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Abstract

Convolutional Neural Network (CNN) is one of the most popular deep learning technique that has
been used inmany tasks, including image classification andmachine translation. FPGA is a promising
target hardware platform to deploy CNN models, because it has balanced performance and can be
integrated with many platforms, from embedded devices to data-centre servers. Even though, FPGA
is still less popular thanGPU andCPU regarding CNNmodel deployment platform, whichmainly due
to the difficulty lies in converting high-level CNN descriptions to runnable FPGA hardware designs.
This report aims at addressing this problem and provides two hardware libraries for constructing CNN
on FPGA, one (RubyConv) is written in high-level language Ruby and the other one (MaxDeep) is
written in OpenSPL. This report also presents a CNN model transpiler framework, Plumber, that can
directly transform high-level models to FPGA designs with a novel model-hardware co-optimisation
module.
The evaluation shows that the design generated and model-hardware co-optimised by the Plumber
transpiler framework can achieve competitive performance.
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Chapter 1

Introduction

In recent years,Deep Learning has become one of the most important and influentialMachine Learn-
ing (ML) technologies. Deep Learning is mainly based on deep neural networks, among which Con-
volution Neural Network (CNN) is the one that has been applied to many different tasks, ranging
from computer vision to machine translation. Because of the application domain of CNN is broad
and essential, people are trying to push the performance boundary of CNN forward on various hard-
ware platforms, including Graphic Processing Unit (GPU), Field-Programmable Gate Array (FPGA),
Application-Specific Integrated Circuit (ASIC), and Central ProcessingUnit (CPU). Comparing these
platforms, FPGA is the one that balances customizability, power-efficiency, performance, and pro-
totyping speed. and is the promising platform to deploy CNN models for many use cases, such as
robots and Unmanned Aerial Vehicles (UAVs).

However, it is not straightforward to deploy an arbitrary CNN model on an FPGA device. Program-
ming on FPGA is already a difficult task, and programming a complex CNN computation logic on
FPGA with acceptable performance is much harder. This issue greatly slows down the process from
a newly trained CNN model to a runnable accelerator of that model on FPGA.

Resolving this difficulty is the major target of this report. In this report, we address this problem by
proving a CNN acceleration hardware library, MaxDeep, and a CNN model transpiler framework,
Plumber, together with an auxiliary high-level hardware description of CNN in Ruby, RubyCNN.

In this chapter, we first present the motivation of this report (Section 1.1) and the expected outcome
(Section 1.2). Then, we mention the challenges to fulfil our goal (Section 1.3) and how they are
addressed (Section 1.4). The organisation of this report is presented in the end (Section 1.5).

1.1 Motivation

Seamlessly deploying a trained CNN onto a runnable FPGA design is a feature in high demand. One
reason is that researchers and developers need to immediately know whether their newly developed
and trained CNNmodel can perform well on FPGA. Traditionally, model research group should hand
over their model to the hardware team and wait for a long time until the model can be deployed and
tested. This time-consuming loop should be broken to enhance the development efficiency. The other
reason is more intuitive: comparing with platforms like GPU and CPU, FPGA does not have an easy-
to-use deep learning framework, like Caffe (Jia et al., 2014) or TensorFlow (Abadi et al., 2016), that
directly performs CNN inference by passing model definition files or writing several lines of code.
Thus, a framework that can accelerate CNN model deployment on FPGA platforms is a topic that is
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1.2. OBJECTIVE Chapter 1. Introduction

worth working on and beneficial.

In addition, unlikeGPU andCPU that have fixed architecture, FPGA ismore flexible and architectural
impact from a slight change in the CNNmodel is possibly profound. It will be helpful if the feedback
information of generated hardware design architecture can automatically give directions on CNN
model selection, which can further become a model-hardware co-optimisation process. Therefore,
the framework that will be presented in this report should better have a co-optimisation module.

In short, it is a necessary feature to transform a trained CNNmodel into FPGA hardware design, with
an automatic co-optimisation based on feedback information.

1.2 Objective

According to the motivation above, this report aims at providing a framework that can end-to-end
convert high-level CNN models into FPGA hardware designs with sufficient optimisation. To be
specific, there are three major objectives in this report:

1. Describe essential building blocks of a CNN accelerator concisely in a high-level hardware
description language, Ruby. It helps unravel the characteristics of CNN building blocks, such
as configuration parameters, design metrics, and expected performance.

2. Devise a hardware library that implements CNN building blocks based on Ruby description.
This library should be parameterised and flexible enough to construct most kinds of CNNmod-
els. Hardware designs built by this library should be able to synthesized and generated for real
FPGA platforms. We choose the Maxeler platform and OpenSPL as the targeting FPGA plat-
form and hardware description language. Also, the performance and resource usage of this
library should be predictable only by design parameters, for efficient design space exploration
and optimisation.

3. Design a transpiler that transpiles high-level CNN model description into hardware design.
This transpiler should contain a dataflow graph IR for portability to different CNN descrip-
tion and different hardware description languages. This transpiler can also work together with
a model-hardware co-optimisation module, which can provide optimisation guidance on the
CNN model from hardware performance and resource usage feedback. and is an additional
objective of this report.

Figure 1.1 presents the relation ship between the three objectives of this report. The whole report is
about CNN framework on FPGA platforms. The top node is the transpiler that converts CNNmodels
to hardware designs, and the bottom two nodes are candidates. RubyConv is a target hardware library,
to which the input CNN model can only be partially transpiled, because RubyConv doesn’t contain
either platform specific or peripheral logic. But the partially transpiled RubyConv designs can be
further converted to MaxDeep, which is a ready-to-use transpilation target, if the corresponding tool-
chain can perform well.

1.3 Challenges

To achieve the objectives of this report, we need to overcome three main challenges:

2
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Ruby-
based
Library

(RubyConv)

OpenSPL-
based
Library

(MaxDeep)

CNN Transpiler
Framework
(Plumber)

partially transpile
transpile

convert

Figure 1.1: Relations among objectives in this report.

1. It is difficult to describe complex CNN architecture into parameterised hardware designs, writ-
ten in high-level functional hardware description language Ruby. Building blocks in Ruby
should not only process CNN computation correctly, but also be reusable and flexible to con-
struct designs for different CNN topologies.

2. Devising a hardware library for CNN on FPGA platforms is also a challenging objective. For
a single convolution layer, it is already a hard enough task achieving the highest performance
and handling all its corner cases. It becomes even harder when considering constructing, con-
necting, and optimising a CNN accelerator design from general building blocks in the hardware
library. Moreover, there are many variations of CNN, such as depthwise separable and bina-
rised convolution, which should be integrated with the library.

3. The transpiler for transforming CNN models to FPGA hardware design is still a tough field
of study. It needs a background in both deep learning framework, compiler principles, and
low-level hardware design library. Also, the model-hardware co-optimisation has not been
well-studied yet, and we need to propose several heuristic ideas to make it work.

1.4 Contributions

This report makes the following contributions to address the challenges mentioned above:

1. A Ruby-based CNN description library, RubyConv, is presented together with latency and re-
source usage analysis, and symbolic simulation evaluation. The possibility to generate a whole
CNN hardware design from RubyConv on real FPGA hardware is also illustrated.

2. A hardware library to construct CNNaccelerator design on theMaxeler FPGAplatform,MaxDeep,
is devised. MaxDeep contains essential CNN building blocks, such as convolution, fully-
connected, max-pooling, and batch-normalisation layers. Besides, MaxDeep also supports

3



1.5. REPORT ORGANISATION Chapter 1. Introduction

depthwise separable convolution and binarised convolution, to further enhance performance.
The performance and resource usage of MaxDeep-constructed CNN hardware designs are
highly-predictable, because most building blocks are associated with accurate analysis models.
Besides, a constrained optimisation solver based performance optimisation flow for any CNN
design constructed by MaxDeep is also presented with detailed evaluation of many cases.

3. Plumber, a CNN model to FPGA hardware design transpiler is another contribution. Plumber
takes CNNmodel trained by TensorFlow as input, and generates hardware designs constructed
by MaxDeep. The core of the Plumber transpiler is a dataflow graph intermediate represen-
tation, which contains sufficient annotated information about both high-level operator config-
uration and low-level design parameters. The generated hardware design and corresponding
performance and resource usage information will be further proceeded by a model-hardware
co-optimisation module, which optimises the input CNN model to generate better hardware
design.

4. Evaluation on Maxeler MAX4 platform shows that, a single convolution layer generated by
MaxDeep can reach GOp/s. And an end-to-end evaluation of MaxDeep and Plumber of LeNet
shows that

1.5 Report Organisation

The rest of this report is organised as follows:

1. Chapter 2 presents essential background knowledge related to deep learning and CNN, and
state-of-the-art techniques in hardware accelerator design for CNN.

2. Chapter 3 illustrates Ruby-based building blocks in RubyConv.

3. Chapter 4 introduces the MaxDeep library and its performance evaluation.

4. Chapter 5 contains the Plumber transpiler and the model-hardware co-optimisation framework,
and their evaluation.

5. Chapter 6 discusses conclusions of this report and possible future work.
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Chapter 2

Background

This chapter aims at providing knowledge for main chapters of this paper. This chapter first reviews
the essential background of deep learning and convolutional neural networks (Section 2.1). Then,
this chapter presents related background in using Ruby to implement neural network (Section 2.2).
Details about how to efficiently process the CNN inference step are discussed in Section 2.3.

2.1 Deep Learning and Deep Neural Networks

Deep learning is a thriving subfield of Machine Learning (ML), which is a widely used technique
in the field of Artificial Intelligence (AI). In contrast to the traditional knowledge-based approach,
which is heavily relying on hard-coded knowledge such as logic-based rules, the machine learning
approach to artificial intelligence is more flexible: the program constructed by a machine learning
algorithm can be trained to enhance the performance based on a given dataset. There are many
famous machine learning algorithms, such as Support Vector Machine (SVM) andGaussian Process,
and many successful applications built with these algorithms, such as spam detection and handwriting
recognition.

However, the performance of a machine learning algorithm is restricted by the quality of features,
which are extracted from the raw data. Although badly extracted features will misguide the training
process and result in low performance, it is hard to avoid as good features can only be selected based
on expert knowledge in the corresponding field. Deep learning provides an effective solution to the
problems in machine learning, which will be introduced in the following sections.

2.1.1 Principles of Deep Learning

Deep learning origins from the idea of representation learning, which is a variation of machine learn-
ing that learns not only the mapping from extracted features to prediction, but also features them-
selves. The deep learning approach to representation learning is by expressing representations based
on other simpler representations (Goodfellow et al., 2016): take a common image classification task
as an example, simple representations that can be automatically learnt are colours, edges, and con-
tours and the final representation for classification will consist of those simple representations. In the
context of state-of-the-art deep learning models, simple representations mentioned above are usually
known as representation layers, which can be concatenated together to form a feed-forward compu-
tation flow, such asMulti-Layer Perceptrons (MLP) and feed-forward Neural Networks.

5



2.1. DEEP LEARNING AND DEEP NEURAL NETWORKS Chapter 2. Background

The performance of a deep learning model depends on its depth. All the layers between the input
and output of a deep learning model are often recognised as hidden layers, each of which contains
features decomposed from the original data representation and will be reused in its following hidden
layers. The deeper the deep learning model is, the more hidden layers that the model will contain.
With more hidden layers, the deep learning model can construct more complex representation from
those hidden layers, and its performance can be enhanced. In the next section, I will introduce the
widely applied deep learning model - deep neural network, in which the layers are inspired by neurons
and have several typical types.

2.1.2 Deep Neural Networks

A basic neural network contains two major computation units: one is a weighted-sum neuron that
takes input from other neurons and outputs one value, the other one is a non-linear activation unit that
integrates non-linearity to the network. These two units are generally inspired by the brain structure,
especially the way that synapses work and connect to others. Neural networks can be innately grouped
into layers, which are compatible with the concept of representation layers in deep learning, and
further makes the idea of deep neural networks work.

In this report, I focus only on feedforward DNNs, which are composed of layers that are organised in
sequences. There are five types of layers that are frequently used in recent DNN literature: convolu-
tion, fully-connected, pooling, activation, and normalization, which will be discussed as follows:

Convolution Layer

The computation in a convolution layer is based on convolution operations, which transform a multi-
channel input image to another multi-channel output image. In the context of convolution layer,
the input and output images of this layer are also known as feature maps, which denote that the
output image of a convolution layer contains extracted features. There are two major properties of
the convolution layer (LeCun et al., 1998), one is the local receptive field, which indicates that the
features extracted from a convolution layer are based on localized information of the image; the other
one is shared weights, which means that the convolution kernels (small coefficient matrices) have
same values when computing all the pixels within a channel.

A convolution layer can be described by the parameters in Table 2.1. 1 Based on these parameters,
the behaviour of a convolution layer can be described in Equation 2.1. fmapin and fmapout are
input and output feature maps, and weights is the coefficient 4-D matrix. This equation satisfies the
two properties mentioned above, because for each pixel in the output feature map, it is only related
to a receptive field of the input feature map (a K × K window), and the coefficient matrix will be
shared.

fmapout[f ][h][w] =
Cconv∑
c=0

⌊K
2
⌋∑

i=−⌊K
2
⌋

⌊K
2
⌋∑

j=−⌊K
2
⌋

fmapin[c][h+ i][w + j]× weights[f ][c][i][j] (2.1)

Dilated convolution is proposed by Yu and Koltun (2015) to aggregate contextual information for
image semantic segmentation. The dilated convolution, which is referred as atrous convolution by

1Note that in this table the stride and padding size, which are two normally used parameters are ignored. These two
parameters currently have no significant effect on the conclusion of this report.
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Table 2.1: Parameters to describe a convolution layer

Name Description
Hconv The height of the input feature map
W conv The width of the input feature map
Cconv The number of channels of the input feature map
F conv The number of channels of the output feature map
K The size of the convolution kernel

Chen et al. (2014, 2016a). We will stick with dilated convolution in the following discussion. The
feature of the dilated convolution is that, letting the dilation factor is l, the distance between two
adjacent input activations collected by each sum-of-product step is l− 1, rather than 0 which is used
in normal convolution (1-dilated convolution). The motivation to introduce the dilation factor is that
dilated convolutions support exponentially expanding receptive fields without losing resolution or
exponentially increasing the size of parameters. This kind of convolution has been adopted in the
context module (Yu and Koltun, 2015), which enhances the performance of semantic segmentation
tasks. In Chen et al. (2016a), they discuss how the dilated convolution is equivalent to a downsampled
convolution followed by an upsampling operation.

Convolution factorisation is an appealing idea that factorises a large convolution layer into several
convolution layers with smaller kernels. Layers created after factorisation together perform a con-
volution computation that has same input and output dimensions as the original layer. This idea can
reduce the parameters and computation resources required for a convolution layer. Jin et al. (2014)
propose a factorisation method called flattening, which turns an original 3D kernel (NC×KH×KW )
into three 1D kernels (NC×1×1, 1×KH×1, and 1×1×KW ). This method can reduce parameters
by a factor of (NC ×KH ×KW )/(NC +KH +KW ) for each output channel. Results show that
both training and inference processes can be accelerated, and the accuracy can also be better on some
datasets. However, the result should be further evaluated on large-scale datasets.

Convolution module is a recent developed concept that groups several small convolution layers,
which have a relatively small amount of parameters, to perform the computation of a single large
convolution layer, which has a relatively large amount of parameters. The major motivation of this
approach is to reduce the total number of parameters required for a large convolution layer and in-
crease the computational efficiency. Also, a CNN built on convolution modules is easier to be pa-
rameterised. Iandola et al. (2016) introduce the Fire module, which is comprised of two convolution
layers: one has 1 kernels (squeeze) and the other one has both 1 and 3 kernels (expand). This archi-
tecture can be viewed as a normal CNN with 3 kernels partially replaced by 1× 1 kernels to reduce
number of parameters. Their results show that SqueezeNet can save at most 510x space comparing
with the original architecture without losing accuracy. However, it will be better if they can provide
deeper insight of SqueezeNet’s performance, more than empirical numbers.

Depthwise Separable Convolution is a recent technique introduced by Chollet (2016) in the Xcep-
tion network. Xception is derived from the idea behind the Inception network, which assumes that
cross-channel correlations and spatial correlations of a convolution layer should be decoupled to
increase efficiency. Xception pushes this idea to an extreme case with depthwise separable convo-
lution, which performs depthwise convolution, i.e. a individual spatial convolution of each channel
at first, and then pointwise convolution which is identical to 1× 1 convolution. Depthwise convolu-
tion learns spatial correlations and pointwise convolution learns only cross-channel correlations. Mo-
bileNet (Howard et al., 2017) is another CNN architecture that is built upon depthwise separable con-
volution layers. Suppose there is a convolution layer with configuration (H,W,Cin, Cout,K), it can
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2.1. DEEP LEARNING AND DEEP NEURAL NETWORKS Chapter 2. Background

be replaced with a depthwise convolution (H,W,Cin,K) and a pointwise convolution (H,W,Cout),
and the total number of operations is reduced by 1/Cout + 1/K2.

Fully-Connected (FC) Layer

An FC layer stands for a neural network layer that each of its output neurons is a weighted sum of all
input neurons, which also indicates that the output neurons are fully connected to input neurons. If all
the weights are stored in a coefficient matrix, and the weights used for computing each output neuron
are grouped in each row, then the computation within the FC layer is a matrix-vector multiplication,
where the vector contains all the values in input neurons. According to this behaviour, only two
parameters (Hfc andW fc) are required to describe an FC layer (Table 2.2).

Unlike the convolution layer, the FC layer has no local receptive fields and no shared weights, which
further means that an FC layer cannot effectively learn local features in vision tasks and requires a
large amount of space to store its weights. Thus, in recent DNN architectures, FC layers are often
appended to a sequence of convolution layers and output classification probabilities.

Table 2.2: Parameters to describe a fully-connected layer

Name Description
Hfc The height of the weight matrix
W fc The width of the weight matrix

Pooling Layer

In order to make a convolution layer more robust, which means that features extracted from this
convolution layer should be tolerant to small distortion and translation-invariant, a pooling layer is
often applied on the output feature map. A pooling operation is based on a sliding window, which
slides over the feature map and outputs the maximum or the average value of the region that the
window covers. If the sliding stride is larger than 1, then this pooling layer can also reduce the
dimensions of the output feature map.

In this report, I will fix the value of parameters in each pooling layer: the size of the sliding window
will be 2×2, and the sliding stride will be 2. This configuration is widely used inmany state-of-the-art
DNN architectures.

Activation Layer

An activation layer adds non-linearity to a DNN. Convolution layers and fully-connected layers are
linear combinations of the input image, and it is hard to fit non-linear target functions with only these
layers. Rectified Linear Unit (ReLU) (Nair and Hinton, 2010) is a commonly used activation layer
with a very simple functionality that gives an output of value 0 if the input value is less than 0.

