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Abstract

We study a rating system in which a finite set of customers are able to evaluate some

service. A customer’s evaluation is influenced by those of its trusted peers where the cus-

tomers are arranged in a network of influence. A malicious service provider, for example,

a restaurant owner, may choose to bribe a subset or all of these customers by reinvesting

some of their income so as to increase their overall gain. Recent research has examined

bribing strategies within this framework under the assumption that all customers express

an evaluation and also has determined in which cases this framework is bribery-proof.

We extend this framework to the case where perhaps some customers do not vote but

where these customers can be bribed to vote in future. We look at the computational

complexity of the restaurant owner determining optimal bribing strategies. Amongst

other things, we prove that the non-voter framework is very different from the all-voter

framework as computing the optimal bribing strategy in the former is NP-hard whereas

in the latter it is polynomial-time solvable. We propose and implement approaches to

computing bribing strategies on artificial social networks designed to model real-world

networks.

Finally, we look at the case where the restaurant owner has no knowledge of the influence

network between customers. We show the NP-hardness and W[2]-hardness of problems

closely related to bribery. We see that although the framework is not bribery-proof

in general, there are significant complexity-theoretic barriers to being able to efficiently

compute bribing strategies.
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Chapter 1

Introduction

1.1 Introduction

In fields such as artificial intelligence and game theory we are interested in studying how

the actions of a number of rational agents or decision makers can influence each other.

More recently however, fields such as social choice theory, and particularly computational

social choice theory, have emerged. Social choice theory provides us with a theoretical

framework for dealing with aggregating the preferences, goals or opinions of multiple

individuals to provide a combined decision. A comprehensive introduction to the field is

provided by Brandt et al. in their Handbook of Computational Social Choice [1]. Related

lines of research include the formal study of network based voting and mechanism design,

lobbying and bribery and reputation based systems [2].

Proposed by P. Turrini and U. Grandi in their paper A network-based rating system and

it’s resistance to bribery [2] is a rating system in which a finite set of individuals are able

to evaluate a service. Within this model, two notions of rating are defined which directly

influence the utility of some service provider. The paper investigates the effect upon the

network when we allow some malicious service provider to bribe a subset or all of these

individuals. Further to this, the effects of bribing strategies under various constraints

are analysed and it is shown under which of these the proposed system is bribery-proof.

The ideas introduced and the techniques used are fundamentally related to the fields of

computational social choice [3] and game theory. Although this is the case, a number

of interesting problems arise when we begin to consider the computational complexity of

certain aspects of the model introduced. As well as this, contemplating how hard it is
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2 Chapter 1. Introduction

to solve these problems has a real practical value and provides a useful extension to the

ideas presented in [2].

The overall aim of this project is to extend the network based rating system and it’s

analysis of bribery under the personalised rating system. That is, we aim to introduce

new ideas and algorithms as to how we can compute optimal bribing strategies and provide

an analysis of the computational complexity of the various problems which result from

imposing realistic network restrictions upon the system. One possible application is to

picture a restaurant owner who is able to play bribing strategies on the system in order

to influence customer opinion and therefore increase the revenue of their own restaurant.

The utility a restaurant receives is proportional to its rating. Two notions of rating are

defined: the O-rating which aggregates the individual ratings of all customers and the

P-rating which takes into account a network of influence between customers.

From the perspective of the restaurant owner, there are a number of pieces of information

that it may have which can influence the effectiveness of any attempted bribe and the

complexity of any algorithm that might yield an optimal bribing strategy (in the case of

the P-rating). In simple terms, this information is: knowledge of individual customers

evaluations, knowledge of the network of customers, and knowledge of customers positions

in the network. The paper introduces a polynomial-time algorithm for the computation

of optimal bribing strategies in the case that the restaurant has full knowledge. It then

discusses the cases where the restaurant might have less information, but leaves these

cases largely unexplored and certainly does not explore in any detail the computational

complexity of the resulting problems.

Proven in the paper, are the restrictions upon the model which render the network bribery-

proof or bribable under the proposed new P-rating. An important concluding remark of

the paper is that in general, the P-Rating and O-Rating systems are not bribery proof.

As a result of this, we would like to study the intrinsic difficulty of actually computing

a bribing strategy. We may eventually find that even in the cases where it is possible

for us to define optimal bribing strategies, it might not be computationally feasible to

do so. Proving such results would be of significant importance to the proposed rating

systems. For example, if we can formally prove that under a certain set of restrictions the

problem of computing an optimal bribing strategy is intractable, even if such strategies

might exist, we can be confident that the system is suitably resistant to bribery. We see

that the paper is primarily concerned with the rating system’s resistance to bribery and

subsequently shows that this is not necessarily the case. A complexity theoretic approach



1.1. Introduction 3

to proving that it is computationally hard to compute bribing strategies could give some

amount closure to the initial problem being researched.

The first steps towards doing so, are to provide an appropriate mathematical formulation

of the problems that we are interested in. This involves introducing the appropriate

complexity and graph theoretic background required to begin to contemplate whether the

problem is tractable. Once we have done this and clearly defined the problem, we can

begin to take a deeper look at the problem and the different sets of network restrictions

that are outlined in [2]. The aim is to be able to identify for all combinations of network

restrictions whether the problem is tractable or not. For the tractable cases, we would like

to provide an algorithm in order to compute such strategies in polynomial-time; just as the

paper does for the most simple case. For those intractable cases, we should formally prove

that the problem is intractable and provide a comprehensive analysis of its complexity. In

addition to this, it would be beneficial to research into methods of computing reasonable

but not optimal bribing strategies. There are a number of possible approaches to this

motivated by a range of different areas such as: heuristic and probabilistic methods or

genetic algorithms.

In addition to these largely theoretical results and especially in the context of computing

heuristic solutions, we would also like to be able to evaluate the performance of such

algorithms and the quality of their results. As a result of this, it would be useful to

provide an implementation and extension of the model introduced in the paper. We should

also consider realistic methods of generating networks on which to generate and execute

bribing strategies. Once we have done this, we can perform computational simulations to

evaluate the quality of each approach. This will provide us with experimental results to

consolidate our theoretical ideas.

These approaches only consider the problems outlined by the paper, however. There are

also a number of appropriate modifications that could be made to the rating system. For

example, one such investigation could be the definition of the P-rating. The implications

on the computational complexity of the resulting problems could be drastically improved

if we consider alternative notions of a localised rating system.

A classical complexity theoretic approach can sometimes offer a less refined analysis of

the difficulty of certain problems. Particularly in this case, we consider evaluating the

complexity of various problems according to their inherent difficulty with respect to dif-

ferent parameters of the problem. The motivation for these ideas comes from a more

modern branch of computational complexity theory known as parameterized complexity
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theory. Doing so, we would hope be able to derive results that show we can efficiently

compute optimal bribing strategies for small values of some parameter, for example, the

number of voting customers. This kind of analysis is of practical value as we can seek to

parameterize the problem to reflect commonly occurring scenarios.

1.2 Contributions

The contributions of this project consist of a detailed analysis and further extension to the

research presented in [2] from a complexity-theoretic perspective that had not previously

been considered. The main contributions of our project are as follows.

1. Extended the framework in the case of non-voters and known locations

(NVKL). In order to compute a weakly-dominant strategy in the case of full

knowledge (AVKL), [2] gives us a natural polynomial-time algorithm. A signifi-

cant amount of work is first required before we attempt to loosely emulate this

approach towards the analogous problem under NVKL. (see Section 5.2)

2. Proven that the problem of computing a weakly-dominant strategy is

NP-complete under NVKL. We formulate NVKL as a decision problem and are

able to show it is NP-complete by a reduction from the independent set problem on

3-regular graphs. We firstly prove several properties concerning the manipulation

of bribing strategies. (see Section 5.4)

3. Developed algorithms to compute profitable bribing strategies for the

intractable cases. We discuss and develop heuristic approaches to computing

profitable bribing strategies under NVKL, where the computation of exact solutions

is computationally intractable. (see Chapter 6)

4. Implemented the rating system and performed computational experi-

mentation of our algorithms. We implement the algorithms and perform an

evaluation of their computation results. We discuss their quality and the network

features that affect their performance. (see Chapter 6)

5. Proven the NP-completeness and W[2]-hardness of important related

problems given non-voters and unknown locations (NVUL). We turn our

attention to the final case of of NVUL and consider the closely related problem of
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utility maximising evaluation placements. We show that this is NP-complete and,

furthermore, that it is W[2]-hard. (see Chapter 7)





Chapter 2

Background Theory

2.1 Motivation

The complexity theoretic analysis of bribery in voting systems [4] and systems of judge-

ment aggregation [10] (for example elections and lobbying), is becoming an increasingly

popular field of research. Systems such as election and voting procedures provide us with

a framework for aggregating the preferences and opinions of groups of people. Existing re-

search involves proposing different voting systems and studying the complexity of bribery

when we allow an agent to manipulate the judgement aggregation procedure. For exam-

ple, in [9] we see an investigation into how computationally difficult it is to pay certain

voters to change their preferences so that a certain candidate can win the election. In

addition to this, alternative lines of research include investigation into the parameterized

complexity of bribing judgement aggregation systems with respect to many of the natu-

ral and realistic parameterizations that arise. Research of this nature is relevant to our

project and an example can be seen in [10].

Models for judgement aggregation and, in particular, the model presented by Turrini and

Grandi in [2] are graph-theoretic by nature. A natural way to model influence between a

finite number of rational agents is by using a graph. Influence amongst these agents can

be represented by a relation which comprises the edges of the graph. The study of graphs,

known as graph theory, provides us with a rich and extensive range of techniques with

which we can study how information or opinion diffuses through such structures. These

graphs of rational agents can represent social networks, voter networks, and a range of

other types of networks. Throughout the course of this project, we will assume knowledge

6
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of the fundamentals of graph theory, algorithmic graph theory, and discrete mathematics.

The following section contains an introduction to the essential definitions and algorithms

in these areas.

2.2 Graph Theory

We take the following basic definitions from [23]. We have selectively chosen a number

of relevant definitions in relation to the techniques we will use and proofs we will give in

later chapters of this project. Further explanation and related facts and definitions can

be found in the same text.

Definition 2.1. Graph: A graph is a pair G = (V,E) of sets satisfying E ⊆ V 2. The

elements of V are the vertices or nodes of G, the elements of E are the edges or arcs of

G.

Definition 2.2. Order: The order of a graph G is the number of vertices of G, written

|G|; its number of edges is denoted by ||G||. An infinite graph G is such that |G| =∞; a

graph is said to be finite otherwise.

Definition 2.3. Incident: A vertex v ∈ V is incident with an edge e if there exists v′ ∈ V
(possibly with v = v′) such that (v, v′) ∈ E.

Definition 2.4. Degree: The degree of x ∈ V is the number of vertices in V that are

incident to x.

Definition 2.5. Two vertices x, y ∈ V are adjacent or neighbours if and only if (x, y) ∈ E.

Definition 2.6. Neighbourhood: The neighbourhood of x ∈ V , or N(x), is the set {y ∈
V : (x, y) ∈ E}.

Definition 2.7. Second Neighbourhood: The second neighbourhood of x ∈ V , or N2(x),

is the set
⋃
{N(y) : y ∈ N(x)}.

Definition 2.8. Clique: A clique in a graph G(V,E) is a subset of of the vertices of V

such that all distinct pairs of vertices are adjacent.

Definition 2.9. Independent: Pairwise non-adjacent vertices or edges are called inde-

pendent.

Definition 2.10. Independent Set: An independent set is a set of pairwise-independent

vertices.
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Definition 2.11. k-regular: A graph G(V,E) is said to be k-regular (for k ∈ N) if all

vertices of V are of degree k.

Definition 2.12. Vertex Dominating Set: A dominating set of a graph G(V,E) is a set

of vertices X ⊂ V such that every vertex in V \X is adjacent to at least one vertex of X.

2.3 A Network-Based Rating System

Now that we have provided some background around the fundamental concepts and def-

initions of graph theory, we can now begin to present the network-based rating system.

A formal framework for the network based rating system and its associated O-rating and

P-rating is presented by Turrini and Grandi. The following section contains the essential

definitions, taken entirely from [2].

2.3.1 The Framework

The framework consists of an object r called a restaurant. This object can be evaluated

by a finite set of customers C = {c1, ..., cn}. Connecting these customers is an undirected

graph called the customers network. Formally, this is a relation E ⊆ C × C. For each

c ∈ C, the Neighbourhood of c is defined to be N(c) = {x ∈ C : (c, x) ∈ E}. Furthermore,

c ∈ N(c) ∀c ∈ C. That is to say that every customer is connected to itself.

Customers concurrently submit an evaluation of the restaurant. This evaluation is taken

from the set V al ∪ {∗}; where V al ⊆ [0, 1] and the distinguished element (∗) represents

the evaluation of a customer with no opinion (the subtle difference between an evaluation

of ∗ and 0 will be discussed later). Note that a property of the chosen set V al is that it

is closed under the operation min{1, x + y} for all x, y ∈ V al (where min{1, ∗} = ∗ and

x+ ∗ = ∗+x for all x ∈ V al). Most known rating methods, for example a discrete rating

scale of one to five stars, can be mapped onto the interval [0, 1] and analysed within this

framework.

The actual evaluations provided by customers are given by an evaluation function eval

which is defined for each customer.

Definition 2.13. An evaluation is a function eval : C → V al ∪ {∗}.
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Some or possibly all of the customers can express an opinion of the restaurant, and the

set of voters of the network is defined as V ⊆ C where V = {c ∈ C : eval(c) 6= ∗}. The

set of voters is always assumed to be non-empty, i.e, there is always one customer that

expresses an evaluation. A customer who expresses an evaluation of 0 differs from one

who expresses no evaluation (∗) with the former being a member of the set V and the

latter not.

In this paper, two rating systems are introduced: the O-rating and the P-rating. It is

explained that the O-rating is analogous to rating systems employed by platforms such

as Tripadvisor R©. Every customer can see the reviews and is therefore influenced by every

other customer. In the framework presented, that simply means that E = C × C. This

method of rating is defined to be the O-rating, which stands for objective rating.

Given an evaluation function eval for the restaurant, the associated O-rating is defined

as follows

Definition 2.14. O-rating(eval) = avg
c∈V

(eval(c)).

Where avg is defined to be the average function over R, disregarding ∗.

Rating systems such as this one simply aggregate evaluations into some combined value

across all customers. A more refined approach is defined in [2] which gives a personalised

rating system that takes into account the network of influence between the set of cus-

tomers. Customer opinions are only influenced by the other customers that they know

and trust. That is, their neighbours within the network of influence. This is perhaps more

reflective of real-life situations where we would attribute a greater weighting to the opin-

ion of those we know to reputable, as opposed to trusting some anonymous or unknown

individual when we make a decision. The P-rating stands for personalised rating for an

individual customer c and their evaluation eval is defined as follows

Definition 2.15. P-rating(c, eval) = avg
k∈N(c)∩V

(eval(k)).

Finally, in the case that a customer is not a neighbour of any voter, then the P-rating

is not defined. Therefore, it is assumed that every customer of the network is connected

to at least one voter. It is also stated that when E = C × C, i.e when every customer

influences every customer, then for every c ∈ C P-rating(c, eval) = O-rating(eval). We

see this as follows. Let c be any arbitrary customer of C.

E = C × C =⇒ P-rating(c, eval) = avg
k∈N(c)∩V

(eval(k))
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= avg
k∈C∩V

(eval(k)) = avg
k∈V

(eval(k)) = O-rating(eval)

Customer evaluations are interpreted to indicate a customer’s propensity to go to a given

restaurant. It is assumed, therefore, that the actual utility a restaurant receives is pro-

portional to the rating that it is given by the customers. For the case of the O-rating we

have the following.

Definition 2.16. The initial utility of the restaurant is defined as u0O = |C|O-rating(eval).

It therefore follows that the utilities of the restaurant under O-rating and P-rating (where

E = C × C) are equal since. (see Definition 2.22)

u0P =
∑
c∈C

P-rating(c, eval) =
∑
c∈C

O-rating(eval) = |C|O-rating(eval) = u0O

At the initial stage of the game, the restaurant owner receives u0 and can decide to invest

part of it to influence a subset of customers and improve upon the initial game. Such an

investment is referred to as a strategy.

Definition 2.17. A strategy is a function σ : C → V al such that
∑
c∈C

σ(c) ≤ uO.

The set of all strategies is referred to as Σ and σ0 is defined to be the strategy that assigns

0 to all customers. A bribing strategy is any strategy different from σ0. As was previously

mentioned, strategies can be played on customers in order to influence their opinion.

Definition 2.18. The evaluation evalσ(c) after execution of a strategy σ is evalσ(c) =

min{1, eval(c) + σ(c)}, where ∗+ σ(c) = σ(c), if σ(c) 6= 0, and ∗+ σ(c) = ∗, if σ(c) = 0.

Strategies are said to be efficient if σ(c) + eval(c) ≤ 1 for all c ∈ C. Further, B(σ) =

{c ∈ C : σ(c) 6= 0} is defined to be the set of bribed customers and V σ is the set of voters

after the execution of a strategy σ.

Definition 2.19. The change in utility due to the execution of a strategy σ is defined as

uσO = |C|O-rating(evalσ)−
∑
c∈C

σ(c).

A definition of a weakly-dominant (or optimal) strategy is also given between strategies

in Σ.

