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Abstract

Mixed-integer PDE-constrained optimization (MIPDECO) is a flexible framework with a mul-
titude of applications including tidal and wind turbine micro-siting, pharmaceutical business
operations and drug production, disaster recovery, and solid product creation, among others.
Yet due to the daunting nature of MIPDECO – namely, the combination of integer programming
and partial differential equations in a single optimization model – research and application of
MIPDECO algorithms is a largely unexplored field. This work provides a palatable introduction
to MIPDECO and the mathematical components which constitute it, along with two optimiza-
tion problems which have been formulated in a MIPDECO framework. Section 1 provides a
general introduction to the project, including goals, challenges faced, and contributions, along
with a series of tables summarizing all mathematical notation used in the rest of the work. Sec-
tion 2 presents a mathematical introduction to optimization, partial differential equations, and
MIPDECO. Section 3 extends this mathematical background by presenting the Source Inversion
problem in a MIPDECO framework, and novel gradient-based algorithms with which to solve it.
Section 4 follows with a detailed overview of the hyperparameters of the Source Inversion prob-
lem, which is then solved using both branch and bound, a mixed-integer nonlinear programming
(MINLP) algorithm, and four gradient-based algorithms. A detailed analysis of time complex-
ity and accuracy for each algorithm is offered. Section 5 introduces tidal turbines and tidal
stream turbine optimization – a real-world MIPDECO problem. After reviewing the problem
layout from a high level, previous gradient-based optimization methodologies are reproduced,
focusing on maximizing power from a field of tidal turbines. A few subsections are dedicated
to formulating a new objective function to incorporate time-discounting, revenue, and cost into
the model, and a hybrid two-step MIPDECO-based formulation of the optimization problem is
presented. Finally, I compare the performance of several gradient-based (MIPDECO and non-
MIPDECO formulations) optimization routines using the new profit-based objective functional,
ultimately coming to the conclusion that MIPDECO methods for tidal stream turbine optimiza-
tion are far more efficient, but slightly less accurate than the conventional discrete algorithm,
and MIPDECO offers a significant improvement over the former continuous and discrete hybrid
model presented by different authors in a previous work. The last section summarizes the results
and scope of this project, and offers direction for further research.
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Chapter 1

Introduction

Process optimization is pervasive in human proceedings. A business owner, for instance, wishes
to maximize the profit of the business. A construction manager wants to minimize the time it
takes to complete a project, subject to certain quality standards. A military commander desires
to minimize the financial, human, and ethical cost of a war, while still ensuring that their side
obtains victory. In order to solve any of these problems, one must mathematically formulate the
problem (which may be difficult – how can one quantize ethics?) by defining decision variables
(the inputs), and the objective function (which returns the value one is attempting to maximize
or minimize, given the inputs). After a problem is defined and formulated, one can solve the
problem by finding peaks (maxima) or troughs (minima) of the objective function using a host
of mathematical techniques. While this overarching framework of mathematical optimization is
solidly grounded, the unrelenting emergence of newfangled real-world problems necessitates the
development of novel optimization methodologies.

One such problem emerges from the field of renewable energy: solar, wind, and tidal power,
in particular, hold immense – and untapped – promise for the future of energy generation. As
Magagna and Uihlein note, ‘despite a high potential associated with ocean energy worldwide,
the electricity production from ocean energy is negligible’ [1]. Although clean, environmentally-
friendly, and renewable energy is seen as socially and politically desirable, heretofore there has
been little economic impetus for renewable energy projects, except in geographically favorable
areas (i.e. wind or tidal turbines in areas with exceptionally strong winds or tides, such as
Canada’s Bay of Fundy). The strong headwind to widespread renewables adoption is the relative
cost – a 2014 report notes that the levelized cost of energy generation for tidal energy is 3x that
of established energy generation methods. Also noted, however, is that the cost of presently-
nascent modes of renewable energy generation is projected to fall relatively faster than the costs
of traditional generation methods as solar, wind, and tidal technologies are further developed
[2]. One arm of cost-saving technological improvement lies in the hardware itself – increasing the
efficiency of solar panels, the resiliency of tidal turbines, and so on. Another crucial component
is efficiency as a function of location: given a certain set of hardware (turbines, solar panels),
how can one best place the components of this set in order to extract the most power, or to
derive the most profit? This MSc individual project is constructed with tidal energy in mind,
and seeks to find a better technique for maximizing power extraction and lifetime profit of an
array of tidal turbines situated in a given domain, subject to the physical constraints of turbines,
tides and water.

While solving this problem is the project’s telos, we require a significant mathematical foun-
dation before tackling tidal stream turbine optimization (TSTO), which relies heavily on partial
differential equations (which model the movement of the tides and tidal wakes of the turbines),

1
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gradient-based-optimization (which allows us to efficiently solve a TSTO problem), and mixed-
integer programming techniques (which allow us to individually resolve locations of discrete
turbines). In light of this, I will present an extensive introduction to gradient-based and inte-
ger optimization and partial differential equations in order introduce the primary tool of this
project, mixed-integer PDE-constrained optimization (MIPDECO). Next, I will dive into the
relatively simple Source Inversion problem in order to demonstrate the power of MIPDECO –
and its shortfalls – by benchmarking novel MIPDECO algorithms against each other and against
branch and bound, a standard mixed-integer nonlinear programming (MINLP) algorithm; the
optimization problems are constructed using open-source software FEniCS, CasADi, and dolfin-
adjoint, while existing implementations of gradient-based algorithms from SciPy and IPOPT are
used. With the mathematical underpinnings of MIPDECO explicated, I will present a detailed
introduction to tidal turbines and optimization thereof, recreating previous work with modified
parameters. Finally, I will introduce and solve my own formulation of the tidal stream turbine
optimization (TSTO) problem utilizing MIPDECO techniques. Previous and novel TSTO al-
gorithms are implemented in an extended version of the open-source software OpenTidalFarm.
Results and analysis will follow, ultimately concluding that MIPDECO provides a useful and
flexible framework which sacrifices a small measure of accuracy for massive improvements in
time complexity.

1.1 Goals
1. Simplify the MIPDECO process. One aim of this project is to break MIPDECO

down into a palatable process and provide MIPDECO algorithms which are benchmarked
against branch and bound, a well-known mixed-integer nonlinear programming (MINLP)
algorithm.

2. Combine integer and gradient based optimization. Due to the integer variables
inherent to MIPDECO, I want to find a fusion of integer programming and gradient-
based optimization which strikes a satisfying balance between accuracy and computational
efficiency.

3. Provide solved problems and prove MIPDECO is useful. The Source Inversion
section seeks to present a detailed solved MIPDECO problem, as accessible examples are
few and far between. In order to highlight the applicability of MIPDECO in the real
world, this paper seeks to present novel MIPDECO techniques for tidal stream turbine
optimization which perform well against the state-of-the-art methods.

1.2 Challenges
1. Lack of background work. The primary challenge of this project lies in the lack of any

background work in MIPDECO. Though a multitude of real-world optimization problems
present themselves naturally in a MIPDECO framework, researchers have tended to recast
these problems in a simpler mould before solving them with more familiar techniques.