Normalization Layer

A normalization layer is aiming at eliminating the distribution changes between the input and the
output, which is one of the major problems while training a DNN. Batch Normalization is a popular
normalization technique in recent years, which learns several hyper-parameters during training and

8



Chapter 2. Background 2.2. RUBY AND NEURAL NETWORK

uses them in a very simple formula during inference. It is efficient in computation and effective in
performance improvement.

Based on these DNN layers, several DNNmodels have been proposed and applied in real-world tasks.
Most of these models are Convolutional Neural Networks (CNNs). CNN is a special type of feedfor-
ward DNN and is specifically designed for vision tasks. There are also DNNs of other types, such as
Recurrent Neural Network (RNN) and Long Short-TermMemory (LSTM), which have quite different
topologies and will not be covered in this report. The rest of this report will focus only on CNN.
AlexNet (Krizhevsky et al., 2012) is the first DNN that applies to large-scale image classification
problems and has achieved great success. VGG-16 (Simonyan and Zisserman, 2014) increases the
number of convolution layers to 16 and proves that deeper and regular DNN can reach very high
accuracy in image classification tasks. GoogLeNet (Szegedy et al., 2015) (Szegedy et al., 2016), also
known as Inception, utilises inception modules that contain multiple branches of convolution layers,
each of which has different kernel size and can extract different features. In this way, GoogLeNet
has further explored the depth that a DNN could reach (up to 42 layers). ResNet (He et al., 2016)
is the most recent DNN model that reaches up to 152 layers by using residual connections, which
effectively resolve the vanishing gradient issue during training very deep DNNs.

There are two major discoveries from these DNN models: first, although these models have different
topologies, most of the convolution layers are followed by a sequence of pooling, normalization, and
activation layers, and fully-connected layers are appended at the end of the computation flow; second,
all the DNNmodels are quite computation-intensive, they require million and even billion number of
weights and Multiply-ACcumulate (MAC) operations per image. Table 2.3 summarises the resource
usage of each DNN model (Sze et al., 2017). We will devise the hardware designs based on these
characteristics in the following chapters.

Table 2.3: Summary of resource usage for each DNN model (Sze et al., 2017)

Resource Usage AlexNet VGG-16 ResNet-50 ResNet-152
# of weights 61M 138M 25.5M 60M

# of MACs per image 724M 15.5G 3.9G 11.3G

2.2 Ruby and Neural Network

This section reviews basic knowledge of Ruby and publications that use Ruby to describe neural
networks.

2.2.1 Ruby Basics

Ruby is a unique hardware description language. It builds hardware designs based on relations, which
describe building blocks based on their domain and range uith additional composition and transfor-
mation functions. Designs described in Ruby are often more concise and organised comparing with
designs in other languages, such as Verilog and VHDL. However, we cannot directly synthesize de-
signs from Ruby: we need to transpile designs into other languages first and then synthesize from
those languages. This section presents several key concepts in Ruby and please review Jones and
Sheeran (1990) for further details. Terminologies and symbols in this section are also referred from
to Luk et al. (1994).
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Relation

The fundamental element of Ruby is the relation that is often presented in the form x R y, in which
R is the label for relation and x y represent the domain and range of R respectively. For example,
an adder, which is a relation that has two elements in the domain and their sum in the range, can
be described as ⟨x, y⟩ add (x + y). Here ⟨x, y⟩ means a list of two elements. We also use ⟨x⟩n to
represent a list of n elements.

There are several relations we use to operate on lists. π1 (Equation 2.2a) and π2 (Equation 2.2b)
select the first and the second element of an input pair respectively. swap (Equation 2.2c) swaps the
positions of two inputs. Suppose ι is an identity relation that x ι x, then fst (Equation 2.2d) and
snd (Equation 2.2e) can be defined as abbreviations. At last, R−1 (Equation 2.2f) is the converse of
relation R.

⟨x, y⟩ π1 x (2.2a)
⟨x, y⟩ π2 y (2.2b)
⟨x, y⟩ swap ⟨y, x⟩ (2.2c)
fst R = [R, ι] (2.2d)
snd R = [ι, R] (2.2e)

x R−1 y = y R x (2.2f)

For more information on basic data structures and different shapes of relation blocks in Ruby, please
refer to Jones and Sheeran (1990).

Composition

Relations can be binary composited, in sequential or in parallel. x R;S y is a sequential composition
of relations R and S, which infers that ∃z. x R z ∧ z S y. ⟨x0, x1⟩[R,S] ⟨y0, y1⟩ composites R and
S in parallel, which infers that x0 R y0 ∧ x1 S y1. There are also two functions that connects two
relations together: beside (↔) and below (↕), which are defined respectively in Equation 2.3a and
Equation 2.3b.

⟨x, ⟨y, z⟩⟩ R ↔ S ⟨⟨p, q⟩, r⟩ ⇒ ∃s. ⟨x, y⟩ R ⟨p, s⟩ ∧ ⟨s, z⟩ S ⟨q, r⟩ (2.3a)
⟨⟨x, y⟩, z⟩ R ↕ S ⟨p, ⟨q, r⟩⟩ ⇒ ∃s. ⟨x, s⟩ R ⟨p, q⟩ ∧ ⟨y, z⟩ S ⟨s, r⟩ (2.3b)

There are also several other high-order functions that composite relations repeatedly: Rn (Equa-
tion 2.4a) places n number of relation R in sequential,map (Equation 2.4b) replicates a relation into
an array without inner connections, row (Equation 2.4c) and col (Equation 2.4d) composite relations
with inner connections in horizontal (↔) and vertical (↕) respectively.

x Rn y ⇒ ∃s0 = x ∧ sn = y. ∀i ∈ {0, . . . , n− 1}. si R si+1 (2.4a)
⟨x⟩n mapnR ⟨y⟩n ⇒ ∀i ∈ {1, . . . , n}. xi R yi (2.4b)

⟨a, ⟨x⟩n⟩ rownR ⟨⟨y⟩n, b⟩ ⇒ ∃s0 = a ∧ sn = b.∀i ∈ {1, . . . , n}. ⟨si, xi⟩ R ⟨yi, si+1⟩ (2.4c)
⟨⟨x⟩n, a⟩ colnR ⟨b, ⟨y⟩n⟩ ⇒ ∃s0 = a ∧ sn = b.∀i ∈ {1, . . . , n}. ⟨xi, si⟩ R ⟨si+1, yi⟩ (2.4d)
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Stream and Serialisation

Symbols in the domain and range of a relation R actually represent streams. A stream in Ruby is a
collection of values at an input wire of all ticks, for example, xt represents the specific element of
stream x at tick t.

Latches in a circuit, which temporarily store values and are triggered by clock, should be explicitly
specified by delays (D) in Ruby (Equation 2.5a). Although it is not implementable and can only be
simulated for most cases, anti-delay (Equation 2.5b) is adopted to “predict” the value of the stream
in the next tick.

∀t > 0. xt D xt−1 (2.5a)
∀t > 0. xt D−1 xt+1 (2.5b)

x (loop R) y ⇒ ∃s. ⟨x, s⟩ R ⟨s, y⟩ (2.5c)
cnt = loop (add;D 0; fork) (2.5d)

We can also implement state machine in Ruby by delays and loop, which redirects the range of a
relation into its domain. See Equation 2.5c for what the loop relation implies. Based on loop, it is
straightforward to implement a basic state machine, such as counter (cnt). Equation 2.5d implements
the counter by simply feed the output of an adder back to its input. Note that the output of the adder
should be delayed to avoid combinational loop, the delay is initialised with constant zero, and the
output of the delay will be forked (or duplicated) to provide an output to the outside, which can be
viewed as the current value of the counter state, and an input back to the adder. This counter also has
an input that is the step size of the counter.

Please find further details related to serialisation high-order functions in Jones and Sheeran (1990),
such as cmx and bundle.

2.2.2 Neural Network in Ruby

Describe neural network in Ruby has been studied in the 1990s. Luk et al. (1994) present a thorough
study on designing and implementing multi-layer perceptrons (MLP) into FPGA hardware by Ruby.
In that paper, several designs with different architectures and properties are provided and compared.
All these designs with complex structure are described within a few lines of Ruby code, and optimis-
ing them with pipelining can be done with straightforward transformation, which is impressive and
shows the powerful ability of expression.

The difference between our report and that paper is that, in this report, we are considering deep
convolutional neural networks. We provide more building blocks than that paper. Also, we use
a different architecture to implement the MLP, which is equivalent to fully-connected layer in the
current context, by using an array of multipliers followed by an adder tree.

2.3 Efficient CNN Processing

Processing a CNN has high computation complexity, both in time and space, which requires many
hardware resources to finish a CNN computation within a limited time. Although this characteristic
may not cause a significant problem for data centers that have high-end servers with GPUs installed,
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how to efficiently process a CNN becomes an important challenge, because there is an increasing
demand for CNNs on embedded hardware platforms that have limited hardware resources and real-
time processing rate requirements. This section reviews the state-of-the-art efficient CNN processing
approaches, which can be divided into four categories:

1. Algorithmic Optimisation (Section 2.3.1): Optimisation techniques in this category focus on
reducing time or space complexity of CNN computations. These techniques can be effective
as a reduction in complexity results in a scalable runtime and memory footprint reduction. Al-
though an algorithmic optimisation is normally not restricted to a hardware architecture, the
performance difference between a general implementation and a tuned implementation on a
special hardware architecture. Moreover, some algorithmic optimisation techniques are in-
tractable when there are limited hardware resources.

2. Hardware Architecture (Section 2.3.2): When the CNN processing algorithm is fixed, there
are hardware architectures dedicated to accelerating the algorithm processing by efficiently
utilising the computation resources. FPGA-based architectures will be mainly discussed in
this section. Besides the processing speed, the design of hardware architecture for efficient
CNN processing should also take the energy efficiency into account.

3. Network Model (Section 2.3.3): Different CNN topologies have different levels of resource
efficiency, which can be evaluated by the number of operations performed per inference pass,
or the number of parameters required per input image pixel. These metrics can be improved by
applying low-precision data types, removing useless connections, or even changing the hyper-
parameters of the network design. Note that a trade-off between the model efficiency and
accuracy is a key problem to be discussed.

4. Framework (Section 2.3.4): A framework for efficient CNN processing aims at directly trans-
form an original CNN model to an optimised system, which contains a generated hardware
architecture and a refined network model. In this case, not only the processing performance,
but also the development efficiency are important.

This section concentrates on the inference step of CNN and typical training algorithms like backprop-
agation will not be considered. However, it is worth to note that acceleration in the inference step
will normally also boosts the training step, because they share many time-consuming procedures.

2.3.1 Algorithmic Optimisation

The core and most time-consuming computation in CNN is 2D (2-dimensional) convolution. 2D
Convolution can be implemented by applying either a sliding-window algorithm or a single large
matrix multiplication. The first approach is a direct implementation of the 2D convolution, which
“slides” a window of filter values through an input image. Each step sums a Hadamard product
between the filter and the image to a scalar. The second approach transforms the input image to a
matrix at first, then multiply it by the filter matrix in one step. Convolution can be either optimised
based on either method.

Sliding-Window Optimisation

Two approaches to optimise the sliding-window based computation are as follows:
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1. Fast Fourier Transform (FFT): FFT is a classic signal processing algorithm that converts the
representation of a signal between its original domain and its frequency domain in linearithmic
complexity O(n logn). Mathieu et al. (2013) prove that, the result of a 2D convolution is
equivalent to the Hadamard product of two FFT-transformed inputs followed by an inverse
FFT. Besides, this optimisation can reduce the time complexity fromO(n2k2) toO(n2 logn)+
O(n2) when computing a 2D convolution between a n× n feature map and a k × k kernel.

However, the performance gain from the FFT optimisation depends on the configuration of the
2D convolution. Chetlur et al. (2014) argue that if the filter size is small or the stride size is
larger than 1, then FFT may require a large amount of temporary memory and need to perform
the less efficient sparse computation. Vasilache et al. (2014) also present evaluate results that
small kernel size limits the performance gain from FFT, even their implementation of FFT-
based convolution2 can outperform other approaches in famous CNNs at that time. Note that
state-of-the-art CNNs are constructed with small kernels (3 × 3) and deep structures, such as
VGG and ResNet, which may not be able to take advantage of FFT-based convolution.

2. Winograd Minimal Filtering Algorithm (Winograd, 1980, p. 43): Letting F (m, r) be a r-tap
Finite Inpulse Response (FIR) filter withm-output, the Winograd minimal filtering algorithm
states that the number of multiplications required in the standard algorithm of FIR equals to the
number of the filter inputs, which is m+ r − 1. And in a special case F (2, 3), the number of
multiplications can be reduced to 4 from 6 in this algorithm. Lavin and Gray (2016) propose
to use this algorithm to reduce the complexity of convolution with 3× 3 kernels by tiling input
images to 4× 4 blocks. These blocks can be efficiently optimised by the Winograd algorithm
as the number of output equals to 2 in each dimension, which is a two-dimensional case of
F (2, 3).

Although this optimisation method limits the kernel size of the target convolution layer to 3, it
could not limit its usage as there is a trend to construct CNNs on 3× 3 kernels.

Matrix Multiplication Optimisation

Convolution can be implemented as a single matrix multiplication, preceded by a conversion of the
input feature map. The conversion is known as im2col, which stretches each window of the input
image to a column in the result matrix. Suppose the input feature map (3D tensor) has shape C ×
H ×W , then the converted matrix should have shape (K2C)× (H −K + 1)(W −K + 1), where
K is the edge length of the filter kernel. The time complexity of this algorithm is O(FK2CHW ),
according to the standard algorithm of matrix-matrix multiplication, which is equivalent to the direct
convolution algorithm. However, the memory usage is increased by a factor of O(K2) due to the
conversion of the input feature map. Thus, a plain implementation of this algorithm may not get a
performance enhancement.

Fortunately, matrix-matrix multiplication is a well-studied field, both in theory and practice. In the-
ory, the Strassen algorithm and the Coppersmith-Winograd algorithm (Coppersmith and Winograd,
1990) can reduce the time complexity of matrix-matrix multiplication fromO(N3) toO(N2.8074) and
O(N2.37) respectively. In practice, many Basic Linear Algebra Subprograms (BLAS) APIs, which
are well-optimised for CPU (e.g. Intel MKL3 and OpenBLAS4) and GPU (e.g. cuBLAS5), can boost

2fbcunn: https://github.com/facebook/fbcunn
3https://software.intel.com/en-us/mkl
4http://www.openblas.net/
5https://developer.nvidia.com/cublas
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the performance of the single large matrix-matrix multiplication. Thus, this matrix multiplication
based approach is still a promising alternative for algorithmic optimisation of convolution.

2.3.2 Hardware Architecture

This section reviews the CNN optimisation techniques at the hardware architecture level. Mainstream
hardware platforms for computing CNN includes CPU, GPU, FPGA, and ASIC. We mainly focus on
FPGA in this section, and discuss general architectures implemented on ASIC. Although Sze et al.
(2017) comprehensively present and compare different hardware architectures with an explicit con-
sideration of energy consumption in different dataflows, we decide to understand different architec-
tural optimisation choices from a bottom-up perspective, which intends to build recent architectures
from fundamental elements. We also consider all metrics (e.g. performance, power consumption,
etc.) equally. Our approach is intuitive and straightforward, because architectures built on FPGA
platforms follow the spatial architecture paradigm, which constructs hardware designs by dataflows
and Processing Engines (PEs). In this way, these architectures share many common components and
one can be viewed as an evolved version of another. Finally, we derive a tree of architectures, which
uses edges to represent optimisation objectives.

The Root Architecture

Input 
fmap

Filter 
weights

Output
Fmap

Convolution

cnt

Cross-Channel 
Accumulation

Mux Mux

Figure 2.1: The root architecture.

Figure 2.1 illustrates the root architecture of CNN accelerator. This architecture uses minimal hard-
ware resources, including two adders, one multiplier, control logics, and three streams. There are two
PEs in this root architecture, one is Convolution which produces an accumulation result of element-
wise product between a filter kernel and a window in the input feature map, the other one is Cross-
Channel Accumulation which accumulates results from the convolution PE that contribute to one
filter of one output activation. Input feature maps and filter weights are loaded from input streams,
and the partial output feature maps are sent to the output stream. The data feed into the two input
streams should be well-organised to give correct output. Windows of an input feature map should be
organised in row-major, and an input map should be repeatedly fed into the stream. So for the filter
weights.
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Although this architecture uses minimal resources, it is obviously not the best choice. The maximal
performance it can reach is considerably low, because it can only perform one multiplication in each
clock cycle and the maximal clock frequency is limited on FPGA. Also, because input streams are
connected to an off-chip memory, which has access latency and causes much energy consumption
while reading from these streams, repeatedly reading identical data from these streams is not efficient.

Even though, because many existing designs can be viewed as derivations of this root architecture,
which will be discussed in detail in following sections, this architecture is still worth being presented
here.

Extension Points in the Root Architecture

The root architecture can be extended at different points within. Each point is an individual opti-
misation technique, and these points can be categorised into groups. These categories are listed as
follows.

1. Parallel PEs (Para): Placing multiple PEs of the same kind is a frequently used optimisa-
tion technique in spatial architectures. There are two levels of parallelisation for PEs: fine-
grained and coarse-grained parallelisation. The fine-grained parallelisation places multiple
ALUs within a PE, and the coarse-grained parallelisation places multiple PEs directly. Most
of the time, these two levels are used together. For example, there can be multiple multipliers
followed by an adder tree in the convolution PE to produce one convolution result in one cycle,
and these inner-parallelised PEs will also be instantiated multiple times. Besides, the organi-
sation of these parallel blocks is not fixed. It is possible to use a plain 1D array or a 2D matrix,
such as a systolic array, to organise multiple PEs. Different organisations have different effect
on both resource usage and latency. In the following discussion, we prefix extension points in
this category with Para-.

2. Registers in PEs (Reg): Data fetched from input streams can be reused for consecutive cycles.
For example, the filter kernel remains the same for all input activations in the same channel
while computing for the same output filter. It will be a waste of energy and bandwidth if it loads
same values repeatedly. Temporarily storing read values in registers can effectively increase
data reuse. Although it is an intuitive approach, when combined with parallelisation there will
be more to be considered. For example, registers can be either a unified register file or several
separated register files within each PE. Also, which stream should be temporarily stored in
registers and how many registers will be stored are two open questions. Extension points in
this category will be prefixed with Reg-.

3. On-Chip Cache (Cache): Except using registers, using on-chip memory to store large blocks
of data for further reuse is also an essential optimisation technique. Multiple channels of an
input feature map can be completely cached in an on-chip memory block. Besides, it is also
possible to cache multiple filters of the output feature map. These two choices are different in
computation sequence, which are filter-major and channel-major respectively. These names
are derived by choosing the major index of the multiple loops for computing convolution in the
direct algorithm.