Definition 2.20. Let σ be a strategy. The revenue of σ is defined as rO(σ) = uσO− uσ0 . σ

is profitable if rO(σ) > 0.
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Definition 2.21. A strategy is weakly-dominant if uσO ≥ uσ
′

O for all σ′ ∈ Σ. It is strictly

dominant if uσO > uσ
′

O for all σ ∈ Σ.

All of these given definitions are easily adapted to the case of the P-rating.

Definition 2.22. u0O =
∑
c∈C

P-rating(c, eval).

Definition 2.23. uσO =
∑
c∈C

P-rating(c, evalσ)−
∑
c∈C

σ(c).

Definition 2.24. rP(σ) = uσP − uσ0 .

2.3.2 Bribing the System

Having formally defined this system, the we may now discuss bribing strategies under

both the P-rating and O-rating. A polynomial-time algorithm is given in [2] for the case

that the restaurant knows eval, the network and the positions of the customers on the

network. In high-level terms, this algorithm is a greedy algorithm which selects customers

to bribe at each stage of the algorithm depending on their so-called influence weight. It

is defined as follows

Definition 2.25. The influence weight of a customer c ∈ C in a network E and a set of

designated voters V is defined as follows

wVc =
∑
k∈N(c)

1

|N(k) ∩ V |
.

Since one assumption of the framework is that every customer can see a voter then this

is well-defined. The paper provides, in Lemma 6 [2], an expression for the utility gained

by playing a strategy in terms of the influence weights of the customers.

2.4 Computational Complexity Theory

Complexity Theory is the area of computer science that that contemplates the reasons

why some problems are so hard to solve by computers [5]. It is one of the most vibrant

and active areas of research in modern day theoretical computer science. Complexity

theory serves to define and study the intrinsic properties of classes of problems which
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have similar complexity with respect to a specific model of computation (for example, a

Turing machine) and a complexity measure [6].

Complexity theory has a wide range of practical applications. Using it and its many

interesting results, we are able to define whole classes of problems which are, for ex-

ample, tractable, intractable, efficiently parallelizable, or even tractable with respect to

some bounded probabilistic error [7]. This has many useful applications to areas such as

cryptography, quantum computation, and even biology. Certainly in the context of the

problems we are considering, that is, the computation of optimal bribing strategies it is

essential to understand the feasibility of any approach to computing one.

From our perspective, we don’t necessarily have to explore some of the more structural

properties of complexity theory. We would merely be interested in whether or not a

problem is tractable or not. In order to understand what it means for a problem to be

tractable, this requires a reasonable amount of background from complexity theory.

2.4.1 Big-O Notation

Before we proceed, we first have to define the big-O notation. This notation encapsulates

the fact that two functions have the same rate of growth. The definition comes from

Papadimitriou’s Computational Complexity [5].

Definition 2.26. Let f and g be functions from N to N. We write f(n) = O(g(n)) if

there are positive integers c and n0 such that, for all n ≥ n0, f(n) ≤ c · g(n).

2.4.2 Complexity Classes

One aspect of complexity theory is classify problems into complexity classes. These are

classes of problems of related complexity with respect to some resource. Most commonly,

this resource is space (the amount of memory required to solve a problem) or time (the

amount of time required to solve a problem). For the most part of our analysis, we are only

concerned with time complexity. Therefore, a more stringent definition of a complexity

class is as follows.

The set of all problems which can be solved by an algorithm in O(f(n)) time on an input

of size n.
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We have used the term ‘solve’ rather loosely thus far. In order to precisely define what

we mean here, and therefore precisely define exactly what a complexity class is, we must

first introduce the concept of a decision problem. This is a definition that is extremely

important in the area of complexity theory. In fact, the complexity classes that we will

define are classes of decision problems. A decision problem is a problem that admits yes

or no as an answer. Formally, we have the following definition which is taken from Bovet

and Crescenzi’s Introduction to the Theory of Complexity [6].

Definition 2.27. A decision problem Π is a triple 〈I, S, π〉 such that

• I is a set of words that encode instances of the problem

• S is a function that maps an instance x ∈ I into a finite set S(x) of words that

encode possible solutions of x

• π is a predicate such that, for any instance x and for any possible solution y ∈
S(x), π(x, y) = true if and only if y is a feasible solution.

Solving a decision problem 〈I, S, π〉 consists of deciding, for a given instance x ∈ I,

whether the set {y : y ∈ S(x) ∧ π(x, y)} is not empty.

Finally, before we define the fundamental time complexity classes, we must give one more

set of definitions taken from [5].

Definition 2.28. TIME(f) is the class of all decision problems solvable by a determin-

istic algorithm in time O(f(n)) where n is the size of the input.

Definition 2.29. NTIME(f) is the class of all decision problems solvable by a non-

deterministic algorithm in time O(f(n)) where n is the size of the input.

Now we can define the two most fundamental complexity classes P and NP.

Definition 2.30. P = TIME(Nk) =
⋃
j>0

TIME(nj).

Definition 2.31. NP = NTIME(Nk) =
⋃
j>0

NTIME(nj).

Due to various properties of the class P, it is considered to be the best candidate for the

class of problems that are feasibly solvable.

Definition 2.32. A problem is said to be tractable if and only if it is in P.
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2.4.3 Problem Reduction

An inherent property of complexity classes is that the problems they contain are all of

related time complexity. Exactly what we mean by related is that for some complexity

class C and for any two problems A and B in C then A is at least as hard as B. As

discussed by Papadimitriu [5] a precise notion of what it means for a problem to be at

least as hard as another is reduction. A problem A is at least as hard as a problem B if

B reduces to A.

Definition 2.33. B reduces to A if there exists a transformation R which, for every input

x of B, produces an equivalent input R(x) of A.

Here equivalence is described to mean that the answer to R(x) considered as an input for

A, ‘yes’ or ‘no’, is a correct answer to x, considered as an input of B.

Definition 2.34. An efficient reduction is one which uses a transformation that can be

computed in deterministic polynomial-time.

Before we begin the next section, the following theorem is essential. We take the theorem

from [5] where its proof is also given.

Theorem 2.1. If R is a reduction from problem P1 to P2 and R′ is a reduction from

problem P2 to P3 then R ·R′ is a reduction from problem P1 to P3.

Given the previous theorem, this gives us an ordering on problems with respect to their

difficulty.

2.4.4 Hardness and Completeness

Definition 2.35. Let C be a complexity class and let P be a problem. We say that P is

C-hard if any problem P ′ ∈ C can be efficiently reduced to P .

Definition 2.36. Let C be a complexity class and let P be a problem in C. We say that

P is C-complete if any problem P ′ ∈ C can be efficiently reduced to P .

Combined with our earlier definitions of P and NP These two definitions directly yield

the complexity classes NP-hard and NP-complete.
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Intuitively speaking NP-hard contains the problems that are at least as hard as the

hardest problems in NP. NP-complete contains the problems that can be verified in

polynomial-time but for which there is no known way to compute a solution in polynomial-

time.

Definition 2.37. An problem is intractable if it is NP-hard.

Note that if a problem is NP-complete then trivially it is NP-hard as well.

2.5 Parameterized Complexity Theory

In classical complexity theory, we analyse the complexity of problems in terms of the

amount of time or space that is required in order to compute a solution. In some cases,

this analysis is not refined enough and it can be misleading in a sense that we could

make certain computational problems out to be harder than they actually are. The field

of parameterized complexity theory focuses on analysing problems with respect to their

difficulty in terms of both the input size and some parameter (some function of the input

instance).

Operating under the assumption that P 6= NP, then there exist computational problems

for which there is no polynomial-time (in terms of the input size) algorithm to solve.

Although this might be the case, that is not to say that there do not exist algorithms which

are polynomial-time in the input size and super-polynomial in terms of some parameter

κ. If we know that κ will always remain relatively small, such problems are deemed to be

tractable in parameterized complexity theory. In particular, we say that such problems are

fixed-parameter tractable. An example of the fixed-parameter tractability of an NP-hard

problem can be found in Example 2.1.

Example 2.1. Consider the satisfiability problem for propositional logic. We parameterize

the problem by the number of variables of the input formula. Let κ denote the number of

variables of the formula, and let n denote the size of the input (number of clauses). The

obvious brute force approach of checking every possible combination of assignments to the

variables of the formula has a time complexity of O(2k · n). We therefore say that SAT is

fixed-parameter tractable.

The following introduction, and set of essential definitions, will provide a more formal
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overview of the field. We take the following definitions from [22]. Firstly, we formally

define the notion of parameterization.

Definition 2.38. Let Σ be a finite alphabet.

1. A parameterization of Σ∗ is a mapping κ : Σ∗ → N that is polynomial-time com-

putable.

2. A parameterized problem (over Σ) is a pair (Q, κ) consisting of a set Q ⊆ Σ∗ of

strings over Σ and a parameterization κ of Σ∗.

From here we proceed to define the notion of fixed-parameter tractability.

Definition 2.39. Let Σ be a finite alphabet and κ : Σ∗ → N a parameterization.

1. An algorithm A with input alphabet Σ is an fpt-algorithm with respect to κ if there

is a computable function f : N→ N and a polynomial p ∈ N0[X] such that for every

x ∈ Σ∗, the running time of A on input x is at most

f(κ(x)) · p(|x|).

2. A parameterized problem (Q, κ) is fixed-parameter tractable if there is an fpt-algorithm

with respect to κ that decides Q. FPT defines the class of all fixed-parameter tractable

problems.

Just like in classical complexity theory, we may also define a notion of reduction between

parametereized problems as follows.

Definition 2.40. Let (Q, κ) and (Q′, κ) be parameterized problems over the alphabets Σ

and Σ′, respectively. An fpt-reduction from (Q, κ) to (Q′, κ) is a mapping R : (Σ)∗ → (Σ′)∗

such that:

1. For all x ∈ Σ∗ we have (x ∈ Q ⇐⇒ R(x) ∈ Q′).

2. R is computable by an fpt-algorithm (with respect to κ). That is, there is a com-

putable function f and a polynomial p(X) such that R(x) is computable in time

f(κ(x)) · p(|x|).
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3. There is a computable function g : N → N such that κ′(R(x)) ≤ g(κ(x)) for all

x ∈ Σ∗.

The class FPT is closed under fpt-reductions [22]. Whilst FPT is the class of fixed-

parameter tractable problems. We can define other important classes of problems in

parameterized complexity theory as follows.

Definition 2.41. 1. Let Σ be an alphabet and κ : Σ∗ → N a parameterization. A

nondeterministic Turing machine M with input alphabet Σ is called κ-restricted if

there are computable functions f, h : N→ N and a polynomial p ∈ N0[X] such that

on every run with input x ∈ Σ∗ the machine M performs at most f(κ) · p(n) steps,

at most h(κ) · log(n) of them being nondeterministic. Here n = |x| and k = κ(x).

2. W[P] is the class of all parameterized problems (Q, κ) that can be decided by a

κ-restricted nondeterministic Turing machine.

Finally, we note that FPT is contained in (and possibly equal to) W[P] and W[P] is

closed under fpt-reductions [22].

2.6 Algorithms

The computation of weakly-dominant bribing strategies presented in the paper uses several

fundamental concepts from the theory of algorithms. These concepts include time and

space complexity and big-O notation, which we have already seen. We have seen from

Algorithm 1 of [2] that a greedy algorithm yields a provably optimal bribing strategy. We

will define the concept of a greedy algorithm and provide some background as it is central

to our analysis of the existing algorithms and an important factor to consider in future

algorithms that we will develop.

In addition to this, our analysis seeks to investigate the tractability of certain problems

that arise from the network based rating system. It could be the case that we find certain

problems to be intractable, but that should not necessarily hinder any attempts to solve

the problem in a manner which provides us with good but not necessarily optimal bribing

strategies. One way to obtain these is through the use of heuristics.
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2.6.1 Greedy Algorithms

When we compute a weakly-dominant bribing strategy we seek to optimise the amount of

revenue obtained by playing some strategy on upon a network of customers. Particularly

in the case of Algorithm 1 of [2], this involves a sequence of steps at each of which we

make a choice with regards to how much we will bribe each customer. Algorithm 1 is a

greedy algorithm for the reason that it bribes each customer with the maximal amount

possible (so as not to waste any resources) at each step. That is, in terms of how much

to bribe each customer at each step, it makes the locally optimal choice. It just so turns

out that repeated application of these locally optimal choices leads to a globally optimal

solution. This approach leads to the weakly-dominant strategy and so it is an important

approach to consider as we attempt to develop algorithms to solve the same problem in

each of the various different cases.

2.6.2 Heuristic Methods

Even if we can formally prove that the problem of computing a weakly-dominant bribing

strategy under some set of network restrictions is computationally hard, all hope is not

lost in terms of finding a reasonable solution to the problem instead. Exactly what is

meant by reasonable is yet to be defined and it is dependent on the context. For example,

a reasonable solution might be a profitable bribing strategy that is not necessarily optimal.

Alternatively, it might be a bribing strategy that is provably within some threshold of the

truly optimal one.

Use of heuristics enables us to achieve such solutions. A heuristic can be a guess or

something which can restrict the search space when computing approximate solutions to

a problem. One example of a heuristic, in certain cases, would be a greedy algorithm.

Greedy algorithms don’t always yield optimal solutions, often they give us reasonable but

non-exact solutions. In these cases we could say that it acts as a kind of heuristic.

2.6.3 Polynomial-Time Bribing Strategies

One of the main aims of the research in [2] is stated to be:

“We analyse the effect of bribing strategies under various constraints, and we show under

what conditions the system is bribery-proof, i.e., no bribing strategy yields a strictly positive
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expected gain to the service provider”.

In order properly answer these questions, we must also investigate the feasibility of com-

puting bribing strategies. As we have already discussed in the previous section, feasibly

computing a bribing strategy is to compute in polynomial-time (an algorithm in P) a brib-

ing strategy. A main aim of this project is to determine whether we can find polynomial-

time algorithms to compute weakly-dominant bribing strategies for the various problems

that arise when additional restrictions are placed upon the network.



Chapter 3

Lines of Research

3.1 Theoretical Results

There are various interesting analytic and algorithmic problems resulting from the research

in [2], some of which we outline below.

3.1.1 All Vote Known Locations (AVKL)

AVKL scenario: The restaurant knows the customer network E ⊆ C × C as well

as the location of each customer in the network and their individual evaluations via

eval : C → V al (note that the range of eval is V al as opposed to V al ∪ {∗} as all

customers vote); consequently, we identify the names of customers with the names of

network vertices.

AVKL synopsis of [2, Sect. 4.1]: With the definition of P-rating given above, in [2]

it is proven that the revenue accrued from any efficient strategy is

∑
c∈C

(wc − 1)σ(c),

and consequently a polynomial-time (greedy) algorithm, called P-greedy, is devised that

yields a weakly-dominant bribing strategy. In particular, this shows that computing a

weakly-dominant bribing strategy can be done in polynomial-time.

20
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In spite of the conclusive outcome from [2], there are still some related problems to be

considered.

The general AVKL scenario can be made more complex. At present, the definition of

P-rating takes an average of the evaluations across all neighbours of some vertex (every

vertex is always a neighbour of itself, remember). However, there are alternative natural

aggregations of evaluations; for example, the maximum, the minimum, the sum of the

two largest values, or a weighted average of some sort. Such definitions are motivated by

the different ways in which customers pay attention to the evaluations of their neighbours

within the network. Potentially, any symmetric function might be employed (that is, one

where the order of the inputs is of no significance, as is the case for the four suggestions

above) as this fits within our graph-theoretic framework.

Problem 1: For which symmetric functions can we obtain a polynomial-time algorithm

to compute a weakly-dominant bribing strategy?

Alternatively, we can extend the ‘sphere of influence’ of the P-rating. At present, P-rating(c, eval)

is determined by the neighbourhood N(c) of some customer c. We might extend the sphere

of influence to include all neighbours of neighbours of c; so, we might define an alternative

P-rating as

P′(c, eval) =
1

|N2(c) ∩ V |
∑

k∈N2(c)∩V

eval(k),

where N r(c) consists of those vertices at a distance at most r from c. We might even

weight the influences of the different vertices of N2(c) according, perhaps, to their distance

from c. Such a definition is motivated by the reasonable scenario where any customer c

would take: his or her evaluation as dominating over those of his or her neighbours; and

the evaluations of his or her neighbours over their neighbours (that aren’t neighbours of

c).

Problem 2: For which P-ratings and ‘spheres of influence’ can we obtain a polynomial-

time algorithm to compute a weakly-dominant bribing strategy?

There is another natural extension to the basic AVKL scenario. Suppose that the network

is a weighted network where the weights on the edges denote the strengths of the influence

between the two corresponding customers. This relationship strength might feature in the

definition of the P-rating. For example, suppose that edge-weights are values from [0, 1].
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An amended P-rating might be defined as

P′-rating(c, eval) =
1

|N(c) ∩ V |
∑

k∈N(c)∩V

ψc,k · eval(k),

where the weight of the edge (c, k) is ψc,k. We might even think of the network graph as

being directed so that the influence of customer c over customer c′ is potentially different

from the influence of customer c′ over customer c. This makes sense where two customers

are influenced by one another with one perhaps deemed to be an expert, but the other

an occasional restaurant visitor with limited food knowledge.

Problem 3: Can we obtain a polynomial-time algorithm to compute a weakly-dominant

bribing strategy when we have weights on the edges of the network?

There are numerous variations and amalgamations of the three problems defined above.

