based framework for First-Order logic programs. However, our method differs in
several key points. First, we do not embed | and T in their own vector space but
rather treat them as O-ary predicate symbols. In equation 8.3, rather than summing
only for | and T, we sum for all predicate symbols in the program. This allows us to
capture the truth value of all predicate symbols in the program, rather than a single
one (see for example equation 7.7). In addition, we provide a general method for
computing the truth value of predicates without being given a model in advance,
by embedding clauses in a high-order tensor and allowing models to be computed
iteratively.

8.4 “Embedding Tarskian Semantics in Vector Spaces”

Sato (2017a) extends the work of Grefenstette (2013) to include first-order logical
formula with quantifiers. The author removes the vector representation of | and T
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but does not provide a vector representation of predicates, so each predicate must
be embedded in a separate tensor. Existential quantifiers are captured by summing
the truth value of a predicate over all entities of the domain, and then applying a
non-linear function min; (x) = min(z,1). A tensor representation of this operation
is also given. This is quite similar to our approach for universally quantified vari-
ables, where the tensor representation of grounded clauses are summed over, and a
non-linear H, operation is applied. However, by capturing clauses in this way, we do
not need to be given a model of the program in advance to compute truth values of
predicates.

While our method allows for compuation of models for any given program, the meth-
ods outlined by Sato (2017a) may be more efficient for certain classes of programs.
For instance, in the special case of binary predicates, the author shows how the sum-
mation process can often be truncated by algebraic manipulation. Specifically, the
author shows how the recursive relation:

T2<X7Z)%T1(sz) (85)
TQ(X, Z) < 7"1(X, Y),?“Q(Y, Z)

can be captured by the matrix equation Ry, = min, (R, + R;Rs). By replacing min,
with multiplication by a small positive constant ¢, the equation can be solved with
matrix inversion and thresholding, achieving more efficient compuation in the case
that R, is not a sparse matrix. More details are given by the author in Sato (2017b),
where the matrix equation method is expanded to several classes of programs, but
is still infeasible in the general case. For instance, for the program:

r9(X, Z) < r1(X, Z) (8.6)
T2<X’ Z) — T2(X7Y)7TQ(Y7 Z)

the corresponding equation is quadratic in R,. Negation in the case of non-stratified
programs is also not treated.

8.5 ‘“Abducing Relations in Continuous Spaces”

Sato et al. (2018) build upon their previous work (Sato, 2017a) to realize abductive
inference in vector spaces. Specifically, binary datalog programs are considered for
the purpose of abduction in knowledge graphs. Since a clause such as:

7,'23()(7}/) <_T1(X>Y)7T2(X7Y) (87)

can be shown (Sato, 2017a) to be captured by the matrix equation R3(X,Y) =
min, (R R,), if we are given the matrices R;, Rj3, the abductive task becomes solving
for R,. Since an exact solution is intractable for large graphs, the equation is instead
solved approximately (R; ~ min;(R;Rz)) by solving R; = R;X for X and then
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thresholding R, = X.4 for an appropriately selected ¢ such that if X;; > 6 then
Ry;; = 1, otherwise Ry;; = 0. A treatment of the recursive case from equation
8.5 is also given. Experimental results show that despite the approximation of the
algorithm, exact or near-exact abductive inference can be achieved for fairly large
programs.

8.6 “Tensor-Based Abduction in Horn Propositional Programs”

Aspis et al. (2018) extend the work of Sakama et al. (2017) to abductive infer-
ence for Horn programs. Inverted rules of the program are encoded into the frontal
slices of a third-order abductive tensor A”. So if the clause (h", B",()) has a ma-
trix representation of —-v"" (v”")7, the tensor would have a frontal slice of A’ =
o8 (v")T + 1 — v (v"")T. By multiplying A" with an interpretation that contains
h", the resulting interpretation contains B" due to v? (v"")T, does not contain h"
due to —v" (v"")T, and leaves all other atoms intact due to I. Hence the atoms of
B" can be thought to have been “abduced” from the clause. Since all clauses of the
program are encoded in A", all possible abductive solutions can be found in this
way. Integrity constraint are checked by computing the fixed point of each potential
solution, similarly to the process described in section 2.5. A method for filtering
solutions according to a set of abducible atoms is also offered.