4. Orthogonal Optimisation (Orth): There are several optimisation techniques that can be con-
sidered orthogonal to previous discussions, e.g. changing bit-width of the data type and using
extra special PEs to compute sparse matrices, which will not significantly deviate from our
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architecture. We consider these orthogonal optimisation at the bottom of our tree of architec-
tures.

Figure 2.2 summarises the graph of architectures grown from the root. Each path from the root to the
top is an existing design from previous publications.

Design Patterns

Most of the hardware architectures in recent publications follow several patterns that can be catego-
rized. Each pattern is a specific combination of extension points. These patterns are summarised as
follows, including their advantages and disadvantages.

1. Systolic Array (sys): Systolic array is a typical hardware architecture, in which multiple PEs
are interconnected and communicate in a systolic style. Unlike other parallel architectures that
connect all PEs directly to streams, a systolic array only connects boundary PEs to streams.
Other PEs in a systolic array communicate data with only PEs. The major advantages of using
systolic array are reducing global data communication and enhancing data reuse. Kung (1982)
presents this advantage by discussing different designs for convolution based on systolic array.
Wei et al. (2017) argues that a systolic array based design is easier for an FPGA to place and
route due to its regular structure. This property is great for increasing the clock frequency
of a massive parallel design. However, to maximise these advantages, a systolic array must
be well organised. Streams connected to the systolic array should also be carefully arranged
and controlled. Thus, it is more feasible to devise an automatic tool that can generate designs
based on systolic array, rather than hand-tuning them. Wei et al. (2017) automate the process
of building a systolic array based architecture for a specific CNN topology. The systolic array
based architecture for processing CNN can either compute the sum-of-product of the input
feature map and the filter within one PE (Wei et al., 2017), or perform a dot-product in the
matrix-matrix multiplication (Gupta et al., 2015). These two approaches arrange the streams
differently.

Categorise Architectures from Previous Publications

We select several architectures from previous publications to show that they fit our graph.

1. Zhang et al. (2015) propose an architecture that makes use of multipliers and adder trees in their
PEs, and PEs are organised in a 1D parallel array. They use a large register file to temporarily
store weights and input feature maps, which is considered as No Local Reuse regarding the
register level of optimisation. At last, they use the roofline model (Williams et al., 2009) to
search for the best design parameters for their architecture, which is an orthogonal optimisation
technique. Qiu et al. (2016) devise a similar architecture. However, their architecture chooses
to use a line buffer to enhance the cache performance, and they apply data quantization to
improve the resource efficiency. The architecture of Origami (Cavigelli and Benini, 2016) also
adopts a 1D array of PEs, while each PE has weights stationary in registers.

2. Du et al. (2015) build their architecture based on a 2D matrix of PEs, which contain ALUs and
connections similar to the root architecture. Each PE can only perform a computation of one
pair of elements in one cycle. Also, each PE stores an output activation before it is ready, which
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Figure 2.2: The graph of design decisions
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requires registers to be placed in an output stationary style. Gupta et al. (2015) also organise PEs
in a 2D matrix, while their inner connections are systolic. Chen et al. (2016b) further enhance
the performance by separating register files into PEs based on the row stationary style. Zhao
et al. (2016) is an example shows the potential of using FPGA to both train and inference CNN
model, and they explicitly explore the possibility of using runtime reconfiguration on the FPGA
platforms to load bitstream files of multiple layers at runtime. Alternatively, Li and Pedram
(2017) studies a reconfigurable architecture that is deliberately designed for training, which
explicitly considers the training algorithms that their communication patterns while running in
a multi-core reconfigurable platform.

2.3.3 Network Model

A network model is a trained neural network. A model contains not only its architecture but also
coefficients, which are trained from training datasets. Optimisation techniques at the network model
level tune both the architecture and coefficients. We discuss the specific techniques applied to these
two aspects in the following sections.

Architecture Optimisation

Network architecture has two types: macro-architecture and micro-architecture, which refer to the
high-level organisation of CNN and the low-level organisation of CNN modules and layers respec-
tively.

1. Macro-architecture Optimisation: New macro-architectures proposed in recent publications
are motivated by enhancing accuracy rather than efficient processing of CNN. Typically, High-
way Networks (Srivastava et al., 2015a,b) and ResNet (He et al., 2016) respectively use bypass
connections and residual connections to effectively train very deep CNNs.

2. Micro-architecture Optimisation: Although many discussions on micro-architecture optimi-
sation are also related to CNN accuracy, there is a trend to propose efficient CNN micro-
architectures, in terms of a number of parameters used in the network. Inception (Szegedy
et al., 2015) first introduces modules in CNN, which are groups of CNN layers, and they are
functionally equivalent to convolution layers but with fewer parameters. Modules in Inception
are called inceptionmodules, which contains convolution layers with different kernel sizes and
their results are concatenated together. SqueezeNet (Iandola et al., 2016) follows their idea and
proposes firemodules, which “squeeze” input featuremaps by a 1×1 convolution layer and “ex-
pand” its intermediate result by several 1×1 and 3×3 convolution layers. MobileNet (Howard
et al., 2017) goes further by factorising convolution layers by depthwise convolutions, which
contain a single filter, and pointwise convolutions, which are 1× 1 convolutions.

Coefficients Optimisation

The purpose of coefficients optimisation is to reduce the memory footprint and increase the per-
formance while maintaining the accuracy. Thus, optimisation techniques related to coefficients are
deeply connected to data quantisation methods and sparse algorithms.

Data quantisation is the process of mapping values from a continuous set to a discrete set, and in the
context of deep neural network, it converts coefficients from real numbers, which should be repre-

18



Chapter 2. Background 2.4. SUMMARY

sented by floating-point, to integers, which can be represented by fixed-point or even raw bits. In
this way, data quantisation can reduce the memory required to store coefficients and the hardware
resources used by arithmetic. The latency will also be lowered.

Sparsity is an observation that the coefficient matrices in CNN contain many zero entries, especially
after quantisation. It is also a natural outcome of network pruning, which removes useless connections
within layers. This property can be utilised to enhance the performance of CNN processing because
there are well-studied sparse algorithms that run faster than normal algorithms on sparse matrices.
Several publications have studied these optimisation techniques:

1. Quantisation: Training and inferencing neural networks with limited precision have been stud-
ied since 1991 (Holt and Baker, 1991; Holt and Hwang, 1993). There is a trend to apply data
quantisation on deep neural networks since when deep learning became popular. Courbariaux
et al. (2014) evaluate the accuracy of fixed-point deep neural networks, which is also trained
in low-precision. Gupta et al. (2015) propose using the stochastic rounding for training low-
precision CNNs, which is implemented on an FPGA device.
Computing with neural networks represented in raw bits is also an “historic” idea (Shoemaker
et al., 1991). Courbariaux et al. (2016) propose to use binarised coefficients in CNNs. They
convert typical CNN layers, such as convolution and batch normalisation, to their binarised
version. Rastegari et al. (2016) extend the binarised network from using binary weights to
using both binary weights and inputs.

2. Network pruning and Sparsity: Optimal Brain Damage (or Surgeon) is proposed by LeCun
et al. (1989); Hassibi et al. (1993), which prunes network connections by the information from
second order derivatives. Han et al. (2015) devise a framework called Deep Compression that
can prune deep CNNs, and use sparse format to compute pruned networks.

2.3.4 Framework

Frameworks for efficient CNN processing work in similar steps. They first interpret CNN repre-
sentations through configuration files, and then generates target hardware designs. Ma et al. (2016)
generate scalable CNN designs from given CNN models to their parameterised RTL hardware de-
signs. They tune the parameters while generating the hardware. DiCecco et al. (2016) is an alterna-
tive approach that provides fixed hardware designs that can be integrated with software deep learning
frameworks. The second approach is easier to use but cannot tailor their hardware designs based on
the network architecture.

2.4 Summary

In this chapter, we review the essential background of deep learning and CNN, and we concentrate
on how to efficiently process CNN in four aspects: algorithm, hardware architecture, network model,
and framework. It is worth to note that, although there are many tips and tricks about optimising CNN
processing performance in recent publications, how to systematically integrate these techniques is still
an open problem.
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Chapter 3

RubyConv: Ruby-based CNN Hardware
Library

This chapter describes RubyConv, a hardware library to build CNN designs on FPGA platforms,
which is written in Ruby, a high-level hardware language based on relations and functions. The
benefits of using Ruby to describe CNN designs are listed as follows.

1. From the background chapter (Section 2.2) we realise that comparing with other hardware de-
scription languages Ruby can describe complex designs more concise by compositions and
transformations based on relations. Therefore, when a CNN design is constructed by Ruby-
Conv, its description also becomes more concise.

2. Designs in Ruby can be well verified because of the symbolic simulation feature provided by
Ruby tools. This feature helps us discover the direct relation between the domain and range of
a complex design in symbols, which further makes the verification process simple and sound.
We provide symbolic simulation of RubyConv in Section 3.2.1.

3. Ruby is platform agnostic, we can use Ruby to write the core design once and transpile it
into other hardware description languages on different platforms. Thus, CNN designs built by
RubyConv can be ported to different platforms and reduce lots of efforts in developing and
maintaining several codebases for various FPGA platforms.

This chapter has the following sections. Section 3.1 first presents essential relations in typical CNN
described in Ruby, which is separated into two parts: basic relations (Section 3.1.1) and layer re-
lations (Section 3.1.2). Section 3.2 shows the evaluation of RubyConv, which is about building the
LeNet-5 topology (LeCun et al., 2015).

The major contribution of this chapter is that, as far as we know, this is the first work that uses Ruby
to describe a complete CNN hardware design. Our designs are all parameterised and by optimising
their values we can achieve good performance. This chapter also provides a case study evaluation of
RubyConv, which can also guide further usage of this library. Besides, RubyConv also contributes to
other chapters in this report: Chapter 4 presents an OpenSPL-based CNN hardware library, of which
the core architecture refers to RubyConv.
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3.1 CNN Relations

This section introduces relations in RubyConv, which are often known as building blocks in other
languages, for constructing CNN designs from bottom to top. At the bottom level, we present basic
relations and functions (Section 3.1.1), which are some customised high-order composition functions
and core arithmetic units. At the top level, meanwhile, we devise layer relations (Section 3.1.2) that
are mapped from typical CNN layers, which are built upon basic relation blocks. For Ruby basics, we
recommend to read Section 2.2.1, and read Jones and Sheeran (1990) for the complete documentation.

Pipelined Binary
Reduction Tree

(pbrt)

Dot-Product
(dotprod)

Drop
2D List
(drop2d)

Line Buffer
(lbuf)

Conv2D
(conv2d)

Convolution
(conv)

Pool2D
(pool2d)

Max-Pooling
(pool)

Fully-
Connected

(fc)

ReLU
(relu)

Figure 3.1: Dependencies among all relations and functions designed in this report.

3.1.1 Basic Relations and Functions

Ruby relations and functions belong to this category are introduced in a sequence of dependency that
those discussed early are highly depended by others.

Pipelined Binary Reduction Tree

Pipelined Binary Reduction Tree (pbrt) is one of the most important and fundamental high-order
composition function in RubyConv. It reduces an arbitrary length list of values into one by repeatedly
applying a same binary relation. Two inputs of each relation instance is wrapped with delays to
become pipelined. We restrict relations acceptable by pbrt should be binary relations, which makes
it simple and sufficient to use in the current context.

Equation 3.1 recursively defines pbrt: first two lines define the base cases and the rest define the
induction rules. Note that every element in the domain, except the n = 1 case, is followed by a
delay, and we ignore anti-delay relations in this equation.
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⟨x⟩n pbrtnR y ⇒



x = y for n = 1

⟨x1, x2⟩ [D,D];R y for n = 2

∀i ∈ {1, . . . ,m}.⟨x2i, x2i+1⟩ [D,D];R zi ∧
⟨z⟩m pbrtmR y

for n = 2m

∀i ∈ {1, . . . ,m}.⟨x2i, x2i+1⟩ [D,D];R zi ∧
(xn D zm+1) ∧
⟨z⟩m+1 pbrtm+1R y

for n = 2m+ 1

(3.1)

Here are some properties of this function. The depth of the tree is ⌈log2 n⌉, obviously. And the latency
of pbrtn, which is also known as minimum cycle time, is also ⌈log2 n⌉ if there is no more delay in R,
because the input of pbrt can only go down one layer in the tree in each cycle due to delays in each
layer. The number of R relations in the pbrtnR design is n− 1 which can be calculated by induction
or the definition of reduction, and the maximum number of latches (delay relations) is 2(n− 1).

Dot-Product

The dot-product relation (dotprod) is widely applied in building CNN designs in RubyConv, such
as constructing convolution layer and fully-connected layer. Dot-product (·) is a well-known linear
algebra operation, which produces the sum of element-wise products of two vectors of the same
length. See Equation 3.2 for the formal definition.

x · y ≡
N∑
i=1

xi × yi (3.2)

The general form of the dot-product relation is dotprodn,v, in which n is the length of the input vector
and v is the width of a reduction tree. The reduction tree in dotprodn,v is implemented by pbrtv add,
that takes v number of elements in each cycle and produces the final result in ⌈log2 v⌉ clock cycles,
suppose there is no delay in add. The reason that we need two parameters to describe dotprod in
RubyConv is that the balance of resource usage and latency should be considered: when v is large,
more resources will be used; otherwise, latency to produce a valid result will be longer.

Equation 3.3a illustrates the parameterised dot-product relation in RubyConv. The domain of dotprod
has two lists of length v and the range contains the final result (z) and a boolean (s) that identifies
whether the result is valid. z is produced by Rv defined in Equation 3.3b, which first computes v
multiplications in parallel and the reduces results by pbrt. Because the actual length of both input
vectors is n, thus the result from pbrt should be further reduced by an accumulator implemented by
loop. Cn,v is the other inner relation embedded in dotprod to decide the value of the valid signal.
It has a counter with wrap point at value M , which is the length of the latency from receiving the
first chunk of input to producing the valid final result. The value of the valid signal is produced by a
comparison between the counter value andM−1. Note that the counter is implemented by a modulo
accumulator, seemodcntm in Equation 3.3e.

⟨⟨x⟩v, ⟨y⟩v⟩ dotprodn,v ⟨z, s⟩ ⇔ ⟨⟨x⟩v, ⟨y⟩v⟩ π−1
1 ; [Rv, Cn,v] ⟨z, s⟩ (3.3a)
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Rv = zipv;

mapv mult;

pbrtv add;

D 0;

loop (add;D 0; fork)

(3.3b)

Cn,v = 1; modcntM ; π−1
1 ; snd (M − 1); eq (3.3c)

M = ⌈log2 v⌉+ n/v (3.3d)
modcntm = loop (modaddm;D 0; fork) (3.3e)
modaddm = add; π−1

1 ; snd m;mod (3.3f)

Regarding properties of this dotprod relation, the number of multipliers is v and the number of to-
tal adders is v + 1, and the latency is M as mentioned before. The first term of M definition in
Equation 3.3d is equivalent to the latency in pbrtv, which is also the initial interval of the pipeline in
dotprod. After the pipeline is fulfilled, dotprod still needs n/v cycles, which is the second term in
Equation 3.3d, to reduce to the final result.

Dot-Product with Bundle

There is an alternative way to implement dot-product in Ruby relation that reduces the valid signal s
by using bundlen, a relation that bundles n serial elements in the domain into a list of n elements. The
motivation for this approach is that, although the valid signal is a common practice in handshaking
between modules in hardware design, to the best of our knowledge, it is quite hard to implement the
valid signal based handshaking scheme in Ruby. Equation 3.4 presents the dotprod definition in this
approach. Only the last element in the range of bundleM is the final output, and we use apr and π2
to drop elements except the last one.

dotprodn,v = Rv; bundleM ; apr−1
M−1; π2 (3.4)

In the following discussion, we assume that dotprodn,v refers to the implementation in Equation 3.4.

Summary

This section presents several important basic relations and functions, including pbrt for pipelined bi-
nary reduction, and parameterised dotprod to compute txhe dot-product between two vectors. Several
other relations are also introduced in this section, such as modcnt. Table 3.1 summaries properties
of each relation or function. Note that the number of units refers to the number of replicated relations
of all kinds, it could be R in pbrt ormult and add in dotprod.

Name Latency Maximum Number of Latches Number of Units
pbrtn ⌈log2 n⌉ 2(n− 1) n− 1

dotprodn,v ⌈log2 v⌉+ n/v 2v 2v

Table 3.1: Summary of properties of each relation or function.
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3.1.2 Layer Relations

This section introduces relations in RubyConv that can construct typical layers in CNN. For now,
RubyConv supports four types of layer relations: conv, fc, pool, and relu. These relations are
parameterised to support optimisation. We summarise properties of these relations at the end of this
section.

Convolution Relation

The convolution layer is the most important layer in CNN. It is implemented as the conv relation in
RubyConv. To build conv, we first present the core computation relation of the convolution layer,
conv2d, and then implement conv based upon it.

The definition of conv2d is listed in Equation 3.5a. conv2d has one parameter k, which is either
height or width of convolution filter kernel. The domain of conv2d is a list of two 2D lists: a k × k
window of the input feature map (⟨⟨x⟩k⟩k), and a k× k coefficient kernel (⟨⟨w⟩k⟩k), while the range
is only a wire of the convolution output result. The implementation of conv2d is based on group and
dotprod, as Equation 3.5b explains. group−1

k,k creates a flattened list from a k × k 2D list, and the
first term of conv2d implementation prepares the domain that is compatible with dotprod. dotprod
used in conv2d is the fully parallelised version that n = v = k2 and there is no accumulator based
reduction.

Even with conv2d, it is still challenging to implement the convolution layer in RubyConv. First, the
input feature map for convolution layer is not a stream of k × k 2D lists, it is actually a stream of
single element generated by reading the input feature map in row major. Thus, we need to convert
between these two structures with a relation. Line buffer (lbufk,w) implements this relation, here k is
the kernel height and w is the width of the input feature map. In its definition (Equation 3.5c) , each
element in the output ⟨⟨y⟩k⟩k is corresponding to a delayed x.

Next, both the domain and range of conv should contain multiple channels to enable parallelisa-
tion and enhance the performance. We consider channel-wise parallelisation and filter-wise par-
allelisation and use pc and pf to quantify levels of these two types of parallelisation respectively.
Equation 3.5d shows the definition of convpf ,pc,k when taking parallelisation into account, and Equa-
tion 3.5f presents its implementation.

The implementation of conv has the following major components. T transforms input feature map
in row major to sliding windows by using line buffer. R makes pf × pc number of sliding window
streams, which will be passed to C to perform pf × pc parallel conv2d computation. For each output
filter, pc number of conv2d output should then be reduced to one value byA. At last, there is a cross-
channel result accumulator S, which starts to give correct result after (h− k+ 1)× (w− k+ 1) for
every filter output. Note that we need B (Equation 3.5m) to reset the counter after all channels for a
filter have been accomplished. Practically, we also append a bundle after S and use drop to take the
final output data.