2. Integers and gradients. Many of the problems I solved were computationally intractable
in closed form, as a huge number of integer decision variables resulted in a combinato-
rial explosion for MINLP algorithms such as branch and bound. As a result, I often
applied gradient-based optimization to continuous relaxations of integer variables. Conse-
quently, solution methods result in a trade off: gradients and continuous relaxations ensure
computational efficiency, but MINLP and integer variables (if tractable) ensure accuracy.
Frustratingly, the trade-off is inherently subjective – the desire to maximize accuracy or

2
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computational efficiency is specific to the problem being solved and the researcher’s desired
accuracy and time constraints.

3. Poorly posed problems. Depending on the exact formulation used, the Source Inversion
and MIPDECO problems can contain independent variables which scale with the fineness
of the discretized domain (the mesh) which define the bounds of the optimization problem.
As the mesh fineness increases, these problems become computationally intractable quite
quickly.

4. Computational time/memory complexity. Even without mesh-dependent indepen-
dent variables, the size of MIPDECO problems (tens of thousands of independent vari-
ables) can make them quite difficult to solve, with a laptop computer either running out
of memory, or taking 24+ hours to solve a single optimization problem.

5. Error tolerance. Much of chapters 3 and 4 are devoted to comparing gradient-based
algorithms to branch and bound. The runtime of gradient-based algorithms is highly
dependent on a prespecified error tolerance, however, while branch and bound always finds
an exact answer through an intelligent global search. Consequently, comparing algorithm
runtimes can be a bit misleading, as there is no objectively ‘correct’ error tolerance.

1.3 Contributions
1. Novel algorithms for the Source Inversion problem. There exist very few exam-

ples of formulated and solved MIPDECO problems. Sections 3 and 4 provide a detailed
explanation of how to set up and solve a MIPDECO using gradient-based approxima-
tion techniques, while benchmarking gradient-based algorithms against branch and bound
implemented in CasADi using IPOPT, a high-performance MINLP solver.

2. Integration of cost modeling into a tidal stream turbine optimization model.
Section 5 introduces a new objective function for tidal stream turbine optimization which
attempts to strike a balance between accuracy and simplicity, incorporating the levelized
cost of energy generation, inflation, and time-discounting. Unlike previous propositions,
the objective function used in this work is not at the behest of a user-supplied profit
margin, and is not burdened by the complexity of using a cable-routing problem driven by
a genetic algorithm to determine cost.

3. Providing a novel MIPDECO framework for tidal stream turbine optimization
in OpenTidalFarm. Building off the work of Funke et al., I formulate a modified version
of the tidal stream turbine problem as MIPDECO, and introduce a novel algorithm which
retains most of the efficiency of Funke et al.’s continuous model, and much of the accuracy
of their discrete model. For this purpose, I added support for MIPDECO problems to
OpenTidalFarm, an open source software for tidal stream turbine optimization.

1.4 Mathematical Notation and Abbreviations
Before a mathematical introduction to optimization techniques and partial differential equa-

tions, the following reference tables outline the notation that will be used in this project. Note
that the Source Inversion and TSTO problems have their own tables for problem-specific nota-
tion, and that the final table contains the definitions of the (many) abbreviations which appear
often in this project.

3



1.4. MATHEMATICAL NOTATION AND ABBREVIATIONS

Basic Notation Definition

x A bold lower-case letter denotes a vector which exists in the
appropriate vector space.

xT The transpose of the vector x.

xti The subscript on a lower-case letter always denotes a par-
ticular component of a vector, while a superscript denotes
its position in time. Thus xti is the i’th component of x at
time t.

A An upper-case letter denotes a matrix which exists in the
appropriate vector space. Similarly to vectors, a ‘T’ super-
script denotes the transpose. while a ‘t’ supercript denotes
time. Atij represents the ij’th component at time t.

0 A bold zero denotes the zero vector which exists in the ap-
propriate vector space.

g(x) A boldface function is used when the inputs are mapped to
a vector. In other words: g : Rn → Rm, where n and m are
positive integers greater than 1.

Ck The space of k-times continuously differentiable functions

O(n) The asymptotic memory or time complexity of an algorithm
as a function of the algorithm’s n inputs.

〈., .〉Ω The inner product over vector space Ω.

||.||22 The L-2 norm squared.

¬�(x = y) x is not required to equal y

PDE Notation Definition

u A function of a vector of decision variables and the partial
derivatives of that function with respect to the decision vari-
ables. In long form, this may be written as u(x,ux,uxx, ...)
where ux denotes the gradient of u with respect to x.

H A possibly infinitely dimensional Hilbert Space. Subscripts
are used to identify unique Hilbert Spaces when more than
one is involved.

V The finite Hilbert Space derived from H using the finite
element method.

F(u,x) A system of partial differential equations which can be
parametrized by its decision variables x, and the function u
and its partial derivatives with respect to x.

F(u,x) The discrete system of partial differential equations (i.e. the
PDE after the finite element method has been applied).

Ω The domain over which a system of partial differential equa-
tions holds.

δΩ The boundary of the domain Ω.

Θ The discretized version of domain Ω. In other words, the
result of applying the finite element method to Ω.
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1.4. MATHEMATICAL NOTATION AND ABBREVIATIONS

Optimization Notation Definition

arg min
x

f(x) A minimization problem posed as such: find x such that the
objective function f is minimized.

J (u,w) The objective functional in a PDE-constrained optimiza-
tion problem or Mixed-Integer PDE-constrained optimiza-
tion (MIPDECO) problem.

L(x,λ) The objective Lagrangian function with decision variables x
and Lagrangian multipliers λ.

x∗ The solution vector to an optimization problem. In other
words x∗ = arg min

x
f(x).

∇xf(x) The gradient, or vector of first-order partial derivatives of
function f with respect to decision variable vector x.

∇xxf(x) The Hessian, or matrix of second-order partial derivatives of
function f with respect to decision variable vector x.

H The approximation of the Hessian matrix as used in
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimiza-
tion method.

∆f(x) The Laplacian, or sum of second-order partial derivatives of
function f with respect to decision variable vector x.∫

Ω The integral over the domain Ω.

Source Inversion Notation Definition

Ω The continuous domain (a unit square).

Θ The discrete domain, (a unit square), represented by a m x
m mesh, where m is a positive integer.

n Source function number parameter. An evenly spaced sub-
square of n x n source functions is embedded into the mesh.

m Mesh vertex parameter; mesh Θ has m+ 1 x m+ 1 vertices.

w The vector of binary decision variables corresponding to the
centroids of source functions.

ū The continuous reference PDE. After applying the finite el-
ement method, this changes to ūd, the discrete reference
PDE.

u The continuous source PDE. After applying the finite ele-
ment method, this changes to ud, the discrete source PDE.

a The scaling hyperparameter for Gaussian source functions.

V The set of all vertices in the domain, Ω.

σ The variance hyperparameter for Gaussian source functions.

α∗ The penalty parameter for the penalty objective function.

S The maximum number of activated source functions.

A The constraint matrix for the cont. algorithm (sum control).