It is worth noting that this method for abduction differs from the one outlined by
Sato et al. (2018) in that it searches for all abductive solutions, given an observa-
tion, instead of abducing the truth value of specific predicates. It is, however, only
propositional at this time. It may be possible to combine this method with the one in
Sato et al. (2018) or chapter 7 of this work to realize full abduction in the first order
case, but this is left for future work. Unlike the approach taken by Sato et al. (2018),
such an extension would allow exact abductive inference. It would also search for
all abductive solutions of the program, rather than considering one clause at a time.
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Extensions

In this report we provided a detailed description of how logic programs could be
characterized using linear algebraic methods to realize exact inference. Our long-
term goal involves finding efficient inference algorithms for web-scale knowledge
bases. Such programs pose two main challenges: First, they often contain millions of
distinct symbols, rendering inference tasks such as computing their Least Herbrand
Model intractable. Second, they are highly dynamic, with new atoms and clauses
added daily. To deal with these challenges, we advocate replacing exact inference
with approximations using neural-symbolic integration approaches (see Besold et al.
(2017) for a survey). More specifically, we propose to use Deep Learning techniques
to learn sub-symbolic representation of atoms to achieve approximate inference.

In this chapter we outline initial ideas towards that goal. First, we examine the case
where our Herbrand Base is very large but with a known, fixed size. We describe a
method of learning an embedding function that can help speed up queries to such
a database. Second, we consider the case where the knowledge base has an un-
known size such that a one-hot encoding of atoms is no longer possible. We develop
mathematical formulas for taming such large knowledge bases by usage of Kernel
methods.

9.1 Program Embedding

Suppose a Horn program P represents a fairly large, but fixed size, knowledge base.
As always, we denote the size of the Herbrand base of P as N. We assume N is not
too large so that the task of computing 7»(/) for an arbitrary interpretation / is still
tractable. However, since computing the Least Herbrand Model is of the order of
O(N?) operations, full inference may be unachievable directly.

We propose to embed D in a low-dimensional vector space. This embedding should
still allow us to maintain our deductive capabilities, approximately. Let us denote
the embedding function as ¢y : {0,1}" — R* where we assume N is much larger
than & (N >> k), and 0 are parameters of ¢. Given an atom p € Bp, its one-hot
encoding is denoted v? and its low-dimensional embedding is given by:
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u? = ¢y(v?) (9.1

And given a set of atoms A C Bp we have:

u? = ¢g(v?) (9.2)

This suggests that, once the parameters ¢ of ¢, are fixed, we can compute the low-
dimensional embedding of all the atoms in Bp and store the result.

The embedded program matrix E is related to the original matrix D" by:

1 i 1 ) )
E} = —u" (uP)T = — w By 3
F= D )T = 3 e n(w”) 9.3)
In the high-dimensional space, the immediate consequence of an interpretation [
was given by:

o (D) =0 (Y 0" (") D) = Y o i((vP)TD ! )o? (9.4)

pEBp pEBp

We would like then the following approximation to be true:

i (vP)TD0") = 0, ((uP)TEgu’) = 0, (¢6(v”) Eg ¢p(v")) (9.5)

One-step deduction can therefore be done as follows: Compute the embedding of
I (O(N - k) operations). Multiply u! by the low-dimensional matrix E” (O(k?)
operations). For every atom p € Bp, to decide if p € Tp(I), perform the projection
(u?)TE"u! (O(k)). We then apply o, and test whether the result is bigger than
v, and if it is, then p € Tp(I). The entire deductive step therefore takes O(N - k)
operations, instead of the O(N?) it would have ordinarily taken. Computing the
Least Herbrand Model requires chaining one-step deductions until a fixed point is
reached, and would take O(N?k) operations in the worst case, instead of O(N?). To
find the embedding function ¢y, we define the loss function:

1 1
£0,P)== E (0, (0")TD"0") — 0, (¢6(v") EY do(v")))” + = A||0]]> (9.6)
2 p~U(Bp) 2
I~U(2BP)

where U(Bp) is a uniform distribution over Bp and U(257) is a uniform distribution
over subsets of Bp. Computing the immediate consequence in the low-dimensional
space achieves the best approximate inference when £(f, P) is minimized with re-
spect to #. This can be done, for instance, with stochastic gradient descent (Bottou,
1998).
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9.2 Kernel Methods

Suppose now that N, the size of the Herbrand Base, is of such large order that even
computing 7p(/) is intractable, or that N may be constantly changing. Mathemat-
ically, we can capture such a situation by letting N — oo. For an arbitrary atom
Bp, we have v? € R*® and similarly D is of infinite size, and hence a direct linear
algebraic representation of atoms and programs is not computable. To get around
this problem, we notice that:

peTp() < ()70, (D) >y < o, () D) >~y (9.7)

Now, since:
1 . .
DP — A, BT .