⟨⟨⟨x⟩k⟩k, ⟨⟨w⟩k⟩k⟩ conv2dk y ⇒ y =
k∑

i=1

k∑
j=1

xi,j × wi,j (3.5a)

conv2dk =
[
groupk,k, groupk,k

]−1
; dotprodk2,k2 (3.5b)
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x lbufk,w ⟨⟨y⟩k⟩k ⇒ ∀i ∈ {1, . . . , k}. ∀j ∈ {1, . . . , k}.
x D(k−i)w+(k−j) yi,j

(3.5c)

⟨⟨x⟩pc ,W ⟩ convpf ,pc,k ⟨y⟩pf ⇒ ∀i ∈ {1, . . . , pf}.∀j ∈ {1, . . . , pc}.

yi =

pc,k,k∑
j,p,q=1

zs,p,q × wi,j,p,q

∧
xj lbufk,w ⟨⟨zj⟩k⟩k

(3.5d)

W = ⟨⟨⟨⟨w⟩k⟩k⟩pc⟩pf (3.5e)
convpf ,pc,k = [R, G−1]; C; G; A; S (3.5f)

R = mforkpf ; G
−1; mappf×pc T (3.5g)

T = lbufk,w; bundleh×w; drop2dk−1,k−1,h,w;

inv_bundle(h−k+1)×(w−k+1)

(3.5h)

G = grouppf ,pc (3.5i)
A = mappf (pbrtpc add) (3.5j)
C = mappf×pc conv2dk (3.5k)

S = mappf loop
(
add; (D 0)(h−k+1)(w−k+1); fork; snd B

)
(3.5l)

B = π−1
1 ; snd 0; π−1

2 ;

fst (modcnt pc c; π−1
1 ; snd (c− pc); eq);

muxr2

(3.5m)

drop2dm,n,h,w = grouph,w; maph dropn,w; dropm,h; group
−1
h−m,w−n (3.5n)

The properties of the conv relation are listed as follows. Regarding number of latches, Most of the
latches are used in lbuf , the number of which is pcpfk(k − 1)(w/2 + 1). Latches are also used in
the pbrt of A and C, the maximum number of which is, according to Table 3.1, 2pf (pc − 1) + 2k2.
The first term is the number of latches used in A and the second term is for the conv2d relation in C.
In S, there are also pf (h− k+1)(w− k+1) number of latches need to be counted. The number of
arithmetic units used in conv is easier to evaluate, which is 2pfpck2+ pf (pc− 1)+ pf from conv2d,
A, and S. The latency of conv is the number of cycles it takes from the first input to the output of
the first element in the output feature map. The length of the latency mainly depends on pf and pc,
which is c/pc × hw, the total number of cycles to iterate through all elements in all channels of the
input feature map. Note that the latency of the dotprod can be fully covered in this case. In short, all
the properties of the conv relation are highly depending on the value of pf and pc. See Table 3.2 for
the final result.

Fully-Connected Relation

Comparing with the implementation of conv2d, the fully-connected relation (fc) is much simpler. Its
core relation is dotprod, however, we need to more parameters to indicate the level of parallelisation.
Suppose pr is the level of parallelisation in row and pc is for column, then the definition of fc can be
defined as Equation 3.6a. Note that the right hand side of Equation 3.6a explicitly shows the effect of
serialisation, which is already considered in dotprod. The implementation of fc is based on dotprod,
with additional relations to reshape its domain. Some fixed variables related to the shape of this
fully-connected layer, such asm and n, are not placed in the parameter list of fc.
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The properties of fc can also be evaluated straightforwardly. All the properties of fc equal to corre-
sponding properties of dotprod, as the implementation of fc suggests. Only the configuration param-
eters for dotprod and the number of dotprod instances are different. These properties are also listed
in Table 3.2.

⟨
⟨x⟩pc , ⟨⟨w⟩pc⟩pr

⟩
fcpr,pc ⟨y⟩pr ⇒ ∀t ∈ {1, . . . , n, pc}. ∀i ∈ {1, . . . , pr}.(

y0,i = 0
)∧yt,i = yt−1,i +

pc∑
j=1

xj × wi,j


(3.6a)

fcpr,pc = fst mforkpr ; zippr ; mappr dotprodn,pc (3.6b)

Max-Pooling Relation

This section presents the implementation of the max-pooling layer in a RubyConv relation. Because
max-pooling are often used with a 2× 2 kernel configuration and the sliding stride is 2, the pooling
relation in RubyConv only supports this case.

The core relation of the max-pooling is pool2d, which takes a stream of input feature map as its
domain and generates valid maximum value of a window in its range. Equation 3.7a shows the
definition. Note that it explicitly shows the current tick and under which conditions the result will
be valid. Equation 3.7b further presents the implementation. In that implementation, the second row
shows how the 2 × 2 kernel is collected by an approach similar to line buffer (Equation 3.5c), and
how to find the maximum value among 4 elements. The third row of the implementation filters out
invalid results by bundle and inv_bundle.

Based on pool2d, the implementation of the pool relation is obvious. pool takes input feature map in
parallel, with the level of parallelisation specified as p, see Equation 3.7c for the definition. Also, the
implementation of pool, which is listed in Equation 3.7d, just replicates pool2d into p instances.

The properties of pool is summarised in Table 3.2. This max-pooling relation takes at least w + 2
cycles to produce the first output. The number of latches depends on the second row of pool2d imple-
mentation (Equation 3.7b), which is 2(w + 1). Moreover, there is no significant usage in arithmetic
elements.

x pool2d y ⇒ ∀t ∈ {1, . . . , h× w}∧
(t%w ≡ 0 mod 2) ∧ (t/w ≡ 0 mod 2).

yt = max
(
xt, xt−1, xt−w, xt−w−1

)
(3.7a)

pool2d = mfork4;[
Dw+1,Dw,D1, ι,

]
; group 2 2;

[
max, max

]
; max;

bundle2w; halfw; groupw/2,2; mapw/2 π2; inv_bundlew/2

(3.7b)

⟨x⟩p poolp ⟨y⟩p ⇒ ∀t ∈ {1, . . . , h× w}∧
∀i ∈ {1, . . . , p}∧
yt,i = max

(
xt,i, xt−1,i, xt−w,i, xt−w−1,i

)
(3.7c)

26



Chapter 3. RubyConv 3.2. EVALUATION

poolp = mapp pool2d (3.7d)

ReLU relation

The relation that implements ReLU in RubyConv is just one line of code (Equation 3.8). It first
creates a pair of the input value and constant 0, then based on this pair, generate a boolean that
identifies whether the input value is larger than 0. At last, a multiplexer selects the input value if it
is larger than 0, or it outputs 0. Note that because relu has very simple interface and it can be easily
integrated with other relation, we don’t need to give it a parameter to configure parallelisation.

This relation has no latency, no latch usage, and no typical arithmetic units.

relu = π−1
1 ; snd 0; fork; fst ltn; muxr2 (3.8)

Summary

In this section, we present four relations that are necessary to construct a CNN hardware design:
conv, fc, pool, relu. These relations have clear definition and they are parameterised to be applied
for different use cases and performance enhancement. Table 3.2 summarises these relations with key
properties.

Name Latency Maximum Number of Latches Number of Units

conv hwc/pc

pf

[
pc × k(k − 1)(w/2 + 1)+

2(pc − 1)+

(h− k + 1)(w − k + 1)
] pf

[
2pck

2+(pc−1)+1
]

fc ⌈log2 pc⌉+ n/pc 2pfpc 2pfpc
pool w + 2 2(w + 1) 0
relu 0 0 0

Table 3.2: Summary of properties of each relation or function.

3.2 Evaluation

In this section, we evaluate RubyConv for its correctness by symbolic simulation and flexibility by
constructing LeNet-5. The correctness of RubyConv relations should be evaluated by implementing,
compiling, and simulating them with the Ruby tool-chain. It is risky and error-prone to trust in
paperwork without direct implementation. The correctness of key relations is evaluated by symbolic
simulation feature provided by the Ruby compiler. We post the result of simulation in some selected
cases here to show that the relation is correctly implemented. The flexibility is then evaluated by
constructing a typical CNN model, LeNet-5, in RubyConv.

The Ruby toolchain we choose to use for evaluation is named Rebecca, which compiles Ruby source
code into rbs format that stores relations among wires directly in tables. Rebecca also supports sym-
bolic simulation on generated rbs file. The Rebecca version we use is built from the changeset
102:2a2bada07e2b of the codebase managed in Mercurial.
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3.2.1 Symbolic Simulation

We go through every relation mentioned before and post their symbolic simulation under a small but
representative configuration. The explanation of each result is also attached.

Pipelined Binary Reduction Tree

pbrt is evaluated with a simple case of an adder tree. The input vector has length 9, which is a
common case when using pbrt for 3 × 3 convolution layer reduction. Below is the test case and
the corresponding simulation result. We simulate for 3 cycles and 4 extra cycles to make sure all
simulated cycles can produce valid results.

The result shows that the value in the domain of pbrt is a single value reduced from the values in the
range in a binary tree.

# pbrt_test.rby
current = pbrt 9 add .

> re -s 3 --extra-cycles 4 "x1 x2 x3 x4 x5 x6 x7 x8 x9"
Simulation start :

0 - <x1_0,x2_0,x3_0,x4_0,x5_0,x6_0,x7_0,x8_0,x9_0> ~
<(x1_0 + (((x2_0 + x3_0) + (x4_0 + x5_0)) +
((x6_0 + x7_0) + (x8_0 + x9_0))))>

1 - <x1_1,x2_1,x3_1,x4_1,x5_1,x6_1,x7_1,x8_1,x9_1> ~
<(x1_1 + (((x2_1 + x3_1) + (x4_1 + x5_1)) +
((x6_1 + x7_1) + (x8_1 + x9_1))))>

2 - <x1_2,x2_2,x3_2,x4_2,x5_2,x6_2,x7_2,x8_2,x9_2> ~
<(x1_2 + (((x2_2 + x3_2) + (x4_2 + x5_2)) +
((x6_2 + x7_2) + (x8_2 + x9_2))))>

Simulation end :

Dot-Product

We evaluate a very simple case of dotprod with v = 3 and n = 9. We run the simulation for 1
cycle and 4 extra cycles. Here 4 is calculated by ⌈log2 3⌉ + 9/3 − 1 = 4, same as expected from
Table 3.1. The result shows that dotprod can successfully handle multiple chunks of input, and there
is no invalid data generated.

# dotprod_test.rby
current = dotprod 9 3 .

> re -s 1 --extra-cycles 4 "x1 x2 x3 w1 w2 w3"
Simulation start :

0 - <<x1_0,x2_0,x3_0>,<w1_0,w2_0,w3_0>> ~
(((x1_2 * w1_2) + ((x2_2 * w2_2) + (x3_2 * w3_2))) +
(((x1_1 * w1_1) + ((x2_1 * w2_1) + (x3_1 * w3_1))) +
(((x1_0 * w1_0) + ((x2_0 * w2_0) + (x3_0 * w3_0))) + 0)))

Simulation end :
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Line Buffer

Here we explicitly evaluate the line buffer relation (lbuf ) in conv. In the definition of line buffer
(Equation 3.5c) we don’t mention its implementation. We apply Hoare’s Rule and row to optimise
the latches usage in line buffers. The Rebecca code below shows about the detail.

# lbuf.rby
lbuf2d k w = fork;
snd (

pi1^~1;
row (k-1) (pi1; D^w; fork);
pi1

);
apl (k-1);
map k (lbuf1d k);
rev k.

We also simulate the result of a 4 × 4 2D input feature map with a 3 × 3 kernel in 4 cycles and 11
extra cycles. The number 11 is the latency it takes to collect all elements. Results are listed below.
Note that the data buffered in the range are all correct.

# lbuf_test.rby
current = lbuf 3 4 .

> re -s 4 --extra-cycles 11 "x"
Simulation start :

0 - x_0 ~ <<x_0,x_1,x_2>,<x_4,x_5,x_6>,<x_8,x_9,x_10>>
1 - x_1 ~ <<x_1,x_2,x_3>,<x_5,x_6,x_7>,<x_9,x_10,x_11>>
2 - x_2 ~ <<x_2,x_3,x_4>,<x_6,x_7,x_8>,<x_10,x_11,x_12>>
3 - x_3 ~ <<x_3,x_4,x_5>,<x_7,x_8,x_9>,<x_11,x_12,x_13>>

Simulation end :

Convolution Layer

The conv relation is the most complex one in RubyConv out of no doubt. The following code snip-
pet shows how conv is finally implemented in Rebecca. Comparing with the definition defined in
Equation 3.5f, the implementation here uses a reset relation, which is based on cmx, to reset the
accumulated value in a period of (h− k + 1)(w − k + 1)× c/pc cycles.

# conv.rby
conv pf pc c h w k =

( [ ( convR pf pc h w k),
( ( convG pf pc )^~1;
( map (pf*pc)

( map (k*k)
(mfork (h*w); inv_bundle (h*w))))) ];

zip (pf * pc);
# core conv2d
map (pf * pc) (conv2d k);
group pf pc;
map pf (pbrt pc add);
# cross-channel accumulation
map pf (
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LET oh = h - k + 1 IN (
LET ow = w - k + 1 IN (

loop (
add; (DI 0)^(oh*ow); fork;
reset ((c/pc)*oh*ow)

);
AD^(oh*ow);
( bundle (c/pc*oh*ow);
( drop ((c/pc-1)*oh*ow) (c/pc*oh*ow));
inv_bundle (oh*ow) )

)
END )
END )

).

We also evaluate its correctness by symbolic simulation. Here we choose a very simple case which
has (pf , pc, c, h, w, k) = (2, 2, 4, 4, 4, 1). We evaluate it in 4 cycles to show the final results for the
first 2 filters in parallel. Results are all correct.

# conv_test.rby
current = conv 2 2 4 4 4 1.

re -s 4 --extra-cycles 8 "x1 x2 w11 w12 w21 w22"
Simulation start :

0 - <<x1_0,x2_0>,<<<w11_0>,<w12_0>>,<<w21_0>,<w22_0>>>> ~
<(((x1_4 * w11_1) + (x2_4 * w12_1)) +
(((x1_0 * w11_0) + (x2_0 * w12_0)) + 0)),
(((x1_4 * w21_1) + (x2_4 * w22_1)) +
(((x1_0 * w21_0) + (x2_0 * w22_0)) + 0))>

1 - <<x1_1,x2_1>,<<<w11_1>,<w12_1>>,<<w21_1>,<w22_1>>>> ~
<(((x1_5 * w11_1) + (x2_5 * w12_1)) +
(((x1_1 * w11_0) + (x2_1 * w12_0)) + 0)),
(((x1_5 * w21_1) + (x2_5 * w22_1)) +
(((x1_1 * w21_0) + (x2_1 * w22_0)) + 0))>

2 - <<x1_2,x2_2>,<<<w11_2>,<w12_2>>,<<w21_2>,<w22_2>>>> ~
<(((x1_6 * w11_1) + (x2_6 * w12_1)) +
(((x1_2 * w11_0) + (x2_2 * w12_0)) + 0)),
(((x1_6 * w21_1) + (x2_6 * w22_1)) +
(((x1_2 * w21_0) + (x2_2 * w22_0)) + 0))>

3 - <<x1_3,x2_3>,<<<w11_3>,<w12_3>>,<<w21_3>,<w22_3>>>> ~
<(((x1_7 * w11_1) + (x2_7 * w12_1)) +
(((x1_3 * w11_0) + (x2_3 * w12_0)) + 0)),
(((x1_7 * w21_1) + (x2_7 * w22_1)) +
(((x1_3 * w21_0) + (x2_3 * w22_0)) + 0))>

Simulation end :

Fully-Connected Layer and Max-Pooling Layer

As we evaluate the correctness of dotprod, there is no need to explicitly evaluate fc in this section.
Regarding pool, we evaluate an instance with w = 4 for 2 cycles and 6 extra cycles. The result is
listed as follows, and shows that the pool relation can correctly extract the maximum value in the
corresponding window.

# conv_test.rby
current = pool 1 1 4.
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re -s 2 --extra-cycles 6 "x"
Simulation start :

0 - x_0 ~ (max <(max <x_0, x_1>), (max <x_4, x_5>)>)
1 - x_1 ~ (max <(max <x_2, x_3>), (max <x_6, x_7>)>)

Simulation end :

3.2.2 Case Study: LeNet-5

Below is the relation that defines LeNet-5 constructed by RubyConv. Except for those built-in rela-
tions in Ruby, this relation uses only relations fromRubyConv. All these layer relations are connected
through beside (↔), just like row in Ruby, and there is a π2 at the end to project the final result. In
this implementation, we use an implementation without parallelisation to make it clear. Note that we
don’t put symbolic evaluation of this relation here because they are hard to read and will take a lot
of space. Also, we don’t post symbolic simulation for lenet5 is also due to the performance issue
in Rebecca: our experience showed that the compilation process lasted for about 1h 14m on a server
and exited with no verbose output.

lenet5 =
(

( conv 1 1 1 28 28 5; pi2^~1 ) <->
( pi1; (pool 1 1 24; relu) \ [-]; pi2^~1 ) <->
( conv 1 1 32 12 12 5; pi2^~1 ) <->
( pi1; (pool 1 1 8; relu) \ [-]; pi2^~1 ) <->
( fc 1 (4 * 4 * 64) 1; relu; [-]; pi2^~1) <->
( fc 1 1024 1; [-]; relu; pi2^~1)

); pi2.

3.3 Summary

This section presents RubyConv, a CNN hardware library written in Ruby, a relation-based high-
level hardware description language. RubyConv contains essential relations to build a typical CNN,
including conv, fc, pool, and relu. These relations are well defined and listed with their detailed
implementation. The properties of these relations are also well studied. In the evaluation section,
we use symbolic simulation to check the correctness of each relation, and build LeNet-5 with only
RubyConv supported.
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MaxDeep: OpenSPL-based CNN
Hardware Library

MaxDeep is an OpenSPL hardware library providing building blocks to construct CNN hardware
designs on the Maxeler FPGA platform. The primary difference between MaxDeep and RubyConv
(Chapter 3) is that hardware designs generated byMaxDeep can be directly synthesised on real FPGA
device while those generated by RubyConv cannot. This is also the key motivation for designing
MaxDeep. Unlike RubyConv which provides the only essential building block designs for CNN,
MaxDeep has 3 major components providing functionalities for a whole runnable FPGA system, in-
cluding a collection of OpenSPL packages wrapping parameterised CNN hardware building block
designs, analysis models to predict resource usage and performance from design parameters imme-
diately, and an optimisation flow that explores the design space.