εL1 The error metric which measures the difference between the
solution to the reference PDE and the solution to the recon-
structed reference PDE.
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1.4. MATHEMATICAL NOTATION AND ABBREVIATIONS

Tidal Turbine Notation Definition

CT Thrust coefficient for a single turbine.

AT Diameter of the area swept out by the blades of a turbine.

t t ∈ (0, T ), the simulation period.

Ω The turbine farm state space.

ρ fluid (water) density.

u Velocity of the flow.

ν Free surface displacement.

g Acceleration due to gravity.

cb Constant background bottom friction.

ct Enhanced friction of parametrized turbines.

H Resting water depth.

m A vector representing the location of discrete turbines on a
2-dimensional grid - i.e. [x1, y2, x2, y2, ...xn, yn].

w A vector of binary variables corresponding to vertices of the
discretized farm area. If wi = 1, a turbine is present at
vertex i; else, no turbine is present.

P (.) Power or profit as a function of discrete turbine location or
binary variables.

κ Denotes time stationarity; κ is 0 if stationary, else 1.

LCOE The levelized cost of energy (MWh).

Ot Energy output (MWh) at time t.

Ct Raw cost of energy (MWh) produced at time t.

Et(u, .) Energy produced at time t (MWh) as a function of the ve-
locity of flow u and location variables m or binary location
variables w.

Abbreviations Definition

PDE Partial Differential Equation

MIPDECO Mixed-Integer PDE-Constrained Optimization

MIP Mixed Integer Programming

MINLP Mixed Integer Nonlinear Programming

BFGS Broyden-Fletcher-Goldfarb-Shanno Algorithm

SQP/SLSQP Sequential (Least Squares) Quadratic Programming

FEM Finite Element Method

FDM Finite Difference Method

FVM Finite Volume Method

DTP Dynamic Tidal Power

ADM Actuator Disc Momentum Theory

TSTO Tidal Stream Turbine Optimization
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Chapter 2

Mathematical Background

2.1 An Introduction to Optimization

Before diving into MIPDECO, it is necessary to introduce the basics of constrained optimiza-
tion formulations and algorithms which are used to solve such problems. I will assume the reader
has knowledge of linear algebra and matrix calculus. For a more in-depth examination of linear
algebra, matrix calculus, and optimization, the interested reader may also refer to Bretscher [3]
for a linear algebra refresher, Peterson & Peterson [4] for a review of matrix calculus, and to
Chong & Zak [5] as a source on mathematical optimization and convexity.

2.1.1 Constrained and Mixed-Integer Optimization

A continuous optimization problem may be formulated as a maximization or minimization prob-
lem subject to constraints. It is important to note that maximization and minimization prob-
lems can be interchanged to find the same solution, as the equality max

x
f(x) = −min

x
− f(x)

always holds. To construct an optimization problem, we can take decision variable(s) x ∈ Rn
as the inputs. Given an objective function f : Rn → R, and constraints g(x) : Rn → Rm,
h(x) : Rn → Rp, a constrained optimization problem may be written as:

min
x

f(x) s.t.

{
g(x) = 0

h(x) ≤ 0
(2.1)

In some situations, the values of some or all of the decision variables may be constrained to
be integers. For instance, if decision variables x ∈ R3 represents the quantity of Nitrogen,
Potassium, and Phospates, which are purchased in kilograms and mixed together in a certain
ratio in order to create fertilizer, a farmer may wish to maximize the total amount of fertilizer
created subject to a certain budget/cost of each ingredient and the fact that each ingredient must
be purchased in a non-negative integer amount. This integer-constrained optimization problem
(and any general problem) is identical to the continuous optimization problem in Equation
2.1, with the stipulation that some (mixed integer programming or MIP) or all (pure integer
programming or IP) of the decision variables must be integers. Formally, if given x ∈ Rn+k,
function f : Rn+k → R, and constraints g(x) : Rn+k → Rm, h(x) : Rn+k → Rp, the optimization
problem takes the familiar form, with k integer variables (and n = 0 continuous variables) for an
IP, and k integer variables and n continuous variables in a MIP. We may write the optimization
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2.1. AN INTRODUCTION TO OPTIMIZATION

problem as (assuming that k + n = N):

max
x

f(x) s.t.


g(x) = 0

h(x) ≤ 0

xi ∈ Z ∀i ∈ 1, ...,K

xj ∈ R ∀j ∈ K + 1, ..., N

(2.2)

Now let us take the example of the farmer who is trying to make as much quality-weighted
fertilizer as possible subject to his continuous budgetary and integer quantity requirements. If
we assume that the quality of fertilizer varies depending on the location at which it is stored
at the farm (i.e. the weather conditions the stored fertilizer is subject to) and the duration for
which it is stored and unused, we can now formulate this problem as a mixed-integer PDE-
constrained optimization problem. In other words, the quality-adjusted quantity of fertilizer
created now depends on decision variables (some of which are integer-constrained) which also
vary over time and space (or, in other words, a system of partial differential equations which
exist in a domain encapsulated by the farm). If we generalize this idea, we may formalize a
mixed-integer PDE-constrained optimization (MIPDECO) problem as an extension of Equation
2.2 (a detailed treatment of PDEs follows this section). In mathematical terms, it is important
to note that the decision variable x now exists in a possibly infinite-dimensional Hilbert space
(potentially rendering direct optimization impossible), as it is affected by the PDE in a varying
manner over the entire domain. The resulting optimization problem takes the form (where F
denotes the PDE system, and K and N are potentially infinite):

min
u,x

J(u,x) s.t.



F(u,x) = 0

g(x) = 0

h(x) ≤ 0

xi ∈ Z ∀i ∈ 1, ...,K

xj ∈ R ∀j ∈ K + 1, ..., N

x,u ∈ H1,H2

(2.3)

Solving this optimization problem in a well-posed situation can be extremely difficult, and
to cause further headache, MIPDECO problems are often nonconvex and nonlinear! The next
few sections will present a high level analysis of solution techniques, before delving into the
algorithmic and mathematical specifics applied to particular problems in the following chapters.

2.1.2 Solving a Continuous Optimization Problem

A continuous optimization problem in its most basic form, that is, Equation 2.1 without equality
or inequality constraints (i.e. no g(x) or f(x)) can sometimes be solved trivially in closed form
by taking partial derivatives with respect to the decision variables and setting the resulting
equations equal to zero. In the oft-occurring situation in which a closed form solution is not
available, however, an unconstrained optimization problem may be solved using methods derived
from three major categories.

1. Gradient-based, or first-order methods, are optimization algorithms which only take
into account the gradient of the objective function with respect to the decision variables.

2. Second order optimization algorithms take the gradient of the objective function and
the Hessian matrix (the matrix of second-order partial derivatives of the objective function
with respect to the decision variables) into account.
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2.1. AN INTRODUCTION TO OPTIMIZATION

3. Derivative-free methods do not take any derivative information into account, relying
solely on heuristics, global search techniques, and/or privileged information such as the
Lipschitz constant or convexity when optimizing.

