
Imperial College London
Department of Computing

MEng Individual Project

Logic-based Approach to Machine
Comprehension of Text

Author:
Piotr Chabierski

Project Supervisors:
Prof. Alessandra Russo

Mark Law

June 19, 2017

Abstract

Machine comprehension of text is a long-term open problem in Artificial Intelligence and
can be assessed by machine’s ability to answer questions about passages of text. In this
project we combine ideas from the fields of logic-based learning, knowledge representation
and computational linguistics to develop a domain-independent system capable of both an-
swering questions about text based on Answer Set Program representation and of acquiring
background knowledge automatically using Inductive Logic Programming.

The approach uses the Combinatory Categorial Grammar and Montague-style semantics,
expressed with λ-ASP calculus, to perform domain-independent semantic analysis of text
and derive Answer Set Program representations. The system can use the semantic rep-
resentation to automatically derive bounds on the hypothesis space in the form of mode
declarations and generate an Inductive Logic Programming task suitable as an input to
ILASP [31] algorithm.

The system was evaluated against MemN2N [61] and EntNet [22] neural network-based
models on a subset of The (20) QA bAbi Tasks Dataset [66] and achieved comparable
accuracy using a significantly smaller number of training examples.

iii

Acknowledgements

I would like to thank my supervisors, Prof. Alessandra Russo and Mark Law, for supporting
me with their expertise in the field of logic-based learning and for their guidance and
enthusiasm throughout the project. I want to express my gratitude for the time that they
dedicated to our weekly meetings which gave rise to many interesting project discussions
and ideas. I would also like to thank Prof. Marek Sergot, my Personal Tutor, for providing
me with advice and assistance during the last four years. Finally, I would like to thank my
parents.

v

Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivations . 2
1.3 Objectives . 3
1.4 Project Outline . 3
1.5 Contributions . 5

2 Background 6
2.1 Answer Set Programming . 6

2.1.1 Programming Language . 6
2.1.2 Stable Model Semantics . 7

2.2 Inductive Logic Programming . 7
2.2.1 Inductive Logic Programming under Answer Set Semantics 8

2.3 ILASP . 8
2.3.1 Learning from Partial Answer Sets 9
2.3.2 Context-Dependent Examples . 10
2.3.3 Learning Task Definition . 10

2.4 Compositional Semantics of Natural Language 11
2.4.1 The Principle of Semantic Compositionality 11
2.4.2 Montague Grammar . 12

2.5 Combinatory Categorial Grammar . 14
2.5.1 Combinatory Rules . 14
2.5.2 Comparison of CFGs and CCGs . 16
2.5.3 Syntactic Parsing with CCGs . 17

2.6 Semantic Parsing . 18
2.6.1 Boxer System . 18

3 Translation 19
3.1 Semantic Representation . 19
3.2 CCG Parse Tree to λ-ASP Calculus Translation 21

3.2.1 λ-ASP Calculus Primitives . 21
3.2.2 Lexicon . 23
3.2.3 Semantic Composition . 24

3.3 Specific Translation Problems . 25
3.3.1 Noun Definiteness . 25
3.3.2 Generic Sentences . 26
3.3.3 Coordination . 27

vii

3.3.4 Non-local Dependencies . 29

3.3.5 Processing Questions . 30

3.4 λ-ASP Calculus to ASP Translation . 32

4 Learning 34

4.1 Example Format . 34

4.2 Context Generation and Background Knowledge Inclusion 35

4.2.1 Generation of Inclusions and Exclusions 35

4.2.2 Background Knowledge Inclusion . 36

4.3 Automatic Generation of Mode Declarations 36

4.3.1 Unification of Inclusions and Exclusions with Context and Background
Knowledge Rules . 37

4.3.2 Argument Typing . 39

4.3.3 Predicate Typing . 41

4.3.4 Using Type Information to Generate Modes 43

4.4 Mode Bias Constraints . 44

4.5 Mode Declaration Selection Heuristics . 45

5 Implementation 47

5.1 System Overview . 47

5.2 Input Translation . 47

5.2.1 User Interface . 48

5.2.2 Annotator Pipeline . 49

5.2.3 Logic Parser . 49

5.2.4 Syntactic Parser . 50

5.2.5 Lexicon . 50

5.2.6 System Configuration . 50

5.3 Learning Mode . 51

5.3.1 Type Analyser . 52

5.3.2 Mode Selector . 52

5.3.3 Task Scheduler . 52

5.4 Answering Mode . 53

5.5 External Dependencies . 53

6 Evaluation 55

6.1 Translation Evaluation . 55

6.1.1 Strengths of the Approach . 58

6.1.2 Outstanding Translation Tasks . 58

6.1.3 Open Problems . 59

6.1.4 Discussion . 61

6.2 Learning Evaluation . 61

6.2.1 The (20) QA bAbi Tasks Dataset . 61

6.2.2 Evaluation Set-up . 62

6.2.3 Evaluation Method . 64

6.2.4 General Learning Capabilities . 64

6.2.5 Minimum Required Number of Training Examples 65

6.2.6 Average Learning Times . 66

viii

6.2.7 Questions Answering on The (20) QA bAbi Tasks Dataset Using
Background Knowledge . 67

6.2.8 Comparison to Other Approaches . 67
6.2.9 Hypothesis Space Reduction . 68
6.2.10 Discussion . 70

7 Related Work 71
7.1 Translating from English to Formal Representations 71

7.1.1 λ-ASP Calculus . 71
7.1.2 Boxer . 72

7.2 Lexicon Creation . 74
7.2.1 Cornell SPF . 74

7.3 Question Answering on The (20) QA bAbi Tasks Dataset 75
7.3.1 Simple Knowledge Machine . 75
7.3.2 End-To-End Memory Network (MemN2N) 76

8 Conclusion 78
8.1 Future Work . 78

8.1.1 Predicate and Object Invention . 78
8.1.2 Automatic Inference of Mode Bias 80
8.1.3 Enhancing Lexical Knowledge . 80

References 83

Appendices 89

A Background Knowledge Used on bAbi Dataset 89

B Additional Background Knowledge 90

C Translation Evaluation 92

D Rules Learned on the bAbi Dataset 99

ix

Chapter 1

Introduction

Machine comprehension of text, also referred to as machine reading or natural language
understanding, has been a central goal of Artificial Intelligence for over sixty years, its
origin might be traced back to the Turing test. The task of Machine Comprehension of
Text can be defined as follows:

“A machine comprehends a passage of text if, for any question regarding that text that can be
answered correctly by a majority of native speakers, that machine can provide a string which
those speakers would agree both answers that question, and does not contain information
irrelevant to that question.” [12]

In this project, approaches from the fields of computational linguistics, knowledge repre-
sentation and logic-based learning are combined in order to build a fully-automated system
capable of answering questions, as well as acquiring common sense knowledge from text.

1.1 Background

The first natural language understanding systems originated in the late 60s and early 70s
with notable examples such as LUNAR and SHRDLU. LUNAR [68] was a natural language
interface to a database. It translated natural language questions to queries to a database
of information about lunar geology. SHRDLU [67] was able to sustain a conversation about
the state of a blocks world as well as modify the environment based on a user’s commands
and a plan devised by the system. These two systems relied on logical forms derived from
the textual input in order to respond to a user’s queries. However, the process of deriving
logical representations was largely rule based and as such could not be easily extended to
other domains.

Achieving domain-independence was one of the motivations for approaches to semantic
parsing developed from the 90s until now. Semantic parsing is a task of mapping natural
language input to a structured representation suitable for manipulation by a machine. Over
the last twenty years different approaches to that problem were proposed. Some of the
early ones relied on Inductive Logic Programming [69] [63] and were followed by statistical
machine learning methods [70] [51]. Most popular approaches to semantic parsing are

1

2 Chapter 1. Introduction

supervised and rely on annotated training examples in order to be trained for application
to a particular domain.

Developments in linguistics and the theory of natural language grammar, in particular
formalisation of Combinatory Categorial Grammar (CCG) [59], had a significant influence
on the developments in the domain of semantic parsing. CCG is linguistically expressive
and efficiently parsable grammar which offers transparent interface between syntax and
semantics of natural language [60]. Many modern approaches to semantic parsing use CCG
to represent syntactic structure of text [70] [29].

Creation of the C&C parser [16], which is a wide-coverage syntactic parser for CCG, mo-
tivated another approach to semantic parsing, implemented by the Boxer system [10]. In
Boxer, representation is not learnt from data but is instead generated from the CCG parse
tree by taking advantage of the clear interface between syntax and semantics offered by the
CCG and by relying on the idea proposed by Richard Montague that formal semantics of
English can be derived compositionally using lambda calculus [27]. Among others, Boxer
was applied to the task of recognising textual entailment and to extracting RDF/OWL
ontology from text [52].

However, in the recent years we could have observed a departure from the more traditional
semantic parsing approaches in favour of models based on neural network architectures [23]
[61]. Such approaches rely on large annotated datasets for training and are very effec-
tive at answering questions where the correct answer can be identified using lexical clues
[13]. Some neural architectures, for example Memory Networks, were evaluated on datasets
considered to require more sophisticated reasoning capabilities, such as The (20) QA bAbi
Tasks Dataset, and the results were favourable [65]. Determining cognitive capabilities of
different deep neural network-based approaches is still an open research problem [53].

1.2 Motivations

Logic-based approaches intuitively seem like a good fit for the problem of natural language
understanding for two reasons. Firstly, symbolic representations used by logic-based meth-
ods are comprehensible by humans and allow specification of more abstract concepts such
as temporal relations or negation. Secondly, background knowledge, which is essential for
natural language understanding, can be easily added to the logic programs.

Recent advancements in the field of logic-based learning, namely invention of the ILASP
algorithm [31], has opened new interesting possibilities regarding the type of common sense
knowledge that can be learned from text. ILASP integrates brave and cautious induction
within a unified learning framework and allows learning choice rules and constraints, which
improves on the previous approaches to Inductive Logic Programming under the Answer
Set Semantics in terms of the provided functionality.

Historically, logic-based approaches to natural language understanding have been associated
with expert systems. However, advancements in the field of natural language processing,
especially development of more accurate wide-coverage syntactic parsers [36], opened a
possibility for developing more general approaches, as confirmed by the example of Boxer
system, which is a wide-coverage semantic parser [10].

1.3. Objectives 3

In the light of the recent developments in the fields of logic-based learning and natural lan-
guage processing, building a general purpose logic-based system capable of both performing
inference and learning would offer a new perspective on approaching the problem of machine
comprehension of text and provide more insight into applicability of symbolic approaches
in that problem domain.

1.3 Objectives

The main goal of the project is to investigate the applicability of logic-based learning ap-
proaches, in particular Inductive Logic Programming, to answering questions about natural
language text written in English. The following high-level objectives were identified as
necessary in order to achieve the main goal:

1. Research of the current state-of-the-art in semantic parsing. Inductive Logic
Programming algorithms require their input to be specified using a formal represen-
tation, which in case of the algorithm that we are using - ILASP [31] are Answer
Set Programs. Performing such a mapping exemplifies the more general problem of
semantic parsing, which has been studied extensively. Therefore, a critical assessment
of the applicability of different approaches to semantic parsing has to be undertaken
in the context of our project.

2. Translation of sentences to ASP. Robust conversion of sentences written in En-
glish to ASP is a prerequisite both for answering questions using existing background
knowledge and learning. In the interest of wider applicability of the system, the
translation algorithm should be domain-independent.

3. Automatic generation of learning tasks. Inductive Logic Programming algo-
rithms usually rely on the user to specify constraints on the hypothesis space and
provide other hyper-parameters of the learning task, such as the maximum number
of variables that each rule in the hypothesis space can take. In order to enhance
our system’s learning capabilities, automatic generation of learning tasks should be
investigated.

4. Evaluation of the approach on a popular dataset. Due to exploratory nature of
the project, evaluation of the developed approach on a widely used question answering
dataset is crucial in order to gather insights into how it compares to more commonly
used techniques, especially the ones relying on statistical machine learning models.

1.4 Project Outline

This section serves as a high-level overview of the tasks undertaken throughout the project.
Where necessary, references are given to sections containing more details about specific
parts of the developed system. It should be noted that all ideas outlined in this section
were implemented as a part of the project.

The project could be conceptually divided into two parts: translation (Chapter 3) whose
objective is to derive ASP representation for a given sentence based on the CCG grammar

4 Chapter 1. Introduction

and λ-ASP calculus, and learning (Chapter 4) in which the derived ASP representation
is used to formulate an Inductive Logic Programming task that is run in order to derive
additional background knowledge rules.

We begin by describing the ASP representation used in the project to represent text (Section
3.1). Then, λ-ASP calculus [5] which serves an an intermediate representation between
English and ASP and allows for compositional derivation of semantic representation of
phrases and sentences is introduced (Section 3.2.1). Intuitively, λ-ASP calculus follows the
ASP syntax and extends it with abstraction and application, as known from λ-calculus.

Then, a systematic, linguistically-motivated approach to translation from English to ASP,
which relies on CCG grammar and λ-ASP calculus, is presented (Section 3.2). To derive
ASP representation of a sentence, every leaf node of the corresponding CCG parse tree
is assigned a λ-ASP expression by a lexicon, which can be though of as a map between
syntax and semantics of the given language (Section 3.2.2), and semantic representation of
a complete sentence is built bottom-up by composing λ-ASP expressions corresponding to
child nodes via function application (Section 3.2.3). The order of application is dictated by
the structure of the parse tree. Then, the process of deriving the final ASP representation
from the corresponding λ-ASP expression is explained (Section 3.4).

Example 1.1 (CCG parse tree and ASP representation of a sentence Jack ate a sandwich).

Listing 1.1 CCG parse tree.

1: <T S[dcl]>

2: <T NP >

3: <L N NNP Jack >

4: <T (S[dcl]\NP)>

5: <L ((S[dcl]\NP)/NP) VBD ate >

6: <T NP >

7: <L (NP/N) DT a>

8: <L N NN sandwich >

Listing 1.2 ASP representation.

1: binaryEvent(e0 ,eat ,c1,n0).

2: unaryNominal(n0,sandwich).

3: unaryNominal(c1,jack).

4: metaData(0,e0)

We describe the algorithm for automatic generation of a learning task from examples speci-
fied as text-question-answer triples (Section 4.1), which relies on the English-to-ASP trans-
lation algorithm discussed earlier (Section 4.2). Then, the three-step process of deriving
mode declarations, used to specify the hypothesis space, from task context and background
knowledge is described in detail (Section 4.3).

First, we describe how inclusions and exclusions of each example are unified with the back-
ground knowledge and example context to obtain a list of potential ground hypothesis heads
(Section 4.3.1). Secondly, the the algorithm assigning types to predicate arguments based
on the context in which they occur is presented (Section 4.3.2). Finally, the algorithm
which assigns types to predicates based their arguments is described (Section 4.3.3). Pred-
icate and argument types provide information about number and parametrisation of mode
declarations (Section 4.3.4).

Then, we describe a learning process in which multiple learning tasks are generated to
explore different hypothesis spaces corresponding to the training examples, which stem
from the differences in the parametrisation of the mode declarations. A set of heuristics
was invented which order tasks based on certain criteria such as approximate size of the
hypothesis space (Section 4.5). The ordered tasks are scheduled in parallel and the learning
process is stopped when the first set of rules is learnt (Section 5.3.3).

1.5. Contributions 5

Finally, we present the results of evaluation of the project on a subset of The (20) QA bAbi
Tasks Dataset [66] and compare the results to the ones achieved by neural network-based
approaches (Section 6.2.8). It can be observed that in its current form the system is less
robust than the neural network-based approaches primarily due to errors in the syntactic
parser. However, the system is able to achieve similar accuracy to the competing approaches
using significantly smaller number of training examples.

1.5 Contributions

The main contribution of the project is the development of a novel fully automated logic-
based approach to natural language understanding capable of performing inference and learn-
ing to answer questions about text. Specific contributions are as follows:

1. ASP representation of natural language text that can be used to derive se-
mantics of phrases and sentences compositionally and is suitable for learning using
Inductive Logic Programming (Section 3.1).

2. Adaptation and extension of λ-ASP calculus used as intermediate representation
between English and ASP, to handle more complex linguistic constructions such as
control, rising, relativisation and coordination (Section 3.3).

3. Implementation of English-to-ASP translation algorithm that is general as it
can generate ASP representations for texts from different domains, and linguistically
motivated as its design is rooted in the theory of formal grammar (Section 3.2).

4. Automatic generation of bounds on the hypothesis space in the form of mode
declarations that are domain independent, rely on the context of the learning tasks
as well as background knowledge, and offer considerable reduction in the size of the
hypothesis space compared to the baseline approach (Section 4.3).

5. Comparison of the approach to neural network-based models on The (20) QA
bAbi Tasks Dataset, which requires a significant reasoning capacity from the learner
and is described as a “prerequisite for any system aiming at full text understanding
and reasoning” [66].

Chapter 2

Background

2.1 Answer Set Programming

Answer set programming (ASP) is a form of declarative programming oriented towards
difficult search problems [38]. ASP relies on the stable model (answer set) semantics of
logic programs.

2.1.1 Programming Language

An answer set program is specified by a set of rules, which in turn comprise of a set of
literals. A literal is either an atom p or its default negation not p, also referred to as
negation as failure. In what follows, the subset of ASP language consisting of normal rules,
constraints and choice rules is assumed. A normal rule r has the following form:

r : h︸︷︷︸
head(r)

← b1, b2, . . . bm, not bm+1, . . .not bm+k︸ ︷︷ ︸
body(r)

where h, b1, . . . , bm+k are atoms. A rule whose body is empty (m = k = 0) is called a fact.
A normal rule for which k = 0 is called a positive rule or a definite clause.

A constraint is a rule with an empty head [38]. The general form of a constraint is given
by: ← b1, . . . bm, not bm+1, . . .not bm+k where b1, . . . , bm+k are atoms. Adding a constraint
has the effect of eliminating all answer sets which both include b1, b2, . . . , bm and exclude
bm+1, . . . bm+k from the answer sets of a program.

A choice rule has the form: l{a1, . . . , an}u ← b1, b2, . . . bm, not bm+1, . . .not bm+k where
a1, . . . , an, b1, . . . , bm+k are atoms and bounds l, u ∈ N satisfy 0 ≤ l ≤ u. The head of
a choice rule is called an aggregate. Informally, given a ground choice rule with a head
l{h1, . . . hn}u, if the body of the choice rule is satisfied, the choice rule generates all answer
sets in which t, where u ≤ t ≤ l, ground atoms from the set {h1, . . . , hn} are included [31].

A variable occurring in a rule r is said to be safe if it occurs in at least one positive literal
in the body of r. Grounding is the process of replacing a program which contains variables
with an equivalent program without variables [38].

6

2.2. Inductive Logic Programming 7

2.1.2 Stable Model Semantics

In order to define a stable model of a normal logic program P , let us first introduce the
definition of the minimal Herbrand model in the context of normal logic programs. The
Herbrand Base HB(P) is the set of all ground atoms made from the constants, predicate
symbols and function symbols in P [30]. An Herbrand interpretation of P assigns a truth
value to every atom in HB(P). In order to specify an Herbrand interpretation for P , it is
sufficient to say for each ground atom a ∈ HB(P) if it is true or false [56].

Definition 2.1 (Herbrand Model). An Herbrand model M of a normal logic program P
is an Herbrand interpretation in which for every ground instance r of each rule in P such
that body(r) is satisfied by M , head(r) is also satisfied by M .

Definition 2.2 (Minimal Herbrand Model). An Herbrand model M of a normal logic
program P is minimal if no proper subset of M is an Herbrand model of P [21].

Definite logic programs – programs that do not contain negation, have a unique minimal
Herbrand model, also referred to as the least Herbrand model. Programs with negation can
have multiple minimal Herbrand models [21]. Given the definition of the minimal Herbrand
model, a stable model of a normal logic program P can be characterised as follows.

Definition 2.3 (Stable Model). For any set M of ground atoms of a normal logic program
P , let us define a reduct PM as a logic program obtained from P by deleting

• each rule that has a negated literal not b in its body with b ∈M

• all negated literals in the bodies of the remaining rules

M is a stable model of P if it coincides with the least Herbrand model of PM [21].

The fact that normal logic programs (which include negation) can have multiple stable
models leads to two different definitions of entailment [30].

Definition 2.4 (Cautious and Brave Entailment). An atom a is cautiously entailed by a
normal logic program P (written P |=c a) if it is true in every stable model of P . An atom
a is bravely entailed by a logic program P (written P |=b a) if it is true in at least one stable
model of P .

2.2 Inductive Logic Programming

Inductive Logic Programming is a research area which lies at the intersection of machine
learning and computational logic [46]. Inductive Logic Programming can be considered as
a search problem over a hypothesis space for a hypothesis which, together with background
knowledge, entails a set of observations.

Definition 2.5 (Generalised inductive problem). Three logic-based languages LO, LB, LH
are provided for expressing, respectively, observations, background knowledge and hypothe-
ses. Given a set of examples O ⊆ LO and consistent background knowledge B ⊆ LB the

8 Chapter 2. Background

goal is to find hypothesis a H ∈ LH such that

B ∧H ` O

Usually, additional constraints are put on LO and H. LO is often constrained to ground
literals or atoms and H is a single clause [46] (however, the latter does not apply to the
ILASP algorithm). Specification of LH is referred to as a language bias and constrains the
space of possible hypotheses.

Observations are divided into positive and negative examples and the hypothesis H should
cover all positive examples and none of the negative ones. The covers relation c : H×E maps
from the set H of hypotheses, referred to also as version space, to the set E of examples.
The precise definition of the covers relation is a part of specification of a particular inductive
logic programming task and defines the learning setting [54].

The two most popular learning settings are learning from interpretations and learning from
entailment. In the former, a model-theoretic approach is taken and examples are treated
as complete interpretations and a hypothesis H is related to an example e by the covers
relation if and only if e is a model of B ∪ H (where B is the background knowledge). In
learning from entailment examples are ground facts of a theory and a hypothesis H is related
to an example e by the covers relation if and only if e is entailed by B ∪H [54].

2.2.1 Inductive Logic Programming under Answer Set Semantics

Inductive Logic Programming under answer set semantics can be formalised as follows.

Definition 2.6 (Inductive Logic Programming under Answer Set Semantics). Given:

• background knowledge B specified as an answer set program

• positive examples E+ and negative examples E− specified as sets of literals

The task is to learn a hypothesis H such that:

• B ∪H is satisfiable (has at least one answer set)

• B ∪H |= e+
1 ∧ . . . ∧ e+

n ∧ not e−1 ∧ . . . ∧ not e−m where e+
1 . . . e

+
n and e−1 . . . e

−
n are all

positive and negative examples and ‘not’ denotes negation as failure

Following the two definitions of entailment in answer set programming, we can distinguish
cautious and brave induction which corresponds to using |=c and |=b respectively from
Definition 2.4. Under cautious induction setting, every positive example has to be extended
by all answer sets and every negative example by none of the answer sets. Under brave
induction, there has to exist at least one answer set which extends all positive and none of
the negative examples.

2.3 ILASP

ILASP (Inductive Learning of Answer Set Programs) is a system for learning ASP programs
from examples, developed at Imperial College London by Mark Law, Alessandra Russo

2.3. ILASP 9

and Krysia Broda [31] [33] [32]. The system can learn Answer Set Programs from partial
interpretations, integrates cautious and brave entailment, and supports weak constraints
and context dependent examples.

2.3.1 Learning from Partial Answer Sets

In ILASP the search space SM is specified using a language bias characterised by mode
declarations. The language bias is defined by a pair of sets 〈Mh,Mb〉 called head and body
mode declarations, which specify the literals that can occur in the corresponding parts of
the rules forming the hypothesis space. Every mode declaration mh ∈ Mh and mb ∈Mb is
a literal with abstracted arguments and those abstractions can be specified to range over
typed constants and variables [31].

Example 2.1 (Mode declarations). Let M be equal to

〈{go(v, c), sleep(v)}, {tired(v), bored(v)}〉

and the set of values of the constant type c is given by {bedroom, garden}. Then, among
others, the following rules are in SM :

{go(P, bedroom)← tired(P); go(P, garden)← bored(P);

sleep(P)← tired(P); sleep(P)← tired(P), bored(P)}

and the following are not in SM :

{go(P,R)← tired(P); sleep(garden)← tired(P)}

To describe the ILASP learning task, the notion of partial interpretation under answer set
semantics has to be introduced.

Definition 2.7 (Partial Interpretation under Answer Set Semantics). “A partial interpre-
tation E is a pair E = 〈Einc, Eexc〉 of sets of ground atoms, called the inclusions and
exclusions. An answer set A extends E if and only if (Einc ⊆ A) ∧ (Eexc 6⊆ A)” [31].

In the learning task, both background knowledge B and hypotheses H are expressed as ASP
programs and positive examples E+ and negative examples E− are expressed as partial
interpretations. B, in addition to standard ASP constructs, can contain constraints. A
hypothesis H is an inductive solution of a learning task if and only if:

• H ⊆ SM where SM denotes the search space (defined by mode declarations M)

• ∀e+ ∈ E+ ∃A ∈ AS(B ∪H) such that A extends e+

• ∀e− ∈ E− 6 ∃A ∈ AS(B ∪H) such that A extends e−

where AS(P) denotes answer sets of ASP program P [31]. Let us notice that there might
exist a different answer set extending every positive example. In the above formulation,
brave entailment can be expressed through positive examples and cautious through negative,
which contrasts with Definition 2.6. By assuming cautious entailment of negative examples
it is possible to learn constraints and choice rules. Brave entailment for positive examples
‘relaxes’ the constraints on the inductive solutions.

10 Chapter 2. Background

2.3.2 Context-Dependent Examples

Learning from context-dependent examples is an extension of the task of learning from
answer sets and allows specification of example-specific background knowledge [32]. The
two main advantages of using example contexts are better organisation of the background
knowledge and improved performance of the learning algorithm.

Definition 2.8 (Context-dependent Partial Interpretation). Context-dependent partial in-
terpretation is a pair 〈e, C〉 where e is a partial representation and C is an ASP program
with no weak constraints, called context [32].

2.3.3 Learning Task Definition

Given the definition of context-dependent examples, the definition of the inductive learning
task followed the ILASP system can be specified.

Definition 2.9 (Context-dependent Learning from Answer Sets). The task is defined by
a tuple T = 〈B,SM , E〉 where [32]:

• B is the background knowledge expressed as an ASP program

• SM is the hypothesis space defined by a mode bias M = 〈Mh,Mb〉

• E = 〈E+, E−〉 where E+ and E− are positive and negative context-dependent examples

A hypothesis H is an inductive solution of T if and only if [32]:

• H ⊆ SM

• for every positive context-dependent example 〈e, C〉 ∈ E+ there exists an answer set
of B ∪ C ∪H which extends e (brave semantics)

• for no negative context-dependent example 〈e, C〉 ∈ E+ there exists an answer set of
B ∪ C ∪H which extends e (cautious semantics)

Example 2.2 illustrates the use of context-dependent examples to learn a common sense
knowledge rule from a narrative.

Example 2.2 (ILASP task containing a context-dependent example). Let us consider a
narrative John travelled to the countryside. Mary went to the garden. Let us assume that
there is an implicit timeline in the narrative - chronological order of the events is given by
their order in the text. The last argument of the predicates go, travel and in is the time.

Listing 2.1 Representation of a simple narrative as an ILASP task.

1: % Background knowledge:

2: time (1..3).

3: earlier(E,L) :- time(E), time(L), E < L.

4:
5: % Context -dependent example:

6: #pos(p1 , {

7: in(mary ,y,3)

8: }, {

9: in(mary ,y,1)

10: }, {

2.4. Compositional Semantics of Natural Language 11

11: countryside(x).

12: garden(y).

13: travel(john ,x,1).

14: go(mary ,y,2).

15: }).

16:
17: % Mode declarations:

18: #modeh(1, in(var(person), var(place), var(time))).

19: #modeb(1, travel(var(person), var(place), var(time))).

20: #modeb(1, go(var(person), var(place), var(time))).

21: #modeb(1, earlier(var(time), var(time))).

22:
23: % Maximum number of variables per rule in the hypothesis space:

24: #maxv (4).

25:
26: % Learnt rule:

27: % in(V0 ,V1 ,V3) :- go(V0 ,V1 ,V2), earlier(V2 ,V3).