Although the difference between RubyConv and MaxDeep is significant, the connection between
these two libraries cannot be ignored. MaxDeep and RubyConv are in different levels of abstraction
for the same problem (CNN hardware library): RubyConv focuses more on formal descriptions of
building blocks and their validation of correctness, whileMaxDeep elaborates more on systematic and
architectural parts. Based on this idea, we can discover that designs of core CNN layers are almost
identical in both RubyConv and MaxDeep — even the parameter lists and interfaces are similar,
although they use different hardware description languages. Besides, analysis models in MaxDeep
can be viewed as advanced and extended versions of models used in discussing relation properties in
RubyConv. What is more interesting is that, if the transpiler between Ruby and OpenSPL is ready
to use, it is possible to generate the core of MaxDeep directly from RubyConv and we only need
to provide peripheral and platform-specific modules in MaxDeep. This also gives us an insight that
this methodology can be adapted to create a CNN hardware library in another language on another
platform. These connections are also mentioned and discussed in detail in later sections.

It is worthwhile to clarify that MaxDeep is not just an extension or an implementation of RubyConv
on the Maxeler platform—MaxDeep provides novel optimisation options in the core building block
library. For the convolution layer, which commonly consumes most resources and computation time
comparing with other blocks, MaxDeep offers two options: replace it with depthwise separable con-
volution or quantize it into shorter data types, even binary values. These optimisation techniques are
remarkable, and their usage is highly relied on Chapter 5. Also, MaxDeep considers not only level of
parallelisation but also computation sequence and layer-wise connection when maximising the per-
formance of standard convolution layers. More parameters are introduced and it is more likely to get
high performance in MaxDeep.
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Ruby OpenSPL
dotprod DotProductKernel
conv ConvLayerKernel
fc FullyConnectedLayerKernel

pool PoolingLayerKernel
relu (no individual kernel, can be specified in other kernels)
× BatchNormLayerKernel
× DepthwiseSeparableConvLayerKernel
× BinarisedConvLayerKernel

Table 4.1: Mapping from Ruby-based blocks to MaxJ-based blocks

Another point that MaxDeep outperforms RubyConv is the analysis model and optimisation flow.
The model in RubyConv can only give a coarse idea about the performance and resource usage of
a given design, measured in latency and number of latches plus key arithmetic units respectively.
Meanwhile, analysis models in MaxDeep are based on reports from real hardware designs: they have
solid assumptions discovered from patterns in reports, they have clearly specified the methodology to
predict results for different metrics, and they are evaluated to prove their accuracy. Also, the optimi-
sation flow built upon these models is also a considerable breakthrough comparing with RubyConv.
We can use this flow to predict and generate the best performing design for given configuration with-
out tedious experiments.

Thus, in short, contributions of MaxDeep described in this chapter are listed as follows:

1. We devise MaxDeep, an OpenSPL-based CNN hardware library, which not only contains es-
sential CNN building blocks, but also specifically optimised ones like depthwise separable
convolution and binarised convolution. For those layers that have been discussed in Ruby-
Conv, MaxDeep versions have more optimisation parameters and are more likely to achieve
better performance.

2. The resource usage and performance can be predicted directly be a collection of analysis mod-
els, which are devised with solid assumptions and evaluated on real hardware builds. An opti-
misation flow can also cooperate with these analysis models to achieve high-performance when
selecting configuration parameters.

3. Key design metrics of MaxDeep for given CNN models are evaluated on the MAX4 board.
which belongs to the Maxeler platform and integrated with a Stratix V FPGA core. Results
show that MaxDeep is both flexible and fast.

This chapter contains 3 sections. Section 4.1 presents OpenSPL building blocks in MaxDeep, Sec-
tion 4.2 provides a thorough introduction on analysis models and optimisation techniques, and Sec-
tion 4.3 illustrates evaluation results.

Additionally, the mapping from RubyConv relations to OpenSPL kernels are listed in Table 4.1.

4.1 OpenSPL-based Description

This section introduces all types of CNN layers that are supported by MaxDeep, including their op-
timised forms and connected layers. We first look at convolution layers: standard (Section 4.1.1),
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binarised (Section 4.1.2), and depthwise separable convolution (Section 4.1.3) are all covered. Then,
we review other types of layer (Section 4.1.4), most of which are already discussed in Chapter 3. At
last, we discuss how to useMaxDeep to construct a CNNmodel (Section 4.1.5) and related properties.
Each building block in this section will have a brief report on its design metrics. A more accurate and
complete version is introduced in Section 4.2.

4.1.1 Convolution Layer

Convolution layer is implemented as ConvLayerKernel in MaxDeep, which is directly mapped from
conv in RubyConv. ConvLayerKernel can be configured to compute different standard convolu-
tion layers, with supported data types and bit width. Unlike conv in RubyConv, ConvLayerKernel
has three levels of parallelisation (PC , PF , PK) rather than two. Also, ConvLayerKernel explic-
itly considers all three different computation sequences of convolution: filter-major, channel-major,
pixel-major. Computation sequence is a critical property of the convolution layer hardware design. It
affects all design metrics and the format of input and output streams. In general, the three computa-
tion sequences are three sequences of the triple for-loop in the convolution layer implementation: the
suffix -major of each computation sequence name represents which index (filter, channel, or pixel)
is the major index of the triple loop.

We start with the architecture of this layer.

Architecture

The architecture of convolution layer processing unit (Figure 4.1) is organised in three levels of inner
blocks: core block implements 2D convolution; array block places multiple core blocks in parallel;
top block wraps the array block with buffers and external interfaces. Following discussions for the
architecture will be based on this high-level organisation concept.

The core block is directly mapped from conv2d. It’s interface and inner design only depend on the
kernel edge length (K) of the convolution layer that is going to be implemented. DotProductKernel
is the OpenSPL implementation of these core arithmetic blocks.

The array block places core blocks in three dimensions, and each dimension is related to a level of
parallelisation.

1. PK number of core blocks in the kernel dimension process PK number of 2D convolution
operations within the same channel. For these PK blocks, input feature map data chunks are
adjacent in a sliding window series, and coefficient data chunks are identical.

2. PC number of core block vectors, each of which has length PK , are in the channel dimension
and handle input for multiple channels. There are PK number of adder trees to reduce output
results across PC channels.

3. PF number of core block matrices (PC × PK) are in the filter dimension and prepare results
for multiple filters.

Based on this architecture, the array block takes PC ×K× (K+PK −1) number of entries from the
input feature map and PF ×PC ×K2 number of coefficient values, and it outputs PF ×PK number
of intermediate output feature map values.

Conv2DKernel implements the array block.
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Line Buffers

Line Buffer (#1)
(K, W, PK)

Line Buffer (#PC)
(K, W, PK)

…… 

PC x PK x Bw

PC x PK x K2 

x Bw

PF x PC x 
K2 x BwIfmap Buffer

(OH, OW, C,
 PK, PC)

PC x PK  x 
Bw

H x W x 
C 
/ (PK x PC)

Conv2D
(OH, OW, C, F, 
K, PK, PC, PF)

Ofmap Buffer
(OH, OW, F,
 PK, PF)

PF x PK  x 
Bw

OH x OW
/ PK

coeff ofmap

PF x PK
 x 

Bw

ifmap

PC x PK x Bw

PF x PK
 x 

Bw

Figure 4.1: The architecture of standard convolution layer in MaxDeep.

The top block finally initialises interfaces to the external devices and creates buffers to reuse and
prepare data for the array block. There are two input streams (ifmap for input feature map and coeff
for coefficients) and one output stream (ofmap) for output feature map in the top block. Table 4.2
summarises properties of these streams.

Stream Width
ifmap PC × PK ×Bw
coeff PF × PC ×K2 ×Bw
ofmap PF × PK ×Bw

Table 4.2: Streams connected to and from the top block, Bw refers to bit width of the data type.

Besides, there are also four kinds of buffers used in the top block: ifmap buffer, line buffer, coeff
buffer, and ofmap buffer. Among these buffers, the line buffer is a bit tricky: its definition is the same
as Equation 3.5c but its implementation is through stream.offset, which only exists in OpenSPL.
The properties of these buffers are highly related to the parallelisation parameters and computation
sequences. Table 4.3 lists key properties of these buffers. Note that in MaxDeep, a buffer with depth
1 are implemented as a register file, while others are implemented in on-chip memory.

Design Metrics

This section relates design metrics, which are latency, throughput, resource usage, and bandwidth,
with convolution layer parameters.

1. Latency: Latency of ConvLayerKernel is defined as the number of clock cycles taken from the
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Buffer Seq Port Width Depth Usage

ifmap buffer
C PCPKBw

HW

PCPK

store one channel of the input
fmap

F PCPKBw
HWC

PCPK
store the whole input fmap

P PCPKBw
HWC

PCPK
store the whole input fmap

line buffer
C

PCPKBw (in)

PCPKK2Bw (out)

WK

PK

prepare data in windows for PC

channels

F
PCPKBw (in)

PCPKK2Bw (out)

WK

PK

prepare data in windows for PC

channels

P
PCPKBw (in)

PCPKK2Bw (out)
CWK
PCPK

prepare data in windows for all
channels

coeff buffer C, F, P PFPCK
2Bw 1

cache the current coefficient ker-
nel

ofmap buffer
C PFPKBw

HOWOF

PFPK

store the whole output feature
map

F PFPKBw
HOWO

PFPK

store one channel of the output
feature map

P PFPKBw 1
store only PKPF number of ele-
ments

Table 4.3: Buffers and their description in the top block. Seq is the computation sequence chosen, can
be filter-major (F), channel-major (C), or pixel-major (P).

start of the computation to the output of the first channel of the first pixel in the output feature
map, the same as what we refer to in Table 3.2. Computation sequence is the major factor that
determines latency, which is clarified in Table 4.4. The initial interval (II) includes the number
of cycles of reading and writing buffers, propagating results through registers, and filling the
pipelines within core arithmetic units. Comparing with the number of cycles for computation
followed by initial interval, which is approximately hundreds to thousands cycles, II can be
ignored. Intuitively, channel-major has the longest latency and pixel-major has the shortest.

Sequence Latency
channel-major II + [(C − 1)×H ×W × F ]/(PF × PC × PK)
filter-major II + (C ×H ×W )/(PC × PK)
pixel-major II + (C × F )/(PC × PF )

Table 4.4: Latency of ConvLayerKernel, categorised by computation sequence. II here still stands for
initial interval.

2. Throughput: Unlike latency, throughput will not be affected by computation sequences. To be
specific, the number of clock cycles to finish processing a single input feature map and ready to
accept the next one, which is the definition of the throughput of ConvLayerKernel, is listed in
Equation 4.1. Although throughput of a single ConvLayerKernel is unrelated to computation
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sequence, the throughput of a series of layers is rather highly related. This property is discussed
in Section 4.1.5.

Tp =
F × C ×H ×W

PF × PC × PK
(4.1)

3. Resource usage: Buffers and arithmetic units (used in DotProductKernel) mainly contribute
to the resource usage of ConvLayerKernel. BRAM is consumed by buffers, the usage of
which can be resolved by Table 4.5. Note that the BRAM usage predicted here is the lower
bound of the real BRAM usage, because there are limited numbers of BRAM blocks with fixed
shape and there should be an increase in BRAM usage due to tiling in real build process. For
the DSP usage and other resources, they are occupied largely by the dot-product kernel. This
relationship is presented by Equation 4.2.

Sequence BRAM Usage

channel-major UC
bram =

HWBw + PCWKBw +HOWOFBw

bits per BRAM

filter-major UF
bram =

HWCBw + PCWKBw +HOWOBw

bits per BRAM

pixel-major UP
bram =

HWCBw + CWKB

bits per BRAM

Table 4.5: BRAM usage of ConvLayerKernel, categorised by computation sequence

U seq
t = PF × PC × PK × Udp

t

t ∈ {lut, ff, dsp}
seq ∈ {C, F, P}

(4.2)

4. Bandwidth: The bandwidth here refers to the maximum number of elements that should be
transmitted between CPU and FPGA. For the standard convolution, this value can be computed
by Equation 4.3. The conclusion of that equation can also be discovered from Figure 4.1, by
adding up the width of each FIFO that connects to the external system.

Bd = (PC × PK + PC × PF ×K2 + PF × PK)×Bw (4.3)

Summary

This section presents the architecture of the standard convolution layer in MaxDeep and its design
metrics. Comparing with conv presented in Section 3.1.2, ConvLayerKernel explicitly uses on-
chip memory as buffers to schedule or reshape streams while conv can only use delays to model.
Although it is not discussed before, the computation sequence of conv is indeed filter-major. Other
minor differences include additional parameters (PK , Bw) and design metrics.

4.1.2 Binarised Convolution Layer

Binarised convolution layer is an extremely quantized convolution layer in the bit width dimension in
MaxDeep. It is almost a standard convolution layer: the binarised convolution layer takes the same list
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of parameters and has the same interface as the standard one, such as the number of parallel blocks and
computation sequence. Major differences are: Operands are in binary data type; Array of multipliers
and adder tree in DotProductKernel is replaced by XNOR (⊕) and popcount respectively; A batch
normalisation unit implemented by threshold should be appended in the end of processing.

Architecture

The architecture of binarised convolution layer is constructed by replacing the standard dot-product
kernel with binarised dot-product kernel. The binarised dot-product kernel uses an array of binary
XNOR units to replace multipliers. This replacement can be reasoned by Table 4.6. Note that the
representation of −1 is converted to 0 in hardware. By replacing multipliers with XNOR units, the
latency and resource usage of the binarised dot-product block can be reduced.

Original Operands Multiply Result Converted Operands XNOR Result
(1, 1) 1 (1, 1) 1
(1,−1) −1 (1, 0) 0
(−1, 1) −1 (0, 1) 0
(−1,−1) 1 (0, 0) 1

Table 4.6: Reasoning the replacement from multipliers to XNOR units.

An adder tree that counts the number of positive ones in the output of the XNOR units array is ap-
pended. Counting the number of ones is equivalent to accumulating values in the binary vector.
Although there are various optimisation techniques related to this operation, which is known as pop-
count, MaxDeep applies a straightforward version that uses an adder tree to accumulate number of
positive ones in one cycle. Note that while accumulating the the result, the data type of the operand
cannot remain binary and should at least have bit width 1 + log2(K2). In order to have a binarised
result, a comparison between the accumulated value and a threshold is required: if the accumulated
value is above the threshold, the final output value should be positive one; otherwise negative one.
This is the trick used by Umuroglu et al. (2017) to implement binarised batch normalisation.

Design Metrics

The designmetrics are almost the same as those for standard convolution, but several functions should
be revised and are listed as follows.

1. The resource required for dot-product is not related to multipliers and is related to XNOR units
in this case, and adders in the accumulation tree will consume resource base on fixed bit width
1 + log2(K2). No DSP will be used because no multipliers are used.

U res
bdp (H,W,C, F,K, PF , PC , PK) =

PF × PC × PK ×
[
U res
xnor(K

2) + (K2 − 1)× U res
add(1 + log2(K

2))
]
+

PF × PK × (PC − 1)× U res
add(1 + log2(K

2))

(4.4)

2. Input feature map buffer and line buffers consume BRAM based on binary data type, while the
output feature map buffer stores value with data type that has bit width 1 + log2(K2), as the
output feature map buffer caches accumulated data.
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4.1.3 Depthwise Separable Convolution Layer

Depthwise separable convolution layer (Section 2.1.2) is supported in MaxDeep to be an ultimate
scalable case 1 . Depthwise separable convolution layer greatly reduces number of parameters re-
quired to perform a convolution computation, and its performance can be scaled to a larger extent
comparing with standard convolution. In MaxDeep, it is straightforward and seamless to take advan-
tage of depthwise separable convolution due to the features as follows.

1. MaxDeep discovers architectural similarities between standard and depthwise separable de-
signs: all the building blocks in the depthwise separable convolution design are reused from
blocks in the standard convolution design (Section 4.1.1), and MaxDeep only need to reorder
and change parameters of these blocks. Also, it is easy to derive an analysis model of depthwise
separable convolution by using models of those blocks that are well-studied.

2. The interface of depthwise separable convolution is the same as standard convolution. Parame-
ters for standard convolution has almost the same meaning to depthwise separable convolution,
even level of parallelisation and computation sequence. Slight differences will be introduced
later.

Thus, it is possible to convert a design for convolution layer from the standard kernel to the depthwise
separable kernel with limited revision in MaxDeep, and architectural optimisation algorithm can also
be easily tweaked to accept this type of convolution layer as a special scenario.

This section first presents the architecture of depthwise separable convolution layer kernel (Sec-
tion 4.1.3). And then the analysis model to analyse design metrics will be illustrated (Section 4.1.3).

Architecture

Pointwise

Line Buffers

Line Buffer (#1)
(K, W, PK)

Line Buffer (#2)
(K, W, PK)

Line Buffer (#PC)
(K, W, PK)

…… 

PC x PK x Bw

PC x PK x K2 

x Bw

Depthwise

Conv2D (#1)
(H, W, 1, 1, K, PK)

Conv2D (#2)
(H, W, 1, 1, K, PK)

Conv2D (#PC)
(H, W, 1, 1, K, PK)

…… 

PC x K2 x 
Bw

Ifmap Buffer
(OH, OW, C,
 PK, PC)

PC x PK  x 
Bw

OH x OW 
x C 
/ (PK x PC)

PC x PK
 x 

Bw

Conv2D
(OH, OW, C, F, 1, 
 PK, PC, PF)

PC x PK
 x 

Bw

Ofmap Buffer
(OH, OW, F,
 PK, PF)

PF x PK  x 
Bw

OH x OW
/ PK

PF x PK
 x 

Bw

depth 
coeff

point 
coeff

PC x PF x 
K2 x Bw

ofmap

PF x PK
 x 

Bwifmap

Figure 4.2: Depthwise separabel convolution architecture.

1DepthwiseSeparableConvLayerKernel implements this type of convolution layer.
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The hardware architecture of depthwise separable convolution is illustrated in Figure 4.2. There
are only 3 differences when we are comparing depthwise separable convolution with the standard
architecture:

1. Blocks: Line buffers are moved to the first part of the sequence, and a spatial Conv2DKernel
array is placed between the group of line buffers and the input feature map buffer.

2. Streams: Two separate streams are required to receive coefficients, one for depthwise convo-
lution and the other one for pointwise convolution.

3. Parameters: The computation sequence of the depthwise separable convolution only covers
the pointwise convolution, and in the current version of MaxDeep only filter-major sequence
is supported.

Note that with the same convolution layer parameters, standard convolution design has the same
interface as the depthwise separable convolution design in MaxDeep, which makes it seamless to
convert from one type to another while performing architectural optimisation.

Design Metrics

This section lists design metrics based on the convolution layer parameters. We only add discussion
to resource usage, other metrics are easy to reason about.