> o () 9.8)

reP
and:

vl = Z’vq B = Z o’ 9.9
qel beB"

we have:

peTp(l) & o4, (Z Z Z %(v”)Tvm(vb)Tvq> > (9.10)

reP beB" g€l

This suggests that if we knew how to compute the inner product of two vectors, even
if those vectors are of infinite size, we can still perform deduction in a finite num-
ber of steps. In statistical machine learning this is known as the Kernel method. For
Support Vector Machine (SVM) models, the Kernel method is used when examples
are not separable by a linear hyperplane (Schoélkopf et al., 2002). The examples are
then mapped to high-dimensional or infinite vector space where they are separable,
by using an implicit non-linear function. The computation remains finite by specify-
ing a Kernel function that effectively computes the dot product between vectors in
the high dimensional vector space.

Drawing on this idea, if we had in our possession a Kernel function Kp(-,-) that,
given two symbols p and ¢ that are part of program P, can compute:

Kp(p,q) = (vP)Tv? (9.11D)

then equation 9.10 becomes:
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peTp(l) & 0 (Z > %Kp(p, ") Kp(b, Q)> > 5 (9.12)

reP beB" g€l

This poses the challenge of how to find such a function. One commonly used Kernel
function is the Radial Basis Function (RBF) (Shalev-Shwartz and Ben-David, 2014).
Denote the word embedding of an atom p as 6,. Then the Gaussian RBF kernel is
defined as:

_\(’p—9q\2

K,(p,q) = e 22 (9.13)

which suggests a new way of learning vector representations of atoms of a program.

As a final note, suppose we are in possession of a Kernel function Kp(-,-) that per-
fectly computes the dot product for program P. Define:

Conp(p, 1) = (v")Tv' = Kp(p,q) (9.14)

qel

Conp(p,I) can be thought of as an oracle function that answers whether p is in an
interpretation / when the Kernel function Kp(p, q) has been learned for program P.
If M is a supported model of P, then Conp(p, M) becomes an oracle function to test
if p is a consequence of the program P. Note that since M = Tp(M) we have:

()70 = () =, (Z S S el Kl q>> (9.15)

reP beB" qgeM

which implies the following recursive relation holds:

Conp(p, M) =0, , (Z Z %C’onp(b7 M)) (9.16)

reP beB"

Hence the problem of searching for a supported model of a web-scale program can
be replaced by a learning task for Conp(p, M). Equation 9.16 may be helpful in
designing a loss function for said task.
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Conclusion

This work advocated for a linear algebraic approach to logic programming. Several
theoretical results have been developed towards that goal. We began by providing
necessary background information to the reader about logic programming, high-
order tensors and previous work on the subject by other authors. We then posed a
restriction on our program in the form of a Multiple Definitions condition, to ensure
the correctness of some of the algorithms in this work. We proved this restriction is
without loss of generality.

We then showed how the linear algebraic algorithm described by Sakama et al.
(2017) can be altered to allow for a fully differentiable deductive process. Differ-
entiable deduction depends on the selection of a threshold (v) and temperature (7)
parameters, and we developed conditions on these parameters to ensure the cor-
rectness of exact inference. We then showed how using differentiable deduction we
can search for supported models of a program by employing the Newton-Raphson
method for root search.

Next, we introduced a completely linear algebraic characterization of the concept
of program reduct for stable semantics. After proving the correctness of the charac-
terization, we described how differentiable deduction can still be maintained in this
non-monotonic case by developing further conditions on v and 7. We then described
how an algorithm based on the Newton-Raphson method can be applied in this case
as well.

We then studied how the algorithm works in practice for several example programs.
We noticed that for high temperature values the algorithm converges at impressive
rates (including 100% convergence for the stratified program tested) which suggests
it can be useful for directed search of the space of possible models of a program. We
provided several illustrations of convergence maps to help develop intuition for the
algorithm’s behaviour.

We then introduced a new linear algebraic characterization of function-free First-

Order logic programs. We showed how embedding a program into a high-order
tensor can allow for grounding while maintaining syntactic structure of atoms. Sev-
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eral examples were given for the unary and binary case, though the case of general
k-ary predicates remains intractable. Non-monotonic programs were also discussed.

Finally, we surveyed some of the most relevant work that has been published on
the subject of combining logic programming with linear algebra, and outlined ini-
tial ideas on how this approach can be scaled to large knowledge-bases, either by
learning low-dimensional embeddings for interpretations, or by learning a kernel
function that measures the similarity between two symbols.

10.1 Future Work

Our work here provided a theoretical framework for linear algebraic algorithms for
deduction from logic programs. Much work remains to done.

Algorithm 1 has been implemented for testing on small programs. An optimized im-
plementation running on GPU hardware could allow for efficient scalability testing,
and to provide further intuition when the algorithm is applied to more complex pro-
grams. Using sparse tensor representations could be especially beneficial to improve
performance.

