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Abstract

Digital assistants are becoming ubiquitous with consumers across mobile platforms help-
ing with everyday tasks. The natural language interface of most assistants are built on
machine learning based intent parsing techniques. This design cannot handle higher level
abstract reasoning such as defaults while logic programs can incorporate them.

In this project we present Kevin, a digital personal assistant with a logical framework
built on top of neural networks to provide a flexible execution environment while har-
nessing the capabilities of machine learning at a lower level. Kevin demonstrates natural
language based logical constructs such as unification and resolution with integrated neural
network information retrieval.
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Chapter 1

Introduction

Virtual, digital assistants are computer programs that interact with users using natural
language to perform tasks for the user. When they are customised for a specific user,
they are commonly referred to as personal assistants and are designed to provide user
specific tasks such as providing shopping list planning [5]. With the recent advancements
in natural language processing such as speech recognition, personal assistants grew in
popularity and saw commercial success such as Apple’s Siri [6] mainly on mobile platforms.

In this project we present Kevin, a digital personal assistant with a logical framework
built on top of neural networks to provide a flexible execution environment while harness-
ing the capabilities of machine learning at a lower level. This hybrid infrastructure allows
Kevin handle natural language constructs within logic-programming using existing and
custom neural networks.

1.1 Motivation

As digital personal assistants are becoming widespread across various mediums to pro-
vide information on numerous subjects, the need for conversationally apt agents emerged
rapidly. Contenders such as Apple’s Siri [6] have been released into the consumer market
as the primary conversational agent in the mobile operating system iOS. Such personal
assistants now play a significant role in reshaping how we interact with computers and
push the domain of natural language processing under the spotlight.

The field of natural language processing has seen great success, particularly with ad-
vancing machine learning techniques. Syntax analysis with dependency graphs, keyword
extraction and named entity recognition have been addressed by academics as well as by
industry [7]. Despite the success with machine learning, the true semantics of sentences
have not been revealed using similar techniques. Classical logic, on the other hand, has
been dealing with manipulating knowledge bases and inferred conclusions. It proves a
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1.2. OBJECTIVES CHAPTER 1. INTRODUCTION

valuable tool even when faced with the representation of time and knowledge [8]. There-
fore, a personal assistant with logic framework lends great potential.

1.2 Objectives

The objective of this project is to provide a proof-of-concept personal assistant with
a novel hybrid back end that fuses logic programming with neural networks. We want
to understand what benefits would there be for a hybrid system if any in the context
of digital assistants. We aim to handle natural language within a logic framework and
provide a flexible runtime environment that can integrate with other components such as
neural networks. At a high level we aim to:

• Find a suitable representation of natural language that could be used in a logic
programming context. We do not restrict ourselves to finding a representation that
would be compatible with existing tools.

• Place natural language into a logic framework, either an existing one or one built
from scratch. The goal is to have a framework that is comfortable with handling
natural language constructs without too much pre-processing.

• Integrate neural networks to boost the robustness of the logic framework when
handling noisy input such as user queries. Logic programming is rigidly structured
and we aim to ease that with machine learning techniques that are designed to
handle unstructured natural language input.

• Explore how certain reasoning elements can benefit a digital assistant using the logic
framework. Concepts such as negation by failure and deduction should in theory be
possible.

With Kevin, we would observe to what extent having a logic framework might con-
tribute to handling user input in a digital assistant. The interaction between the logic
components and neural networks is also an important area of interest as merging logic
with neural networks is an active area of research.

1.3 Challenges

The project harbours several challenges as the field of conversational intelligent per-
sonal assistants has recently started to proliferate. Creating an assistant from scratch

12
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requires the amalgamation of many different concepts from machine learning, logic pro-
gramming, natural language processing and software engineering. There were, however,
four main challenges for building Kevin:

• Lack of documentation of existing personal assistants limited our background
research around recently created assistants. Since many of the successful personal
assistants live in the private industry, it is quite difficult to find relevant documen-
tation or open-source alternatives with similar features. The complexity of building
one also hides publicly amiable documentation.

• Representing natural language in logic is a difficult task due to the ambiguity
and unstructured form of natural language. There are many phrases that may have
the same semantics but slight variations can change the meaning to the extent the
response becomes irrelevant to the query.

• Integrating logic with neural networks is an active area of research and a
key concept for this project. With no major examples to tackle the problem, it is
challenging both theoretically and technically.

• Scaling logical knowledge bases is a possible limitation. Capturing vast amounts
of natural language information in a logical representation based on rules might
become tedious and create problems such as inconsistent states.

1.4 Contributions

We present Kevin with a novel logic framework that can directly handle natural lan-
guage with the aid of recent machine learning techniques such as GloVe [3] word vectors
and a custom variation of the BiDAF [9] model called the guided BiDAF. The framework
functions directly on annotated dependency parse trees and contains no pre-processing
between the output of a natural language library and the input to the logic framework;
Kevin consumes the output of the natural language library directly without any conver-
sions or translations. Kevin covers different query formats using the framework such as
storing facts, intent parsing and deduction (chapter 4).

The multi-stage pipeline provides a modular framework (section 7.3) with options
for external components such as neural networks to be integrated in order to extend the
functionality of Kevin. As a result, besides logical resolutions Kevin can consume external
textual resources to answer free form informational queries.
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Chapter 2

Related Work

In this chapter we discuss various projects in the direction of creating intelligent per-
sonal assistants as well as understanding natural language. We look at how natural
language and computers evolved over time and their role in creating digital assistants.
The ideas in this chapter influence what Kevin is and how it fits in the wider spectrum
of available work in the field.

2.1 Natural Language Interactions

This section covers how natural language as means of interacting with computers
evolved over time. We look at early conversational agents that laid the foundational work
for creating user interactions in English and how their key concepts influenced the design
of Kevin.

2.1.1 Turing Test

At the very start of conversational agents was the Turing Test. The Turing Test is
a test for intelligence in a computer, requiring that a human being should be unable to
distinguish the machine from another human being by using the replies to questions put
to both [10]. In most occasions the aim was to provide a general conversational agent
that can handle a wide range of questions in the most natural way possible. The Loebner
Prize competition held annually saw the progress in the field with respect to these agents
and the Turing Test on which the competition format is based [11]. At the time providing
an human-like chatterbot marked a tangible goal in artificial intelligence, capturing the
imagination of the public with early chatterbots such as ELIZA.

However, the span of the Turing Test often sprouted philosophical questions and di-
gressed from possible practical applications that could be developed using conversational
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agents [12]. The test focused at providing a natural language dialogue as human-like as
possible. With the lack of available information and limited access to the internet, early
agents often mimicked a closed circuit application with meagre capacity for information
processing significantly squaring any pragmatism. This situation begged the question, do
we actually need an agent to be human-like to yield practical applications?

Despite its early formulation and philosophical debates, the Turing Test provides an
important starting point for and fierce considerations on what the purpose of an intelligent
personal assistant truly is. In particular, as the information in the internet expanded well
beyond what humans could process and search for, the need for computer aided informa-
tion retrieval tools such as keyword based search engines [13] gained great popularity. To
achieve a natural gateway to this pool of information kindled agents with natural language
interfaces and paved the way for personal assistants as covered by this project.

2.1.2 Conversational Agents

With the exciting aura of the Turing Test, conversational agents gained ground for
several decades to provide different experiences to users. We will analyse some to provide
a basis on building personal assistants and how the field transformed from chatterbots to
practical assistants.

ELIZA

Created from 1964 to 1966 by Joseph Weizenbaum at the MIT Artificial Intelligence
Laboratory, ELIZA was an early chatterbot program aimed to demonstrate the superfi-
ciality of communication between man and machine [14]. We need to consider ELIZA due
to its simplistic implementation and potential to create the illusion of intelligence. Based
on pattern matching pre-determined cues and canned responses, ELIZA was able to pro-
vide human-like conversation and regarded as one of the first programs to actually pass
the Turing Test in certain cases. In particular, the simulation of Rogerian psychother-
apist narrowed down a certain format of perceived intelligence and started the path of
conversational agents.

User: I’m sad.
ELIZA: How long have you been sad?

User: 2 weeks.
ELIZA: Tell me more. . .

Table 2.1: Example conversation with ELIZA.

As seen in the example conversation in table 2.1, the dialogue produced by the program
creates the illusion of understanding by asking questions related to the phrases provided by

15



2.1. NATURAL LANGUAGE INTERACTIONS CHAPTER 2. RELATED WORK

the user. However, such an agent does not provide any practical features besides perhaps
therapeutic ones from the perspective of the user. The natural flow of the conversion is
crucial in allowing an engaging environment for the user to interact with. This theme
unearthed by ELIZA should shed light onto the behaviour of natural personal assistants.

ALICE

Using Artificial Intelligence Markup Language (AIML), an XML dialect for creating
natural language software agents, Artificial Linguistic Internet Computer Entity (ALICE)
is an open-source conversational agent originally created by Richard Wallace [15]. ALICE
moves to portray more cognisance in recognising subjects and entities such as cities.
Winning the Loebner Prize three times, ALICE provides a base line on what pattern
matching techniques can achieve. Despite such success, ALICE wasn’t as successful in a
Turing Test due to its mechanistic approach and repetitive structure.

Bob: Are you a poet?
ALICE: Not really but I enjoy original human thoughts.

Bob: Where is London?
ALICE: it is a city in England.

Bob: What is a car?
ALICE: A car is what humans use to drive around in.

Table 2.2: Example conversation with ALICE.

The important implications of ALICE for this project can be observed in table 2.2.
Providing answers to informational queries start to form a part of a conversational agent.
It is essential that such queries are recognised and processed properly to provide the first
steps into creating assistants which can access a far larger information pool on the internet
than a human can. Now, we start to reveal the potential of such conversational agents
and their inherent computational power. Even with basic pattern matching techniques,
we can work towards for a practical conversational agent.

Jabberwacky - Cleverbot

A step forward from pre-determined answers, initially Jabberwacky, Cleverbot renders
itself as a conversational agent that learns from past dialogues with users. Created by
Rollo Carpenter, Cleverbot accumulates previous conversations into a search space and
then compare fuzzily to find a response [16]. The malleable response structure of Cleverbot
puts it beyond static chatterbots; however, falls blindly into the realm of search problems
similar to early artificial intelligence techniques used in games [17].

As seen in table 2.3, the shortcomings of fuzzy search based response mechanism are
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User: Where is London?
Cleverbot: London is in England.

User: What is a car?
Cleverbot: Cake is something that a person makes, it is

usually eaten at celebrations like birthdays..
User: What is a car?

Cleverbot: It is a pet.

Table 2.3: Example conversation with Cleverbot.

revealed. The car is mistaken for a cake and the response for what a cake is provided to
the user. Besides the conversational aspects, the two most important features of Cleverbot
provide insights into the domain of personal assistants today:

1. Provide a malleable response mechanism. The responses are not fixed and
there is a sense of learning although in a very crude fashion. Still certain informa-
tional queries are replied successfully.

2. Maintain multiple conversations over a web platform. With exceeding over
80,000 simultaneous conversations online, Cleverbot hints at a cloud based conver-
sational agent that addresses multiple users with ease.

The fuzzy search through a known set of learnt interactions will emerge as a key
concept throughout this project. With the help of semantically aware pre-trained neural
networks, we can create more robust and efficient search algorithms to fuzzily search a
given knowledge base.

2.2 Domain-specific Assistants

Benefits of creating domain-specific technology to aid certain tasks have been devel-
oped over many years. The idea of computers can make certain processes more efficient,
reliable, accurate and easier has proved itself invaluable in many cases such as early hand-
held devices in the context of restaurants [18] and in e-government applications with the
e-citizen assistant [19]. Even without intelligent agents, technology that brought people
and information together using the existing mobile platforms at the time proved speedier
service, better usability and accuracy.

As the term personal digital assistant moves beyond hand-held devices, we look at
some domain-specific assistants with natural language interfaces that exploit the limited
scope of their domain. These agents pushed conversational agents into fulfilling a more
practical purpose rather than a general purpose assistant.
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2.2.1 PANDA: Virtual assistant for in-car child entertainment

PANDA is a parental assistive natural driving assistant developed to be a virtual
driving-parent helper with young children in the back seat [20]. We look at PANDA
because of its unique setting and niche role it plays. PANDA is designed to address
specific issues in the family car to assist the parent in reducing attentional and task load,
provide parent-supervised entertainment for children and create social, educational and
relational activities.

Given its specific role, PANDA was built to cover different scenarios that are triggered
with specific voice commands such as "show movie" and follow a menu-like option. This
interaction is scripted providing absolute functionality but little flexibility similar to other
pre-determined agents [21]. The set of possible action space is fixed and for good reason
as the cases the agent covers are relatively small, yielding an easy-to-use in-car assistant.
This approach unearths several important concepts for a limited-domain agent:

• Small domain interactions can be manually handled by the programmer
anticipating most commands. This situation resurfaces in many other specific voice
command natural language interfaces such as smart home applications.

• The user is restricted to certain commands and needs to know which ones
trigger the correct actions. Slight variations in utterances might not be recognised
by the system forcing the user to be more specific.

• Command based interaction is maintained between the user and the system.
Every utterance has a corresponding action; therefore, most are in imperative form
telling the system to do something.

From the perspective of the programmer and the user, the natural language interface
acts as a protocol. Instead of forcing the user to the click certain buttons, such command
based agents require certain utterances instead. Only the interaction form changes per-
haps benefiting ease of user; fundamentally these agents pave the way for more free form
natural language interactions between humans and computers.

2.2.2 Radar: Assistant agent for email and task management

Agents do not necessarily need a direct natural language interface with the user. In
the case of Radar, a personal assistant that learns to reduce the workload, user emails are
the main source of information to process [22]. This situation is in contrast to creating a
dialogue with the user and change the terms of a digital assistant.

As seen in figure 2.1, Radar starts by processing user emails. Then it tries to categorise
based on content and extract task-specific parameters; for example, how many people will
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Figure 2.1: The Radar system pipeline overview.

attend a meeting. This information is automatically provided to the user creating an
assistive agent that allows the user more efficiently and accurately process their email.
The advantage of a limited context again comes into spotlight as "RADAR assumes
that the types of typical user tasks are known and treats email task detection as a text
classification problem using a regularised logistic regression suite of classifiers (based on
body, headers, links) and combines their results." Several extensions such as CMRadar
for calendar management have been built upon Radar to cover different task scenarios
[23].

Agents with indirect user input play a significant role in processing data from the
internet. Streaming data about the user such as their location can provide the extra
needed context in order to create a richer conversation thereafter. Throughout this project
we follow in certain cases a similar approach and consume external sources to process user
queries.

2.2.3 SimCity game assistant

As we move towards more intelligent systems, maintaining a limited context allows
agents to perform optimal decision making with a representative model of underlying
domain. One intriguing example is the conversational agent to provide assistance in
SimCity [24] like games. "The intelligent conversational agent, interacting in natural
language with the user, obtains information about the current state of the city and gives, as
a consequence, suggestions about the best strategies to apply. The reasoning capabilities
of the agent are obtained through the integration of a traditional ontology-based reasoning
system with a probabilistic one." [25].

The pipeline of the SimCity assistant provides an insight into domain-specific conver-
sational assistant architectures. As seen in figure 2.2, we obverse an explicit abstraction of
the natural language interface under "Linguistic Area" component. The domain-specific
knowledge is attached to the decision making components fed by the current domain
information. All this architecture allows the assistant to combine the optimal decision
making process with a natural language interface.
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Figure 2.2: The SimCity assistant architecture.

The main point of interest is the linguistic interface the assistant provides. The inter-
face is based on ALICE [15] and built from scratch. The current knowledge of the domain
is modelled as expected from an AI in a game, with the agent having full knowledge of the
game and its current status [17]. However, this information is communicated via a natural
language interface which turns essentially a game AI into an virtual assistant. Therefore,
attaching a natural language interface to an existing system can provide a base line for
an assistant.

2.2.4 Creating Conversation Flows

As much as the entities provide local context for the phrases given, many actions
require a sustained conversation over multiple phrases. A common paradigm emerging
in conversational user interfaces is to model the flow of the conversation by hand for a
domain specific interaction. For example, conversations follow hard-coded paths similar
to checkout procedures triggered by intents or key phrases in the case of Converse AI [26].
In the context of such agents, the conversation can be represented by a flow graph with
intents as edges.

Figure 2.3: Recast AI conversation flow representation.

Figure 2.3 shows a pre-determined conversation flow graph from another conversa-
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tional user interface library Recast AI [27]. Although this situation might resemble efforts
made in early days of artificial intelligence in which actions are coded by the developer,
the restriction of the domain allows practical applications to be created. As such, the
conversational user interfaces in these cases are not generic. However, the advantage of
restricting the domain not only provides more control over the interaction but also opens
up more integration possibilities such as payment portals. When certain items are to
be purchased, classical user interfaces such as forms can be presented to the user with
the context information extracted already and filled including the shopping list, address,
delivery time as implemented by Chatfuel [28].

Overall, the limited domain approach allows very fine control over the interaction that
can be pre-determined manually by the programmers. On the other hand, the interactions
are mechanic and restricted pushing towards a strictly practical approach rather than a
general purpose assistant. This theme of restricting and relaxing the domain will be
touched upon in our implementation as it is still an active area of research.

2.3 Towards Intelligent Assistants

When the domain is fixed, very effective assistants that interact directly or indirectly
with the user can be created. This is not only the case with conversational assistants
but also with any computerised assistive technology. For example, describing the next
generation of driving assistant systems will not only be reactive but also predictive working
behind the scenes as the driver requires correction, calculating optimal manoeuvres [29].
However, today intelligent personal assistants demand general understanding of a variety
of topics starting with everyday tasks but possibly expanding into anything the user
requires.

2.3.1 Domain Problem

Most of the domain-specific assistants achieved successful results thanks to the re-
stricted action space; thus the linguistic elements that might arise in such a context were
limited. Scripting, when the user natural language input is matched against expected pat-
terns, were often used as a way of understanding the query [21]. This approach provides
fine control over the assistant with good effectiveness; however, the assistant’s actions
are equally limited by the domain. It seems the domain knowledge is a crucial theme in
building a personal digital assistant, and for good reason.

Semantic-based conversational frameworks have only been tested in environments
when the domain is limited [30]. Generalisation of the domain to allow the agent under-
stand compromises its immediate functionality due to less information about the domain.
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The more general the agent is, the less effective it would be in specific tasks. On the
contrary, we observed specific agents which provided substantial assistive features in their
respective domain. We shall better define the domain problem later in the report for the
purposes of and implications to this project.

2.3.2 Adding Knowledge

To achieve a certain level of generalisation of the knowledge the assistant can retain, we
can manually create connections and provide information to the assistant. This approach
is maintained in the likes of Apple’s Siri [6] and Amazon’s Alexa [31] in which knowl-
edge about concepts are added to the assistants. In the case of Alexa, these are called
"skills" which denote external endpoints the user can interact via the natural language
interface the assistant provides. For example, to get weather information the assistant is
programmed to recognise phrases which query the weather and then ask an external API
for the weather information. Finally, the temperature information is formed part of the
response to the user.

This structure of adding knowledge manually limits the cognisance to the ability of the
programmers; however, retains great control over the assistants’ capabilities. The chal-
lenges incorporated is to understand what the user is looking for and search the external
resources attached for the answer [32]. For example, beyond the external APIs and search
documents, attempts to connect the semantic web into an assistant have been made [33];
"the agent has a modular knowledge organisation composed by four differentiated areas:
the rational area, which adds semantic web knowledge, the association area, which simpli-
fies building appropriate responses, the common-sense area, which provides common-sense
responses, and the behavioural area, which allows IPA agents to show empathy."

Similarly interfacing with search agents such as Google, agents were able to discover
unknown concepts. A 3D-embodied character personifying the fairy tale author Hans
Christian Andersen (HCA), for example, could recover the ontology around the word
"quake" using Google engine and recognising it is a game [34]. These connections vastly
expand the knowledge base of the assistant and increase the areas in which it can act.

2.3.3 Retaining Knowledge

Another important aspect of an assistant is to retain the knowledge it can harness
during its operational lifetime. Frequently asked questions, user preferences, assumptions
about the world and past conversations can all extend the cognisance of the agent if
retained. This malleable nature of the agents knowledge base will allow it to adapt to
different users and domains. The biggest advantage of a multi-user assistant is that it can
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harvest information from millions of users at the same to benefit millions of other users.

Learning based on previous experiences is widely observed in nature. In the context
of personal assistants, incorporating case-based memory by exploring models of memory
have allowed agents to retain a local memory, MemoPA is an example of such an agent
[35, 36]. This approach allowed the system to remember certain interactions and use them
in future cases. There are multiple memory models on which such agents could be built
and they offer various trade-offs [37].

When acquiring information, inconsistencies can arise with the retained knowledge.
Especially, when the domain is large enough, the agent can confront contradicting infor-
mation. Default reasoning [38] can allow the agent to make consistent assumptions with
the retained knowledge. In the context of natural language processing, there have been
attempts at incorporating default reasoning to acquire and retain a consistent view in
the stream of incoming knowledge [39]. However, most approaches have again limited the
domain to cases which can be handled and investigated manually. The ability to create
large scale knowledge bases automatically from active user interactions is still an active
area of research.

2.4 Virtual Assistant Architectures

There are many possible ways to implement a digital assistant depending on its re-
quirements and it is often a matter of software engineering to design the most suitable
architecture for one. In this section we look at existing digital assistant’s architectures
and how their key points influenced the design of Kevin’s multi-stage modular pipeline
back end architecture.

2.4.1 Attorney 209: Adviser for family-based cases

Attorney 209 is an expert system that mimics a real life lawyer and gives legal advice.
It is a conversational chatbot which is designed to handle initial assessment for families
who need legal guidance regarding family cases such as child custody and legal separation
[40]. The domain of law is fixed to an even finer context of family cases in order to limit
the knowledge base from which answers are drawn creating an effective domain-specific
assistant.