It is important to note that each optimization class and the algorithms therein have special
requirements for convergence, an examination of which is out of the scope of this project, though
the interested reader can refer to Chong & Zak’s Optimization textbook [5]. The following table
presents some basic requirements and properties for each class of optimization algorithms. Note
that there is often a trade-off in computational complexity: as a general guideline, second-order
algorithms require the fewest number of iterations to converge (i.e. they have the lowest time
complexity), followed by gradient methods and then derivative free methods. On the other
hand, second-order methods require the most memory (i.e. highest memory complexity) as they
need to store gradient and hessian information, followed by gradient and then derivative-free
methods. As I will show shortly, in the case of MIPDECO problems, gradient-based methods
provide the optimal trade-off in terms of minimizing time and memory complexity.

Table 2.1: Optimization Algorithm Class Requirements and Properties

First-Order Second-Order Derivative-Free

Objective function ∈ C1 Objective function ∈ C2 O.F. differentiability optional

∇xf(x) (gradient) ∇xf(x), ∇xxf(x) (grad. and Hessian) N/A

Moderate Memory, Time High Memory, Low Time Low Memory, High Time

While the above optimization methods can be applied directly to unconstrained optimiza-
tion problems, introducing equality constraints necessitates the usage of an augmented objective
function known as the Lagrangian, which incorporates the offending constraints into the objec-
tive function as a penalty term (similar to a regularization term). Taking Equation 2.1 as an
example (and disregarding the inequality constraint), the optimization problem is transformed
(with the vector λ being composed of Lagrangian multipliers) to:

min
x
L(x,λ) = f(x) + λTg(x) (2.4)

If a regularity condition and the Lagrange condition holds, this problem may be solved in
closed form. If the necessary conditions do not hold, Equation 2.4 is treated as an unconstrained
optimization problem and can be solved using one of the optimization method classes in Table
2.1.

The inclusion of inequality constraints (with or without equality constraints) results in a
similar optimization problem as in Equation 2.4 (note that there are separate Lagrangian mul-
tipliers for inequality and equality constraints, as the corresponding optimality conditions are
different):

min
x
L(x,λ) = f(x) + λTg(x) + µTh(x) (2.5)

The presence of inequality constraints necessitates the deployment of the Karush-Kuhn-
Tucker conditions to solve the problem in closed form if it is nicely posed (i.e. a host of regularity
conditions are satisfied) [7] [8]. Unfortunately, fulfillment of these conditions is generally not
the case for my work, and thus the application of optimization methods derived from Table 2.1
is required.

2.1.3 Solving an Integer Optimization Problem

The inclusion of integer decision variables greatly complicates any optimization problem, as all
derivative-based algorithms are inapplicable due to the lack of continuity and differentiability of
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the objective function with respect to the integer variables. Consequently, there exists a limited
range of options. The first, and easiest, method, is to first solve a continuous relaxation of the
optimization problem using gradient-based or second order methods, followed by a rounding or
otherwise heuristic to transform the relevant optimal continuous decision variables into integer
variables. There are no guarantees, however, that rounding each decision variable (or using
a different conversion heuristic) of the optimal continuous solution to the nearest integer will
result in the optimal integer solution.

In order to obtain a more precise solution without first solving the continuous relaxation,
one can add a penalty term to the objective functional which increases (min) or decreases
(max) the objective function when the integrality constraints are violated. For instance, let us
consider decision variables x where xi ∈ {0, 1} ∀i, and a minimization problem such as in 2.1
but without any constraints (though this method easily extends to handle constraints). The
objective functional may be modified with a penalty term as such:

min
x

f(x) +
N∑
i=1

α∗i xi(1− xi) (2.6)

As we are trying to minimize the objective function, for each component of x that is not precisely
0 or 1, a penalty will be added to the objective function, thus discouraging any non-binary
values of the decision variables. A drawback to this method, however, is finding the precise α∗i
which does not under-penalize xi for violating the binary constraints, but also does not penalize
violation to the extent that the optimization problem only finds feasible configurations of x. As
the complexity of finding α∗i increases in the number of decision variables, a simpler – and less
powerful – method is to just apply a single value α to each xi instead of custom-fitting each term.
If we do find the optimal value(s) of αi or α, then any gradient or second-order optimization
algorithm can be used to solve for integer or approximate-integer solutions.

The last paradigm for solving optimization problems with integer variables is based around
using derivative-free algorithms that specialize in finding integer solutions, such as branch and
bound or branch and cut. These mixed-integer (nonlinear) programming (MIP/MINLP) algo-
rithms use divide and conquer methods (branch and cut adds cutting planes) to exhaustively
search the domain of an optimization problem for exact and optimal integer solutions. As a
principal impetus of this project is to attempt to solve MIPDECO problems efficiently with a
gradient-based approach, as compared to the accurate (and often computationally prohibitive)
MINLP algorithms, I will devote little time to an analysis of the methods used, aside from an
overview of branch and bound, the MINLP baseline which my gradient-based methods will com-
pete against. For an overview of the history of integer programming and detailed descriptions
of the algorithms used, see Doig [10], Gomory [9], Dakin [11], Cornuéjols [12], and Padberg and
Rinaldi [13].

2.1.4 Optimization Algorithms and Complexity

Solving an optimization problem requires us to find the configuration of decision variables x∗

which results in the lowest value (if a minimization problem) or highest value (if a maximization
problem) of the objective function. When solving the problem in closed form is not an option,
one instead chooses an initial configuration of the decision variables xinit. If using a derivative-
free method, then some heuristic is required to guide exploration from xinit → x1 → ...→ x∗. In
principal, the simplest option would be to evaluate every possible configuration of decision vari-
ables in the domain, storing each configuration and the corresponding objective value function;
we would then simply pick best configuration. In MIPDECO problems, however, the domain is
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so large that this technique – a ‘global search’ – is infeasible. For instance, in the least compu-
tationally demanding problem I will be solving, x ∈ R16 with xi ∈ {0, 1}. Even in this simple
scenario, a global search would require 216 functional evaluations – clearly, this approach is not
scalable.

Having crossed out the derivative-free class, the two remaining methods both search the
domain to find x∗ using gradient and/or second-order information to guide the search direction.
Importantly, it can be shown that the gradient of a function points in its direction of maximal
increase (and thus the negative gradient points in the direction of the maximal decrease) [5].
Now consider a generic unconstrained minimization problem with initial decision variable con-
figuration xinit. A gradient-based optimization algorithm will derive a descent direction based
on the gradient of objective function with respect to the current configuration of the decision
variables (starting with xinit), and then ‘step’ in that direction with step-size αt, which is chosen
during each iteration of the descent algorithm by an exact line search or a heuristic approxi-
mation thereof (such as backtracking) until some termination condition is reached (generally an
error tolerance for the change in objective function value, gradient value, or decision variable
value between iterations, i.e. ||xt − xt−1|| ≤ ε). A second-order optimization algorithm follows
same process, except that it considers gradient and second-order information when deriving the
descent direction. Formally, if we are given decision variables x ∈ Rn and during each iteration
choose a descent direction dt ∈ Rn, a general descent algorithm is:

Algorithm 1 Descent Algorithm (Minimization)

1: Begin with objective function f(x), xinit, and set time t = 0
2: while termination condition not satisfied do
3: Derive descent direction dt

4: Choose αt by a suitable line search
5: xt+1 = xt − αtdt
6: t+ +

7: return xt+1

The choice of d depends on the algorithm used, and can incorporate gradient information
(steepest descent, conjugate gradient descent, etc.) and second order information, or approxima-
tions thereof. It is important to note the varying space complexity of different descent directions
choices, resulting in the inapplicability of second-order methods to the PDE-constrained opti-
mization problems I will be considering.