The rule learnt by ILASP (line: 26) can be intuitively read as: an entity is in a certain
place at a certain time if it went to that place earlier.

2.4 Compositional Semantics of Natural Language

2.4.1 The Principle of Semantic Compositionality

The Principle of Semantic Compositionality, also referred to as Frege’s principle, is a funda-
mental idea underlying the compositional approach to natural language semantics, widely
attributed to Gottlob Frege. As pointed out in [50], there are numerous formulations re-
ferred to as the principle of compositionality. The following will be used in this work:

Definition 2.10 (The Principle of Semantic Compositionality). The meaning of a complex
expression is a function of the meanings of its constituents together with the method by
which those constituents are combined [62].

As pointed in [50], the Principle of Semantic Compositionality makes no assumptions about
any particular definition of meaning and it does not provide a method of determining
whether meanings of two expressions are the same. Moreover, the principle does not specify
what the constituents of a complex expression are and it does not impose any limitations on
the combinatory rules. However, the principle constrains the possible meanings of complex
expressions.

It is normally assumed that the Principle of Semantic Compositionality ranges over expres-
sions of some particular language. In order to be able to analyse a complex expression
as a function of meanings of its constituents and resolve the questions of structure and
constituency, syntactic analysis of the expression has to be considered. The meaning of
simple expressions - lexical items, is determined by the lexical semantics of a given lan-
guage. Therefore, the Principle of Semantic Compositionality implies that syntax together
with lexical semantics recursively determines the entire semantics of a given language [62].

12 Chapter 2. Background

2.4.2 Montague Grammar

Montague grammar is a theory of semantics of natural language and its relation to syntax,
developed by Richard Montague (1930 - 1971). Montague grammar had a profound impact
on the contemporary formal semantics for natural language as it was the first formalism
that proposed a systematic treatment of the semantics of natural language using logic, anal-
ogously to semantics of formal languages [27]. The Principle of Semantic Compositionality,
truth conditions and model-theoretic approach to semantics are central ideas underlying
the theory.

Montague’s grammar introduced a systematic relation between syntax and semantics of
natural language. Following the principle of compositionality, in Montague’s grammar every
syntactic rule has to be paired with a semantic rule which determines how meanings of the
constituents are combined. Formally, there exists a homomorphism between the syntactic
and semantic algebra [49].

Structure of Montague Grammar

Montague proposed two approaches to semantic interpretation of natural language syntax.
In the model-theoretic approach, semantic values of natural language expressions are given
directly - English is treated as a formal language. The interpretation via translation ap-
proach proceeds by specifying a formal language whose semantics is clearly defined, and
provides a compositional translation relation1 from the natural language to the intermedi-
ate formal representation on which truth values can be evaluated [45]. According to [47],
the structure of classic Montague grammar can be described by:

Syntactic categories and semantic types In Montague grammar, every syntactic ex-
pression has an associated category and every semantic expression has an associated
type. There is also a function mapping categories to semantic types [45].

Lexical items and their semantic interpretations In case of the syntactic categories
whose expressions include lexical items of a given language, semantics must assign
an expression of a corresponding type [48]. Open class lexical items, such as nouns,
adjectives, verbs, or adverbs, are translated into constants of an appropriate type.
Closed class lexical items, such as prepositions or determiners, are either treated in
the same way as open class items or they are given explicit interpretations, as in case
of the determiner every [48]. Interpretations assigned to lexical items are treated as
primitives in the semantic representation and are contained in a lexicon of a given
language [48].

Syntactic and semantic rules Due to the principle of compositionality, every syntactic
combinatory rule has its semantic counterpart - “syntactic and semantic rules come
in pairs” [47].

The formal intermediate language used by Montague in [45] to represent the semantics of a
fragment of English was intensional logic, which was interesting to contemporary linguists

1Mapping from syntactic expressions to their semantic counterparts is a relation and not a function
because of ambiguity of natural language, which can cause syntactic expression to map to more than one
semantic representation.

2.4. Compositional Semantics of Natural Language 13

due to its use of rich set of types and lambda abstractions.

Intensional logic, being higher-order logic, allows variables to range over expressions of
different types, as opposed to first order logic, where they can range only over basic entities.
This feature of intensional logic is crucial as it allows specification of compositional rules
taking sub-expressions of specific types as arguments and having clearly defined meaning,
which is necessary in the derivation of meanings of composed expressions [45].

The logic uses lambda abstractions, which makes it possible to formulate higher order
functions. Together with the type theory, lambda abstractions allows function-argument
application to be treated as “semantic glue” using which meanings of different expressions
are combined [49].

Example Translation

To illustrate the use of lambda abstractions and type system in semantic composition, as
well as some aspects of homomorphism between algebras of syntax and semantics, let us
consider a derivation of a semantic representation of a sentence Every dog barks.

The quantifier-forming determiner every has a syntactic category2 (t/(t/e))/(t/e). Its se-
mantic representation has type3 〈〈e, t〉, 〈〈e, t〉, t〉〉 and is given by:

λP.λQ.∀x.(P (x)→ Q(x))

The syntactic expression dog has category t/e, denoted as CN (common noun). Its cor-
responding semantic expression has type 〈e, t〉 and is given by a unary predicate dog.
Similarly, the intransitive verb barks has category t/e, denoted as IV and its corresponding
semantic representation has type 〈e, t〉 and is given by a unary predicate bark.

Semantic representation of a noun phrase every dog is composed using β - reduction:

λP.λQ.∀x.(P (x)→ Q(x))︸ ︷︷ ︸
“every”

(dog) ≡ λQ.∀x.(dog(x)→ Q(x))

β - reduction with a unary predicate bark yields the final representation of the sentence:

λQ.∀x.(dog(x)→ Q(x))(bark) ≡ ∀x.(dog(x)→ bark(x))

Let us notice that every, dog and bark are terminal (leaf) nodes of the syntactic derivation,
therefore their meaning is determined by the lexical semantics.

2e and t are basic categories corresponding to, respectively, entities and truth values. Expression of
composite category A/B produces expression of category A when combined with expression of category B
via one of the predetermined syntactic combinatory rules.

3Basic types e and t correspond to, respectively, entities and truth values. Composite type 〈A,B〉
describes function which produces result of type B when argument of type A is applied to it.

14 Chapter 2. Background

2.5 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) [59] is a grammar formalism appealing from the
point of view of semantic analysis as it is expressive, efficiently parsable and provides a clear
interface between syntax and semantics of natural language. CCG belongs to mildly context-
sensitive category of grammars, which are between context-free and context-sensitive gram-
mars in Chomsky hierarchy. It is argued that CCG provides an adequate description of the
syntactic structure of natural language [59].

In Combinatory Categorial Grammar words are associated with a syntactic category, which
identifies them as functions, and specifies the number, type and directionality of their
arguments and the type of their result [58]. The categorial lexicon is the sole source of
language-specific information. It contains mappings from words to their categories paired
with the corresponding logical forms which capture word’s semantics.

Example 2.3. In what follows, λ-terms providing the semantic interpretation of a category
is associated with the syntactic category using “:” operator. Using that notation, an
intransitive verb swim has the following entry in the categorial lexicon:

swim := S \NP : λx.swim′ x

which identifies the verb as a function from (subject) noun phrases (NP) to sentences (S),
and the backward slash indicates that the argument of the verb occurs to the left of swim
in the sentence. Similarly, a transitive verb admire has the entry:

admire := (S \NP)/NP : λx.λy.admire′ xy

which identifies it as a function from (object) noun phrases to intransitive verbs and the
forward slash specifies that the argument has to occur to the right of admire in the sentence.

2.5.1 Combinatory Rules

In Combinatory Categorial Grammar, categories can combine using a number of combi-
natory operations and assemble the meaning of phrases or sentences from its constituents,
following the Principle of Semantic Compositionality. The type of combinatory rule appli-
cable to combine semantic representations depends on constituents’ categories.

Application rules

The simplest combinatory rules correspond to functional application. In the following, X
and Y range over the syntactic categories [59].

Forward Application: (>)

X/Y : f Y : a =⇒ X : fa (2.1)

Backward Application: (<)

Y : a X \ Y : f =⇒ X : fa (2.2)

2.5. Combinatory Categorial Grammar 15

Example 2.4 (Application rules). The functional application rules is applied to derive a
compositional interpretation of a sentence “Jack runs marathons.” as follows:

Jack
NP : jack′

runs
(S \NP)/NP : λxλy.run′ xy

marathons
NP : marathons′

S \NP : λy.run′ marathons′ y
>

S : run′ marathons′ jack′
<

Coordination rule

Another combinatory rule, coordination, allows constituents of the same category to conjoin
and yield a single constituent of the given category [58]. In the following, conj denotes
conjunction e.g. and, or, but.

Coordination: (< & >)

X conj X =⇒ X (2.3)

Example 2.5 (Coordination rule). The coordination and application rules is applied to
derive a compositional interpretation of a sentence “Jack tried and succeeded.” as follows:

Jack
NP : jack′

tried
S \NP : λx.try′ xy

and
conj

succeeded
S \NP : λx.succeed′ x

S \NP : λx.try′ x ∧ succeed′ x < & >

S : try′ jack′ ∧ succeed′ jack′
<

Composition rules

CCG also includes composition rules, which allow two functor categories whose domain and
range match to combine and form another functor. There are four basic composition rules
in order to account for different combinations of argument directionalities [26].

Forward Composition: (> B)

X/Y : f Y/Z : g =⇒ X/Z : λx.f(gx) (2.4)

Backward Composition: (< B)

Y \ Z : g X \ Y : f =⇒ X \ Z : λx.f(gx) (2.5)

Forward Crossing Composition: (>× B)

X/Y : f Y \ Z : g =⇒ X \ Z : λx.f(gx) (2.6)

Backward Crossing Composition: (<× B)

Y/Z : g X \ Y : f =⇒ X/Z : λx.f(gx) (2.7)

Type-raising rules

Combinatory grammars include type-raising rules, which turn argument categories into
functions over functions over such categories. These rules allow constituents to compose
e.g. in coordination. As stated in [59], type raising represents the grammatical notion of

16 Chapter 2. Background

(nominative, accusative, etc.) case and theoretically should be applied only to complements
of verbs (such as Jim and Jack in Example 2.6).

Forward Type-raising: (> T)

X : a =⇒ T/(T \X) : λf.fa (2.8)

Backward Type-raising: (< T)

X : a =⇒ T \ (T/X) : λf.fa (2.9)

Let us notice that rather than introducing type-raising rules, the lexicon could be expanded
and include all the raised categories that are otherwise defined by the type-raising rules.
Also all functions into the categories which can be type-raised will require category of
functions into the raised categories. However, such solution considerably increases the size
of the lexicon hence, is less efficient from the computational point of view.

Example 2.6 (Composition, type-raising and coordination). Derivation of compositional
interpretation for a sentence “Jim offered and Jack accepted help.” involves application
of forward type-raising, forward composition and coordination rules. The example was
adapted from [58]. For the interest of clarity, semantic representations for the lexical items
are skipped.

Jim
NP

S/(S \NP)
> T

offered

(S \NP)/NP

S/NP : λx.offer′x jim′ > B and
CONJ

Jack
NP

S/(S \NP)
> T

accepted

(S \NP)/NP

S/NP : λx.accept′x jack′
> B

S/NP : λx.offer′x jim′ ∧ accept′x jack′
< & >

help

NP

S : offer′help′jim′ ∧ accept′help′ jack′

2.5.2 Comparison of CFGs and CCGs

Due to the wide applicability of context free grammars, for example for specifying syntax of
programming languages, it would be instructive to compare CFGs and CCGs and see why
the latter formalism might be more convenient for parsing natural language.

In linguistics terms, both context free and combinatory categorial grammars fall under
broader category of phrase structure grammars. The term was introduced by Noam Chom-
sky as a term for grammars defined by phrase structure rules - rewrite rules of the form
α → β, where α ⊆ V ∗ N V ∗ (V - finite set of symbols, vocabulary of the grammar, N
- non-terminal grammar symbols) and β ⊆ V ∗ is a sequence of labels with which α can
be replaced when generating constituent structure of a sentence [20]. In a phrase-structure
grammar every word belongs to a certain lexical category. Constituents are words or groups
of words that function together as a unit or phrase and form larger grammatical structures
[64].

Categorial grammars put into the lexicon most of the information that in context-free
grammars is captured by the phrase structure rules. Context free grammars are constrained
to the rewrite rules which belong to N×V ∗, heads of the rules must be (single) non-terminal
grammar symbols. In categorial grammars, categories associated with constituents identify
them as either functions or arguments, specification of grammatical rules is transferred from

2.5. Combinatory Categorial Grammar 17

CFGs CCGs

Combination operations Many Few
Parse Tree Nodes Non-terminals Categories
Syntactic symbols Few dozen Handful, but can combine
Paired with words POS tags Categories

Table 2.1: Comparison of the most important properties of context free and combinatory
categorial grammars [2].

phrase structure rules to the lexicon [59]. The size of the lexicon is an important measure
of a grammar’s complexity.

When the combinatory rules of categorial grammar are limited to functional application
rules, the categorial grammar is “nothing more than a context-free grammar” [59, p. 34]
written in a different form – rather than specifying how constituents are produced, the cat-
egory and application order of arguments of each constituent is given. However, additional
combinatory rules (coordination and composition) increase the generative power of CCGs
relative to CFGs and allow the former to represent natural language phenomena, such as
unbounded long-range dependencies,4 that the latter, in general, cannot tackle. The main
differences between context free and combinatory categorial grammars are summarised in
Table 2.1.

2.5.3 Syntactic Parsing with CCGs

Syntactic parsing is a process of deriving a representation of a structure of a sentence from a
raw textual input. Parsing with combinatory categorial grammar can be divided into three
stages:

• Assignment of part-of-speech tags and CCG categories to words in a sentence. Process
of assigning CCG categories is called supertagging and often constitutes a bottleneck
on parser’s performance, especially for bottom-up parsing algorithms. Supertagging
is done using statistical models, such as maximum entropy models [15] or long-short
term memory recurrent neural networks [36].

• Combination of categories using the combinatory rules. A standard algorithm for
performing this step is bottom-up CKY chart-parsing algorithm. The algorithm uses
a chart, which is a tabular data structure, for storing constituents spanning each
subsequence of words of a parsed sentence [14].

• Highest scoring derivation selection is performed according to a parsing model, such
as perceptron or maximum entropy model, trained over a large data corpus.

A notable example is the C&C parser by Clark and Curan [15] which used log-linear CCG
parsing model to discriminate between multiple parses of a sentence. The parser was trained
on CCGbank, which is a translation of Penn Treebank5 corpus into a corpus of CCG

4Dependencies within the same sentence with arbitrary distance between the head and the argument.
Unbounded long-range dependencies can be introduced by relative clauses where the missing NP is arbitrarily
deeply embedded, for example: The sushi that [you told me [John saw [Mary eat]]].

5Large annotated text corpus of American English containing over 4.5 million words, created at the
University of Pennsylvania. Words in the corpus are annotated with part-of-speech tags and sentences with

18 Chapter 2. Background

derivations [25]. The EasySRL parser, which uses LSTM recurrent neural networks for
supertagging, achieved state-of-the-art F1 measure (88.1%) for parsing word dependencies
when evaluated on the CCGBank test set [36].

2.6 Semantic Parsing

Semantic parsing is a task of deriving a semantic representation of a sentence, usually
expressed in some logical formalism, from textual input. Over the years, a number of
approaches to this problem have been proposed, varying in the overall system architecture,
statistical models used and type of supervision.

2.6.1 Boxer System

Boxer system6 proposed by Bos et al. [10] uses CCG derivation structure produced by the
C&C parser [15] to generate a first-order logic representations using λ-calculus. In order
to derive the semantic representation, 245 most frequent CCG categories were annotated
with the corresponding λ-expressions, following Montague-style semantics. For example,
transitive verbs received the following annotation (lexeme is replaced with a lexeme of a
specific transitive verb):

(S \NP)/NP : λx.λy.lexeme′xy (2.10)

Moreover, the combinatory rules of the CCG grammar were reformulated in terms of the
target semantic representation.

To derive a semantic representation of a given sentence, semantic representation is assigned
to each lexical item and β-conversion is applied to the constituents according to the structure
of the CCG derivation in a bottom-up manner. The authors in [10] point out that the same
methodology could be applied to formalisms different than first-order logic.

dependency structures. The corpus contains text from many different categories, most of it however was
drawn from newswire stories. The corpus is very valuable for construction of statistical models for the
grammar and evaluation and comparison of parsing models [41].

6A further overview of the Boxer system and a comparison to the approach developed in this project are
provided in Section 7.1.2.

Chapter 3

Translation

In this chapter, the process of translating from English to a set of ASP rules is described in
detail. First, an overview of the target semantic representation is given together with moti-
vations for the choice of the target formalism. Then, λ-ASP expressions [5], which serve as
an intermediate representation in the translation process, are introduced. The introduction
is followed by a description of how λ-ASP expressions allow for building the target semantic
representation compositionally in a bottom-up fashion. Presentation of λ-ASP Calculus is
concluded with a description of some more complicated translation problems, such as han-
dling non-local word dependencies. Finally, the process of translating from λ-ASP Calculus
intermediate form to the target ASP representation is described.

3.1 Semantic Representation

The objective of the translation procedure is to represent an input text, written in English,
as a set of ASP rules. In order to enable the use of the semantic representation both for
inference and learning, it had to be constructed in a way that would allow for composition
of meaning using multiple predicates in the translation phase and for flexible formulation
of the hypothesis space using mode declarations when used in the learning setting. These
two requirements were addressed by constraining the set of predicates used in the transla-
tion process, dividing predicates into categories, and adding meta-level information to each
predicate in order to allow for composition of meaning.

The chosen representation consists of four categories of predicates: nominals, events,
modifiers and prepositions, which can have different arities (from one to four). Predi-
cate categories are closely tied to the elements in the structure of a sentence. Intuitively,
regarding correspondence to parts of speech, nominals roughly correspond to nouns, events
to verbs and modifiers to adjectives or adverbs. The main motivation for such selection
of predicate categories was to have a small set of predicates (in practice, only around 10
predicate names are used in our translation) which provide high-level information about
the semantics of the corresponding word or phrase.

Predicate names are formed by concatenating an arity prefix (unary, binary, ternary,
quadrary) with a category name. The arity of each predicate is equal to the number of
arguments of the CCG category of the corresponding word plus extra meta arguments used

19

20 Chapter 3. Translation

to enrich predicate semantics and allow for composition of meaning. The meta arguments
are lemma and identifier. For a given predicate, lemma is the lemma of the corresponding
word and, except from certain modifiers, lemma is the second argument of a predicate.
Identifier, if present, is the first argument of a predicate and is used to reference one pred-
icate from another. The only predicates which do not take an identifier as their argument
are modifiers whose meaning is not built compositionally.

Example 3.1 (Predicate corresponding to a ditransitive verb). For a ditransitive verb gave,
as used in a sentence:

Jack gave a flower to Jenny.

the corresponding predicate is: ternaryEvent(e0, give, c0, n0, c1), where e0 is the identifier,
give is the lemma and c0, n0, c1 are constants corresponding to Jack, flower and Jenny
respectively. Let us note the use of ternary as the arity prefix. This is caused by the fact
that, in this case a ditransitive verb give has a CCG category ((S[dcl] \ NP)/PP)/NP)
which takes three arguments.

Example 3.2 (Modifier with non-compositional semantics). Predicates corresponding to
an adverb quickly and transitive verb eat, as used in a sentence:

Jack ate a sandwich quickly.

are given by: unaryModif(quickly, e0) and binaryEvent(e0, eat, c0, n0) where c0, n0 are
constants corresponding to Jack and a sandwich respectively. Let us notice how semantics
of eat quickly is built compositionally by referencing the predicate corresponding to ate
from within the predicate corresponding to quickly. A complete ASP representation of the
above sentence is given by the following set of facts:

C = {unaryModif(quickly, e0).

binaryEvent(e0, eat, c0, n0).

unaryNominal(n0, sandwich).

unaryNominal(c0, jack).

metaData(e0, 0).}

Let us notice the use of metaData predicate in the representation of the sentence in
Example 3.2. Currently, this is the only category of predicate generated by the transla-
tion algorithm other than the four categories already described. The aim of this predicate
is to add information about relative position of events in the text, which is significant when
analysing temporal relations in narratives. Similar predicates could be generated to further
enrich the representation and embed other type of syntactic information, such as tense, how-
ever they were not found useful at the current stage of the project. In the next examples,
metaData predicates will be omitted for the sake of clarity.

The use of lemmas as predicate arguments makes the representation more expressive than
if different predicate names were used for different word lemmas.1 An example of a rule
that the current representation allows us to formulate, and that we would not be able to

1If the second option was followed (different predicate names for different word lemmas) then eat in
Example 3.2 could translate to eat(e0, c0, n0).

3.2. CCG Parse Tree to λ-ASP Calculus Translation 21

formulate if we used the other representation is:

unaryNominal(C1, T) : −eq(C1, C2), unaryNominal(C2, T).

which roughly states that if two entities are equal to each other, then they are of the same
class, where T is the class in question. From the learning perspective, the chosen repre-
sentation allows for elegant and efficient specification of mode declarations encapsulating
multiple words of the same type (e.g. synonyms), which is significant for predicate clus-
tering (section 4.3.4). For example, to specify that transitive verbs get, take or grab could
occur in a body of a hypothesis, the following mode would be sufficient:

modeb(1, binaryEvent(var(v0), const(c1), var(v2), var(v3)))

where c1 assumes values from the set {get, take, grab}. If predicates with different names
were used, three different mode declarations would be required.

3.2 CCG Parse Tree to λ-ASP Calculus Translation

As described in Section 2.5, one of the main advantages of using CCG for semantic parsing
is its clear interface between syntax and semantics. However, in order to be able to emulate
the combinatory rules that CCG uses to compose meaning, an intermediate representation
close in syntax to ASP, however allowing for such compositions, was required. This was
the primary motivation for using λ-ASP expression, idea proposed in [5], which has been
adapted and significantly extended for the purpose of the current project.

3.2.1 λ-ASP Calculus Primitives

In the version of λ-ASP expressions used throughout this project, λ-ASP expressions have
the following structure:

#X1.#X2. . . .#Xk.︸ ︷︷ ︸
k abstractions

p1(Xi1,1 , . . . Xi1,a1
) . . . pn(Xin,1 , . . . Xin,an

)︸ ︷︷ ︸
n predicates

Xj1,0@(Xj1,1 , . . . Xj1,b1
) . . . Xjm,0@(Xim,1 , . . . Xjm,bm

)︸ ︷︷ ︸
m applications

where ai is the arity of the ith predicate and bj is the number of arguments taken by the
jth application. Primitives from which λ-ASP expressions are constructed can be described
as follows:

Abstractions Abstractions provide a parametrisation of a λ-ASP expression. Syntacti-
cally, they are represented by a list of variables prefixing the formula. Semantically,
the list specifies the arguments that a given λ-ASP expression takes and the order in
which they are applied. Abstractions enclosed in [·] are the heads of the expression.
Intuitively, expression’s heads are identifiers of an expression used when the semantics
is composed.

22 Chapter 3. Translation

Predicates Predicates, together with applications (described next) form the body of a
λ-ASP expression. Intuitively, predicates convey the expected semantics of the λ-
ASP expression as eventually they are, almost directly, translated to ASP predicates
forming the final representation.

Application Applications are the key mean used for semantic composition. They allow
precise specification (at the level of predicate arguments) of how λ-ASP expressions
should be combined to form the expected semantics. In general, applications’ syntax
can be expressed by: X@(A1, . . . , An) where X can be thought of as a function and
A1, . . . , An as arguments. An application is said to be instantiated when the values
of X and A1, . . . , An are supplied. When the function and arguments are supplied,
semantics is obtained by applying the latter to the former.

Example 3.3 (λ-ASP expressions). Let us consider the following sentence:

Jack decided to give Jane a flower.

The ditransitive verb give has CCG category (((S[b]\NP)/NP)/NP) and the corresponding
λ-ASP expression is given by:

#[I].#L.#X2.#X1.#X0. ternaryEvent(I, L,X0, X1, X2), (X2), (X1), (X0) (3.1)

Let us notice that the abstraction I is a place holder for the identifier of the expression,
similarly as L is a place holder for the lemma. Moreover, I plays the role of a head of
the expression. When used as predicate arguments, abstractions X2, X1, X0 are replaced
with lexical heads of the provided expressions. Let us notice that X2, X1, X0 also occur as
applications with no arguments, in which case they are simply treated as place holders for
the corresponding predicates. If identifier e0 and lemma give (in that order) are applied to
the expression 3.1, the following expression is obtained:

#X2.#X1.#X0. ternaryEvent(e0, give,X0, X1, X2), (X2), (X1), (X0) (3.2)

When instantiated2 λ-ASP expressions:

unaryNominal(c1, jane), unaryNominal(n0, f lower), unaryNominal(c0, jack)

are applied (in that order) to 3.2, the following instantiated λ-ASP expression is obtained:

ternaryEvent(e0, give, c0, n0, c1), unaryNominal(c1, jane),

unaryNominal(n0, f lower), unaryNominal(c0, jack)

Example 3.4 (λ-ASP expression with application). Let us consider the same sentence as
in Example 3.3, however let us now focus on the verb decide, which requires coindexation
(Section 3.3.4). In such case, use of argument-taking application is required. The CCG
category of the verb decide is ((S[dcl] \NP)/(S[to] \NP)) and the corresponding λ-ASP
expression is:

#[I].#L.#X1.#X0. binaryEvent(I, L,X0, X1), (X1)@(X0) (3.3)

After applying identifier e1 and lemma decide to 3.3, the following expression is obtained:

#X1.#X0. binaryEvent(e1, decide,X0, X1), (X1)@(X0) (3.4)

2λ-ASP expression is said to be instantiated if it has no abstractions. Otherwise, it is said to be abstract.

3.2. CCG Parse Tree to λ-ASP Calculus Translation 23

When λ-ASP expression:

#X0.ternaryEvent(e0, give,X0, n0, c1), unaryNominal(c1, jane),

unaryNominal(n0, f lower)

corresponding to the partially instantiated λ-ASP expression for the verb give is applied to
3.4, the following expression is obtained:

#X0.binaryEvent(e1, decide,X0, e0), (3.5)

(#X0′.ternaryEvent(e0, give,X0′, n0, c1), unaryNominal(c1, jane),

unaryNominal(n0, f lower), X0′)@(X0)

Let us notice that both the predicate and the application will be passed the same argument
- the value of X0. Hence, when instantiated λ-ASP expression unaryNominal(c0, Jack) is
applied to 3.5, a fully instantiated λ-ASP expression is derived:

binaryEvent(e1, decide, c0, e0), ternaryEvent(e0, give, c0, n0, c1),

unaryNominal(c1, jane), unaryNominal(n0, f lower), unaryNominal(c0, Jack)

Two facts should be noted about λ-ASP expressions. First of all, λ-ASP expressions used
in this project are not typed and their semantics does not distinguish between variables and
constants. The only distinction is made between abstractions and instances, with the latter
being provided in place of the former using application. Secondly, recursive applications
are allowed, application primitives can take as an argument a λ-ASP expression which
has application primitives in its body, and so on. However, the expressive power of such
formulation was not checked beyond the immediate requirements of the project.

3.2.2 Lexicon

In the context of the current project, lexicon refers to an algorithm for deriving the (in-
termediate) semantic representation for a single word given its corresponding syntactic
information. More precisely, given a word associated with annotations such as lemma,
part-of-speech tag, CCG category and co-reference information, lexicon returns a λ-ASP
expression for such word. Let us notice that in other places, like for example [70], lexicon is
a mapping between lexemes and pairs of CCG category and semantic representation. The
different treatment of the term lexicon, i.e. algorithm rather than static mapping, results
from the fact that in the current project the semantic representation is derived algorith-
mically rather than learned from annotated data like in [70]. However, the main role of
a lexicon in both cases, namely a mechanism for deriving semantics given single words as
input, is the same, hence the same term is used.

Following the Principle of Semantic Compositionality, the meaning of phrases and sentences
is built in a bottom-up fashion starting from the leaf nodes of a CCG parse tree. Leaf nodes
correspond to single words from a sentence, and their semantic representation is obtained
from the lexicon. In most cases, λ-ASP expressions are assigned to words based on their
lemma, part-of-speech tag and CCG category. However, in some cases, like for example the
determiner the, further information like co-reference annotations are required.