Figure 2.4 portrays the overall architecture of Attorney 209. We observe sub compo-
nents which build up the assistant as a whole. However, the flow is dictated from the user
query towards answers and repeats in a very structured manner. The natural language
processing unit along with the knowledge base sits at the core to process user queries. At-
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Figure 2.4: Attorney 209 architecture overview.

torney 209 incorporates the Chart Parsing Algorithm [41] in order to process the queries.
The structure follows a mostly linear pipeline in which user queries are fed and answers
are computed.

The architecture portrays what is called a separation of concern approach in which
the core components are broken down into smaller more specific tasks moving away from
a monolithic architecture. In this case, the parsing of words, semantic and syntactic
analysis together with the knowledge base are separated. Kevin takes this idea at its core
to separate out the natural language processing, reasoning and the knowledge base.

2.4.2 Project Execution Assistant (PExA)

Now we look at an assistant which features a natural language dialogue interface as well
as external resources. Project Execution Assistant, PExA, has been developed to improve
the productivity and effectiveness of a knowledge worker by aiding her in organising and
performing tasks focusing on two key areas: time management and task management [42].
PExA aids the user in scheduling meetings, setting reminders and organise tasks that may
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involve around the subject such as expense reimbursement. The domain in this case is
the office environment with the context surrounding daily user tasks. PExA brings four
several desiderata of assistance to render the assistant useful and usable:

• Directable: Although the assistant should be capable of operating in an au-
tonomous manner, it must accept explicit directions from the user on what to do
(or not) and how to do it.

• Personalizable: The assistant should learn a model of the user’s preferences and
adapt its behaviour accordingly.

• Teachable: It should be easy for the user to communicate new or modified problem-
solving knowledge to the assistant over time.

• Transparent: The assistant should be able to communicate succinctly what it is
doing and why, in order to provide the user with insight as to the status and strategy
of its actions.

PExA frames ambitiously what the goal of an assistant would be, what are its core
traits that build its assistive capabilities. The principles stated above form a basis on
which all assistive technology could stem from. PExA as with Radar, the agent email
and task management [22], not only can draw information from outside sources but also
interact with the user in a natural language dialogue under the directable requirement.

Figure 2.5: Project Execution Assistant (PExA) architecture overview.
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With the Project Execution Assistant (PExA), we observe more sub components that
build up the assistant. Figure 2.5 shows the different components and how the desiderata
form a partitioning on the components. The architecture follows a divide and conquer
approach to fulfil the requirements of the assistant. The task and time managers are
distinguished at the core (SPARK and PTIME), learning capabilities are handled by
the procedure learner (Tailor), transparency is achieved by the task explainer (ICEE)
and the overall dialogue is maintained by the execution monitor and predictor (ProPL).
This structure maintains manageable sub components in order to achieve the complex
behaviour observed as a whole. Such an architecture provides insights into scaling towards
larger, more complex systems by dividing the assistant into its assistive components.

Figure 2.6: Project Execution Assistant (PExA) follow up dialogue interaction.

Finally, with figure 2.6, we observe that PExA can sustain a dialogue with the user
incorporating follow up context sensitive questions. The assistant is able to answer the
question "Why?" with detail stating the acting conditions explaining its reasoning to the
user. Although the options to the user are fixed thereafter, the dialogue provides an easy
to understand picture of the inner workings of PExA’s reasoning. Fixing the options for
users response helps the flow of the conversation and avoid ambiguity from the assistants
perspective. The domain to create such a conversation is explicitly built upon the process
of purchasing equipment.

2.4.3 Cloud Scale Assistant Architectures

There are also significant technical challenges if the personal assistant is to scale and
serve several thousand users at the time. Similar to the likes of Apple’s Siri, large-scale
personal assistant deployment must endure hundreds of queries a second, maintain fast
response times and balance on device computation with cloud requests [43]. At such scales
we observe more sub components that build up the complexity of the assistant with more
focus on performance. Thus, not only the sub components divide what computation
happens but also where that computation is performed.

As seen in figure 2.7, one approach is to separate the computational concerns of Au-
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Figure 2.7: A generic cloud-based personal assistant architecture.

tomatic Speech Recognition (ASR/SS) from the Spoken Dialogue System which commu-
nicate via text [44]. This architecture separates the concern of heavy computation and
allows similar sub components to be partitioned. Looking at an open-source assistant Sir-
ius, an open end-to-end stand-alone speech and vision based intelligent personal assistant
(IPA) similar to Apple’s Siri [45], we can observe the features function at scale.

Figure 2.8: Sirius architecture overview with mobile and server components.

In figure 2.8, we clearly see the distinction made between mobile and server components
that comprise Sirius. The interaction sub components such as recording the voice is
processed on the mobile and the heavy weight computations such as image matching are
performed on the server side. This architecture creates a lightweight front-end for the
user while maintaining computationally expensive features of the assistant in the cloud.
The idea of having lightweight interfaces is emphasised with Kevin as the actual assistant
is provided as a service on which user interfaces can be built.

This scaling is crucial in order to expand the user base in a computationally effective
manner. Performance aspects of scaling will help us decide over certain algorithms due to
runtime costs and how they affect the response time of Kevin. The depth of the pipeline
also plays a significant role in reducing the answer calculation time. However, despite user
customisation options that the assistant can retain, serving a single assistant to thousands
of users renders it generic.
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2.5 Personalisation & Gender Issues

As assistants start to scale to serve multiple users, they become generic and standard
as every user’s experience becomes similar. Although the cloud scale deployments require
the same assistant serve all the users, it creates a necessary room for personalisation based
on user interaction. Ideas presented here influenced heavily the perception of Kevin and
how to make it unbiased over such topics.

2.5.1 Interaction design

A key concept in personalisation is how the user interacts with the assistant. These
interactions could shape the means by which an agent can adapt to the user and change its
behaviour accordingly. Interaction design has been considered carefully for many applica-
tions. For example, in the hand-held mobile assistant devices era, the Personal Assistant
for online Services (PALS) project aimed to develop an intelligent mobile interface for
quick and accurate task performance with mobile commerce web sites [46] using case-
based design [47]. They outlined 4 main points of interaction with the device and they
draw important concepts into the conversational assistants domain:

• Direct (D): The user requires the agent to do the requested action. Direct inter-
action often encompasses voice commands; for example, "turn on the lights" is a
direct command to the agent.

• Solicited (S): The agent helps the user in a certain task. The interaction follows
the agent working with the user to provide guidance. For example, "How do you
cook pasta?" will allow the agent to help the user make food by providing steps to
achieve their goal but not perform them itself.

• Non-solicited (NS): In this interaction, the agent provides assistance even though
the user might not have explicitly requested it. This situation might arise from the
fact that the agent might have better domain knowledge on the topic than the
user. For example, suggestions on restaurants, routes to take due to traffic can be
proposed to the user.

• Independent (I): Finally the agent can act independently from the user. For
example, if the agent knows watching a movie requires dimming the lights, it can do
so without interacting with the user about lights at all. With such interaction, the
agent often performs obvious actions such as opening the garage door if the user is
driving back home and is about to arrive.

These generic means of interaction apply to all agents; however, there are other means
of augmenting the experience. One of which is embodiment. Embodiment have been
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research in cognitive sciences intensively [48]; however, in the context of assistants the
concept often yields a tangible face to interact with for the agent. In the aim of creating a
natural interaction, moulding a virtual 3D character or a robot puts a tangible face behind
the assistant. This allows users to concentrate on the assistant when interacting, looking at
the assistant, observing gestures all improve the flow of the interaction significantly. This
embodiment has proved crucial in maintaining a positive environment with the assistant.
For example, a natural human computer interaction paradigm was proposed for people
with cognitive impairments such as Alzheimer’s Disease [49]. It consisted of using a
realistic virtual character, rendered on a common television set, to play the role of a virtual
personal assistant that showed reminders, notifications and performed short dialogues
with the users. With simple Yes/No type questions, the test results showed that all users
engaged naturally with the avatar.

With the rise of virtual reality, some research even attempted to create complete
virtual environments to place the user in the realm of the digital assistant rather than
placing the assistant in the real world. One example is the personalised assistant in a
virtual shopping environment giving suggestions based on users’ past purchases using
data-mining techniques [50]. No matter what the substrate, the interaction between the
agent and the user proves critical in providing a natural personalised experience.

2.5.2 Social environment and expectations

Placing the assistant in a physical world with human beings is a challenge on its own.
In particular, voice activated agents in social environments such as a household living room
come along with both technical and social obstacles. A recent study on understanding
the implications of voice activated assistants provided insights into how and when users
preferred to interact [51]. "Results showed that participants preferred using the VAPA in
a private location, such as their home, but even in that environment, they were hesitant
about using it to input private or personally identifying information in comparison to more
general, non-private information." These results show the difficulties that might arise from
the environment the assistant is placed in as well as what information it requires about
the user to be active.

Bob: Are you a pilot?
ALICE: What kind of female do you think I am?

Table 2.4: Gender portrayal of ALICE.

As seen in table 2.4, the gender of the assistant is expressed explicitly with assumptions
made on possible connections between females and pilots. This situation raises very
important questions surrounding the human social elements in shaping a virtual assistant:
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what are our social expectations of one? It has been debated in the press recently due to
female characterisation of most commercial agents such as Apple’s Siri [6] and Amazon’s
Alexa [31].

Some research have attempted to unearth some of these biases and social expecta-
tions. For example, a study has been made to understand this gender preference via
social attraction theory [52]. By asking participants to choose between virtual assistants
that differed on tested aspects such as gender, they found female virtual assistants were
preferred over male assistants with almost 70% of all participants choosing a female as-
sistant. This study shows the delicate nature of creating agents that will have a role in
the social environment.

2.5.3 Becoming human-like

Ultimately, the quest for true personalised virtual assistant might have to portray
pungent human-like characteristics, going back to the Turing Test [10]. In most cases,
a differentiating factor is the lack of emotion. However, some studies have pushed that
boundary even further. By using basic emotions theory which dictate emotions consists
of eight prototype basic emotions and constructing a psychology model, virtual assistants
capable of empirically obeying the human emotion rules were built [53]. This feat was
achieved by varying the parameters of the emotion model used to simulate different human
psychologies.

Another study encompasses artificial hearts which is a joint term for the agent’s emo-
tion and personality. The study attempted an approach to enable the computational
perception required for the automated generation of affective behaviour in multi-agent
real-time environments [54]. The results showed that agents can communicate not only
knowledge but also affective attitudes about the knowledge at hand. These systems lead
the way on truly human-like assistants and provide insights into elusive concepts such as
emotion.

However, from the perspective of this project and practical digital assistants, we are
not concerned with creating a human-like agent. In most cases, the interaction model
assumes the user acknowledging the assistant as another computer program with a natural
language interface.

2.6 Language Representations

One of the key concepts of enabling logic based systems to handle natural language
was through strict conversion between the two. There have been multiple representations
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of natural language in order to be processed by computers. In this section we will focus on
representations that allow sentences to be de-constructed into constituents which provide
the meaning of a phrase.

2.6.1 Combinatory Categorical Grammar (CCG)

Combinatory Categorical Grammar is a form of lexicalized grammar in which the
application of syntactic rules is entirely conditioned on the syntactic type, or category, of
their inputs [55]. Thus such a grammar can recursively build what a sentence means by
looking at its constituents. It follows a divide and conquer approach in which complex
structures are broken down into more simpler and manageable sub components.

Figure 2.9: CCG proof of "Marcel proved completeness" using lambda calculus.

As seen in figure 2.9, CCG can decompose the sentence and extract arguments to
provide a proof that allows the constituents to yield a valid sentence using lambda calculus
as the base formalism. In this case, the verb prove is a function application with two
arguments which when given, provide the meaning of something proving something. When
such a decomposition works, a computer program has most of the information needed to
process the input: the action, subjects and entities. If the construction does not work, for
example if the expected arguments are not matched, then the sentence can be considered
not to make sense.

From our perspective, we focus on the idea of representing natural language phrases
as structured trees and use such concepts throughout the project to build a more flexible
representation. We would like to minimise the amount of pre-processing in order to
consume natural language but still achieve a flexible representation that does not flounder
when faced in unknown constructs.

2.6.2 Abstract Meaning Representation (AMR)

Abstract Meaning Representation [56] captures “who is doing what to whom” in a
sentence. Each sentence is represented as a rooted, directed, acyclic graph with labels on
edges (relations) and leaves (concepts) [57]. This representation captures many relation-
ships between verbs and nouns in a very similar fashion to a dependency graph. When
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constructed correctly via a parser, AMR provides upstream natural language processing
a clean representation of complex sentences. Similar to CCG, the aim is to deconstruct
natural language into consumable structured constructs for a computer program.

Figure 2.10: PENNMAN representation of AMR on "The boy wants to go."

The representation as seen in figures 2.10 and 2.11, captures the relationship between
what the boy wants. It is important to observe the tree structure of the sentence, as it
enables to be compositional; multiple trees can be combined into a larger to represent
a longer sentence for example using conjunction. Therefore more complex sentences can
often be represented using divide and conquer relying on the principle of composition.

Figure 2.11: Graphical representation of AMR on "The boy wants to go."

With such a strict structural representation, logic based systems can be developed
to process and understand natural language. A prominent usage was demonstrated by
applying inductive logic programming [58] in order to tackle the toy context-question an-
swering tasks created at Facebook [59]. This work showed that if the representation is well
founded and can be parsed into logic, it can outperform neural network based solutions.
This result is expected since the computer system in this case has all the information in a
clean format. The challenge is not in upstream applications but in creating robust parsers
that can match the performance neural networks in unseen examples.
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Chapter 3

Background

The background chapter covers concepts that are directly used in this project for cre-
ating Kevin. The ideas and projects presented together with the related work (chapter 2)
help shape Kevin as a digital assistant and its tangible foundations. We will look at how
we can define Kevin as an assistant, the logic programming as the starting point for a new
framework and finally some deep neural network natural language processing techniques
used in Kevin.

3.1 From Conversations to Assistants

When we look at the definition of an assistant, "a person who helps in particular
work", we take note of the keyword help. It is this crucial difference that started to
reshape conversational agents that can talk into assistants. Now we try to better define
what an assistant is in the context of a computer program and the modern perception of
a digital assistant.

3.1.1 Personal Digital Assistant, the Definition

One common understanding of a personal assistant is that of a person (or an agent)
who is able to provide distinct help at a given time and in a given activity context [44].
The assistant’s primary purpose is to aid the user in numerous ways:

• Answer informational queries: One of main driving forces behind the popularity
of personal digital assistants is to serve as a gateway into the vast information
available on the internet [32]. These systems provide a natural language interface in
the form of queries such as "What is the weather in London?" to which the answer is
the current temperature information. This ability put mainstream digital assistants
under the spotlight to tackle the information overload induced by the internet.
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• Perform everyday simple tasks: Another crucial feature a personal digital assis-
tant provides is convenience in handling simple daily tasks such as setting reminders,
organising calendar and email [60]. These tasks are often pre-determined range of
tasks that the agent recognises and executes the coded task often interfacing with
other external APIs such as booking systems for restaurant reservations. These fea-
tures gave personal assistants their practical perception, getting things done easier
approach.

• Advise on optimal planning: Harnessing the power of computers, the agent
should in cases advise the user with optimal planning. For example, asking for
directions considers live traffic information [5], setting calendar events while auto-
matically checking for overlaps. In such instances, the assisting agent can provide
advise on making the best possible planning.

These features often form a basis for the modern view of a personal digital assistant.
Combining multiple capabilities from different categories can create a general assistant in
which the agent can portray these features in various contexts. If the context is limited,
however, then it is considered a domain-specific assistant designed to offer functionality
on a subset of a certain domain.

When building Kevin, we try to allow these capabilities to be implemented. In other
words, our framework design should not be the cause for failing these tasks. As a result,
the framework was designed to be flexible in order to accommodate external functionality
and cover extra features with the help of external components.

3.1.2 Pragmatism in Agents

Besides the capabilities that a personal digital assistant can maintain, its attitude also
forms part of the definition. Assistants, as discussed in this paper, sustain a practical
view in aiding the user. The focus is on providing functionality in a natural interaction,
not creating a human-like natural agent. To clarify further, the agent does not have to
portray human attributes. There have been active research in that area such as creating
systems that can empirically obey human emotion rules by simulating different human
psychologies [53]; however, from a pragmatic perspective functionality is the primary
concern.

Often the agent is designed to complete certain processes in a convenient manner for
the user. The very first of such basic assistants were command and control agents in
which pre-determined voice commands corresponded to certain tasks that the agent can
coordinate such as the actions of a robot [61]. The style of command and control agents
still find way into many assistants as a reliable way to cover many basic tasks to the extent
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those tasks can be pre-programmed. One prominent usage case in modern assistants is
to place Easter eggs that trigger when certain utterances are recognised.

Therefore, Kevin’s interactions lean towards achieving a practical goal such as pro-
viding answers to information queries rather than natural dialogues. We assume the user
recognises Kevin as a computer program and do not attempt to mimic human conversa-
tional models.

3.2 Extracting Structured Data

A common theme in using natural language as an interface is to convert phrases into
categorised entities or chunks. This transformation often encapsulates many techniques
available in a natural language processing libraries such as named entity recognition. Al-
though the field of Named Entity Recognition and Classification (NERC) started with
hand-written rules, developments in machine learning techniques have yielded robust re-
sults [62]. Combined with the domain knowledge, many conversational user interfaces
convert these entities into structured data to be consumed by other computer programs.

Schedule lunch with Mary Johnson at 12 pm tomorrow.
action: meeting.create
name: Lunch with Mary Johnson

invitees: Mary Johnson
time: 2014-08-06T12:00:00-07:00

Table 3.1: Extracting structured data using API AI.

As seen in table 3.1, the API.AI [63] library can extract entities from a given phrase and
convert into categorised actions with the appropriate context. This structured information
is consumed by upstream software creating an natural language interface for existing
software. Depending on the action category, different entities are extracted to create
the context of the phrase. For example, creating meetings have different entities than
navigation tasks.

Figure 3.1: Entity recognition and variable assignment in Wit AI.
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One common approach to imposing structure on natural language phrases is to assign
variables into pre-determined phrases. Figure 3.1 captures the implementation from Wit
AI [64] showing how the users can assign variables with certain types such as date and
time or numbers. These types eventually form the basis of the extracted structure from
the phrase. Rest of the phrase chunks such as "please" are discarded in this scheme. The
process requires a lot of human input in order to tell the system what to look for and
such a process can still exist at a larger scale as seen in the insurance chat-bot powered
by IBM Watson [65]. Despite its shortcomings, extracting structured data from natural
language is at the centre of intent parsing and as a result the sentence variable approach
will present in Kevin as well.

3.3 Logic Programming

Logic programming is a programming paradigm based on formal logic. It is most com-
monly used in its declarative form in which rules and facts are presented in predicate logic
and a control mechanism to prove certain queries [66]. Although there are many variants
of logic programming with different implementation and semantics such as Prolog [67],
from our project’s perspective we will focus on a generic logic program and understand
the basic constructs of one.

head← body (3.1)

All logic programs built on the following basic construct of a rule 3.1. The rule
often expresses a material implication; however, material implication semantics are not
necessary. Depending on the formalism used, the head and body can contain expressions of
varying degree of complexity. Often the meaning suggests, if one can prove the premises
in the body then one can conclude the head. The head or the body of a rule can be
omitted to give constraints and facts respectively. The empty section can be thought
of being false, thus facts become vacuously true and constraints imply false when all
premises (constraints) are satisfied.

animal(X)← cat(X) (rule)

cat(sally)← (fact)

← cat(X), dog(X) (constraint)

In the example logic program rule, we state that all cats are animals; this meaning
is captured by the variable X which can denote an entity in this case. Thus, whatever
is a cat also is an animal. In the fact, we explicitly say that sally is a cat and that
case is vacuously always true since the body is empty. This result is an effect of material
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implication in that false implies anything is considered true. Finally, we can specify a
constraint to say that nothing can be a cat and dog at the same instant. Following this
setup, we can deduce that animal(sally) using the rule without violating the constraint.

We will not consider time in this project and take every rule to represent the same
instant. Although there are methods such as event calculus to represent discrete time
within logic, in the context of a digital assistant we decided to not consider it due to its
complexity. A common approach is to use predicates similar to happensAt(X, T) that
specifies an event X occurred at time T . It is very difficult to time-stamp events in natural
language and therefore Kevin only considers the present.

3.3.1 Negation by Failure

Negation by failure can be viewed as another inference rule but one that is non-
monotonic often represented as not A. Though the semantics of it depends on the for-
malism used, we will follow a simple approach and detail it as all attempts to prove fail
[68]. Therefore, the semantics can be considered as: if it is not known to be not the case
then it might well be the case.

slow(X)← car(X), not fast(X) (3.2)

car(bmw)←

When we declare a setup as seen in program 3.2, we stated that every car is slow unless
it is known to be fast. Thus when required to show whether bmw is slow, the program
succeeds as it is not known to be that bmw is fast in the given context.

Negation by failure construct allows us to provide a way of specifying what to do in
the absence of provable information; it can be used to specify defaults such as every car is
normally slow. Such reasoning is often associated with common sense which are integral
to our reasoning in our daily lives. For example, we might assume that an apple is by
default red unless it is known be green for a shopping assistant until the user specifies
they want green apples. Rules with negation by failure are called normal clauses and logic
programs that use them are referred to as normal logic programs [68].

3.3.2 SLDNF Resolution

Selective Linear Definite (SLD) clause resolution and with added negation by failure,
the SLDNF resolution provide an operational semantics to normal logic programs with
negation by failure that follows a top-down (goal-oriented) approach. The computation
of a goal query G follow a series of derivation steps that unify the goal with rule heads

37



3.3. LOGIC PROGRAMMING CHAPTER 3. BACKGROUND

and try to prove the body as seen in figure 3.2. There are other semantics such as Answer
Set Programs (ASP) [68]; however, we will follow Prolog style interpretations for their
operational semantics.

Figure 3.2: SLDNF operational semantics of goal oriented proof.