To illustrate the space complexity issue, we can consider Newton Descent, which chooses
the descent direction dt = −[∇xxf(xt)]−1 · ∇xf(xt) during each iteration. The construction
of dt requires the inversion of the Hessian matrix – an O(n3) task in n decision variables. For
large optimization problems (such as those with PDE constraints) which may include thousands
or hundreds of thousands of decision variables, any sort of iterative second order optimization
method is computationally intractable. While the Cholesky Decomposition or Woodbury For-
mula can be used to calculate the inverse directly and more efficiently the baseline memory
requirements (storing the Hessian at each iteration is O(n2)) are ultimately too high to use
second order optimization methods reliably. With a host of mathematical tricks, however, first
order gradient-based methods which require calculation of dt = ∇xf(xt) – only an n x 1 gra-
dient with n decision variables – or second order approximation methods using only gradient
information (such as the Banno-Farb-Goldstein-Shanno (BFGS) and quasi-Newton algorithms)
do remain feasible. If one recalls the trade-off described earlier in this section, we may think of
second-order methods of being extremely time-efficient, but requiring a huge amount of memory
to use, while the written-off global methods are extremely space-efficient, but require a large
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amount of time (many iterations) to use. Gradient-based optimization algorithms, however,
are moderately time-and-space efficient. The interested reader may refer to Chong and Zak’s
Introduction to Optimization [5] for extensive analysis of optimization methods and their time
complexity.

Table 2.2: Optimization algorithms with O(n) space complexity in n variables

O(n)

Gradient Descent

Stochastic/Conjugate Gradient Descent

Sequential Quadratic Programming

Secant Method

BFGS/L-BFGS-B

As a result of the discussion above, only optimization algorithms whose space complexity is
O(n) are feasible. Despite the oft-lower time complexity of Newton Descent and similar methods,
the memory requirements of O(n3) and > O(n3) algorithms are too large to be able to process
PDEs; as noted before, derivative-free methods have prohibitively high time complexity.

An additional importance to note is that MIPDECO problems are inherently nonconvex due
to the integer variables – though their continuous relaxations may be convex (see the Appendix
for a detailed explanation of convexity and global/local extrema) – and thus do not have a
single unique global minima. Without the aforementioned global search, then, gradient-based
algorithms will not necessarily return the globally optimal x∗, but rather a locally optimal
x∗
local. In an attempt to find the best possible local minima, we can vary the initial parameters

of the optimization problem. That is, if we run a gradient-based (or otherwise) optimization
algorithm on an optimization model using a different xinit each time, then the output of the
algorithm x∗ may terminate at a different local optimum during each run of the optimization
algorithm. If we iterate, say, 10 times, with random (or intelligently-informed) initialization
values of the decision variables, we may simply pick the configuration of the decision variables
in the resulting set which yield the best objective function value (i.e. those decision variables
corresponding to the best local minima). While one may note that there is a significant amount
of extra computational effort in this strategy, the memory complexity is maintained–that is, a
O(n) gradient-based algorithm is still O(n), while the time complexity increases linearly in the
number of algorithm re-runs. For instance, if a gradient based algorithm has time complexity
O(n), then running m iterations results in the entire pipeline having complexity m · O(n). Any
algorithm will then asymptotically retain its original time and memory complexity, supporting
the original justification for using only algorithms with O(n) memory complexity.

2.1.5 Relevant Optimization Algorithms

In the following MIPDECO case studies presented in chapters 3, 4, or 5, I will use the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) and sequential quadratic programming (SQP) algorithms for
unconstrained and constrained optimization, respectively, as implemented in Python’s SciPy
package. It is important to note that these are both gradient-based nonlinear optimization algo-
rithms which use first-order gradient information to approximate the Hessian matrix, a crucial
component of Newton descent. In other words, the algorithms I am using are gradient-based
approximations to Newton descent (BFGS) and Newton descent with equality and inequality
constraints (SQP). The performance of optimization routines incorporating these algorithms will
be compared to the MINLP algorithm branch and bound, which I have implemented in Python
using the open-source CasADi package with IPOPT as the MINLP optimization module therein.
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2.1.6 Newton Descent

Consider the nonlinear unconstrained optimization problem with f : Rn → R, and decision
variable x ∈ Rn. For now, we do not consider constraints.

min
x

f(x) (2.7)

Given an initial choice of decision variables x0, Newton Descent uses the descent direction
dt = −[∇xxf(xt)]−1 · ∇xf(xt). The Newton descent algorithm then proceeds as:

Algorithm 2 Newton Descent (Minimization)

1: Begin with objective function f(x), initial guess for decision parameters x0, time t = 0
2: while termination condition not satisfied do
3: Derive descent direction dt = −[∇xxf(xt)]−1 · ∇xf(xt)
4: Find optimal step size αt through a line search
5: xt+1 = xt + αtdt

6: t+ +

7: return xt+1

Newton Descent converges in quadratic time, though may not converge to an optimal solution
if the initial guess x0 is too far from the optimal configuration of decision variables – this will
be a crucial point when applied to finding optimal integer decision variables in a MIPDECO.
While the above method is ideal in terms of accuracy (despite lack of convergence guarantees),
the calculation of the descent direction involves the inversion of the Hessian matrix, which is
O(n3) in n decision variables. Consequently, we turn to other algorithms, such as BFGS, to use
gradient information to approximate [∇xxf(xt)]−1.

2.1.7 Broyden-Fletcher-Goldfarb-Shanno Algorithm (BFGS)

Taking the optimization problem defined in the previous section, the BFGS method defines the
variables s = xt+1 − xt and y = ∇xf(xt+1)−∇xf(xt), and generally initializes the estimated
Hessian matrix H0 to a n x n identity matrix where the decision variables x ∈ Rn; alternatively,
the estimated Hessian can be initialized as any n x n positive definite symmetric matrix. At
each following iteration, the BFGS method approximates the Hessian matrix as:

∇xxf(xt+1) ∼ Ht+1 = Ht +
yyT

yTs
− HtssTHt

sTHts
(2.8)

The BFGS algorithm then modifies the aforementioned Newton descent algorithm:

Algorithm 3 BFGS (Minimization)

1: Begin with objective function f(x), initial guess for decision parameters x0, time t = 0
2: Set H0 = I(n) or any other symmetric positive definite matrix
3: while termination condition not satisfied do
4: Derive descent direction dt = −[Ht]−1 · ∇xf(xt)
5: Find optimal step size αt through a line search
6: xt+1 = xt + αtdt

7: Compute [Ht+1]−1

8: t+ +

9: return xt+1

Variants of BFGS include BFGS-B, which allows for the decision variables to take bounds,
and L-BFGS-B, which allows bounded decision variables and has a limited memory property
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so that the approximated Hessian matrix is not actually stored (which can be rather large as
it is O(n2) in n decision variables), but rather the most k recent s and y vectors, where k
is user-defined. While BFGS and its variant are known as well-performing approximations of
Newton’s method, they can only be applied to unconstrained optimization.