3.1.2 All Vote Unknown Locations (AVUL)

AVUL scenario: The restaurant knows the customer network E ⊆ C × C and an

evaluation function eval : N → V al, where N is the set of customer names with |N | = |C|.
However, the restaurant does not know the locations of the customers in the network; that

is, there is no bijection of N to C given. Consequently, if the restaurant were to bribe a

customer then the restaurant would have no idea of how this bribe influences the P-ratings

of the customer or the neighbours of the customer.

AVUL synopsis of [2, Sect. 4.2]: It was proven in [2, Sect. 4.2] that in expectation,

the revenue obtained by any bribing strategy is 0. Hence, no bribing strategy is profitable

in expectation.

Note the different nature of the results in the AVUL case. The restaurant does not

know the locations of the customers and, in general, there is an exponential number of

possibilities to be considered. The restaurant cannot hope to find a weakly-dominant

bribing strategy as was the case in the AVKL scenario as it does not know where the

customers are located. The evaluation of any bribing strategy has to be aggregated

across all possible placements of customers.

The various P-ratings and weight-based extensions from Section 3.1.1 feed into the scenario

here.
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Problem 4: What are the expectations of revenue for bribing strategies under the varia-

tions proposed in Section 3.1.1?

The unknown elements of the AVUL scenario open up the possibility of associated prob-

lems being computationally hard. The focus in [2, Sect. 4.2] was on averaged revenues.

However, it is feasible that a restaurant might wish to have more information on the

utilities arising from the possible locations of customers (given their evaluations) in some

AVUL scenario. For example, if the maximum utility over all placements of customers

was below some threshold that the restaurant deemed low, the restaurant would know

that no matter where the customers were actually located, not much utility was coming

back to the restaurant and consequently a bribing strategy should be employed to do

something about this (under the assumption that there was ample scope to increase the

utility).

Problem 5: What is the maximum utility to be gained across all possible placements of

customers?

Of course, alternative questions might be asked, e.g., ‘minimum’ might replace ‘maxi-

mum’. An even more difficult problem to solve is the following one.

Problem 6: What is the maximum revenue to be gained across all possible placements of

customers?

Note that the maximum revenue to be gained need not come from the placement of

customers to locations so as to maximise the utility. Also, customers must be placed

before the revenue is calculated as the utility arising from this placement is required so

as to limit the total amount of money that can be spent on bribes. Our motivation for

posing this problem is that there could be additional costs to a restaurant to actually

make the bribes. If the revenue to be gained is not too large then the restaurant could

decide that it is not worthwhile to actually make the bribes (we return to such a scenario

later when we consider amending the basic model).

Irrespective of whether we have computationally hard problems or not, obvious greedy

algorithms might be applied by using, for example, the ranking of the evaluations and the

degrees of the vertices in the network.

Problem 7: How good are basic greedy algorithms in terms of estimating the maximum

utility or the maximum revenue to be gained across all possible placements of customers?
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If it turns out that computing the maximum utility or maximum revenue in Prob-

lems 5 and 6 is computationally hard then we will need to undertake computational

experiments to gain some insight (we discuss these computational experiments later).

Again, irrespective of whether we have computationally hard problems or not, it might

be easier to compute the utility or revenue on certain classes of networks. For example,

when the network is the complete graph, there is only one placement of customers up to

isomorphism. Consequently, we are in the AVKL scenario.

Problem 8: For which classes of networks is it easy to compute, for example, the average

or maximum utility or revenue, or perhaps a good approximation?

As before, there are numerous variations and amalgamations of the problems defined

above.

3.1.3 Non Voters Known Locations (NVKL)

NVKL scenario: The restaurant knows the customer network E ⊆ C × C and an

evaluation function eval : C → V al∪{∗}; so, the set of voters V = {c ∈ C : eval(c) 6= ∗}.
Again, as the customer locations are known we identify a customer with a network vertex.

NVKL synopsis of [2, Sect. 4.3]: An example was given to show that bribing non-

voters might result in additional revenue. The only result proven is that for any efficient

bribing strategy where only voters are bribed, the revenue accrued is

∑
c∈V

(wVc − 1)σ(c).

It is not mentioned as to whether this result can be employed to obtain a weakly-dominant

bribing strategy.

Problem 9: Does a greedy algorithm similar to P-greedy yield a weakly-dominant bribing

strategy when we restrict to bribing strategies that bribe voters only?

The key difficulty in the NVKL scenario is that when a non-voter c is bribed, this bribe

can lessen the P-rating of a neighbour of c. At present, there is no analytic understanding

of this phenomenon.

Problem 10: Can we obtain efficient algorithms to compute a weakly-dominant bribing
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strategy? If we cannot obtain exact algorithms, can we obtain algorithms that yield a good

approximation?

As before, there are numerous variations and amalgamations of the problems defined

above.

3.1.4 Non Voters Unknown Locations (NVUL)

NVUL scenario: The restaurant knows the customer network E ⊆ C × C and an

evaluation function eval : N → V al ∪ {∗}, where N is the set of customer names with

|N | = |C|; so, the set of voters V = {c ∈ C : eval(c) 6= ∗}. However, the restaurant does

not know the locations of the customers in the network; that is, there is no bijection of

N to C given.

NVUL synopsis of [2, Sect. 4.4]: An example is given in [2, Sect. 4.4] showing

that P-rating is not bribery-proof in expectation. However, apart from this example, the

analysis of the NVUL scenario was left open.

We now have two sources of complication: the unknown locations and the non-voters.

Consequently, just like Section 3.1.2, we have the potential for computationally hard

problems and we have similar questions to ask.

Problem 11: Can we efficiently compute the expectation of revenue?

Problem 12: What is the maximum utility to be gained across all placements of cus-

tomers?

Problem 13: How good are basic greedy algorithms in terms of estimating the maximum

utility to be gained?

We have versions of the two problems above but for revenue rather than utility.

Problem 14: For which classes of networks is it easy to compute the average or maximum

utility or revenue, or perhaps a good approximation?

As before, there are numerous variations and amalgamations of the problems defined

above.
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3.1.5 Changes to the utility

In [2] the actual customer evaluation is interpreted as the propensity of a customer to go

to the restaurant, and subsequent utility yields the financial reward for a restaurant. Two

notions of utility are considered: for O-rating, the utility is obtained as the sum of the

O-ratings of all customers, where we define the O-rating of a customer as its evaluation;

and for P-rating, the utility is the sum of the P-ratings of all customers. Both notions of

utility involve a summation across the whole set of customers.

However, we can amend the way the utility is used and calculated. Suppose that we are

in the AVKL scenario. Suppose also that the utility gained is proportional to the number

of people who visit the restaurant and that there is some threshold t ∈ [0, 1] so that

customer c is deemed to almost surely visit the restaurant if P-rating(c) ≥ t (maybe t is

1). So, any evaluation results in a certain number of customers whose P-rating is at least

t, and this number of customers is the utility. Now the restaurant is interested in making

bribes so as to maximise the number of customers having a P-rating of at least t but so

that the amount of money needed to make these bribes is affordable by the restaurant.

In this scenario, there is no direct relationship between the money a restaurant has at

its disposal and the amount of money it invests in bribes. However, a restaurant might

have in mind a number of customers, α say, it wishes to have whose P-rating is at least

t and it wants to minimise the amount of money it would have to spend in bribes so as

to secure α customers whose P-rating is at least t. This gives rise to new problems, the

most obvious of which is the following.

Problem 15: How easy is it for a restaurant to make bribes so as to secure α customers

having a P-rating of at least t but so that no more than β is spent in making these bribes?

We might also amend the model as regards taking into account costs to make the bribes.

Imagine the situation where a restaurant makes some decision as regards which customers

are to be bribed. There could well be some sort of cost attached to the physical act of

bribing a customer. This cost might be financial, perhaps associated with travelling to

meet the customer and make the bribe, or in terms of some other resource such as general

time and effort. Moreover, this cost might differ from customer to customer. In the first

case, the more customers bribed, the more money has to be found from the initial utility;

in the second case, although money does not have to be found from the initial utility,

there could well be some threshold on the maximum number of bribes that can be made.

Problem 16: Explore variations of the basic restaurant-customer bribing model and the
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resulting bribing problems arising.



Chapter 4

All Vote Known Locations (AVKL)

In the case that all customers of the network vote and the restaurant knows the position of

all customers on the network, we were able to develop a provably optimal greedy strategy

for computing weakly-dominant bribing strategies. The motivation behind this greedy

algorithm is developed in [2] and we shall summarise the key details in this section.

4.1 Key Results

A graph-theoretic measure of influence is defined as follows.

Definition 4.1. The influence weight of a customer c ∈ C in a network E with the set

of voters V is defined as

wVc =
∑
k∈N(c)

1

|N(k) ∩ V |
.

Remark 4.1. This function is clearly well-defined by the assumption that every customer

c is connected to at least one voter (which may be itself). That is, for all c ∈ C there

exists x ∈ V such that (c, x) ∈ E.

This measure of influence is important in understanding which customer’s P-ratings con-

tribute most to the overall utility of the network. It also separates the topological proper-

ties of a customer and its influence away from any form of evaluation. That is, a customers

influence is entirely dependent on the topology of the network and independent of the

28
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evaluations of the customer or any of its neighbours. It also allows us to express the

utility of the network concisely as follows [2].

Theorem 4.1. The utility obtained by playing σ with P-rating is uσP =
∑

c∈V σ w
σ
c ×

evalσ(c)−
∑

c∈C σ(c).

In addition to this, it is shown that we can exactly characterise the revenue obtained by

some bribing strategy σ in terms of just the strategy and the influence weights of the

bribed customers. This claim takes the form of Proposition 8 of [2], which we include as

follows.

Proposition 4.1. Let V = C, let E be a known network, and let σ be an efficient strategy.

Then, rP(σ) =
∑

c∈C(wc − 1)σ(c).

Since σ(c) > 0 for all c ∈ C, we see that (wc − 1)σ(c) > 0 is and only if wc > 1 for all

c ∈ C. In other words, it is profitable to bribe a customer c is and only if its influence

weight wc is strictly greater than 1.

4.2 A Polynomial-Time Algorithm for Weakly-Dominant

Bribing Strategies

We can observe that in order to maximise the revenue of a strategy, we should bribe

the customers with the highest influence weights (which are strictly greater than 1) as

much as we efficiently can. This observation eventually gives rise to the following greedy
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algorithm, as presented in [2].

Data: Evaluation function eval and network (C,E).

Result: An efficient bribing strategy σ : C → V al.

budget = u0P;

set σ(c) = 0 for all c ∈ C;

compute wc for all c ∈ C;

sort c ∈ C into descending order c0, ..., cm based on wc;

for i = 0, ...,m do

if budget 6= 0 then

if wci > 1 then

σ(ci) = min{1− eval(ci), budget};
budget− = σ(ci);

end

end

end

return σ

Algorithm 1: An algorithm for computing a weakly-dominant strategy under AVKL.

The above algorithm yields a weakly-dominant bribing strategy and clearly does so in

polynomial-time. It is stated that the most costly operation involves computing the

influence weights wc for each customer c. The important point to consider here, is that

these weights remain static throughout our computation; that is, we can compute them

once at the beginning and use them throughout. As we will see in later chapters, it is

the static influence weights which allow us to easily compute a weakly-dominant bribing

strategy.
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Non-Voters and Known Locations

(NVKL)

5.1 Non-Linearity of P-rating

In this section, we consider the situation where the restaurant has complete knowledge

of the customer network but where some of the customers do not vote; moreover, the

restaurant is considering whether to bribe a subset or all of the customers. Consequently,

we suppose that we are given a network (C,E) and an evaluation eval together with a

subset V ⊂ C of customers who have voted (so as to yield the evaluation eval). Recall

that we always assume that any evaluation is such that every customer is adjacent to at

least one voter; of course, this applies to the evaluation given to the restaurant before the

restaurant considers whether to make any bribes. In [2], the NVKL analysis amounted to

noting that one can find networks where bribing a non-voter is profitable and proving a

result that when we only bribe voters, the resulting revenue acquired is a function solely of

the network structure, the bribes made, and the distribution of voters (but not the initial

evaluation). It was stated in [2] that the ‘non-linearity’ of the NVKL scenario presents

issues.

As soon as we introduce the existence of non-voters, we open up the possibility that the

structure of the network can change between bribes (by structure we refer to the voter

status of customers as this directly affects the P-rating). If we have some non-voter x,

it clearly does not contribute to the influence weight of some customer y ∈ N2(x) since

x 6∈ V (recall, we have that N2(x) =
⋃
{N(y) : y ∈ N(x)}). If we then bribe x some

31



32 Chapter 5. Non-Voters and Known Locations (NVKL)

amount b > 0, by definition after the bribe is made the evaluation of x becomes ∗+ b = b;

that is x ∈ V now. Clearly the influence weights wVc for (c ∈ C) of the customers is no

longer static, and the extent to which a customer is profitable to bribe changes between

bribes.

Previously we knew that this was not the case. No matter which customers were bribed,

the influence weight remained static and so it gave us a convenient measure upon which

to base a greedy algorithm. It was not necessary, when playing some strategy σ : C1 ⊆
C → V al to define the order (over c ∈ C1) in which we should execute σ. Clearly in the

case of non-voters, we need to think about this as this is not something that is accounted

for by the framework, as it is presented in [2].

5.2 Order of Bribes Under NVKL

Under the existence of non-voters, we have two types of customers: voters and non-voters.

We investigate, in these two different cases, how much revenue we will gain if we make a

bribe of some positive amount. This helps us to decide the order in which any strategy

defined over both voters and non-voters should be played.

We begin by considering the revenue gained by (efficiently) bribing a solitary non-voting

customer x ∈ C \ V with a bribe σ(x) = b.

Proposition 5.1. Let V ⊆ C give rise to an evaluation eval, let x ∈ C \ V , and let σ

be an efficient bribing strategy such that σ(x) = b > 0 and σ(y) = 0, for all y ∈ C \ {x}.
For each y ∈ N(x), set νy = |N(y) ∩ V |. The revenue gained is

b
∑

y∈N(x)

(
1

νy + 1
− 1

|N(x)|

)
−
∑

y∈N(x)

(
1

νy(νy + 1)

∑
k∈N(y)∩V

eval(k)

)
.

Proof. By definition, we have that

rP(σ) = uσP − u0P =

(∑
c∈C

P-rating(c, evalσ)

)
− b−

(∑
c∈C

P-rating(c, eval)

)
.

Given that σ bribes exactly one customer x, only the P-rating of customers of N(x)
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changes; consequently, we have that

rP(σ) =
∑

y∈N(x)

(
P-rating(y, evalσ)− P-rating(y, eval)

)
− b.

By the definition of P-rating, we have that rP(σ) is equal to

∑
y∈N(x)

(
1

|N(y) ∩ V σ|

( ∑
k∈N(y)∩V σ

evalσ(k)

)
− 1

|N(y) ∩ V |

( ∑
k∈N(y)∩V

eval(k)

))
− b.

For any y ∈ N(x), let us denote |N(y) ∩ V σ| by νσy ; so, νσy = νy + 1. Hence, we have

rP(σ) =
∑

y∈N(x)

([
1

νσy

∑
k∈N(y)∩V σ

evalσ(k)

]
−
[

1

νy

∑
k∈N(y)∩V

eval(k)

])
− b

=
∑

y∈N(x)

([
1

νσy

∑
k∈N(y)∩V

eval(k)

]
+

b

νσy
−
[

1

νy

∑
k∈N(y)∩V

eval(k)

])
− b

= b
∑

y∈N(x)

(
1

νy + 1
− 1

|N(x)|

)
−
∑

y∈N(x)

([
1

νy
− 1

νy + 1

] ∑
k∈N(y)∩V

eval(k)

)

= b
∑

y∈N(x)

(
1

νy + 1
− 1

|N(x)|

)
−
∑

y∈N(x)

(
1

νy(νy + 1)

∑
k∈N(y)∩V

eval(k)

)

The result follows.

The analogue of Proposition 5.1 in the AVKN context is [2, Prop. 8]. However, note

that in the presence of non-voters, things are much more complicated: in [2, Prop. 8]

the revenue obtained by some efficient bribing strategy is a function solely of the network

structure and bribing strategy, whereas according to Proposition 5.1 the distribution of

voters and the initial evaluation also play a role.

Consider now the revenue acquired from bribing a voter x ∈ V with a bribe σ(x) = b > 0

(this is the unproven Proposition 12 from [2]).

Proposition 5.2. Let V ⊆ C, let x ∈ V , and let σ be an efficient bribing strategy

such that σ(x) = b > 0 and σ(y) = 0, for all y ∈ C \ {x}. For each y ∈ N(x), set

νy = |N(x) ∩ V |. The revenue gained is

b

[( ∑
y∈N(x)

1

νy

)
− 1

]
.
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Proof. As in the proof of Proposition 5.1, we obtain

rP(σ) =
∑

y∈N(x)

([
1

νσy

∑
k∈N(y)∩V σ

evalσ(k)

]
−
[

1

νy

∑
k∈N(y)∩V

eval(k)

])
− b

where: V σ = V ; for every y ∈ N(x), νσy = νy; and evalσ differs from eval only on x, with

evalσ(x) = eval(x) + b. So

rP(σ) =
∑

y∈N(x)

([
1

νy

∑
k∈N(y)∩V

evalσ(k)

]
−
[

1

νy

∑
k∈N(y)∩V

eval(k)

])
− b

=
∑

y∈N(x)

([
1

νy

∑
k∈N(y)∩V

eval(k)

]
+

b

νy
−
[

1

νy

∑
k∈N(y)∩V

eval(k)

])
− b

=

( ∑
y∈N(x)

b

νy

)
− b = b

[( ∑
y∈N(x)

1

νy

)
− 1

]
.