There are two kinds of derivation steps which are selected based on whether it is a
negation by failure literal not L or positive literal L. In the case of L, the body of a
rule L ← B is replaced with L unifying if necessary using θi; in the case of not L the
premise is removed if all attempts to prove L fail finitely. These derivation steps in return
transform the initial goal G into sub goals Gi that need to be proved forming a proof tree.

Figure 3.3: Example search space of SLDNF on list membership.

Following the computation in the figure 3.3, we observe that the proof of a given goal
G constructs a search space in the form of a tree that the program explores until it reaches
true or the empty clause �. In the most simplest case a depth first search algorithm could
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resolve the goal. We will re-encounter tree like search spaces in Kevin, particular when
trying to handle negation by failure constructs in natural language.

3.4 Deep NLP

Deep neural networks provide a method to learn complex non-linear functions by
layering multiple connected neural units such as densely connected perceptrons. In the
case natural language processing, neural networks yield incredible results that mainly
work on vector representations of words of a given corpus. In this section we discuss the
techniques that allow Kevin to handle natural language input.

Most models rely on the distributional hypothesis popularised by Firth: "a word is
characterised by the company it keeps" [69]; words that occur in similar contexts often
exhibit similar meanings. This idea lies at the foundation of vector space representations of
words and how context aware dense vector representations can be learnt using algorithms
based on distributional hypothesis.

3.4.1 word2vec

Word2vec is a collection of algorithms that are used to produce dense vector embed-
dings of words based on the distributional hypothesis [1]. Given a large corpus, word2vec
maps every word W in the corpus into a d dimensional vector f : W → V d.

Figure 3.4: Continuous bag-of-words and skip-gram models presented in word2vec [1].

There are two main approaches: the continuous bag-of-words model and the skip-gram
model in which a centre word is predicted given context or vice versa respectively. Given
context words wt+j and a centre word wt the models try to predict either the context or
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the centre word and try to maximise the probability of success. As an example, we will
consider the skip-gram model.

J(θ) = − 1

T

T∑
t=1

∑
−m<j<m

log p(wt+j|wt) (3.3)

The skip-gram model tries to predict the context words of a given centre word wt.
The objective function 3.3 tries to maximise the log probability of a context word p(wt+j)
across a window radius m given the centre word wt. This is done for every token t

in the corpus T and then normalised across. The derivative with respect to the model
parameters ∇θJt(θ) given centre token t, can then be used to train the network using
stochastic gradient descent (SGD).

p(outer|centre) = expuTo vc∑V
w=1 expu

T
wvc

(3.4)

One way of representing probabilities of words is to use the softmax of the dot product
of word vector embeddings as portrayed in equation 3.4. In this case, u and v are two
vector embeddings for words, i.e. the associated vectors of words that the model is
trying to refine. Thus, the similarity of words are captured by the dot product of their
corresponding vectors. However, since we consider 2m+1 words at a time using a sliding
window, the derivative ∇θJt(θ) is sparse, thus cause sparse updates that are not very
efficient.

Jt(θ) = log σ(uTo vc) +
∑

j∼P (w)

log σ(−uTj vc) (3.5)

The loss function of the skip-gram model with negative sampling, equation 3.5 adds
noise to reduce the probability of some random words j ∼ P (w) and train the network
accordingly. Often the final vector representation of a word is the sum of its corresponding
embeddings uw + vw.
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Figure 3.5: Word2vec results from TensorFlow [2] example implementation.

Figure 3.5 shows the results from the example implementation1 in TensorFlow demon-
strating how similar words, i.e. words that appear in similar contexts cluster together.
For example, numbers such as one, two, three clustered at the top centre top of the figure
as well as other words that represent numerical value such as million.

3.4.2 Global Vectors (GloVe)

A common problem with models such as word2vec is that lots of time spent scanning
context windows to learn a distribution for frequently appearing words such as the. This
not only adds a bias towards frequently appearing words but also lacks training for rare
words. Global Vectors (GloVe) [3] aim to address this issue by introducing weighting into
the objective function. As such, the GloVe model is used as the de facto standard of

1https://www.tensorflow.org/tutorials/word2vec accessed 2017-05-23
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vector representations for upstream natural language networks.

J(θ) =
1

2

V∑
i,j=1

f(Pij)
(
uTi vj − logPij

)2 (3.6)

The objection function 3.6 tries to get the dot product of vector embeddings closer to
the probability of word i co-occurring with word j, Pij calculated from the co-occurrence
matrix of the corpus. Often, the weighing function f tries to minimise the negative
effect of frequently occurring words in the corpus. The function in the paper is given as
f(x) = min(g(x), 1.0) in which g(x) is a function that increases with x, thus the weight
is capped at 1. This approach scales to very huge corpora and uses statistics such as the
co-occurrence of words very well.

Figure 3.6: Superlative linear structures in learnt vectors from GloVe.

As seen in figure 3.6, the vector representations can not only capture similar semantics
but also linear relationships between words. These vector embeddings provide the basis
for many upstream natural language networks and play a crucial role in Kevin allowing
it understand similar phrases without needing extra hand written rules.

3.4.3 Long Short-Term Memory (LSTM)

A big problem with neural networks even with Recurrent Neural Networks (RNNs) is to
capture long term dependencies. Long short-term memory networks [70] are a special kind
of recurrent network designed to handle long-term relationships, patterns in data. These
recurrent network units are useful in understanding co-relations of words in sentences and
are frequently used in upstream natural language processing neural networks to capture
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context within a given phrase or paragraph.

Figure 3.7: A representation of an LSTM unit.

Figure 3.7 shows a representation of an LSTM unit2. The upper horizontal line repre-
sents the internal state Ct which the unit updates depending on the previous output of a
unit ht−1 and the current input Xt. The two operations to the internal state, multiplica-
tion and addition represent what information needs to be forgot and added respectively.
This update of internal state allows long term dependencies to be remembered and passed
along the chained units within an LSTM layer.

3.4.4 Bi-Directional Attention Flow (BiDAF) Model

The BiDAF model is a hierarchical multi-stage architecture for modelling the repre-
sentations of the context paragraph at different levels of granularity [9]. It builds on vector
embeddings as well as character embeddings to answer questions trained on the SQuAD
dataset [71]. The model achieved an Exact Match (EM) score of 68.0 and a F1-score of
77.3 on the SQuAD dataset. We use a shallower, narrower version of this model in order
to extract answers from given context sentences.

As seen in figure 3.8, the architecture comprises of 6 layers. The input to the net-
work is a context sequence {x1, x2, ..., xT} (ex. a paragraph or a sentence) and a query
{q1, q2, ..., qJ}. The output of the network is the start and end indices of the answer within
the context.

1. Embed layers transform the context and the query into their respective word
and character embeddings. The word embedding used is the GloVe model (sec-

2http://colah.github.io/posts/2015-08-Understanding-LSTMs/ accessed 2017-05-17
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Figure 3.8: BiDAF model architecture overview.

tion 3.4.2). The character embeddings allow a finer granularity of representation
and often handle mixed punctuation, misspellings better than word embeddings.

2. Contextual layer recalculates embeddings of words and characters with respect
to the given context or query. This layers enables words to acquire meaning, a new
vector representation based on what was before and after them in the paragraph.
Hence, a bidirectional LSTM is used to capture these relationships.

3. Attention flow layer calculates weights of context and query representations with
respect to each other; Stj = α(H:t, U:j) matrix captures the similarity of context
item t with query item j. The α can be any similarity metric, in the paper a dense
layer with the concatenation of inputs is used. The shared similarity matrix is
then used to compute Query2Context and Context2Query attentions that capture
relationships between the query and the context and vice versa.

4. Modelling layer feeds on the original context embeddings and the attention rep-
resentations to model the query answering problem and find the most likely words
in the context that might constitute the answer. A bidirectional LSTM layer is used
to capture relationships between inputs both forwards and backwards.

5. Output layer then creates two probability distributions using softmax on the
output of a dense and a LSTM layer for the start and end indices respectively.
The index at which the probabilities are highest give the slice of context which
constitutes the answer.

It is important to note that the context and query sizes are fixed. Therefore, the
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network is not able to answer queries in large contexts such as complete Wikipedia articles.
Since increasing the context length increases the size of each layer, the network training
time magnifies accordingly. We will focus on how to overcome these issues with a guided
model that has a smaller context size but can scan complete articles.

Figure 3.9: BiDAF model contextual embedding visualisation.

The contextual embedding layer provides the context sensitive embeddings for words
which represent different meanings depending on their surroundings. In figure 3.9, we can
see the distinction made in the contextual level of words May and may which are grouped
in the word embedding space. We take note of the contextual embed layer at this point
as our model lacks one due to resource and time constraints and subsequently performs
worse.
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Logic Framework

In this chapter we will focus on how Kevin figures out what to do when presented with
user input. We present a novel logic framework that builds on natural language constructs
rather than other primitives such as predicates. We use concepts such as sentence simi-
larity to create a logical framework that allows Kevin to process user input and compute
a response. The logic framework resembles logic programming (section 3.3) but does not
necessarily follow the semantics of one. We will construct Rules (section 7.2.3) in certain
ways to perform different actions based on user input.

Expression Description
Hi there. ExprPTree without any variables
My name is X:Alice. ExprPTree with Alice sub tree variable
:weather:X ExprCall for weather function with argument variable X
:weather:X(London) ExprCall for weather function with default argument

Table 4.1: Expression notation summary for logic framework.

We summarise the basic expressions that will be used throughout this chapter in
table 4.1. Unless otherwise stated, we will be using the constructions described in the
implementation section 7.2. All rules are composed of natural language parse trees with
wrapping expressions to create a natural language framework that runs Kevin.

4.1 Scripting

The first and most basic construct we have captures if this then that style interactions.
We manually script, write rules that determine the question answer model. Basic scripting
rules can be used in many different scenarios and are predetermined by the programmer.
These query-to-answer rules cover many possible interactions and serve as the building
blocks for more complicated queries. Since the interaction is fixed, they are reliable in
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creating a desired conversation with the user. An important emerging property of Kevin
is that all answers computed in such a manner require them to be a supported model [68]
of its knowledge base. If all answers were purely drawn from a closed knowledge base, no
external interference, then every answer that Kevin gives would be a supported model.

Hi. ∨ Hello. ∨ Hi.← Hi. ∨ Hello. (4.1)

Heads! ∨ Tails!← Kevin, heads or tails? (4.2)

A very basic example used by Kevin is how to answer a greeting captured by rule 4.1.
The query part contains a greeting from the user capture by the disjunction of similar
greetings Kevin will recognise. The head of the rule then contains the answer to that
greeting which could be one of three parse trees. The display semantics (summarised in
table 7.4) of an ExprOr picks a random greeting as a reply. A more interesting example
that uses the display semantics of such an expression is captured by rule 4.2. Kevin
randomly picks heads or tails whenever the user asks the corresponding query.

Figure 4.1: Graphical representation of a basic rule in logic framework.

Since the body of these rules are empty, they become vacuously true as represented
graphically in figure 4.1. Once they are triggered by a matching query, the head is proved
trivially thus displaying it as the answer. We also note that the expressions in the logic
framework are built upon parse trees as the base construct in this situation. It is crucial to
understand that rules are selected similarity measures during the query evaluation stage
(section 7.3.4). Therefore, the user can vary the query and still trigger the correct rule
up to a certain similarity threshold.

4.1.1 Tracing an Answer

To clarify how the logic framework comes about answering a query, we will consider
rule 4.2 and trace the functions performed by the framework in order to give back either
heads or tails as the answer. The generic overview of this functionality is given in the
query pipeline section 7.3; however, we will focus on a specific instance. We start tracing
once the query hits the evaluation stage:

1. A query similar to heads or tails as a parse tree comes into the evaluation stage
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and Kevin searches for the most similar expression in the query part every rule.
The search covers all rules which have a query part that are within the applicable
context across all knowledge bases.

2. Evaluation step discovers the rule 4.2 which contains the most similar parse tree for
the given query. Now the evaluation step passes the head of the rule to the proof
engine and tell it to start the proof from that particular rule.

3. The proof engine takes the rule and looks at the body to check if there are any
premises that needs to be satisfied in order to the prove the head. In this case,
there aren’t any; the proof engine vacuously succeeds and passes the head of the
rule to the display module to be returned as the answer.

4. The display module receives the disjunction (Heads! ∨ Tails!) as the answer expres-
sion. By invoking the display semantics of the disjunction expression, we get back
a random expression containing a parse tree. Invoking the display semantics of an
expression wrapping a parse tree gives back the string value of the wrapped parse
tree. Finally, that string is passed to the output module to be shown to the user.

The crucial part of the logic framework and how rules work lies in the distinction of
queries and the body of a rule with the answers in the head. This construction is a common
theme to compute answers using the framework. A similar sequence of computations
happen for more complicated rules as the initial query triggering rule has the response in
the head.

Query αfuzzy(Q, rq)
Heads or tails? 1.0
heads or tails 0.950
what about heads or tails? 0.926
tell me heads or tails! 0.898
tails? 0.864
heads? 0.855
give me lucky tails fail
heads fail
tails fail

Table 4.2: Example user query triggers for rule query "Heads or tails?"

Table 4.2 demonstrate the flexibility of the similarity based evaluation mechanism
within Kevin for triggering the heads or tails rule 4.2. In this example, almost any
medium length sentence containing heads or tails will trigger the rule as there aren’t any
other rules within the test knowledge base containing information about heads or tails.
Therefore, if the user query hints at heads or tails the similarity measure picks up on it
up to a certain threshold so that queries which might mean something different do not
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easily trigger it. If we lower the threshold then some of the failing queries can succeed
but might trigger rules other than the intended one.

4.2 Facts

When we need to store unconditional information within the logic framework, often
facts, we can omit both the query and the body to capture that piece of information.
Since facts do not have a query part, they cannot be returned as answers to user queries
but can be used in other proofs. In most cases, facts store permanent information such as
user location and external corpus input. Therefore, anything given without an argument
to Kevin can be considered a fact which is precisely what this construct tries to capture.

Martin lives in Berlin.← (4.3)

Par is the capital city of France.←

You left your keys in the car.←

My name is Brian.←

Examples of facts can be seen in rules 4.3 capturing various use cases. The first fact
is often a user directive giving a piece of information that the logic framework would take
unconditionally as true. The second case covers information that is specific to a user,
in general instances user preferences. The location of the user’s keys are accepted to
be in the car regardless of the state the knowledge base is in. Finally, facts can act as
customisations such as changing Kevin’s name to Brian in the third case.

All external parsed text such as Wikipedia articles are consumed as facts into the logic
framework. Every sentence in the text becomes the head of an unconditional rule that is
added to some knowledge base, possibly temporary. The consumed information then can
be used to help with other proofs by using the proof semantics of parse trees (section 7.2.2).
The information does not need to be consistent logically and it is not enforced to be so.
This approach creates a lot of flexibility to intake vast amounts of information from noisy
inputs; however, it can cause false proofs to succeed if not isolated. Therefore, especially
when Kevin consumes external text outside of user input, the information is placed in
their respective context such that those facts only trigger when the appropriate context
is set. For example, it could be the Wikipedia application consuming summary pages
for a search query, then all the facts generated will be under some Wikipedia context.
This design allows to almost quarantine noisy and possibly inconsistent information from
generating wrong proofs in the face of other valid user input.

A concern about facts is that they are very powerful since they cannot be refuted.

49



4.3. CONSTRAINTS CHAPTER 4. LOGIC FRAMEWORK

They only provide a piece of unconditional information to the active context they belong
to. However, they are considered equal to every other rule and are exposed to external
functions to update and remove them. For example, if the user updates the location of
their keys, the process which generated the fact that describes the location might consider
updating the existing fact to create its own view of consistency. Since the framework
doesn’t force a consistent state, the meaning of being consistent can vary on the situation
and how components, particularly external functions, would like to handle it. This design
creates a lot of space for creating unexpected situations such as forcing Kevin to think
Apple Inc. is a type of fruit rather than a company and subsequent proofs such as
searching information on Wikipedia will yield information about the apple tree instead of
the company.

4.3 Constraints

Facts are very powerful in changing the outcome of the proof mechanism due to empty
queries and bodies. Therefore, inconsistent facts can force Kevin to output wrong results
defeating the purpose of having a logic framework proving answers as supported models
its knowledge base. To counter that situation we can leverage a different rule construction
that allows us to express constraints. These constraints are at the logical framework level
and do not have a specific meaning unless actively invoked. In other words, they are not
enforced by the framework and it is the responsibility of a component that is concerned
about inconsistent states such as an external function worried about the user being at
two places at the same time. Similar to facts they do not have a query part meaning that
they cannot be triggered by a user input to give an empty answer.

Your keys are at the kitchen.← (4.4)

← Your keys are at the X:office. , Your keys are at Y:home. , X 6= Y

Equations 4.4 describe a setup for constrains in which the user’s keys cannot be at
two places from Kevin’s perspective. The example is currently consistent since there is
only one fact detailing the location of the keys. However, when the user provides an
updated location the constraint will be violated. For example, the user can say "I left
my keys at my friends house." adding another fact clashing with the existing one. As far
as the framework is concerned this input is perfectly fine and unknowingly will create an
inconsistent state unless the component that processed the fact checks for any violated
constraints. In other words, Kevin is entirely oblivious to the semantics imposed on the
contents of its knowledge base; the components and external functions which interact with
the knowledge base can interpret them in a certain way.
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Since the meaning of inconsistency is variable within the framework there is no de-
fault way of resolving conflicts when a constraint is violated. It is perfectly fine to have
an inconsistent knowledge base for Kevin to run on. However, as a basic method of reso-
lution, the pipeline provides a mechanism that randomly removes a rule which caused the
constraint to be violated. In the case of equation 4.4, if the user provides a new location,
the fact describing the last the known location will be removed from the knowledge base
as it is the only existing rule that helped violate the constraint.

There is no default mechanism to check for constraints that is enforced to all fact
based inputs. Therefore, addition of constraints does not guarantee a consistent knowl-
edge base by any means. They can be regarded as any other rule which contain some
information that pieces together parse trees within the knowledge base. How constraints
are used is not necessarily the concern of the logic framework, it just provides them for the
interacting components. This design deviates from traditional logic semantics on purpose
to accommodate more flexibility within the digital assistant environment.

4.4 Intent parsing

An important feature of any digital assistant is to convert natural language queries
into structural intents that external functions can process in order to produce a response.
Our logical framework accommodates such a requirement by a small change to basic rule
structure. Instead of returning a fixed sentence for a query, we can place an external
function in the head of rule to be invoked as the response. By using variables within
the query, we obtain a intent parsing mechanism built on existing tools in the framework
without any additional changes.

:weather:X←What is the weather in X:London? (4.5)

A very common intent, asking the weather at a location, is captured by rule 4.5. In
this case, any user query that is similar to asking the weather at a location will trigger this
intent. Fuzzy unification (section 5.2.2) will extract the correct location argument for the
intent, converting in a sense the natural language input into structured information for
the external function weather to consume. Since there are no premises to prove, the head
becomes vacuously true and the display semantics of the external function is triggered as
the response. Thus, the user receives the what the external function returns, in this case
the weather at a given location.

Table 4.3 captures what kind of user queries trigger the intent described by equa-
tion 4.5. Thanks to the similarity based fuzzy unification, Kevin is able to capture most
of the queries that hint at weather at a give a location. As a result, the user utterance does
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Query αfuzzy(Q, rq)
What is the weather in Berlin? 1.0
what is the weather in Paris 0.983
how is the weather in Paris 0.975
how is the weather like in Rome 0.972
is there a storm in Dublin 0.928
is it warm in Birmingham 0.904
I wonder if it is cold in New York 0.897
weather in Liverpool 0.847
hot or cold in Madrid fail
Is Paris cold these days? fail
Paris weather? fail

Table 4.3: User queries that trigger the weather intent.

not even have to contain exact matching tokens in the query part of the rule, just similar
words suffice creating an extremely flexible intent parsing mechanism. The failed cases
are due to the similarity threshold which tells Kevin to stop trying if it below k = 0.82

in this case, obtained from evaluating the fuzzy similarity metric (section 8.1). We can
lower the threshold to succeed the failed unifications; however, lowering the threshold
creates an increasingly unstable query matching by making the evaluation more and more
aggressive. As a result, even if the user asks something Kevin doesn’t know, evaluation
can find something similar enough which might completely be the wrong intent.

Figure 4.2: Query rules for music playing intent in API AI.

As with any intent parsing mechanism the intents have to be manually constructed
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by the programmers. This situation is present in industry leading companies such as
API.AI [63] and shown in figure 4.2. The intent for playing music has 300 triggers with
different variable sub components that it tries to match similar to the constructs available
in Kevin. The number of rules is usually directly related to the similarity threshold, the
higher threshold the more rules required. When the threshold is set to 1.0 then Kevin will
be looking for exact matches and require a rule for every possible user input for particular
intent. On the other extreme, if the threshold is 0 then any rule is considered similar
enough.

Since the intent parsing mechanism relies on fuzzy unification, any parsing errors that
affect the unification process are also reflected in intent parsing. Intent parsing is most
severely affected by natural language processing library parsing discrepancies described
in section 7.1.1. Therefore, most of the capacity of this mechanism is limited to the
downstream operations that process the natural language input.

Writing a few intent rules and invoking external functions can be regarded as a natu-
ral language interface for any software. For example, we could write rules such as "Open
the internet browser." and "Switch to the next application." to provide an interface for a
generic desktop environment. Kevin would recognise the intents and trigger correspond-
ing functions working as natural language service that sits between user utterances and
desktop environment functionality.

4.4.1 Interactive Rule Constructing

Since we can attach any external functions to intents, we can also provide means of
constructing new rules using intent parsing. In other words, Kevin can interactively build
new rules using few intents that capture those actions. This capability adds a natural
language interface to a knowledge base. The interaction needs to be carefully crafted as
with any other intents using several nested contexts to understand which part of the rule
the user is trying to modify.

:newrule← That is the wrong answer. (4.6)

:addpremise← Add a new premise.

:setanswer← Here is how the answer looks like.

. . .← . . .