2.1.8 Sequential Quadratic Programming (SQP)

Sequential Quadratic Programming (SQP) can be viewed as the natural extension of BFGS to
nonlinear constrained optimization problems. Consider the nonlinear constrained optimization
problem with f : Rn → R, decision variable x ∈ Rn, equality constraints h : Rn → RI and
g : Rn → RJ .

min
x

f(x) s.t.

{
g(x) = 0

h(x) ≤ 0
(2.9)

To solve this problem, the Lagrangian is formed, with multipliers µ and λ:

L(x,µ,λ) = f(x) + µTg(x) + λTh(x) (2.10)

At each iteration of SQP, the algorithm solves a quadratic sub-problem to approximate the
above Lagrangian. Note that (with notational abuse) the Hessian at time t ∇∇(L(xt,µt,λt)) is
the matrix of second partial derivatives of the objective Lagrangian with respect to the decision
variables and both of the multiplier vectors. This is approximated by H(L(xt,µt,λt)) using the
BFGS method. Thus at iteration t SQP finds the solution to:

min
d

dT∇xf(xt) +
1

2
dTH(L(xt,µt,λt))d s.t.

{
∇xgi(xt)Td+ gi(x

t) = 0 ∀i ∈ I
∇xhj(xt)Td+ hj(x

t) ≤ 0 ∀j ∈ J
(2.11)

The solution to this sub-problem yields the descent direction dx for the decision variables as
well as directions dµ and dλ) for the equality and inequality constraint multipliers, respectively.
Consequently, the multipliers and decision variables are updated and the process repeats until
an error tolerance is reached.

Algorithm 4 Sequential Quadratic Programming (Minimization)

1: Begin with objective function f(x), initial guess for decision parameters xt, time t = 0
2: Set H0 = I(dim(x)) or any other symmetric positive definite matrix
3: while termination condition not satisfied do
4: Solve the quadratic subproblem 2.11 for dx, dµ, and dλ
5: xt+1 = xt + dx
6: µt+1 = dµ
7: λt+1 = dλ
8: t+ +

9: return xt+1

Among other favorable qualities, SQP allows for the initial conditions to be infeasible; thus
x0 is not required to satisfy the constraint, which is quite useful in the following chapter when
attempting to solve the Source Inversion problem.

2.1.9 Branch and Bound

While BFGS and SQP will be used in novel optimization routines in the hopes of dramatically
improving solution efficiency with little expense in regards to solution accuracy, these two gradi-
ent based algorithms will be compared against branch and bound, a classic divide-and-conquer
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integer programming technique. We first consider the Mixed-Integer Nonlinear Programming
(MINLP) problem:

min
x

f(x) s.t.


g(x) = 0

h(x) ≤ 0

xi ∈ Z ∀i ∈ 1...K

xj ∈ R ∀j ∈ K + 1...N

(2.12)

This problem is reformulated as the root problem, in which a continuous relaxation of all integer
variables is performed:

min
x

MINLP (root) = f(x) s.t.


g(x) = 0

h(x) ≤ 0

xi ∈ R ∀i ∈ 1...K

xj ∈ R ∀j ∈ K + 1...N

(2.13)

We denote this to be the root problem, and it corresponds to MINLP (−∞,∞), meaning
that the value of each integer variable is bounded by MINLP (−∞,∞). The branch and bound
algorithm then proceeds as follows: after solving the root problem, if the solution is not integral,
then two sub-problems are created by branching on one of the variables that is required to be
integral, but currently is not. That is, we select xti which currently has constraints b− < xti < b+

(initially, b− = −∞, b+ = ∞) and create new bounds (l−, u−) and (l+, u+), where u− =
⌊
xti
⌋

and l+ =
⌈
xti
⌉
. Two new problems formulated like Equation 2.13 are added to the heap of

unsolved problems, with bounds initialized identically to MINLP (root) except that in one
problem, b− ≤ xt+1

i ≤
⌊
xti
⌋
, and in the other

⌈
xti
⌉
≤ xt+1

i ≤ b+. The process the repeats, with
each solution adding two new problems to the heap, unless one of three conditions is satisfied.
If the solution is infeasible, then traversal down the branch is immediately stopped. If the
solution is an integer solution, traversal down the current branch ceases and the integer solution
is compared to the current best integer solution. If the solution is better than the current best
solution fbest, then fbest is updated. Otherwise, if the solution is not integer, but is worse than
the best integer solution so far, traversal down that branch also stops, as any integer solution
that could be yielded therefrom is guaranteed to be worse than the current integer solution.

One must note that branch and bound is a clever way of performing an exhaustive search
fairly efficiently, but still requires solving a massive number of sub-problems. Consequently,
while it is guaranteed to return a globally optimal objective function value and decision vari-
able configuration, the algorithm may be computationally infeasible. Naturally, as the number
of integer variables increases, so does the number of sub-problems increase, as it is likely that
many branch steps will be required for each integer variable xi. While branch and bound is the
foundation for more state-of-the-art techniques (such as branch and cut), I will not be investi-
gating the subtleties and comparison of MINLP algorithms in this project. For a comprehensive
literature review on MINLP techniques, consult Belotti et al. [22].
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Algorithm 5 MINLP Branch and Bound

1: Begin with fopt =∞, error tolerance ε, and empty heap H = ∅
2: Add MINLP (−∞,∞) to the heap
3: while H is not empty do
4: Remove problem MINLP (l, u) from the heap
5: Solve MINLP (l, u) for x∗

6: if x∗ is infeasible then
7: Prune the node. Stop exploration on this branch
8: else if f(x∗) <= fopt then
9: No better integer solution exists on this branch; prune node and stop exploration

10: else if x∗ is integral then
11: fopt = f(x∗)
12: xopt = x∗

13: else
14: Select appropriate variable xi and create new bounds (l−, u−) and (l+, u+)
15: Add MINLP (xi, l

−, u−) and MINLP (xi, l
+, u+) to the heap.

16: return fopt,xopt

2.2 Partial Differential Equations (PDEs)

Partial differential equations (PDEs) are a way of representing how quantities change with
respect to continuous variables. For instance, it is necessary to use a PDE to measure how
a variable such as pressure or heat changes with respect to both time and space. The PDE
is defined over a domain, Ω, and involves the decision variables (three spatial dimensions and
time), the (pressure or heat) function which returns a value given the configuration of the
decision variables, and the k-order partial derivatives of this function with the respect to some
or all of the decision variables. Formally, we may say that a system of partial differential
equations for a function u(x1, x2, ..., xn) = u(x) = u is of the form F (x,u,ux, uxx, uxxx, ...),

where ux = δu
δx1
, δuδx2 , ...,

δu
δxn

, uxx = δ2u
δx1δx1

, ..., δ2u
δx1δxn

, and so on (i.e. the PDE is a function of a
function u(x1, ...xn), variables x1, ..., xn, and the k-order (k ∈ R) partial derivatives of u with
respect to at least two variables). Note that if the derivative is only taken with respect to only
one variable, this relationship is called an ordinary differential equation.