The result follows.

Note that the revenue acquired by bribing a voter as described in Proposition 5.2 is

dependent upon the network structure, the bribe, and the distribution of voters, though

not on the initial evaluation as is the case for Proposition 5.1.

In the AVKN scenario of [2], the characterisation of the revenue obtained from some

efficient bribing strategy in [2, Prop. 8] is used to develop a simple greedy algorithm

that results in a weakly-dominant bribing strategy. Key to this greedy algorithm is the

fact that the revenue obtained from an efficient bribing strategy is a function only of the

network structure and the bribes. As such, it does not matter whether we bribe customer

x before customer y or alternatively customer y before customer x. This is not so clear

for us, given the involvement in the revenue computation of the distribution of voters and

the initial evaluation. We now explore how the order of bribing customers impacts upon

the eventual revenue.

Proposition 5.3. Let V ⊆ C give rise to an evaluation eval, let x, x′ ∈ C \V be distinct

non-voters, and let σ be an efficient strategy such that σ(x) = b > 0, σ(x′) = b′ > 0, and

σ(y) = 0, for all y ∈ C \ {x, x′}. No matter whether we bribe x before x′ or x′ before x,

the resulting cumulative revenue will be the same.
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Proof. Suppose that we bribe x first. So, by Proposition 5.1, the revenue r1 acquired is

b
∑

y∈N(x)

(
1

νy + 1
− 1

|N(x)|

)
−
∑

y∈N(x)

(
1

νy(νy + 1)

∑
k∈N(y)∩V

eval(k)

)
,

where for each y ∈ N(x) ∪ N(x′), νy is defined as |N(y) ∩ V |. Denote the evaluation

obtained after bribing x by eval′ and the resulting set of voters by V ′; in particular, eval′

differs from eval only on x and V ′ = V ∪{x}. For each y ∈ N(x′), define ν ′y as |N(y)∩V ′|.
So, again by Proposition 5.1, the additional revenue r2 acquired by bribing x′ is

b′
∑

y∈N(x′)

(
1

ν ′y + 1
− 1

|N(x′)|

)
−

∑
y∈N(x′)

(
1

ν ′y(ν
′
y + 1)

∑
k∈N(y)∩V ′

eval′(k)

)
.

Note that any ν ′y depends upon whether y ∈ N(x′) ∩N(x) or whether y ∈ N(x′) \N(x):

in the former case, ν ′y = νy + 1; and in the latter case, ν ′y = νy. Consequently, we can

rewrite r2 as

b′
∑

y∈N(x′)∩N(x)

(
1

νy + 2
− 1

|N(x′)|

)
+ b′

∑
y∈N(x′)\N(x)

(
1

νy + 1
− 1

|N(x′)|

)

−
∑

y∈N(x′)∩N(x)

(
1

(νy + 1)(νy + 2)

∑
k∈N(y)∩V ′

eval′(k)

)

−
∑

y∈N(x′)\N(x)

(
1

νy(νy + 1)

∑
k∈N(y)∩V ′

eval′(k)

)

= b′
∑

y∈N(x′)∩N(x)

(
1

νy + 2
− 1

|N(x′)|

)
+ b′

∑
y∈N(x′)\N(x)

(
1

νy + 1
− 1

|N(x′)|

)

−
∑

y∈N(x′)∩N(x)

(
1

(νy + 1)(νy + 2)

(
b+

∑
k∈N(y)∩V

eval(k)

))

−
∑

y∈N(x′)\N(x)

(
1

νy(νy + 1)

∑
k∈N(y)∩V

eval(k)

)
.
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Now we have that

r1 + r2 = b
∑

y∈N(x)∩N(x′)

(
1

νy + 1
− 1

|N(x)|

)
+ b

∑
y∈N(x)\N(x′)

(
1

νy + 1
− 1

|N(x)|

)

+b′
∑

y∈N(x′)∩N(x)

(
1

νy + 2
− 1

|N(x′)|

)
+ b′

∑
y∈N(x′)\N(x)

(
1

νy + 1
− 1

|N(x′)|

)

−
∑

y∈N(x)∩N(x′)

(
1

νy(νy + 1)

∑
k∈N(y)∩V

eval(k)

)

−
∑

y∈N(x)\N(x′)

(
1

νy(νy + 1)

∑
k∈N(y)∩V

eval(k)

)

−
∑

y∈N(x′)∩N(x)

(
1

(νy + 1)(νy + 2)

(
b+

∑
k∈N(y)∩V

eval(k)

))

−
∑

y∈N(x′)\N(x)

(
1

νy(νy + 1)

∑
k∈N(y)∩V

eval(k)

)

= b

[ ∑
y∈N(x)∩N(x′)

(
1

νy + 2
− 1

|N(x)|

)
+

∑
y∈N(x)\N(x′)

(
1

νy + 1
− 1

|N(x)|

)]

+b′
[ ∑
y∈N(x′)∩N(x)

(
1

νy + 2
− 1

|N(x′)|

)
+

∑
y∈N(x′)\N(x)

(
1

νy + 1
− 1

|N(x′)|

)]

−
∑

y∈N(x)∩N(x′)

(
1

νy(νy + 2)

∑
k∈N(y)∩V

eval(k)

)

−
∑

y∈N(x)\N(x′)

(
1

νy(νy + 1)

∑
k∈N(y)∩V

eval(k)

)

−
∑

y∈N(x′)\N(x)

(
1

νy(νy + 1)

∑
k∈N(y)∩V

eval(k)

)
.

By the symmetry of the expression for r1 + r2, were we to first bribe x′ and then x, we

would get exactly the same revenue. The result follows.

Now we consider the case where we compare bribing a non-voter x and then a voter x′

with bribing the voter x′ and then the non-voter x.

Proposition 5.4. Let V ⊆ C give rise to an evaluation eval, let x ∈ C \ V , let x′ ∈ V ,

and let σ be an efficient strategy such that σ(x) = b > 0, σ(x′) = b′ > 0, and σ(y) = 0,

for all y ∈ C \{x, x′}. No matter whether we bribe x before x′ or x′ before x, the resulting

cumulative revenue will be the same.

Proof. For every y ∈ N(x′) ∪N(x), define νy as |N(y) ∩ V |. Suppose that we first bribe
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the voter x′ with b′, to acquire revenue r1, before bribing the non-voter x with b, to acquire

revenue r2. By Proposition 5.2, we have that

r1 = b′
[( ∑

y∈N(x′)

1

νy

)
− 1

]
.

Denote the evaluation obtained from eval by bribing x′ by eval′; so, eval′ is identical to

eval except on x′ where eval′(x′) = eval(x′) + b′. Note also that the set of voters has not

changed. By Proposition 5.1, we have that

r2 = b
∑

y∈N(x)

(
1

νy + 1
− 1

|N(x)|

)
−
∑

y∈N(x)

(
1

νy(νy + 1)

∑
k∈N(y)∩V

eval′(k)

)
.
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Hence, we have that r1 + r2 is equal to

b′
[( ∑

y∈N(x′)

1

νy

)
− 1

]
+ b

∑
y∈N(x)

(
1

νy + 1
− 1

|N(x)|

)

−
∑

y∈N(x)

(
1

νy(νy + 1)

∑
k∈N(y)∩V

eval′(k)

)

= b′
[( ∑

y∈N(x′)

1

νy

)
− 1

]
+ b

∑
y∈N(x)

(
1

νy + 1
− 1

|N(x)|

)

−
∑

y∈N(x)∩N(x′)

(
1

νy(νy + 1)

∑
k∈N(y)∩V

eval′(k)

)

−
∑

y∈N(x)\N(x′)

(
1

νy(νy + 1)

∑
k∈N(y)∩V

eval′(k)

)

= b′
[( ∑

y∈N(x′)

1

νy

)
− 1

]
+ b

∑
y∈N(x)

(
1

νy + 1
− 1

|N(x)|

)

−
∑

y∈N(x)∩N(x′)

(
1

νy(νy + 1)

(
b′ +

∑
k∈N(y)∩V

eval(k)

))

−
∑

y∈N(x)\N(x′)

(
1

νy(νy + 1)

∑
k∈N(y)∩V

eval(k)

)

= b′
[ ∑
y∈N(x′)

(
1

νy

)
−

∑
y∈N(x)∩N(x′)

(
1

νy
− 1

νy + 1

)
− 1

]

+b
∑

y∈N(x)

(
1

νy + 1
− 1

|N(x)|

)

−
∑

y∈N(x)

(
1

νy(νy + 1)

∑
k∈N(y)∩V

eval(k)

)

= b′
[ ∑
y∈N(x′)∩N(x)

(
1

νy + 1

)
+

∑
y∈N(x′)\N(x))

(
1

νy

)
− 1

]

+b
∑

y∈N(x)

(
1

νy + 1
− 1

|N(x)|

)

−
∑

y∈N(x)

(
1

νy(νy + 1)

∑
k∈N(y)∩V

eval(k)

)
.

Now suppose that we first bribe the non-voter x with b, to acquire revenue s1, before

bribing the voter x′ with b′, to acquire revenue s2. By Proposition 5.1, we have that

s1 = b
∑

y∈N(x)

(
1

νy + 1
− 1

|N(x)|

)
−
∑

y∈N(x)

(
1

νy(νy + 1)

∑
k∈N(y)∩V

eval(k)

)
.
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Denote the evaluation obtained from eval by bribing x by eval′, denote the set of voters

after bribing x by V ′, and for every y ∈ N(x′), set ν ′y as |N(y) ∩ V ′|; so, eval′ is identical

to eval except on x, where eval′(x) = b, and V ′ = V ∪ {x}. By Proposition 5.2, we have

that

s2 = b′
[( ∑

y∈N(x′)

1

ν ′y

)
− 1

]
.

Hence, we have that s1 + s2 is equal to

b
∑

y∈N(x)

(
1

νy + 1
− 1

|N(x)|

)
−
∑

y∈N(x)

(
1

νy(νy + 1)

∑
k∈N(y)∩V

eval(k)

)

+b′
[( ∑

y∈N(x′)

1

ν ′y

)
− 1

]

= b
∑

y∈N(x)

(
1

νy + 1
− 1

|N(x)|

)
−
∑

y∈N(x)

(
1

νy(νy + 1)

∑
k∈N(y)∩V

eval(k)

)

+b′
[( ∑

y∈N(x′)∩N(x)

1

νy + 1

)
+

( ∑
y∈N(x′)\N(x)

1

νy

)
− 1

]

Hence, we have that r1 + r2 = s1 + s2 and the result follows.

Exactly what Propositions 5.3 and 5.4 show is that in fact it is not necessary to define an

ordering in which a strategy over both voters and non-voters should be evaluated.

5.3 Computation of Bribing Strategies

We now develop a greedy efficient bribing strategy, based upon Propositions 5.1 - 5.4.

From Propositions 5.1 - 5.4, the order of bribing in some efficient strategy does not

matter and without loss of generality we may assume that every customer is bribed at

most once (otherwise, manipulate the order of bribing so that some customer is bribed in

consecutive bribes and combine the two bribes into one).

Suppose that we are given some network (C,E) and some evaluation eval (so that every

customer is adjacent to at least one voter). Suppose also that we consider bribing some

customer x ∈ C with the value b > 0; so, eval(x) + b ≤ 1. The revenue we would acquire

by doing so, which we denote rP(x, b, eval), is given by Proposition 5.1, if x is a non-voter,

and by Proposition 5.2, if x is a voter.
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Our greedy algorithm is as follows.

Data: Evaluation function eval and network (C,E).

Result: An efficient bribing strategy σ : C → V al; the total bribe made; and the

total revenue acquired.

compute budget = u0P;

set rσP = 0 and bribeσ = 0;

while budget > 0 do

for each y ∈ C, let by = min{1− eval(y), budget};
let x ∈ C be such that rP(x, bx, eval) ≥ rP(y, by, eval), for all y ∈ C;

if rP(x, bx, eval) > 0 then

bribe x with bx and amend eval accordingly;

budget = budget− bx;
bribeσ = bribeσ + bx;

rσP = rσP + rP(x, bx, eval)

else
budget = 0

end

end

return (σ, bribeσ, rσP)

Algorithm 2: A greedy efficient bribing strategy in the NVKL scenario.

The algorithm recomputes, at each stage, the projected revenue of bribing each customer

the maximal efficient amount. The customer whose projected revenue is highest is bribed

by that amount. This process continues until we run out of utility to reinvest. Upon each

iteration of this algorithm, we must recompute new projected revenues. Although these

projected revenues are not static (unlike the case of AVKL), the algorithm clearly still

runs in polynomial-time.

Note that up until now we have been working in exactly the same framework as [2] as

regards our set Val. Just as with the greedy algorithm (Algorithm 1) from [2], our greedy

algorithm from NVKL (Algorithm 2) can make arbitrary (rational) bribes from [0, 1] to

customers irregardless of the set Val from which the customer evaluations are drawn

(which is understandable as no matter what the set Val is, the P-ratings of customers

can be rational numbers). For the rest of this section, and in particular for our NP-

completeness proof, we assume that customers choose their evaluations from the set of

rational numbers in [0, 1]. We shall comment on this assumption when we discuss future
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work.

5.3.1 Failure of the Greedy Approach

Unfortunately we shall show that the greedy algorithm presented above fails to find a

weakly-dominant strategy in general. Although we have established that for some efficient

bribe amounts b1, b2 > 0 to any two customers of C, the order in which we execute

these bribes does not change the resulting revenue, the difficulty arises in choosing these

amounts and therefore the customers whom we should bribe. Given the existence of non-

voters, the optimal choice might even be to bribe some non-voter an amount so as to

lose utility. The reason for this is that this now modifies the structure of the network in

that turning a non-voter into a voter affects the P-rating and the projected revenues of

all the customers in its neighbourhood. The network now might be such that there are

even more profitable bribes to be made, even given the prior loss that was made. We will

eventually see that it cannot possibly be that the (polynomial-time) greedy algorithm

yields a weakly-dominant strategy due to the NP-completeness of the problem we are

attempting to solve (unless, of course, P = NP).

We present the following counter-example to the optimality of the greedy algorithm.

Example 5.1. Consider a 6-clique X of non-voters, each connected to a unique voter of

evaluation 1
2

as is depicted in Figure 5.1.

We begin to execute the greedy algorithm on the network. We calculate the initial utility

of the network as follows

u0P =
∑
c∈C

P-rating(c, eval) =
∑
c∈X

1

2
+
∑
c∈C\X

1

2
= 6.

Suppose that we bribe some clique customer x ∈ X its maximal amount. The revenue

gain from doing so, by Proposition 5.1, is

∑
y∈N(x)

(
1

νy + 1
− 1

|N(x)|

)
−
∑

y∈N(x)

(
1

νy(νy + 1)

∑
k∈N(y)∩V

eval(k)

)

=
∑

y∈N(x)

(
1

2
− 1

7

)
−
∑

y∈N(x)

(
1

2

∑
k∈N(y)∩V

1

2

)
=

3

4
.



42 Chapter 5. Non-Voters and Known Locations (NVKL)

∗ 1

∗
2

∗
3

∗ 4

∗
5

∗
6

0.5 6

0.5

8

0.5

9

0.5 10

0.5

11

0.5

12

Figure 5.1: 6-clique of non-voters each attached to a voter.

Alternatively, suppose we bribe some non-clique customer x ∈ C \X its maximal amount
1
2
. The revenue gain from doing so, by Propoistion 5.2, is

1

2

[( ∑
y∈N(x)

1

νy

)
− 1

]
=

1

2

[( ∑
y∈N(x)

1

)
− 1

]
=

1

2
.

Since 3
4
> 1

2
, Algorithm 2 first bribes a clique-customer the amount 1.

Consider now, any currently unbribed non-voter and the pair it makes with the unique

voter it is adjacent to, as is depicted in Figure 5.2 by the vertices coloured in red. As long

as the non-voter remains unbribed, we can bribe the voter by 1
2

and gain an increase in

revenue. Consequently, Algorithm 2 must bribe at least one customer of the pair. This
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Figure 5.2: Customer 1 is bribed. We consider the voter/non-voter pair made up of
customers 3 and 9.

is true for all five remaining such pairs. Therefore, the least amount that Algorithm 2

bribes, from here on, is 1
2

per pair.

The revenue produced by the bribing strategy computed by Algorithm 2 is at most

rP(σ) ≤ 12− 6− 1− 5

2
=

5

2
.

This is due to the fact that the maximum utility of the network after executing any

strategy σ is 12 = |C| (by Proposition 6.1), the initial utility of the network is 6, the

amount 1 is spent on the first bribe, and at least 1
2

is spent on bribing the remaining five

voter/non-voter pairs (we established that at least one customer of each of these pairs
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must be bribed).

Consider the strategy σ′ of bribing all non-clique customers fully. That is,

σ′(6) = σ′(7) = σ′(8) = σ′(9) = σ′(10) = σ′(11) = σ′(12) =
1

2

and σ′(x) = 0 for all other customers x. The revenue gained by playing this strategy is

rP(σ′) =
∑
c∈C

P-rating(c, eval)− u0P − 3.

The sole voter adjacent to every customer of C is fully bribed (has an evaluation of

1). Therefore, for all customers of the network, the average evaluation of all voting

neighbours is 1; that is, the sum of all P-ratings is 12. This strategy yields a revenue

of rP(σ′) = 12 − 6 − 3 = 3 and clearly this is greater than the maximal revenue that

Algorithm 2 could possibly obtain. We therefore conclude that the greedy algorithm does

not compute a weakly-dominant bribing strategy in all cases.