Rules in equation 4.6 provide a non-exhaustive list of intents that integrate into Kevin’s
knowledge base and allow users to create new rules if an answer given is wrong. This
interaction allows a user to add new information on the fly still using natural language that
could be a personal preference such as their favourite colour or a general method that could
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be shared with other users such as getting the traffic information. Although potentially
useful for basic user input based rules, any action that requires external functions such as
API calls would still require a programmer’s touch if they are not already implemented.

4.5 Template IR

We can continue building on top of fuzzy unification in order to unify sentences to
extract out arguments as we have done in intent parsing. Template based information
retrieval uses fuzzy unification to match similar sentences to extract a piece of information
out. This approach allows a fast method for constructing rules that provide a uniform
representation of noisy inputs. Template matching does not use another neural network
to extract an answer, just matches sub tree templates using only what is available through
fuzzy unification (section 5.2.2).

The capital of X:Slovakia is Y:Bratislava.←What is the capital of X:Slovakia? , (4.7)

The capital city is Y:Bratislava.

We start by constructing a rule that contains the query for the user to trigger and
an answer format; additionally we add a premise that will act as a template as shown in
equation 4.7. We the can override the default semantics of a parse tree for that particular
premise to perform a fuzzy search over facts related to the given country; for example
it can search for facts in the context of Wikipedia. As a result we obtain a template
matcher which extracts the capital city of a given country. Then the result is returned in
a sanitised hand-crafted format. When the fuzzy unification succeeds on the most similar
sentence for the consumed facts about the country, it unifies the capital city completing
the proof for the head which now has all its variables set.

It is important to note that we override the default semantics of the wrapping expres-
sion that acts as the template. Instead of searching through the knowledge base, in this
example, we complete the proof by searching for an answer on Wikipedia. As a result,
we altered how that premise is satisfied; when the template is matched on a Wikipedia
page it is considered true thereafter. The proof engine is again oblivious as to how an
expression is proved and we exploit the flexibility of the framework to consume external
information without having to modify the framework.

For the rule constructed in equation 4.7, we look at examples extracted fromWikipedia
summary pages of the corresponding countries in table 4.4. So long as the sentences are
similar and contain the same sub tree structure as the variable for the city name, fuzzy
unification can extract the correct piece of information since it is based on dependency
structure matching. For cases it fails, either the similarity threshold k = 0.7 has to be
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S αfuzzy(S, rp) θfuzzy(S, rp)
Poland’s capital and largest city is
Warsaw.

0.816 true

Germany’s capital and largest
metropolis is Berlin, while its
largest conurbation is the Ruhr.

0.757 true

New Zealand’s capital city is
Wellington, while its most populous
city is Auckland.

0.732 true

Australia’s capital is Canberra, and
its largest urban area is Sydney.

0.691 false

France is a unitary semi-presidential
republic with the capital in Paris.

0.533 false

Table 4.4: Matching noisy facts to template The capital city is X at k = 0.7.

lowered or another template has to be created capture that particular way of expressing
the capital city of a country. Since the template rule is considered equal to any other rule,
the proof engine can now use this rule to find out if a city is a capital of a country; in
other words, this piece of information captured by the template can be chained in proofs.

Template matching is very limited in consuming noisy input; however, it serves as a
good starting point for acquiring and processing external information and accommodating
them within the logic framework. It is worth noting that template matching is quite
efficient at processing large corpus of text since it relies on vector cosine similarities used
by fuzzy unification process. Similar to intent parsing, though, it suffers severely from
any downstream natural language processing errors such as dependency structure changes
or other parsing errors.

4.6 Template deduction

Often in logic, rules are chained to derive conclusions based on existing information.
Template based deduction allows Kevin to derive those conclusions using the different rule
constructs described so far: facts, constraints, intents and templates. When proving an
expression, the proof engine does not know how each individual expression acts as they
all have different proof semantics (section 7.2.2). This design allows an arbitrary rule
to draw information from various sources without requiring changes to the underlying
proof system. As far as the framework is concerned, the expressions know how to prove
themselves allowing for various functionality to be incorporated by overriding the existing
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proof semantics of expressions.

Yes.←Does X:Mary live in the capital of Y:Germany? , (4.8)

X:Mary lives in Z:Hamburg. ,

The capital of Y:Germany is Z:Hamburg.

Equation 4.8 describes a single rule that determines whether someone lives in the
capital city of a given country. In this case we build on the template information retrieval
rule from equation 4.7 that provided a way of proving whether a city was the capital city.
It is important to remember that the proof engine strictly runs from left to right following
these steps:

1. The user asks whether someone lives in the capital city of a country. As an example
let us consider "Does Alice live in the capital of England?" for the user query.

2. As usual, the evaluation module matches the query part of the rule described by
equation 4.8 as the best match and fuzzily unifies the user query with the query part
of the rule. Thus, the current state of the variables becomes (X → Alice, Y → England)
yielding the head expression to the proof engine.

3. Since the rule contains two premises, the proof engine starts from the left most
expression that tries to figure out where Alice lives. If there is a fact of the given
expression form such as Alice lives in London. ←, the proof engine will unify the
premise with the head of that fact.

4. The proof for where Alice lives in this case will succeed since it was a fact, thus
unifying variable Z → London. If the proof engine wasn’t able to find out where
Alice lived, the entire proof would have failed since it is the first premise and there
aren’t any other expressions to backtrack; the query is not considered part of proof.

5. The final premise has all its variables grounded and the proof engine searches for
a head of a rule that matches the parse tree. It is important to clarify that since
these premises are searching internally, they are unified using strict unification (sec-
tion 5.2.1). The rule we created for template information retrieval successfully
unifies and the proof engine tries to prove whether London is the capital city of
England or not.

6. At this point, Kevin has no idea it is accessing external corpus such as Wikipedia
to show that London is indeed the capital of England. Therefore, the proof engine
succeeds following in proving the capital city of England is London as the final
premise.
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7. All the premises are satisfied and since this rule was top level query trigger rule, the
head of the rule with the unified variables is passed on the display module and the
proof is complete. Kevin can show as a consequence of its current knowledge base,
Alice does indeed live in the capital city of England.

All rules within the knowledge base can be chained using the oblivious proof engine
allowing Kevin to derive consequences of its knowledge base regardless of where the in-
formation is retrieved. Hence, it can build new relationships and form conclusions using
existing ones.

Yes.←Does X:Mary live in the capital of Y:Germany? , (4.9)

The capital city of Y:Germany is Z:Hamburg. ,

X:Mary lives in Z:Hamburg.

The efficiency of this process depends on the ordering of the premises. Since they are
proved strictly from left to right, both the semantics and the proof runtime can change if
they are re-ordered. For example, a re-ordered version of rule 4.8 is presented in rule 4.9.
In this case, the rule is looking for a capital city of the given country and then checking
whether Alice lives in that capital city. In the original version, Kevin was looking for
where Alice lived first then checking if the city was a capital. If the query was just asking
if Alice lives in a capital not just for a given country, then this construction would force
the proof engine to iterate through countries and their capitals and check if Alice lives
there. Therefore, the ordering affects the performance of the proof process but also the
subtle semantic differences caused by at which stage the variables are unified. Often,
the quicker the variables are unified the better the performance as it translates to less
backtracking in a smaller search space of grounded values.

4.7 Negation by failure

An interesting construct for Kevin to handle in natural language is negation by failure
(section 3.3.1). Negation by failure allows Kevin to reason in the absence of information
since the semantics of such a construct rely on all attempts to prove it failing. It can
be rephrased as if something is not known to be the case then this expression is true
because the proof engine couldn’t prove otherwise. By adding negation by failure, we
often consider defaults that describe the general case such as birds can fly; but, adding
specific facts such as penguins don’t fly, allow the proof to overrule the negation providing
an intricate reasoning process.

My name is Kevin.← nbfMy name is X:Bob. (4.10)
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One of the most interesting uses of negation by failure is how Kevin determines its
name, described in rule 4.10. The rule states that in the absence of any information
regarding Kevin’s name, its name can be Kevin. Thus, if the user hasn’t provided any
information on what the name should be, Kevin will conclude that its name for now is
Kevin. If there was any information, then the proof engine would succeed in finding a
name thus causing the rule to fail. In this case, the variable inside the negation is not
grounded at the time of execution to find any name that might Kevin have, including
Kevin if it is explicitly stated. The reason this construct doesn’t go into an infinite loop
by trying re-apply the same rule since the premise is unifiable with the head is because
the proof engine remembers the rule chain. As described in section 7.3.5, a rule cannot
be reused in proving its own premise thus stopping Kevin from entering an infinite loop.
In other words, the premise of a rule has to find information from other rules that did not
contribute to the proof so far.

Figure 4.3: Graphical representation of negation by failure.

Figure 4.3 portrays a graphical representation of a negation by failure proof. The
red nodes denote rules that the negation rule cannot access, including itself. Blue nodes
denote the expressions that haven’t been touched and green nodes represent the rules the
proof from negation can access. This structure captures the design choice we made in
order not to flounder when faced with ungrounded variables within negation by failure
expressions. As a result, negation by failure is defined purely by its operational semantics
in the proof engine.

Most likely.←Does X:John live in the capital of Y:Sweden? , (4.11)

X:John is from Y:Sweden. ,

nbf X:John lives in Z:London.

Another example that describes if we don’t know where someone lives but do know
where they are from, we can deduce that most likely they live in the capital city of
the country they are from, equation 4.11. When this rule is triggered, Kevin tries to
prove that John is from the given country and if it is not known to be the case that he
lives somewhere, Kevin deduces that it is likely that he lives in the capital. There are
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many more cases that follow a similar pattern particularly with user preferences in which
initially Kevin wouldn’t know what the user likes and can make general assumptions based
on an average user. As more and more information is built up in the knowledge base,
these default cases would stop to provide answers and at some point can be removed all
together from a user’s knowledge base.

4.8 Free Form Integrations

In most rules, we imposed a certain structure to the sentence to be searched. However,
we can leverage free from question answering using neural networks to create a more
flexible information processing pipeline within the logic framework. For example, similar
sentence extraction and deep neural network methods such as guided BiDAF (section 6.2)
can be incorporated into the framework. Kevin can then search through noisy external
corpus to prove or find an answer to a query not only the user is interested in but also
another internal rule. The proof engine is as usual oblivious to the underlying method of
proof; in this case it will be delegated to neural networks and other methods of question
answering. There are three main methods for integrating external components into Kevin:

1. External functions provide a very simple way running external procedures with
side affects. However, their semantics within logic framework are very limited. For
example, they are not allowed to backtrack. They are mostly used for basic actions
that do not require too many interactions with the user and little information to
run. They are wrapped inside ExprCall within the logic framework (section 7.2.2).

2. Query redirecting allows larger applications to consume Kevin’s raw user input
using the command module (section 7.3). These applications often require more
complicated user interactions such as follow-up questions in a takeaway ordering
application. As a result, the logic framework acts as an application context manager,
starting and closing them while the application itself is responsible of handling user
input.

3. Expression overriding allows new Expr objects to be created within the frame-
work and their proof mechanisms to be overridden. For example, an expression can
prove itself by checking an external source of text for a particular information with-
out polluting or interacting with the existing knowledge. The proof function can
be any procedure that returns a boolean and optionally unifies variables. Since the
proof engine is oblivious to this process, it allows the new expressions to backtrack
and be part of the full proof procedure.

Using different integration methods of the framework, we can thus incorporate a mul-

59



4.8. FREE FORM INTEGRATIONS CHAPTER 4. LOGIC FRAMEWORK

titude of functionality within Kevin to expand its capabilities. This design is important to
accommodate more and more functionality, intents, preferences and custom components
without modifying the core framework.

4.8.1 Query Redirecting

The simplest way of integrating different question answering schemes is by binding
to the command module (section 7.3) and redirecting all of Kevin’s input into another
component such as an external function or neural network. The component that receives
the user input is then responsible of generating a response that piped to the display
module directly and therefore can bypass the entire proof process.

Opening Wikipedia app. ∧ :setcontext:X(wiki)← Start the Wikipedia app. (4.12)

:searchwiki:Q← Q:

Closing current application. ∧ :setcontext← Close the current app.

Rules under equation 4.12 demonstrate a Wikipedia application within Kevin. The
context is set when the user requests to open the application and subsequent rules become
available to the evaluation module. The second rule is a match all clause that returns a
fixed similarity measure α(S,_) = 0.94 for any given query; thus, it allows the input to
be redirected to the external function searchwiki as variable Q. The similarity measure
for a match all clause is not set to 1.0 so that queries that have a higher measure can
trigger other rules and change the context. For example, if the user asks to close the
current application, it will have a higher similarity measure with the third rule than 0.94
to trigger the correct rule rather than redirecting that query to the external function.

Opening X:Bus app. ∧ :setcontext:X← Start the X:Bus app. (4.13)

:currentapp←Which application is running?

Closing current application. ∧ :setcontext← Close the current app.

. . .← . . .

:appredirect:Q← Q:

A more general version of context based applications is captured by rules in equa-
tion 4.13. The interaction starts with the user requesting an application to be opened
and Kevin sets the appropriate context. The logic framework can still provide basic trig-
gers such as which application is running, what the current state is as well as closing it.
However, other queries which Kevin does not recognise then get routed to the active con-
text application. This setup creates an API for full applications that could be integrated
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into Kevin.

In this approach, the logic framework only wraps external query answering components
but does not contribute to them. This design is a good starting point for accommodating
applications within Kevin that require a certain context to be set and then the input
to be redirected. As such, Kevin’s functionality is not restricted by the capabilities of
the logic framework alone and can be expanded with various integrated applications that
work alongside the framework to process user input.

4.8.2 Neural Network Extraction

Besides redirecting queries to different external components, we can leverage the logic
framework and create new expressions with different proof semantics. Since the proof en-
gine is oblivious on how expressions are proven, we can integrate various sub components
such as neural networks to prove an expression and bind it to variables as the framework
would expect. Neural networks could be used as a stand-alone application with query
redirecting, but in this section we will discuss how to integrate one into the logic frame-
work. We will use the guided BiDAF model described in section 6.2 as our underlying
neural network query answering mechanism by fusing them into new expressions.

The capital of X:Slovakia is A:Bratislava.←What is the capital of X:Slovakia? , (4.14)

What is the capital of X:Slovakia?

Building on the previous capital city template matching rule in equation 4.7, we con-
struct a very similar rule as seen in equation 4.14 that provides the same outcome. How-
ever, in this case it seems like we duplicated the query and indeed we have; but, the
difference is captured by the semantics of those expressions. The first question is the user
query that triggers this rule and as such it is separate from the body which needs to be
proved in order to conclude the head. Kevin follows these steps in this case:

1. The user query asking what is the capital city of a country triggers the rule as
usual. The rule looks simple and behaves the same from the evaluation module’s
perspective.

2. The proof engine sees there is a premise and invokes its proof procedure. Again the
proof engine is oblivious to how the premise will be proved.

3. The premise expression containing the identical query has its proof function overrid-
den to redirect to a neural network to search for the given country X on Wikipedia.
Then, Kevin literally asks the neural network to give an answer from the Wikipedia
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summary and bind the answer to variable A. If an answer is found, the proof suc-
ceeds and the proof engine passes the head of the rule to the display module.

4. The head of the rule is grounded with the country given by the user X and the
answer obtained by asking the query to the neural network A. Together these
variables complete the response and is returned as the answer to the user.

By incorporating different components as expressions within the logic framework, we
can exploit the knowledge base in order to build more and more complicated rules. For
example, if Kevin wants to figure out if a famous person lives in the capital city of the
country, the query can be deconstructed to find where the person lives and whether it is
the capital city. If there are already rules for determining where famous people live such
as an external function and using another rule to check if a given city is the capital, Kevin
can conclude if that person lives in the capital or not. This knowledge expansion with
the flexibility of external components creates vast potential for flexibility.

AA:Bob is a teammate of X:Alice.←Who is a teammate of X:Alice? , (4.15)

What team X:Alice play for? ,

Who plays for A:Arsenal? ,

AA 6= X

Rules in equation 4.15 captures the power of creating higher abstractions using un-
derlying questions answering components such as neural networks. In this example, we
describe what a teammate is in natural language using the logic framework. As before,
we bind the two premises to neural networks that extract the information we are looking
for: the team Alice plays for and someone who plays for the same team. Finally, we make
sure they are not the same person to deduce that Bob is the teammate of Alice. The first
neural network inquiry binds the answer to variable A and the second one to AA with
the proof proceeding as normal. Instead of training a new neural network on thousands
of examples to understand what a teammate is, we could provide that description in one
rule in natural language within our framework while still using the existing trained neural
network.

Figure 4.4 shows a graphical representation of the expression proof overriding mech-
anism. As seen in the graph, the proof engine is not aware that the proof is delegated
to other components such as neural networks. As a result, the existing the framework
harnesses information from external resources which it wouldn’t have been able to do
before.

A concern regarding expressions wrapping external proof mechanisms is stability. As
more and more unrelated external components, services become integrated into rules, the
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Figure 4.4: Graphical representation of overriding expression proofs with neural networks.

logic framework becomes more unstable in the sense that the information flow is not
regulated. Any expression can interact with any source returning some value and it is
assumed to behave correctly. Thus, the framework harbours more points of failure not
only in the proof engine but also from an operational point of view. The external functions
can indeed crash Kevin creating unwanted behaviour and responses. The whole idea of
answers being supported models slowly fade away as more proofs are delegated to external
components.
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Chapter 5

Similarity & Unification

In this chapter we focus on how to select correct rules and expressions using different
sentence similarity metrics as well as the unification procedures that chain expression
proofs together. Kevin is heavily built on these similarity concepts that underpin its
capability to handle natural language both in its logic framework and when consuming
external textual sources.

5.1 Types of Similarity

A recurring topic through this report is the similarity of two given sentences. We do
not consider multiple sentences, document similarity and restrict our definition to a binary
function. All similarity measures are implemented as part of PTrees (section 7.2.1) which
represent the corresponding sentences. Sentence similarity is used throughout Kevin’s
infrastructure to handle natural language input. For example, it is used to select rules
that match a user query (section 7.3.4). We first define what sentence similarity is and
consider different forms of it that are present in Kevin.

0.0 ≤ α(s1, s2) ≤ 1.0 (5.1)

The similarity between two arbitrary sentences s1 and s2 is a function α that takes
those sentences and outputs a value strictly ranging from 0.0 to 1.0, equation 5.1. A
value of 0.0 indicates that the sentences are completely different and a value of 1.0 signifies
identical sentences with respect to some property. The similarity function α can represent
different properties such as semantic or syntactic similarity. It can be a combination of
other similarity functions so long it is well-founded.

Definition 5.1.1 A similarity measure is considered well founded if the following three
properties hold:
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1. returns a value ranging from 0 to 1, 0 ≤ α() ≤ 1.

2. identical sentences always have a value of 1, α(s, s) = 1.

3. it is commutative, α(s, t) = α(t, s).

A well-founded similarity measure is ideal but not necessary as we will discover most
useful ones are not well-founded. The important feature that this property provides is
stability when measuring sentence similarities. We can have some sense of reassurance
that the similarity metric behaves in an intuitive manner such as recognising duplicate
sentences by returning 1.

αcos(w, k) = cos(θ) =
uw · vk
‖u‖2‖v‖2

(5.2)

In most cases, we build the similarity metrics out of vector embeddings presented
in the background section 3.4.2. The GloVe [3] vector embeddings provide a similarity
measure using the cosine angle between the two word vectors. Equation 5.2 represents the
formulation of the cosine similarity1 between two words w and k and their corresponding
vectors u and v. It is a well-formed similarity measure since cos(θ) follows the conditions
of definition 5.1.1.

w k αcos(w, k)
apple apple 1.0
apple orange 0.56
apple chair 0.17
London Paris 0.61

Table 5.1: Examples of cosine similarity using GloVe [3] vectors.

Table 5.1 contains some examples of cosine similarity. We observe that apple is more
similar to orange then to chair as expected. The similarity measure in this setup depends
on the training method used; as a result words that appear in similar contexts are more
similar. These vector similarities provide us with a metric at the word level which we can
use to build sentence level similarity metrics.

5.1.1 Document Average Similarity

The simplest way to combine word vector similarities is to average them to get a single
vector for the corresponding sentence. The document average similarity averages all vec-
tors of its tokens to get a single vector representing the sentence itself. This is the default

1Cosine similarity might refer to different measures depending on the context. In our case it is always
defined on vectors of same dimensionality.
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similarity behaviour in the natural language processing library Spacy (section 7.1.1) used
by Kevin.

vs =
1

|S|

|S|∑
i=1

Si (5.3)

αdoc(S, T ) = αcos(vs,vt) (5.4)

The vector representing the sentence vs in equation 5.3 is the same dimension as its word
vectors; Si represents the vector of the ith token in sentence S. This method is very
efficient as the sentence vectors can be computed when the sentences are parsed. Since
the result is another single vector, any similarity method applied on single words can
be used on sentences such as cosine similarity, equation 5.4. In fact, it can handle large
documents by simply averaging all token vectors again.

However, as the sentences get longer, more and more information is collapsed into a
single vector. As a result, commonly occurring tokens such as the pull the average towards
their vector embedding leading to a biased similarity measure. An approach to avoid this
problem is to ignore frequent tokens as well as certain tags that do not necessarily encode
useful information such as determinants (DT)(appendix A.1).

5.1.2 Bag-of-words Similarity

The bag-of-words similarity performs an identical operation to document average sim-
ilarity with one exception. We normalise the entity vectors that are present in the parse
tree; in other words we leverage the named entity recogniser to have a single vector for
location, time and people. If there are no named entities, the bag-of-words approach
yields exactly the same result as the document average approach.

f(x) =
1

|Cx|+ 1

(
g(x) +

∑
i∈Cx

g(i)

)
(5.5)

g(x) =

vent, if x ∈ E

vx, otherwise
(5.6)

αbow(S, T ) = αcos(f(Sr), f(Tr)) (5.7)

The named entity vector substitution is represented as a function g(x) which returns a
pre-determined vector vent if token x is a named entity, just the token vector otherwise,
defined in equation 5.6. This construction is recursively applied to normalise all named
entity vectors in the parse tree as in equation 5.5 in which Cx represent all the children
of the current node not just 1 level deep. If a node has no children Cx = ∅ then the
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corresponding word vector is returned; otherwise, the average of the node’s word vector
with its children’s bag-of-words vectors is calculated as the corresponding vector. Finally,
the vector returned on the root node can be used to calculate the cosine similarity between
two sentences as before, equation 5.7.