24 Chapter 3. Translation

In order to make the lexicon more robust to parser errors, part-of-speech tags are used
to assign a word to one of five categories, namely nominals, verbs, modifiers, prepositions
or interrogative words. Within each of these sub-lexicons, the CCG category of a word
and lemma are used to derive the semantic representation. Relying on part-of-speech tags
to perform coarse division of words has the advantage that state-of-the-art part-of-speech
taggers have significantly higher accuracy than CCG supertaggers. When the word gets
assigned to a correct sub-lexicon, in many cases it is still possible to retrieve a correct
semantic representation even if the CCG category is incorrect (however, the CCG category
needs to have correct arity). In Table 3.1, lexical entries for some words occurring in the
The (20) QA bAbi Tasks Dataset are provided.

Word POS tag Lemma CCG Category λ-ASP expression

cats NNS cat N [X0]#X0.unaryNominal(X0, cat), (X0)

are VBP be (S[dcl] \NP)/(S[adj] \NP) [X0]#X0.(X0)

blue JJ blue S[adj] \NP [blue]#X0.unaryModif(blue,X0), (X0)

went VBD go (S[dcl] \NP)/PP
[e0]#X1.#X0.(X1), (X0),

binaryEvent(e0, go,X0, X1)

to TO to PP/NP [X0]#X0.(X0)

inside IN inside ((S \NP) \ (S \NP))/NP
[X1]#X2.#X1.#X0.(X1)@(i0), (X2), (X0),

binaryPrep(i0, inside,X2, X0)

a DT a NP/N [X0]#X0.(X0)@(n0)

Table 3.1: Lexicon entries for selected words from The (20) QA bAbi Tasks Dataset.

3.2.3 Semantic Composition

As mentioned in Section 3.2.2, the guiding principle when deriving a semantic representa-
tion of a sentence is the Principle of Semantic Compositionality. The order in which λ-ASP
expressions are composed, using application, is dictated by the CCG parse tree. The se-
mantic representations for the leaf nodes of a CCG parse tree are derived using the lexicon.
In order to derive the semantics for internal nodes, two steps have to be taken. First, a com-
binatory rule (Section 2.5.1) used to combine CCG categories of child nodes of the internal
node has to be determined. This can be done by analysing the left and right subcategories
of child nodes’ categories together with their separator (/ or \). Such information allows
to identify a child node whose λ-ASP expression should serve as a function. If the other
child node is present (CCG parse tree is a binary tree), its λ-ASP expression serves as an
argument. Then, the argument is applied to the function and λ-ASP expression for the
internal node is derived. Such procedure is applied bottom-up, starting from the leaf nodes,
until the λ-ASP expression for the root node is derived.

Example 3.5 (Bottom-up derivation of internal node’s λ-ASP expression). Let us consider
a sentence: Jack gave Jane a flower, which has the following CCG parse tree:

Listing 3.1 CCG parse tree of a sentence Jack gave Jane a flower

1: <T S[dcl]>

2: <L NP NNP Jack >

3: <T (S[dcl]\NP)>

3.3. Specific Translation Problems 25

4: <T ((S[dcl]\NP)/NP)>

5: <L (((S[dcl]\NP)/NP)/NP) VBD gave >

6: <L NP NNP Jane >

7: <T NP >

8: <L (NP/N) DT a>

9: <L N NN flower >

In Listing 3.1, nodes labelled with L (lines: 2, 5, 6, 8, 9) are leaf nodes and and nodes labelled
with T (lines: 1, 3, 4, 7) are internal nodes. Let us consider node <T NP> (line: 7).

From the CCG categories of the child nodes (lines: 8, 9) it can be deduced that the categories
are combined using forward application (Section 2.5.1). λ-ASP expression for determiner
a assumes the role of a function and semantics of the noun flower plays the role of an
argument. Based on Table 3.1, it is known that the corresponding λ-ASP expressions
are: #X0.(X0)@(n0) and #X0.unaryNominal(X0, cat), (X0). The resultant expression
is given by:

(#X0.(X0)@(n0))@(#X0′.unaryNominal(X0′, f lower), (X0′))

≡ (#X0.unaryNominal(X0, f lower), (X0))@(n0)

≡ unaryNominal(n0, f lower)

Let us notice that the application mechanism of λ-ASP expressions allows uniform treatment
of different combinatory rules of CCG in a sense that semantic composition is always realised
using application, which is important as, according to the presentation in [26], there are
thirteen different combinatory rules. The only element of semantic composition mechanism
described above which changes per each rule is identification of function and argument.

3.3 Specific Translation Problems

Let us now consider some more involved translation problems that were encountered during
the project. In all cases, it will be described how λ-ASP expressions can be used to provide
the (intermediate) semantic representation.

3.3.1 Noun Definiteness

It is important to distinguish between definite and indefinite nouns as the former can provide
additional semantic information to a given set of sentences. For example, for the narrative:

Jack went to the kitchen to grab some milk.
Jim went to the kitchen to check if his dinner was ready.

the use of definite article the allows us to conclude that Jack and Jim are in the same
location. In order to handle the semantic difference between definite and indefinite nouns,
part-of-speech tag, co-reference information and, if present, article were taken into account.

A noun is classified as definite either when it is a proper noun, which can be determined

26 Chapter 3. Translation

based on its part-of-speech tag,3 or when definite article the is a sister of the given node or
any of its ancestors in the CCG parse tree. λ-ASP expression for a definite noun is given
by: #L.#[I].unaryNominal(I, L). L is given by the lemma of the corresponding word
and I is equal to either cn where n is the co-reference cluster index, when the co-reference
information is present for the given noun phrase, or I = L when no co-reference information
is absent. Using cn or L as identifier reflects the intended semantics of a definite noun phrase
as referring to a specific entity in the domain of discourse.

Common nouns can be distinguished by their part-of-speech tag4 and the λ-ASP expression
that they are assigned by the lexicon is #L.#[I].unaryNominal(I, L), (I). Let us notice
the use of (I) place holder after the predicate, which was introduced to allow compositional
derivation of semantics for phrases like traveller Jack. When indefinite article a is a sister
of a common noun node or of any of its ancestors in the CCG parse tree, it has an effect
of applying a Skolem constant to the noun phrase, as it could be seen in Example 3.5 for a
noun phrase a flower. Application of a Skolem constant conveys the expected semantics of
indefinite noun referring to some entity in the domain of discourse.

Let us notice that in the project semantics of articles different than a and the was not
addressed. Another fact worth pointing out is that, unless a node corresponding the a
determiner is a sister of some node on a path from the common noun node to the root of
the parse tree, the semantic representation of the common noun will not be fully instantiated
- identifier I will be a variable. Such nouns are implicitly assumed to be generic nouns and
are important when considering generic statements.

3.3.2 Generic Sentences

Generic sentences communicate generalisations about the world. Examples of such such
statements are Turtles live long, Tigers are carnivorous or Jack likes turnips for dinner.
They often express some form of common knowledge about the world and are a subject of
studies both among linguists and philosophers.

In the project, generic statements are translated both as (unground) rules, which corre-
sponds to universal quantification, and sets of facts, which correspond to the Skolemised
version of the aforementioned rules. The main difficulty with translating generic sentences
was selection of a rule head from a set of predicates returned as an output of the translation
algorithm. To that aim, information about the head of the λ-ASP expression was utilised
- a predicate whose identifier is equal to the head of a fully-composed λ-ASP expression is
chosen as a head of the corresponding rule. Let us notice that due to the use of semantic
predicates (Section 4.3.1), exceptions to generic statements can be specified by providing a
rule whose head is a relevant abnormality predicate.

Example 3.6 (Translation of a generic statement). Let us consider a sentence:

Lions eat meat.

3In Penn Treebank Project, singular proper nouns are assigned tag NNP and plural are assigned NNPS.
This type of annotations is used by Stanford CoreNLP.

4In Penn Treebank Project, singular common nouns have tag NN and plural common nouns have tag NNS.

3.3. Specific Translation Problems 27

Transitive verb eat has CCG category (S[dcl] \NP)/NP and λ-ASP expression:

[e0]#X1.#X0.binaryEvent(e0, eat,X0, X1), (X0), (X1) (3.6)

As discussed in section 3.3.1, lions and meat are generic nouns, and their λ-ASP expressions
are: #[X0′].unaryNominal(X0′, lion), (X0′) and #[X1′].unaryNominal(X1′,meat), (X1′)
respectively. When the former and the latter (in that order) are applied to 3.6, the following
λ-ASP expression is obtained:

[e0]#X1′.#X0′.binaryEvent(e0, eat,X0′, X1′), unaryNominal(X0′, lion), (3.7)

unaryNominal(X1′,meat), (X0′), (X1′)

Let us notice that the head of expression (3.7) is e0, which is an identifier of the predicate
corresponding to the word eat. Therefore, the following ASP rule (not λ-ASP expression)
and a set of facts corresponding to the Skolemised rule are obtained (using the method
described in Section 3.4):

binaryEvent(e0, eat,X0, X1) : −unaryNominal(X0, lion), unaryNominal(X1,meat)

binaryEvent(e0, eat, sk0, sk1). unaryNominal(sk0, lion). unaryNominal(sk1,meat).

Let us notice that for the rule translation mechanism to work, uniqueness of names of
predicate identifiers within a sentence is required. Let us also notice that the translation
mechanism assumes that the entire sentence is generic, sentences like:

Jack knows that turnips are healthy.

were not considered in the project. Moreover, truth conditions of generic statements are a
separate topic that was outside the scope of the project.

3.3.3 Coordination

The first of the more complex syntactic structures supported by the translation algorithm
that will be discussed is coordination. In linguistics, coordination refers to a syntactic
structure in which two or more conjuncts are linked together. In English, coordination
is often introduced by a coordinator, such as and, or, but, which in are assigned category
CONJ in CCG.

In order to support generating λ-ASP expressions for sentences including coordination,
λ-ASP formalism was extended to allow expressions to have multiple heads, which essentially
reflects the basic semantics of symmetric coordination. When argument with n heads is
applied to a function (both of which are λ-ASP expressions), the resultant λ-ASP expression
consists of n copies of the function, each one with a different head applied to it. The head
of the resultant expression is given by the head of the function.

In the project, we focused on coordination of constituents that have the same category, as in
sentences: [Jack] and [Jim] went fishing or Jack [applied for] and [received] a bonus pay. In
such cases, the CCG category of the parent node of the coordinator in the CCG parse tree
has form X \X, where X is the category of the coordinator’s sister node, which is one of the
conjuncts. Therefore, the coordinator needs to have a λ-ASP expression that functionally
behaves the same as expressions corresponding to category X \X, but also takes the other

28 Chapter 3. Translation

conjunct as an argument, hence has one argument more than the parent node. Pseudocode
of lexicon’s function responsible for generating λ-ASP expressions for coordinators in given
in Listing 3.2.

Listing 3.2 Pseudocode of a function generating λ-ASP expressions for coordinators

1: procedure coordinator_semantics(node):

2: nargs = node.parent (). category (). n_args ()

3: abstractions = empty_list ()

4:
5: for i := 1 to nargs − 1:
6: abstractions.append(var(i))
7:
8: return lambda_asp(

9: #[C2].#[C1].#abstractions.C1@(abstractions), C2@(abstractions))

Example 3.7 (Verb phrase coordination). Let us consider the sentence: Jack washed and
ironed a shirt, whose CCG parse tree is presented in Listing 3.3.

Listing 3.3 CCG parse tree of a sentence Jack washed and ironed a shirt.

1: <T S[dcl]>

2: <L NP NNP Jack >

3: <T (S[dcl]\NP)>

4: <T ((S[dcl]\NP)/NP)>

5: <L ((S[dcl]\NP)/NP) VBN washed >

6: <T (((S[dcl]\NP)/NP)\((S[dcl]\NP)/NP))>

7: <L CONJ CC and >

8: <L ((S[dcl]\NP)/NP) VBN ironed >

9: <T NP >

10: <L (NP/N) DT a>

11: <L N NN shirt >

Using the procedure from Listing 3.2, the λ-ASP representation for node <L CONJ CC and>

(line: 7) is given by:

#[C2].#[C1].#X1.#X0.(C1)@(X1, X0), (C2)@(X1, X0) (3.8)

Applying the λ-ASP expressions corresponding to nodes in lines 8 and 5, we get:

[e0, e1]#X1.#X0.(binaryEvent(e1, iron,X2′, X3′), (X2′), (X3′))@(X1, X0), (3.9)

(binaryEvent(e0, wash,X0′, X1′), (X0′), (X1′))@(X1, X0)

The final λ-ASP expression is obtained by applying expressions corresponding to nodes in
lines 9 and 2 (in that order) and is given by:

binaryEvent(e1, iron, c0, n0), binaryEvent(e0, wash, c0, n0), (3.10)

unaryNominal(c0, jack), unaryNominal(n0, shirt)

Let us notice that the method of handling coordination works the same for all kinds of
coordinators, which means that λ-ASP representation can be produced for all coordina-
tors linking conjuncts of the same CCG category. However, some coordinators come with
additional meaning, like for example or, which presents an alternative, as in a sentence:

3.3. Specific Translation Problems 29

Jack wanted to order steak or ribs.

Handling of additional semantic information corresponding to different coordinators is a
possible area for future work.

3.3.4 Non-local Dependencies

As opposed to local dependiencies, where arguments are attached directly to predicates
in the dependency structure, non-local dependencies can be thougt of as the ones where
argument of a predicate is attached to some other predicate. Non-local dependencies
are a subject of extensive studies among linguists due to their significance for capturing
predicate-argument structure of more complex sentences. Non-local dependencies occur
due to different linguistic constructions, such as control, raising and relativisation. In order
to generate λ-ASP expressions for such constructions, the idea of co-indexation, as described
in [25] is used. The co-indexation mechanism is implemented using application primitives
of λ-ASP expressions.

Raising constructions involve movement of an argument from a subordinate clause to the
main clause. Raising verbs, such as seem or appear, take infinitival complement and ex-
plative there can appear as their subject or object, which distinguishes them from control
verbs. Control verbs, such as try, want or refuse, co-reference the subject of their infinitival
complement with one of their arguments. What follows are example sentences with raising
and control verbs respectively.

Jack seems to enjoy the weather.
Jack wanted to buy a car.

In order to tackle non-local dependencies introduced by raising and control, as well as by
other linguistic constructions, arguments of complex arguments of a category mediating the
non-local dependence are assigned indices to establish co-reference. As an example, let us
consider the verb seem in the first of the two sentences listed above. The CCG category of
the verb annotated with co-indexation information is (S[dcl] \ NPi)/(S[to] \ NPi), where
subscript i denotes that the two arguments should be the same. As Jack is a subject of the
raising verb seems, and given the co-indexation information, Jack is also used as a subject
of the verb enjoy. The λ-ASP expression for a verb seem, which embeds the co-indexation
information is given by: [e0]#X1.#X0.binaryEvent(e0, seem,X0, X1), (X1)@(X0). Co-
indexed λ-ASP expressions are provided by the verb sub-lexicon (section 3.2.2). For an
example derivation of a semantic representation of a sentence containing a control verb
please see Example 3.4 and the verb decide. Example 3.8 provides a sentence with a relative
clause.

Example 3.8 (Co-indexation of relative clauses). Let us consider the sentence Jack has a
car that is expensive, which has the CCG parse tree given in Listing 3.4.

Listing 3.4 CCG parse tree of a sentence Jack has a car that is expensive.

1: <T S[dcl]>

2: <L NP NNP Jack >

3: <T (S[dcl]\NP)>

4: <L ((S[dcl]\NP)/NP) VBZ has >

5: <T NP >

30 Chapter 3. Translation

6: <L (NP/N) DT a>

7: <T N>

8: <L N NN car >

9: <T (N\N)>

10: <L ((N\N)/(S[dcl]\NP)) WDT that >

11: <T (S[dcl]\NP)>

12: <L ((S[dcl]\NP)/(S[adj]\NP)) VBZ is >

13: <L (S[adj]\NP) JJ expensive >

Co-indexed category of a relative pronoun that (line: 10) is: (Ni \ Ni)/(S[dcl] \ NPi) and
the corresponding λ-ASP expression is given by: #X1.#[X0].(X1)@(X0). The semantic
representation of a copula is (line: 12) is given by: #[X0].(X0) and λ-ASP expression for
adjective phrase expensive is: [expensive]#X0.unaryModif(expensive,X0), (X0). There-
fore, the semantic representation of the bottom part of the parse tree (lines: 10 - 13) is:

#[X0].(#X0′.unaryModif(expensive,X0′), (X0′))@(X0)

which, when combined with the semantics of a common noun car (line: 8) gives:

(#X0′.unaryModif(expensive,X0′), (X0′))@(#[X1′].unaryNominal(X1′, car), (X1′))

≡ #X1′.unaryModif(expensive,X1′), unaryNominal(X1′, car), (X1′)

which represents the semantics of a bare noun phrase car that is expensive. The derivation
of the sentence semantics can be completed in analogous way as in the Example 3.5, and
the final λ-ASP expression is:

[e0]binaryEvent(e0, have, c0, n0), unaryModif(expensive, n0),

unaryNominal(n0, car), unaryNominal(c0, jack)

Raising, control and relativisation are three instances from a list of linguistic constructions
that require co-indexation, for a more complete presentation please refer to [25]. It is
worth mentioning that in the project co-indexation for all constructs listed in [25] was
implemented, which shows expressiveness and wide applicability of λ-ASP expressions.

3.3.5 Processing Questions

In the project we focused on polar questions and a subset of wh-questions, namely the
ones starting with wh-words what, where, and who and which can be answered using a
single-word nominal. Two separate approaches to handling the two types of questions were
developed. Polar questions are transformed into declarative sentences and their truth value
is evaluated in the context of the associated text. For the specified subset of wh-questions,
an answer predicate is introduced - one of its arguments gives an answer to the question.

In order to convert polar question to declarative sentences, subject-auxiliary inversion had
to be “reversed”, which was achieved by analysing the CCG parse tree of the question,
identifying the subject of the question and the corresponding set of tokens and switching
the positions of the subject and the auxiliary verb in the question. The set of tokens for a
subject of a question is derived by flattening a sub-tree of a CCG parse tree corresponding
to the subject. The most compelling benefit of converting polar questions to declarative
sentences is that co-reference resolution works better for the latter.

3.3. Specific Translation Problems 31

Example 3.9. Let us consider a polar question: Is the runner who won the marathon
famous?, which has the CCG parse tree given in Listing 3.5.

Listing 3.5 CCG parse tree for a question: Is the runner who won the marathon famous?

1: <T S[q]>

2: <T (S[q]/(S[adj]\NP))>

3: <L ((S[q]/(S[adj]\NP))/NP) VBZ Is >

4: <T NP >

5: <L (NP/N) DT the >

6: <T N>

7: <L N NN runner >

8: <T (N\N)>

9: <L ((N\N)/(S[dcl]\NP)) WP who >

10: <T (S[dcl]\NP)>

11: <L ((S[dcl]\NP)/NP) VBD won >

12: <T NP >

13: <L (NP/N) DT the >

14: <L N NN marathon >

15: <L (S[adj]\NP) JJ famous >

Nodes of the CCG parse tree in lines: 4-14 correspond to the subject of the question. The
set of subject’s tokens can be obtained by flattening the sub-tree whose root is in line
4, which gives a noun phrase: [the runner who won the marathon]. Finally, positions of
auxiliary is and the subject are switched, which gives a declarative sentence: [The runner
who won the marathon] [is] famous.

The selected subset of wh-questions was intentionally constrained so that the questions can
be answered using a single word, which is a nominal. Therefore, the ordinary translation
of the question is parametrised by an answer variable and an answer predicate is added to
the set of generated λ-ASP expressions, which is achieved by using the following λ-ASP
expression for wh-words introducing questions:

#X.unaryNominal(C,ANS), X@(C) (3.11)

where C corresponds to identifier of the answer and ANS corresponds to the lemma.

Example 3.10. Let us consider a question: Who broke the window?, which has a CCG
parse tree given in Listing 3.6.

Listing 3.6 CCG parse tree for a question: Who broke the window?

1: <T S[wq]>

2: <L (S[wq]/(S[dcl]\NP)) WP Who >

3: <T (S[dcl]\NP)>

4: <L ((S[dcl]\NP)/NP) VBD broke >

5: <T NP >

6: <L (NP/N) DT the >

7: <L N NN window >

λ-ASP expression for the sub-tree rooted at the node <T (S[dcl]\NP)> (line: 3) is:

[E0]#X0.binaryEvent(E0, break, c1, X0), unaryNominal(c1, window), (X0)

32 Chapter 3. Translation

As semantic representation for node <L (S[wq]/(S[dcl]\NP)) WP Who> is given by the
expression 3.11, λ-ASP expression for the entire question is given by:

(#X.unaryNominal(C,ANS), X@(C))@(

#X0.binaryEvent(E0, break, c1, X0), unaryNominal(c1, window), (X0)

≡ unaryNominal(C,ANS), (

#X0.binaryEvent(E0, break, c1, X0), unaryNominal(c1, window), (X0))@(C)

≡ unaryNominal(C,ANS), binaryEvent(E0, break, c1, C), unaryNominal(c1, window)

Let us notice that in the example 3.10, identifier of binaryEvent predicate is a variable E0.
When semantic representation for questions is generated, identifiers of all predicates apart
from noun phrases with co-referents in the text and present tense verbs are replaced with
variables.

3.4 λ-ASP Calculus to ASP Translation

Due to the syntactic similarity between λ-ASP expressions and ASP, conversion from the
former to the latter essentially requires keeping only the predicate primitives of the λ-ASP
expression which, when the list of abstractions of the corresponding λ-ASP expression is
empty, get translated to a set of ASP facts. A complication occurs when after generating
semantic representation of the entire sentence, the set of abstractions of the λ-ASP expres-
sion is non-empty. Such λ-ASP expressions are converted to ASP rules and information
about the head of the λ-ASP expression is used to select a head of the rule. The remaining
predicates constitute rule’s body. Moreover, a Skolemised version of the rule, which is a
set of facts, is generated by applying to the λ-ASP expression number of Skolem constants
equal to the number of abstractions in semantic representation of a sentence.

Example 3.11 (Translation of a sentence to ASP rule). Let us consider a sentence: Apples
are healthy. The corresponding λ-ASP expression is:

[healthy]#X0.unaryModif(healthy,X0), unaryNominal(X0, apple), (X0)

Given that applications are discarded when converting λ-ASP expressions to ASP and that
the head of the above expression is constant healthy, the corresponding ASP rule is give by:

unaryModif(healthy,X0) : −unaryNominal(X0, apple)

and the set of ASP facts corresponding to Skolemisation is:

{unaryModif(healthy, sk0), unaryNominal(sk0, apple)}

Let us notice that the Skolemisation allows answering questions such as What is healthy?

One issue that has not been discussed so far is ordering of arguments within a predicate,
which is resolved when λ-ASP expression is converted to ASP. A predicate identifier, if
present, is the first argument of a predicate and lemma of the corresponding word is the
second (if no identifier is present, lemma is the first argument). The remaining predicate

3.4. λ-ASP Calculus to ASP Translation 33

arguments, which are provided by the arguments of the corresponding word, are ordered
according to indices of their semantic roles as returned by a semantic role labeller. In case
of missing semantic roles for more than one argument, the ordering of arguments is kept the
same as in the corresponding λ-ASP expression. By using this approach, the same ordering
of arguments in a predicate is derived even in presence of inversion or passive movement.

Example 3.12 (Predicate ordering). Let us consider the sentence: The kitchen was cleaned
by Jack. Semantic role tags of noun phrases Jack and the kitchen with respect to the
transitive verb clean are: ARG0 and ARG1. Therefore, the following ASP fact corresponds
to the verb clean: binaryEvent(e0, clean, c0, n0), where constants c0 and n0 stand for Jack
and kitchen respectively.

Chapter 4

Learning

The system developed in the project relies on Inductive Logic Programming, more precisely
Inductive Learning of Answer Set Programs (ILASP) algorithm [31] [32], to learn hypothe-
ses that would allow the system to answer question requiring common sense knowledge.
For description of the ILASP algorithm please refer to Section 2.3. The main challenge
associated to learning which had to be solved during the course of the project is automatic
generation of learning tasks from textual input provided to the system, which is described
in detail in this chapter.

First, the format of the training examples is presented together with a mechanism of con-
verting the textual input to ILASP examples. Then, automatic approach to generation of
mode declarations is described in detail. Finally, generation of mode bias constraints and
heuristics related to creation and scheduling of learning tasks are outlined.

4.1 Example Format

In the learning setting, input to the system consists of a list of examples, each of which
follows one of two formats. In both formats, list of sentences forming the text is provided.
In the first format, the text is followed by a question associated with correct and incorrect
answers. In the second format, statements entailed and not entailed by the text are specified.

Example 4.1 (Learning input formats). The same learning example specified using the
two different input formats.

Text: Jack gave Jim the box. Jim
handed Jack the ball.

Text: Jack gave Jim the box. Jim
handed Jack the ball.

Question: Who received the ball?
Correct: Jack Correct: Jack received the ball.
Incorrect: Jim Incorrect: Jim received the ball.

Textual input specified in the above manner allows for direct conversion to a learning
task suitable for use with ILASP. In case of learning examples specified as question-answer
pairs, question together with answer is translated to a set of ASP rules and, depending
on whether the answer is correct or incorrect, the predicates are added to inclusions or

34

4.2. Context Generation and Background Knowledge Inclusion 35

exclusions respectively. Analogously, in case of the second format, the correct and incorrect
statements serve as inclusions and exclusions respectively.

Listing 4.1 ILASP example corresponding to the textual inputs presented in Example 4.1.

1: % Background knowledge rules:

2: semBinaryEvent(E,L,Y,Z) :- binaryEvent(E,L,Y,Z),

3: not abBinaryEvent(E,L,Y,Z).

4:
5: #pos(p0, {

6: rule(r0)

7: }, {

8: rule(r1)

9: }, {

10: ternaryEvent(e0,give ,c1,c3 ,c2).

11: unaryNominal(c1,jack).

12: unaryNomnial(c3,box).

13: unaryNominal(c2,jim).

14: ternaryEvent(e1,hand ,c2,c6 ,c1).

15: unaryNominal(c6,ball).

16: metaData(0,e0).

17: metaData(1,e1).

18: rule(r0):- semBinaryEventH(E0,receive ,c1,c6).

19: rule(r1):- semBinaryEventH(E1,receive ,c2,c6).

20: }).

When background knowledge is specified, the same set of background knowledge rules is
used by all examples and hence they are added outside the example context, which can be
observed in Listing 4.1.

4.2 Context Generation and Background Knowledge Inclu-
sion

In the learning task an implicit assumption is made that multiple examples were provided
to the system in order to learn a single underlying concept. Due to the fact that the
text part of each example, which forms example context, could translate to multiple ASP
rules, examples are translated to context dependent partial interpretations [32], as shown
in Listing 4.1. ASP rules forming the example context are derived using the translation
procedure described in Chapter 3.

4.2.1 Generation of Inclusions and Exclusions

Inclusions and exclusion require special treatment as far as translation is concerned. Please
recall from Chapter 3 that majority of predicates has an identifier which allows for semantic
composition. In case of sentences forming inclusions and exclusions, such constants require
separate treatment, which depends on the function on the corresponding predicate.

In most cases, the head constants are replaced with the corresponding variables. Currently,
the only exceptions are present tense verbs and nominals whose coreferents are present
in the text. Example of such replacement can be seen in Listing 4.1 for rules headed by
predicates rule(r0) and rule(r1). Let us notice that if constants were used instead of
variables E0 and E1, the inclusion could be covered as such constants would not occur as
an argument of any predicate present in the context.

36 Chapter 4. Learning

In case of the nominals whose coreferents are present in the context, like for example the
ball in Example 4.1, introduction of a variable is not necessary. The same is true for present
tense verbs due to the assumption about the linearity of time in the narratives. Present
tense verbs occurring in the inclusions and exclusions are assumed to relate to the state of
the world after the events from the narrative, therefore it is implicitly assumed that they do
not have corresponding facts in the context and that they should be entailed by the context
and the background knowledge.

Let us notice that the names of predicates for all facts and bodies of all rules present in
the inclusions and exclusions have H suffix. This modification was introduced in order to
prevent the increase in the size of the grounding in presence of recursive rules. However,
the modification prevents our system from learning recursive concepts.