1. Resource usage: LUT, flip-flop, and DSP are mainly consumed by Conv2DKernel in depthwise
convolution and pointwise convolution, which are mainly composed by DotProductKernel.
Suppose res is a resource type and U res

dp (L,Bw) is the resource usage of DotProductKernel
with given vector size L and bit width Bw, then the resource usage function for type LUT, FF,
and DSP can be derived as Equation 4.5. Note that the last term in the equation is the resource
used by adder trees to sum results cross PC channels in depthwise and pointwise convolution.

U res
dsc (H,W,C, F,K, PF , PC , PK , Bw) = PC × PK × U res

dp (K2, Bw)

+ PC × PF × PK × U res
dp (1, Bw)

+ (PF + 1)× PK × (PC − 1)× U res
add(Bw)

res ∈ {lut, ff, dsp}

(4.5)

BRAM is mainly used by buffers and summarised in Equation 4.6:

U bram
dsc (H,W,C, F,K, PF , PC , PK , Bw) =[

PC ×W ×K +OH ×OW × (C + PF )
]
×Bw

number of bits per BRAM

(4.6)

2. Latency:

Ltdsc =
H ×W × C

PC × PK
(4.7)
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3. Throughput

Tpdsc =
H ×W × C × F

PC × PK × PF
(4.8)

4. Bandwidth

Bddsc = (PC × PK + PC ×K2 + PC × PF ×K2 + PF × PK)×Bw (4.9)

4.1.4 Other Layers

In this section, we briefly introduce how layers other than convolution layers are implemented in
MaxDeep. Fully-Connected layer in MaxDeep has the same definition and implementation as the
one in RubyConv. There are two parallelisation parameters PR and PC in the FC layer, same as pr
and pc in fc. We still use dot-product to implement the core arithmetic in the FC layer. Regarding the
Max-Pooling layer, we still only implements 2×2 pooling with stride equals to 2. This configuration
is commonly used in many CNN models. We use stream.offset to extract data from far points in
the stream, just like the implementation of the line buffer. Batch Normalisation is a new layer, but its
implementation is quite straightforward. We use ROM to store average and variance from the trained
CNN model and read them while performing computation.

In the next section, we show how to use convolution layers and layers mentioned in this section to
construct a network.

4.1.5 Network

This section discusses how to run a complete CNN model in the MaxDeep framework. There is no
straightforward solution to this problem, because each layer can either be placed on an individual
hardware module or share a module with other layers of the same type. Also, values of hardware
module parameters are highly correlated, such as the parallel parameters in convolution layers should
match layers adjacent to it, which makes the problem harder to resolve. This section first focuses
on connection patterns between two convolution layers and presents their design metrics. Next, this
section shows an example about how to deploy a simple CNN in MaxDeep.

Regarding implementation, layers in MaxDeep are connected through inter-kernel streams, which
are more than scheduling models: each stream should be instantiated by FIFO. Inter-kernel streams
can be specified in OpenSPL managers.

Conv2Conv

The connection between two convolution layers is the most important one among all layer-wise con-
nections in MaxDeep, because they are the most time-consuming blocks and they have the most
complex architectures. PC , PF , and PK , which are three parallel parameters in both convolution
layers as mentioned before, should satisfy Equation 4.10. This equation aims at matching the width
of the first layer’s output and the second layer’s input. If this equation cannot be satisfied, then the
performance of the whole network will be reduced to the slowest layer’s performance, and will not
benefit from pipeline. Based on Equation 4.10, the total number of parameters can be decreased:
there are four parameters (P (1)

C , P
(1)
K , P

(1)
F , P

(2)
F ) required for two adjacent convolution layers.
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{
P

(1)
K = P

(2)
K

P
(1)
F = P

(2)
C

(4.10)

Computation sequence is another important factor that affects design metrics. There are three patterns
that have good performance: filter-channel, channel-filter, and pixel-pixel. Latter layers in these
patterns can consume output from previous layers instantly, thus the depth of interconnect FIFOs will
be small and the pipeline will be more efficient.

It is also worth to note that, placing two adjacent convolution layers both on hardware can increase
the performance by at most 2 times, because while the computing the second layer, the first layer is
also taking input and computing, and then the computation cost of the second layer can be covered.
We put the result of this property in Equation 4.20.

Conv2Pool, Pool2FC, FC2FC

Here we select 3 other typical layer-wise connections in CNN model, and discuss their requirements
on parallelisation parameter. For the Conv2Pool case, the level of parallelisation in the filter di-
mension of the convolution layer should match the channel dimension of the pooling layer, which is
P

(1)
F = P

(2)
C . The pooling layer in MaxDeep will reduce PK by half, due to the effect of stride. When

the pooling layer or the convolution layer is connected to the FC layer, the output stream from the
previous layer should only be parallelised within the feature map, i.e. P (1)

F = P
(1)
C = 1. Regarding

two FC layers, we simply make sure that P (1)
R = P

(2)
C , then the output from the first layer can be

immediately processed by the second layer.

Case Study: LeNet-5 in MaxDeep

Here we present a case study of building LeNet-5 in MaxDeep. After analysing LeNet-5 with all
conditions mentioned in this section, we notice that there are 3 tunable parallelisation parameters,
which are PF in the first convolution layer, PC in the first FC layer, and PC in the second FC layer.

Next, to put these layers in the hardware, we only need to configure parameters for each layer, just
like the prototxt approach in Caffe. The following code snippet shows how to construct LeNet-5
parameter list that is compatible to MaxDeep. This list of parameters will be passed to create and
connect kernels.

List<LayerParameters> lp = new ArrayList<LayerParameters>();
ConvLayerParameters cp0 =

new ConvLayerParameters.Builder(28, 28, 1, 32, 5)
.name("conv0")
.BW(ep.getBW())
.PK(2)
.PF(PP.get(0))
.pool(new PoolingLayerParameters(2, 2, Mode.MAX))
.seq(seq0)
.type(ep.getUseDepth() ? Type.DEPTHWISE_SEPARABLE : Type.STANDARD)
.dbg(false)
.build();

lp.add(cp0);

ConvLayerParameters cp1 =
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new ConvLayerParameters.Builder(12, 12, 32, 64, 5)
.name("conv1")
.BW(ep.getBW())
.PK(1)
.PC(PP.get(0))
.PF(1)
.seq(CompSeq.FILTER_MAJOR)
.pool(new PoolingLayerParameters(2, 2, Mode.MAX))
.type(ep.getUseDepth() ? Type.DEPTHWISE_SEPARABLE : Type.STANDARD)
.dbg(false)
.build();

lp.add(cp1);

FullyConnectedLayerParameters fp0 =
new FullyConnectedLayerParameters(

"fp0",
ep.getBW(),
1024,
4 * 4 * 64,
1,
PP.get(1));

lp.add(fp0);

FullyConnectedLayerParameters fp1 =
new FullyConnectedLayerParameters(

"fp1",
ep.getBW(),
10,
1024,
PP.get(1),
PP.get(2));

lp.add(fp1);

4.2 Analysis Model

The analysis model of MaxDeep aims at predicting resource usage of a design only by its configu-
ration parameters before the design is built. The motivation of this analysis model is to accelerate
the design parameter optimisation process. This model can immediately decide whether a set of pa-
rameters is feasible on hardware while optimising the design, or several hours are needed to verify
parameter values and the whole optimisation process will take ages.

The methodology of building an analysis model is combining datasheet with statistical methods:

1. Datasheet (Section 4.2.1): The usage of some hardware resource types, such as DSP and
BRAM, can be statically calculated only by referencing the datasheet of the board. A datasheet
contains model that directly evaluates resource usage of basic hardware blocks, such as adders,
multipliers, and memory blocks.

2. Statistical method (Section 4.2.2): The usage of other hardware resource types, such as LUT
and FF, cannot be calculated directly, because these resources are scattered in many different
blocks and it is very difficult to aggregate resource usage information from all these blocks.
However, according to our analysis in previous sections, candidate models of these resource
types are linear on some hardware parameters, which makes it possible to deduce hyper-
parameters of these models by statistical methods, such as linear regression.
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The analysis model is mainly derived for the convolution layer, because it occupies most of the re-
source capacity on board. This argument will be evaluated in Section 4.3.

Besides resource usage model, Section 4.2.3 also presents performance analysis model, which is
based on the roofline model, Equation 4.1 (throughput) and Equation 4.3 (bandwidth).

4.2.1 Datasheet: BRAM and DSP

The feasibility of the datasheet method on resource usage of BRAMandDSP is based on the following
heuristic assumptions:

1. The BRAM usage is mainly consumed by the buffers of the convolution layer, including input
feature map buffer, line buffer, and output feature map buffer.

2. Most of the DSP units are used by multipliers in dot-product blocks.

These assumptions can be reasoned from the convolution layer architecture in Section 4.1.1, and they
will also be analysed with real build data in Section 4.3.

BRAM Usage

To utilise the datasheet method with assumptions above, the BRAM usage model of standard convo-
lution layer can be derived by adding up number of bits required for on-chip storage in three types
of buffers, which are listed previously in Table 4.3, and dividing it by the number of bits per BRAM
block, which can be found in the board datasheet.

Equation 4.11 shows the final model for BRAM usage of standard convolution layer. Note that
because the BRAM usage is related to computation sequence, there are three cases in the model.
NBbram is the number of bits per BRAM block that can be found in board datasheet. For example,
the Stratix V FPGA uses M20K BRAM, which contains 20Kbits in each block. Thus, NBbram =
20× 1024 = 20480 on Stratix V.

U bram
conv = U bram

ibuf + U bram
lbuf + U bram

obuf

=



(HW + PCWK +HOWOF )Bw

NBbram
(channel major)

(HWC + PCWK +HOWO)Bw

NBbram
(filter major)

(HWC + CWK)Bw

NBbram
(pixel major)

(4.11)

DSP Usage

DSP usage model can be derived in an alike approach: first retrieve the DSP usage of a multiplier
from the datasheet, and then insert this value into the analysis model already built in Section 4.1.1.
DSP usage in adders are ignored because most fixed-point adders don’t contain DSP.

Equation 4.12 presents this idea. Udsp
mul(Bw) is the number of DSP required for a multiplier that has

operands with bit width Bw. This value is clearly listed in board datasheet, for example, a Stratix V
board uses 2 DSP blocks for a multiplier takes two 32 bits operands. The coefficient factor before
Udsp
mul is the number of multipliers required for building all dot-product blocks in the design.
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Udsp
conv(PF , PC , PK ,K,Bw) = PF × PC × PK ×K2 × Udsp

mul(Bw) (4.12)

4.2.2 Statistical Method: LUT and Flip-Flop

Usage of LUT and FF cannot be modelled with datasheet, because almost every block in a hardware
design uses them, and it will be quite tedious to discover the relationship among design parameters
and all these blocks.

An alternative approach is adapting statistical methods. Intuitively, LUT and FF usage are scaling
linearlywith the number of blocks that consume the major amount of hardware logic— in the convo-
lution layer ofMaxDeep, these blocks are adders andmultipliers in dot-product. Thus, it is reasonable
to train a linear regression model between the number of arithmetic units and the usage of LUT and
FF from a dataset of typical real builds.

This statistical method contains the following steps, which are all integrated into a self-developed
Python package named maxlabor. The maxlabor package is built upon NumPy (Walt et al., 2011),
Pandas (McKinney et al., 2010), scikit-learn (Pedregosa et al., 2011), and Matplotlib (Hunter, 2007).

1. Prepare dataset: The dataset contains resource usage information of a set of designs built with
typical parameters. These designs are all originated from a Conv2DKernel wrapped with key
interfaces. A set of parameters are selected to bring sufficient varieties to these designs, see
Table 4.7.

Parameter Values
Bit width [8, 16, 32]

K [1, 3, 5]
PF [1, 2, 4, 8, 16]
PC [1, 2, 4, 8, 16]
PK [1, 2]

Table 4.7: Values of parameters for those designs in the dataset.

This set of parameters includes different data types with different bit width, different kernel
size, and different parallelise parameters. In total, there are 3 × 3 × 52 × 2 = 450 designs to
be built, and in practice each build pass takes about 1 hour to complete. With 18 design builds
running in parallel, the total time to generate a dataset will be 450/18 = 25 hours and it is
endurable.

2. Training with cross-validation: Once the dataset is ready, the linear model of LUT and FF can
be trained with linear regression. Three linear models will be trained separately for each bit
width value (8, 16, and 24), because the relationship between the bit width and the LUT or FF
usage of a single block is more like a piecewise function, rather than a linear function, from
the basic background knowledge of FPGA architecture. Thus, separately training three linear
models will increase the general performance.
In order to further enhance the performance of trained models, cross-validation is utilised to
increase the accuracy and reduce overfitting. The dataset will be split into several folds and
in each pass of cross-validation, 1 fold will be selected for testing and the rest will be used
for training (Leave-One-Out). Cross-validation will stop until all folds have been tested and
trained.
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The final output of this step contains 3 models for each bit width value, and these models can
predict LUT and FF usage of the standard convolution layer from a given list of 4 parameters
(K, PF , PC , PK). Table 4.8 and Figure 4.3 show these models. Note that values of coefficients
scale by the bit width.

Bit width C lut Blut Cff Bff Cross-validation Mean Accuracy
32 52.3 2.50 50.0 18.4 99.96%
16 26.0 12.6 25.6 14.1 99.99%
8 13.0 −3.1 13.6 5.0 99.98%

Table 4.8: Linear models and their hyper-parameters.
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Figure 4.3: Linear model of LUT and FF usage in Conv2DKernel.

3. Model evaluation: Trained models will be evaluated for its accuracy on the test dataset split
from the original dataset, and how large are the differences between resource usage of the
standard convolution layer and the prediction result.

Table 4.8 also shows the result of the first part of evaluation. Mean accuracy from cross-
validation of all models are higher than 99.9%.

Evaluation of the second part is listed in Section 4.3.

4.2.3 Performance

The overall performance of a single convolution layer is highly predictable from design parameters.
According to the roofline model (Williams et al., 2009), the performance of a hardware design is
bound by either computation speed or interface bandwidth.

Computation speed is the product of throughput and clock speed. Throughput is defined as the number
of cycles required for a single convolution layer to accept next input feature map. Equation 4.1
already presents the throughput model. And clock speed is the reciprocal of clock frequency (F).
Thus, computation speed is the total time required to process a complete input feature map, which is
summarised in Equation 4.13.

T comp
conv =

H ×W × C × F

PF × PC × PK
× 1

F
(4.13)
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The overall performance is also restricted by interface bandwidth. Equation 4.3 shows the maximal
number of bits that should be transferred within one clock cycle If the interface bandwidth (Sbd)
cannot satisfy this requirement, then the time to process a single input feature map will be Tmem

conv , see
Equation 4.14.

Tmem
conv =

H ×W × C × F

PF × PC × PK
×Bd× 1

Sbd

= (H ×W × C × F )(
1

PF
+

K2

PK
+

1

PC
)× Bw

8Sbd

(4.14)

According to the roofline model, the overall performance of processing one convolution layer (Tconv)
is the minimal value of T comp

conv and Tmem
conv (Equation 4.15) This equation shows that Tconv can be

calculated by design parameters directly. Hyper-parameters F and Sbd can be set or checked by
benchmarking.

Tconv = min (T comp
conv , Tmem

conv )

= (H ×W × C × F )max
(

1

PFPCPKF
,

(
1

PF
+

K2

PK
+

1

PC

)
× Bw

8× Sbd

) (4.15)

The total number of operations to be performed is HO ×WO × C × F ×K2 × 2, then the overall
performance measured in GOp/s is:

Pconv =
HO ×WO × C × F ×K2 × 2

Tconv

≈ H ×W × C × F ×K2 × S2 × 2

Tconv

= 2K2S2 × PFPCPK min
(
F ,

8× Sbd

(PKPC +K2PFPC + PFPK)Bw

) (4.16)

Please see Section 4.3.1 for detailed evaluation of this performance model.

4.2.4 Binarised and Depthwise Separable Convolution Layer

Analysis models of binarised and depthwise separable convolution layer have been introduced in
Section 4.1.2 and Section 4.1.3, and they are compatible with the general analysis model presented
in this section: (1) BRAM and DSP usage can also be modelled by datasheets; (2) usage models for
LUT and FF can also be trained by linear regression; (3) performance model stays the same.

The key difference between binarised and standard convolution layer in terms of analysis model is that
there is no DSP usage in the binarised version. All arithmetic operations should be implemented in
LUT and FF.Moreover, LUT and FF usage of binarised convolution layer are also linear toPF×PC×
PK . By running linear regression on a similar dataset as Section 4.2.2, we can get hyper-parameters
for predicting LUT and FF usage.

Regarding depthwise separable convolution, the most significant and useful change in the analysis
model is the DSP usage model. Previously in standard convolution, DSP usage of a given design
followsO(PF ×PC ×PK ×K2), which scales really fast when the level of parallelisation increases.
Now in depthwise separable convolution, DSP usage followsO(PC ×PK ×K2 +PF ×PC ×PK).
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Figure 4.4 illustrates the difference between these two models. Thus, it is highly possible that a
depthwise separable convolution layer can achieve higher performance by placing more computation
units on board. Note that LUT and FF usage will not be the bottleneck in this case.
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Figure 4.4: DSP usage of both standard convolution (STD) and depthwise separable convolution (DWS).

4.2.5 Multiple Layers Analysis Model

The multiple layers analysis model is designed for analysing full CNN design in MaxDeep. Because
convolution layers consume most of the resources on board, this multiple layer analysis model only
covers convolution layers in the given CNN topology. Most of the previously discussed models are
reused in this section, and only important differences are discussed.

The resource usage model of a multiple layers design is a summation of results from single layer
models applied to all convolution layers, for example, Equation 4.17 shows the LUT usage of the
whole network with N convolution layers.

U lut =
N∑
i=1

C lut(Bw(i))× P
(i)
F × P

(i)
C × P

(i)
K +Blut(Bw(i)) (4.17)

Equation 4.18 shows another example, the DSP usage of a CNN, which is still the resource bottleneck
in the current case.

Udsp =
N∑
i=1

P
(i)
F × P

(i)
C × P

(i)
K × (K(i))

2 × Udsp
mul(Bw(i)) (4.18)

As mentioned in Equation 4.10, to make sure that all layers are processing at the same rate, there are
constraints on parallel parameters and many of them can be reduced. For a network with N layers,
total number of parallel parameters required is N + 2: 1 for PK , 1 for PC , and N for PF . Also,
assume all layers use the same bit width Bw. Then Equation 4.18 can be updated in a form as the
following equation:
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Udsp = PK ×

(
PCP

(1)
F (K(1))

2
+

N∑
i=2

P
(i−1)
F P

(i)
F PK(K(i))

2

)
× Udsp

mul(Bw(i)) (4.19)

Besides, the performance model can also be derived from the one from the single layer model. Sup-
pose there are N convolution layers, the performance bound by computation is Equation 4.20.