Note that we could have applied Algorithm 2 in order to obtain the exact bribing strategy

that the algorithm would compute. However, this computation is often tedious to do by

hand, particularly for networks such as that of Figure 5.1. All we have done is show that

after the greedy algorithm makes even just its first choice, the maximum revenue that

it could possibly obtain from that point onwards in bounded from above. Furthermore,

we have shown there exist bribing strategies that we can see ‘by eye’, that yield greater

revenues than this.

The question now, is whether we can find a weakly-dominant bribing strategy in polynomial-

time or whether there might be a complexity-theoretic barrier to doing so. In the next

chapter, we now show that the latter case holds.
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5.4 NVKL is NP-Complete

In order to prove a complexity-theoretic hardness result for the problem of computing a

weakly-dominant bribing strategies under NVKL, we must first precisely formulate the

problem as a decision problem. Let us define the decision problem NVKL as follows.

Definition 5.1. NVKL

• An instance is a finite network (C,E), an initial evaluation eval0, and ρ ∈ Q.

• A yes-instance is an instance of NVKL such that there exists a bribing strategy σ

such that the resulting revenue is at least ρ.

Clearly, any instance of the above problem should adhere to the usual restrictions of the

framework. These are, most importantly, that the initial evaluation is such that every

customer c ∈ C is adjacent to at least one customer c′ ∈ C such that eval(c′) 6= ∗ (recall

that every customer is adjacent to itself). Also, any strategy σ is such that
∑

c∈C σ(c) is

at most the initial utility resulting from eval0.

We claim that we can construct a polynomial-time reduction from the independent set

problem on 3-regular graphs. This problem is NP-complete [19]. The problem is defined

as follows. Firstly, we recall the definition of an independent set.

Definition 5.2. Independent Set: A graph G has an independent set of size k if there

exists a set X of k vertices such that there is no edge joining any pair of vertices of X.

Definition 5.3. ISREG(3)

• An instance is a pair (G, k) where G is a 3-regular graph and k ∈ N.

• A yes-instance is an instance such that G has an independent set of size k.

5.4.1 Proof Overview

In order to show that NVKL is NP-complete, we proceed by reduction from the problem

ISREG(3). Given an instance (G, k) of ISREG(3), we construct a customer network

(C,E), define an initial evaluation eval0, and define an amount ρ. Our customers are

partitioned into old customers, who correspond to the vertices of G, and additional new
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customers. Firstly, we assume that (G, k) is a yes-instance of ISREG(3) and show that

bribing the k customers (in the newly constructed network) which correspond to the

vertices that form the independent set in G yields a revenue of ρ. We conclude that

((C,E), eval0, ρ) is therefore a yes-instance of NVKL.

Next, we suppose that we are given some yes-instance ((C,E), eval0, ρ) of NVKL. We

firstly prove Lemma 5.1 which states that we are able to move amounts of bribe between

customers of the network (adhering to certain restrictions that will be explained). Making

use of this lemma, we are able to show that without loss of generality we may assume that

σ is such that only old customers are bribed, all old customers are fully bribed, and exactly

k old customers are bribed. We obtain this result by starting with an arbitrary weakly-

dominant strategy and obtaining a series of suppositions and contradictions. Having done

this, we consider the positions in the customer network of the bribed old customers. We

are able to show that without loss of generality, these customers are positioned such

that the vertices in the initial instance of ISREG(3) that they correspond to form an

independent set in G.

The end result is that we have shown

• Given an arbitrary instance (G, k) of ISREG(3), we can construct an instance

((C,E), eval0, ρ) of NVKL so that

– (G, k) is a yes-instance of ISREG(3) =⇒ ((C,E), eval0, ρ) is a yes-instance of

NVKL.

– ((C,E), eval0, ρ) is a yes-instance of NVKL =⇒ (G, k) is a yes-instance of

ISREG(3).

Finally, it should be noted that NVKL is clearly in NP. This is obvious from the fact

that given an instance ((C,E), eval0, ρ) we can check in polynomial-time that an arbitrary

bribing strategy σ yields a revenue of at least ρ in (C,E): all that is to be done is sum

the P-ratings of all customers of C. After having shown the above result we are therefore

able to conclude that NVKL is NP-complete.

5.4.2 A Polynomial-Time Reduction from ISREG(3) to NVKL

Given any instance of ISREG(3) we can build a network as follows.
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• Let us begin by setting the set C of customers of our instance of NVKL to be the

set of vertices of G. We call these customers the ‘old’ customers.

• For all v ∈ G, let us introduce n new customers v1, .., vn ∈ C where n is the number

of vertices of G. Also we add (v, vi) ∈ E for i = 1, 2, ..., n. We refer to these new

customers as the new pendant customers.

• For each edge (u, v) of G, we introduce a new customer wu,v, with these customers

called the new edge customers.

• For every edge (u, v) of G, we add (u,wu,v) and (wu,v, v) to E.

The construction of a network of customers from the graph G (of our instance of IS-

REG(3)) can be visualised as follows in Figure 5.4.

For any such network as constructed above, we can define eval0 as follows, where 0 < ε < 1

is some value to be chosen momentarily.

• If c ∈ C is an old customer then c is chosen to be a non-voter.

• If c ∈ C is a new edge or new pendant customer then eval0(c) = ε.

By the construction of the network, we have that for all c ∈ C, the P-rating(c, eval0) = ε.

Every customer of the newly constructed customer network contributes ε to the initial

utility of the network and therefore u0P = ε(n+n2 + 3n
2

). We now choose ε so that u0P = k;

that is, so that

ε =
k

n+ n2 + 3n
2

.

By assumption the restaurant owner can only make bribes totalling at most k. Further-

more, note that the initial evaluation is a valid one in that every customer of the network

is adjacent to at least one voter. Finally, let

ρ = k(1− ε)
(

1

n+ 4
+
n+ 3

2

)
.

We shall explain why we chose ε and ρ as we do later.
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Figure 5.3: Segment of 3-regular graph G.
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Figure 5.4: Network (C,E) constructed from G.

Suppose that our instance (G, k) of ISREG(3) is a yes-instance; that is, there is a set I of

k vertices such that no two vertices of I are adjacent in G. Consider the bribing strategy

for (C,E) (as constructed above) where σ(c) = 1, for every old customer corresponding

to some vertex of I, and σ(c′) = 0 for all other c′ ∈ C. The resulting revenue is given by

the increase in P-rating of the bribed customers and their neighbourhoods. The cumu-
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lative increase in utility due to these bribed customers is the sum of the revenues of old

customers, new pendant customers, and new edge customers. The cumulative increase

due to the new pendant vertices adjacent to bribed old customers is

k

(
1 + (n+ 3)ε

n+ 4
− ε
)

= k
1− ε
n+ 4

,

the cumulative increase due to the new pendant customers adjacent to old bribed cus-

tomers is

nk

(
1 + ε

2
− ε
)

= nk
1− ε

2
,

and the cumulative increase in revenue due to the new edge customers adjacent to bribed

old customers is

3k

(
1 + ε

2
− ε
)

= 3k
1− ε

2

(note that this is because the bribed old customers correspond to an independent set in

G). Hence, the total revenue accruing due to σ is

k(1− ε)
(

1

n+ 4
+
n+ 3

2

)
− k = ρ.

Therefore ((C,E), eval0, ρ) is a yes-instance of NVKL.

Remark 5.1. We can see now why we chose ρ as we did. It is precisely the revenue

accrued when we bribe every old customer corresponding to the vertices of an independent

set of size k in G.

Conversely, we now suppose that ((C,E), eval0, ρ) is a yes-instance of NVKL and that

σ is a bribing strategy that yields a revenue of at least ρ. We will show that σ can be

manipulated so that without loss of generality we may assume that our optimal bribing

strategy σ is such that only old customers are bribed, all bribed old customers are bribed

fully, and exactly k old customers are bribed.

Lemma 5.1. Let σ be an optimal bribing strategy. Let X be the set of customers for

which eval(x) < evalσ(x) < 1. Let vy = |N(y) ∩ V | for any y ∈ C. For x, y ∈ X

∑
z∈N(x)

1

vz
=
∑

z∈N(y)

1

vz
.

Proof. We consider the effect of transferring δ > 0 of the bribe of x to the bribe of y,

where δ is as small as we like and where eval(x) < evalσ(x) − δ < evalσ(x) + δ < 1 and
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eval(y) < evalσ(y) − δ < evalσ(y) + δ < 1. By Proposition 5.2, we have that the utility

change is as follows.

δ

 ∑
z∈N(y)

1

vz

− δ
 ∑
z∈N(x)

1

vz



= δ

 ∑
z∈N(y)

1

vz
−
∑

z∈N(x)

1

vz


Since we know that σ is an optimal bribing strategy, this change cannot yield a positive

change in network utility. Thus, we can bound this quantity as follows.

δ

 ∑
z∈N(y)

1

vz
−
∑

z∈N(x)

1

vz

 ≤ 0

Now, we consider the effect of transferring δ amount of the bribe of y to the bribe of x.

The change in network utility is given by the following.

δ

 ∑
z∈N(x)

1

vz

− δ
 ∑
z∈N(y)

1

vz



= δ

( ∑
z∈N(x)

1

vz
−
∑

z∈N(y)

1

vz

)

With similar reasoning to the above, we have that

δ

( ∑
z∈N(x)

1

vz
−
∑

z∈N(y)

1

vz

)
≤ 0.

Combining these two inequalities yields

∑
z∈N(x)

1

vz
≤
∑

z∈N(y)

1

vz
,

and



5.4. NVKL is NP-Complete 51

∑
z∈N(y)

1

vz
≤
∑

z∈N(x)

1

vz
,

which finally imply that

∑
z∈N(y)

1

vz
=
∑

z∈N(x)

1

vz
.

Remark 5.2. Lemma 5.1 says that, given an optimal bribing strategy, we can move bribes

amongst non-fully bribed voters arbitrarily without decreasing nor increasing the revenue

acquired so long as

• we do not totally remove all the bribe from a bribed customer that was not originally

a non-voter

• we do not turn a non-voting customer into a voting one by introducing a bribe.

The above applies to any customer network with some given initial evaluation and some

optimal bribing strategy. Consider applying the above to the customer network (C,E)

constructed from the initial instance of ISREG(3). Suppose that we have the following

profile for customers bribed by σ

• if an old customer is bribed then the bribes on old customers, in descending order, are

1, 1, ..., 1, δ1, δ2, ..., δm, for some m ≥ 0 and where 0 < δi < 1, for each i = 1, 2, ...,m,

with possibly no bribes of 1

• if a new customer is bribed then the bribes, in descending order, are 1−ε, 1−ε, ..., 1−
ε, ε1, ε2, ..., εs for some s ≥ 0 and where 0 < εi < 1 − ε for each i = 1, 2, ..., s, with

possibly no bribes of 1− ε (recall that the initial evaluation of any new customer is

ε > 0).

Without loss of generality, we may assume that
∑m

i=1 δi ≤ 1; otherwise, we would have

that m ≥ 2 and we could reduce the bribes δ2, δ3, ..., δm, without making any equal to

zero, so as to increase the bribe δ1 to 1 and secure another fully bribed customer.

Firstly, we introduce the following lemma which we will later make use of.
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Lemma 5.2. Let (C,E) be some network with initial evaluation eval0 and where bribes

have been made so that the evaluation is now eval. Suppose that c ∈ C was initially

a non-voter and is now such that eval(c) = δ > 0 but where for every voting or bribed

customer c′′ of
⋃
{N(c′) : x′ ∈ N(c)}, we have that δ < eval(c′′). Then, amending the

evaluation so that the bribe is removed from c results in an increase in revenue.

Proof. By definition we have that

u0P =
∑
z∈C

P-rating(z, eval).

For all z ∈ N2(x), we know that eval(z) > δ. In order to examine the change in utility

after setting eval(x) = ∗, we should consider the P-ratings of the neighbours of x. Let y

be a neighbour of x. The average P-rating of its voting neighbours is clearly higher when

eval(x) = ∗, since the previous evaluation of x (δ) is lower than the evaluation of all of

its other neighbours. Therefore, all P-ratings of all neighbours of x increase; that is, the

utility also increases.

N2(x)

δ
x

y
δ′

z
δ′′

Figure 5.5: The second neighbourhood of a voter x whose evaluation is decreased from δ
to ∗. The second neighbourhood of x is shaded in blue.

Example 5.2. For example, we see this in Figure 5.5, where we have eval(x) = δ being

removed. We consider the P-rating of some neighbour of x, say, y. P-rating(y, eval) =
1
2

(δ′ + δ′′) which is clearly higher than the original P-rating of 1
3

(δ + δ′ + δ′′).
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We begin by assuming that m > 1 and then show that this leads to a contradiction.

First, we make the smallest bribe δm so that δm < δm−1 and δm < ε (by sharing some

of the δm bribe amongst the δ1, ..., δm−1 bribes; we note here that we are applying the

reasoning subsequent to Lemma 5.1). Consider the old customer accepting the δ1 bribe.

The contribution of the revenue from this δ1 bribe to c comes about due to the P-ratings

of c and its adjacent new customers; that is, the P-ratings of the customers in N(c) (which

depend on the evaluations in N2(x)). Suppose that we define a new bribing strategy σ′

that is identical to σ except that no bribe is made to c any more (the evaluation of c

is changed to *). By Lemma 5.2 we have generated more revenue by using the bribing

strategy σ′ which contradicts the optimally of σ. Consequently, we must have that m ≤ 1;

that is, we have at most one old customer that is not fully bribed.

Now we consider the new customers. We can move bribes amongst the new customers so

that we may assume that all but at most one new customer is not fully bribed; that is,

that s ≤ 1. Recall that we may move all the bribe to a new customer c that is not fully

bribed as this does not change the number of voters in the neighbourhood of c nor in the

neighbourhood of any old customer adjacent to c. (See Remark 5.2)

Lemma 5.3. There exists an old customer c′ who has not been bribed and where at most

one of its adjacent new pendant customers has been bribed.

Proof. Our initial choice of ε was such that

ε =
k

n+ n2 + 3n
2

.

Furthermore, the amount invested k, is certainly less than n. Therefore we have that

ε ≤ n

n+ n2 + 3n
2

=
2

2n+ 5
,

and

1− ε > 2n+ 3

2n+ 5
.

Let p be the number of old customers that have been fully bribed and let t be the number

of new customers that have been bribed. By summing the total amount bribed, we have

that p+ 1 + t(1− ε) < k. Thus

t <
k − p− 1

1− ε
<

(2n+ 5)(n− p− 1)

2n+ 3
,
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and therefore t < 2(n − (p + 1)). This says that the number of bribed new customers

is strictly less than twice the number of old customers that remain unbribed. If every

unbribed old customer was adjacent to two or more bribed new pendant customers then

we would have that t ≥ 2(n − (p + 1)) which is clearly not possible. Therefore we can

conclude that there exists an unbribed old customer c′ such that at most one of its adjacent

new pendant vertices has been bribed.

We now suppose that there exists a new customer that has been fully bribed and show that

this yields a contradiction. Consider the bribe of 1− ε to c. We say that its contribution

to the overall utility is the amount of utility that this 1 − ε bribe generates due to its

contribution towards the P-ratings of c and c’s adjacent old customers. If c is a new

pendant customer then this contribution is certainly less than 2 as |N(c)| = 2, and if c is

a new edge customer then this contribution is less than 3 as |N(c)| = 3. Therefore, in all

cases, the bribe of 1 − ε to c contributes less than 3 units to the overall utility accrued

from σ.

By Lemma 5.3, let c′ be an old customer that is not bribed and that is adjacent to at

most one new pendant customer that has been bribed. Consider moving the 1− ε bribe

from c to c′; so, we obtain a new (efficient) strategy σ′. Let us examine how much this

utility this 1− ε bribe contributes, under σ′, to the overall utility.

At least n− 1 of the new pendant customers adjacent to c′ have not been bribed and so

the cumulative increase in utility as a result of these new pendant customers is the sum

of the new P-ratings of the neighbours of c′ minus the sum of the old P-ratings. This is

given by (n − 1)1
2
− (n − 1)ε and given that ε ≤ 2

2n+5
then the cumulative increase in

utility is

(n− 1)

(
1

2
− ε
)
>
n− 1

2
− 1.

Bribing c′ might reduce the P-ratings of c′ and its adjacent new edge customers. However,

this reduction is certainly less than 4 units. Therefore we may conclude that the movement

of 1− ε of bribe from c to c′ increases the overall utility by an amount greater than(
n− 1

2
− 1

)
− 7

units. This amount is strictly positive for n sufficiently large (n ≥ 14). Therefore the

strategy σ′ that we have constructed yields a revenue greater than that of σ. This contra-

dicts the optimality of σ. Hence, we must have that no new customer has been fully bribed
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and so at most one new customer has been bribed. Furthermore, if one new customer has

been bribed, then it has been bribed an amount less than 1− ε.

At this stage of the proof, we may assume, without loss of generality, that the bribing

strategy σ is such that

• at most one old customer has not been fully bribed

• at most one new customer has been bribed (and if so has not been fully bribed).

Suppose that some new customer c has indeed been bribed some amount δ such that

0 < δ < 1 − ε. Again, we will show that this yields a contradiction. Without loss of

generality, we may assume that all old customers have been fully bribed. To see this,

assume the converse. We can either move (some of) the bribe from c to the old customer

who has not been fully bribed, so as to fully bribe the old customer; or we can move the

bribe from c to the old customer in its entirety, and we would not have a new customer

that has been bribed which contradicts our assumption.