4.2.2 Background Knowledge Inclusion

In order to increase the capability of the learner, it is possible to include background knowl-
edge in the learning task. The same set of background rules is used for all examples within
one task. Due to the fact that predicates in inclusions and exclusions have H suffix, it was
necessary to make the same modification to the background knowledge rules.

In order to be able to use the modified (H suffix) background knowledge in combination
with rules included in the example context, a set of additional background knowledge rules
was generated, in which for every predicate p(a0, . . . , an) from the example context there is
a corresponding rule of the form:

ph(a0, . . . an) : − p(a0, . . . , an)

where ph(a0, . . . an) is the corresponding predicate with H suffix. Let us point out that the
predicates in the heads of the learnt rules also have the H suffix, which is removed by a
post-processing step before the learnt hypothesis is returned by the system.

4.3 Automatic Generation of Mode Declarations

As outlined in Section 2.3, in ILASP mode declarations are used to bound the hypothesis
space. Automatic generation of head and body modes based on the background knowledge
and context of all examples included in the task was the most challenging part of automating
the learning process. The chosen approach was inspired by the method presented in [37],
namely using distributional word semantics, i.e. relying on contextual information, to derive
types of entities and predicates occurring in the text.

The overall objective of deriving mode declarations is to generate a set of modes which are
expressive enough to define a hypothesis space containing a solution to the learning problem
and conservative enough not to generate a prohibitively large hypothesis space rendering
the learning task computationally infeasible.

Derivation of mode declarations is divided into four stages:

• unification of inclusions and exclusions with background knowledge

4.3. Automatic Generation of Mode Declarations 37

• assignment of types to predicate arguments

• assignment of types to predicates

At the end of the process, a set of typed head and body mode declarations is obtained
together with an assignment of predicate arguments to types and sets of values that each
predicate argument can take.

4.3.1 Unification of Inclusions and Exclusions with Context and Back-
ground Knowledge Rules

The main aim of unifying the inclusions and exclusions with the background knowledge is
to derive instances (groundings) of head modes that would in turn allow generation of head
modes that lead to derivation of the correct hypothesis when the background knowledge is
included in the task. The unification algorithm uses the subsumption relation to compute,
in a top-down fashion, a set of facts which are the aforementioned instantiated head modes.

Definition 4.1 (Subsumption Relation). Let P (a1, a2, . . . , an) and Q(b1, b2, . . . , bn) be n-
ary predicates. Let V denote the set of all variables and C the set of all constants. Then,
P (a1, a2, . . . , an) subsumes Q(b1, b2, . . . , bn) if and only if the following conditions are met:

• P = Q

• ∃φ∈V×C ∀1≤i≤n φ(ai) = bi

where φ is a substitution - a partial function from V to C.

Given the above definition, the set of predicates which will be considered as heads of hy-
potheses is computed recursively by unifying candidate heads, which are initialised with
inclusions and exclusions, with rules in the background knowledge and extending the can-
didate set with the bodies of the unified rules.

More precisely, for each example in turn, the heads predicate set is initialised with the
inclusions and exclusions of the given example. For each predicate in the set and for each
rule in the background knowledge and the context it is checked whether the head of the
rule subsumes the candidate predicate. For all candidates subsumed by a head of some
rule, predicates from the body of the rule, on which substitution is performed, are added
to the heads set. The algorithm returns the set of relevant heads - predicates visited by
the procedure whose semantics is not fixed. Pseudocode of the algorithm in presented in
Listing 4.2.

Listing 4.2 Pseudocode of algorithm generating candidate head predicates for positive
example e and background knowledge rules B.

1: procedure unify(e, B):

2: result := ∅
3:
4: for ex ∈ Einc

e ∪ Eexc
e :

5: visited := {ex}
6: heads := {ex}
7: relevant := ∅
8:

38 Chapter 4. Learning

9: while head 6= ∅:
10: curr := heads.pop()

11:
12: for r ∈ Bclause ∪ Cclause:

13: if head(r) subsume curr:

14: φ := substitution(head(r), curr)

15:
16: if (¬ fixed_semantics(ps)):
17: relevant = relevant ∪ {ps}
18:
19: for p ∈ body(r):
20: # Skolemisation is performed only for v /∈ head(r)
21: ps := skolemise(φ(p))
22:
23: if (ps /∈ visited):

24: visited := visited ∪ {ps}
25: heads := heads ∪ {ps}
26:
27: result := result ∪ relevant

28: return result

The algorithm presented in Listing 4.2 performs a form of abductive inference, given the
observations, which in our case are inclusions and exclusions, it derives possible explanations
using the context and background knowledge rules. The algorithm was inspired by the
SLDNF proof procedure as applied in case on abduction - when a subgoal fails to unify with
the head of any rule, the subgoal is viewed as a hypothesis [28], which in our case translates
to an instance of a head mode. Let us notice an important distinction, hypotheses leading
to the one that is non-unifiable are also treated as instances of head modes, unless they are
fixed semantics predicates.

Let us notice the use of fixed_semantics predicate on line 23 in 4.2, which returns a true
value for predicates with predetermined semantics - ones for which no new rules should
be derived. Currently, among such predicates are semantic equivalents of the predicates
output by the translation algorithm when parsing questions. These predicates have a name
prefix sem and are used to represent exceptions.

Example 4.2 (Semantic Predicate). For binary event predicates, the corresponding se-
mantic predicate is defined by the following rule.

semBinaryEvent(E,L,X, Y) : −binaryEvent(E,L,X, Y),

not abBinaryEvent(E,L,X, Y).

Such a predicate, when used for a binary verb be, can convey the meaning that X is Y
unless not modifies is by inclusion of the following rule:

abBinaryEvent(E, be,X, Y) : −binaryEvent(E, be,X, Y), unaryModif(not, E)

As can be sees, semantic predicates were introduced to convey the true meaning of the
underlying text.

Let us notice that the algorithm in Listing 4.2 analyses both inclusions and exclusions. The
motivation for doing so is the fact that for e ∈ Eexc there might exist a rule r ∈ Brule∪Crule

4.3. Automatic Generation of Mode Declarations 39

(where Brule and Crule are sets of rules occurring in the background knowledge and context
of a given example) such that there exists a negated atom not p ∈ body(r). In such case,
adding p to the set of candidates from which the head modes are derived might prevent e
from being entailed.

Example 4.3. Let us assume that a learning task consists of a single positive example e,
with inclusions Einc, exclusions Eexc and context C given by:

Einc = {semBinaryEvent(e3, close, c1, c2)}
Eexc = {semBinaryEvent(e3, close, c0, c2)}
C = {binaryEvent(e0, forget, c0, e1).

binaryEvent(e1, close, c0, c2).

binaryEvent(e2, close, c1, c2).

unaryNominal(c0, jack).

unaryNominal(c1, jim).

unaryNominal(c2, door).}

The background knowledge B is given by:

B = {semBinaryEvent(E,L, Y, Z) : −binaryEvent(E,L, Y, Z),

not abBniaryEvent(E,L, Y, Z).}

Unification, using algorithm in Listing 4.2, of atom semBinaryEvent(E0, close, c1, c2) with
the background knowledge B yields the following set of ground head modes:

C1 = {binaryEvent(E0, close, c0, c2), abBinaryEvent(E0, close, c0, c2)}

Similarly, for semBinaryEvent(E1, close, c0, c2):

C2 = {binaryEvent(E1, close, c1, c2), abBinaryEvent(E1, close, c1, c2)}

Let us notice that in Example 4.3 semantic predicates semBinaryEvent(E0, close, c0, c2)
and semBinaryEvent(E1, close, c0, c2) were not included in C1 and C2 as they are assumed
to have fixed semantics.

4.3.2 Argument Typing

Our argument typing algorithm processes every example and analyses predicates which form
rules, facts and constraints included in the example context, inclusions, exclusions as well
as the predicates obtained by running the algorithm from Listing 4.2 which do not include
Skolem constants as arguments. The general idea is to memorise for every constant or
variable c triples (predicate name, lemma, position)1 for every predicate in which c occurs
as an argument. Such triples are referred to as descriptors and arguments with the same
descriptor are assigned to the same type. The intuition behind such typing algorithm follows
from the heuristic assumption that words with similar semantics occur in similar contexts.

1lemma refers to the argument of the predicate, as described in Section 3.1, and position denotes the
index of the given argument in the predeicate.

40 Chapter 4. Learning

The idea that words which are similar in meaning occur in similar contexts, also referred
to as the Distributional Hypothesis, is a basics for statistical approaches to word semantics
[55].

Due to the chosen representation, every predicate occurring in context rules and inclusions
or exclusions takes a lemma of the corresponding word as one of its arguments. The same
holds for a subset of predicates derived form background knowledge using procedure out-
lined in Listing 4.2. Consequently, for arguments of these predicates, descriptor of the
aforementioned form (predicate name, lexeme, position) can be constructed. The steps of
our algorithm are as follows:

• For the ith example collect a set Pi of predicates occurring in context rules, inclusions,
exclusions and the ones following from background knowledge by abducing inclusions
and exclusions (running algorithm presented in Listing 4.2).

• For every predicate p(a1, . . . , an) ∈ Pi and for every argument aj of such predicate
create a descriptor (p, l, j), where p is the predicate name, l is the lemma associated
with the predicate and j is the position (index) of the argument.

• Let Ai be a set of all arguments (constants and variables) that predicates in Pi can
take. Let A =

⋃M
i=1Ai where M is the total number of examples, i.e. A is the set of

all predicate arguments in all examples (let us assume that different constant names
are used across the examples and different variable names across rules). For every
pair of arguments ak, al ∈ A let Dk, Dl be their sets of descriptors computed in the
previous step. Then, ak, al are assigned to the same type tm iff Dk ∩Dl 6= ∅.

The last step of the algorithm is optimised by considering only supersets of descriptors. A
descriptor superset contains all descriptors of arguments of the given type. In case a new
argument is determined to belong to an existing type, the corresponding superset is extended
with the argument’s descriptors. Such optimisation allows to perform O(T) descriptor set
intersections per argument, rather than O(N), where T is the total number of argument
types and N is the total number of different predicate arguments in all examples.

Example 4.4. Let us consider a simple narrative:

Jack went to the garden.
He got a football.
Jim went to the kitchen and got a sandwich.

Let us assume that this narrative constitutes a context of an example. In ASP, it is rep-
resented by the following set of predicates (meta predicates were omitted for the sake of
clarity as they are irrelevant for argument clustering). The derived argument types are
presented in Table 4.1.

C = {binaryEvent(e0, go, c0, c1). binaryEvent(e1, get, c0, n0).

binaryEvent(e3, get, c2, n1). binaryEvent(e2, go, c2, c3).

unaryNominal(c0, jack). unaryNominal(c1, garden).

unaryNominal(n0, football). unaryNominal(c0, he).

unaryNominal(n1, sandwich). unaryNominal(c2, jim).

unaryNominal(c3, kitchen).}

4.3. Automatic Generation of Mode Declarations 41

Argument Descriptors Type

c0 {(binaryEvent, go, 0), (binaryEvent, get, 0)} t0
c1 {(binaryEvent, go, 1)} t1
c2 {(binaryEvent, go, 0), (binaryEvent, get, 0)} t0
c3 {(binaryEvent, go, 1)} t1
n0 {(binaryEvent, get, 1)} t2
n1 {(binaryEvent, get, 1)} t2

Table 4.1: Descriptor values and types assumed by arguments of predicates in set C. Three
different types are recognised by the argument typing algorithm. Type t0 approximately
corresponds to a person, t1 to location and t2 to an object.

4.3.3 Predicate Typing

The main aim of predicate typing is to group predicates based on their meaning in the
context of the narrative and hence be able to treat them uniformly when generating the
hypothesis space - use a single mode declaration for all predicates grouped together. By
assigning types to the relations between object in the domain of discourse we try to extract
the underlying word semantics by removing syntactic variability introduced by phenomena
such as synonymity. Predicate typing relies on the argument types and predicate naming
convention. In general, predicates with the same name and argument types are assigned
the same predicate type.

Let us recall from Chapter 3 that every predicate occurring in the context, inclusions and
exclusions, as well as some predicates derived from the background knowledge by abducing
inclusions and exclusions, takes lemma as one of its arguments. Therefore, predicate typing
is equivalent to assigning types to words taking multiple arguments, such as transitive verbs.

Example 4.5. Let us consider the following narrative:

Jack went to the garden and grabbed a football.
He moved to the kitchen and left the football
Jim went to the kitchen and picked up the football.

The narrative is represented by the following set of ASP facts used as example context:

C = {binaryEvent(e0, go, c0, c1). binaryEvent(e1, grab, c0, c2).

binaryEvent(e2,move, c0, c5). binaryEvent(e3, leave, c0, c2).

binaryEvent(e4, go, c3, c4). binaryEvent(e5, pick up, c3, c2).

unaryNominal(c0, jack). unaryNominal(c0, he).

unaryNominal(c1, garden). unaryNominal(c2, football).

unaryNominal(c3, jim). unaryNominal(c4, kitchen).}

Using the argument typing algorithm described in section 4.3.2, {c0, c3} are assigned type
t0, {c1, c4} are assigned type t1 and {c2} is assigned t2. Based on such type assignment,
predicates with non-zero arity occurring in the context (binaryEvent predicates) can be
typed, result of which is shown in Table 4.2.

42 Chapter 4. Learning

Predicate Signature Type

binaryEvent(e0, go, c0, c1) (t0, t1) p0

binaryEvent(e1, grab, c0, c2) (t0, t2) p1

binaryEvent(e2,move, c0, c5) (t0, t1) p0

binaryEvent(e3, leave, c0, c2) (t0, t2) p1

binaryEvent(e4, go, c3, c4) (t0, t1) p0

binaryEvent(e5, pick up, c3, c2) (t0, t2) p1

Table 4.2: Types assigned to predicates based on the types of their argument. Signature
is a tuple of types that the arguments of a predicate take. Type is the final type of the
predicate. To avoid confusion, predicate types are denoted with a letter p and a subscript.

One complication regarding predicate typing occurs for predicates derived from the back-
ground knowledge which take Skolem constants as their arguments. This situation occurs
for all background knowledge rules which have variables in their body that do not occur in
their heads, an example of such rule is:

unaryNominal(C1, L2) : −eq(C1, C2), unaryNominal(C2, L2).

which states that if two entities are equal, then they belong to the same class of enti-
ties.2 The variable C2 does not occur in the head, hence when, for example, observation
unaryNominal(c4, human) is abduced, the result will be:

{eq(c4, sk1), unaryNominal(sk1, human)}

where sk1 is an introduced Skolem constant, whose type is unknown. In such case, a
separate new type is introduced for the Skolem constant. However, in some cases it can be
inferred that the type of such Skolem needs to be the same as some different argument type
based on the types of predicates in which the Skolem constant occurs. That is the case for
the background knowledge rule:

binaryTerm(E, be, P, L) : −binaryEvent(E, go, P, L2), unaryNominal(L,C).

which roughly expresses the fact that an entity terminates to be at a certain location when it
moves to another location. In such situation, when, for example {binaryTerm(e1, be, c1, c2)}
is abduced, the resulting explanations are:

{binaryEvent(e1, go, c1, sk1), unaryNominal(c2, sk2)}

where {sk1, sk2} are Skolem constants. Consequently, knowing the types of arguments
that binaryEvent predicates with lexeme go take in the example contexts, which can be
determined using algorithm outlined in section 4.3.2, allows the type of sk1 to be inferred.

In order to systematise making the aforementioned inferences, the problem of typing Skolem
constants is translated to a problem of finding strongly connected components in an undi-
rected graph. The set of types of all arguments in all predicates maps to vertices of a graph.
By default, every Skolem constant introduced during abduction is assigned a new type.

2For example, it allows us to conclude that if an object corresponding to the constant c1 is a human,
and c2 is equal to c1, then c2 is a human as well. Such inferences are necessary when attempting to learn
coreference rules.

4.3. Automatic Generation of Mode Declarations 43

Whenever a Skolem constant occurs as an argument of some predicate, undirected edge
between the original type of the Skolem constant and the type of the predicate argument
is added. Such edges correspond to equality constraints between types. After processing all
examples, strongly connected components are found in the graph and all types within one
component are unified into a single type.

4.3.4 Using Type Information to Generate Modes

The main objective of argument and predicate typing is generation of head and body mode
declarations. Each predicate type translates to a separate mode declaration and argument
types allow to specify the arguments of such modes together with constant values that each
of such arguments can take.

Body modes are derived from facts that constitute the example contexts, whereas head
modes are generated by abducing the inclusions and exclusions with respect to the back-
ground knowledge rules and rules from the context, using the algorithm from Listing 4.2.
In both cases, the obtained predicates are assigned types and for each predicate type a
corresponding mode is created. For every predicate type, a set of lemmas that predicates
of the given type can take is kept. Similarly, values of arguments assuming a certain type
are collected and if any of them is a lemma, it gets added to a constant value set for the
given argument type.

Example 4.6. Let us revisit the Example 4.3. Three different predicate types can be

Predicate Signature Type

binaryEvent(e0, forget, c0, e1) (t0, t2) p0

binaryEvent(e1, close, c0, c2) (t0, t1) p1

binaryEvent(e2, close, c1, c2) (t0, t1) p1

abBinaryEvent(E1, close, c0, c2) (t0, t1) p2

Table 4.3: Types of predicates occurring in the context of Example 4.3 and abduced using
the background knowledge.

distinguished for predicates occurring in the Example 4.3. Predicate of type p2 was obtained
by abducing the exclusion, therefore it contributes a head mode:

modeh(abBinaryEvent(var(t2), const(c3), var(t0), var(t1)))

The remaining two predicate types yield body mode declarations:

modeb(binaryEvent(1, var(t2), const(c4), var(t0), var(t2)))

modeb(binaryEvent(1, var(t2), const(c5), var(t0), var(t1)))

The constant sets are: const(c3) = {close}, const(c4) = {forget}, const(c5) = {close}.
Let us notice that types {c3, c4, c5} are treated as constants in this example, however they
could be variables as well. The former approach was taken in order to illustrate creation of
constant sets.

44 Chapter 4. Learning

4.4 Mode Bias Constraints

One of the primary concerns related to learning common sense knowledge was scalability
of the generated learning tasks. This issue was partially addressed by careful derivation
of mode declarations. However, in order to further reduce the size of the hypothesis space
and remove hypotheses that, due to the representation used throughout the project, could
upfront be deemed incorrect, the mode bias constraints mechanism was utilised.

The notion of inductive learning through constraint-driven bias was introduced in [3] and it
allows to constrain the hypothesis space, induced by mode declarations, by domain-specific
denials. In ILASP, bias constraints can be expressed as ASP program that uses predicates
head and body to specify constraints on the corresponding parts of the rules in the hypothesis
space.

Two types of domain-specific constraints that significantly reduced the size of the generated
hypothesis spaces were constraints on the use of nominal and modifiers in the hypothesis
body. Essentially, nominals should be included in the hypothesis only when accompanied by
predicates whose arguments they are. Examples of such predicates are verbs and modifiers.
Similarly in case of modifiers, they are allowed to occur in the hypothesis body only when
the predicate corresponding to the part of speech that they modify is included as well.
A subset of the bias constraints used for each learning tasks is presented in Listing 4.3.

Listing 4.3 Subset of bias constrains used in the learning tasks.

1: #bias("nominal_allowed(V):-body(binaryEvent(_,_,V,_)).").

2: #bias("nominal_allowed(V):-body(binaryEvent(_,_,_,V)).").

3: #bias("nominal_allowed(V):-head(binaryPrepH(_,_,V,_)).").

4: #bias("nominal_allowed(V):-head(binaryPrepH(_,_,_,V)).").

5: #bias("nominal_allowed(V):-head(unaryEventH(_,_,V)).").

6: #bias("nominal_allowed(V):-head(unaryModifH(_,V)).").

7: #bias("nominal_allowed(V):-head(ternaryModifH(_,V,_,_)).").

8: #bias("nominal_allowed(V):-head(ternaryModifH(_,_,_,V)).").

9: #bias(":-body(unaryNominal(V,_)),not nominal_allowed(V).").

10:
11: #bias("modif_allowed(V):-body(unaryNominal(V,_)).").

12: #bias("modif_allowed(V):-body(binaryEvent(V,_,_,_)).").

13: #bias(":-body(unaryModif(_,V)),not modif_allowed(V).").

The rules in lines 1 and 2 allow nominals to occur in hypotheses in which binary verbs
occur in the body. Similarly, rules in lines 3 and 4 allow nominals in rules in which binary
preposition (e.g. behind) occurs in the head. The rules in lines 11 and 12 allow unary
modifiers, such as fast, in bodies of hypotheses in which the modified noun or verb occurs
as well. Lines 9 and 13 express the constraints on the hypothesis space. They eliminate
hypotheses that have unaryNominal or unaryModif predicate in their body and for which
the use of such predicate is not validated by any of the previously specified rules. Let us
notice that the same approach, namely specifying the conditions under which a predicate is
allowed to occur in a hypothesis body and enforcing them with a constraint, could be used
in order to provide mode bias constraints for other predicates.

4.5. Mode Declaration Selection Heuristics 45

4.5 Mode Declaration Selection Heuristics

Let us notice that modes declarations derived using heuristics described in Section 4.3 take
multiple hyper-parameters that have to be set in order for the learning task to complete
successfully. The parametrisation of a set of modes includes:

• The maximum number of variables in each rule,

• The recall of each body mode declaration,

• The specification of which mode arguments should be kept constant and which should
be variables.

The three aforementioned sources of variability contribute to the exponential increase in the
number of different sets of modes when the number of blueprint mode declarations generated
by algorithms in Section 4.3 increases. In order to tackle this combinatorial explosion while
still being able to explore different parametrisations of modes, a series of heuristics was
introduced. In what follows it is assumed that the set of mode declarations is constant and
the previously mentioned parameters of modes change.

Number of Variables per Rule The maximum number of variables per rule was esti-
mated by taking the minimum of the number of variable types in all modes and
preconfigured upper bound on the number of variables. The upper bound was set to
five as rules including more than five variables were rarely observed.

Number of Constant Types Inclusion of a constant type which can assume values from
a set C approximately causes the size of the hypothesis space to increase |C| times,
which in practice renders the learning task not feasible even when relatively small
number (around five) of constant types, which can assume more than one value, is
included in the mode declarations. Moreover, mode declarations which have multiple
constant types often correspond to enumeration of different cases, which might lead
to overfitting. Therefore, there was introduced a hard limit on the number of constant
types in each set of mode declarations (equal to three), which has an additional effect
of reducing the number of different combinations of modes.

Constant Type Selection As indicated in the Example 4.6, for types that can assume
constant (lemma) values, there is a choice of making them variables or constants in
the set of modes, which can be closely associated with generality of the learned rules.
Different selections of constant types were explored exhaustively within the bound on
the maximum number of constant types.

Recall of Body Mode Declarations In order to learn certain rules, like for example
transitivity of a given relation, multiple instances of one predicate need to occur in
the body of a learned rule. In order include such rules in the hypothesis space, the
recall of the corresponding body mode declarations has to be increased. In order
to avoid substantial increase in the size of hypothesis space, in a given set of mode
declarations only one body mode declaration was allowed to have recall equal to two.
Values of recall greater than two were not considered as they are rarely observed in
the rules.

Mode Declarations Ordering and Selection The order in which different sets of modes
declarations were explored is significant for the overall runtime of the learning pro-

46 Chapter 4. Learning

cess. Therefore, sets of modes which generate smaller hypothesis spaces should be
explored first. In order to avoid the overhead of enumerating the entire hypothesis
space every time usability of a set of mode declarations is estimated, a weight of a
mode was calculated based on factors like cardinality of sets of constant values corre-
sponding to constant types, number of variable types and recall of body modes. Sets
of parametrised modes were sorted in increasing order of their weights. Out of all sets
of more declarations, only a certain number of modes with the smallest weight was
kept. The heuristic tended to prioritise sets of modes generating smaller hypothesis
spaces.

Let us notice that due to the use of the aforementioned heuristics, by principle some types
of rules were impossible to learn as discussed in case of individual heuristics. However, in
order to improve the runtime and feasibility of the learning process, heuristic assumptions
about the form of rules to be learned were required.

Chapter 5

Implementation

In this chapter, the implementation of the ideas presented in Chapters 3 and 4 is described.
First, an overview of the functionality and the main implementation choices is provided.
Secondly, the design of the system is presented and constituent modules described on a
high level. The main contribution of this chapter is an outline of practical consideration
related to implementing general-purpose language processing systems.

5.1 System Overview

The objective of the project was to develop a natural language processing system capable
of answering questions and learning common sense knowledge from textual examples. This
twofold goal guided the design of the system and led to an architecture where two separate
modes, namely learning and answering are supported. These two modes co-exist in the
final implementation and share large part of their functionality.

The core part of the project is implemented in Java. The resultant code base comprises of
approximately eight thousand lines of code spread across over one hundred classes in fifteen
packages. Therefore, for the sake of clarity, in the following sections the implementation
will be outlined mostly on a package level.

5.2 Input Translation

In the implementation, a significant amount of functionality was shared between thelearning
and answering modes, which is the subject of this section. Common modules are responsible
for parsing input English sentences to ASP representations. The exchange of messages
between the modules during the translation process is illustrated in Figure 5.1. For a visual
presentation of roles that each module plays in generating ILASP learning tasks or ASP
programs please refer to Figure 5.3 and Figure 5.4 respectively.

47

48 Chapter 5. Implementation

Figure 5.1: UML Communication Diagram of modules used both in learning and answering
modes. In green are highlighted components and messages that are mode-dependent.

5.2.1 User Interface

The system supports two forms of user interface: command line interface, whose intended
use case is processing larger amounts of input data, and a graphical interface, implemented
in a form of a Web app, which can be used for small learning or question-answering ex-
periments. These two interfaces provide entry points to the system, in the former case the
input is read from a file and in the latter it is passed through an HTTP endpoint.

[{

"text": ["Jack went to the kitchen.",

"Jim went to the garden."],

"questions": ["Where is Jack?"],

"positive": ["kitchen"],

"negative": ["garden"]

}]

Figure 5.2: The JSON input format used by the system.

The same JSON input format is used in learning and answering mode, example of which
can be seen in Figure 5.2. In case of the answering mode, the positive and negative example
fields are redundant and hence left blank. Uniform input format significantly simplifies the
implementation of parts of the system responsible for deserialisation and annotation.

The output of the system differs depending on the mode. In the case of the learning mode,
the system returns a set of learned ASP rules. In the case of the answering mode, the system
returns a list of answers ordered according to the occurrence of corresponding questions in
the input.

5.2. Input Translation 49

5.2.2 Annotator Pipeline

The annotator Pipeline performs morphological, linguistic, and preliminary semantic anal-
ysis of the input text for which it relies on two external dependencies, namely Stanford
CoreNLP [40] and EasySRL [35]. The following types of annotation are performed:

Sentence Splitting and Tokenisation Although this tasks might appear simple, in prac-
tice, in case of deterministic approaches, a significant number of heuristics is required
to handle different problematic cases, such as names including punctuation signs or
quoted fragments inside sentences. Hence, relying on external libraries to perform
these tasks is desirable.

Lemmatisation Removes a part of syntactic variability in the input text by grouping
together inflected forms of a word and assigning them word’s lemma. This step is
important for limiting the number of different predicates generated by the lexicon

Part-of-speech Tagging Assigns to each word a part-of-speech tag as defined in the Penn
Treebank Project. This information is used by the lexicon to improve robustness of
λ-ASP expression generation.

Named Entity Recognition Identifies sequences of input words which are names and
labels them with a relevant class. It is used by the system to detect compound nouns,
such as Barrack Obama.

Coreference Resolution Determines referents of words occurring in the text. It is used in
the system to derive semantic representation of nominals. Let us note that coreference
resolution for a particular piece of input data has to be performed on combined text,
questions and positive/negative examples, which is why AnnotatorPipeline accepts
InputData object as input rather than separate sentences.

Semantic Role Labelling Assigns roles to arguments of predicates (verbs). EasySLR
uses PropBank style role annotations. The only type of annotation used in the project
is ARG[x], where x has fixed semantics and, depending on its value, can denote that
the argument is agent, recipient, theme or others. The annotations are used to order
predicate arguments.

Currently, all annotations apart from semantic role labelling are performed by Stanford
CoreNLP. Annotators included in the pipeline have to implement the same interface, which
allows uniform treatment and relatively simple replacement or addition of an annotator.
Such design has the advantage of reduced coupling between the system and its external
dependencies.