Pcomp =

2×Nb ×
N∑
i=1

H
(i)
O W

(i)
O C(i)F (i)(K(i))

2

Nb
H(1)W (1)C(1)F (1)

PKPCP
(1)
F

+
N∑
i=2

H(i)W (i)C(i)F (i)

PKP
(i−1)
F P

(i)
F

× 1

F
(4.20)

In this equation, the batch size Nb is explicitly included, and obviously with larger batch size, the
expected performance will be better. And when theNb is really large, the overall performance can be
at mostN times of the maximal performance of one single layer. As there are many streams included
in a multiple layers design and the bandwidth-based model is much complex than single layer, only
the computation bound case will be used for optimisation and prediction.

4.2.6 Summary

The general analysis model is summarised in Table 4.9.

Resource Usage
LUT U lut

conv = C lut(Bw)× PF × PC × PK ×K2 +Blut(Bw)

Flip-Flop Uff
conv = Cff (Bw)× PF × PC × PK ×K2 +Bff (Bw)

BRAM U bram
conv = U bram

ibuf + U bram
lbuf + U bram

obuf

DSP Udsp
conv = PF × PC × PK ×K2 × Udsp

mul(Bw)

Perf Pconv = 2K2S2PFPCPK min
(
F ,

8× Sbd

(PKPC +K2PFPC + PFPK)Bw

)

Table 4.9: Summary of the analysis model

4.3 Evaluation

This section presents evaluation results of the MaxDeep framework. The major purpose of eval-
uation is to find out whether the resource usage and performance of real hardware builds match
our expectation. MaxDeep is first evaluated on single convolution layer in several different aspects
(Section 4.3.1), including resource usage of designs with different parameter values, the difference
between model prediction and resource usage of real builds, and comparison among different config-
uration that can shed a light on what a good performing optimisation technique should be under some
situations. Moreover, an evaluation of two adjacent convolution layers is illustrated with detailed
experimental data. A manually constructed small but complete CNN, LeNet-5, is evaluated both in
resource usage and performance at the end of Chapter 5.

Table 4.10 summarises properties of our evaluation system.
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Metric
CPU Dual Intel Xeon E5-2640, 6 cores per CPU
FPGA Stratix V 5SGSMD8N1F45C2
FPGA DRAM 48 GB
CPU to FPGA Bandwidth 38 GB/s
LUT 262400
FF 524800
BRAM 2567
DSP 1963

Table 4.10: System Properties of the Maxeler MAX4 Maia

4.3.1 Single Convolution Layer Evaluation

A single convolution layer with different parameter values are first evaluated, to make sure that the
analysis model for design metrics has limited deviation from real hardware designs. To avoid com-
binatorial explosion of possible parameter values and reduce building time as little as possible, the
evaluation in this section has the following settings: (1) height, width, number of channels, and num-
ber of filters are all 32; (2) kernel size is 3; (3) interface with CPU is PCIe rather than DRAM with
memory controller; (4) PK takes only 1 and 2, and both of PC and PK can take a value in {1, 2, 4, 8};
(5) bit width BW can choose from {1, 16, 32}; (6) only filter major sequence is considered in this
section.

General Evaluation

Figure 4.5 shows the resource usage of the designs generated from a set of parameters following the
settings above. This figure discovers that all four types of resource have their usage scaled linearly.
To be specific, LUT, FF, and DSP usage scale by PF × PC × PK and BRAM scales by PC , which
are compatible with the analysis model. Note that the BRAM usage seems also scaled by PK and
there is deviation in the data collected, this circumstance is due to the memory block tiling while the
FPGA programming tool synthesizing the design, and this error is currently ignored.

Figure 4.6 evaluates the prediction accuracy of analysis models upon the build dataset. In general,
prediction of all resource types are quite close to the real build data. Table 4.11 lists the prediction
error of each resource type.

LUT and FF usage prediction are all below the real usage, because only the usage in Conv2DKernel
are considered in prediction. DSP usage is almost the same as real DSP usage, and the deviation
is caused by computation logic in output feature map buffer for address calculation. BRAM usage
is much complex due to tiling. Original prediction model in Equation 4.11 doesn’t consider tiling
and can cause large deviation (about 22%). Thus, by assuming the depth of each tile is 1024 and
considering tiling while computing BRAMusage, the mean error of BRAMprediction can be reduced
to 5.1%. However, to keep the analysis model simple and clean, Equation 4.11 stays unchanged.

Regarding performance, Figure 4.7 illustrates evaluated performance, predicted performance by com-
putation speed and by interface bandwidth. Result shows that when the variable PF × PC × PK is
small, the performance is bound by computation. Then as the variable increases, the performance is
bound by bandwidth. The prediction results are calculated by replacing F with 100 × 10−3 (giga-
cycles per second) and Sbd with 3.2 (GB/s). The bandwidth value is decided from the PCIe bus (x8
gen2) metrics. This discovery fits what the roofline model expects. Because the performance model
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Figure 4.5: Evaluation of a single convolution layer with 32 bit fixed-point data type and filter major
computation sequence.

by bandwidth is coarse and contains approximate assumptions, the overall performance predicted has
an error rate of 17.9% (variance 0.027).

High-Performance Scenario Evaluation

This section presents the evaluation of a high-performance scenario for single convolution layer. This
scenario aims at exploring the design configuration that can achieve the best performance. Designs in
this scenario have the following features: (1) use DRAM-FPGA interface rather than PCIe to achieve
higher bandwidth; (2) select larger batch size— the number of input feature maps to be processed in
one pass — to cover initialisation latency and overhead; (3) consume most of the resources on board
to increase level of parallelisation.

The analysis model, which is already evaluated in the general evaluation section, is used as the core
component of the optimisation process in the scenario. And the optimisation process will examine all
possible parameter combinations, which are vectors of ⟨Bw,PF , PC , PK⟩, to select the combination
with best performance.

However, the performance model can be much simpler in this scenario. Because the DRAM to FPGA
interface has very high bandwidth (38.2 GB/s) and each transfer burst in each cycle has quite large
size (384 B), at most 384 × 8/32 = 96 number of elements can be transferred without delaying the

51



4.3. EVALUATION Chapter 4. MaxDeep

0 100 200 300 400 500 600
PF × PC × PK × K2

0

5000

10000

15000

20000

25000

30000

35000
LU

T
LUT pred
LUT usage

0 100 200 300 400 500 600
PF × PC × PK × K2

0

5000

10000

15000

20000

25000

30000

FF

FF pred
FF usage

0 100 200 300 400 500 600
PF × PC × PK × K2

60

70

80

90

100

110

120

BR
AM

BRAM pred
BRAM usage

0 100 200 300 400 500 600
PF × PC × PK × K2

0

200

400

600

800

1000

1200

DS
P

DSP pred
DSP usage

Figure 4.6: Evaluation the resource usage prediction of a single convolution layer.

Resource type Error Mean Error Variance
LUT 12.1% 0.006
FF 12.4% 0.006

BRAM 5.1% 0.006
DSP 1.4% 0.000

Table 4.11: Prediction error

computation process. Thus, in this scenario, the performance model can be simplified to Pcomp.

Figure 4.8 shows performance evaluation of valid builds for a convolution layer with shape (32 ×
32× 32× 32) and kernel sizeK = 3. Filter major sequence is used, and the data type is set to 32bit
fixed-point. In this case, the best parameter vector is ⟨PF , PC , PK⟩ = ⟨16, 4, 1⟩, and the expected
performance is 115.2GOP/s. This result is close to the value found by running the build in hardware,
which is 113.7 GOp/s.

Is there any chance to further increase the performance? There are two approaches: reduce precision
and increase clock frequency. After examining the resource usage, it is discovered that the maximal
performance is bound by DSP capacity, and change the bit width from 32 to 16 can enhance the
performance by a factor of 2. Although reducing the precision to 8 has no effect on DSP usage
per arithmetic unit, because both 16bit and 8bit fixed-point multipliers use 1 DSP, the total DSP
usage can be reduced due to resource tiling and alignment. In this case, the best parameter vector
is ⟨Bw,PF , PC , PK⟩ = ⟨8, 16, 8, 1⟩, and the expected performance is 230.4 GOP/s. Increase the
clock frequency can also enhance the performance. If the frequency is changed from 100MHz to
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Figure 4.7: Performance evaluation of a single convolution layer.

150MHz, then the overall performance will become 230.4 × 1.5 = 345.6 GOp/s. An experiment
with a design ⟨Bw,PF , PC , PK ,F⟩ = ⟨8, 8, 8, 2, 150⟩ shows that the result performance is 343.6
GOp/s.

Finally, we can push the clock frequency to 200 MHz. This design is named as CNV-BEST and its
performance is further compared with existing publications. The two publications selected present
designs that are state-of-the-art in 2015 and 2016 respectively. Note that it is reasonable to choose
8-bit fixed point as the target data type. We will show in Section 5.3 that 8-bit will have similar
accuracy as other longer data types. The result shows that our design is better in terms of resource
efficiency and only a bit less power efficient than Qiu et al. (2016), which might due to the difference
in FPGA platforms: Zynq is targeting embedded devices and is more energy efficient than Stratix V.

Zhang et al. (2015) Qiu et al. (2016) CNV-BEST

FPGA Virtex VX485T Zynq XC7045 Stratix V 5SGSDB
Technology 28 nm 28 nm 28 nm
Data Type 32-bit float 16-bit fixed 8-bit fixed
Freq. (MHz) 100 150 200

Power (W) 18.61 9.63 25.3
Perf. (GOp/s) 61.62 187.8 453.3
Resource Efficiency
(GOp/s/Slice) 0.81× 10−3 3.58× 10−3 6.91× 10−3

Power Efficiency
(GOp/s/W) 3.31 19.50 17.91

Table 4.12: Evaluation results of high-performance single convolution layer generated by MaxDeep,
compared with two previous publications.
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Figure 4.8: Evaluation of the high-performance scenario.

Multi-Pumping

In a previous version of MaxDeep, which was developed in the 2nd MRes project, multi-pumping
is supported to enhance the performance of the convolution layer. Multi-pumping is a hardware
resource saving technique that runs parts of a design at a integermultiple of the global clock frequency.
Suppose the integer multiple isM , then the resource can be saved by 1/M at most. This technique is
suitable for enhancing the performance of CNN designs, especially the convolution layer, because the
major resource bottleneck for performance scaling of the convolution layer is DSP, which has quite
high maximal frequency and the value of M can also be large. Thus, multi-pumping can help the
convolution layer consume less DSP blocks per unit and further increase the level of parallelisation.

Although this technique is promising, the current MaxDeep version doesn’t support multi-pumping,
for now, because most of previous codes have been rewritten. However, we can still predict the per-
formance enhancement by applyingmulti-pumping on CNV-BEST. The current CNV-BEST uses 57.16%
of total DSP resources and the global clock frequency is 200 MHz. According to the datasheet of
Stratix V, the maximum frequency of a DSP block is 500 MHz, which means that M , as defined
above, could reach 2. In this case, we can place double amount of processing units in the convolution
layer, which is the Conv2DKernel, and thus the total performance can also double, which becomes
906.6 GOp/s at the ideal circumstance.

There are some issues that might arise and prevent us getting this performance, such as bandwidth
limitation of the memory and failed timing while the FPGA tool running Place and Route. In the 2nd
MRes project, we have proven that multi-pumping works in enhancing the performance of convolu-
tion layers, but because the design is different between two versions, we need to further verify the
conclusion on the current version. Even though, it is still a promising technique that worth trying in
the future.
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4.3.2 Binarised and Depthwise Separable Convolution

The purpose of this section is to show that binarised convolution layer and depthwise separable layer
can achieve higher theoretical peak performance than a standard design.

Binarised Convolution Layer

We evaluate the resource usage of the binarised convolution layer at first, and then show a comparison
between the best binarised convolution layer design we can build with the state-of-the-art design from
a previous publication (Zhao et al., 2017).

Regarding binarised convolution layer, its performance is mainly bound by LUT and FF, and no
DSP usage is involved. Figure shows the resource usage from a set of real builds similar to the
ones presented in Section 4.3.1, except that the bit width of each build is 1. Figure 4.9 shows the
result of resource usage prediction through linear models trained in a way similar to Section 4.2.2.
Results show that accuracy of both models are above 96.6%. Assuming the performance of binarised
convolution layer is only bound by computation, which is listed in Equation 4.13, then it is feasible
to find the optimal set of parameters ⟨PF , PC , PK⟩ through constrained optimisation. The objective
of the optimisation is performance and the constraints are LUT and FF usage.
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Figure 4.9: Evaluation of LUT and FF usage in binarised convolution layer

After running through all valid parameter combinations, it is discovered that ⟨64, 64, 2⟩ can achieve
the best performance of a single binarised convolution layer. The predicted performance is 14.7
TOp/s. However, it is really hard for the FPGA toolchain to build a design as large as this one.
In the end, the best binarised convolution layer from MaxDeep is named as BCV-BEST, which has
⟨PF , PC , PK ,F⟩ = ⟨32, 32, 2, 150⟩.

Table 4.13 shows a comparison between BCV-BEST and one of the state-of-the-art binarised CNN
publication (Zhao et al., 2017). Our design is better in speed but the power consumption is higher.
It is possible due to the difference between the FPGA platforms. Also, our design is better in both
power efficiency and resource efficiency.

Depthwise Separable Convolution Layer

In terms of depthwise separable convolution layer, its performance is still bound by DSP, which usage
can be calculated by Equation 4.21. Following similar approach to binarised convolution, the set of
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Zhao et al. (2017) BCV-BEST Comparison

FPGA Zynq 7Z020 Stratix V 5SGSDB
Num. of LUT 46900 106034 2.26
FREQ 143 MHz 150 MHz 1.04
Speed (GOp/s) 318.9 1166.12 3.65
Power (W) 4.7 13.1 2.78
Eff. (GOp/s/W) 44.2 89.1 2.01
Eff. (GOp/s/kLUT) 4.43 10.99 2.48

Table 4.13: Performance comparison with a previous binarised CNN publication.

parameters with the best performance can be found, which are ⟨16, 16, 2⟩ and the performance is
115.31 GOp/s as predicted. Note that this number is derived from a different performance formula
rather than the one for standard convolution, because the number of operations is greatly reduced in
this case. It is not surprising to see the GOp/s number of the best depthwise separable convolution
layer less than the one of the best standard convolution layer.

Udsp
dws = (PC × PK ×K2 + PC × PF × PK)× Udsp

mul(Bw) (4.21)

Based on this prediction, we build a design (DWS-BEST) with parameters above and report its per-
formance and resource usage in Table 4.14. Note that we use 16 bit fixed-point data type here, be-
cause the FPGA build tool cannot handle very wide FIFO interface 2. We also compare the result of
DWS-BEST with CNV-BEST. It shows that the processing rate of the best depthwise separable design is
2.61 times faster than the standard convolution layer. Because the depthwise separable convolution
has smaller input feature map buffer, the BRAM usage of DWS-BEST is also smaller. The increase of
LUT, FF, and DSP usage is due to higher level of parallelisation in DWS-BEST.

DWS-BEST CNV-BEST

⟨Bw,PF , PC , PK⟩ ⟨16, 16, 16, 2⟩ ⟨16, 8, 8, 2⟩
FREQ (MHz) 150 200
LUT 26.52% 25.67%
FF 24.23% 23.35%
BRAM 40.96% 58.79%
DSP 49.20% 33.93%
Time per frame (µs) 21.1 41.6
Power (W) 26.9 25.3

Table 4.14: Report of resource usage and performance of depthwise separable convolution, compared
with CNV-BEST.

2 In our OpenSPL code we simply assignPF ×PC×K2 as the number of elements of the FIFO interface for coefficients
input of the depthwise convolution. Because we can achieve quite high level of parallelisation here, the width will become
approximately 73728 b if we use 32 bit data type, which is of no chance feasible to be built on real hardware. However,
we can reduce the width and read multiple cycles to fill in the coefficient registers to workaround this issue. We will not
cover this fix for now and evaluate this case in the future.
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4.3.3 Two Convolution Layers Evaluation

In this case, Equation 4.20 is used to predict performance and Equation 4.18 is applied to predict
DSP usage. For a design that runs two convolution layers in pipeline, there are 4 parameters to
be optimised: ⟨P (1)

F , P
(2)
F , PC , PK⟩. By searching all possible solutions, the best performing set of

parameters is ⟨4, 4, 8, 2⟩ and the predicted performance is 189.12 GOp/s. However, according to
the real performance on hardware, which is 107.9 GOp/s, we can find out that when the number of
layers is larger than 1, the bandwidth will become an issue that cannot be ignored. In this case, the
bandwidth required is 1824 B per cycle, which is much larger than the burst size (384 B).

4.4 Summary

In this chapter, we present MaxDeep, an OpenSPL-based CNN hardware library on the Maxeler
platform. MaxDeep contains essential parameterised building blocks to construct most CNNmodels.
These blocks, unlike relations in RubyConv, can be optimisedwith novel and practical strategies, such
as depthwise convolution, binarised convolution, and parameter tuning in level of parallelisation and
computation sequence. The resource usage and performance of these blocks can be predicted through
integrated analysis models. Analysis models for MaxDeep is devised with reasonable assumptions
and statistical methods, and their accuracies are guaranteed by evaluation results on real hardware
builds. Based on these models, we also provide a flow to find the best set of parameters for given
CNNmodels by searching for the solution under a constrained optimisation problem. Our evaluation
results show that the performance of designs built by MaxDeep is as what we expect.
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Plumber and Model-Hardware
Co-Optimisation

Plumber is a special transpiler that converts high-level CNN model to low-level hardware design.
The aim of plumber is to accelerate the migration process from a newly designed and trained CNN
model to a optimised and runnable hardware design, which is indeed tedious at the moment. Plumber
is targeting at providing compatibility with most CNN models developed by TensorFlow (Abadi
et al., 2016) or Caffe (Jia et al., 2014) with little pre-requisites, and porting models to different FPGA
platforms under various scenarios. Till now, the Plumber transpiler supports basic layers in CNN,
such as convolution layer and fully-connected layer. Also, it can transpile depthwise separable convo-
lution to the optimised hardware block in MaxDeep. Besides, the target hardware platform is limited
to the Maxeler platform with MaxDeep as the hardware library.

Besides, Plumber is integrated with a model-hardware co-optimisation module. This module not
only optimises hardware design parameters based on the given network model, but also changes
the network model itself. Thus, the optimisation problem has a joint objective, which is a score
that combines hardware performance, power consumption, and model accuracy as a weighted sum
function. Currently, model optimisation focuses on several high-level options, such as quantisation
and convolution layer replacement.

This chapter first describes the concept of dataflow graph (Section 5.1), which serves as Intermedi-
ate Representation (IR) that can be compiled from high-level CNN models (frontend), and is a single
source to different compilation processes that target different FPGA platforms and scenarios (back-
end). Then, this chapter presents details about the frontend process (Section 5.2.1) and the backend
process (Section 5.2.2). Section 5.2.1 also introduces high-level model optimisation strategies sup-
ported in Plumber at the moment. Section 5.2.3 discusses the co-optimisation module.