As an example, we may consider the Poisson Equation in three dimensions. The general
form of Poisson’s equation, (with ∆ as the Laplacian) is ∆ϕ = f , where we are given source
term f and wish to find the value of ϕ over the domain Ω. If we consider this equation in the
three dimensional plane, it reduces to:

(
δ2

δ2x
+

δ2

δ2y
+

δ2

δ2z
)ϕ(x, y, z) = f(x, y, z) x, y, z ∈ Ω (2.14)

As one can see, Equation 2.14 prescribes that the sum of partial second derivatives of ϕ with
respect to each dimension, at any point in the 3 dimensional plane, must be equal to a predefined
source term f , which could be a constant across the domain, or also a function depending
on location and other parameters. One must note, however, that there are three regions of
importance in a PDE. One is our domain Ω, another is the border of the domain δΩ, which is
often governed by a simple border condition, and the last is the region outside of Ω, where the
PDE does not exist and therefore is not considered. Including an arbitrary border condition,
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we may write Equation 2.14 as (where F denotes the shorthand for the PDE):

F(ϕ, x, y, z) =

{
( δ2

δ2x
+ δ2

δ2y
+ δ2

δ2z)
ϕ(x, y, z) = f(x, y, z) x, y, z ∈ Ω

( δ2

δ2x
+ δ2

δ2y
+ δ2

δ2z)
ϕ(x, y, z) = 0 x, y, z ∈ δΩ

(2.15)

While a full analysis of partial differential equations is out of the scope of this review, it is
important to note the difficulty they pose, which motivates creative solution approximations. As
PDEs are systems which occur over some domain Ω, the PDE models the relationship between
the change in two or more variables at each point in the domain. Needless to say, in many
situations, PDEs are not analytically tractable (especially over large domains or as the number of
variables increases), and thus one must resort to approximation method to convert the variables
of the PDE from existing in an infinite dimensional state space to a finite dimensional state
space, after which the PDE may be solved as a massive (finite numbered) system of equations.
In optimization theory, PDEs often appear as constraints; the majority of the effort of the
optimization problem is then reduced to moulding the PDE constraint into a tractable form,
rather than solving the actual problem.

2.2.1 PDEs and Discretization

Consider the PDE as given in the constraint of Equation 2.3 (forgetting about the optimization
problem for the moment). Inside of a continuous domain Ω, the PDE equals constant c, while u
(a function of the vector of decision variables x, the k-order partial derivatives of u with respect
to x, and function(s) which relate them) equal zero on the boundary of the domain.{

F(u,x) = c x,u ∈ Ω

u = 0 on δΩ
(2.16)

Given that PDEs are complex systems which vary over multiple dimensions (and PDEs can
be infinitely-dimensional themselves), often, no closed-form solution is possible, or the computa-
tional demand of such a solution is infeasibly high, especially as the size of the domain Ω increases
[6]. Consequently, one does not solve a PDE, but rather a tractable and discrete approximation
of the continuous PDE. To do so, we first introduce a discrete domain known as a mesh, and
then separate the domain of the continuous PDE into a host of sub-regions, approximating the
PDE in each of those sub-regions using a combination of basis functions which exist in a finite
vector space (we could use, for example, linear or polynomial basis functions). Importantly,
this collection of piecewise functions is generated using a process which satisfies the boundary
conditions of the PDE as well. Returning to the farm and fertilizer example (and dropping the
time-varying assumption), consider the PDE that assigns a quality weight to fertilizer given its
location on the farm, which is a square plot of land. This PDE is continuous, and thus the
quality weight varies continuously its domain. If we suppose this relationship is modeled by a
Poisson equation in two dimensions, we have:{

( δ2

δ2x
+ δ2

δ2y
)u(x, y) = f x, y ∈ Ω

u(x, y) = 0 on δΩ
(2.17)

This relationship tells us that the Laplacian of the PDE is equal to some source term f
(say, a constant, f = 5) at each point in its continuous domain. As it is difficult to model this
relationship over the continuous domain, the domain is broken up into sub-regions, each of which
contains a function which approximates the PDE in that region. The domain thus becomes a
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(a) A Continuous Domain - only one region (b) A Discrete Domain - triangle sub-regions

Figure 2.1: The continuous and discrete domains of a PDE

piecewise combination of approximations. Pictorally, we break up the continuous domain on the
left into the piecewise domain on the right (each triangle becomes a sub-region):

One must note that the mesh can be refined in particularly important areas, and the functions
which approximate the PDE in each sub-region can vary in order (linear, polynomial, etc.). The
mesh size is an extremely important parameter of the PDE-discretization process as a coarser
mesh is computationally cheap (a 16 x 16 mesh represents a PDE as values in a 16 x 16 matrix),
but imprecise in its representation of the PDE, while a fine mesh is increasingly accurate, but
computationally expensive to manage. A Continuous PDE would be represented by an infinitely
fine mesh; naturally, this is computationally prohibitive as it would entail a k x k matrix to
represent the PDE, with k →∞.

(a) A discretized PDE evaluated on a 16 x
16 mesh

(b) A discretized PDE evaluated on a 64 x
64 mesh

Figure 2.2: A PDE discretized on a coarse mesh (left) and fine mesh (right)

The actual PDE discretization is accomplished using one of three methods: the finite el-
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2.3. MIXED-INTEGER PDE-CONSTRAINED OPTIMIZATION (MIPDECO)

ement method (which I will be using as it is easily implemented in the FEniCS framework),
the finite volume method, or the finite difference method. The distinguishing characteristic of
the finite element method (FEM) is that one can create a mesh over the domain of the PDE
using any geometric shape to represent the sub-regions (triangles, squares, polygons, etc.), as
exemplified by the triangular elements in Figure 2.2. The finite difference method (FDM) is
another discretization scheme that is far easier to implement than FEM, but is also much less
flexible and generally less accurate, as the FDM can only use cubes to create the mesh. Ad-
ditionally, it has been noted that while it is liked for its simplicity, FDM can yield unrealistic
results and does not necessarily conserve mass [17]. The finite volume method (FVM) is the last
paradigm for discretizing PDEs, and will not be remarked upon further. In comparing the three
methods, Oliver notes that these methods are not one-size-fits-all: the utility of each method is
extremely dependent on the particular PDE being solved. To summarize, it is generally accepted
that the finite element method is more broadly applicable to solving various PDEs, while the
FDM and FVM are only the best method in particular scenarios; the ease of implementing the
FDM/FVM, however, can offset the often superior, but difficult to implement FEM (though
any sort of broad generalizations are inherently difficult to state in an unqualified manner).
While I will give a short mathematical treatment of the FEM in the Appendix as applied to the
case studies I am examining, I shall gloss over most mathematical details of discretization; the
interested reader may refer to a mathematical overview and comparison of the three methods
in Peiro and Sherwin’s chapter of Handbook of Materials Modeling [18].

As a graphic comparison of methods, see Figure 2.3 below. As the continuous PDE whose
domain is the complex mechanical region in Figure 2.3 is intractable, the domain is discretized
using finite differencing and finite elements. Intuitively, the FDM approximation seems coarser
and cruder, as it is hampered by solely using cubes to define each sub-region, while the polygonal
finite elements are far more versatile.