5.2.3 Logic Parser

The LogicParser module performs translation from English to λ-ASP expressions, the-
oretical details of which are described in Chapter 3. The module derives translation for
sentences represented as AnnotationStream objects, which encapsulate the annotation in-
formation and text of the original sentence. For each sentence, CCG parser is used to
obtain a parse tree, λ-ASP representations of the leaf nodes are derived using the Lexicon

and representations for the internal nodes of the tree are computed in a bottom-up fashion

50 Chapter 5. Implementation

using the Combinator module. LogicParser returns λ-ASP expression corresponding to
the entire sentence.

5.2.4 Syntactic Parser

In the project, the implementation of the CCG parser presented in [36] is used. It achieves
state-of-the-art performance when evaluated on CCGBank [25]. The parser is implemented
in Java and hence could be imported into the project. However, we decided against it for
two reasons.

Firstly, running the parser in a server mode greatly improves the development speed of
the translation algorithm as repetitive loading of a large language model to memory is not
necessary. Let us point out that the original implementation of the parser did not support
server mode, hence we had to introduce the necessary modifications to the source code.

Secondly, parsing the textual output produced by the parser, rather than relying on its
internal representation of the parse tree, reduces the coupling between our system and the
dependency. Let us notice that the parser uses a standard CCGBank output format which
is implemented by all CCG parsers, hence by following the chosen approach the parser can
be freely replaced.

5.2.5 Lexicon

As described in Chapter 3, in our implementation lexicon is an algorithm, which given a
leaf node of a parse tree derives a corresponding λ-ASP expression. Lexicon module is
divided into five submodules, namely: NominalLexicon, VerbLexicon, ModifierLexicon,
PrepositionLexicon and WhLexicon, that produce λ-ASP expressions for different parts-
of-speech, as indicated by their names.

In addition to improved robustness (discussed in section 3.2.2), modularising the lexicon
allows to achieve better separation of concerns. Certain elements of linguistic analysis have
very specific implementation details for some categories of words and are irrelevant for
others. For example, detection and handling of co-indexation in case of verbs is performed
by pattern matching on a list of CCG categories. However, for nominals co-indexation is
not required. Being able to separate such implementation details across classes makes the
implementation more maintainable.

The semantic representation of certain words differs depending on whether the word is used
in the text, question or example section of the input data (Figure 5.2). An example of such
category are interrogative words such as what, who, which. However, as such special cases
are rare, in order to avoid code duplication Lexicon can be set to operate in one of three
modes: text, question or example. Each of the modes introduces necessary adjustments in
the λ-ASP representations for the relevant categories of words.

5.2.6 System Configuration

In order to allow tuning our system’s performance for different workstations and problem
settings, a configuration file is provided which allows specification of parameters responsible

5.3. Learning Mode 51

for generating and running learning and question answering tasks. The configuration file
provides control over, among others, the number of concurrent learning tasks, number
of examples used for learning, maximum allowed size of the hypothesis space and noise
tolerance. Location of a configuration file can be specified using an environment variable,
which facilitates managing multiple configurations to run the system on different machines.

5.3 Learning Mode

Figure 5.3 illustrates the messages exchanged between different modules of the system when
a learning task is generated from textual input. In what follows, the design and implemen-
tation of the most important modules used for generating learning tasks is outlined.

Figure 5.3: UML Communication Diagram of the system used in learning mode.

52 Chapter 5. Implementation

5.3.1 Type Analyser

The TypeAnalyser module is responsible for inferring types of predicate arguments and
predicates in order to allow generation of mode declarations tailored for a particular learning
task. In accordance with the algorithm description provided in section 4.3, implementation
was divided into three major submodules: ArgumentClustering, PredicateClustering

and PredicateTyping, each providing input to the subsequent submodule it the list. The
TypeAnalyser module is fully self-contained and could be seamlessly replaced with a dif-
ferent implementation that provides the same interface to the rest of the system. Achiev-
ing such effect was one of the design goals as predicate typing is a crucial part of auto-
matic derivation of mode declarations and implementation of this module might need to be
changed in order to accommodate more difficult question answering datasets.

5.3.2 Mode Selector

The ModeSelector module is responsible for generating mode declarations and also imple-
ments the mode declaration selection heuristics outlined in section 4.5. ModeSet object, list
of which is returned by the module, encapsulates a particular instance of head and body
mode declarations for a given learning task. These modes are used in TaskGenerator to
infer hyper-parameters of the learning task, such as the maximum number of variables used
in a rule and hence, together with the examples, form the final learning task.

5.3.3 Task Scheduler

The input to the TaskScheduler comprises of a set of learning tasks ordered (by the
ModeSelector module) according to their relative priority. The main responsibility of
the module is scheduling and management of the pool of concurrent learning task.

The TaskScheduler relies on concurrency features of Java programming language and uses
a ScheduledExecutorService to schedule TaskRunners. Each task runner takes as input
a path to the file containing the learning task and relies on a configuration file specified by
the user to create a new process which invokes ILASP with the given learning task as input.
If learning succeeds, task runner returns a set of learned rules together with an exit status
informing the scheduler that all other currently active task runners could be stopped and
task scheduling procedure terminated.

A complication is brought by the fact that, due to completeness of ILASP, running all
learning tasks till completion is not always optimal. This is especially true for learning
tasks which include noise and have relatively large hypothesis space as ILASP performs an
exhaustive search to determine that the task is infeasible. However, empirical observations
show that when the correct set of rules is present in the hypothesis space, then for majority
of problems attempted throughout the course of the project ILASP would terminate within
10 minutes. Therefore, a timeout value is used, which can be modified via a configuration
file, and after which the learning task is forcefully terminated.

5.4. Answering Mode 53

5.4 Answering Mode

In answering mode, the steps following the translation of input to ASP representation
are significantly simpler than in case of the learning mode. Essentially, after the list of
ASP programs corresponding to input data is generated by the AnswerFormatter, the only
remaining step is to run multiple concurrent invocations of clingo to compute the answers,
which are aggregated into a list and returned to the user. Figure 5.4 illustrates interactions
between system components in the answering mode.

Figure 5.4: UML Communication Diagram of the system used in the answering mode.

5.5 External Dependencies

In this section, a list of external dependencies used in the project together with short
description and licensing information is provided.

Stanford CoreNLP Provides a set of tools to perform natural language analysis. The
framework is implemented in Java and provides a simple web API together with a
Java client. The NLP tools provided by the framework achieve nearly state-of-the-
art performance on a variety of tasks such as part-of-speech tagging and coreference
resolution. Stanford CoreNLP is licensed under the GNU General Public License (v3
or later) and available on GitHub.1

EasySRL Provides a semantic role labeller and a state-of-the-art CCG parser [36]. The
set of tools is implemented in Java. EasySRL is licensed under Apache License 2.0

1https://github.com/stanfordnlp/CoreNLP

54 Chapter 5. Implementation

and available on GitHub.2

ILASP A logic-based learning system developed at Imperial College London by Mark
Law, Alessandra Russo and Krysia Broda. Executable is available on SourceForge.3

Throughout the project it was used with the flag --2i.

clingo Answer set solver developed at the University of Potsdam. It is licensed under The
MIT License (MIT) and available on GitHub.4

Apache Commons Open-source project which provides all kinds of reusable Java com-
ponents. It is licensed under Apache License 2.0.

Gson Java library used to convert Java object to JSON representation and vice versa. It
is licensed under Apache License 2.0 and available on GitHub.5

Jetty Lightweight Java based web server and servlet container. Jetty is licensed under
Eclipse Public License - v 1.0 and available on GitHub.6

2https://github.com/uwnlp/EasySRL
3https://sourceforge.net/projects/spikeimperial/files/ILASP
4https://github.com/potassco/clingo
5https://github.com/google/gson
6https://github.com/eclipse/jetty.project

Chapter 6

Evaluation

6.1 Translation Evaluation

Despite some previous work on English-to-ASP translation, to the best of our knowledge,
no official benchmark has been published to date. Therefore, in order to evaluate the perfor-
mance of the translation algorithm, a set of 22 sentences of varying length and exemplifying
different grammatical constructions was created (Table 6.1). Examples 1 − 10 were hand-
crafted by the author. Examples 11 - 15 were used in [6] where certain aspects of English
to ASP translation were addressed. However, as the the publication was mainly concerned
with using ASP for solving logical puzzles and the representation that it presented was
very task-specific, a direct comparison is not possible. Examples 16−20 were selected from
news articles available on-line [57] [11]. Finally, examples 21 − 22 were used to evaluate
correctness of the Boxer system [8]. Every example sentence in Table 6.1 is associated
with a comment on the correctness of the generated representation. The representations
themselves are presented in Appendix C.

Task Sentences Comments

1
Jack knows a man whose
brother won a lottery.

+ Correct co-indexation of a noun-taking relative
pronoun whose

2
Jack ordered and paid for
the dinner.

+ Correct coordination of conjuncts with the same
CCG category

3
Jack is a programmer and
happy with his job.

+ Correct coordination of conjuncts with different
CCG categories

4
Jack bought an expensive
car.

+ Correct representation of a simple sentence with
a transitive verb and a simple adjective

5
Jack bought a car that is
expensive.

+ Correct representation of a sentence with a (non-
restrictive) relative clause
+ The same ASP representation as in Task 4

6
An expensive car was
bought by Jack.

+ Correct representation of a passive sentence
+ The same ASP representation as in Tasks 5

7 Jack is very stubborn.
+ Correct representation of a sentence containing
a compound modifier

55

56 Chapter 6. Evaluation

8
Jack insisted on us staying
longer.

+ Correct lemma of a predicate corresponding to
the phrasal verb insist on (insist on)

9
Jack persuaded Jim to
decide in favour of the new
agreement.

+ Correct co-indexation for control verb persuade
− Incorrect representation of a phrase in favour

10
Does Jack enjoy playing
football?

+ Correct predicate structure
+ Correct use of a constant for Jack and a variable
for football

11
Earl arrived immediately
before the person with the
Rooster.

− Arrive incorrectly takes two nominal arguments
− Before not included in the representation due
to an incorrect CCG parse

12
Jack did not get a haircut
at 1.

+ Auxiliary did correctly skipped
+ not correctly translated as escnot (escape +
not) as clingo does not support not as a name of
a constant

13
Pete talked about
government.

− About incorrectly skipped. Hence, no distinction
can be made between talk to and talk about

14
The candidate surnamed
Waring is more popular
than the PanGlobal.

+ Correct representation of a comparative adjec-
tive more popular
+ Correct attachment of popular to Waring

15

Miss Hanson is
withdrawing more than the
customer whose number is
3989.

− Incorrect predicate structure due to errors in
the dependency structure returned by the CCG
parser. Parser incorrectly assigned the relative
clause whose ... as a modifier of more and phrase
than the customer as a modifier of more.

16

Scientists have mostly
stopped arguing about
whether humans are
warming the planet.

+ Correct predicate structure
+ Correct attachment of the adverb mostly to the
verb stopped

17
Yet the arguments that
crippled the Kyoto Protocol
have hardly changed.

+ Correct semantic representation of an intransi-
tive verb change
− Kyoto Protocol should be represented as a single
entity kyoto protocol rather than distributively as
a nominal and a modifier

18

This time, nations made
voluntary commitments,
with China agreeing that
its emissions will peak in
about 2030.

− make takes three arguments and it should take
two, which is caused by a parser error - phrase with
China ... is incorrectly classified as an argument
− its is not attached to China.

6.1. Translation Evaluation 57

19

The measure was criticized
by opponents of the
original tax proposal and
experts predicted it would
be cut.

+ Generally correct predicate structure
− Compound noun phrase opponents of the origi-
nal tax proposal should be analysed distributively
as opponents and original tax proposal with of
joining the two
+ it correctly coreferenced with the measure

20

Peter Uebelhart, head of
tax at KPMG Switzerland,
said he did not expect the
higher tax on dividends to
put off multinationals.

+ Generally correct predicate structure
+ Peter Uebelhart and KPMG Switzerland cor-
rectly analysed as compounds
− Compound noun phrase Peter Uebelhart, head
of tax at KPMG Switzerland should be analysed
distributively as Peter Uebelhart, head of tax and
KPMG Switzerland

21

Cervical cancer is caused
by a virus. That has been
known for some time and
it has led to a vaccine that
seems to prevent it.
Researchers have been
looking for other cancers
that may be caused by
viruses.

+ Correct predicate structure for the first and the
third sentence
− In the second sentence, that is not coreferenced
with the verb cause in the previous sentence
− Incorrect coreference of it in the second sentence
+ Correct co-indexation of a raising verb seem in
the second sentence
− Incorrect representation of a phrasal verb look
for in the third sentence

22

John went into
a restaurant. There was
a table in the corner. The
waiter took the order. The
atmosphere was warm and
friendly. He began to read
his book.

+ Correct predicate structure for all sentences
− Incorrect handling of locative there in the second
sentence
+ Correct distributional treatment of adjective
phrase warm and friendly in the fourth sentence
− Incorrect coreference of pronoun he in the fifth
sentence to waiter rather than John
− Possessive pronoun his is not attached to the
subject John

Table 6.1: Results of the correctness analysis of ASP representations generated for the
22 sets of sentences from the prepared dataset. The ASP representations supporting the
analysis are presented in Appendix C.

58 Chapter 6. Evaluation

6.1.1 Strengths of the Approach

Below, advantages of the current implementation of English-to-ASP translation, as indicated
by the evaluation on examples presented in Table 6.1 are described.

Systematic Translation The main advantage of the approach to English-to-ASP trans-
lation outlined in the report is that it offers a systematic way of deriving predicate
structure from textual input, which is achieved primarily thanks to using CCG gram-
mar. λ-ASP expressions serve as a semantic glue which allows building semantics of
more complex statements from their constituents.

Modularity The tree main components of the translation mechanism are: CCG parser,
lexicon and annotators (coreference, part-of-speech, lemma) all of which can be freely
replaced when a better alternative is available. Let us notice that achieving such out-
come required considerable effort at conceptual level and was, among others, achieved
by introducing λ-ASP expressions and intermediate representation between syntax
and semantics.

Simple Sentences Translation algorithm satisfies the main objective of the project, namely
is capable of translating simple sentences (provided correct output of the CCG parser)
which is a precondition for achieving high accuracy on any of the bAbI tasks. The
algorithm derives correct ASP representation for nouns, which takes into account
definiteness, simple adjectives, and verbs with both local and non-local dependency
structure, which capitalises on the use of CCG grammar.

Non-local dependencies Regarding non-local dependencies, coordination works correctly
for different types of sentences, even in certain cases when categories of CCG con-
juncts are different. Similary, the approach successfully produces ASP representation
for sentences containing relative clauses. Passive constructions are handled seamlessly
thanks to relying on CCG grammar.

Uniformity of Representation Simple sentences with, using transformational grammar
nomenclature, different surface structure but the same deep structure are assigned
similar or identical ASP representations, which showcases method’s ability to extract
the underlying meaning of a sentence.

Rules with Exceptions Most of common sense knowledge rules have exceptions. There-
fore, being able to specify them on translation level, which was achieved by using
semantic predicates, greatly enhances capabilities of the system both in question an-
swering and learning setting.

Polar Questions Present tense polar questions are correctly represented in ASP thanks
to the preprocessing step converting them to declarative statements, which improves
the accuracy of co-reference resolution.

6.1.2 Outstanding Translation Tasks

During the evaluation, certain aspects of the translation algorithm were discovered that are
not supported to a sufficient extent and constitute the main obstacle to representing real

6.1. Translation Evaluation 59

life text in ASP. Those issues were not identified as weaknesses of the approach per se, but
rather as issues that were not addressed due to the time constraints of the project.

Explative Pronouns Grammatical constructions involving expletive pronouns, such as
there or it are commonplace in everyday language, however generating correct se-
mantic representation for them is non-trivial due a requirement to find a word in the
remaining part of the sentence that the pronoun refers to. For example, in order to
generate a semantic representation for a sentence: It is difficult to outrun Jack we
have to know that it refers to outrun. Moreover, in case of there pronoun, a distinction
between locative meaning (There is an apple on the table) and expletive (There was
some misunderstanding of the issue) has to be made.

Contractions Contractions such as aren’t, she’ll or I’ve are problematic because parser
generates a single tree node for them rather than two nodes. In order to cope with
that issue, a preprocessing step should be added in which contractions are expanded
to two words. This opens another issue of distinguishing between contraction and
possessive (case of ’s), which could be solved by relying on part-of-speech tag, which
however is not always correct. Similar difficulty occurs with contraction ’d.

Possessive Pronouns Possessive pronouns are most of the time assigned a CCG category
NP/(N/PP). In order to support their semantics correctly, the current approach to
predicate generation should be changed so that all possessive pronouns take the same
fixed lemma and a constant which points to the owner, which is not the case for now.
Such approach would require co-indexation and correct co-reference resolution.

6.1.3 Open Problems

In the following section, major issues related to English-to-ASP translation are outlined, all
of which are subjects of research in Natural Language Processing or Linguistics.

Semantics of Prepositions Prepositions play an important role in composing the seman-
tic representation of a sentence, they are usually used in front of nouns and pronouns
to show their relation to other words in the sentence. However, the CCG parser
assigns multiple categories to prepositions, some of which are argument categories
like: PP/NP , some are adjunct: ((S \ NP) \ (S \ NP))/NP and the two types of
categories are confused. Moreover, prepositions can also assume a phrasal verb com-
plement category PR which happens to be mistakenly treated as other argument or
some adjunct categories, as in case of a sentence He handed in his homework, where in
is incorrectly assigned adjunct category ((S \NP) \ (S \NP))/NP . Incorrect parser
output makes reasoning about correct semantics of prepositional phrases difficult and
automatic translation less robust. More importantly, prepositions often have context-
dependent semantics, such as for example locative meaning of in for a sentence Jack
is in the house, which should be interpreted correctly in order to represent semantics
of a sentence.

Compound Nouns Deriving semantic representation of compound nouns compositionally
is a challenging problem, which can be exemplified by noun phrases such as income tax
deduction or box of chocolates. The former case tax and deduction could be merged
into a single, non-compositional noun and income could act as a modifier. In the

60 Chapter 6. Evaluation

latter case, compositional treatment of the semantics of the phrase, i.e. representing
it as an entity that is both a box and a chocolate is perhaps appropriate. However,
even more difficult to represent are idiomatic phrases such as pair of jeans. In general,
deciding about how to derive meaning of compound nouns based only on the output
of the syntactic parser is a difficult task.

Questions In the project we focused on a narrow subset of questions. In order to expand
the set of questions for which ASP representations could be derived, the current
approach would require greater CCG parser accuracy and extensions to the ASP-to-
English translation mechanism. Reliable parsing of questions using CCG grammars
has been a problematic task due to smaller sizes of available training corpora [14].
In our opinion different types of questions should be grouped into categories, such as
temporal, location, reason for and similar and handled on per case basics so that a
knowledge base query corresponding to the question is specific enough to retrieve the
expected answer without spurious information. Such approach however is associated
with substantial manual effort.

Software Dependencies The current approach relies on multiple NLP utilities, namely:
CCG Parser, coreference resolver, part-of-speech tagger and lemmatiser, all of which
are required to generate a fully correct semantic representation. State-of-the-art part-
of-speech taggers and CCG super-taggers achieve 97% [39] and 95% [36] accuracy
respectively, however in case of F1 score for CCG dependency parsing it is 88% [36]
and for coreference resolution it is around 60% [34], which gives an idea about the
upper bound on the accuracy of the translation algorithm. Let us notice that fully
correct semantic representation is not always required as questions might be answered
without using all the information present in the text. Nevertheless, performance of
the dependencies is a limiting factor on the accuracy of the translation algorithm.

Example 6.1 (Example of CCG parser error). Let us consider CCG parser trees and ASP
representations of two sentences: The bedroom is east of the kitchen and The bedroom is
west of the kitchen which differ on one word (east vs west).

Listing 6.1 CCG parse tree of a sentence The
bedroom is east of the kitchen.

1: % CCG parse tree:

2: <T S[dcl]>

3: <T NP >

4: <L (NP/N) DT The >

5: <L N NN bedroom >

6: <T (S[dcl]\NP)>

7: <L ((S[dcl]\NP)/(S[adj]\NP)) VBZ is >

8: <T (S[adj]\NP)>

9: <L ((S[adj]\NP)/PP) JJ east >

10: <T PP >

11: <L (PP/NP) IN of >

12: <T NP >

13: <L (NP/N) DT the >

14: <L N NN kitchen >

15:
16: % ASP representation:

17: binaryModif(east ,c1,c2).

18: unaryNominal(c2,kitchen).

19: unaryNominal(c1,bedroom).

20:
21:

Listing 6.2 CCG parse tree of a sentence
The bedroom is west of the kitchen.

1: % CCG parse tree:

2: <T S[dcl]>

3: <T NP >

4: <L (NP/N) DT The >

5: <L N NN bedroom >

6: <T (S[dcl]\NP)>

7: <L ((S[dcl]\NP)/NP) VBZ is >

8: <T NP >

9: <L (NP/PP) NN west >

10: <T PP >

11: <L (PP/NP) IN of >

12: <T NP >

13: <L (NP/N) DT the >

14: <L N NN kitchen >

15:
16: % ASP representation:

17: binaryEvent(e0 ,be,c1,c3).

18: unaryNominal(c3,west).

19: unaryNominal(c3,kitchen).

20: unaryNominal(c1,bedroom).

21: metaData(0,e0).

6.2. Learning Evaluation 61

In case of the first sentence (Listing 6.1) phrase east of the kitchen is correctly identified
as an adjective phrase (line: 8) whereas phrase west of the kitchen in the second sentence
(Listing 6.2) is incorrectly identified as a noun phrase (line: 8), which leads to an incorrect
ASP representation.

6.1.4 Discussion

Evaluation shows that the approach performs favourably on simple sentences, which where
the main target of the project. As the algorithm supports generating semantic represen-
tation for more complex grammatical structures, it was also evaluated on more complex
sentences however, with mixed success.

When evaluated on news articles, the translation gives correct output mostly for short sen-
tences. Longer sentences are more likely to contain parser errors and currently unsupported
types of expressions (section 6.1.2) and hence yield incorrect representation. Evaluation on
the news articles also showed a necessity to add support for other CCG combinatory rules,
such as generalised composition or substitution [26], which are rarely used in case of simple
sentences.

Boxer system [8], which takes a similar approach to the one presented in this project and
produces a logical representation of text based on a CCG parser and λ-DRS calculus, is
capable of deriving well-formed semantic representations for over 97% of unseen sentences
taken from Wall Street Journal [10]. The semantic representation used by Boxer (Discourse
Representation Structure) differs from the one used in this project as it corresponds more
closely to the structure of a CCG parse tree which might make it easier to derive automat-
ically.1 However, the coverage achieved by Boxer and some successful results achieved by
the current approach when evaluated on news stories show that there is a potential in the
proposed approach to translation to cope with real life texts.

6.2 Learning Evaluation

Performance of the system in the learning setting was evaluated on The (20) QA bAbi Tasks
Dataset (section 6.2.1) and compared to other approaches to question answering evaluated
on the same set of tasks. The reason for choosing that particular dataset is simple structure
of narratives yet a significant requirement for different types of reasoning.

6.2.1 The (20) QA bAbi Tasks Dataset

The (20) QA bAbI tasks [66] are a part of bAbI project developed by Facebook AI Research,
whose aim is to motivate advancements in automatic text understanding and reasoning [66].
The tasks check general text understanding skills, such as identification of facts support-
ing a claim, time reasoning, deduction and it is postulated that performing well on all
of them (achieving over 95% accuracy) is required for any system whose aim is full text
understanding.

1The reason why the representation used by Boxer could not be used in the current project is its limited
applicability for learning in ILP setting.

62 Chapter 6. Evaluation

There are two versions of the dataset, one containing a thousand and the other ten thousand
examples per task, however the former is preferable. In both cases, a test set of a thousand
examples is provided per each task. Every example, instances of which are presented in
Table 6.2, consists of a relatively short narrative (2 − 30 sentences) and a question whose
answer can be derived based on the text. Each answer in the training set is accompanied
by a set of line numbers referring to the associated text which point to statements relevant
for answering the question and provide additional supervision for the model. There is no
noise in the data for any of the tasks and human can potentially achieve 100% accuracy on
the dataset.

Task 1 - Single Supporting Fact Task 15 - Basic Deduction

1 Sandra moved to the hallway. 1 Wolves are afraid of cats.
2 Daniel went to the office. 2 Cats are afraid of wolves.
3 Where is Sandra? hallway 1 3 Mice are afraid of wolves.
4 Sandra travelled to the kitchen. 4 Gertrude is a cat.
5 John moved to the office. 5 Jessica is a mouse.
6 Where is John? office 5 6 What is Gertrude afraid of? wolf 4 2

Table 6.2: Training examples for two tasks from the (20) QA bAbI tasks dataset. Numbers
following the answers point to the relevant statements in the preceding narrative.

The (20) QA bAbI tasks dataset is a synthetic dataset, examples for all tasks were generated
with a simulation similar to a text adventure game whose world consists of entities of various
types (locations, people, objects etc.) and interactions between them. The set of executable
actions is constrained to movement, state changes and inspection of objects. To enhance
the lexical variety of the generated short stories, entities and actions were assigned a set of
replacement synonyms and some entities were replaced with pronouns. Nevertheless, the
resulting narratives have simple grammatical structure and the vocabulary size is small (150
words). Authors hope that by keeping the language simple, tasks would focus on evaluating
text understanding skills rather than general linguistic knowledge of an agent. Description
of tasks present in the dataset is given in Table 6.3. To date, to the best of our knowledge,
only one model managed to solve all 20 tasks [22].

6.2.2 Evaluation Set-up

Learning capabilities of the system developed in the project were evaluated on a subset of
seven tasks from The (20) QA bAbi Tasks Dataset, namely tasks: 1, 6, 8, 9, 12, 15, 18, on
which the system was able to perform learning in a fully automated manner. Evaluations
were performed on a workstation with Core i7-4770 3.40GHz processor, 16 GB of RAM,
running Ubuntu 16.04.

Due to the small size of the vocabulary and the repetitive sentence structure in the dataset,
CCG parser errors errors rendered learning tasks unsolvable as the same error would be
repeated in majority of examples. To mitigate that issue, certain words were replaced. The
list of replacements can be seen in Table 6.4.

6.2. Learning Evaluation 63

Task Description

1 - Single Supporting Fact Answer to the question depends on a number of facts
from the narrative, which have to be chained together
and can be interwoven with irrelevant information.

2 - Two Supporting Facts
3 - Three Supporting Facts

4 - Two Arg. Relations Test agent’s ability to extract relations from the text.
Fred gave football to Jeff → gave(football, Jeff, Fred)5 - Three Arg. Relations

6 - Yes/No Questions Questions with a single supporting fact are used to test
models’ ability to answer true/false questions.

7 - Counting Checks model’s ability to count and list objects with a
certain property, e.g. objects carried by a person.8 - Lists/Sets

9 - Simple Negation Requires the model to handle negation in case one of the
supporting facts yields a negative answer to a yes/no
question, for example (following layout in Table 6.2):
1 Sandra is no longer in the kitchen.
2 Is Sandra in the kitchen? no

10 - Indefinite Knowledge Tests model’s ability to answer yes/no-style questions
for which there might be no definite answer, in which
case agent should answer maybe.

11 - Basic Coreference Tasks 11 and 13 test coreference resolution when
referent is a subject of the preceding sentence. In tasks
12 and 13 subjects are compound (joined using and).

12 - Conjunction
13 - Compound Coreference

14 - Time Reasoning Requires understanding of time expressions like in the
afternoon, yesterday by answering questions about order
of events.

15 - Basic Deduction Test basic induction and deduction via inheritance of
properties - given properties of a class model should
deduce properties of a single instance or, given an
instance, model derives properties of a class.

16 - Basic Induction

17 - Positional Reasoning Checks model’s ability to reason about relative
position or sizes of different objects by asking yes-no
questions about relations between objects.

18 - Size Reasoning

19 - Path Finding Given the description of relative position of different
locations (e.g. The hallway is south of the bathroom.)
the agent has to describe the path between locations by
listing consecutive cardinal directions.