S T doc(S, T) bow(S, T)
What is the weather in
London?

What is the weather in
Liverpool?

0.973 1.0

How is the weather
like in Berlin?

What is the weather in
London?

0.958 0.987

How are you? Are you doing well? 0.954 0.954
My name is Alice. My name is Bob. 0.945 0.999

Table 5.2: Comparison of document average and normalised bag-of-words similarity.

Table 5.2 captures the reason why we normalise the vectors of named entities. Despite
the vectors of named entities being similar, normalising gives consistently higher similarity
of sentences that contain them. This step is useful if there are a lot of rules with named
entities in them and we want to pick the most similar rule matching the query. If we do
not normalise, rules which have exactly the same named entities might be more similar
leading to mistakes such as wrong intents being recognised. For example, if we want to
capture a weather information intent, we do not want the vector of the named location
to add bias to the similarity measure.

The vector substitution function can also be used to trim out most commonly used
tokens and weight specific tokens such as nouns. However, in most cases it is hard to
determine which tokens should contribute or not. For example, we might want to trim
the determinant (DT) in sentence "Bob is the builder." but if we have another sentence
"Bob is a builder." we won’t be able to distinguish them. Although such cases are rare,
a greedy trimming function can cause discrepancies in the similarity measure.

5.1.3 Maximal Token Similarity

Instead of compressing the entire sentence into a single vector to calculate its similarity,
we can consider each token separately. The maximal token similarity looks for the most
similar token in the other sentence and then averages every tokens’ findings. In other
words, it calculates how much of the given sentence is found in the other sentence. Thus,
the similarity represents how much of the current sentence in some sense is present in the
other.

αtoken(S, T ) =
1

|S|

|S|∑
i=1

max
j
αcos(Si, Tj) (5.8)

Equation 5.8 demonstrates that for every token in the original sentence S, we find the
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most similar token Tj in the other sentence and then take the average over all tokens in
the original sentence. When used with context based similarity measure such as cosine
similarity, the maximal token similarity reads how much meaning of the original sentence
is embedded inside the other sentence. Thus, this similarity construction is impervious
to permutations of tokens in either sentence. It does not consider the ordering of tokens
or structure and can be considered too greedy.

The maximal token similarity is not well-founded as it is not commutative. If a sen-
tence is completely embedded inside another, then the similarity will be 1.0 but not the
other way, demonstrated in table 5.3. However, when common tokens such as determi-
nants (DT) and prepositions (PRE) are not considered, maximal token similarity can be
used to find similar sentences for a given sentence in documents. This usage is discussed
in detail in the evaluation section 8.2.

5.1.4 Weighted Maximal Token (Fuzzy) Similarity

The fuzzy similarity measure tries to address some of the issues of the maximal token
similarity by combining some structural information into the sum. Instead of every token
having the same contribution to the overall similarity, we follow the dependency structure
to average at every node. Thus, the sentence similarity is defined from a node of the given
sentence in a recursive fashion. To get the final sentence similarity, the root node of the
first sentence can be used as the starting node.

αfuzzy(Sx, T ) =
1

|Cx|+ 1

(
max
j
αcos(Sx, Tj) +

∑
c∈Cx

αfuzzy(c, T )

)
(5.9)

As defined in equation 5.9, if the node has no children Cx then fuzzy similarity yields
the maximal token similarity for that particular token. Otherwise, the children’s maximal
token similarity are averaged following the dependency structure. This approach avoids
common tokens to significantly influence the final similarity and gives root nodes such as
verbs higher precedence.

α(how is the weather, T ) =
α(how, T ) + α(is, T ) + α(the,T )+α(weather,T )

2

3
(5.10)

An example is shown in equation 5.10 demonstrating the averaging over the depen-
dency structure. By collapsing similarities further down in the dependency tree, we try to
accumulate information about the structure. In the example, the token the determines
weather and is averaged together and not weighed equally with other root level tokens.

In table 5.3, the fuzzy similarity still returns 1 if the sentence is embedded inside
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S T mts(S, T) fuzzy(S, T)
How is the weather? How is the weather today? 1.0 1.0
How is the weather today? How is the weather? 0.893 0.893
Alice picked up the chair. The chair was picked up by

Alice.
0.999 0.999

The chair was picked up by
Alice.

Alice picked up the chair. 0.926 0.868

Table 5.3: Comparison of maximal token and fuzzy similarity.

another; however, it is slightly more careful about structure changes. Overall, it could
be considered a greedy not well-founded similarity measure but slightly more stable then
maximal token similarity. As a result, fuzzy similarity is the main measure used by Kevin
for matching user inputs with rules and extracting similar sentences from a given corpus.

5.1.5 Tree Edit Similarity

Since the dependency parsing returns a tree structure, we can define a similarity
measure based on the tree edit distance of the two sentences. The tree edit similarity
is a metric based on the tree edit distance between sentences which considers carefully
the structure. We implemented the tree edit distance algorithm described by Zhang and
Shasha [72] using dynamic programming and consider the following insert, update and
remove costs:

insert(x) = remove(x) = 1.0 (5.11)

update(x, y) = 1− αcos(vx,vy) (5.12)

The cosine similarity between words are embedded within the tree edit distance calcu-
lation as the cost of updating a node with another is 1 minus the similarity, equation 5.12.
That design gives a cost of 0 if the words are identical and 1 if they are completely dif-
ferent. Most of the penalties are, therefore, incurred when the structure is different due
to high insert and remove costs, equation 5.11.

αedit(S, T ) = 1− d(S, T )

max(|S| , |T |)
(5.13)

Since the maximum edit distance can be the addition or removal of the longest sen-
tence, we can normalise the edit distance to give us a similarity metric base on it, repre-
sented in equation 5.13. This construction is well-founded since identical sentences have
an edit distance of 0, thus a similarity of 1 and the tree edit distance is commutative.
However, the tree edit distance is very susceptible to structural changes by design.
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S T d(S,T) edit(S,T)
Hi there. Hello there! 0.747 0.751
How is the weather? The weather, how is it? 4.0 0.428
Is this OK? This is OK. 0.484 0.878

Table 5.4: Examples of tree edit similarity.

Table 5.4 captures examples of tree edit similarity. Compared to greedy similarity
measures, the tree edit distance is much more conservative. The second example drops in
similarity due to significant structure change reflected by a distance of 4. Therefore, the
tree edit similarity has very limited scope on its own when matching relative sentences
and it is not used in Kevin even though implemented.

Another significant problem with the tree edit distance is the performance cost. Unlike
taking dot products of vectors, the edit distance requires dynamic programming and run
much slower than other metrics, summarised in table 8.2 in the evaluation section 8.2. If
we are to match hundreds of rules or scan through a larger corpus, the performance hit
degrades user experience and causes lag between the user input and Kevin’s response.

5.1.6 Hybrid Similarity

To at least address the susceptibility of tree edit distance, we can combine it with a
greedy similarity measure to get a hybrid similarity measure. In this case, we combined
the tree edit distance (section 5.1.5) with the fuzzy similarity (section 5.1.4) using a weight
w to balance them. The hybrid similarity does suffer from poor runtime performance since
it not only needs to compute the expensive edit distance between sentences but also find
maximal token similarity for fuzzy similarity.

αhybrid(S, T ) = wαedit(S, T ) + (1− w)αfuzzy(S, T ) (5.14)

Equation 5.14 describes the simple construction of the hybrid similarity. The weight w
can be a function of the sentences w = f(S, T ) to find the optimum balance between the
two similarity measures. However, for our implementation we use a constant of w = 0.2.
Since the performance cost of hybrid is so high like tree edit similarity, it is not used
within Kevin although implemented.

5.2 Sentence Unification

Since PTrees (section 7.2.1) can contain variables, we require a mechanism to unify
sentences. This unification process allows Kevin to extract segments, arguments from
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sentences that it is interested in such as location names. By using variables in natural
language sentences, we can generalise rules and allow them to be chained for more complex
proofs. Throughout this report, we will only consider unifying two sentences represented
as parse trees which might contain variables. Equation 5.15 describes the function that
takes two sentences as input and returns true if the sentences are unifiable, false otherwise.
As a side effect, the unification process can assign variable values depending on the type
and implementation of the unifier function.

θ : S2 → (True, False) (5.15)

We will present two unification mechanisms: strict and fuzzy unification. Both are
used within Kevin at different stages and internal components. Both work on the depen-
dency structures obtained from dependency parsing. Therefore, any discrepancies in the
dependency parsing could affect unification directly.

5.2.1 Strict Unification

Strict unification is based on basic tree structure matching with extra checks for nodes.
This approach is very efficient and easy to implement. To unify two sentences, strict
unification follows the dependency tree structure as-is in a recursive manner. To start the
process, we give the root nodes of both sentences.

αcos(x, y) > k (5.16)

tag(x) = tag(y)

|Cx| = |Cy|

At every node we perform the checks described by equations 5.16: we ensure the nodes
are similar enough, they have the same part-of-speech tags and they have the same number
of children to guarantee same structure. We do not explicitly check for dependency tags
as the sentence structure as a whole is ensured to be the same. When either of the nodes
are variables, if they have a value then the unification unwraps the variable’s value and
proceeds as normal. Otherwise, the tags are compared and the variable value is assigned.
The unification still continues to check the children of the variable node.

θstrict(Mary is happy, Mary is not happy) = False (5.17)

Since the strict unification follows the dependency structure, any mismatches will
cause it to fail. Therefore, we only use strict unification in cases we know the sentences
are sanitised and do not originate from a noisy source such as the user. For example, all

71



5.2. SENTENCE UNIFICATION CHAPTER 5. SIMILARITY & UNIFICATION

internal proofs use strict unification as rules inside a knowledge base are manually written
in a matching fashion. The biggest advantage over similarity based unification functions is
that it can handle negated sentences. Equation 5.17 demonstrates how negated sentences
do not unify even though they are very similar to the extent they differ by only the
negation.

5.2.2 Fuzzy Unification

To better handle noisy input such as user queries and external text, we require a
greedier unification function. Fuzzy unification was built on sentence similarities to handle
extremely noisy input. By noise, we mean how different the input is from the expected;
a simple measure of noise could be defined as 1 − α(S, T ) since the lower the similarity
the more different, noisy the sentences are. As there are many ways to say something,
just relying on a matching dependency structure performs poorly. With fuzzy unification,
we take fuzzy similarity (section 5.1.4) and threshold its output while unifying variables
along the way. Therefore, it acts as a greedy unification method over noisy input.

θfuzzy(S, T ) =

True, αfuzzy(S,T )+αfuzzy(T,S)

2
> k

False, otherwise
(5.18)

The construction of the fuzzy similarity is straightforward and simply thresholds the
output of fuzzy similarity both ways, equation 5.18. We perform the similarity measure
both ways as it is not commutative. In cases where there are no variables, the fuzzy uni-
fication process is solely dependant on the output of the similarity metric. This situation
is useful during information retrieval as the corpus text will not contain any variables and
the queries will be grounded.

xv , ∃y ∈ T tag(x) = tag(y) ∧ dep(x) = dep(y) (5.19)

Figure 5.1: Fuzzy unification example on slightly different sentence structures.
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When we encounter a variable without a value, we search for a token in the other
sentence that has the same characteristics as the variable’s placeholder token. Charac-
teristics often include part-of-speech tags and dependency tags as in equation 5.19 but
can differ based on how strict or lenient we want the unification to be. This aggressive
approach works well when there is a single substructure matching the variable template
such as shown in figure 5.1. When there are multiple options the first one is matched
and if there is a second variable with the same template, the values are assigned in the
order they appear. It is also important to note that only variables in the left sentence S
are assigned values, variables in T are untouched and the unification process is run both
ways. This reciprocal run is caused by lack of commutativity of fuzzy similarity.

θfuzzy(What is the weather in X:London;

In Paris, I wonder how the weather is) = True (5.20)

θfuzzy(Mary is happy; Mary is not happy) = True (5.21)

An successful example match with a very noisy input is shown in equation 5.20. The
unification process extracts out the correct token Paris from the sentence and unify.
However, the downside of having a similarity based unification method is revealed with
simple negated sentences such as in equation 5.21. The sentences are almost identical and
therefore have a very high similarity measure way above the set threshold to successfully
unify. As a result, we use fuzzy unification on external sources such as user input and
strict unification internally within a knowledge base.
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Chapter 6

Deep Question Answering

In this chapter we focus on information retrieval methods used by Kevin to benefit from
vast amounts of information available online and augment its text processing capabilities,
particularly answering informational queries (section 3.1). When accessing external text
sources such as Wikipedia1 and news articles, it is necessary to extract the relevant parts
of a given document. This situation is in contrast to structured API requests that external
functions perform as part of intent parsing in which a query is transformed into a known
action within a domain.

Information retrieval and machine question answering allows Kevin to expand its
knowledge base tremendously. However, as many online resources were written for human
consumption, they are very noisy and prove challenging to process. In this chapter we
look at sentence selection using pre-trained neural networks and vector embeddings as
well as a custom neural network to extract correct answers from sentences.

6.1 Similar Selection

When processing large chunks of text, we might want to find the most relevant sentence
to another sentence that we are searching for. Similar sentence selection allows Kevin to
extract a single sentence from a given set of sentences such as a paragraph or document
using similarity measures presented in section 5.1. It turns out, when the sentence being
searched is a query, we end up in a question answering scenario that efficiently builds on
sentence similarities. The similarity measure then can be considered as a confidence value
for the answer, the higher the more information we found the more confident we are.

sa = argmax
i

αfuzzy(q, Pi) > k (6.1)

1We only use the English version throughout this project at https://en.wikipedia.org/
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When we consider one of the not well-founded similarity measures such as maximal
token similarity (section 5.1.3), we discovered that the metric is based on how much of
the tokens are embedded within the other sentence. In other words, such metrics gave
us a way of telling how much information of the given sentence is present in another.
Thus, given a paragraph we can simply search for a sentence Pi which contains most
information about our query q as described by equation 6.1. In our implementation for
sentence selection we use fuzzy similarity for reasons described in section 5.2.2.

How big are microchips?
In 1958 Jack Kilby invented the microchip. Mi-
crochips are tiny but can store lots of informa-
tion. They helped make computers smaller. In the
1970s computers were smaller and cheaper so people
started to use them at home. In the 1980s computer
games were very popular. Lots of people bought com-
puters just to play games.

Table 6.1: Example sentence selection from A2 children’s comprehension text.

An example is shown in table 6.1 on how the correct sentence containing the answer is
selected in a children’s comprehension exercise obtained from the British Council2 (Note
the selection is run on the entire text not just the excerpt provided). In this case, the
selected sentence contains some information about size with token tiny and microchips

which the query is interested in. Therefore, the fuzzy similarity metric is high enough to
indicate that this sentence might contain the answer maximising the similarity value for
the query and the selected sentence.

A more complicated real-world example taken from Wikipedia’s YouTube page3 sum-
mary is shown in table 6.2. The sentence selection results are underlined in the summary
for each query. In this case the full context is given to demonstrate how correct and
incorrect sentences are selected in an extremely noisy environment such as Wikipedia. In
the first example (1), the selection fails and returns the answer to what YouTube is rather
than who created the service. This situation is a common when the query is short enough
that the meaning can sway to other sentences which might not contain the answer but not
always the case as in example (2). In the third case (3), the correct sentence is selected
despite the addition noise to the query that made it longer than necessary. Finally, the
fourth example (4), the selected sentence contains the most information about making
money due to tokens such as earns and revenue which boost its fuzzy similarity measure
across other sentences. Therefore, by using vector embeddings as a similarity measure,
the sentence selection scheme is efficient enough to handle large noisy corpus.

2https://learnenglishkids.britishcouncil.org/en/reading-practice/computers accessed
2017-04-14

3https://en.wikipedia.org/wiki/YouTube accessed 2017-05-8
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As an optimisation, we pre-process the query in order not to create bias in the fuzzy
similarity measure. For example, we remove the punctuation to lower the bias against
sentences which contain question marks. Another optimisation is to remove stop words
such as the and question words like why as they do not contribute significantly to the
meaning of the sentence. However, this process lowers the number of tokens that the
fuzzy similarity will work on especially in short queries reducing amount of information
the similarity measure is looking for.

Since the underlying fuzzy similarity measure just computes vector products of tokens,
sentence selection also has a good performance when dealing large chunks of text. In
fact, we do not cache parsing results in Kevin when accessing external resources and can
afford to re-process the texts without having a big performance impact on the response
time. Another good feature from the perspective of a digital assistant is that we return
full sentences that sound more natural and often contain some extra information. This
situation creates a better user experience and a smoother conversation.

6.2 Guided BiDAF

Once we can select a sentence which might contain the answer of a query, we can
also try to extract the answer slice from the context sentence. Assuming the answer
is a continuous slice of a given sentence, the guided bi-directional attention flow model
attempts to find the start and end indices of that slice token wise. Therefore, we can
embed our sentence selection scheme into a deep neural network to get an answer from a
wider context. The guided BiDAF model is based on the BiDAF [9] model (described in
section 3.4.4); however, our network is shallower and narrower due to resource and time
constraints surrounding the project.

∃i, j s.t. 0 ≤ i ≤ j < |S| ∧ argmaxP (I = i) ∧ argmaxP (J = j) (6.2)

Equation 6.2 assumes the answer is in the context sentence and take the indices4

that maximise the probability of being the start P (I = i) and the end P (J = j). This
construction gives the final result as a slice of the original context sentence given a query,
f(S,Q) = S[i : j]. Therefore, the input of the neural network is a context sentence S and
a query Q giving the output of two discrete probability distributions that correspond to
random variables I and J . If the answer is not in the context sentence then the function
is undefined although it will give some, most likely wrong answer.

4We formulate the equations to index from 0 to match the implementation.
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6.2.1 Network Architecture

The guided bidirectional attention flow model consists of five layers that given a larger
context it extracts the specific answer to a given query. Since we pipe the larger context
through sentence selection, the neural network is designed to work on smaller contexts
usually the size of a single sentence that contains the answer unlike the original model
which runs on the entire context.

Figure 6.1: The architecture of the network used in guided BiDAF.

Figure 6.1 shows an overview of our network architecture. The network operates at
the token level including punctuation as valid tokens. Therefore, the maximum granu-
larity of the answers achieved will be limited to the natural language processing library’s
tokenisation.

1. Guiding layer consists of a sentence selection mechanism that given a larger con-
text narrows down to a single sentence that might contain the answer. This layer
reduces the upstream neural network size significantly since the size of the context
input is now smaller. We use methods described in sentence selection section 6.1 to
pick out a context sentence.

2. Embedding layer converts every token in the context sentence and the query into
their corresponding vector representations. Vector representations might already
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be used in sentence selection during similarity calculations; however, this layer re-
embeds every token using the existing GloVe [3] vectors to get clean vector inputs
into the upstream neural network.

3. Attention layer computes weighted vector representations of the context and query
tokens as described by the original BiDAF model (section 3.4.4). We build the
shared similarity matrix using the cosine similarity of vectors Sij = αcos(Ci, Qj)

which encodes the similarity between every token in the context sentence and the
query. Then the Context2Query and Query2Context is computed as defined in the
paper. The output of the attention layer is concatenated with the original context
embeddings to provide the information known about the context sentence together
with the given query.

4. Modelling layer captures relationships between the context words with respect
to the given query. Following the original model, we use two layers of bidirectional
LSTM units (section 3.4.3) to compute new vector representations of context words.
The bidirectional nature of the LSTM layers allow the network to compute the vector
of a token based on tokens that appear before and after it incorporating contextual
information within the sentence. The output of the modelling layer are vectors
M ∈ R2d×C for each context sentence token. The dimension is doubled due to the
concatenation of bidirectional output of each LSTM unit.

5. Output layer feeds on the modelling layer to produce two discrete probability
distributions that encode the slice of the context sentence as the answer. We flatten
the output of the modelling layer into a 1-dimensional vector and use two dense
layers with softmax activation to produce the output. The output of the start index
is also fed to the end index dense unit in order to improve the predictions. As a
result, the end index prediction loss is consistently lower than the start index during
training.

6.2.2 Model Differences

We deviated from the original model mainly because of resource and time constraints
surrounding the project. However, we also made some active changes that better suit
Kevin and the network’s guided nature. There are three main differences of the guided
BiDAF model: it is shallower, narrower and has only dense layer at the output.

• Shallower than the original. We omitted the character embeddings and the con-
textual embedding layer entirely. These changes were done to reduce the memory
footprint of the network as we didn’t have the resources to train with extra two
layers. The shallower network meant we degraded the accuracy of the answers and
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failed to recognise complex query-context pairs without a contextual embedding
layer.

• Narrower context size since we already have a guidance mechanism to pick out a
sentence which might contain the answer. Instead of passing the entire context which
may contain a lot of tokens, in the region of thousands for Wikipedia summaries,
we have a much smaller context that only accommodates a single sentence. This
reduction meant all upstream layers were narrowed with less LSTM units; thus the
training time for the network got reduced enough to be reasonable on a CPU.

• Dense at output layer instead of an LSTM unit on the end index prediction. Since
the network already lacked rich contextual embeddings, an LSTM didn’t contribute
to a better end index prediction. Therefore, we converted the layer to a dense and
gained a performance improvement to again reduce our training time.

The BiDAF model was designed to process the entire context as a whole of the
SQuAD [71] dataset; therefore, it cannot answer questions over large context. On the
other hand, the guided BiDAF can scan the large corpus to select a sentence and extract
an answer. As a result, Kevin can answer queries over large context compared to a limited
context size of the original implementation.

The sentence selection does not have be limited to a single sentence. We can indeed
return a window around the most likely sentence for the neural network to find an answer.
However, that would require a larger context input size for the neural network increasing
the size of each layer. This approach might be useful for the original BiDAF model such
that it wouldn’t be limited to fixed size contexts but can be guided by some context
selection mechanism.