At last, we provide two evaluations of Plumber based on LeNet-5 (Section 5.3):

1. We first compare (Table 5.2) a baseline design (STD-BASE) of LeNet-5, which is generated di-
rectly fromMaxDeepwith sufficient hardware-level optimisation, with the best design (Q8b-BEST)
achieved after model-hardware co-optimisation. Result shows that Q8b-BEST is 1.59 times
faster than the baseline and its power consumption is 0.81 times less.

2. We then compare the performance of Plumber with TensorFlow on CPU and GPU, see Ta-
ble 5.3 for comparison details. In general, Q8b-BEST can achieve the best performance for 8bit
quantised LeNet-5.
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For now, we cannot make a comparison with previous publications in the field of CNN framework
on FPGA platforms because they are using network models different from us. In the future we will
support those models and make further comparison.

Plumber is implemented in Python with the latest version 3.6.

5.1 Dataflow Graph

Dataflow graph is a type of directed graph that represents dataflow in a specific computation. Each
node of the graph represents an operation and each edge represents a flow of data. In Plumber, nodes
of a dataflow graph can either be implemented in hardware or software, and its edges are on-chip
streams or streams between CPU and FPGA.

As mentioned before, dataflow graph in Plumber is actually an IR of the transpiler, which is nec-
essary for compatibility and furture optimisation. For example, although TensorFlow natively uses
dataflow graphs to represent high-level CNN models, operations of nodes in TensorFlow dataflow
graph are neither implementable on hardware nor can be replaced by operations that are easier to be
implemented. Also, models sources could come from other deep learning frameworks, such as Caffe
and Keras, which define CNN models in different ways. Thus, first transforming them into a unified
dataflow graph IR and then optimising it is a more efficient process.

This section describes the core concepts of Plumber dataflow graph IR, which include properties
of graph nodes and edges (Section 5.1.1), and how it is implemented in Plumber (Section 5.1.2).
Frontend and backend process of Plumber that respectively creates and utilises this dataflow graph
IR will be discussed in next sections.

5.1.1 Nodes and Edges

Nodes represent computational operations. Each node has three major properties:

1. Type specifies which operation the current node will run. Plumber currently supports 3 types of
nodes: CONV2D for convolution layer, MATMUL for matrix multiplication (fully-connected layer),
and DECONV2D for transposed convolution layer. Note that DECONV2D is not yet supported in
MaxDeep.

2. Device points where the operation will run on (CPU or FPGA). If the device is CPU, then the
operation will be executed by a software function. If the device is specified as FPGA, then
additional device information is required, such as the index of the FPGA board and the index
of the hardware block instance (there might be several instances for the same functionality).

3. Edges list input/output connections of the node. Each edge represents a data transfer from
one node to another, and it records the amount of data to be transferred and the source and
destination address of the transfer if off-chip memory is involved.

Based on nodes and edges, it is possible to construct how a complete CNN model will be processed
in the MaxDeep framework.
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5.1.2 Implementation

Plumber implements its dataflow graph IR in Google Protobuf 1, because its portability to many dif-
ferent languages and interfaces. The code snippet below shows an example dataflow graph generated
from the LeNet-5 network model. Note that essential information are attached to each node, such as
shape, data type, and whether to use pooling and ReLU. Also, Plumber provides convenient library
to operate the dataflow graph, which enables further optimisation algorithm development.

nodes {
name: "conv1"
op: "CONV"
data_type {

bit_width: 32
}
conv2d_def {

height: 28
width: 28
in_channels: 1
out_channels: 32
kernel_height: 5
kernel_width: 5
num_channels: 1
num_filters: 32
kernel_size: 5
has_2x2_maxpool: true
has_relu: true

}
}
...
nodes {

name: "fc1"
op: "FC"
type: MATMUL
data_type {

bit_width: 32
}
matmul_def {

num_rows: 1024
num_cols: 3136
has_relu: true

}
}
...

5.2 Plumber Transpiler

The system architecture of Plumber is illustrated in Figure 5.1. There are three major passes: model
optimisation (pruning and quantising), model parsing, and backend synthesising. Note that parsing
Caffe models is not supported at the moment.

1https://github.com/google/protobuf
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Figure 5.1: System architecture of Plumber.

5.2.1 Frontend: Model Parser and Optimisation

The model parser transforms raw TensorFlow model data, which is object of class GraphDef, into
the dataflow graph IR. Its main process has two steps: run TensorFlow built-in utilities and then run
specifically defined functions.

TensorFlow built-in utilities are defined in the graph_utils_impl package, and we choose to use
the following functions in sequence: convert_variables_to_constants freezes the network coef-
ficients into the model definition, and remove_training_nodes drops training nodes (such as gradi-
ent calculation nodes) that are useless while inferencing. Besides, if selected, Plumber will transform
specific types of nodes into their quantized version. Quantized nodes use 8bit or 16bit integer arith-
metic operations rather than floating point, which can reduce themodel size and allow better hardware
optimisation. Software implementation of quantized nodes are partially implemented by TensorFlow
— only a subset of all node types are supported, such as QuantizedConv2D and QuantizedMatMul,
and they are all implemented in MaxDeep.

We provide two additional utility functions, mainly for building and optimising the dataflow graph
IR. The first one is called convert_to_separable, which can convert a standard convolution layer
node to a depthwise separable convolution node. This function is the key to model-hardware co-
optimisation (Section 5.2.3).

Another function is named as filter_and_group_nodes, which filters out nodes that will not be
deployed on hardware (like a simple addition operation), and group nodes into the 3 supported node
types of dataflow graph. For example, if a convolution node is followed by max pooling and relu,
then the dataflow graph node generated will has its has_2x2_max_pool and has_relu fields have
true value assigned.

5.2.2 Backend: Software Code and Hardware Design Generation

In general, both software code and hardware design code are generated through templates.

Regarding software code generation, the template contains control logic to interactively walk through
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all nodes in the dataflow graph and generate corresponding function calls. Besides function call
generation, the software code generator also organises the memory space of the DRAM connected
directly to FPGA. Also, there will be a script file to link and compile the software side of the design.

Hardware code generation is more complex. There are two steps: search for the best set of design pa-
rameters and generate hardware based on it. The first step is also known as design space exploration,
which mainly solves a constrained optimisation problem, similar to the one introduced in MaxDeep
evaluation (Section 4.3). The objective of the optimisation is to maximise the performance. Con-
straints include resource usage and power consumption. According to discoveries in Section 4.3, the
design space for exploration is quite small and the performance function is easy to evaluate, thus in
Plumber we still use a brute-force solver.

Once the design parameters are settled, they can be further used in the second step to generate hard-
ware design code. In MaxDeep, hardware design codes are written in OpenSPL. And because all
kernel codes are parameterised, only a template file for specifying hardware manager is required.
This template file will also walk through all nodes in the dataflow graph and connects them through
streams.

All the templates and related rendering mechanics are provided by the Jinja library2.

5.2.3 Model-Hardware Co-Optimisation Module

Alongside with the transpiler, there is an integrated module in Plumber called Model-Hardware Co-
Optimisation (MHCO). Once the original model has been transpiled to hardware design and suc-
cessfully deployed, this module will first evaluate the performance and accuracy of the generated
hardware accelerator, and then give further optimisation directions. Figure 5.2 illustrates how this
module and the transpiler work together: the MHCO module accepts feedback information from
the built hardware, such as whether the design can be built or not and whether the performance is
satisfiable.

Based on the feedback information, MHCO can make the following decisions for now: replace stan-
dard convolution layers to depthwise separable convolution layers, or quantize the data type from
32bit into 8bit or 16bit. These two functions are already implemented in the Plumber frontend and
can be called while optimising the original model. After the decision has been made, the model
will be retrained based on the new topology or precision. The output of the MHCO module will
then become a retrained optimised model. Although it is possible to replace the type of convolution
layer or change the precision in a layer by layer approach, MHCO chooses to perform one selected
optimisation strategy on all layers at once, to reduce the complexity of the whole optimisation flow.

Note that only the layer replacement optimisation includes retraining, the data quantisation optimi-
sation only converts the trained weights into specified data type before inference.

5.3 Evaluation

Evaluation of Plumber focuses on one problem: could the co-optimisation module really enhance
the performance without hurting the model accuracy? To answer this question, we select datasets,
MNIST, which is designed for hand-writing recognition, and three networks, standard implemen-
tation (STD), quantised to 8 bit (Q8b), and depthwise separable replaced implementation (DWS).

2http://jinja.pocoo.org/
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Figure 5.2: Working flow of the Plumber transpiler and the model-hardware optimisation module.

The standard implementation is derived directly from the LeNet-5 topology3. As mentioned before,
retraining is not available for quantized networks, because TensorFlow has not yet supported this
feature. Also, based on a similar reason, it is not possible to combine depthwise separable layers with
quantisation. Thus, these three networks are what we can experiment with for now. Figure 5.3 shows
the relationship among all three types of networks.

The first step of evaluation is training. STD and DWS can be trained with Adam optimiser (Kingma
and Ba, 2014) on the MNIST dataset until good accuracy is achieved. And then, through Tensor-
Flow built-in graph transform tool 4, a quantized model of the standard convolution can be created.
Table 5.1 shows the accuracy of all trained networks and their model size. Note that on MNIST,
quantised LeNet-5 model can achieve the best accuracy with the smallest model.

Next, we deploy all three networks on real hardware, by passing their model files through the Plumber
transpiler and building the generated hardware design source codes. The Plumber transpiler can
recognise those optimisation options in raw TensorFlow models and annotate the dataflow IR with
these options. Then, the MaxDeep backend of the transpiler can process the dataflow IR and have

3http://yann.lecun.com/exdb/lenet/
4TensorFlow quantisation tutorial: https://www.tensorflow.org/performance/quantization
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Figure 5.3: Relationship between four evaluation networks.

Network Accuracy Model Size

STD 99.21% 13.1 Mb
DWS 98.76% 12.9 Mb
Q8b 99.25% 3.2 Mb

Table 5.1: Evaluation results of three networks on MNIST for their accuracy and model size.

all those optimisation options implemented in the generated hardware code. The optimiser of the
Plumber transpiler backend first discovers that there are four tunable parameters: P (1)

K , P (1)
F , P (3)

R ,
P

(4)
R in the generated LeNet design, and then locate the best set of parameters by solving a constrained

optimisation problem. Details about this optimisation process are introduced in Section 4.3.

Results show that aQ8b networkmodel with optimised design parameters is the best case for LeNet-5
hardware deployment. We name this design Q8b-BEST. To explicitly show the performance enhance-
ment, we also create another design built directly fromMaxDeep, without the co-optimisation process
in Plumber. This design is named as STD-BASE, it targets 32 bit data type and the standard LeNet-5
network without layer replacement or quantisation.

Table 5.2 summarises statistics of the best built network and the base design. The platform we use to
evaluate is same as Table 4.10. Note that the Q8b-BEST is better than STD-BASE in all aspects.

Metric Q8b-BEST STD-BASE Comparison

FREQ 200 MHz 150 MHz 1.0
LUT 23.03% 27.38% 0.839
FF 20.25% 25.63% 0.789
BRAM 31.24% 53.29% 0.586
DSP 62.71% 70.91% 0.884

Speed (FPS) 5034.71 3156.35 1.59
Power (W) 25.9 31.7 0.81

Table 5.2: Design statistics of the best built network.

We also compare STD-BEST and Q8b-BEST with results collected from CPU and GPU platforms. The
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objective of this evaluation is to compare Plumber generated designs with CPU and GPU software
in both standard network and quantised network, to show that Q8b-BEST is an optimal choice for
deploying LeNet-5. We use the latest version of TensorFlow (1.3.0), which is directly downloaded
from the officially published PyPI package 5, to run the software version and GPU accelerated version
of each network mentioned above. We use Intel i7-950 and NVIDIA Titan X as evaluation platforms
for CPU and GPU respectively. Result shows that Q8b-BEST can achieve the best performance and
power consumption in terms of quantised LeNet-5. Note that the quantised nodes in the current
TensorFlow version are not supported on GPU, and they are not well-optimised for the CPU platform
we use. Thus, the performance of Q8b on CPU is worse than standard implementation, and there is
no performance data for GPU in this case. We will try get a fair comparison result in the future.

Intel i7–950 Titan X Stratix V

Technique (nm) 45 16 28
Clock Freq. (MHz) 3.06× 103 1537 150
Num. of Cores 8 cores 3072 —
Framework TensorFlow (1.3.0) Plumber (MaxDeep)

STD Speed (FPS) 1252 1.23× 105 3156
STD Power (W) 114 243 31.7

Q8b Speed (FPS) 157 — 5035
Q8b Power (W) 114 — 25.9

Table 5.3: Comparison for LeNet-5 performance among CPU, GPU, and FPGA.

5.4 Summary

Plumber is a transpiler framework that end-to-end converts high-level CNN models into hardware
designs. It has a frontend that transforms CNN models into dataflow graph, an intermediate repre-
sentation in Plumber, and a backend that ports those dataflow graphs into hardware designs. The CNN
model can in different formats and the targeting hardware platforms can also be various. Plumber is
also integrated with a model-hardware co-optimisation module, which handles feedback information
from hardware builds and decides what the best optimisation strategy for the original CNN model.
Evaluation shows that, for a TensorFlow trained LeNet-5 model, Plumber can produce a hardware
design that can achieve 99.25% accuracy on the MNIST dataset and 2521 frames per second.

5https://pypi.python.org/pypi/tensorflow
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Chapter 6

Conclusion and Future Work

This chapter summarises achievements of this report, including the Ruby-based CNN building block
library, RubyConv, the OpenSPL-based CNN hardware library on the Maxeler platform, MaxDeep,
and the Plumber transpiler with model-hardware co-optimisation in Section 6.1. Section 6.2 lists
differences among this report and previous MRes projects. Section 6.3 then discusses possible future
work than can be extended from the current stage of the report.

6.1 Summary of Achievements

The ultimate target of this report is to accelerate the process that converts trained high-level CNN
models into hardware designs on FPGA platforms. To achieve this goal, we list and accomplish three
major objectives as follows:

1. RubyConv provides essential CNN building blocks written in Ruby, a high-level functional
hardware description language. By using RubyConv, we can construct hardware designs for
CNN in a concise approach, and analytically calculate their performance and resource usage.

2. Regarding hardware library on real FPGA platforms, we devise and implement MaxDeep, a
hardware library for CNN on the Maxeler platform. MaxDeep provides parameterised, flexi-
ble, and easy-to-use interfaces to construct CNN accelerator designs. MaxDeep also embeds
accurate analysis models that can predict the performance and resource usage of a complex
CNN accelerator design. Based on these analysis models, we provide an optimisation method-
ology to find the best design parameters for given CNN topologies, by solving constrained
optimisation problems. Moreover, MaxDeep supports building blocks for not only standard
convolution layers, but also depthwise separable and binarised convolution layers.
Our evaluation shows thatMaxDeep can achieve xxGOp/s for a single convolution layer, better
than xx. A complete LeNet-5 topology built and optimised by MaxDeep can achieve xx FPS.

3. We also design and implement a novel CNN model transpiler framework, Plumber, that can
transform high-level CNN topology description and trained weights into FPGA hardware de-
signs. The Plumber transpiler is accompanied with a model-hardware co-optimisation module
that directs CNN model optimisation based on feedback information of generated hardware
designs. For now, this co-optimisation module can re-train and compare several CNN models
created by replacing standard convolution layers with depthwise separable and quantizing them
to 8 bit representation.
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Our evaluation of Plumber, including the transpiler and the co-optimisation module, shows
that it can automatically optimise a standard LeNet-5 topology to its quantized version, based
on feedback information provided by MaxDeep-generated LeNet-5 hardware designs. The
best performance of LeNet-5 design generated by Plumber is achieved by quantization and
depthwise separable replacement, which is GOp/s.

6.2 Comparison with MRes Projects

Comparing with the first MRes project, which first presents the idea of MaxDeep, this report mainly
optimises the convolution layer architecture in many different aspects, such as increasing level of par-
allelisation, discussing three different computation sequences, and dives into the several cases when
connecting different layers. This report also provides more thorough and detailed analysis models
for performance and resource usage prediction, with sound evaluation on their accuracy. Moreover,
MaxDeep in this report can construct more layers, such as depthwise separable and binarised convo-
lution layers

In terms of enhancements comparing with the second MRes project, which focuses on implementing
multi-pumping for CNN hardware designs on FPGA platforms, this report provides broader hardware
optimisation options. This report considers multi-pumping as an orthogonal optimisation techniques.
Also, we suppose that multi-pumped designs created from MaxDeep described in this report can
achieve better performance comparing to those generated in the second MRes project, because levels
of parallelisation in this report are multi-dimensional and can become larger than the previous version.

6.3 Future Work

Future work of this report include extensions on all three objectives accomplished, which are listed
as follows:

1. For RubyConv, the most exciting work is to use Ruby as the target language of our CNN
transpiler. The benefit of this approach is that, generating CNN designs written in high-level
languages is much more concise and easier to implement regarding CNN model transpiler.
And the hardware library will be less tedious to maintain. To achieve this goal, we need to
enhance the current transpiler that converts designs written Ruby to other hardware description
languages, which can be synthesized directly on FPGA platforms, and generate CNN designs
from RubyConv.

2. MaxDeep also has several aspects that can be enhanced:

(a) It is better that MaxDeep can support more CNN layer types, ranging from recently devel-
oped layers like astrous convolution and deformable convolution to support latest CNN
topologies, to old-fashioned layers, such as LRN layer, to be compatible with typical
CNN architectures like AlexNet. It will also be beneficial to enable deconvolution layer
in MaxDeep, which is widely applied in many CNN architectures designed for computer
vision tasks.

(b) Because it is a trend that all CNN architectures are growing deeper, and cloud FPGA
platforms are becoming popular, we needMaxDeep to support constructing CNN designs
on multiple FPGA boards. MaxRing can be adopted to create multi-FPGA designs. Also,
we need to revise the analysis model to take this case into account.

67



6.3. FUTURE WORK Chapter 6. Conclusion and Future Work

(c) Moreover, it is interesting to mix several optimisation techniques, for example, mixing
precision of data representation or mixing convolution layer types. This enhancement
should be considered together with the Plumber transpiler and the co-optimisation mod-
ule. Also, we could consider not using external streams to read weights and alternatively
use on chip ROM for small layers.

3. Regarding Plumber, the major enhancement is to explore the possibilities of supporting several
CNN model sources, such as Caffe and MXNet, and FPGA platforms other than the Maxeler
platform. The latter target is challenging but beneficial, because many CNN hardware designs
are targeting embedded FPGA platforms.

In short, although this report has achieved several objectives, it will be more interesting when these
future work are accomplished.
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