We shall examine the various cases that arise and obtain a contradiction to our hypothesis

(that a new customer has been bribed but not fully). A key point to note throughout is

that the total bribe made is strictly less than k (as it cannot be a whole number; recall,

we may assume all old customers have been fully bribed) and so we have some additional

bribe to spend if we wish.

Case 1: c is a new pendant customer and is adjacent to an old customer c′ that has not

been bribed.

Let us make an additional bribe of δ′ to c (so that the strategy remains efficient and we

do not over-extend our bribing resource; we can choose δ′ to be as small as we like). The

additional revenue that we obtain is due to the increase in the P-ratings of c and c′ minus

the bribe made.

This amounts to

[(ε+ δ + δ′)− (ε+ δ)] + [
((n+ 3)ε+ δ + δ′)

n+ 3
− ((n+ 3)ε+ δ)

n+ 3
]− δ′ = δ′

n+ 3

and is strictly positive. This contradicts the optimality of σ.

Case 2: c is a new pendant customer and is adjacent to an old customer c′ that has been

bribed.
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Let us decrease the bribe of δ to c by the amount δ′ (so that we do not remove the bribe

altogether). The additional revenue that we obtain is due to the savings we make by only

bribing c with the amount δ − δ′ minus the decrease in the P-ratings of c and c′.

This amounts to

δ′ − [
(1 + ε+ δ)

2
− (1 + ε+ δ − δ′)

2
]− [

(1 + (n+ 3)ε+ δ)

n+ 4
− (1 + (n+ 3)ε+ δ − δ′)

n+ 4
]

= δ′ − δ′

2
− δ′

n+ 4
= δ′(

1

2
− 1

n+ 4
)

and is strictly positive. This contradicts the optimality of σ.

Case 3: c is a new edge customer and is adjacent to old customers neither of which has

been bribed.

Let us make an additional bribe of δ′ to c. Similarly to above, the additional revenue that

we obtain amounts to

[(ε+ δ + δ′)− (ε+ δ)] + 2[
((n+ 3)ε+ δ + δ′)

n+ 3
− ((n+ 3)ε+ δ)

n+ 3
]− δ′ = 2δ′

n+ 3

and is strictly positive. This contradicts the optimality of σ.

Case 4: c is a new edge customer and is adjacent to old customers one of which has been

bribed.

Let us decrease the bribe of δ to c by the amount δ′. Similarly to above, the additional

revenue that we obtain amounts to

δ′ − [
(1 + ε+ δ)

2
− (1 + ε+ δ − δ′)

2
]− [

(1 + (n+ 3)ε+ δ)

n+ 4
− (1 + (n+ 3)ε+ δ − δ′)

n+ 4
]

−[
((n+ 3)ε+ δ)

n+ 3
− ((n+ 3)ε+ δ − δ′)

n+ 3
]

= δ′ − δ′

2
− δ′

n+ 4
− δ′

n+ 3
= δ′(

1

2
− 1

n+ 4
− 1

n+ 3
)

and is strictly positive. This contradicts the optimality of σ.

Case 5: c is a new edge customer and is adjacent to old customers both of which have

been bribed.

Let us decrease the bribe of δ to c by the amount δ′. Similarly to above, the additional
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revenue that we obtain amounts to

δ′ − [
(2 + ε+ δ)

2
− (2 + ε+ δ − δ′)

2
]− 2[

(1 + (n+ 3)ε+ δ)

n+ 4
− (1 + (n+ 3)ε+ δ − δ′)

n+ 4
]

= δ′ − δ′

2
− 2δ′

n+ 4
= δ′(

1

2
− 2

n+ 4
)

and is strictly positive. This contradicts the optimality of σ.

In each of these five cases, we obtain a contradiction to the assumption that a new

customer has been bribed. We may therefore assume that, without loss of generality, only

old customers are bribed by the bribing strategy σ and there is at most one old customer

that has not been fully bribed.

Finally, suppose that there is in fact one bribed old customer that has not been fully

bribed. Let us call this old customer c and further suppose that it has been bribed δ

where 0 < δ < 1. We will again show that this yields yet another contradiction. We have

the capacity to increase this bribe to 1 at a cost of 1 − δ (which we can do, given the

remaining resource). The P-ratings of all the customers within N(c) will increase with

the cumulative increase (only due to new pendant neighbours) being

n
1 + ε

2
− nδ + ε

2
= n

1− δ
2

.

Hence we obtain an increase in revenue for n sufficiently large (n ≥ 3). This contradicts

the optimality of σ. Henceforth, we assume that, without loss of generality, any optimal

bribing strategy σ on (C,E), with initial evaluation eval0, is necessarily such that only

old customers are bribed and bribed old customers are fully bribed.

Suppose that the bribing strategy σ bribes less than k old customers; so, there is an old

customer c that has not been bribed. We will show that this yields a contradiction. Let

us amend σ to obtain a new bribing strategy σ′ by bribing c so that σ(c) = 1. This costs

us 1 unit of resource. There are no customers of C such that its P-rating decreases, and

the cumulative increase in P-rating of the n new pendant customers adjacent to c is

n

(
1 + ε

2
− ε
)

= n

(
1− ε

2

)
>
n(2n+ 3)

2(2n+ 5)
>
n

4

which is strictly greater than 1 (the amount invested) for n sufficiently large (n ≥ 5). This

contradicts the optimality of σ. Furthermore, it is clear that more than k old customers

could not have been bribed since the initial utility of the network totals only k and each



58 Chapter 5. Non-Voters and Known Locations (NVKL)

old customer is bribed by 1. Therefore, we may assume that any optimal bribing strategy

σ on (C,E), with initial evaluation eval0, is necessarily such that only old customers are

bribed, all bribed old customers are fully bribed, and exactly k old customers are bribed.

Consider the revenue accruing from our optimal bribing strategy σ. Irrespective of which

k old customers are fully-bribed, the P-rating of each of these old customers increases by

(1 + (n+ 3)ε)

n+ 4
− ε =

1− ε
n+ 4

and the P-rating of the new pendant customers adjacent to each of these bribed old

customers increases by
1 + ε

2
− ε =

1− ε
2

.

All that remains is to compute the revenue accruing due to the new edge customers ad-

jacent to each of these bribed old customers (as the P-rating of any other old or new

customer does not change). However, this will depend upon how many bribed old cus-

tomers each new edge customer is adjacent to.

Let mi denote the number of new edge customers adjacent to i bribed old customers, for

i = 1, 2. If a new edge customer c is adjacent to 1 bribed old customer then its increase

in P-rating is
(1 + ε)

2
− ε =

(1− ε)
2

and if it is adjacent to two bribed old customers then its increase in P-rating is

(2 + ε)

3
− ε =

2(1− ε)
3

.

So, the total increase in revenue is

m1
(1− ε)

2
+m2

2(1− ε)
3

.

We also know that by counting the edges joining bribed old customers and their adjacent

new edge customers, we obtain that 3k = 2m2 +m1. Hence, the total increase in P-rating

due to new edge customers is equal to

m1
(1− ε)

2
+m2

2(1− ε)
3

= (3k − 2m2)
(1− ε)

2
+m2

2(1− ε)
3

=
3k(1− ε)

2
−m2

(1− ε)
3

.
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So, the total increase in revenue due to the optimal bribing strategy σ is

k(1− ε)
n+ 4

+
nk(1− ε)

2
+

3k(1− ε)
2

−m2
(1− ε)

3
− k

= (1− ε)[ k

n+ 4
+
k(n+ 3)

2
− m2

3
]− k.

Clearly this revenue is largest when m2 is 0, and if m2 > 0 then the revenue is less than

this maximal value. Also, when m2 is 0 this revenue is exactly equal to ρ. Hence, as we

started with a yes-instance of NVKL, we must have that no new edge customer is adjacent

to two bribed old customers; that is, the k vertices of G corresponding to the k bribed

old customers in C form an independent set, and (G, k) is a yes-instance of ISREG(3).

5.4.3 Summary of Reduction

We were initially given an arbitrary instance (G, k) of ISREG(3), and we constructed an

instance ((C,E), eval0, ρ) of NVKL. We have shown two things:

1. If (G, k) is a yes-instance of ISREG(3); that is, G has an independent set of size k,

then there exists a bribing strategy σ on ((C,E), eval) that yields a revenue of ρ.

This strategy is to bribe by 1 each of the k customers corresponding to the vertices

of the independent set.

In other words, (G, k) is a yes-instance of ISREG(3) implies that ((C,E), eval0, ρ)

is a yes-instance of NVKL.

2. If ((C,E), eval0, ρ) is a yes-instance of NVKL; that is, there exists a bribing strategy

σ such that σ yields a revenue of at least ρ, then it must be the case that σ can be

manipulated into some other bribing strategy that bribes k customers 1 each and

these customers correspond to vertices of G that form an independent set (of size

k).

In other words, ((C,E), eval0, ρ) is a yes-instance of NVKL implies that (G, k) is a

yes-instance of ISREG(3).

Theorem 5.1. NVKL is NP-complete.

Proof. This is a direct consequence of the above.
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5.5 Summary of NVKL

As we have seen, for the case of NVKL, the computation of weakly-dominant bribing

strategies is non-trivial and requires a deep and thorough analysis of both the algorithmic

and complexity-theoretic properties of the problem. Unfortunately, unlike the case of

AVKL, we cannot simply follow a P-greedy approach as we might have liked. In fact,

even after addressing the apparent complications of the ‘non-static’ influence weight, we

have seen that the greedy algorithm fails to find a weakly-dominant bribing strategy in

general.

Perhaps surprisingly, we have been able to prove the NP-completeness of NVKL by show-

ing how we can manipulate some arbitrary bribing strategy and give a polynomial-time

reduction from the seemingly unrelated problem of ISREG(3). This is a very impor-

tant result that can go a long way to addressing the issue of the ‘bribery-proofness’ of

the rating-system. We can clearly construct instances of NVKL for which there exist

weakly-dominant bribing strategies and we can provide specific examples of this, as is

demonstrated in [2]. Although this may be the case, we can be suitably confident that

these cannot be easily computed; that is, of course, unless P = NP.

The question from this point on is whether the case of NVKL is still salvageable from the

perspective of the restaurant owner. Perhaps they can devise some way to compute an

approximate or satisfactory solution that yields at least a positive return. More specifi-

cally, we may still be able to salvage something of the P-greedy approach and Algorithm 2.

We saw through our counterexample that whilst not yielding the optimal amount of rev-

enue, we can still compute a profitable return. We approach, in the coming chapter, this

question from a slightly less formal but nevertheless important angle and seek to obtain a

number of experimental results concerning the performance of Algorithm 2 and others.



Chapter 6

Coping with NP-completeness

It would be reasonable to assume that proving the NP-completeness of a problem is

somewhat terminal. After all, if P 6= NP [20], then the best algorithms we could hope for

would require super-polynomial time complexity in terms of the input size. In fact, there

is a wide range of approaches we can take towards finding useful solutions to problems

which are known to be NP-complete. Of course, NP-completeness does not just go

away, but we can develop techniques to compute good solutions that are computationally

feasible.

We can develop algorithms to compute solutions to a subset of instances of the original

problem. For example, we know that the INDSET (independent set) problem is NP-

complete [5], but if restrict our graph instances to trees then we can solve the problem

in linear time using dynamic programming. Alternatively, we can develop approximation

algorithms which guarantee us a solution optimal up to some fixed error ε, or randomised

algorithms that guarantee us an optimal solution within some bounded probabilistic error.

Within this section, we will investigate two such methods by which we might cope with the

NP-completeness of NVKL. We will develop a number of heuristic algorithms for solving

the problem of computing bribing strategies under NVKL and provide an investigation

into the relative quality of their solutions. In addition to this, we will analyse, on a

more refined level, the complexity of algorithms for computing weakly-dominant bribing

strategies under NVKL by showing that the problem is fixed-parameter tractable under

practically realistic parameterizations of the NVKL problem.

61
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6.1 Upper Bounds on Bribing Strategies

Having established that the problem of computing a weakly-dominant strategy in the

case of NVKL is computationally intractable, we turn our attention towards computing

profitable bribing strategies. There are several important questions we would be interested

in investigating concerning the upper and lower bounds on returns from bribing strategies.

Aside from providing a definite limit on the profitability for any bribing strategy upon

any network of customers, the motivation for finding such bounds is that they would

provide a way for us to evaluate the quality of any approximating or heuristic algorithms

that might be developed in future work. For example, an upper bound on the revenue of

any bribing strategy would provide a useful way to score the effectiveness of a heuristic

algorithm yielding good bribing strategies; that is, it would tell us how good the return

is as, say, a percentage of the maximal possible return.

Proposition 6.1. Let (C,E) be a customer network and let the set of voters V be such

that V ⊆ C. Let the initial evaluation on (C,E) be eval0 and let σ ∈ Σ be an arbitrary

efficient bribing strategy. Then

rP(σ) < n

where |C| = n and ρ = u0P.

Proof. Recall that rP = uσP − u0P. Let uP be the utility of any arbitrary customer network

(C,E) with some evaluation eval

uP =
∑
c∈C

P-rating(c, eval).

Since |C| = n and 0 ≤ P-rating ≤ 1, it follows that uP ≤ n. As a result, we know that

uσP < n. Since u0P ≥ 0 the result follows.

It is not too difficult to come up with examples of networks and evaluations for which

we can define bribing strategies which yield revenues close to this upper bound. Let us

consider the following example.

Example 6.1. Consider the following customer network which comprises two disjoint

sub-networks. One sub-network (of size n − 1) consists of a star-graph of non-voters

attached to a voter with an evaluation of ε. The other sub-network consists of a solitary

voter of evaluation 1.
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The initial utility is given as u0P = 1 + (n− 1)ε and so this is the amount we can re-invest

back into bribing the non-saturated customers of the network. If we take the strategy of

bribing the voter at the centre of the star fully (by amount 1 − ε) then we get that the

utility after the execution of the strategy uσP = (n− 1) + 1− (1− ε) = n− (1− ε). For ε

taken to be arbitrarily small, we see that there exist examples for which a profit of n − 1

can be obtained and the above bound is tight enough for practical use in evaluating the

quality of heuristic algorithms.

6.2 Heuristic Approaches to NVKL

Heuristic methods attempt to yield good, but not necessarily optimal, solutions where it

is infeasible to compute an optimal one. Heuristics are often based on intuition or a rule

of thumb and have long since been employed for finding appropriate solutions to a wide

range of important problems. It is widely agreed upon that good heuristic procedures

should adhere to the following properties: a solution should be able to be obtained with

reasonable computational effort; a solution should be near optimal (perhaps with high

probability); and the likelihood of obtaining a solution that is far from optimal should be

low [12]. We will see, for the problem of NVKL, that there is plenty of intuition we can

use to motivate heuristic approaches towards computing bribing strategies.

6.2.1 Greedy Algorithm

In Chapter 5 we see that the decision problem NVKL is NP-complete. This leads us to

begin thinking about whether we can compute good but not necessarily optimal bribing

strategies. In order to do this we turn towards heuristic algorithms. Prior to showing

that NVKL is NP-complete, we derived expressions for the projected revenue of bribing

a (voting or non-voting) customer some positive and efficient amount. Furthermore,

having established that it is actually not necessary to define an ordering on the execution

of strategies in the presence of non-voters, this provided motivation to define a greedy

algorithm for the computation of weakly-dominant bribing strategies. It is this algorithm

to which we return. It has been established that clearly this greedy algorithm is not

optimal, but how well (or poorly) it actually performs we do not know. It could enable

us to compute reasonable bribing strategies.
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6.2.2 Independent Set Heuristic

In order to prove that NVKL is NP-complete, we reduced the problem of ISREG(3) to

NVKL. From an arbitrary instance of ISREG(3), we constructed the customer network

by adding new vertices and defining an evaluation. From this instance we saw that the

optimal bribing strategy was to bribe the old customers of the network which formed an

independent set. As a result we can deduce that there are instances, not too far from

an arbitrary graph instance, for which the optimal bribing strategy is to greedily bribe

the customers of an independent set. It therefore begs the question as to whether the

heuristic of looking for and bribing independent sets in customer networks produces good

results.

However, INDSET is also NP-complete [5]. Although this is the case, it is a fundamental

problem in algorithmic graph theory and and there exists a number of heuristic approaches

towards finding approximate independent sets in polynomial-time. For example, several

approaches can be found in [21].

In order to construct an approximate independent set we use the following simple algo-

rithm from [21]. By a theorem from [24], Algorithm 3 outputs an independent set S such

that |S| ≥ n/(∆ + 1) where ∆ is the maximum degree of any vertex of G.

Data: Graph G(V,E).

Result: Approximate independent set S.

S = ∅;
while V 6= ∅ do

Let v be a vertex of minimum degree in V ;

S = S ∪ {v};
Remove v and its adjacent vertices from G;

end

return S

Algorithm 3: A greedy algorithm for approximate independent sets.

We use this algorithm for computing approximate independent sets for our independent

set heuristic algorithm for the computation of a bribing strategy. We give this algorithm

as follows (note that we use the earlier results of Propositions 5.1 and 5.2 to determine
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whether a customer is profitable to bribe).

Data: Customer network (C,E) and initial evaluation eval0.

Result: Bribing strategy σ.