The First-Order case has only received theoretical treatment here. Future work will
be directed at providing a full proof for the approach and implementation as a proof
of concept. It may be possible to apply algorithm 1 in this case as well. It is un-
known to us if a version of the Newton-Raphson algorithm where the variable is a
high-order tensor exists in the literature. However, flattening the tensor into a vector
may be a way to solve this difficulty.

Abduction as has been described by Aspis et al. (2018) may also be extended from
the propositional case to First-Order, by combining some of the ideas from chapter
7. A full first-order abductive process has been used in several systems of Inductive
Logic Programming such as XHAIL (Ray, 2009), which raises the possibility of a lin-
ear algebraic implementation of ILP.

Finally, the ideas outlined in chapter 9 require full development, implementation
and testing of their efficacy. Inference in the case of web-scale programs such as
NELL (Mitchell et al., 2015) and KBpedia (Bergman and Giasson) remains an open
challenge and these may be first steps towards overcoming it.
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Legal and Ethical Considerations

The work that has been carried out throughout this project, and that which has been
presented in this report, is of theoretical nature. Experiments that have been carried
out are also of a theoretical nature on self-generated data, and did not involve any
third party. Specifically, the project has not involved human embryos, humans, hu-
man cells or tissues, animals or developing countries. The author is not aware of any
possible environmental impact by the project. No personal data has been collected
or handled. No copyrighted code or data has been used or produced, to the best
knowledge of the author. Great care has been made to credit original authors, when
their work is referenced or built upon. The author is not aware of any direct possible
misuse of this work. For more details, see the Ethics Checklist next page.
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Yes | No
Section 1: HUMAN EMBRYOS/FOETUSES
Does your project involve Human Embryonic Stem Cells? X
Does your project involve the use of human embryos? X
Does your project involve the use of human foetal tissues / cells? X
Section 2: HUMANS
Does your project involve human participants? X
Section 3: HUMAN CELLS / TISSUES
Does your project involve human cells or tissues? (Other than from Human Embryos/Foetuses i.e. Section 1)? X
Section 4: PROTECTION OF PERSONAL DATA
Does your project involve personal data collection and/or processing? X
Does it involve the collection and/or processing of sensitive personal data (e.g. health, sexual lifestyle, ethnicity, X
political opinion, religious or philosophical conviction)?
Does it involve processing of genetic information? X
Does it involve tracking or observation of participants? It should be noted that this issue is not limited to surveil- X
lance or localization data. It also applies to Wan data such as IP address, MACs, cookies etc.
Does your project involve further processing of previously collected personal data (secondary use)? For example X
Does your project involve merging existing data sets?
Section 5: ANIMALS
Does your project involve animals? X
Section 6: DEVELOPING COUNTRIES
Does your project involve developing countries? X
If your project involves low and/or lower-middle income countries, are any benefit-sharing actions planned? X
Could the situation in the country put the individuals taking part in the project at risk? X
Section 7: ENVIRONMENTAL PROTECTION AND SAFETY
Does your project involve the use of elements that may cause harm to the environment, animals or plants? X
Does your project deal with endangered fauna and/or flora /protected areas? X
Does your project involve the use of elements that may cause harm to humans, including project staff? X
Does your project involve other harmful materials or equipment, e.g. high-powered laser systems? X
Section 8: DUAL USE
Does your project have the potential for military applications? X
Does your project have an exclusive civilian application focus? X
Will your project use or produce goods or information that will require export licenses in accordance with legislation
on dual use items?
Does your project affect current standards in military ethics e.g., global ban on weapons of mass destruction,
issues of proportionality, discrimination of combatants and accountability in drone and autonomous robotics de- X
velopments, incendiary or laser weapons?
Section 9: MISUSE
Does your project have the potential for malevolent/criminal/terrorist abuse? X
Does your project involve information on/or the use of biological-, chemical-, nuclear/radiological-security sensitive X
materials and explosives, and means of their delivery?
Does your project involve the development of technologies or the creation of information that could have severe X
negative impacts on human rights standards (e.g. privacy, stigmatization, discrimination), if misapplied?
Does your project have the potential for terrorist or criminal abuse e.g. infrastructural vulnerability studies, cyber- X
security related project?
SECTION 10: LEGAL ISSUES
Will your project use or produce software for which there are copyright licensing implications? X
Will your project use or produce goods or information for which there are data protection, or other legal implica- X
tions?
SECTION 11: OTHER ETHICS ISSUES
Are there any other ethics issues that should be taken into consideration? X

Table A.1: Ethics Checklist
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