6.2.3 Training and Limitations

We implemented guided BiDAF using Keras [73], a wrapper library for TensorFlow [2].
We used a maximum context token size of 60 and a query token size of 24. Therefore,
the network does not handle any sentences larger than the maximum input size. The
original paper reported a training time of 20 hours on two Titan X GPUs. However, due
to the reductions made to the guided version, we were able to train our guided model
in 16 hours on a Intel i7-47905 CPU. The network was trained using the SQuAD [71]
dataset with a heuristic to check whether the sentence selection returned a sentence which
contained the answer. As such, we ignored training examples in which the sentence
selection failed as well as the sentences which did not fit our network size. We are not

5http://ark.intel.com/products/80806/Intel-Core-i7-4790-Processor-8M-Cache-up-to-4_
00-GHz reference last accessed 2017-05-21
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certain if these omissions in the training set affected the model result in a noticeable
manner. As anticipated, the guided model did not perform as good as the original due to
the omissions and restrictions achieving a loss value of ≈ 4.21 on the training set.

The reductions in the network meant it ran much faster and provided a lightweight
integration into Kevin. However, the question answering accuracy is severely reduced to
the extent that it got a exact match score of 23.6% on the corresponding dev dataset. We
analysed why the exact match score was extremely low and identified few key limitations
of the guided model: wrong sentence selection, no answers across sentences, no contextual
distinction, lack of character embeddings and limited context size:

• Wrong sentence selection occurs on the context and renders the upstream neural
network answer extraction impossible. If the wrong sentence is selected that does
not contain a slice for the answer, the guided model fails at the first layer. The
output becomes some maximal probability over the wrong sentence finding similar
answers such as a number if the query was looking for a numerical answer.

• No answers across sentences can be outputted. Since we select a single sentence
which might contain the answer, if the answer spans across sentences, for example
with co-references, the guided model again fails at the first sentence selection layer.
It cannot handle multi-sentence contexts by design and there are frequent cases of
this situation in the dev dataset obtained from the Wikipedia articles.

• No contextual distinction is made in the selected context sentence since the
model lacks the contextual embedding layer. Therefore, the guided model cannot
answer complex relationships such as distinguishing may and May tokens. It is strictly
limited to single word embeddings provided by the GloVe embedding layer.

• Numerical and symbol based answers such as dates and times are not prop-
erly recognised since the model lacks a character embedding layer. For example,
measurement units, percentages, different date notations and information within
parenthesis are often out of reach of the model’s understanding. Since such cases
are common on factual Wikipedia pages, the model performs very poorly.

• Limited context size caused most queries not to be considered and got a score of
zero by default. The context size was not adjusted to fit the data but to provide a
reasonable training time to handle shorter sentences.

In the worst case, the neural network seems to output the entire context sentence back.
We believe this behaviour was caused by sentence selection in the training phase. Since
all context sentences were checked to contain the answer, the neural network at worst
would just have to output the sentence back knowing it contains the answer. Therefore,
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the entire neural network is coupled to the sentence selection and in such cases act as the
identity function on the context sentence provided.

6.2.4 Output Examples

Despite the limitations of the guided model, it can extract some answers from correctly
selected context sentences. This neural network integration allows Kevin to handle noisy
input at a finer granularity then just sentence selection or maximal token matching with
fuzzy unification.

Figure 6.2: Factual answer extraction using guided BiDAF.

Figure 6.2 demonstrates a single token answer extraction on a factual sentence. In this
case, the probabilities of both the start and end indices are highest at the 1907 token.
Thus, the correct answer is returned from the neural network. Due to the when token in
the query, the neural network looks for a token representing date or time. The year is the
only instance of such a token and as a result the confidence, the joint probability of the
answer is almost 1.

A more complicated answer is presented in figure 6.3 representing a causal relationship
between John and the reason he is tired. The neural network correctly extracts "a hard
working student" as the answer. When we analyse this example, we notice that besides
John getting tired, the only piece information provided is about him being a hard working
student. Therefore, the networks picks up on that information. We notice that the second
choice for the indices is the token tired most likely because it is already contained in the
query. This example also demonstrates a slice, range of the context being returned as the
answer rather than a single token.
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Figure 6.3: Causal answer extraction using guided BiDAF.

Figure 6.4: Failed answer extraction example of guided BiDAF.

We observed a failed example from a sentence selected from Germany’s Wikipedia
page6. The neural network outputs "member state of the European Union" as the answer
instead of "86 million". We believe the reason for this incorrect answer is the lack of
contextual embedding layer. With just word embeddings, the probability distribution

6https://en.wikipedia.org/wiki/Germany accessed 2017-05-28
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spikes after a very similar word token. In this case, the token population in the query
skews the distribution towards and after the token populous in the context sentence.
The original BiDAF model does answer this query correctly on the entire context of the
Wikipedia summary.

(1)Who founded YouTube?
(2)Who owns YouTube?
(3)Do people need to register to watch videos on YouTube?
(4)How does YouTube make money?
YouTube is an American video-sharing website headquartered in (1)San Bruno,
California. The service was created by three former PayPal employees – Chad
Hurley, Steve Chen, and Jawed Karim – in February 2005. (2)Google bought
the site in November 2006 for US$1.65 billion; YouTube now operates as one
of Google’s subsidiaries. The site allows users to upload, view, rate, share, add
to favourites, report and comment on videos, subscribe to other users, and it
makes use of WebM, H.264/MPEG-4 AVC, and Adobe Flash Video technology
to display a wide variety of user-generated and corporate media videos. Available
content includes video clips, TV show clips, music videos, short and documentary
films, audio recordings, movie trailers and other content such as video blogging,
short original videos, and educational videos.
Most of the content on YouTube has been uploaded by individuals, but media
corporations including CBS, the BBC, Vevo, and Hulu offer some of their ma-
terial via YouTube as part of the YouTube partnership program. Unregistered
users can only watch videos on the site, while registered users are permitted to
upload an (3)unlimited number of videos and add comments to videos.
Videos deemed potentially offensive are available only to registered users affirm-
ing themselves to be at least 18 years old.
YouTube earns advertising revenue from Google (4)AdSense, a program which
targets ads according to site content and audience. The vast majority of its
videos are free to view, but there are exceptions, including subscription-based
premium channels, film rentals, as well as YouTube Red, a subscription service
offering ad-free access to the website and access to exclusive content made in
partnership with existing users. As of February 2017, there are more than 400
hours of content uploaded to YouTube each minute, and one billion hours of
content is watched on YouTube every day. As of April 2017, the website is
ranked as the second most popular site in the world by Alexa Internet, a web
traffic analysis company.

Table 6.2: Guided BiDAF with sentence selection underlined on Wikipedia summary of
YouTube.

Table 6.2 shows the results of the guided BiDAF model together with the sentence
selections underlined. In the first case (1), since the sentence selection fails, the neural
network has no chance of getting the correct answer. Instead, it outputs where YouTube
specifically is because it was looking for an entity that might have founded YouTube. The
second query (2) is correctly answered as the sentence selection was correct; the context
sentence contains two slices with Google and the network selects the first one as buying
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something is often related to owning it. The third case (3) is an example in which the
sentence selection succeeds but the neural network fails to extract the correct answer.
Since context sentences often do not contain yes or no tokens the network struggles
to figure out what the query requires. As a result, the closest answer to what registered
people can do with videos on YouTube is extracted. Finally, the fourth case (4) is the best
example in which both the sentence selection and the neural network working together to
pinpoint the correct answer "AdSense".

Overall, the guided model can efficiently scan through large context and then use
a smaller neural network to extract the answer. However, the omission of character
embeddings and contextual layers significantly reduces its accuracy as well as failing when
the guiding layer incorrectly selects the context.
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Chapter 7

Implementation

In this chapter we cover the implementation of Kevin and how it is organised internally.
We first look at the natural language processing libraries used as a foundational layer;
then cover the internal representations of objects handled. Finally, we detail out the query
pipeline and how an input is processed by Kevin.

7.1 NLP Back End

Kevin relies heavily on downstream natural language processing tasks such as part-
of-speech tagging (appendix A.1) and dependency parsing (appendix A.2) to be already
handled before any of its components start to manipulate the input. Thus Kevin builds
on top of these libraries and assumes a working foundation. During the project, we
considered two natural language processing libraries: Spacy from Explosion AI [74] and
CoreNLP from Stanford [75].

Although we experimented with both libraries, Kevin exclusively uses Spacy to pro-
cess all natural language input and output. This design choice is mainly influenced by
the dependency parsing discrepancies in CoreNLP that Kevin was not designed to handle
elaborated in the CoreNLP section 7.1.2. Both libraries present major consistency prob-
lems in parsing and yield a challenging foundation to build an upstream framework that
assumes the lower level tasks are successful. Often many failures such as not recognising
an intent manifest themselves in the form a failed parsing or entity recognition at the
natural language processing level.

7.1.1 Spacy

Spacy is an natural language processing library that provides: tokenization, part-
of-speech tagging, dependency parsing, named entity recognition and automatic vector
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embedding using GloVe (section 3.4.2). This diverse and rich tool-set allows Kevin to
focus on upstream tasks with one exception: co-reference resolution. The library does
not provide co-reference resolution and we had to therefore implement basic co-reference
resolution in order to accommodate basic follow-up questions with pronouns.

Figure 7.1: Example parsed sentence using Spacy.

Figure 7.1 visualises the output of Spacy1 on a sentence and how part of speech
tagging is combined with dependency parsing. It is important to note that the dependency
structure is a tree with the root representing the binding verb (VB) of the sentence. These
outputs are then used as-is by Kevin to construct internal representations and manipulate
natural language.

(a) Correct proper noun (NNP) parsing (b) Incorrect adjective (JJ) parsing

Figure 7.2: Example of complete structure change and failed parse in Spacy.

There are many examples in which Spacy parses incorrectly even if a slight change
is applied. In figure 7.2a, the sentence "Is Mary happy" is correctly parsed and Mary
is identified as a proper noun (NNP); however just changing the adjective completely
disfigures the parsing and outputs an incorrect representation seen in figure 7.2b. Such
failures cause major disruptions in upstream processing as Kevin relies on correct parsing.
When there are discrepancies in short simple queries, Kevin struggles to comprehend what
the user it trying to say and subsequently fail recognising an intent, query or even a basic
command.

1Using Displacy at https://demos.explosion.ai/displacy/ accessed on 2017-05-06.
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Figure 7.3: Named entity success and failure cases in Spacy.

Figure 7.3 demonstrates2 cases in which the named entity recognition (NER) in Spacy
succeed and fail. In the failure case, despite identical sentence structure "Barack Obama"
is not recognised as a named entity. This situation is again a major problem for upstream
processing. For example, if an intent such as "How old is someone?" is looking for a
named entity person, asking the age of "Barack Obama" will fail not because the intent
was incorrect but because the person wasn’t recognised in the query.

We try to compensate these parsing errors during upstream processing such as ignoring
entity recognition in certain cases to allow the intent parsing to function as expected.
However, this situation creates an unstable infrastructure since in general the number
of checks performed on the parse output is reduced. For example, to avoid the case in
figure 7.3, we can drop named entity recognition and just rely on part-of-speech tags to
give us proper nouns (NNP) to match an intent. As a result, the intent becomes less
reliable since a proper noun could be a location name as well as person, forcing the intent
to output the age of a location resulting in undefined behaviour.

7.1.2 CoreNLP

CoreNLP is a suite of natural language processing pipelines which when combined
together can provide tokenization, part-of-speech tagging, dependency parsing, named
entity recognition and co-reference resolution [75]. It does not bind vector representations
by default but provides more robust named entity recognition and a co-reference resolution
that Spacy cannot handle well. The vector representations of words can be attached as
an extra step at the end of the pipeline.

Figure 7.4: CoreNLP example parsed sentence output.

Figure 7.4 demonstrate and example output of CoreNLP3 as well as the reason why
we decided not to use it as Kevin’s primary natural language processing library. In

2Using Display-Ent at https://demos.explosion.ai/displacy-ent/ access on 2017-05-06.
3Using the server visualisation tools that are packaged with CoreNLP.
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the example sentence, the dependency structure is rooted at scientist rather than the
binding verb am. This root structure change violates a design principle which states
that the root should be a verb if any so that the arguments would be sub trees. Kevin is
designed to use substructures which bind under the root verb in order to extract arguments
and recognise intents. However, in this output case that assumption is false and Kevin no
longer functions properly and fails for example to recognise that the user is a computer
scientist.

Figure 7.5: CoreNLP co-reference resolution example.

Despite the challenges in the dependency parsing with CoreNLP, the named entity
recognition is more robust than Spacy and provides co-reference resolution as shown in
figure 7.5. The parsing recognises "Barack Obama" and successfully resolves "his" in the
follow-up sentence. These features play an important role in following a conversation and
understanding the context from the perspective of a digital assistant.

We decided not to use CoreNLP in our project because of the fact that the dependency
parsing often violates the assumption that the root of the tree is the binding verb. This
assumption turned out to be so important in the design to overcome other features of
CoreNLP such as co-reference resolution. The crucial component that gets affected is the
similarity measures (section 5.1) discussed in this report that expect the root dependency
structure to be based on verbs and arguments as children.

7.2 Internal Representation

In this section we discuss the constructs manipulated by Kevin internally. We present
the Parse Trees (PTree) that wraps the output of a natural language processing library
as the framework primitive and then build aggregate structures such as Rules. These
objects form the basis of Kevin’s framework and his behaviour; they are summarised in
table 7.1.

Although the objects present a general abstraction for a natural language framework,
they closely follow our implementation in Python and their corresponding class names for
ease of reference. In complex constructs such as neural network integration, these classes
will get overridden to provide a transparent mixture of external components, detailed
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PTree Abstracts a parse tree output from NLP libraries.
Var Placeholder for PTrees inside other parse trees.

Expr Represents a provable expression wrapping various other objects.
Rule Denotes expressions in the form of material implication.

KB Aggregates rules into knowledge bases that Kevin accesses.

Table 7.1: Summary of internal objects used by Kevin.

in the free form section 4.8. The external components can and do use these internal
constructs to interact with Kevin internally such as asking an expression to be proved.

7.2.1 Parse Trees (PTree)

Parse Trees (PTree) wrap around the output of a natural language processing library
to have consistent internal representation of sentences. They form the building blocks for
any natural language abstraction in Kevin. A PTree is an ordered recursive tree structure
in which each node represents a token in the original sentence. They are designed to
capture individual sentences and a collection of them represent a parsed document.

Figure 7.6: Diagram showing a Parse Tree (PTree).

Figure 7.6 provides a visual representation of a PTree capturing "What is the weather
in X:New York". It looks very similar to output of the natural language processing
libraries (figure 7.1) because in its basic form it wraps around every token following the
dependency structure. Thus, the in-order traversal of a PTree gives back the sentence
that was parsed. An important feature is the variable subtree denoted VAR. A variable
subtree allows another PTree to hold its place giving way to unifications discussed in
section 5.2. These subtrees can vary in length and do not necessarily need to match the
structure of the variable template; any other subtree can hold its place.
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7.2.2 Expressions (Expr)

Expressions are provable objects that wrap around other primitives such as parse trees
as well as other expressions. By provable we mean they yield semantics that the proof
engine will invoke in order to prove an expression. The meaning varies with the objects
or expressions being wrapped and is summarised in table 7.2. By using the base Expr,
we can create new expressions with different semantics that will integrate into the logic
framework. However, in either case, the upstream components are oblivious to the internal
behaviour of an expression for example whether they call external APIs or not.

ExprPTree Wraps around a PTree.
ExprCall Represents a callable external function.
ExprNbf Negation by failure of another expression.
ExprAnd Denotes logical AND of two expressions.
ExprOr Denotes logical OR of two expressions.

ExprRule Wraps another entire Rule.

Table 7.2: Different kinds of Expressions in Kevin.

The semantics of expressions depend on the objects they represent. While some ex-
pressions have the expected meaning such as ExprAnd meaning logical AND, others such
as ExprCall maintain different semantics. Often user given input is regarded as already
proved with some exceptions such as constraint checking. The proof semantics of expres-
sions are summarised in the table 7.3.

Expression Type Proof Semantics
ExprPTree Must be user given or head of a Rule.
ExprCall Wrapped function must run without errors.
ExprNbf Wrapped expression proof must fail.
ExprAnd All sub expressions must succeed.
ExprOr At least one sub expression must succeed.

ExprRule Follows material implication proof of Rule.

Table 7.3: Proof semantics of Expressions.

Besides the proof semantics, every expressions maintains a resolution (display) se-
mantics that allow Kevin to present the response expression to the user. This meaning
of an expression is completely different from its proof semantics and is invoked after the
proof engine is complete, detailed in query pipeline section 7.3. In general, the display
semantics tell Kevin how to convert the result expression of the logic framework into a
string. The summary of the display semantics of expressions are provided in table 7.4.

As with the proof semantics, when new expressions are created their display semantics
could be altered. When displaying an expression it is allowed to have side effects which
many external functions such as changing context rely on. Having a soup of semantics
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Expression Type Display Semantics
ExprPTree String representation of underlying Ptree.
ExprCall Return value of wrapped external function.
ExprNbf Display wrapped expression, often not used.
ExprAnd Display concatenation of all sub expressions.
ExprOr Randomly select a sub expression to display.

ExprRule Add wrapped Rule to local context.

Table 7.4: Display semantics of Expressions.

proves debugging difficult, however, provides flexibility to extend the framework beyond
logical constructs.

Classical Negation (ExprNot)

Although Kevin has an internal representation to express classical negation (ExprNot),
it is not implemented. The reason we omitted this construct is because we push the
negation into the sentences rather than capturing them at the expression level. It is not
always the case that the negated form the of the sentence in natural language denotes the
classical negated version of the positive sentence; however, those cases do not arise often
in the context of this project to be a problem.

¬(Mary is happy.)↔ Mary is not happy.

In the example case above the semantics of having a classical negation outside of a positive
sentence is equivalent to having a negated sentence. For that reason, Kevin currently does
not handle classical negation although the infrastructure for it does exist.

7.2.3 Rules (Rule)

A Rule captures multiple expressions into processable units that comprise of different
semantics depending on the stage in pipeline. Therefore, they do not strictly represent
material implication semantics. Rules can be viewed as a collection of expressions at
different positions such as the head, query and body.

Figure 7.7: Simplified representation of a Rule.

Figure 7.7 shows how expressions are organised within a rule. The head comprises of a
single expression that the rule supports. The query represents user input that can trigger
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the rule. It is important to note that not every rule has a user query trigger and it could
be empty as such. Finally, the body is a collection of premise expressions that need to be
satisfied in order for the head to be obtained.

It is X:22 degrees.←What is the temperature?; weather : ()→ X

In the above representation we see a more complex interaction incorporating query ExprPTree
that invokes the rule which retrieves the weather information via an ExprCall. The tem-
perature result is substituted into the variable X that is outputted to the user as part of
the display semantics of the parse tree.

Ephemeral Rules

An ephemeral rule is a rule that acts and behaves the same as a normal rule with one
exception: once a answer expression is proved, if the proof chain contains an ephemeral
rule, it is removed from its corresponding knowledge base. Ephemeral rules allow tem-
porary reasoning deformations that change the behaviour of Kevin. They are not widely
used except in certain niche cases such as Easter egg follow-ups that are only invoked
after a certain catch phrase is picked up.

7.2.4 Knowledge Bases (KB)

A KnowledgeBase is a set of rules that Kevin interacts with in order to answer
user queries. Depending on how its interpreted, a knowledge base can form a deduc-
tive database [68] in which the contents of a knowledge base is the logical consequence
of its rules. At runtime, a knowledge base might shrink by removing rules or grow by
addition of rules. There is no condition that the contents of a knowledge base be con-
sistent and in fact end up in an inconsistent state if the correct rules and constraints
are not added or checked. This situation creates a bag of unchecked rules that the proof
engine tries to makes sense of following the proof chain. It is important that a knowledge
base does not impose any logic programming semantics, just collects rules into processable
units.

Kevin can maintain multiple knowledge bases at the same time in the order of pref-
erence. This structure allows Kevin to have user customised knowledge bases that hold
rules specific for that user as well as common knowledge bases that share rules for all
users. For example, a user might change Kevin’s name to something else that would be
recorded in a user specific knowledge base and if a user adds a capability to check weather
information that could be added to a common base. Thus, knowledge bases can organise
rules for personalisation and shared knowledge.
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7.3 Query Pipeline

In this section we describe the steps Kevin takes in order to process user input. Kevin
has a multi-stage pipelined architecture that can short circuit at any point to give an
output. From a birds eye view point, Kevin gets a text input and produces a text output
handled by input and output modules. The interface to Kevin is modular and can take
different forms such as voice input piped through an external speech-recognition module.
Therefore, at its core Kevin is a service that interfaces to end points such as web and
mobile that provide plain text to be processed.

Figure 7.8: Monolithic multi-stage Kevin architecture diagram.

Figure 7.8 displays how different modules interact within Kevin along with the knowl-
edge bases to process user input. The flow isn’t necessarily linear and can be redirected
based on what the user input triggers. This architecture proves difficult to debug as
interactions between main modules are tightly coupled within an instance with many
redirections possible due to side effects. A distributed architecture can be formed by
separating the data from the main modules.

7.3.1 Input Module

The input module acts as the point of entry for all requests made to Kevin. It accepts
plain text input as well as ExprPTrees (section 7.2.2). The functionality of the input
module is as follows:

• Convert input into internal representation if it is just plain text. Plain text
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input is converted into ExprPTree. If it is already an Expression, then it passed
unmodified.

• Store history of past inputs that accumulate as context for other components
such as co-reference resolution. It is implemented as a queue of a certain history
size.

When a user query is given, it must first arrive at the input module. However, when
other components, even external functions interact with Kevin, they can bypass the input
module because the instance of Kevin is exposed within after passing the input module.
This design creates a rather convoluted execution as almost every module can reach any
other module; however, given the experimental nature of the project we wanted to have
maximum flexibility not knowing how the implementation would work out from the start.