20 - Agent’s Motivations Tests model’s ability to acquire basic common-sense
knowledge by asking questions why a certain action was
performed by a person in the narrative, for example:
1 Jason is thirsty.
2 Where will jason go? kitchen 1
3 Jason went to the kitchen.
4 Why did jason go to the kitchen? thirsty 1

Table 6.3: Description of tasks present in The (20) QA bAbI tasks dataset. Our system
was evaluated on tasks 1, 6, 8, 9, 12, 15, and 18.

64 Chapter 6. Evaluation

Task Word Replacement

1, 12 Mary Jack

6, 9 office study

8 is carrying does carry

15 sheep fox

Table 6.4: Replacements of words and phrases causing parser errors in The (20) QA bAbI
tasks dataset.

6.2.3 Evaluation Method

In all experiments, for each of the seven learning tasks, the training set was divided into
two sets of 800 and 200 examples, the former used for training and the latter for validation.
Then, 10 subsets of examples, whose size depended on particular experiment, were sampled
from the set reserved for training, learning was performed on each of them and the learned
hypothesis was evaluated on the validation set. The set of learned rules that performed
best on the validation set (Appendix D) was evaluated on the test set.

The evaluation procedure was motivated by the empirical observation that, in case of most
tasks from The (20) QA bAbi Tasks Dataset, is not necessary and, in some cases, not feasible
to use all available training data. As shown in section 6.2.5, in case of tasks for which the
optimal set of rules is not contained in the hypothesis space and hence the learner uses
the learning with noise feature of ILASP, the learning times increase sharply. Therefore,
training on the full training set was not possible, which the aforementioned evaluation
method addressed. As length of the narratives in the dataset varies, multiple samples of
training examples were taken to compensate for some of them being less informative.

Let us point out that neural network-based models described in [22] and [61], against which
we compare our results in Section 6.2.8, also used a validation set in their training procedure.
However, in their case the validation set was used in order to select the optimal model
architecture and hyperparameters [61] or the best set of initial values of parameters of the
model [22].

6.2.4 General Learning Capabilities

The aim of the first evaluation was to assess the general capabilities of the learning al-
gorithm by training on 25 examples, which was empirically determined to be enough to
learn the underlying concept. The experiment was performed using the method described
in section 6.2.3.

Task 1 6 8 9 12 15 18

Accuracy 100.0 98.9 100.0 97.0 100.0 100.0 92.4

Table 6.5: Accuracies obtained on a subset of tasks from The (20) QA bAbi Tasks Dataset
using the best set of rules obtained using the approach described in the current section.

Based on table 6.5 and using the criteria outlined in [66] (task qualifies as fully solved if over
95% accuracy is achieved) it can be concluded that the system fully solved six tasks from the

6.2. Learning Evaluation 65

dataset. To the best of our knowledge, this is the only system relying on symbolic machine
learning capable of learning on The (20) QA bAbi Tasks Dataset in a fully automated
manner. The sets of rules learnt for each task are shown in the Appendix D.

6.2.5 Minimum Required Number of Training Examples

The second experiment measured the improvement of learner’s performance with the higher
number of training examples in attempt to estimate the minimum number of data points
necessary to learn the underlying concept. Training was performed using the method out-
lined in Section 6.2.3. The accuracies achieved on the test set are presented in Table 6.62

and the mean accuracies achieved on the validation set, together with the corresponding
standard deviation, are shown in Table 6.7.

Task
Ex. 1 6 8 9 12 15 18

5 64.8 90.7 92.4 74.6 100.0 100.0 81.7
10 100.0 90.7 92.4 81.8 100.0 100.0 87.9
15 100.0 92.0 100.0 90.6 100.0 100.0 91.2
20 100.0 95.8 100.0 94.6 100.0 100.0 88.2
25 100.0 98.9 100.0 97.0 100.0 100.0 92.4

Table 6.6: Accuracy values registered on the test set, obtained for a subset of The (20)
QA bAbi Tasks Dataset tasks with a different number of examples used for training. The
number of training examples was increased from 5 to 25 in steps of 5

Results in Table 6.6 show that 10 training examples are sufficient to achieve 80.0% or higher
accuracy on the test set and 15 examples are sufficient to achieve over 90.0% accuracy.

Task
Ex. 1 6 8 9 12 15 18

5 55.4± 14.1 94.0± 3.0 81.5± 26.0 65.4± 6.2 71.8± 12.7 100.0± 0.0 74.5± 8.3
10 80.5± 16.0 90.9± 7.4 76.5± 22.1 68.3± 7.7 85.4± 11.1 100.0± 0.0 80.8± 9.8
15 88.5± 18.0 90.8± 6.9 89.0± 10.5 78.2± 11.3 94.7± 11.9 100.0± 0.0 90.5± 4.5
20 94.4± 7.3 91.7± 6.0 91.3± 12.3 81.8± 6.4 100.0± 0.0 100.0± 0.0 76.8± 15.0
25 97.1± 6.2 94.8± 4.4 96.5± 5.1 90.0± 5.0 100.0± 0.0 100.0± 0.0 78.9± 29.4

Table 6.7: Mean accuracy values and the corresponding standard deviations registered on
the validation set when training on The (20) QA bAbi Tasks Dataset, according to the
method described in the Section 6.2.3, using different number of training examples. The
number of training examples was increased from 5 to 25 in steps of 5

Table 6.7 shows that the mean accuracy values for all tasks apart from task 18, in general,
increase monotonically with the number of training examples, which is the expected be-
haviour. The difference for task 18 can be explained by the fact that in order to solve the
task completely, recursive concepts have to be learnt, which are currently not supported
by our system (Section 4.2.1). Therefore, learning with noise feature of ILASP is used and
the examples which require recursive rules to be covered are implicitly treated as “noisy”.

2The number of training examples is specified in the Ex. column.

66 Chapter 6. Evaluation

Consequently, when the noisy examples are present in a sample, the runtime increases ex-
ponentially with the size of the sample (Section 6.2.6) which in case of larger samples (20
or 25 examples) might lead to a timeout of the the learning task. In such situation, no
hypothesis is learnt and the accuracy achieved on the validation set is equal to the one
obtained by answering no to all questions (in task 18 only polar questions are used), which
causes the the decrease of the mean accuracy and increase of the standard deviation.

Let us also notice that in case of tasks 6 and 8, the mean accuracy obtained when 5 examples
are used is greater than in case of some larger sample sizes. This is caused by the fact that,
in these two cases, using few examples causes overly general hypotheses to be learnt which
perform relatively well (over 90% accuracy) on the validation set. However, when more
examples are provided, the learnt hypotheses are more specific and, in cases when the
training examples are not representative of the entire dataset, the learnt hypotheses do not
generalise well to the unseen data.

Regarding the main question behind the current experiment, the minimum number of train-
ing examples required to learn a concept is task specific and reflects the complexity of the
underlying hypothesis. However, 15 examples allow for all tasks to achieve over 90% accu-
racy on the test set and for all but one task this number is sufficient to achieve approximately
90% accuracy on the validation set. Moreover, the standard deviation of accuracy values,
as reported on the validation set, is relatively large for 15 examples. This indicates that
accuracies higher than the reported mean can be achieved if the examples are well-chosen,
which is confirmed by the results in Table 6.6.

6.2.6 Average Learning Times

In this experiment, average end-to-end learning times recorded during training on the subset
of The (20) QA bAbi Tasks Dataset were measured. The learning times were gathered
alongside the accuracies presented in Table 6.6 and Table 6.7.

Task
Ex. 1 6 8 9 12 15 18

5 3.125 2.074 3.353 2.431 4.435 3.495 9.871
10 4.999 4.428 12.952 35.947 5.154 7.178 19.226
15 6.367 6.131 40.006 48.043 6.960 7.555 75.259
20 7.190 8.018 82.366 184.046 8.967 9.941 341.197
25 9.829 15.508 107.857 229.595 11.048 12.056 237.296

Table 6.8: Average end-to-end learning times (in seconds) for the given number of examples,
corresponding to the results form Table 6.6. The number of training examples was increased
from 5 to 25 in steps of 5 and learning times were averaged over 10 runs.

Regarding the average learning times presented in Table 6.8, in case of tasks in which no
noise is present (which is the case for all tasks apart from 18), they increase exponentially
with the number of training examples until the upper limit on the accuracy is reached, which
corresponds to the underlying concept being learnt fully. From that point the increase in the
learning time is linear. In case of task 18 the correct hypothesis could not be expressed and
hence the learning with noise feature of ILASP is used. In this case, the average learning

6.2. Learning Evaluation 67

time for each sample size depends strongly on the percentage of samples that contain noisy
examples, which are distributed randomly across the dataset.

6.2.7 Questions Answering on The (20) QA bAbi Tasks Dataset Using
Background Knowledge

As described in section 6.2.4, seven tasks could be solved by relying on the rules derived
by the learning algorithm. However, there are three tasks, namely 2, 5 and 16 (Table
6.3), for which learning does not succeed because of: lack of support for predicate inven-
tion, counter-intuitive expected answers and excessively long correct hypothesis respectively.
Nevertheless, the tasks could to some extent be solved by relying on additional background
knowledge rules (Appendix B). The results of running the tasks can be seen in Table 6.9.

Task Accuracy

2 100.0
5 73.8
16 93.6

Table 6.9: Question answering evaluation using manually added background knowledge.

Using a human-readable representation allows for adding extra set of rules necessary to, at
least partially, solve the tasks. These tree tasks point to a broader problem of creating and
managing knowledge bases to aid the task of question answering, which is a separate topic
that could be explored further in context of our system as a part of the future work.

6.2.8 Comparison to Other Approaches

To the best of our knowledge, the approach presented in [44] is the only other system relying
on symbolic machine learning that was evaluated on The (20) QA bAbi Tasks Dataset. It
achieves 100% accuracy on all tasks apart from task 16, on which it scores 93.6%. How-
ever, their approach to generation of ASP representation is not general-purpose and the
system requires manual specification of mode declarations and task-dependent background
knowledge. Therefore, the system is excluded from the further comparison.

Among statistical approaches, Recurrent Entity Network (EntNet) introduced in [22] fully
solves all tasks and has mean error of 0.5%, however it requires the version of the dataset
with 10k training examples to achieve that result and its accuracy significantly decreases
when 1k examples are used. Another neural architecture, End-To-End Memory Network
(MemN2N), is a type of a memory network introduced in [61] and it performs better on a
smaller dataset (containing 1k examples) than Recurrent Entity Network.

As can be seen from Table 6.10, the approach developed in the project compares favourably
with other question answering systems evaluated on the same dataset. It consistently out-
performs Recurrent Entity Network trained on 1k examples and performs better than End-
To-End Memory Network on all tasks other than 9. A closer examination of task 9 revealed
that our system did not learn the optimal set of rules, which could be mitigated by supplying
more than 25 examples.

68 Chapter 6. Evaluation

Task

System 1 6 8 9 12 15 18

Sukhbaatar et al. (MemN2N) 99.9 98.0 93.9 98.5 100.0 98.2 90.8

Henaff et al. (EntNet) 99.3 70.0 80.8 68.5 99.2 42.2 91.2

Report (CCG + ILASP) 100.0 98.9 100.0 97.0 100.0 100.0 92.4

Table 6.10: Accuracies achieved on the selected tasks from The (20) QA bAbi Tasks Dataset
by different question answering systems. MemN2N and EntNet were trained using 1k
examples and out system was trained using 25 examples.

A couple of important points should be made regarding the comparison. Firstly, all other
systems listed in Table 6.10 can achieve over 90.0% accuracy on the remaining 13 tasks from
the dataset, which our system currently cannot do. Moreover, MemN2N and EntNet were
also evaluated on other real life text comprehension datasets and, as stated in [22], “were
able to obtain decent performance”, which is currently beyond the reach of our system.

However, the unique feature of our approach is that it can achieve relatively high accuracy
(80% or more) using only 10 examples which, to the best of our knowledge, neural network
approaches are not capable of. This characteristic might prove valuable in domains where
training examples are scarce.

6.2.9 Hypothesis Space Reduction

In this experiment the impact of argument and predicate typing performed when generating
mode declarations on the size of the hypothesis space is measured. As to the best of our
knowledge there is no work in automatic derivation of mode declarations against which our
approach could be compared, a baseline approach was devised to perform the evaluation.

In the baseline approach, no predicate or argument typing is performed. Lack of predicate
typing means that mode declarations are derived based only on the predicate names. As
no argument typing is performed, all predicate arguments which do not occur at the lemma
position are assigned the same variable type in the mode declarations. lemma arguments
are assigned different types based on the names of predicates in which they occur.

Example 6.2 (Baseline mode declarations). Let us compare the mode declarations gen-
erated by the algorithm used in the project (Listing 6.3) against the baseline approach
(Listing 6.4) on Task 1 from The (20) QA bAbi Tasks Dataset. It should be noted that for
each set of mode declarations, the corresponding hypothesis space contains the solution to
the learning task.

Listing 6.3 Mode declarations generated using predicate and argument typing.

1: #modeh(binaryInitEventH(var(v2),const(c3),var(v1),var(v0))).

2: #modeh(abBinaryEventH(var(v2),const(c3),var(v1),var(v0))).

3: #modeh(binaryTermEventH(var(v2),const(c3),var(v1),var(v0))).

4: #modeh(binaryEventH(var(v2),const(c3),var(v1),var(v0))).

5:
6: #modeb(1, binaryEvent(var(v2),const(c4),var(v1),var(v0))).

7: #modeb(1, unaryModif(const(c5),var(v2))).

8: #modeb(1, unaryNominal(var(v0),var(v6))).

9: #modeb(1, unaryNominal(var(v1),var(v7))).

10:

6.2. Learning Evaluation 69

11: #constant(c3 ,be).

12: #constant(c4 ,move).

13: #constant(c4 ,journey).

14: #constant(c4 ,go).

15: #constant(c4 ,travel).

16: #constant(c5 ,back).

17:
18: #maxv (5).

Listing 6.4 Baseline mode declarations.

1: #modeh(binaryInitEventH(var(v0),const(c3),var(v0),var(v0))).

2: #modeh(abBinaryEventH(var(v0),const(c3),var(v0),var(v0))).

3: #modeh(binaryTermEventH(var(v0),const(c3),var(v0),var(v0))).

4: #modeh(binaryEventH(var(v0),const(c3),var(v0),var(v0))).

5:
6: #modeb(1, binaryEvent(var(v0),const(c4),var(v0),var(v0))).

7: #modeb(1, unaryModif(const(c5),var(v0))).

8: #modeb(1, unaryNominal(var(v0),var(v1))).

9:
10: #constant(c3 ,be).

11: #constant(c4 ,move).

12: #constant(c4 ,journey).

13: #constant(c4 ,go).

14: #constant(c4 ,travel).

15: #constant(c5 ,back).

16:
17: #maxv (5).

In order to perform the evaluation, for each of the seven problems from The (20) QA bAbi
Tasks Dataset (problems: 1, 6, 8, 9, 12, 15, 18), the successful learning task is modified to
conform by the baseline approach (the mode declarations used in the tasks were modified
not to rely on type information). The size of the hypothesis space generated by the original
task is compared to the one generated by the baseline method. In both cases, the effect of
adding the fixed bias constraints, as described in Section 4.4, is inspected. The results of
the evaluation can be seen in Table 6.11.

Task Baseline Baseline + Bias Types Types + Bias Ratio

1 50345 16942 535 248 203.0
6 29627 9544 2837 1099 26.6
8 183677 35145 4273 1523 120.6
9 3854469 797310 26559 7025 548.7
12 68110 19914 626 248 274.6
15 8364 3696 1995 995 8.4
18 443985 335898 6228 3210 138.3

Table 6.11: Comparison, in terms of the size of the corresponding hypothesis space, of the
algorithm generating mode declarations used in the project to the baseline that performs
predicate typing based exclusively on the predicate name. For both methods, versions
with and without the fixed mode bias are evaluated. The ratio is between the sizes of the
hypotheses spaces generated using the baseline and the algorithm applied in the project
when the mode bias included (i.e. between the second and the fifth column in the table).

There are three points that should be made about the results presented in Table 6.11. First,
it is necessary to perform some sort of predicate and argument type inference when generat-
ing mode declarations as the sizes of hypotheses spaces generated by the baseline approach

70 Chapter 6. Evaluation

are prohibitively large. Secondly, the benefit of including type information depends greatly
on the learning task, however, on average, taking into account type information reduces the
size of hypothesis space dramatically. Finally, even though the same fixed mode bias is used
for all tasks, it contributes a significant reduction (approximately 2 − 5 times) in the size
of the hypothesis space. We expect that further benefits could be achieved if task-specific
bias constraints were generated automatically, which is described in detail in Section 8.1.2.

6.2.10 Discussion

During the course of the project two major bottlenecks to wider applicability of the learning
algorithm were identified. First one is the accuracy of the CCG parser and the second is the
size of the hypothesis space corresponding to the automatically generated learning tasks.

Incorrect dependency structure and CCG category annotations generated by the CCG
parser are a major obstacle to solving more task in The (20) QA bAbi Tasks Dataset.
These issues are relevant to tasks 3, 4, 11, 13, 14, 17 and 19. However, development of syn-
tactic parsers is an active research area that recently saw much progress due to adaptation
of deep learning techniques, LSTM networks in particular [36]. Therefore, the accuracy of
CCG parser can be expected to improve in the future.

Excessively large hypothesis spaces are an issue that prevented derivation of the optimal
hypothesis for task 16. In this project a lot of thought was devoted to the problem of
automatically generating compact hypothesis spaces, yet expressive enough to contain the
optimal solution. However, the developed approach could be further refined by automat-
ically generating task-specific mode bias constraints that would account for co-occurrence
patterns of predicates constituting example contexts.

Regarding the other unsolved tasks, passing them would require support for additional
features in translation algorithm, learning algorithm and ILASP. Task 2 requires object
invention, task 7 requires adding support in ILASP for counting aggregates in the rule body,
task 10 requires inclusion of choice rules in the automatically generated ASP representation
in order to correctly support semantics of logical alternative. Task 20 requires correct
handling of future tense in the semantic representation. All these issues could be addressed
given a longer project time frame.

Chapter 7

Related Work

In this chapter, other projects related to translation from English to formal representations
and answering questions on The (20) QA bAbi Tasks Dataset are described.

7.1 Translating from English to Formal Representations

7.1.1 λ-ASP Calculus

λ-ASP calculus was introduced by Baral et al. in [5]. The formalism conceptually follows
Montague grammar as it establishes a mapping between syntax and semantics, represented
in ASP, of natural language.

λ-ASP calculus relies on a CCG derivation to represent the syntactic structure of a sentence.
As presented in [5], the lexicon is specified as a mapping from word - CCG category pairs
to λ-ASP expressions. The formalism uses ASP syntax and lambda calculus as “semantic
glue” to combine the final semantic representation from constituents via function application
(β - reduction). Table 7.1 provides λ-ASP expressions for example words and their CCG
categories, as presented in [5].

Word CCG Category λ-ASP expression

fly S \NP λx.fly(x)
penguin N λx.penguin(x)
fictional N \N λx.λy.fictional(y) ∧ x@y

most N/N λx.λy.(y@X ← x@X ∧ not¬y@X)
do not (S/(S \NP)) \NP λx.λy.¬y@X ← x@X

Table 7.1: λ-ASP expressions for example words and their CCG categories [5].

Example 7.1 (Derivation of ASP representation of a sentence Most fictional penguins fly).
Given the mapping from words and CCG categories to λ-ASP expressions (Table 7.1), ASP
representation of a sentence Most fictional penguins fly. can be derived as follows:

71

72 Chapter 7. Related Work

Most
λx.λy.(y@X ← x@X ∧ not¬y@X)

fictional

λx.λy.fictional(y) ∧ x@y

penguins

λx.penguin(x)

NP : λy.fictional(y) ∧ penguin(y)
>

NP : λy.(y@X ← fictional(X) ∧ penguin(X) ∧ not¬y@X)
>

fly

λx.fly(x)

S : fly(X)← fictional(X) ∧ penguin(X) ∧ not¬fly(X)
<

In the above derivation, CCG categories for the lexical items are omitted. Every derivation
step is annotated with the applied CCG combinatory rule (> stands for forward and < for
backward function application).

The version of λ-ASP calculus presented in [5] was described as “a first step towards au-
tomatically translating natural language statements to theories in ASP” and as such had
significant limitations. Firstly, as authors indicate in [5], the formalism was confined to
a set of sentence analysed in their publication. Secondly, the presented version of λ-ASP
calculus did not support more complex constructs such as adverbs or conjunction. Both of
those problems were to some extent addressed in the future work [7] [6] by using statistical
machine learning approach to learning CCG lexicon from annotated examples, similarly as
it was done in [70].

However, to the best of our knowledge, λ-ASP expressions as introduced in [5] were only used
for generating domain-specific semantic representations [6] and were never evaluated on non-
synthetic examples. Moreover, no theoretical underpinnings for solving the more complex
translation problems mentioned in [5] without access to annotated data were provided and
the annotated corpus mentioned in [6] was not released.

Consequently, the semantics of λ-ASP expressions used in this project was developed mostly
independently from the work published by Baral et al. Moreover, version of λ-ASP calculus
outlined in this report can handle issues listed as future work in [5], as well as even more
advanced grammatical and linguistic constructions such as, among others, relativisation,
control and raising.

7.1.2 Boxer

Boxer is a wide-coverge tool for generating semantic representations from text, developed
by Bos et al. [10], [8]. The system relies on CCG derivation structure produced by the
C&C parser [15] to generate a semantic representation known as Discourse Representation
Structures (DRSs) using the idea of λ-DRS calculus. DRSs consist of a set of discourse
referents and a set of constraints on their interpretations and they can deal with a number
of contextually sensitive phenomena, such as ellipsis and presupposition. DRSs can also be
translated to ordinary first-order logic formulas.

Example 7.2 (Discourse Representation Structure). Sentence Jack ordered and paid for
the dinner has the following corresponding DRS:1

1DRS is presented in the format used by the Boxer tool.

7.1. Translating from English to Formal Representations 73

| e1,e2,x1,x2 |

|-----------------|

| n_dinner(x2) |

| ne_per_jack(x1) |

| for(e2,x2) |

| Actor(e2,x1) |

| v_pay(e2) |

| Theme(e1,x2) |

| Actor(e1,x1) |

| v_order(e1) |

|_________________|

In order to derive the semantic representations, 245 most frequent CCG categories produced
by C&C parser [15] were annotated with the corresponding λ-DRS expressions, following
Montague-style semantics, and the combinatory rules of CCG grammar were reformulated
in terms of the target semantic representation. Then, to derive semantic representation of a
given sentence, semantic representations were assigned to each lexical item and β-reduction
was applied to constituents according to the structure of the CCG derivation in a bottom-up
fashion.

The system, in combination with a theorem prover, was evaluated on a task of recognising
textual entailment (RTE) [9] which requires an agent to find out whether some text T entails
a hypothesis H. The semantic representation generated by the system was enriched with
three types of background knowledge: generic knowledge added manually, lexical knowledge
extracted from WordNet, and geographical knowledge automatically extracted from CIA
factbook. However, relying on theorem prover alone was insufficient to perform well on the
RTE task, the system managed to find proofs for only 5.8% of examples from the test set
and its precision was 76.7%, which overall allowed it to achieve 52.0% accuracy against a
50.0% most frequent class baseline 2. Relying on theorem proving was found to overgenerate
the FALSE class - it was often unable to recognise correct entailment, which was explained
by a difficulty to automatically acquire relevant background knowledge [9].

The approach to translating English to a formal representation used in Boxer is similar to
the one adopted in this project. Both systems rely on CCG parse tree of a sentence and
λ-X intermediate representation, where X is the name of the target formal representation,
to derive the final semantic representation compositionally. Also, in both cases the lexicon
is an algorithm rather than a predefined mapping, which arguably contributes to higher
coverage of natural language text by the Boxer system than it is the case for approaches
relying on annotated training data to learn the lexicon, as in [70]. Moreover, both systems
rely on other resources, such as part-of-speech tags, in addition to the CCG category in
order to derive lexical semantics of a word.

The main difference between the two systems is the target formal representation used. In
case of our system it is ASP, which enables it to learn new hypotheses from text. To
the best of our knowledge, there is no experimental evidence of suitability of the semantic
representation produced by Boxer for logic-based learning.

2In the test set, 50.0% of example sentence pairs (T,H) were annotated as TRUE (T entails H) and
50.0% as FALSE.

74 Chapter 7. Related Work

7.2 Lexicon Creation

Different approaches to semantic parsing are distinguished, among others, by the method
used for lexicon creation. Lexicons in Boxer (section 7.1.2) and in our project rely on hand-
crafted set of general translation rules. There are however alternative approaches that learn
the lexicon structure from annotated data and are the subject of this section.

7.2.1 Cornell SPF

Cornell Semantic Parsing Framework [1] (previously known as University of Washington
Semantic Parsing Framework) removes the dependency on syntactic parser and the need
for manual semantic annotations of CCG categories by learning the parse structre (CCG
categories of words) and lambda calculus encoding of semantics from a dataset of sentences
paired with semantic representations. The framework relies on the approach outlined in
[70], which constitutes a basis for many future developments in supervised approaches to
semantic parsing.

The approach presented in [70] relies on probabilistic extension of CCGs, namely PCCGs,
where every pair of syntactic derivation (CCG parse tree) T and semantic representation
(logic formula) L of a given sentence S is assigned a probability:

P (L, T |S, θ̄) =
ef̄(L,T,S)·θ̄∑

(L,T) ef̄(L,T,S)·θ̄
(7.1)

where θ̄ ∈ R is the parametrisation of the model and f̄ is a feature function. Then, parsing
under PCCG can be reformulated as a problem of finding the most probable logical form
L for a sentence S:

arg max
L

P (L|S; θ̄) = arg max
L

∑
T

P (L, T |S; θ̄) (7.2)

where the sum is over all syntactic derivations (parse trees) T that yield a semantic repre-
sentation L. Given such problem formulation, the task is to learn a CCG lexicon Λ together
with parameter vector θ̄ from a set of n training examples {(Si, Li) : i = 1 . . . n} where each
training example is a sentence Si paired with a semantic representation Li. Let us notice
that the syntactic derivation T is treated as a hidden variable in the model.

Therefore, the problem can be decomposed into a structure learning problem - learning
the lexicon, and parameter estimation problem - estimating θ̄. The former is achieved by
the GENLEX(Si, Li) procedure [70], which given a logical form Li relies on a set of hand-
crafted rules to derive a set of lexicon entries (CCG category paired with lambda calculus
encoding of semantics) for constituents of sentence Si corresponding to the predicates of Li.
Parameter estimation is performed using stochastic gradient descent.

The approach was evaluated on translating queries from Geo880 (set of 880 queries to a
database of U.S. geography) and Jobs640 (set of 640 queries about job listing) both of
which were originally specified in Prolog style semantics and had to be manually translated
to lambda calculus expressions [70]. The described approach at its time achieved state-of-
the-art precision and nearly state-of-the-art recall.

7.3. Question Answering on The (20) QA bAbi Tasks Dataset 75

Using a supervised semantic parser, such as Cornell SPF, should allow solving a very specific
task, such as parsing English sentences to commands in a robot control language descirbing
robot’s movement [42], with high accuracy. However, in order to extend the approach
to another domain, additional annotated training data would be required to retrain the
parser. Lack of a suitable dataset for learning the lexicon coupled with an intention to
explore ASP-to-English translation in a broader context were the main reasons why the
supervised approaches were not adapted in our project.

7.3 Question Answering on The (20) QA bAbi Tasks Dataset

Learning common sense knowledge rules from text was the one of the two main objectives
of the project. In this section, other systems evaluated on The (20) QA bAbi Tasks Dataset
are described.

7.3.1 Simple Knowledge Machine

In [44] a logic-based approach to question answering was proposed, which relies on Abstract
Meaning Representation [4], Event Calculus and XHAIL learning algorithm to acquire com-
mon sense knowledge from narratives present in The (20) QA bAbi Tasks Dataset. When
evaluated on the aforementioned dataset, the system achieved 100% accuracy on 19 out of
20 tasks.

The architecture of the system could be divided into two major components. The first one
is a semantic parser performing translation from English to ASP. The parser relies on the
output of JAMR [19], which itself is a semantic parser producing Abstract Meaning Repre-
sentation of a sentence (roughly speaking, a graph indicating dependencies between words
and annotated with their syntactic roles). Abstract Meaning Representation is converted
to ASP program using a rule based approach.