σ(c) = 0 for all c ∈ C;

budget = u0P;

while C 6= ∅ do

Let c be a customer of minimum degree in C;

if c is profitable to bribe then

σ(c) = min{1− eval(c), budget};
budget = budget− σ(c);

end

Remove c and its adjacent customers from (C,E);

end

return σ

Algorithm 4: Independent set heuristic for bribing strategies.

6.3 Computational Evaluation

The ideas discussed above give us an intuition as to what a sensible way to bribe customers

might be. From these ideas we have developed algorithms that we expect might compute

reasonable bribing strategies where it is not feasible to compute optimal ones. In order to

obtain an empirical evaluation of their performance, we have implemented the algorithms

(as well as the optimal algorithm in the case of AVKL). Within this section, we will

provide a computational evaluation of the results obtained by each algorithm on a range

of different networks. These networks are constructed from random graph models for

social networks (see Appendix A). By performing these experiments, we hope that we will

be able to demonstrate good performance of heuristic approaches to computing profitable

(yet non-optimal) bribing strategies for the NP-complete problem of NVKL and provide a

comparison of the various approaches we have developed. Furthermore, we will comment

on the properties of the customer networks we bribe, as we will see that these closely

affect our results.
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6.3.1 Weakly-Dominant Strategies under AVKL

Firstly, we implement, in the case of AVKL, an algorithm for computing a weakly-

dominant bribing strategy. This might give us an indication, for certain classes of networks

(or models by which we generate networks) as to the revenue levels a weakly-dominant

strategy can yield. Two important network parameters to investigate are the size of the

network (the number of customers) and the average degree of the network (this tells us,

for an arbitrary customer, the average number of neighbours it has; that is, customers

that affect its P-rating). The two random graph models for social networks, Watts &

Strogatz and Barabási-Albert, generate small-world and scale-free networks, respectively

(see Appendix A).

The following plot shows the average revenue generated as a percentage of the initial

utility of the network, against the size of the network. For each network size (ranging

from 10 → 250 customers with a step size of 10), we take the average revenue (as a

percentage of the initial utility) over 1000 independent runs. We do this for networks

generated by both the Watts & Strogatz and Barabási-Albert models.

Figure 6.1: Network size vs. profit for weakly-dominant bribing strategies under AVKL.

As can be seen in Figure 6.1, weakly-dominant strategies consistently yield around an

18% profit (of initial utility) for Barabási-Albert networks; furthermore, this seems to be

independent of the size of the network. Conversely, for Watts & Strogatz networks, the
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average profit is much lower and decreases as the network size grows (although this seems

to settle around a profit of 5.5% when the network size is big enough).

Scale-free networks (as generated by the Barabási-Albert model) result in hubs around

certain influential individuals. As a result, we would expect there to be customers that

have very high influence when bribed. This is one potential explanation of the fact that the

results show higher revenues for Barabási-Albert networks; that is, the greedy algorithm

will bribe customers at the centres of these hubs and doing this should lead to higher

revenue gains.

Using the Watts & Strogatz model, we can closely control the desired average degree

of vertices of the network during construction. In customer networks, this corresponds

to the average number of neighbours that customers have. An interesting question is

to investigate is whether (and if it does, by how much) the average degree of customer

networks affects the revenue generated by weakly-dominant bribing strategies. Figure 6.2

shows the average revenue obtained (over 1000 independent runs) for customer networks

of size 100 with average degrees running from 5% to 100% (of the network size) with

a step size of 5%. Clearly the average degree of the customer networks closely affects

Figure 6.2: Average degree vs. revenue gained with a weakly-dominant bribing strategy.

the revenue generated by weakly-dominant bribing strategies. For small average degrees

(customer networks where there is little influence between customers in relation to the

network size) we see much higher levels of revenue generated. This may be due to the

fact that in small neighbourhoods, single customers make bigger contributions towards
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the P-ratings of their neighbours. The revenue starts to pick up slightly as the graph

network approaches a clique-like structure.

6.3.2 Heuristic Approaches under NVKL

We are interested in gauging the performance of heuristic algorithms in terms of the

revenue that they generate. In order to standardise this across all network sizes we can

measure this as a percentage of the initial utility of the network, which gives a clear

performance measure. As is discussed in Appendix A, there is a wide variety of models

we can use for generating networks of voters. Different approaches enable us to control

more closely different parameters of the network during construction.

Furthermore, of the proposed heuristic approaches (the greedy heuristic and the inde-

pendent set heuristic), it would be useful to understand how well they perform both in

absolute terms and relative to each other. In addition, we should attempt to analyse the

network properties that affect the performance of both algorithms.

Firstly we generate networks of both voters and non-voters using a Watts & Strogatz

model on 100 customers with an average degree of 10. An obvious point of interest is to

investigate how the proportion of non-voters in a network affects the amount of revenue

gained by the strategies computed by both algorithms. We can construct networks with

an approximate proportion of non-voters. We begin with an AVKL network; that is, we

begin with a proportion of 0%. We then increase this in a step size of 5% all the way up

to 95%. For each proportion, we compute the average revenue gained over 1000 runs of

both algorithms. The results can be seen in Figure 6.3.

We see that the greedy heuristic consistently outperforms the independent set heuristic

for all non-voter proportions. Although this is the case, both heuristics give profitable

bribing strategies which increase in revenue as the proportion of non-voters in the network

grows. An important point to note is the performance of the greedy algorithm at a

proportion of 0% non-voters. In this case, we have an all voter network and the problem

we are trying to solve is that of AVKL. For networks consisting entirely of voters, a point

that we discussed heavily in Chapter 5 is that influence weights are static. In fact, for

networks of all voters, the greedy algorithm is the polynomial-time algorithm of [2] and

yields a weakly-dominant strategy. We can see that this is clearly the case if we note

that for voters, the projected revenue gained when bribing a voter which we showed in

Proposition 5.2 is identical to the influence weight of AVKL (Definition 4.1). For an
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Figure 6.3: Proportion of non-voters vs. revenue gained for two heuristic approaches to
NVKL.

all-voter Watts & Strogatz network on 100 customers with an average degree of 10, the

algorithm of [2] yields a revenue of approximately 7.0204%. The greedy algorithm on an

all-voter network yields a revenue of 7.0424% and so the results show that the cases of

AVKL and NVKL align in experimentation as we would expect them to in theory.

The results obtained for the heuristic approaches to NVKL are generally quite good. At

0% non-voters we gain the same revenue as a weakly-dominant strategy does in AVKL.

As the proportion of non-voters is increased we see a steady rise in revenue from both

heuristic approaches. For high proportions of non-voters we are even able to obtain in

revenue around 30% of the initial network utility.

As was done in the case of AVKL, another natural question to pose is how the revenue

generated by either approach is affected by the size of the customer network. In order to

investigate this question, we can generate a customer network using the Watts & Strogatz

model with an average degree of 10% of the network size (we choose this number somewhat

arbitrarily, but previous results at 10% yield good revenues). We set the proportion of

non-voters as 30% for the same reason. Finally, we measure the average revenue gained

from the bribing strategy produced by each heuristic over 1000 independent runs with

network sizes ranging from 10 to 250 with a step size of 10. The results are can be

seen in Figure 6.4. The trends observed seem to mirror those of AVKL and Watts &

Strogatz models. For network sizes sufficiently large, the revenue settles to a steady point
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Figure 6.4: Network Size vs. revenue gained for two heuristic approaches to NVKL
(Watts & Strogatz).

as the size increases. This is true of both heuristics, although the greedy algorithm, again,

outperforms the independent set heuristic (although both consistently compute profitable

bribing strategies).

We also conduct a similar experiment using networks constructed by the Barabási-Albert

model. We use networks within the same size range and average results over 1000 in-

dependent runs. The results are shown in Figure 6.5 which indicates similar trends and

relative performance between the two algorithms. Although this is the case, the revenue

seems to reach a stable point more quickly in the case of Barabási-Albert and this stable

point is a slightly lower revenue value than on Watts & Strogatz networks.

Finally, we investigate the relationship between the average degree of vertices of the ran-

dom graph (or the average number of neighbours per customer) and the revenue that

either algorithm yields. In order to investigate this property, we generate a Watts &

Strogatz random graph of size 100 and compute the average revenue returned as a pro-

portion of the initial utility of the network over 1000 independent runs. We begin with an

average degree of 10 and move towards an almost clique structure with an approximate

average degree of 100 (note that in a 100-clique all vertices would have a degree of exactly

100). We do this with a step size of 10. Figure 6.6 shows the results for both the greedy

algorithm and the independent set heuristic.

We see that for the greedy algorithm, the revenue is largely stable (at around 17% of
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Figure 6.5: Network Size vs. revenue gained for two heuristic approaches to NVKL
(Barabási-Albert).

Figure 6.6: Average degree vs. revenue gained for two heuristic approaches of NVKL.

initial utility) in relation to the average degree. In the case of the independent set heuris-

tic, we see a sharp decline in revenue (from around 10%) as the average degree increases.

Eventually, the revenue seems to settle around 1.5% for higher average degree values. In

a clique graph, by definition, there is no independent set (recall, every pair of vertices

are incident). The aim of the independent set heuristic is to bribe an independent set of

customers with the intuition being that this should yield a reasonable revenue. Clearly
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as the graph approaches a clique-like structure (as the average degree increases) we are

less likely to find an independent set (or anything ‘close’). Conversely, for smaller aver-

age degrees it is far more likely that we find independent or nearly independent sets of

reasonable size which might account for the increased revenue.

6.3.3 Network Properties Affecting Performance

Having carried out an extensive computational evaluation of the algorithms for computing

both weakly-dominant and approximate bribing strategies of AVKL and NVKL customer

networks, we have seen that there are clearly a number of factors that affect the quality

of our solutions. These factors include basic network parameters such as size and average

degree, and also properties unique to customer networks such as the proportion of non-

voters within the network (in the case of NVKL). Under certain values of these parameters,

we see strong performance of the heuristic algorithms for NVKL; under others, we see

weaker performance. As such, we would like to be sure that these algorithms perform

well for values of these networks parameters that we might reasonably expect to see in

real social or voter networks. Given these experimental results, there is a strong case to

be made that this is so.

The results produced by both heuristic algorithms are generally quite good. We are able

to consistently compute profitable bribing strategies for all ranges of parameter values.

Furthermore, we are able to do so with reasonably little computational effort (polynomial-

time: O(n3) for the greedy heuristic and O(n2) for the independent set heuristic). As we

have discussed in Appendix A, the models for generating random graphs that we have

used exhibit many of the characteristics that manifest themselves in real networks of

voters. As such, we can be confident that these algorithms would perform well in practice

as they have done in this computational experimentation.

6.4 Summary of Findings

Having proven the NP-completeness of NVKL, we have been able to develop solutions

to tackle instances of the NVKL problem that we might expect to encounter in actual

voter networks. These algorithms perform reasonably well and we have discussed the

interesting intuition behind them and why this might be the case.
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Moving on from the problem of NVKL, we look at the final case that was introduced

in [2]. This is the case where we have non-voters and the locations of customers are not

known to the restaurant owner.





Chapter 7

Non-voters unknown networks

(NVUL)

In this section we consider the case where there are non-voters and the restaurant owner

does not know the locations of customers on the network. More formally, we say that

the restaurant knows the network of influence between customers, that is, E ⊆ C × C,

where here C is the set of (unnamed) customers. So, we can think of our network as a

graph where there are no customer names on the vertices. Denote the set of customer

names by N . The restaurant knows the evaluation function eval : N → V al ∪ {∗}; that

is, the restaurant can associate an evaluation to every customer name. However, what is

missing is that the restaurant does not know where each customer name sits within the

network; that is, the restaurant is missing a bijection between N and C. Of course, the

restaurant knows the names of the customers who have voted and those who have not but

the restaurant does not know the locations of the named customers within the network.

In particular, the restaurant does not know the initial evaluation (as in order to compute

this, the restaurant would need to know the locations of the customer names).

7.1 Expected Revenue of Bribing Strategies

Given that the restaurant does not know which customer each evaluation corresponds to,

there is no way for the evaluation or bribe of some individual customer to be evaluated.

Therefore it only makes sense for us to talk about the revenue generated by some bribing

strategy in expectation. That is, we must consider the n! different bijections between N
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and C. Given some bribing strategy σ we define the expectation of the revenue of σ over

(C,E) as the average over all possible permutations of customers.

E[rP(σ)] =
∑
ρ

1

n!
[uσρ − u0ρ]

where uσρ denotes the utility of the network after executing σ under some permutation

of the customers of the network ρ. Similarly u0ρ denotes the initial utility of the network

under the same permutation.

A

0.2

B

0.2

C

∗

A

∗
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Figure 7.1: Permutations of the evaluation assignment up to symmetry.

Under NVUL, as is shown in [2], it is in fact possible to define bribing strategies that

are profitable in expected return. An example taken from [2] is as follows. Consider the

following network consisting of three customers A,B, and C. Let eval(A) = eval(B) = 0.2

and let C be a non-voter with eval(C) = ∗. The network is depicted in Figure 7.1.

Let σ : C → V al be the strategy of always bribing the non-voter by 0.2. That is, up

to symmetry, for the three pictures permutations of evaluations, we have three bribing

strategies σ1, σ2, and σ3.

σ1(A) = σ1(B) = 0, σ1(C) = 0.2 =⇒ rP(σ1) = 0.2

σ2(B) = σ2(C) = 0, σ2(A) = 0.2 =⇒ rP(σ1) = 0

σ3(A) = σ3(C) = 0, σ3(B) = 0.2 =⇒ rP(σ1) = 0.1

Thus, σi is profitable for all 3! permutations of assignments of evaluations to customers

(the remaining three cases are covered by symmetry). Therefore, we are able to define

bribing strategies that are profitable in expectation under NVUL.
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7.2 Utility Maximising Placement

Moving away from expectation of revenues under non-voters and unknown networks, there

are additional problems that a restaurant owner might be interested in solving. It would

be reasonable to think of this case as a generalisation of NVKL and as such, we would not

expect that we should be able to compute weakly-dominant bribing strategies given the

fact that this problem is NP-hard under NVKL. As we will see, it turns out that under

the conditions of NVUL, it is not at all easy for the restaurant owner to deduce anything

of particular interest about the utility of the restaurant nor to gain any insight into what

a sensible bribing strategy might be.

The restaurant owner may or may not know (anything about) the overall utility of his or

her restaurant in addition to the customer network and evaluations that he or she already

separately knows. Supposing the restaurant owner knows the overall utility, he might

hope to be able to compute in polynomial-time a feasible assignment of evaluations to

customers such that the resulting utility of this matching is equal to the one the restaurant

owner knows about. This would leave the restaurant owner in the case of NVKL within

which we know that we can compute a profitable bribing strategy in polynomial-time.

Perhaps the restaurant owner does not know what the utility of the restaurant is. In this

case they might wish to be able to infer some kind of upper or lower bound or to discover

whether it could possibly be that their utility surpasses a certain value.

Perhaps the most interesting of these problems, is the problem of assigning evaluations to

customers such that the resulting utility of the customer network is maximised. Formally,

we define this as follows.

Definition 7.1. (UPLACE) Given a customer network C, an evaluation vector eval ∈
Qm such that m ≤ |C|, and a target utility b ∈ Q. A yes-instance of UPLACE is such

that there is an assignment of evaluations to customers such that: (a) every customer is

adjacent to at least one voting customer and (b) the utility resulting from the assignment

is at least b.

It turns out that we can show that UPLACE is NP-complete by a simple reduction from

the vertex dominating set problem.

Definition 7.2. (VDS) Given any graph G and k ∈ N such that k ≤ n where n is the

number of vertices of G. A yes-instance of VDS is an instance where there is a subset S

of k vertices so that every vertex not in S is adjacent to at least one vertex of S.
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Claim 7.1. UPLACE is NP-complete.

Proof. Given any instance (G, k) of VDS we construct a customer network C = G. We

define eval = (1, ..., 1) ∈ Rk and let b = k. Let (C, eval, b) be an instance of UPLACE.

If (G, k) has a vertex dominating set of size k then clearly the assignment of 1 to each

customer corresponding to a vertex of the dominating set would give us a utility of b = k

in C. Conversely, if G has no vertex dominating set of size k then there is no assignment

of evaluations 1’s to customers such that condition (a) of Definition 7.1 holds. That

is, (C, eval, b) is not a yes-instance of UPLACE. Since VDS is NP-hard [19] it follows

that UPLACE is NP-hard. Given an instance of UPLACE we can clearly check in non-

determinstic polynomial time whether the utility of C with respect to eval is ≥ b. We

can therefore deduce that UPLACE is in NP and the result follows.

As we can see there is little scope for the restaurant owner to accomplish anything of

particular interest under the existence of non-voters and given an unknown network.

7.3 Fixed-Parameter Tractability of UPLACE

Although we have shown that the decision problem of matching evaluations to customers

so as to maximise the utility of the network is NP-complete, we could still expect to

be able to solve the problem given instances that are likely to arise in practice. Under

some natural parameterization of UPLACE, for example, the number of non-voters of

the network (C,E), we may hope to be able to find solutions efficiently as long as the

number of non-voters remains small. Unfortunately, as we will now show, UPLACE is

W[2]-hard. We recall, in this proof, several key definitions from the background section

on parameterized complexity theory (see Section 2.5).

Proposition 7.1. UPLACE (where our parameter is the target evaluation) is W[2]-hard.

Proof. Consider the reduction from VDS to UPLACE of 7.1. In addition to this, we note

that VDS is W[2]-hard (where our parameter is the size of the vertex dominating set) by

a theorem from [25]. We claim that this reduction is in fact an fpt-reduction. To show

this, we must prove the following three properties of the reduction (which we will call R).