7.3.2 Command Module

The command module is responsible of redirecting input to other modules and external
functions. As a result, it can short circuit the system bypassing the standard flow. For
example, an external function that requires follow-up user input such as a location for
a weather intent, can ask the command module to redirect the next input to a callback
function. Then the user’s next input will invoke the callback function which in this case
could output the weather information at the given location.

The command module also allows direct commands to be executed within Kevin to
probe and debug its internal state. Commands are considered the same as external func-
tions but are invoked with a forward slash in front. For example, /reload [kbname]

will reload the knowledge base with the given name. When a command is recognised,
the corresponding function is called and the return value is passed to the output module
directly for user display short circuiting the pipeline.

The non-linear flow of the command module renders debugging difficult. This design is
not well suited for multiple chained callbacks. For example, if a external function redirects
input into another external function which also requires input, the query pipeline is short
circuited twice; if the user provides unexpected inputs the behaviour of Kevin is undefined
as the inputs are redirected away from its linear flow. As a result, we try not to chain
redirects within the command module and consider simpler cases.

7.3.3 Basic Co-reference

The co-reference module attempts to resolve basic cases of pronouns across chained
inputs. It tries to fill the lack of co-reference resolution feature in the underlying natural
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language processing library Spacy (section 7.1.1). It is designed to handle simple cases in
which the pronouns occupy the expected subtree structure in the sentence. Therefore, it
is a greedy dependency structure based co-reference resolution.

s′ = f(su, Sp) (7.1)

∃i, j s.t. dep(tu) = dep(Sij) ∧ tag(Sij) = NN (7.2)

The resolution follows equation 7.1 in which a user sentence su with a pronoun and
a set of past sentences Sp are given to form a new sentence s′. Equation 7.2 expresses
the dependency based co-reference resolution: if jth token of the ith sentence in the past
sentences is a noun (NN) and matches the dependency of the pronoun, we substitute
the pronoun. It is a very primitive greedy algorithm as it will match the first successful
occurrence in the past sentences S. The previous inputs are searched from most recent
and the resolution stops when a match is found.

(a) Corresponding past query (b) Query requiring resolution

Figure 7.9: Basic co-reference resolution based on dependency parsing.

An example is shown in figure 7.9b in which the pronoun "she" needs to be resolved. In
these basic cases, if the past queries contains a sentence such as figure 7.9a, the algorithm
successfully resolves she → Mary. The resolution succeeds on the dependency nsubj

which both the pronoun and the proper noun follow. Even a basic co-reference resolution
renders the interaction more fluid and easy for the user by following a more natural
conversation.

7.3.4 Query Evaluation

When an expression reaches this point in the execution, an entry rule needs to be found
in order for the proof engine to start. Therefore, the query evaluation module searches
the knowledge bases for an appropriate rule that will allow a user given expression to
be proved. The query part of a Rule (section 7.2.3) is used at this stage to match a
successful rule. When a rule is matched, the head expression of the rule along with the
rule is passed to the proof engine to prove the head starting from the matched rule. The
head of the rule often becomes the answer to the user query if proved successful. Thus,
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the evaluation module figures out what Kevin should do for a given input.

r = argmax
r∈C

α(eu, rq) (7.3)

Given a similarity metric α (described in section 5.1), equation 7.3 captures the rule
with the most similar query part rq to the user given expression eu for a given context C.
This rule is used as the starting point for the proof procedure. It is important to note
that the search for matching rule is limited to only the query part of a rule. This allows
the evaluation module to find a match in a single pass across the knowledge bases and
limits possible false positives that might appear in the body of other rules.

At worst case, the query parts of all the rules have to be checked giving O(n) per-
formance. However, the rules can be sorted based on frequency and a threshold can be
applied so the search is terminated when a good enough rule is found. In practice this is
often not a concern as most rules for specific applications are contained within contexts
which significantly reduce the search space as only rules within the active context are
considered.

7.3.5 Proof Engine

The proof engine is responsible of running through rules and satisfying expressions,
proving them along the way. The proof semantics of Expressions are summarised in ta-
ble 7.3 in section 7.2.2. The proof engine considers one rule at a time, proving strictly from
left to right. Therefore, re-ordering the premises might change the semantics depending
on how expressions handle internal state and backtracking. This situation is more of a
concern with external functions as the order in which they are invoked might change the
overall behaviour.

r = argmax
r∈C∧r/∈R

α(e, rh) (7.4)

The starting point for the proof engine is an expression to prove e and a set of rules
R which it cannot access. If a rule r is given, the proof engine starts to prove e using r,
otherwise it searches the head of rules for a maximal match, described in equation 7.4 with
a similarity metric α. The former case often arises from the evaluation module already
passing a rule to start with and the head expression to be proved as an answer so that
the search is not repeated.

Mary is happy← Mary is not sad (7.5)

Mary is not sad← Mary is happy
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The proof engine performs a depth first search over the possible proof space similar to
SLDNF (section 3.3.2). However, a crucial difference is during the search all active rules
R in a search branch are remembered. This set of inaccessible rules ensures that a rule
cannot jump to an ancestor rule that might cause a loop as shown in rules 7.5. Once the
proof engine reaches a rule it has used before in the current branch, it will not be able to
use it again; thus in the example case it not be able to prove either "Mary is happy" or
"Mary is not happy" as they are dependant on each other.

The proof engine also stores the current state of the search for every expression for
backtracking. The expressions can behave differently during backtracking depending on
their implementation. For example, external functions might return different results based
whether they are invoked a second time during backtracking. All these non-uniformities
yield an operational semantics rather than a logical one. When the operational semantics
are unknown, the behaviour of Kevin is undefined.

7.3.6 Resolution (Display)

The display module tries to convert the proven answer expression into something that
could be displayed to the user commonly converting it to plain text. Most often this is a
parse tree (PTree) that is converted to a string. However, expressions might have different
display semantics which are summarised in table 7.4 in section 7.2.2. The display module
invokes the display function of the expression that is passed to it and passes the result to
the output module.

The display module does some extra checks on top of invoking a display function on
the expression. It ensures certain conditions are satisfied before the result is outputted
to the user. These checks safe guard the user from possible internal failures. The checks
performed by the display module are summarised below:

• Variable check, if a parse tree is being displayed, ensure that all variables are
bound if any. This check ensures that the user does not get a partial answer from
a variable containing parse tree.

• Check external function return is not empty. If a ExprCall is being displayed,
the function might return an empty result which display module handles. Otherwise
the user might get a blank response.

Given the possible short circuits within the query pipeline, the checks performed by
the display module can be bypassed. For example, a direct command will invoke the
output module in the current implementation so that internal messages are displayed as
is avoiding the display module entirely.
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7.3.7 Output Module

The output module binds to interfaces that allow some form of output to be displayed
to the user. The final output of Kevin is often plain text. Therefore, other components
such as text-to-speech (TTS) are connected externally. The crucial role the output mod-
ule plays is to send a response to every interface that a user might be bound to. For
example, if a user is connected from multiple clients using difference interfaces such as
web and terminal, the output module pushes the results downstream to all those inter-
faces. However, it is also possible for a single interface to handle multiple instances such
as a web application with multiple users. In general, an instance of Kevin is bound a
single interface to keep executions isolated and easier to debug when errors occur.

The module also provides a shortcut for any internal component to say something to
the user. This feature is often used in external functions to output intermediary results
or by timers which invoke the output module to inform the user. The internal exception
handling mechanism also invokes the output module when ProofErrors are raised at any
given time. Therefore, the output module can act as an exit fast strategy for informing
the user about something.
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Chapter 8

Evaluation

The evaluation chapter concentrates on testing key parts of Kevin on independent
datasets. We picked out two main recurring themes that allow Kevin to function and
tested the underlying concepts on comparable datasets. First, we will look at similarity
measures described in section 5.1 and how they compare on a similar question dataset
provided by Quora [4]. Secondly, the sentence selection built on top of the similarity
metric is evaluated against the SQuAD dataset [71] which is also used to train the guided
BiDAF model (section 6.2). Finally, we look at example interactions achieved by Kevin
on real user case scenarios and their corresponding limitations.

The evaluation methods discussed are not exhaustive enough to draw definitive con-
clusions about Kevin as a whole since there are many sub components with different use
cases. Due to the heterogeneous structure, it is difficult find a dataset or create a scenario
that would judge Kevin end-to-end. As a result, we use the evaluations in this chap-
ter as indicators to understand the benefits of some critical components as well as their
limitations and not to evaluate Kevin as a digital assistant.

8.1 Similarity Metrics

In this section, we try to evaluate the various types of similarity measures presented
in the sentence similarity section 5.1. We take the first public dataset made available by
Quora [4], an online question answering platform. The dataset contains around 400,000
question pairs that are annotated as whether they are logically distinct or not. In other
words, if the questions pairs can be answered the same then they are identified as dupli-
cates. There have been attempts at determining whether a question pair is duplicate or
not, for example using tree-structured LSTMs [76]; however, in our case, we are interested
how our similarity measures behave given the data set and not necessarily try to predict
duplicity.

99



8.1. SIMILARITY METRICS CHAPTER 8. EVALUATION

Table 8.1: Example question pairs from the Quora [4] dataset.

Example questions pairs from the dataset are shown in table 8.1. An important obser-
vation is that non-duplicate question pairs differ only slightly and are non-duplicates in a
finer semantic context. As a result, we not only consider the pairs annotated duplicate or
not but also random pairs from the dataset for evaluating the similarity metrics. This ap-
proach allows us to compare completely different questions from similar but semantically
distinct question pairs.

For every similarity measure, we evaluate over the dataset collecting the similarity
between duplicate, non-duplicate and random pairs giving us three frequency histograms.
These frequencies are organised into buckets of size k = 0.05 creating 200 buckets over
the similarity range 0 to 1. We also normalise the frequencies as the data size for each
category is not equal. We organised the evaluation based on what technique is used:
average, token and tree-structure based.

8.1.1 Average Based

Average based similarity measures rely on creating a single vector representation for
the entire sentence. Hence, they can lose information as tokens get averaged over longer
sentences. The only difference between bag-of-words from just averaging was the nor-
malisation function g(i) that substituted the named entity variables with fixed vectors.
Since variables have placeholders, it was important not to add bias towards similar en-
tities within a category such as locations. The bag-of-words similarity is, thus, used for
matching user questions with the query part of a rule to start the answer computation in
the proof engine.

Figure 8.1 compares the two average based similarity metrics. There isn’t any notable
difference between the two methods besides some random fluctuation created by the ran-
dom sampling. This result is expected as most of the questions do not contain named
entities to normalise; therefore, for the majority of the data bag-of-words acts like the
document average over all tokens in the questions.

The similarity of duplicate pairs is higher and closer clustered together indicating
the metric is capturing semantic differences by a small margin. The duplicates standard
deviation is ≈ 0.11 whereas non duplicates are spread more with a standard deviation of
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Figure 8.1: Comparison of average based similarity measures used by Kevin.

≈ 0.17. The random pair similarities lean further towards left with an average of ≈ 0.72

indicated by the solid red line. The results overlap the most around 0.80 to 0.82 region
in which most permutations of sentences give that similarity measure; thus, the threshold
for Kevin is set to 0.82 in the current implementation when matching user queries in the
evaluation module (section 7.3.4).

8.1.2 Token Based

Token based similarity measures look at each token and find how much of the infor-
mation represented by the token is embedded in the other sentence. They are very greedy
similarity measures to find any possible sub tree structure that could match the given
query. The main difference between maximal token and weighted (fuzzy) similarity mea-
sure is the slight consideration of the dependency structure of the sentence detailed in
section 5.1.4. The fuzzy similarity measure is used for fuzzy unification which tries to find
the most likely sub structure for a variable based on token similarity and the dependency
structure (section 5.2.2).

We observe a very skewed histogram for both maximal token and fuzzy similarity
measure in figure 8.2. In the case of maximal token similarity, there is a spike in the
1.0 similarity bucket for both duplicates and non-duplicate pairs. This feature is caused
by considering any permutation to be equal to the given sentence, thus yielding a value
of 1. Even if the question pairs differ by only 1 word, such as when rephrased, they
will be in the upper ≥ 0.995 region to be placed in the highest bucket. Since those slight
permutations have very high similarities, the buckets in the region of ≈ 0.98 demonstrates
a dip to almost no examples before the spike at the end. A good feature about the token
similarity is the almost perfect bell shape of random pairs with the average and median
overlapping. Since it checks for token embeddings, random questions are less likely to
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Figure 8.2: Comparison of token based similarity measures.

contain the same tokens besides the most frequent ones such as what or who. Therefore,
a bell shape appears centred around the average of ≈ 0.47 far left of duplicate and non-
duplicate pairs average at ≈ 0.78.

For the case of fuzzy similarity, the most distinctive difference is the lack of drop in
buckets leading up to the spike in the end. Unlike the token similarity which accumulated
more examples in the last bucket with a normed frequency of ≈ 0.097, the fuzzy similarity
has less question pairs with ≈ 0.078. This change is the result of fuzzy similarity taking
into account the dependency structure and being slightly more robust to permutations of
sentences. Hence, the buckets in the region of 0.9 are filled with examples that contain
similar tokens but difference structure. It is also notable that more duplicate pairs score in
that region that non-duplicates, most likely due to duplicates having similar sub structures
then non-duplicates.

In both similarity measures, the non-duplicates are smeared across a large similarity
region ranging from 0.4 to 1. The average for both is ≈ 0.77 above the random pairs but
with a much higher standard deviation. In either case, the point at which the random
pairs are most separated from the duplicate and random pairs is centred just below the
average of non-duplicate pairs, around ≈ 0.70; therefore, the fuzzy unification threshold
in Kevin is set to 0.70 to minimise the false positives from triggering the wrong rules.

8.1.3 Tree Structure Based

Tree structure based similarity measure take into account the dependency structure as
their main metric. Therefore, slight changes in the tree structure can significantly lower
the similarity of a pair. The tree edit similarity is based on the tree edit distance [72]
detailed in section 5.1.5. The edit similarity purely considers the edit distance; whereas,
the hybrid is a weighted sum of both edit and fuzzy similarities for some weight coefficient
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k. Since the computation time of tree edit distance is relatively much higher than any
other vector based similarity, neither edit nor hybrid similarity is used within Kevin,
although it is implemented.

Figure 8.3: Comparison of tree structure based similarity measures.

Figure 8.3 captures the histograms for the two similarity metrics. The most noticeable
difference is the left skewed histogram for the tree edit similarity. This result is expected
as this measure is extremely susceptible to changes in structure and it is almost never the
case that two questions are asked the same way for duplicate and non-duplicate pairs. It
is also very unlikely that a random question pair will have the same structure; therefore,
the graph bulges at the lower end of the similarity measure. The random pairs average at
≈ 0.1 again with a bell shape from the random sampling and the duplicate, non-duplicate
pairs average at ≈ 0.32. The maximum overlap is achieved at the median of duplicate,
non-duplicate pairs marked with dashed green line at ≈ 0.29. As it currently stands,
the tree edit similarity is not a good measure for calculating semantic similarity between
questions pairs as even the duplicate pairs are skewed below 0.5 with high overlap. A final
feature is the spike observed at 0.5; this spike is the result of just addition or removal of
tokens. For example, Hi and Hi. only differ by a full stop and the edit distance will be
1, the insert cost of the full stop. Therefore the edit similarity will be α(. . .) = 1

2
= 0.5

producing the spike for many other structurally similar examples in the dataset.

Hybrid similarity, on the other hand, gives the best distinction between duplicate and
random pairs. At a weight of k = 0.2, the metric takes into account only 20 percent of the
tree structure and 80 percent the fuzzy similarity. Therefore, we push the fuzzy similarity
towards the shape of edit similarity just about to get a nice centred random pairs with an
average of ≈ 0.5 and duplicate pairs at ≈ 0.8. Despite the best distinction achieved using
hybrid similarity for this dataset, the heavy computation deters us from using it within
Kevin.
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8.2 Sentence Extraction

In this section, we evaluate the different similarity measures in extracting the correct
sentence from a context given a query. For this purpose, we take the dev dataset from
SQuAD [71] and use it to select single sentences that contain the answer.

∃i, j s.t. f(C,Q) = Cs[i : j] = A (8.1)

We consider a success using equation 8.1 which indicates that a slice from the selected
sentence Cs is equal to the expected answer. This setup might have bias when the answer
is contained within multiple sentences in the context such as named entities mentioned
multiple times. As a result, it is a comparative measure for different similarity measure
and not necessarily the accuracy of extracting the correct sentence. In other words, the
evaluation is of similarity measures and not of sentence extraction.

Figure 8.4: Comparison of different similarity measures for sentence extraction.

In figure 8.4 we can see the success rate of different sentence similarity measures. The
best with 82.35% is the maximal token similarity due to its aggressive nature picking out
sentences that contain the most information regardless of structure. In a noisy dataset,
we expected for such a similarity measure to perform the best across more conservative
measures. On the lower end is the tree edit similarity with 47.64%; as hinted from the
question pair evaluation, it is unlikely that the query will resemble the sentence structure
of the answer. Therefore, we reckon edit similarity requires preprocessing to change the
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query into a answer form such as converting Who is X to X is, but proves difficult as
there are many cases to cover.

The fuzzy and hybrid similarity measures achieve success rates of ≈ 75% below max-
imal token similarity. The hybrid similarity adds the extra structural information to be
ever so slight better than fuzzy similarity alone. However, the runtime cost of hybrid
similarity is so high relative to simple vector operations, it is not worth the slight im-
provement. Both document average and bag-of-words similarity measures produce results
at ≈ 70% below token based measures. This situation is expected as they lose information
when collapsing the token vectors into a single sentence vector.

Since fuzzy similarity is used as the main measure for handling noisy input, we can say
that Kevin’s ability to extract correct sentences from contexts is ≈ 75% depending on the
context provided. This accuracy is often enough to handle noisy user input and external
text such as Wikipedia to a degree that Kevin is considered adequate. In more simpler
scenarios such as every day tasks of setting reminders and asking weather information,
this measure is enough to match correct rules and perform the required actions. Exploring
more robust sentence selection and cross sentence information retrieval is for future work.

8.2.1 Performance

Mentioned along the previous evaluation sections, all similarity measure have different
running times. The time it takes for Kevin to produce a response is as important as
computing the correct answer. Therefore, we must balance the benefits of a similarity
measure with the time cost it comes with. We will look at the running times of all
similarity measures on the dev dataset used to find sentence extraction rates. The timing
is the cumulative time in seconds to process the dev dataset containing around 7000
question context pairs.

Similarity ≈ Runtime (s)
doc 16.64
bow 17.41
token 34.16
fuzzy 41.64
edit 102.02

hybrid 130.96

Table 8.2: Comparison of runtime performance of different similarity measures.

The results are summarised in table 8.2 for each similarity measure. The average
based document and bag-of-words perform the fastest as they are composed of just vector
operations. The slight increase in time for bag-of-words is the named entity vector substi-
tution function which adds an overhead of around a second. The runtime jumps to range
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of 35 seconds for token based measures as they consider every token individually. The
runtime in token similarities increase proportionally with the length of either sentence
yielding a time complexity of O(nm) in which the n and m account for the number of
tokens in the sentences being compared. The fuzzy similarity being recursive in nature
takes longer than just checking maximum similarity for every token. Although the total
runtime for entire dataset seem long, checking individual sentence pairs is still consider-
ably slow. Therefore, for the results in the given runtime fuzzy similarity provides, it is
used in Kevin as the main similarity measure.

For any measure containing the tree edit distance, the runtime is relatively much
higher due to the complexity of the edit distance. The edit similarity suffers a significant
performance hit as a result. Since hybrid similarity computes both edit and fuzzy, the
runtime sums to the worst among the other measures. A runtime of 130 seconds causes
considerable delay for computing an answer when scanning knowledge bases and rules;
therefore, despite having a slight advantage in sentence extraction, it is not used within
Kevin for its runtime cost.

8.3 User Interactions

In this section we look at possible interactions within the span of the current im-
plementation. The example interactions touch on various components and usage cases
discussed throughout the report, mainly in the logic framework chapter 4. In most cases,
when Kevin doesn’t know how to answer a user query it falls in to the following categories:

• Lack of intents often is the main reason queries fail. If the particular intent is
not implemented then Kevin either fails or finds a closest match which might be
wrong. For example, if the user asks for nearby restaurants then Kevin would not
know how to answer since it doesn’t contain any intents regarding restaurants or
external functions that can find its location and list restaurants nearby. However,
these situations are not a direct limitation of the framework used by Kevin but
rather a matter of programmer time adding extra capabilities using intents. This
situation is common practice in industry with the likes of Amazon Alexa [31] with
new intents added every week following current global news and events.

• Similarity measure false positives can cause Kevin to pick up on rules other
than the intended ones. This situation is a shortcoming of the fuzzy similarity
measure used to determine what the user wants Kevin to do. In most cases, the
similarity measure succeeds but the unification fails.

• Unification fails if the correct arguments for a rule cannot be extracted from
the user query. This situation is common if the query is rephrased heavily with
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structural changes on which the fuzzy unification relies on. Therefore, Kevin moves
on the second best rule which might not be the intended one. This behaviour can be
mitigated by restricting the evaluation process to a single rule check, though might
miss out on correct rules due to failed similarity measures. For example, the user
asks "What is the population of Berlin?" and Kevin will respond with the closest
thing in its default context: the weather information at that location.

• Sub context unknown queries can look like Kevin failing to respond even though
the query is redirected to another component such as an external search process.
In these cases, there isn’t any mechanism for Kevin to understand and mitigate the
failure since almost all the responsibility of answering the query is delegated.

Since the overall interaction with Kevin is determined by so many different factors
it is hard to evaluate individual components. Therefore, we will focus on cases in which
Kevin does respond with an answer and the most prominent feature that generated the
answer.

8.3.1 Sample Queries

From various interactions with people from the department of computing, we con-
ducted manual tests in which users asked random queries within the default context. The
default context means that the queries weren’t routed to anywhere external and purely
answered on the knowledge base available at the start. We asked 14 computing students
ages ranging from 18 to 24 to interact with Kevin and collected common queries under
various categories. We were able to only conduct user evaluation within the department
due to time constraints of the project.