In the second part, XHAIL is used to acquire common sense knowledge from the text in
the form of Event Calculus theories. As most of the texts in the The (20) QA bAbi Tasks
Dataset are narratives with an implicit timeline induced by the order of sentences, and size of
vocabulary used in the dataset is small, relying on Event Calculus yields satisfactory results.
In [44] it was even successfully applied for a simple case of coreference resolution. However,
let us point out that the system presented in [44] required significant user supervision to
perform the learning, both in a form of (sometimes extensive) task-specific background
knowledge and manually specified mode declarations.

One similarity between our approach and the one proposed in [44] is the conceptual break-
down of the system into independent parsing and learning parts. Also, both systems rely
on ASP representations to perform learning, however details of the representations differ
significantly as we strived to make our representation applicable in a more general learning
setting where task-specific background knowledge is not required and constraints on the
hypothesis space are inferred automatically. Moreover, as our translation algorithm does
not depend on a supervised semantic parser but a general-purpose syntactic parser, it can
parse sentences from other domains without the need for being retrained with additional an-
notated examples. However, the increased generality of our approach to translation comes

76 Chapter 7. Related Work

at a price of lower robustness on The (20) QA bAbi Tasks Dataset due to syntactic parser’s
errors. It is also worth pointing out that the learning algorithm used in our project - ILASP
supports both brave and cautious induction, as opposed to XHAIL that supports brave in-
duction only, which allows ILASP to learn Answer Set Programs containing normal rules,
choice rules and constraints, the last two of which XHAIL cannot learn [31].

7.3.2 End-To-End Memory Network (MemN2N)

Memory Network was one of the first neural architectures evaluated on The (20) QA bAbi
Tasks Dataset. The version of the model proposed in [61], called End-To-End Memory
Network (MemN2N), achieves over 90% average accuracy across all tasks (when trained with
10k examples) and its modifications were successfully applied to non-synthetic datasets [24].
Current state-of-the-art models for The (20) QA bAbi Tasks Dataset [22] rely on theoretical
underpinnings of the MemN2N model.

MemN2N model, similarly to other neural network based approaches, uses the idea of word
embedding and represents words and sentences as d - dimensional real valued vectors. For
an ordered set of inputs {x1, . . . , xn} and a query q whose words belong to a set V , referred
to as vocabulary, MemN2N computes a probability vector â ∈ R|V | whose maximum valued
entry corresponds to the answer a ∈ V to query q.

The parametrisation of the MemN2N model is given by four matrices Ix, Iq, O ∈ Rd×|V | and
R ∈ R|V |×d whose roles, according to [65], can be intuitively understood as follows:

Input Feature Maps Ix, Iq convert the inputs and the query to the internal representa-
tion used by the model, which are d-dimensional embeddings

Output Feature Map O produces a new output in the d - dimensional embedding space
given the query and the current state of the memory

Response R converts the output from the d - dimensional embedding space to a desired
response format

Both inputs {x1, . . . , xn} and query q are sequences of words and in [61] they correspond to
sentences and a question respectively. Word sequences can be represented in a d-dimensional
embedding space using a bag-of-words representation that is obtained by summing embed-
dings of words forming the sequence. More precisely, given a sequence of words s of length
l and embedding matrix A ∈ Rd×|V |, the corresponding embedding is given by:

∑l
i=1Asi

where si ∈ R|V | are embeddings of constituent words represented, for example, using one-hot
encoding.

On a high level, a single layer MemN2N model takes the following steps to generate answer a
given inputs {x1, . . . , xn} and query q:

• for each input xj , embedding mj ∈ Rd, referred to as memory, is generated using the
input feature map Ix. Similarly, embedding u of query q, referred to as internal state,
is computed using the feature map Iq

• for each memory mj , a match pj between mj and internal state u is computed using:

pi = softmax(uTmj) =
eu

Tmj∑
i euTmi

(7.3)

7.3. Question Answering on The (20) QA bAbi Tasks Dataset 77

where the summation is taken over all memories mi. Let us notice that p, as defined
in 7.3, is a probability vector

• for each input xi, an output embedding oi is computed using output feature map O

• response vector r is a sum of the output vectors oi weighted by matches pi, r =
∑

i oipi,
where summation is performed over all inputs

• prediction vector â of dimension V is computed using:

â = softmax(R(r + u))

where softmax function is applied to each entry of |V | - dimensional vector w =
W (o+ u), which gives a probability distribution over the input vocabulary.

• finally, answer a is given by:

a = arg maxv∈V â(v)

a is the word from the input vocabulary with the highest probability assigned by â

The parameters of MemN2N are jointly learned by minimising the cross - entropy loss
between prediction vector â and the true label ā. Training is performed using stochastic
gradient descent [61].

To improve the expressiveness of the MemN2N model, more layers can be added, which can
be achieved as follows (k denotes the layer number):

• for k > 1, the internal state uk is equal to the sum of the output and internal state of
the preceding layer, uk = uk−1 + ok−1

• each layer k has its own input and output feature maps Ikx and Ok

• output â of a network with K layers is given by â = softmax(W (oK + uK))

In order to limit the number of parameters of the network and hence facilitate training,
various weight-tying schemes can be applied, an overview of which is given in [61].

Let us notice that the approach to question answering implemented by MemN2N is a major
departure from the work undertaken in this project. Memory networks, as described in
[61], do not rely on any prior linguistic knowledge and produce the answers based solely
on the information they learn from annotated data. Moreover, let us notice that in the
case of MemN2N model composition of meaning is realised by simple vector addition, yet it
is sufficient to capture semantics of more complicated sentences occurring in, for example,
children’s books [24]. This approach to semantic composition is very different from using a
CCG parse tree and λ - calculus expressions as performed in our project, which points to
significant differences between logic-based and distributional approaches to representation
of meaning. Let us also point out that both in case of MemN2N and our approach, queries
require special treatment (in case of MemN2N they have a separate input feature map Iq
and in our approach a separate lexicon mode is used) which might indicate that representing
semantics of questions is a more universal problem.

Chapter 8

Conclusion

In this project we developed a logic-based approach to natural language understanding that
is capable of performing inference and learning to answer questions about text. Developing
the system required combining ideas from the fields of logic-based learning, knowledge
representation and computational linguistics. Achievements of the project are as follows:

• ASP representation of natural language text suitable both for inference and learning
using Inductive Logic Programming

• Extension of λ-ASP calculus, used to compositionally derive ASP representations of
text, to handle more complex linguistic constructions

• Implementation of a systematic English-to-ASP translation algorithm that is general
purpose and rooted in the theory of formal grammar

• Implementation of argument and predicate typing algorithm used for automatic deriva-
tion of mode declarations

• Implementation of a system capable of efficiently learning new background knowledge
rules from text by generating multiple learning tasks and running them in parallel

• Comparison of the system to the neural network-based approaches on The (20) QA
bAbi Tasks Dataset

8.1 Future Work

Given the breadth of the problem of machine comprehension of text, there are many pos-
sibilities for future development of the project. In what follows, we will focus on the ones
that could bring the most benefit in terms of variety of text that the system can handle
and learning capabilities.

8.1.1 Predicate and Object Invention

As stated in [18] “Predicate invention in ILP and hidden variable discovery in statistical
learning are really two faces of the same problem”. According to the paper, discovering a

78

8.1. Future Work 79

hidden (latent) structure in the data is a central problem in machine learning, without such
capability learning will always be shallow. Let us notice that in case of the representation
devised for our system, the problems of predicate and object invention could be handled in
exactly the same way, as the set of predicates used in the system is fixed. Consequently,
predicate invention in our case amounts to adding a fresh constant in the position of the
predicate lemma and object invention to adding a constant in the argument position.

Example 8.1 (Predicate Invention). Let us illustrate the process using an example narra-
tive and a question: Jack collected the ball. Jack is in the kitchen. Where is the ball?, in
which the first sentence comes with an implicit (latent) information that Jack has or carries
the ball after collecting it. In order to answer the question correctly, apart from the rules
about persistence of fluents be and carry, the system would require rules like:

binaryInitEvent(E, be,Obj, Loc) : −binaryEvent(E, be, Per, Loc), (8.1)

binaryEvent(E, carry, Per,Obj).

binaryInitEvent(E, carry, Per,Obj) : −binaryEvent(E, collect, Per,Obj) (8.2)

that intuitively mean If a person carries an object, then the object is in the same location
as the person and If a person collects an object, then the person starts carrying the object,
however the predicate carry is implicit in the data. Assuming that we have the following
set of modes:

modeh(binaryInitEvent(var(e), const(c1), var(p), var(o))). c1 ∈ {be}
modeh(binaryInitEvent(var(e), const(c2), var(p), var(l))). c2 ∈ {collect}
modeb(1, binaryEvent(var(e), const(c1), var(p), var(l))).

modeb(1, binaryEvent(var(e), const(c2), var(p), var(o))).

in order to be able to learn rules equivalent to 8.1 and 8.2 it is sufficient to add an arbitrary
fresh constant to the value sets of constant types c1 and c2, e.g. c1 ∈ {invented1, be}
c2 ∈ {invented1, collect}, which allows invented1 to function as carry. Later, when more
examples are given, some of which include a word carry, it might be possible to learn a
synonymy rules:

binaryEvent(E, carry, P,O) : −binaryEvent(E, invented1, P,O)

binaryEvent(E, invented1, P,O) : −binaryEvent(E, carry, P,O)

and hence identify that invented1 captures the concept of carrying. Once an invented
predicate is tied to a real predicate, the corresponding constant could be replaced with a
lemma, i.e. invented1 replaced with carry and the synonymy rules removed.

However, there are practical considerations regarding predicate invention. First is identifi-
cation of situations when predicate invention is necessary, which could be to some extent
addressed by triggering predicate invention whenever the learning task is unsatisfiable. How-
ever, unsatisfiability of a learning task can be caused by many factors, such as excessive
noise in the training data, in which case predicate invention will not help (or even worse,
might cause overfitting) but could significantly affect learning runtime. The second consid-
eration is the number of invented objects that should be added as, unless used sparingly,
predicate invention can cause a considerable growth of the size of the hypothesis space.

80 Chapter 8. Conclusion

8.1.2 Automatic Inference of Mode Bias

Currently, a fixed mode bias is added to every learning task and it captures the general
constraints on hypothesis space which are rooted in the specifics of the representation used
in the project. However, the current approach does not capture constraints specific to a
particular text, such as that certain words never form a phrase and hence should not be
allowed to co-occur in a hypothesis body.

In order to support contextual mode bias, the current approach to expressing mode bias
constraints could be used, however additional constraints should be added by analysing
the ASP representations generated from text. Currently, nominals and modifiers have
corresponding mode bias predicates nominalAllowed and modifAllowed (Section 4.4) which
specify very general conditions under which the predicate could be included in a body of
a rule in the hypothesis space. The constraints could be made more specific by allowing
predicates to occur in the hypothesis body only in the combinations that resemble the ones
found in the task context.

Example 8.2 (Inference of mode bias constraints). Let us consider a sentence Jack per-
formed well but he did not win. Its ASP representation consists of the following facts:

{unaryEvent(e0, perform, c1)., unaryNominal(c1, jack)., unaryModif(well, e0).,

unaryEvent(e1, win, c1)., unaryNominal(c1, he)., unaryModif(not, e1).}

form which we can infer the following conditions under which modifiers are allowed to occur
in the hypothesis body:

Listing 8.1 Context-dependent mode bias constraints.

1: # ’Fixed ’ mode bias constraint.

2: #bias(":-body(unaryModif(_,V)),not modif_allowed(V).").

3:
4: # Inferred mode bias rules.

5: #bias("modif_allowed(V) :- body(unaryEvent(V,perform ,_),

6: unaryModif(well ,V)).").

7: #bias("modif_allowed(V) :- body(unaryEvent(V,win ,_),

8: unaryModif(not ,V)).").

Being able to infer constraints like the ones presented in Listing 8.1 will be necessary in
order to keep the size of the hypothesis space manageable when learning from texts with
higher lexical variety.

8.1.3 Enhancing Lexical Knowledge

One frequently quoted disadvantage of symbolic approaches to representation of meaning
is their disregard for lexical semantics [17], they leave the meaning of individual words
unanalysed and instead are concerned with how meanings compose. Our representation
clearly illustrates this problem, for example words car and automobile have representa-
tions unaryNominal(n1, car) and unaryNominal(n2, automobile),1 which are uninforma-
tive with regards to similarity of meaning of the two words. In order to capture such

1The names of constants used in this case (n1, n2) are irrelevant.

8.1. Future Work 81

similarity the following rule could be added to the background knowledge:

unaryNominal(X,W2) : −sense of(W1, S), sense of(W2, S),

unaryNominal(X,W1).

Together with facts sense of(car, car) and sense of(automobile, car). Lexical databases
of English, such as WordNet [43], could be used to extract synonymy information, as well
as other relations such as antonymy or hypernymy and hence partially mitigate the inade-
quacies of the symbolic representations of lexical meaning.

References

[1] Yoav Artzi. “Cornell SPF: Cornell semantic parsing framework.” In: arXiv preprint
arXiv:1311.3011 (2013).

[2] Yoav Artzi, Nicholas FitzGerald, and Luke Zettlemoyer. Semantic Parsing with Com-
binatory Categorial Grammars. 2013. url: http://yoavartzi.com//pub/afz-

tutorial.acl.2013.pdf#page=55 (visited on 01/17/2017).

[3] Duangtida Athakravi et al. “Inductive Learning Using Constraint-Driven Bias.” In:
Revised Selected Papers of the 24th International Conference on Inductive Logic Pro-
gramming. Vol. 9046. ILP 2014. Nancy, France: Springer-Verlag New York, Inc., 2015,
pp. 16–32.

[4] Laura Banarescu et al. “Abstract Meaning Representation for Sembanking.” In: Pro-
ceedings of the 7th Linguistic Annotation Workshop and Interoperability with Dis-
course. Sofia, Bulgaria: Association for Computational Linguistics, 2013, pp. 178–
186.

[5] Chita Baral, Juraj Dzifcak, and Tran Cao Son. “Using Answer Set Programming and
Lambda Calculus to Characterize Natural Language Sentences with Normatives and
Exceptions.” In: Proceedings of the 23rd National Conference on Artificial Intelligence.
Vol. 2. AAAI ’08. Chicago, Illinois: AAAI Press, 2008, pp. 818–823.

[6] Chitta Baral and Juraj Dzifcak. “Solving puzzles described in english by automated
translation to answer set programming and learning how to do that translation.” In:
Proceedings of the Thirteenth International Conference on Principles of Knowledge
Representation and Reasoning. AAAI Press. 2012, pp. 573–577.

[7] Chitta Baral et al. “Using Inverse lambda and Generalization to Translate English to
Formal Languages.” In: Proceedings of the Ninth International Conference on Com-
putational Semantics. IWCS ’11. Oxford, United Kingdom: Association for Compu-
tational Linguistics, 2011, pp. 35–44.

[8] Johan Bos. “Wide-coverage Semantic Analysis with Boxer.” In: Proceedings of the
2008 Conference on Semantics in Text Processing. STEP ’08. Venice, Italy: Associa-
tion for Computational Linguistics, 2008, pp. 277–286.

[9] Johan Bos and Katja Markert. “Recognising Textual Entailment with Logical Infer-
ence.” In: Proceedings of the Conference on Human Language Technology and Empir-
ical Methods in Natural Language Processing. HLT ’05. Vancouver, British Columbia,
Canada: Association for Computational Linguistics, 2005, pp. 628–635.

83

http://yoavartzi.com//pub/afz-tutorial.acl.2013.pdf#page=55
http://yoavartzi.com//pub/afz-tutorial.acl.2013.pdf#page=55

84 References

[10] Johan Bos et al. “Wide-coverage Semantic Representations from a CCG Parser.”
In: Proceedings of the 20th International Conference on Computational Linguistics.
COLING ’04. Geneva, Switzerland: Association for Computational Linguistics, 2004.

[11] Catherine Bosley. Swiss Eye Scrapping Incentives in Revamped Company Tax Plan.
2017. url: https://www.bloomberg.com/news/articles/2017-06-01/swiss-
eye-scrapping-some-incentives-in-revamped-company-tax-plan (visited on
06/05/2017).

[12] Chris J.C. Burges. Towards the Machine Comprehension of Text: An Essay. Tech. rep.
Microsoft Research, 2013. url: https://www.microsoft.com/en-us/research/
publication/towards-the-machine-comprehension-of-text-an-essay/.

[13] Danqi Chen, Jason Bolton, and Christopher D Manning. “A thorough examination of
the cnn/daily mail reading comprehension task.” In: arXiv preprint arXiv:1606.02858
(2016).

[14] Stephen Clark. Practical Linguistically Motivated Parsing with Combinatory Cate-
gorial Grammar. Presentation in JHU Language Technology Summer School. 2009.
url: http://www.cl.cam.ac.uk/teaching/1213/L107/clark_lectures/clark_
tutorial.pdf.

[15] Stephen Clark and James R. Curran. “Wide-coverage Efficient Statistical Parsing with
CCG and Log-linear Models.” In: Comput. Linguist. 33.4 (Dec. 2007), pp. 493–552.

[16] Stephen Clark, Julia Hockenmaier, and Mark Steedman. “Building Deep Dependency
Structures with a Wide-coverage CCG Parser.” In: Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics. ACL ’02. Philadelphia, Penn-
sylvania: Association for Computational Linguistics, 2002, pp. 327–334.

[17] Stephen Clark and Stephen Pulman. “Combining Symbolic and Distributional Models
of Meaning.” In: AAAI Spring Symposium: Quantum Interaction. 2007, pp. 52–55.

[18] Thomas G Dietterich et al. “Structured machine learning: the next ten years.” In:
Machine Learning 73.1 (2008), p. 3.

[19] Jeffrey Flanigan et al. “A Discriminative Graph-Based Parser for the Abstract Mean-
ing Representation.” In: Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Baltimore, Maryland: Asso-
ciation for Computational Linguistics, 2014, pp. 1426–1436.

[20] Jean Gallier. Phrase-Structure Grammars and Context-Sensitive Grammars. Lecture
Notes: Theory of Computation (CIS 511), Computer and Information Science Depart-
ment, University of Pennsylvania. 2006. url: http://www.cis.upenn.edu/~jean/
gbooks/cis51104sl13pdf.pdf.

[21] Michael Gelfond and Vladimir Lifschitz. “The stable model semantics for logic pro-
gramming.” In: ICLP/SLP. Vol. 88. 1988, pp. 1070–1080.

[22] Mikael Henaff et al. “Tracking the World State with Recurrent Entity Networks.” In:
arXiv preprint arXiv:1612.03969 (2016).

[23] Karl Moritz Hermann et al. “Teaching Machines to Read and Comprehend.” In: arXiv
preprint arXiv:1506.03340 (2015).

https://www.bloomberg.com/news/articles/2017-06-01/swiss-eye-scrapping-some-incentives-in-revamped-company-tax-plan
https://www.bloomberg.com/news/articles/2017-06-01/swiss-eye-scrapping-some-incentives-in-revamped-company-tax-plan
https://www.microsoft.com/en-us/research/publication/towards-the-machine-comprehension-of-text-an-essay/
https://www.microsoft.com/en-us/research/publication/towards-the-machine-comprehension-of-text-an-essay/
http://www.cl.cam.ac.uk/teaching/1213/L107/clark_lectures/clark_tutorial.pdf
http://www.cl.cam.ac.uk/teaching/1213/L107/clark_lectures/clark_tutorial.pdf
http://www.cis.upenn.edu/~jean/gbooks/cis51104sl13pdf.pdf
http://www.cis.upenn.edu/~jean/gbooks/cis51104sl13pdf.pdf

References 85

[24] Felix Hill et al. “The Goldilocks Principle: Reading Children’s Books with Explicit
Memory Representations.” In: arXiv preprint arXiv:1511.02301 (2015).

[25] Julia Hockenmaier and Mark Steedman. “CCGbank: A Corpus of CCG Derivations
and Dependency Structures Extracted from the Penn Treebank.” In: Comput. Lin-
guist. 33.3 (Sept. 2007), pp. 355–396.

[26] Julia Hockenmaier and Mark Steedman. CCGbank: User’s Manual. Tech. rep. De-
partment of Computer and Information Science, University of Pennsylvania, 2005.

[27] Theo M. V. Janssen. “Montague Semantics.” In: The Stanford Encyclopedia of Phi-
losophy. Ed. by Edward N. Zalta. Spring 2016. Metaphysics Research Lab, Stanford
University, 2016.

[28] Antonis C Kakas, Robert A Kowalski, and Francesca Toni. “Abductive logic program-
ming.” In: Journal of logic and computation 2.6 (1992), pp. 719–770.

[29] Tom Kwiatkowski et al. “Scaling semantic parsers with on-the-fly ontology matching.”
In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing. EMNLP 13. Seattle, WA, US: Association for Computational Linguistics,
2013.

[30] Mark Law. Logic-based Learning in ASP. Lecture Notes: Logic-based Learning (C304),
Department of Computing, Imperial College London. 2016. url: https://www.doc.
ic.ac.uk/~ml1909/teaching/Unit6.pdf.

[31] Mark Law, Alessandra Russo, and Krysia Broda. “Inductive learning of answer set
programs.” In: European Workshop on Logics in Artificial Intelligence. Springer. 2014,
pp. 311–325.

[32] Mark Law, Alessandra Russo, and Krysia Broda. “Iterative learning of answer set
programs from context dependent examples.” In: arXiv preprint arXiv:1608.01946
(2016).

[33] Mark Law, Alessandra Russo, and Krysia Broda. “Learning Weak Constraints in
Answer Set Programming.” In: arXiv preprint arXiv:1507.06566 (2015).

[34] Heeyoung Lee et al. “Stanford’s Multi-pass Sieve Coreference Resolution System at
the CoNLL-2011 Shared Task.” In: Proceedings of the Fifteenth Conference on Compu-
tational Natural Language Learning: Shared Task. CONLL Shared Task ’11. Portland,
Oregon: Association for Computational Linguistics, 2011, pp. 28–34.

[35] Mike Lewis, Luheng He, and Luke Zettlemoyer. “Joint A* CCG Parsing and Seman-
tic Role Labelling.” In: Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing. Lisbon, Portugal: Association for Computational Lin-
guistics, 2015, pp. 1444–1454.

[36] Mike Lewis, Kenton Lee, and Luke Zettlemoyer. “LSTM CCG Parsing.” In: Proceed-
ings of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. NAACL ’03. San Diego,
California: Association for Computational Linguistics, 2016, pp. 221–231.

[37] Mike Lewis and Mark Steedman. “Combining Distributional and Logical Semantics.”
In: Transactions of the Association for Computational Linguistics 1 (2013), pp. 179–
192.

https://www.doc.ic.ac.uk/~ml1909/teaching/Unit6.pdf
https://www.doc.ic.ac.uk/~ml1909/teaching/Unit6.pdf

86 References

[38] Vladimir Lifschitz. “What is Answer Set Programming?” In: Proceedings of the 23rd
National Conference on Artificial Intelligence - Volume 3. AAAI ’08. Chicago, Illinois:
AAAI Press, 2008, pp. 1594–1597.

[39] Christopher D. Manning. “Part-of-Speech Tagging from 97% to 100%: Is It Time
for Some Linguistics?” In: Computational Linguistics and Intelligent Text Processing:
12th International Conference, CICLing 2011, Tokyo, Japan, February 20-26, 2011.
Proceedings, Part I. Ed. by Alexander F. Gelbukh. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 171–189.

[40] Christopher D. Manning et al. “The Stanford CoreNLP Natural Language Processing
Toolkit.” In: Association for Computational Linguistics (ACL) System Demonstra-
tions. 2014, pp. 55–60.

[41] Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. “Building a
Large Annotated Corpus of English: The Penn Treebank.” In: Comput. Linguist. 19.2
(June 1993), pp. 313–330.

[42] Cynthia Matuszek et al. “Learning to Parse Natural Language Commands to a Robot
Control System.” In: Experimental Robotics: The 13th International Symposium on
Experimental Robotics. Ed. by Jaydev P. Desai et al. Heidelberg: Springer Interna-
tional Publishing, 2013, pp. 403–415.

[43] George A. Miller. “WordNet: A Lexical Database for English.” In: Commun. ACM
38.11 (Nov. 1995), pp. 39–41.

[44] Arindam Mitra and Chitta Baral. “Addressing a Question Answering Challenge by
Combining Statistical Methods with Inductive Rule Learning and Reasoning.” In:
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. AAAI ’16.
Phoenix, Arizona: AAAI Press, 2016, pp. 2779–2785.

[45] Richard Montague. “The proper treatment of quantification in ordinary English.” In:
Approaches to natural language. Springer, 1973, pp. 221–242.

[46] Stephen Muggleton. “Inductive Logic Programming.” In: New Gen. Comput. 8.4 (Feb.
1991), pp. 295–318.

[47] Barbara Partee. “Introduction to Formal Semantics and Compositionality.” In: 2006.
url: http://people.umass.edu/partee/NZ_2006/NZ1.pdf.

[48] Barbara Partee. Lambda abstraction, NP semantics, and a Fragment of English. url:
http://people.umass.edu/partee/MGU_2005/MGU052.pdf.

[49] Barbara Partee. “Montague Grammar.” In: International Encyclopedia of the Social
& Behavioral Sciences. Ed. by Neil J. Smelser and Paul B. Baltes. Oxford: Perg-
amon, 2001, pp. 9995 –9999. url: http : / / people . umass . edu / partee / docs /

MontagueGrammarElsevier.PDF.

[50] Francis Jeffry Pelletier. “The Principle of Semantic Compositionality.” In: Topoi 13.1
(1994), pp. 11–24.

[51] Hoifung Poon and Pedro Domingos. “Unsupervised Semantic Parsing.” In: Proceedings
of the 2009 Conference on Empirical Methods in Natural Language Processing. Vol. 1.
EMNLP ’09. Singapore: Association for Computational Linguistics, 2009, pp. 1–10.

http://people.umass.edu/partee/NZ_2006/NZ1.pdf
http://people.umass.edu/partee/MGU_2005/MGU052.pdf
http://people.umass.edu/partee/docs/MontagueGrammarElsevier.PDF
http://people.umass.edu/partee/docs/MontagueGrammarElsevier.PDF

References 87

[52] Valentina Presutti, Francesco Draicchio, and Aldo Gangemi. “Knowledge Extraction
Based on Discourse Representation Theory and Linguistic Frames.” In: Proceedings
of the 18th International Conference on Knowledge Engineering and Knowledge Man-
agement. EKAW ’12. Galway City, Ireland: Springer-Verlag, 2012, pp. 114–129.

[53] Pranav Rajpurkar et al. “Squad: 100,000+ questions for machine comprehension of
text.” In: arXiv preprint arXiv:1606.05250 (2016).

[54] Alessandra Russo. Introducing Inductive Logic Programming. Lecture Notes: Logic-
based Learning (C304), Department of Computing, Imperial College London. 2016.

[55] Magnus Sahlgren. “The Distributional Hypothesis.” In: Italian Journal of Linguistics
20.1 (2008), pp. 33–53.

[56] Marek Sergot. Minimal models and fixpoint semantics for definite logic programs.
Lecture Notes: Knowledge Representation (C491), Department of Computing, Impe-
rial College London. 2005. url: https://www.doc.ic.ac.uk/~mjs/teaching/
KnowledgeRep491/Fixpoint_Definite_491-2x1.pdf.

[57] Jess Shankleman and Alex Morales. Climate Change. 2017. url: https://www.

bloomberg.com/quicktake/climate-change (visited on 06/05/2017).

[58] Mark Steedman. A very short introduction to CCG. 1996. url: http://www.inf.ed.
ac.uk/teaching/courses/ics/papers/ccgintro.pdf.

[59] Mark Steedman. The Syntactic Process. Cambridge, MA, USA: MIT Press, 2000.

[60] Mark Steedman et al. Combinatory Categorial Grammars for Robust Natural Lan-
guage Processing. 2012. url: http://homepages.inf.ed.ac.uk/steedman/papers/
ccg/nasslli12.pdf.

[61] Sainbayar Sukhbaatar et al. “End-To-End Memory Networks.” In: arXiv preprint
arXiv:1503.08895 (2015).

[62] Zoltán Gendler Szabó. “Compositionality.” In: The Stanford Encyclopedia of Phi-
losophy. Ed. by Edward N. Zalta. Fall 2013. Metaphysics Research Lab, Stanford
University, 2013.