Recall the definition of an fpt-reduction (see Definition 2.40).

1. Trivially, for some instance x of VDS, x ∈ VDS if and only if R(x) ∈ UPLACE.
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2. R simply outputs the graph G along with an evaluation vector consisting of all 1’s.

The size of this graph is at most
(
n
2

)
= n!

2!(n−2)! = n(n−1)
2

which is O(n2). The size of

the evaluation vector is k. Therefore the reduction takes O(n2) +O(k) which is of

the form f(k) · p(n) for some polynomial p.

3. Finally, we note that the parameterization of the input instance x is exactly equal

to the parameterization of R(x).

We conclude that R is an fpt-reduction. Since W[2] is closed under fpt-reductions (see

Section 2.5), the result follows.

7.4 Summary of NVUL

As we can see, other than to consider the expectation of bribing strategies under NVUL,

there is perhaps not much of use that a restaurant owner could do. It does not make

sense to talk of computing weakly-dominant strategies given that we do not know how

to find a customer’s evaluation. Furthermore, we see that it is hard even to compute

the assignment of evaluations that would yield a given utility; and that even when we

consider the parameterized case, this problem is W[2]-hard.





Chapter 8

Project Evaluation

The main purpose of the work of Grandi and Turrini [2] was to introduce the network-

based rating system and provide an analysis of how some malicious agent might manipu-

late the opinions of the individuals of this network, through bribery, in order to increase

his or her gain. The analysis provided was largely restricted to the case of AVKL and,

in addition to this, did not explore in any way the complexity theoretic aspects of the

problem of bribery. As we identified in the initial stages of the project, a main aim of this

project was to extend the work of [2] beyond only these cases. Furthermore, it appeared

as through the differing knowledge cases of the restaurant owner would complicate the

computation of weakly-dominant bribing strategies and provide interesting problems to

investigate in relation to their computational complexity. As we have seen, this has indeed

been the case.

8.1 Summary of Accomplishments

We have further developed the framework presented in [2] by providing several original

theoretical results. We have also proven important complexity-theoretic properties of the

problem of bribery in multiple different knowledge cases, and proposed and implemented

feasible alternative approaches towards solving the problem in practice.

We began by taking the problem of computing weakly-dominant bribing strategies in

the case of AVKL. As our starting point, we identified that the existence of non-voters

complicates matters, and that the approach taken by Algorithm 1 would no longer work

due to the fact that influence weight is no longer static. We sought to devise a similar
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approach by investigating the revenue gained by bribing voters and non-voters under

NVKL. We also sought to investigate how the order in which they are bribed affected the

revenue gained. We proved:

1. The NVKL analogue of Theorem 4.1:

(a) Proposition 5.1 gives us the projected revenue of bribing a non-voter.

(b) Proposition 5.2 gives us the projected revenue of bribing a voter.

2. The order in which we bribe any two customers some pre-determined amount does

not affect the revenue gained.

(a) Proposition 5.3 shows we may bribe two non-voters in any order.

(b) Proposition 5.4 shows we may bribe a voter and a non-voter in any order.

We used these results to develop a polynomial-time greedy algorithm (Algorithm 2) for

computing bribing strategies under NVKL.

Unfortunately we saw that, in fact, this greedy algorithm is sub-optimal in certain cases.

As such, we see that NVKL is markedly different from AVKL. A full proof of this fact

was given in Example 5.1. From here, we turned our attention towards thinking about

whether even computationally efficient algorithms for computing weakly-dominant bribing

strategies under NVKL actually exist.

In Section 5.4, we showed that this could not possibly be the case by providing a detailed

and complicated proof that the problem of computing weakly-dominant bribing strategies

under NVKL is NP-complete. Of course, we are assuming that P 6= NP. We then pro-

ceeded to tackle the problem of computing approximate or satisfactory bribing strategies

under NVKL.

We discussed the motivation for and developed two heuristic algorithms for bribing strate-

gies under NVKL. These are the initial greedy Algorithm 2, and the independent set

heuristic used by Algorithm 4. Additionally, we performed an experimental analysis of

our approaches to solving NVKL. This involved implementing the framework presented

in [2] and implementing both of our algorithms in Java. In addition to this, we intro-

duced and implemented a number of random graph models for generating realistic social

networks.
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Having implemented our algorithms, we attempted to explain why the algorithms per-

formed as they did under the graph and customer network parameters we experimented

with in Section 6. By doing this, we were able to comment on the potential practical

feasibility of our algorithms on real-world networks that exhibit the properties that we

attempted to model through our random graph models. (See both Chapter 6 and Ap-

pendix A.)

Finally, we began to investigate the remaining case of NVUL (Chapter 7). We established

that it does not make sense to talk about the problem of a weakly-dominant bribing

strategy under NVUL and so we formulated the related problem of UPLACE (see Defi-

nition 7.1). In Claim 7.1, we showed that UPLACE is NP-complete. We concluded this

chapter by showing that UPLACE is also W[2]-hard.

8.2 Evaluation

It is a central aim of the research conducted in [2] to determine the resistance (of the

proposed rating system) to bribery by some malicious agent. The main conclusions of the

paper are that in general the P-rating is not bribery proof under each of the knowledge

cases that are investigated. The extent to which it is established that the P-rating is not

bribery proof (under the case of NVKL) is simply by showing that there exist networks

and bribing strategies that yield a positive revenue. An algorithmic approach to actually

computing these strategies, in general, is not considered.

It is mentioned in [2] that it is hard to obtain analytical results for strategies bribing

non-voters. The results we have shown concerning the bribing (and the order of doing

so) of customers under NVKL (Propositions 5.1, 5.2, 5.4, 5.3) go a long way towards

exploring this. We have shown the results required to attempt to formulate an algorithm

that loosely follows the P-greedy method of [2] that turns out to yield a weakly-dominant

strategy for AVKL. This is despite the complicating matter of the stated ‘non-linearity

of the P-rating’ given the existence of non-voters. It is perhaps alluded to in [2] that a

similar approach to NVKL would work as it is stated in Proposition 12 of [2] that for

bribing strategies restricted to voters only, the influence weight of AVKL still applies. We

have been able to show that this is, in fact, not the case by providing a counterexample

to the greedy approach that we proposed in Algorithm 2.

It is also perhaps implicitly assumed that the problem of computing weakly-dominant
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bribing strategies under NVKL is actually tractable, as was the case under AVKL. The

matter of tractability (or the computational complexity) of computing bribing strategies

is not contemplated in the paper. In actual fact, when we are considering the resistance

to bribery of the proposed rating system, it is an important point to consider. We see

that it is possible to construct networks for which there exist profitable bribing strategies

and it is concluded that the P-rating is therefore not bribery proof. It could be the case

that in general, given a network, it requires a considerable amount of computational effort

to compute such strategies.

Having formally proven that the problem of computing weakly-dominant bribing strate-

gies is NP-complete (see Section 5.4), this clearly leads us to rethink our definition of

bribery-proof. Although weakly-dominant strategies might exist, we can be sure that, in

general, these can not feasibly be computed. Ideas such as this have long since been ex-

plored in other frameworks and other areas of computational social choice. The case is put

forward in [4], that computational complexity can play a role in “protecting the integrity

of social choice” and it is remarked that many standard voting schemes can be manipu-

lated with very little computational effort. We see through our own results, that for the

rating-system of [2] there are significant complexity-theoretic barriers to manipulation,

particularly under the cases of NVKL and NVKL.
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Conclusion

During this project, we have studied several interesting algorithmic problems resulting

from the network-based rating system of [2]. We have seen how we can employ techniques

from a variety of disciplines in mathematics and computer science to prove non-trivial

and original results concerning both algorithmic and complexity-theoretic properties of

the framework.

Although we have been able to show a number of important results, the rating-system

of [2] and the problem of bribery provide much scope for much further investigation into

the algorithmic and complexity-theoretic properties of the framework.

9.1 Future Work

There are a number of interesting problems that we initially identified to be interesting

(see Chapter 3). Some of these we have exhaustively investigated and some of these still

remain unexplored due to lack of time. In addition to the problems discussed in Chapter 3,

there are a number of problems we encountered during our work, that would certainly

be worth looking at and would help further refine our analysis of the rating system and

the complexity of bribery within it. We will focus on the problems that are more closely

related to algorithms and complexity theory. In no particular order, these include the

following.

1. Determining whether the problem of NVKL (see Definition 5.1) is fixed-

parameter tractable. Parameterized complexity theory enables us to provide
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a further refined analysis of hard algorithmic problems. In earlier sections, we

have discussed the network structures and properties that we might expect to see

in real-world networks (see Appendix A). As a result, it would be reasonable to

assume that there exist parameterizations of the NP-complete problem of NVKL

so that we know that the parameter will always remain comparatively small (in

relation to the input size). For example, such a parameter could be the number

of non-voters k given an instance ((C,E), eval0) of size n (where k � n). This

is simply a natural parameterization at a first glance; in fact, parameterizations

yielding fixed-parameter tractable solutions could be entirely non-trivial and a more

focused analysis of the ‘source’ of the NP-completeness of NVKL would be required.

Alternatively, we may not be able to find a parameterization of the problem under

which it is fixed-parameter tractable. In this case we might aim to prove a hardness

result; that is, to show that NVKL is W[P]-hard [22]. Having thought about

this problem, we have not been able to prove a result and it seems that such a

result would be extremely difficult to show. One approach could be to note that

the independent set problem (INDSET) is a somewhat classic example of a W[1]-

complete problem [22]. Although we reduce this problem to NVKL in showing that it

is NP-complete, this is certainly not an fpt-reduction; we could begin by attempting

to find one which is. In any case, a result on the fixed-parameter complexity of

NVKL would enable us to determine with more certainty whether we are able to

easily compute exact solutions to instances of the problem that are likely to arise in

practice.

2. Studying the hardness of approximation of NVKL. The NVKL problem may

also be viewed as an approximation problem. Since we know that NVKL is NP-

hard, it would be interesting to ascertain whether we can develop algorithms which

we can formally prove are guaranteed to return a solution within some bound of

the provably optimal one. We have provided some brief insight into how we might

bound the revenue generated by any bribing strategy given some network; however,

to develop good approximation algorithms we would first look at tightening our

bound (almost surely as a function of both the network and the initial evaluation

and utility). We have developed heuristic algorithms which do perform well in our

experimentation. This is all well and good, but as we have seen, the performance

of our algorithms varies massively depending on the types of network and their

parameters. In certain cases we struggle to generate very much revenue at all and

can ‘fail’ to produce good results (although, as we have discussed, these instances are
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not likely to arise in practice). The point here, is that we have no formal guarantee

as to the performance of heuristic algorithms, and approximation algorithms would

provide a more formal reassurance that we are able to efficiently compute good

solutions in the general case.

3. Generalisation of the P-rating and its framework. It would be interesting to

see whether the results we have proven are extensible to several of the generalisations

of the P-rating that we proposed in the initial stages of the project. For a full

description of these problems, see Chapter 3. In brief, these were:

(a) P-ratings on weighted networks of influence.

(b) P-ratings on wider spheres of influence (beyond a customer’s immediate neigh-

bourhood).

(c) P-ratings on wider classes of functions beyond the average of the neighbourhood

(this could include the mode, median, or even arbitrary classes of functions that

possess some property, e.g. additivity).

We would like to answer the question of under which of these generalisations can we

compute weakly-dominant bribing strategies in polynomial-time? In relation to the

P-rating and the above generalisations, it would also be interesting to determine the

restrictions of customer networks (e.g. trees or star graphs) which allow us to solve

hard problems such as NVKL. Answering questions such as these would increase

the feasibility of the P-rating for implementation as an actual rating-system.

Finally, we saw that our NP-completeness result holds when customer evaluations

can be rational numbers from [0, 1]. In the proof of the polynomial-time reduction

from ISREG(3) to NVKL, this allowed us to choose ε so that our initial utility was

exactly k (the size of the independent set we were looking for in the instance of

ISREG(3)). If V al were, e.g., {0, 0.2, 0.4, 0.6, 0.8, 1} (which would correspond to

the ‘traditional’ five-star rating system) then we would need to control the initial

utility in some other way. It would be interesting to see whether the actual set Val

affects the computational complexity of NVKL and, if so, determine exactly the

form of this effect.





Appendix A

Implementation of Framework

Whilst the rest of this project concerns the tractability of bribery problems resulting from

the various restrictions we can place upon customer networks, we are still interested in

evaluating the quality of heuristic algorithms proposed for the provably intractable cases.

As well as this, we would like to investigate how different heuristic methods perform

against each other upon the various realistic models we can implement for generating

artificial social networks. These models exhibit particular properties that manifest them-

selves in the social networks that we observe in the real world. Typical examples would

include Facebook, Tripadvisor, or Twitter.

In this section we explain the implementation of the rating-system that we use to per-

form our experiments upon. This involves the implementation of various random graph

models for generating social networks, and the algorithms themselves. We will discuss the

subtleties that we had to take into account when implementing the framework and our al-

gorithms. The framework, algorithms, and random graph models have been implemented

from scratch in Java.

A.1 Random Graph Models for Social Networks

In order to properly understand how information and influence diffuses through social net-

works, we have to have a model of the link structure within a society. Models for networks

that exhibit desirable and realistic properties have long since been studied [18] [17] and

we shall discuss two models that exhibit a range of varying properties. The motivation for

doing so is so that we are able to construct appropriate customer networks upon which we
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can apply algorithms for computing bribing strategies and provide a quantitative analy-

sis of their results. We shall also talk about realistic methods of representing individual

customer evaluations within the network. As we shall see, the relative performance of our

algorithms depends heavily on the properties of the network. These properties are essen-

tial to the feasibility of a fixed-parameter solution and a fine line between the tractability

and intractability of such problems is clearly evident.

We implement models for generating two popular types of network that are said to be

prevalent in real social networks: scale-free and small-world networks.

Definition A.1. Scale-free network: A scale-free network is a network whose degree dis-

tribution exhibits (asymptotically) a power law. That is, let the fraction of nodes in the

network having k connections to other nodes be P (k). Then, P (k) ∼ k−γ.

Definition A.2. Small-world network: A small-world network is one where the distance d

between two randomly chosen vertices grows proportionally to the logarithm of the number

of vertices n or the network. That is, d ∝ log(n) [15].

With regards to voter networks and in particular the rating system of [2], both of the

above networks are useful to look at. We see extensive evidence in the literature that key

properties of scale-free and small-world networks manifest themselves in voter networks.

This is easy to see as one might expect, in some context, certain individuals to be hubs

of a voter network. That is, there are a relatively large number of other individuals who

are influenced by their opinion. This is just one characteristic of a scale-free network.

Alternatively, we see with small-world networks the regular occurrence of cliques or near

cliques of individuals. This would be a very reasonable network characteristic to expect

in reality in that it is often observed that the views and opinions amongst different de-

mographics as groups of people are closely tied. A number of studies can be found, such

as [18], as to the many different properties of voter networks.

A.1.1 Watts & Strogatz Model

A workhorse model for generating graphs with small-world properties is the Watts &

Strogatz random graph model. The basic method of construction is to randomly rewire

the edges of a regular lattice. An algorithm to construct such networks is as follows and is

described in [15]. Let N denote the number of nodes, K the mean degree, and β ∈ [0, 1].



88 Appendix A. Implementation of Framework

1. Construct a regular ring lattice on N nodes by connecting each node to the K/2

neighbours either side of it.

2. For every node ni = n0, .., nN take every edge (ni, nj) with i < j and rewire it with

probability β. Rewiring is done by replacing some edge (ni, nj) with (ni, nk) where

k is chosen with uniform probability over all possible values that avoid self-loops

(k 6= i) and link duplication. That is, if there already exists an edge we do not

rewire as to duplicate that edge.

This model is used as one such method of randomly generating networks within the

implementation.

A.1.2 Barabási-Albert Model

The Barabási-Albert model for generating random scale-free networks uses a preferential

attachment mechanism. This means that the more connected a node is within a network,

the higher the probability that it receives new links during construction. One such prop-

erty of the resulting network is the presence of hubs. The basic algorithm for constructing

Barabási-Albert networks is as described in [16].

1. We begin with an initial connected network on N nodes.

2. New nodes are added to the network one-by-one. A new node is connected to node

i with probability

pi =
ki∑
j kj

where ki = deg(i) and j runs over all pre-existing nodes.

A.1.3 Random Evaluation Assignment

Having constructed a voter network generated by one of the previously discussed random

graph models, we can label vertices of the network with evaluations. The approximate

desired proportion of all customers that should be made non-voters can be passed to the

functions which generate networks. For example, we might pass a (realistic) value of 0.15
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to enforce that in reality a large proportion of customers do express an opinion. Within

the implementation, the way that this is (approximately) achieved is to firstly assign every

customer a uniformly random evaluation between 0 and 1. If a customer’s evaluation is

below the threshold of the proportion of customers we desired to be non-voters (and

every customer in its neighbourhood is influenced by at least another voter) we simply

set the customer to being a non-voter. The result is that we end up with approximately

the desired number of non-voters. This method of evaluation assignment works well in

practice.

Remark A.1. We might be tempted to implement a more realistic assignment of evalua-

tions to voting customers than simply assigning them a uniformly random value. However,

it is not the actual evaluations of customers that affect the computation of a bribing strat-

egy, but the structure of the network (the number of non-voters) which is most influential.

As explained, we can closely control this property.
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