Most of the useful cases for a digital assistant come from intent parsing as seen in
table 8.3. In fact, a majority of the queries were aligned with an external function to fetch
some information such as traffic, restaurants, weather and everyday tasks. This indicates
strongly that having a logic framework only aids little in answering such queries and the
framework only contributes in evaluating the query by matching it to an intent. Thus,
we believe from the point of a practical digital assistant having a logic based framework
did not contribute as much as other components such as information retrieval.

A more robust intent parsing with many more external functions implemented would
have covered most common scenarios in our user tests. However, those cases require the
conversion of natural language into structured data that functions can use. This trend
is common in many intent based digital assistants with platforms providing specifically
that service such as API AI [63]. From a natural language understanding and reasoning
perspective, the logic framework does yield potential use cases such as deriving conclusions
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Query Response Type
hi Hello there. Scripting
How are you? I’m fine and you? Scripting
What time is it? It is 13:57. Intent parsing
What day is it today? Today is Tuesday. Intent parsing
What day is tomorrow? Today is Tuesday. Closest intent
Make me a sandwich I don’t seem to have sudo

access.
Scripting

Is there a storm in Lon-
don?

It is currently 14 degrees in
London.

Closest intent

Is your name Kevin? My name is Kevin. Negation by failure
Do I need to do anything? Your to-do list is empty. Intent parsing
Remind me to take out the
rubbish.

I’ve added that to your to-
do list.

Intent parsing

Jack seems to be happy. OK. Fact generation
Is Jack happy? Yes, Jack is happy. Template deduction
Jack is now sad. OK. Constraint overrule
Is Jack happy? No, Jack is not happy. Negated deduction

Table 8.3: Sample interactions within the default context of Kevin.

using basic deduction. However, those cases are not as common as intents within the
context of digital assistants.

8.3.2 Wikipedia Application

To consume external text and evaluate the information retrieval capabilities we im-
plemented a basic Wikipedia application within Kevin. Given a query it will search for a
topic and try to find the answer only in the summary section of the corresponding page.
There are other smaller text comprehension apps that work on children’s text examples;
however, tackling the noisy data of Wikipedia articles is indicative of Kevin’s sentence
selection and extraction capabilities. We chose Wikipedia for its simple and easy to use
API providing plain text summaries for every topic. News articles and other sources of
information can be integrated in a similar fashion.

The application receives queries from Kevin and tries to determine the topic to search
for. If a subsection is double quoted, it searches for that slice otherwise looks for the first
named entity within the query if any. We present both the intermediate sentence selection
result and the guided BiDAF (section 6.2) on the selected context sentence.

Table 8.4 curates some of the successful user queries that Kevin was able to answer
within the Wikipedia application. In these cases, both the sentence selection and the
guided BiDAF work successfully together to give an answer. It is common that if the
sentence selection gets the correct sentence from the given Wikipedia summary, then the
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Query Answer (g-BiDAF extract in bold)
When was Samsung envisioned? Samsung was founded by Lee Byung-chul in

1938 as a trading company.
Who founded Samsung? Samsung was founded by Lee Byung-chul

in 1938 as a trading company.
What is the capital city of Ger-
many?

Germany’s capital and largest metropolis is
Berlin, while its largest conurbation is the
Ruhr.

When was Science Museum London
founded?

It was founded in 1857 and today is one of
the city’s major tourist attractions, attract-
ing 3.3 million visitors annually.

When was Imperial College
founded?

Imperial College London was granted Royal
Charter in 1907.

Who founded Imperial College? Its founder, Prince Albert, envisioned an
area comprising the Victoria and Albert Mu-
seum, Natural History Museum, Royal Al-
bert Hall, and the Imperial Institute.

How many countries are in the Eu-
ropean Union?

The European Union is a political and eco-
nomic union of 28 member states that are
located primarily in Europe.

How many moons does Jupiter
have?

Jupiter has at least 67 moons, including
the four large Galilean moons discovered by
Galileo Galilei in 1610.

Why is "the sky" blue? During daylight, the sky appears to be blue
because air scatters blue sunlight more
than the sky scatters red.

Table 8.4: Successful queries for Wikipedia application within Kevin.

BiDAF model can extract the correct answer. However, this collaboration is not always
the case.

The cases in which either the sentence selection fail or the guided BiDAF model doesn’t
quite extract the correct answer are contained in table 8.5. Not all the examples are wrong;
for example, the capital city of France is extracted correctly. The following question
asking the population fails horribly and doesn’t even get the correct sentence. Cases such
as the question asking the author of Harry Potter succeed with over approximation by
the neural network. It plays safe by extracting a larger slice than absolutely necessary
including "British author" in this case.

Despite shortcomings of sentence selection and the neural network, with this applica-
tion Kevin can cover a large variety of topics and harness the information available in its
raw form. This type of information retrieval questions were very common; hence, they
play a critical part in constructing digital assistants and with similarity measures Kevin
is able to accommodate most of them.

As part of our evaluation we noticed that users preferred full sentence answers rather
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Query Answer (g-BiDAF extract in bold)
What is Wikipedia? Wikipedia is a free online encyclopedia

with the aim to allow anyone to edit articles.
What is the primary objective of
Imperial College?

The university’s emphasis is on emerging
technology and its practical application.

Who wrote Harry Potter? Harry Potter is a series of fantasy novels writ-
ten by British author J. K. Rowling.

What is the colour of Calcium? Calcium is a soft greyish-yellow alkaline
earth metal, fifth-most-abundant ele-
ment by mass in the Earth’s crust.

Which films did Brad Pitt play in? Pitt starred in the cult film Fight Club and
the heist film Ocean’s Eleven and its sequels,
Ocean’s Twelve and Ocean’s Thirteen.

What is the capital city of France? France is a unitary semi-presidential repub-
lic with the capital in Paris, the country’s
largest city and main cultural and commer-
cial centre.

What is the population of France? France is also a member of the Group of 7,
North Atlantic Treaty Organization, Organi-
sation for Economic Co-operation and Devel-
opment, the World Trade Organization, and
La Francophonie.

Table 8.5: Mixed queries for Wikipedia application within Kevin.

than the g-BiDAF extraction. Full sentence answers not only provide some extra infor-
mation about the query but also create a richer experience overall. Rather than giving
single answer such as dates and names, Kevin replies with full sentences which yield the
necessary context of the answer. As a result, the default behaviour of the Wikipedia
application is to return full sentences and bypass the upstream neural network.

8.4 Limitations

In this section we will detail some of the major limitations within Kevin. Although
external components such as the natural language processing back end can create limita-
tions, we are interested in those which arise from the framework Kevin uses. We will not
consider lack of functionality due to missing implementation a limitation of the framework
as Kevin has the capacity to expand and integrate with more external components.

8.4.1 Co-reference resolution

Since we opted to use Spacy as the only natural language processing library, we didn’t
have a robust co-reference resolution mechanism like provided by CoreNLP [75] (sec-
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tion 7.1). As a result, Kevin has very basic co-reference resolution support based on
dependency structures. This situation hampers follow up queries as well as consuming
external text limiting Kevin’s capability to process pronoun chained information.

←Who is Barack Obama? (8.2)

←Who is his wife?

An example in which the basic dependency co-reference resolution fails is given in
queries 8.2. Since the structure of a possessive pronoun (PRP$) is different from the
named entity in the previous query, the current system won’t be able to resolve it. The
dependency changes from nsubj as in subject to poss for the pronoun. For cases in which
the pronoun appears in different structural context, Kevin fails to respond and shortcuts
to replying "I’m not sure what you are referring to." as part of an error message.

←Who is Barack Obama? (8.3)

← Does he have a wife?

A workaround would be to rephrase the second query as shown in queries 8.3 which
will have matching dependencies and therefore be resolved. In this case Kevin will replace
he with Barack Obama on the basis that they have the same dependency in the parse tree.
Therefore, the overall co-reference resolution system available in Kevin is cumbersome and
prone to error.

To achieve a smooth conversation with follow up queries, it is crucial to have a robust
co-reference resolution. It might require the merger of both natural language processing
libraries to work in the areas they excel in and provide better results. Currently, it is
a limitation that cuts conversations short and discourages users from interacting further
with Kevin.

8.4.2 Follow-up Queries

Following a weak co-reference resolution, we note that the logic framework does not
provide a natural way of chaining rules together to provide a conversation. The framework
acts on a single rule at a time which could have side affects such as setting context for
the upcoming queries. However, it would require for almost every rule to have some side
affect to glue a conversation together. These scenarios frequently come up when an intent
requires more information than the user has currently given prompting a conversation
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such as ordering takeaway but not specifying when.

You sure? ∧ :setcontext:yesno← Clear my to-do list. (8.4)

Done. ∧ :cleartodo←yesnocontext Yes.

Ok.←yesnocontext No.

Rules described by equations 8.4 capture the cumbersome way of asking a simple yes
or no question to the user. The context needs to be set and tracked properly in order for
even a simple interaction to work. For more complicated cases, nested contexts as well as
the rules that manage them become convoluted and not natural for someone to design. In
this example, the yesno context allows the second and third rules to trigger completing
the conversation. But context management is an overhead that the framework requires
in order to even process scripted conversations.

You sure? ∧ :redirect_input← Clear my to-do list. (8.5)

The conversation design is handled this way partly because the user can give a com-
pletely unexpected query such as asking the time when Kevin was expecting a yes or
no. Such a context structure still allows for the user to exit the context and successfully
answer another query. On the other hand, a query redirect as in rule 8.5 would not be
able to process that correctly. The external function receiving the query is responsible of
figuring out the correct answer; although it can reroute back to the evaluation module,
the input is ultimately not considered by Kevin in the first hand. The current options for
follow-up queries are summarised below:

1. Create an application that consumes all queries and bypass almost all of Kevin,
including the logic framework. All Kevin will do is to delegate the query similar
to the Wikipedia application (section 8.3.2). In this case, the application must
maintain the internal state and what to expect. More importantly, the application
has to handle unexpected input if any.

2. The programmer can be bold and force Kevin to redirect the next input to a
single external function one by one. This approach is captured in rule 8.5 in which
the next query will be redirected but unless specified the following queries will be
processed by Kevin. These cases are easiest for single follow up questions such as
asking for an address. However, since the query is redirected unexpected input must
be handled.

3. The logic framework contexts are created and tracked in order to use rules
that capture the conversation. This approach is the best option as it can handle
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unexpected input naturally using the evaluation module and the knowledge base.
For example, if the user asks the weather while ordering takeaway, Kevin will answer
correctly and safely close the takeaway order context. However, it is tedious to create
these conversations and might be susceptible to similarity and unification errors such
another rule triggering instead of the expected one in a follow up question.

Using contexts carefully, a programmer can construct a graph based conversation in
which nodes correspond to the current context and edges to queries that transition between
them. However, we think such a structure is unwieldy and could benefit from a better
design. As a result, it is tedious to create long conversations for intents such as ordering
takeaway, booking restaurants and many others that require a continuous context aware
query processing.

8.4.3 Single Sentence Selection

Another major limitation with consuming external text is that it is strictly limited to
a single sentence. Any given context is reduced to one most likely sentence that contains
the information and then processed upstream using the neural network. Therefore, if an
information is contained across multiple sentences Kevin would not be able to understand.
This situation does not account for run on sentences or sub clauses as they are considered
a single sentence. We are interested in cases in which information is spread out across
multiple sentences.

When did the argument resolve?
An argument regarding the height between China and Nepal lasted five
years from (1) 2005 to 2010. China argued it should be measured by
its rock height of 8,844 m, but Nepal said it should be measured by its
snow height of 8,848 m. In (2) 2010, an agreement was finally reached
by both sides that the height of Everest is 8,848 m, and Nepal recognises
China’s claim that the rock height of Everest is 8,844 m.

Table 8.6: Cross sentence information retrieval limitation example.

This situation is demonstrated in table 8.6 in which a context paragraph fromWikipedia’s
Mount Everest page1 summary is given. The correct answer (2) is 2010 as that is when
an agreement was reached. However, since the query tends towards a sentence with an
argument we obtain the answer marked (1). This answer is identical to the reference im-
plementation of BiDAF model [9] described in section 3.4.4. So despite the original model
able to process the entire context, when the query mischievously hints towards another

1https://en.wikipedia.org/wiki/Mount_Everest accessed 2017-06-02
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sentence that contains similar keywords such queries fail. In this case, the closest slice
of the first sentence to a date was "2005 to 2010" and hence the answer. The answer is
not completely wrong as the argument is resolved in that time range although it can also
mean the resolution took 5 years. Either way, the sentence in which the actual answer is
not captured correctly.

There are many more examples within a noisy source such as Wikipedia that require
multi sentence information retrieval. Currently, Kevin cannot handle any of them given
the sentence selection only works by extracting a single sentence. A possible solution
to get a window of sentences around the most similar sentence to be processed as an
over approximation. The bigger the window size the safer since if Kevin returned the
entire context every time for the user, the answer is very likely to be there but the user
would have to figure it out. Additionally, the larger the window size, more noise has to
incorporated as we might get sentences that do not relate to the answer we are looking
for.

Extracting information across sentences is an active research area with the SQuAD [71]
dataset. We believe it would add an extra edge in information retrieval from noisy sources
and provide an even richer user experience in the context of digital assistants.
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Conclusion

Building a digital assistant requires many components to work together in order to
compute an answer. Certainly with Kevin, we built a multi-stage processing pipeline that
was inspired by logic programming with a lot of tweaks such as external functions and
components. At its core, Kevin used a novel logic framework that worked with natural
language primitives to process and respond to user input. By constructing the framework
on vector representations of words, Kevin was able to understand similar queries and
handle noisy input using fuzzy unification and sentence similarities.

User evaluations often demonstrated that most queries did not require a logic frame-
work to perform higher level reasoning. In most cases, Kevin was bypassing the framework
for other more frequently used components such as external functions and their corre-
sponding intents. Therefore, having a logic framework did not yield outstanding results
in spite of some reasoning constructs such as negation by failure. There were parts of the
framework such as similarity measures used to find a matching rule, which provided good
results and tools in face of noisy text sources.

In conclusion, although there are sections of the logic framework beneficial to the
theme of digital assistants, overall it is shadowed by the common use cases such as intent
parsing and areas in which neural networks already excel in. This result is bound to the
context of digital assistants; however, in other cases such as story comprehension, the
benefits of having a high level reasoning framework might prove more beneficial.

9.1 Summary of Work

Given the scale of the project and that it was implemented from scratch, there were
various milestones that in general follow the structure of this report. In this section, we
reflect on the key points of the project summarising the work undertaken while creating
Kevin:
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1. We started off by looking at existing open source digital assistants and if possible how
we can integrate some logical reasoning into their frameworks. Lack of examples
and bespoke processing pipelines pushed us towards creating our own framework
that could handle natural language in a more straightforward manner.

2. Since the focus of the project was interacting in natural language rather than pro-
cessing it, we searched for existing libraries (section 7.1) and picked one that most
suited us. The library acted as a black box from our perspective consuming plain
text and giving back annotated parse trees.

3. We implemented a basic framework that was inspired by logic programming and
deviated from standard semantics in most cases in order to fit into a digital assistant
theme. The implementation and the pipeline (section 7.3) consumed most of the
project time as it was a unique logic framework with parse tree as its primitives.

4. To accommodate noisy input and handle more queries with less rules, we considered
vector based similarity measures harnessing the power of existing, pre-trained neu-
ral networks. Using GloVe [3] vectors, we constructed multiple sentence similarity
measures (section 5.1) and integrated into our logic framework particularly for rule
selection as the first use case.

5. Using the similarity measures we then looked at how to augment our basic tree
based unification to create fuzzy unification (section 5.2.2). Fuzzy unification was
a key point for Kevin to understand noisy input and extract arguments putting the
most common use case of intent parsing into perspective. Before fuzzy unification,
Kevin’s intent parsing capabilities were very limited; it required either no variables
or identical query structures to work.

6. While investigating sentence similarities, an interesting use case became apparent
and opened a new gateway into information retrieval. Using the similarity measures,
Kevin started to find answers to free form queries in large noisy text sources such
as Wikipedia. This sentence selection (section 6.1) lead to more investigation into
neural networks to benefit the query answering capabilities of Kevin, particularly
using a custom neural network guided BiDAF (section 6.2).

7. We then structured the logic framework as a gateway to all underlying functionality
merging standard reasoning with external components such as the neural networks.
Various use cases were described in the logic framework chapter 4. As mentioned,
the logic framework started to act more and more as a query router than a reasoning
platform for the frequent use cases.

8. Finally, we evaluated Kevin’s various components against other datasets to adjust
our thresholds and get some user feedback.
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Across the entire project, building the logic framework consumed the most time as
it was not clear how to integrate parse trees as a primitive. New semantics and a proof
mechanism had to be designed in order to make it work. Overall, we got most value out
of the sentence similarity measures based on vector representations as they allowed Kevin
to handle noisy input in a much more robust manner.

9.2 Future Work

Although there many points to expand and explore further, we identified two main
points that would benefit Kevin the most: fusing the logic with the neural networks and
pushing towards multiple sentence, context aware comprehension. We believe these two
areas are the key points for a more uniform, robust framework to understand natural
language. There are other components such as managing follow-up queries; however,
most improvements in those components would come from redesign rather than theory.

9.2.1 Neural Logic Amalgamation

A big theme in Kevin is the logic framework with neural network components running
together. However, they are still separated in an oblivious manner. The logic framework
doesn’t know about neural back ends and vice versa. Therefore, there is no real unison
both functionally and semantically to augment the processing of natural language. The
root cause for this situation is the complexity of either achieving neural network compre-
hension results using logic or pushing logic constructs into neural networks. Currently,
they are distinct components that perform what they do best, logic does reasoning and
neural networks handle noisy text query answering. We believe there are two key ways to
proceed forwards:

1. Let the logic framework handle noisy input as good as neural networks so that
higher level reasoning can be performed on human digestible text sources. The cur-
rent architecture works on templates and fails when dependency structures change.
Either way, a logic framework by construction is structured and therefore might be
ill suited for ambiguous noisy context such as natural language.

2. More promising option is the task of pushing higher level reasoning into neural
networks and reduce the complexity of a structured logic framework. This ap-
proach would require a neural network to process binary relations and derive con-
clusions, tasks that are much more complex than query answering over given context.
With ever more sophisticated neural network architectures and increasing comput-
ing power, we believe it would be an area to explore further.
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Kevin provides a technical way of combining logic and neural networks. Future re-
search would focus on merging ideas into one another rather than a technical implemen-
tation using both.

9.2.2 Multi Sentence Comprehension

Despite the uses of sentence similarity measures for extracting information, they were
limited to a single sentence as described in section 8.4.3. Most context written for human
consumption require multiple sentence comprehension as the information required could
be spread across the content. The current limitation of single sentence selection or its
window based versions do not really capture meaning across sentences. This scenario also
presents itself when handling follow up questions that might contain required information
from queries in the past such as telling the location of the user and then remembering
that information for asking what the weather is like.

We think this area could benefit from research to better process larger contexts and
more complicated queries within the context of digital assistants. One options could be
to integrate context into the networks such as memory networks [77] that store vector
representations of context. It might be transferable to answering follow-up questions or
answering questions based on past information.
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Appendix A

NLP

This appendix contains the part-of-speech and dependency tags used by the natural
language processing (NLP) libraries during parsing. They are used in training the parsers
and the output tags may vary depending on the corpus trained on. The tags referenced
throughout the report are from the output of Spacy (section 7.1.1) unless explicitly stated
otherwise.

A.1 Part-of-speech Tags (POS)

This section contains the part-of-speech tags used by the Spacy library. They are
referenced from the Penn Treebank [78]. Part-of-speech tags identify the type of the
word in a sentence such as nouns (NN) and adjectives (JJ). The parse trees contain this
annotation for every token.

A.2 Dependency Tags (DEP)

This section contains the dependency tags used throughout the report. They are based
on the ClearNLP project [79]. The tags are from the output of Spacy library unless stated
otherwise. The dependency tags describe the relationship between a token and its parent
such as subject of a verb.
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POS Tag Description
CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential there
FW Foreign word
IN Preposition or subordinating conjunction
JJ Adjective

JJR Adjective, comparative
JJS Adjective, superlative
LS List item marker
MD Modal
NN Noun, singular or mass

NNS Noun, plural
NNP Proper noun, singular

NNPS Proper noun, plural
PDT Predeterminer
POS Possessive ending
PRP Personal pronoun
PRP$ Possessive pronoun

RB Adverb
RBR Adverb, comparative
RBS Adverb, superlative
RP Particle

SYM Symbol
TO to
UH Interjection
VB Verb, base form

VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, non-3rd person singular present
VBZ Verb, 3rd person singular present
WDT Wh-determiner
WP Wh-pronoun
WP$ Possessive wh-pronoun
WRB Wh-adverb

Table A.1: Summary of part-of-speech tags.
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Dependency Tag Description
acomp adjectival complement
advcl adverbial clause modifier

advmod adverbial modifier
agent agent
amod adjectival modifier
appos appositional modifier
attr attribute
aux auxiliary

auxpass passive auxiliary
cc coordinating conjunction

ccomp clausal complement
complm complementizer

conj conjunct
csubj clausal subject

csubjpass clausal passive subject
dep unclassified dependent
det determiner

dobj direct object
expl expletive

hmod modifier in hyphenation
hyph hyphen

infmod infinitival modifier
intj interjection
iobj indirect object

mark maker
meta meta modifier
neg negation modifier

nmod modifier of nominal
nn noun compound modifier

npadvmod noun phrase as adverbial modifier
nsubj nominal subject

nsubjpass nominal passive subject
num numeric modifier

number number compound modifier
oprd object predicate

parataxis parenthetical modifier
partmod participial modifier
pcomp complement of a preposition
pobj object of a preposition
poss possession modifier

possessive possessive modifier
preconj pre-correlative conjunction

prep prepositional modifier
prt particle

punct punctuation
quantmod quantifier phrase modifier

root root
xcomp open clausal complement

Table A.2: Summary of dependency tags.121
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