[63] Lappoon R. Tang and Raymond J. Mooney. “Using Multiple Clause Constructors
in Inductive Logic Programming for Semantic Parsing.” In: Proceedings of the 12th
European Conference on Machine Learning. EMCL ’01. London, UK, UK: Springer-
Verlag, 2001, pp. 466–477.

[64] Alicia Beckford Wassink. Lecture 14 - Syntax. Lecture Notes: Introduction to Linguis-
tic Thought (LING 200), Department of Linguistics, University of Washington. 2007.
url: http://faculty.washington.edu/wassink/LING200/lect14_syntax2.pdf.

[65] Jason Weston, Sumit Chopra, and Antoine Bordes. “Memory networks.” In: arXiv
preprint arXiv:1410.3916 (2014).

[66] Jason Weston et al. “Towards ai-complete question answering: A set of prerequisite
toy tasks.” In: arXiv preprint arXiv:1502.05698 (2015).

[67] Terry Winograd. “Understanding natural language.” In: Cognitive psychology 3.1
(1972), pp. 1–191.

https://www.doc.ic.ac.uk/~mjs/teaching/KnowledgeRep491/Fixpoint_Definite_491-2x1.pdf
https://www.doc.ic.ac.uk/~mjs/teaching/KnowledgeRep491/Fixpoint_Definite_491-2x1.pdf
https://www.bloomberg.com/quicktake/climate-change
https://www.bloomberg.com/quicktake/climate-change
http://www.inf.ed.ac.uk/teaching/courses/ics/papers/ccgintro.pdf
http://www.inf.ed.ac.uk/teaching/courses/ics/papers/ccgintro.pdf
http://homepages.inf.ed.ac.uk/steedman/papers/ccg/nasslli12.pdf
http://homepages.inf.ed.ac.uk/steedman/papers/ccg/nasslli12.pdf
http://faculty.washington.edu/wassink/LING200/lect14_syntax2.pdf

88 References

[68] W. A. Woods. “Progress in Natural Language Understanding: An Application to
Lunar Geology.” In: Proceedings of the June 4-8, 1973, National Computer Conference
and Exposition. AFIPS ’73. New York, New York: ACM, 1973, pp. 441–450.

[69] John M. Zelle and Raymond J. Mooney. “Learning to Parse Database Queries Using
Inductive Logic Programming.” In: Proceedings of the Thirteenth National Conference
on Artificial Intelligence. Vol. 2. AAAI ’96. Portland, Oregon: AAAI Press, 1996,
pp. 1050–1055.

[70] Luke S. Zettlemoyer and Michael Collins. “Learning to Map Sentences to Logical
Form: Structured Classification with Probabilistic Categorial Grammars.” In: Pro-
ceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence. UAI
’05. Edinburgh, Scotland: AUAI Press, 2005, pp. 658–666.

Appendix A

Background Knowledge Used on
bAbi Dataset

Listing A.1 Background knowledge rules used on the bAbi dataset.

1: % Background knowledge

2: % Persistance rules motivated by event calculus.

3: % Unary.

4: semUnaryEvent(E,L,Y) :- unaryFluent(E,L,Y).

5: unaryFluent(E,L,Y) :- unaryInitEvent(E,L,Y).

6: unaryFluent(E,L,Y) :- unaryFluent(E1,L,Y), previous(E1,E),

7: not unaryTermEvent(E,L,Y).

8:
9: % Binary.

10: semBinaryEvent(E,L,Y,Z) :- binaryFluent(E,L,Y,Z).

11: binaryFluent(E,L,Y,Z) :- binaryInitEvent(E,L,Y,Z).

12: binaryFluent(E,L,Y,Z) :- binaryFluent(E1 ,L,Y,Z), previous(E1 ,E),

13: not binaryTermEvent(E,L,Y,Z).

14:
15: % Time points defined by the mata predicates.

16: previous(E1,E) :- metaData(T1,E1), metaData(T,E), T=T1+1.

17:
18: % Appendix - mapping to ’semantic ’ predicates.

19: semTernaryEvent(E,L,X,Y,Z) :- ternaryEvent(E,L,X,Y,Z),

20: not abTernaryEvent(E,L,X,Y,Z).

21: semBinaryEvent(E,L,Y,Z) :- binaryEvent(E,L,Y,Z),

22: not abBinaryEvent(E,L,Y,Z).

23: semUnaryEvent(E,L,Z) :- unaryEvent(E,L,Z),

24: not abUnaryEvent(E,L,Z).

25:
26: % Equality predicates.

27: unaryNominal(X,Y) :- eq(X,Z), unaryNominal(Z,Y).

28: eq(X,Y) :- eq(Y,X).

89

Appendix B

Additional Background Knowledge

Listing B.1 Additional background knowledge rules used for Task 2.

1: synset(go ,go).

2: synset(go ,journey).

3: synset(go ,move).

4: synset(go ,travel).

5:
6: binaryInitEvent(V0,be,V1,V2) :- binaryEvent(V0,L,V1,V2),

7: synset(go,L).

8: binaryTermEvent(V0,be,V1,V3) :- binaryEvent(V0,L,V1,V2),

9: synset(go,L), unaryNominal(V3 ,V4).

10:
11: synset(take ,take).

12: synset(take ,get).

13: synset(take ,grab).

14: synset(take ,pick_up).

15:
16: binaryInitEvent(V0,carry ,V1,V2) :- binaryEvent(V0,L,V1,V2),

17: synset(take ,L).

18:
19: synset(leave ,leave).

20: synset(leave ,discard).

21: synset(leave ,drop).

22: synset(leave ,put_down).

23:
24: binaryTermEvent(V0,carry ,V1,V2) :- binaryEvent(V0,L,V1,V2),

25: synset(leave ,L).

26:
27: binaryEvent(E,be,O,L) :- semBinaryEvent(E,carry ,P,O),

28: semBinaryEvent(E,be ,P,L).

29: binaryInitEvent(E,be,O,L) :- binaryTermEvent(E,carry ,P,O),

30: semBinaryEvent(E,be ,P,L).

31: binaryTermEvent(E,be,O,L) :- semBinaryEvent(E,carry ,P,O),

32: binaryTermEvent(E,be,P,L).

Listing B.2 Additional background knowledge rules used for Task 5.

1: synset(give ,give).

90

91

2: synset(give ,hand).

3: synset(give ,pass).

4:
5: ternaryEvent(E,V1 ,X,Y,Z) :- ternaryEvent(E,V2 ,X,Y,Z),

6: synset(S,V1), synset(S,V2).

7: binaryEvent(E,V,X,Y) :- ternaryEvent(E,V,X,Y,Z), synset(give ,V).

8: binaryEvent(E,receive ,R,C) :- ternaryEvent(E,V,G,C,R),

9: synset(give ,V).

Listing B.3 Additional background knowledge rules used for Task 16.

1: unaryModif(M,Y) :- binaryEvent(E,be,X,C), unaryNominal(C,T),

2: binaryEvent(E1,be,Y,C2), unaryNominal(C2,T),

3: unaryModif(M,X).

4:
5: unaryNominal(blue ,color).

6: unaryNominal(white ,color).

7: unaryNominal(yellow ,color).

8: unaryNominal(gray ,color).

Appendix C

Translation Evaluation

Listing C.1 ASP representation generated for a sentence: Jack knows a man whose brother
won a lottery.

1: binaryEvent(e0,know ,c1,n0).

2: unaryNominal(c1 ,jack).

3: unaryNominal(n0 ,man).

4: binaryModif(whose ,w0,n0).

5: unaryNominal(w0 ,brother).

6: binaryEvent(e1,win ,w0,n1).

7: unaryNominal(n1 ,lottery).

8: metaData(0,e0).

9: metaData(1,e1).

Listing C.2 ASP representation generated for a sentence: Jack ordered and paid for the
dinner.

1: binaryEvent(e0,order ,c1,c2).

2: binaryEvent(e1,pay ,c1,c2).

3: unaryNominal(c1 ,jack).

4: unaryNominal(c2 ,dinner).

5: metaData(1,e1).

6: metaData(0,e0).

Listing C.3 ASP representation generated for a sentence: Jack is a programmer and happy
with his job.

1: binaryEvent(e0,be,c1,f0).

2: binaryEvent(e0,be,c1,n0).

3: unaryNominal(c1 ,jack).

4: unaryNominal(n0 ,programmer).

5: unaryNominal(f0 ,job).

6: unaryModif(happy ,f0).

7: unaryPrep(he ,f0).

8: metaData(0,e0).

Listing C.4 ASP representation generated for a sentence: Jack bought an expensive car.

1: binaryEvent(e0,buy ,c1,n0).

92

93

2: unaryNominal(c1 ,jack).

3: unaryNominal(n0 ,car).

4: unaryModif(expensive ,n0).

5: metaData(0,e0).

Listing C.5 ASP representation generated for a sentence: Jack bought a car that is expen-
sive.

1: binaryEvent(e0,buy ,c1,n0).

2: unaryNominal(c1 ,jack).

3: unaryNominal(n0 ,car).

4: unaryModif(expensive ,n0).

5: metaData(0,e0).

Listing C.6 ASP representation generated for a sentence: An expensive car was bought by
Jack.

1: binaryEvent(e0,buy ,c1,n0).

2: unaryNominal(c1 ,jack).

3: unaryNominal(n0 ,car).

4: unaryModif(expensive ,n0).

5: metaData(0,e0).

Listing C.7 ASP representation generated for a sentence: Jack is very stubborn.

1: unaryNominal(c1 ,jack).

2: unaryModif(m0,stubborn ,c1).

3: unaryModif(very ,m0).

Listing C.8 ASP representation generated for a sentence: Jack insisted on us staying
longer.

1: binaryEvent(e0,insist ,c1,i0).

2: unaryModif(longer ,e0).

3: unaryNominal(c1 ,jack).

4: binaryPrep(i0,on,c2,e1).

5: unaryEvent(e1,stay ,c2).

6: unaryNominal(c2 ,we).

7: metaData(0,e0).

8: metaData(1,e1).

Listing C.9 ASP representation generated for a sentence: Jack persuaded Jim to decide in
favour of the new agreement.

1: ternaryEvent(e0 ,persuade ,c1 ,c2 ,e1).

2: unaryNominal(c1 ,jack).

3: unaryNominal(c2 ,jim).

4: binaryEvent(e1,decide ,c2,c4).

5: unaryNominal(c4 ,agreement).

6: unaryNominal(c4 ,favor).

7: unaryModif(new ,c4).

8: metaData(0,e0).

9: metaData(1,e1).

94 Appendix C. Translation Evaluation

Listing C.10 ASP representation generated for a sentence: Does Jack enjoy playing foot-
ball?

1: metaData(0,e0).

2: metaData(1,e1).

3: q:-semBinaryEvent(e0,enjoy ,c1,e1),semBinaryEvent(e1,play ,c1,X0),

4: unaryNominal(X0 ,football),unaryNominal(c1 ,jack).

5: answer(yes):-q.

6: answer(no):-not q.

Listing C.11 ASP representation generated for a sentence: Earl arrived immediately before
the person with the Rooster.

1: binaryEvent(e0,arrive ,c1,c2).

2: unaryModif(immediately ,e0).

3: unaryNominal(c1 ,earl).

4: unaryNominal(c2 ,person).

5: binaryPrep(with ,c3,c2).

6: unaryNominal(c3 ,rooster).

7: metaData(0,e0).

Listing C.12 ASP representation generated for a sentence: Jack did not get a haircut at 1.

1: binaryEvent(e0,get ,i0,n0).

2: unaryModif(escnot ,e0).

3: binaryPrep(i0,at ,1,c1).

4: unaryNominal(n0 ,haircut).

5: unaryNominal(c1 ,jack).

6: metaData(0,e0).

Listing C.13 ASP representation generated for a sentence: Pete talked about government.

1: binaryEvent(e0,talk ,c1,f0).

2: unaryNominal(c1 ,pete).

3: unaryNominal(f0 ,government).

4: metaData(0,e0).

Listing C.14 ASP representation generated for a sentence: The candidate surnamed War-
ing is more popular than the PanGlobal.

1: binaryEvent(e0,surname ,c2,c1).

2: unaryNominal(c2 ,candidate).

3: unaryNominal(c1 ,waring).

4: ternaryModif(than ,c1 ,m0 ,c3).

5: unaryModif(m0,popular ,c1).

6: unaryModif(more ,m0).

7: unaryNominal(c3 ,panglobal).

8: metaData(0,e0).

Listing C.15 ASP representation generated for a sentence: Miss Hanson is withdrawing
more than the customer whose number is 3989.

1: binaryEvent(e0,withdraw ,c2,more).

2: unaryModif(miss ,c2).

95

3: unaryNominal(c2 ,hanson).

4: binaryPrep(i0,than ,c4,f0).

5: unaryModif(more ,i0).

6: unaryNominal(c4 ,customer).

7: binaryModif(whose ,w0,more).

8: unaryNominal(w0 ,number).

9: binaryEvent(e1,be,w0 ,3989).

10: metaData(0,e0).

11: metaData(1,e1).

Listing C.16 ASP representation generated for a sentence: Scientists have mostly stopped
arguing about whether humans are warming the planet.

1: binaryEvent(e0,stop ,f0,e1).

2: binaryEvent(e1,argue ,f0,e2).

3: unaryPrep(about ,e2).

4: unaryPrep(whether ,e2).

5: binaryEvent(e2,warm ,f1,c3).

6: unaryNominal(c3 ,planet).

7: unaryNominal(f1 ,human).

8: unaryNominal(f0 ,scientist).

9: unaryModif(mostly ,e0).

10: metaData(0,e0).

11: metaData(1,e1).

12: metaData(2,e2).

Listing C.17 ASP representation generated for a sentence: Yet the arguments that crippled
the Kyoto Protocol have hardly changed.

1: unaryModif(yet ,e1).

2: binaryEvent(e0,cripple ,c1,c2).

3: unaryNominal(c1 ,argument).

4: unaryNominal(c2 ,protocol).

5: unaryModif(kyoto ,c2).

6: unaryEvent(e1,change ,c1).

7: unaryModif(hardly ,e1).

8: metaData(1,e1).

9: metaData(0,e0).

Listing C.18 ASP representation generated for a sentence: This time, nations made vol-
untary commitments, with China agreeing that its emissions will peak in about 2030.

1: unaryModif(this ,e0).

2: unaryNominal(e0 ,time).

3: ternaryEvent(e0 ,make ,f0 ,e1 ,f2).

4: unaryNominal(f0 ,nation).

5: unaryNominal(f2 ,commitment).

6: unaryModif(voluntary ,f2).

7: binaryEvent(e1,agree ,c1,e2).

8: unaryNominal(c1 ,china).

9: unaryPrep(that ,e2).

10: unaryModif(will ,e2).

11: unaryEvent(e2,peak ,i0).

12: unaryNominal(f1 ,emission).

96 Appendix C. Translation Evaluation

13: unaryPrep(its ,f1).

14: binaryPrep(i0,in,about_2030 ,f1).

15: metaData(0,e0).

16: metaData(1,e1).

17: metaData(2,e2).

Listing C.19 ASP representation generated for a sentence: The measure was criticized by
opponents of the original tax proposal and experts predicted it would be cut.

1: binaryEvent(e0,criticize ,c4,c1).

2: unaryNominal(c4 ,opponent).

3: unaryNominal(c1 ,measure).

4: unaryModif(original ,c4).

5: unaryNominal(c4 ,proposal).

6: unaryModif(tax ,c4).

7: binaryEvent(e1,predict ,f0,e2).

8: unaryNominal(f0 ,expert).

9: unaryModif(would ,e2).

10: unaryEvent(e2,cut ,c1).

11: unaryNominal(c1 ,it).

12: metaData(0,e0).

13: metaData(1,e1).

14: metaData(2,e2).

Listing C.20 ASP representation generated for a sentence: Peter Uebelhart, head of tax
at KPMG Switzerland, said he did not expect the higher tax on dividends to put off multi-
nationals.

1: unaryModif(peter_uebelhart ,c2).

2: unaryNominal(c2 ,head).

3: unaryNominal(c2 ,tax).

4: unaryNominal(c2 ,kpmg_switzerland).

5: binaryEvent(e0,say ,c2,e1).

6: unaryModif(escnot ,e1).

7: unaryNominal(c1 ,he).

8: binaryEvent(e1,expect ,c1,e2).

9: unaryModif(higher ,e2).

10: unaryNominal(e2 ,tax).

11: unaryNominal(e2 ,dividend).

12: binaryEvent(e2,put_off ,c7,f0).

13: unaryNominal(f0 ,multinational).

14: metaData(0,e0). metaData(1,e1). metaData(2,e2).

Listing C.21 ASP representation generated for Task 2 in STEP 2008: Cervical cancer is
caused by a virus. That has been known for some time and it has led to a vaccine that seems
to prevent it. Researchers have been looking for other cancers that may be caused by viruses.

1: % Sentence 1:

2: binaryEvent(e0,cause ,n0,f0).

3: unaryNominal(n0 ,virus).

4: unaryModif(cervical ,f0).

5: unaryNominal(f0 ,cancer).

6: metaData(0,e0).

97

7:
8: % Sentence 2:

9: unaryEvent(e1,know ,that).

10: binaryPrep(for ,f2,that).

11: unaryModif(some ,f2).

12: unaryNominal(f2 ,time).

13: binaryEvent(e2,lead ,c1,n1).

14: unaryNominal(c1 ,it).

15: unaryNominal(n1 ,vaccine).

16: binaryEvent(e3,seem ,n1,e4).

17: binaryEvent(e4,prevent ,n1,c1).

18: unaryModif(that ,f1).

19: metaData(1,e1).

20: metaData(2,e2).

21: metaData(3,e3).

22: metaData(4,e4).

23:
24: % Sentence 3:

25: binaryEvent(e5,look ,f3,f4).

26: unaryNominal(f3 ,researcher).

27: unaryNominal(f4 ,cancer).

28: unaryModif(other ,f4).

29: unaryModif(may ,e6).

30: binaryEvent(e6,cause ,f4,f5).

31: unaryNominal(f5 ,virus).

32: metaData(5,e5).

33: metaData(6,e6).

Listing C.22 ASP representation generated for Task 3 in STEP 2008: John went into a
restaurant. There was a table in the corner. The waiter took the order. The atmosphere
was warm and friendly. He began to read his book.

1: % Sentence 1:

2: binaryEvent(e0,go,c1,n0).

3: unaryNominal(n0 ,restaurant).

4: unaryNominal(c1 ,john).

5: metaData(0,e0).

6:
7: % Sentence 2:

8: binaryEvent(e1,be,there ,n1).

9: unaryNominal(n1 ,table).

10: binaryPrep(in,c4,n1).

11: unaryNominal(c4 ,corner).

12: metaData(1,e1).

13:
14: % Sentence 3:

15: binaryEvent(e2,take ,c5,c6).

16: unaryNominal(c6 ,order).

17: unaryNominal(c5 ,waiter).

18: metaData(2,e2).

19:
20: % Sentence 4:

21: unaryModif(friendly ,c7).

22: unaryNominal(c7 ,atmosphere).

98 Appendix C. Translation Evaluation

23: unaryModif(warm ,c7).

24:
25: % Sentence 5:

26: binaryEvent(e3,begin ,c5,e4).

27: unaryNominal(c5 ,he).

28: binaryEvent(e4,read ,c5,f0).

29: unaryPrep(he ,f0).

30: unaryNominal(f0 ,book).

31: metaData(3,e3).

32: metaData(4,e4).

Appendix D

Rules Learned on the bAbi Dataset

Listing D.1 Rules learned for Task 1.

1: binaryInitEvent(V0,be,V1,V2) :- binaryEvent(V0,go,V1,V2).

2: binaryInitEvent(V0,be,V1,V2) :- binaryEvent(V0,journey ,V1,V2).

3: binaryInitEvent(V0,be,V1,V2) :- binaryEvent(V0,move ,V1,V2).

4: binaryInitEvent(V0,be,V1,V2) :- binaryEvent(V0,travel ,V1,V2).

5: binaryTermEvent(V0,be,V1,V3) :- binaryEvent(V0,go,V1,V2),

6: unaryNominal(V3 ,V4).

7: binaryTermEvent(V0,be,V1,V3) :- binaryEvent(V0,journey ,V1,V2),

8: unaryNominal(V3 ,V4).

9: binaryTermEvent(V0,be,V1,V3) :- binaryEvent(V0,move ,V1,V2),

10: unaryNominal(V3 ,V4).

11: binaryTermEvent(V0,be,V1,V3) :- binaryEvent(V0,travel ,V1,V2),

12: unaryNominal(V3 ,V4).

Listing D.2 Rules learned for Task 6.

1: binaryInitEvent(V0,be,V1,V2) :- binaryEvent(V0,go,V1,V2).

2: binaryInitEvent(V0,be,V1,V2) :- binaryEvent(V0,journey ,V1,V2).

3: binaryInitEvent(V0,be,V1,V2) :- binaryEvent(V0,move ,V1,V2).

4: binaryInitEvent(V0,be,V1,V2) :- binaryEvent(V0,travel ,V1,V2).

5: binaryTermEvent(V0,be,V1,V3) :- binaryEvent(V0,go,V1,V2),

6: unaryNominal(V3 ,V4).

7: binaryTermEvent(V0,be,V1,V3) :- binaryEvent(V0,journey ,V1,V2),

8: unaryNominal(V3 ,V4).

9: binaryTermEvent(V0,be,V1,V3) :- binaryEvent(V0,move ,V1,V2),

10: unaryNominal(V3 ,V4)

Listing D.3 Rules learned for Task 8.

1: binaryInitEvent(V0,carry ,V1,V2) :- binaryEvent(V0,get ,V1,V2).

2: binaryInitEvent(V0,carry ,V1,V2) :- binaryEvent(V0,grab ,V1,V2).

3: binaryInitEvent(V0,carry ,V1,V2) :- binaryEvent(V0,pick_up ,V1,V2).

4: binaryInitEvent(V0,carry ,V1,V2) :- binaryEvent(V0,take ,V1,V2).

5: binaryTermEvent(V0,carry ,V1,V2) :- binaryEvent(V0,discard ,V1,V2).

6: binaryTermEvent(V0,carry ,V1,V2) :- binaryEvent(V0,drop ,V1,V2).

7: binaryTermEvent(V0,carry ,V1,V2) :- binaryEvent(V0,leave ,V1,V2).

8: binaryTermEvent(V0,carry ,V1,V2) :- binaryEvent(V0,put_down ,V1,V2).

99

100 Appendix D. Rules Learned on the bAbi Dataset

Listing D.4 Rules learned for Task 9.

1: binaryInitEvent(V0,be,V1,V2) :- binaryEvent(V0,go,V1,V2).

2: binaryInitEvent(V0,be,V1,V2) :- binaryEvent(V0,journey ,V1,V2).

3: binaryInitEvent(V0,be,V1,V2) :- binaryEvent(V0,move ,V1,V2).

4: binaryInitEvent(V0,be,V1,V2) :- binaryEvent(V0,travel ,V1,V2).

5: binaryInitEvent(V0,be,V1,V2) :- not unaryModif(escnot ,V0),

6: not unaryModif(no ,V0), binaryEvent(V0 ,be ,V1 ,V2).

7: binaryTermEvent(V0,be,V1,V3) :- binaryEvent(V0,be,V1,V2),

8: unaryNominal(V3 ,V4).

9: binaryTermEvent(V0,be,V1,V3) :- binaryEvent(V0,travel ,V1,V2),

10: unaryNominal(V3 ,V4).

Listing D.5 Rules learned for Task 12.

1: binaryInitEvent(V0,be,V1,V2) :- binaryEvent(V0,go,V1,V2).

2: binaryInitEvent(V0,be,V1,V2) :- binaryEvent(V0,journey ,V1,V2).

3: binaryInitEvent(V0,be,V1,V2) :- binaryEvent(V0,move ,V1,V2).

4: binaryInitEvent(V0,be,V1,V2) :- binaryEvent(V0,travel ,V1,V2).

5: binaryTermEvent(V0,be,V1,V3) :- binaryEvent(V0,go,V1,V2),

6: unaryNominal(V3 ,V4).

7: binaryTermEvent(V0,be,V1,V3) :- binaryEvent(V0,journey ,V1,V2),

8: unaryNominal(V3 ,V4).

9: binaryTermEvent(V0,be,V1,V3) :- binaryEvent(V0,move ,V1,V2),

10: unaryNominal(V3 ,V4).

11: binaryTermEvent(V0,be,V1,V3) :- binaryEvent(V0,travel ,V1,V2),

12: unaryNominal(V3 ,V4).

Listing D.6 Rules learned for Task 15.

1: eq(V1,V2) :- binaryEvent(V0 ,be ,V1 ,V2).

Listing D.7 Rules learned for Task 18.

1: binaryPrep(V2,in,V0,V4) :- ternaryModif(than ,V0,bigger ,V1),

2: binaryPrep(V2,inside ,V3,V4).

3: binaryPrep(V2,in,V3,V1) :- ternaryModif(than ,V0,bigger ,V1),

4: binaryPrep(V2,inside ,V3,V0).

5: ternaryModif(than ,V0 ,bigger ,V2) :- unaryNominal(V2 ,V3),

6: ternaryModif(than ,V0 ,bigger ,V1).

7: ternaryModif(than ,V1 ,bigger ,V3) :- binaryPrep(V0 ,inside ,V1 ,V2),

8: unaryNominal(V3 ,V4).

9: unaryInitEvent(V0,fit ,V1) :- unaryEvent(V0 ,fit ,V1).

10: unaryModif(bigger ,V1) :- binaryPrep(V0,inside ,V1,V2).

	Introduction
	Background
	Motivations
	Objectives
	Project Outline
	Contributions

	Background
	Answer Set Programming
	Programming Language
	Stable Model Semantics

	Inductive Logic Programming
	Inductive Logic Programming under Answer Set Semantics

	ILASP
	Learning from Partial Answer Sets
	Context-Dependent Examples
	Learning Task Definition

	Compositional Semantics of Natural Language
	The Principle of Semantic Compositionality
	Montague Grammar

	Combinatory Categorial Grammar
	Combinatory Rules
	Comparison of CFGs and CCGs
	Syntactic Parsing with CCGs

	Semantic Parsing
	Boxer System

	Translation
	Semantic Representation
	CCG Parse Tree to -ASP Calculus Translation
	-ASP Calculus Primitives
	Lexicon
	Semantic Composition

	Specific Translation Problems
	Noun Definiteness
	Generic Sentences
	Coordination
	Non-local Dependencies
	Processing Questions

	-ASP Calculus to ASP Translation

	Learning
	Example Format
	Context Generation and Background Knowledge Inclusion
	Generation of Inclusions and Exclusions
	Background Knowledge Inclusion

	Automatic Generation of Mode Declarations
	Unification of Inclusions and Exclusions with Context and Background Knowledge Rules
	Argument Typing
	Predicate Typing
	Using Type Information to Generate Modes

	Mode Bias Constraints
	Mode Declaration Selection Heuristics

	Implementation
	System Overview
	Input Translation
	User Interface
	Annotator Pipeline
	Logic Parser
	Syntactic Parser
	Lexicon
	System Configuration

	Learning Mode
	Type Analyser
	Mode Selector
	Task Scheduler

	Answering Mode
	External Dependencies

	Evaluation
	Translation Evaluation
	Strengths of the Approach
	Outstanding Translation Tasks
	Open Problems
	Discussion

	Learning Evaluation
	The (20) QA bAbi Tasks Dataset
	Evaluation Set-up
	Evaluation Method
	General Learning Capabilities
	Minimum Required Number of Training Examples
	Average Learning Times
	Questions Answering on The (20) QA bAbi Tasks Dataset Using Background Knowledge
	Comparison to Other Approaches
	Hypothesis Space Reduction
	Discussion

	Related Work
	Translating from English to Formal Representations
	-ASP Calculus
	Boxer

	Lexicon Creation
	Cornell SPF

	Question Answering on The (20) QA bAbi Tasks Dataset
	Simple Knowledge Machine
	End-To-End Memory Network (MemN2N)

	Conclusion
	Future Work
	Predicate and Object Invention
	Automatic Inference of Mode Bias
	Enhancing Lexical Knowledge

	References
	Appendices
	Background Knowledge Used on bAbi Dataset
	Additional Background Knowledge
	Translation Evaluation
	Rules Learned on the bAbi Dataset