Figure 2.3: The finite difference method (left) and the finite element method (right) [19]

2.3 Mixed-Integer PDE-Constrained Optimization (MIPDECO)
MIPDECO problems can be written in their standard continuous form as in equation 2.3,

where x and u exist in the appropriate and possibly infinitely-dimensional Hilbert Spaces. Some

19



2.3. MIXED-INTEGER PDE-CONSTRAINED OPTIMIZATION (MIPDECO)

(or all) of the components in the decision variable vector x are required to be integers, and the
decision variables are subject to equality and/or inequality constraints.

min
u,x

J(u,x) s.t.



F(u,x) = 0

g(x) = 0

h(x) ≤ 0

xi ∈ Z ∀i ∈ 1, ...,K

xj ∈ R ∀j ∈ K + 1, ..., N

x,u ∈ H1,H2

(2.18)

2.3.1 The Exploding Mesh Problem

Before discretizing/optimizing a MIPDECO, we can observe that MIPDECO problems can be
classified into two categories: those with mesh-independent decision variables, and those with
mesh-dependent decision variables. Though both have the same general problem formulation,
we now must consider the MIPDECO problem from 2.18 after continuous PDE F has been
discretized. Denoting the discrete PDE as F, and transforming our infinite dimensional Hilbert
spaces into finite vector spaces V1 and V2, we have the discrete MIPDECO formulation:

min
u,x

J(u,x) s.t.



F(u,x) = 0

g(x) = 0

h(x) ≤ 0

xi ∈ Z ∀i ∈ 1, ...,K

xj ∈ R ∀j ∈ K + 1, ..., N

x,u ∈ V1,V2

(2.19)

Now if we consider F to model a relationship over a mesh such as in Figure 2.2, depending on
the nature of the problem, the number of decision variables could stay constant whether we
pick the 16 x 16 mesh or the 64 x 64 mesh as depicted in Figure 2.2. If this is the case, the
decision variables are called mesh-independent. On the other hand, if the decision variables are
mesh-dependent, the number of decision variables will increase as the domain of the discretized
PDE is refined. Obviously, this distinction has significant ramifications on the scalability of a
MIPDECO problem. Consider the situation below in which each black circle corresponds to a
decision variable; in Figure 2.4, a square matrix of decision variables are embedded in the mesh.
As the variables are mesh independent, the number of decision variables stays the same as the
refinement increases. In Figure 2.5 the decision variables are mesh-dependent, and thus the
number of decision variables scales quadratically with the mesh dimension. Consequently, with
a m x m mesh any optimization algorithm with have memory complexity O(m2) with regards to
the decision variables, as opposed to O(n) memory complexity for n mesh-independent decision
variables in Figure 2.4, which will stay constant regardless of the value of m.
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(a) Coarse mesh with mesh-
independent decision variables

(b) Refined mesh with mesh-
independent decision variables

Figure 2.4: Coarse (left) and refined (right) meshes with mesh-independent decision variables

(a) Coarse mesh with mesh-
dependent decision variables

(b) Refined mesh with mesh-
dependent decision variables

Figure 2.5: Coarse (left) and refined (right) meshes with mesh-dependent decision variables

Consequently, an optimization problem which tries to find the optimal values of the decision
variables of the problem in Figure 2.4 will scale well in increasing mesh fineness. The problem
represented by Figure 2.5, however, will rapidly become infeasible as the mesh fineness increases.

2.3.2 Alternatives in the MIPDECO Solution Process

Regardless of mesh-dependent or mesh-independent decision variables, there are two main ap-
proaches to solving PDE-constrained optimization problems such as the MIPDECO formulation
in Equation 2.18. As aforementioned, the continuous form of the PDE must be discretized in
order to make it computationally tractable (for details on PDE discretization and the mathemat-
ical process see the Appendix), using one of two methods. Given the initial MIPDECO problem
with a continuous PDE constraint, one can either find the necessary optimality conditions (i.e.
solve for the KKT conditions) and then discretize the PDE, yielding Solution 1 (Sol. 1) or one
can first discretize the PDE constraint and then solve using nonlinear programming techniques
(i.e. first order optimization methods), yielding Solution 2 (Sol. 2). Given these two techniques,
one might ask if the answers are equivalent. The answer, unfortunately, is that the answers are
not necessarily equal. That is, ¬�(Sol.1 = Sol.2).
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Beginning PDE Discretized PDE Sol. 2

KKT/NC with cont. PDE Sol. 1 ¬�(Sol.1 = Sol.2)
Discretize KKT/NC

Discretize

Optimize

Sol. 2

Sol. 1

Optimize NLP

Figure 2.6: Discretization order matters: discretize then optimize vs. optimize then discretize

Unsatisfyingly, it also appears that neither approach is objectively better, but rather the
optimality of each approach is determined by the specific problem one is attempting to solve
(much like discretization methods themselves) [21]. A good comparison of the techniques is
given by Haber:

In the Discretize then Optimize (DO) we may need to differentiate computational
facilitators such as mesh generation routines. This can become rather complicated
(and may not be differentiable). On the other hand, the Optimize and Discretize
(OD) approach we discretize the necessary conditions (the derivatives of the La-
grangian). The discretized necessary conditions may not be a true gradient of any
objective function and thus, if the mesh is not sufficiently fine, can lead to the wrong
descent direction [20].

Note that in the following mathematical details and my own implementation, I will be using
the Discretize-then-Optimize approach, which is the standard method in the limited corpus of
MIPDECO case studies.

2.3.3 Solving a Generic MIPDECO Problem

Combining the previous sections, we can codify a general method of formulating and solving a
MIPDECO problem. Note that this a general and high-level algorithm and that each of the steps
will be carefully picked apart in the following chapters applied to specific MIPDECO problems
(with the exception of step 3 which is relegated to the Appendix); moreover, note that the choice
of error metric is highly dependent upon the time of problem.
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Algorithm 6 A high level MIPDECO solution algorithm

1: Identify the MIPDECO Problem, constraints, and error metric
2: Mathematically define the objective function, equality and inequality constraints, continuous

and integer decision variables, the system of PDEs which governs the physics of the problem,
and the domain, Ω, over which these variables interact.

3: Discretize the PDE (see Appendix), creating the finite approximation of the true PDE in Ω
4: (Optional) Eliminate the PDE from the optimization problem using algebraic manipulation
5: Solve the (reduced) optimization problem exactly using MINLP methods (branch and cut)

or approximately using first-order methods (gradient descent on continuous relaxation of
integer variables).

6: Measure error metric and analyze computational time/memory complexity as required

23



Chapter 3

The Source Inversion Problem

3.1 The Problem Layout
Following Leyffer et al. [23], I will solve the Source Inversion MIPDECO problem, though

with the use of adjoint-based gradient optimization methods (implemented with the FEniCS
PDE-solving framework and dolfin-adjoint), instead of the MINLP approach. For a comprehen-
sive mathematical explanation and justification of adjoint-based gradient optimization methods,
see the Appendix. Naturally, using gradients will require lifting or modification of the integer
constraints (done after the discretization of the PDE); integer solutions will be obtained by
using a rounding heuristic, as well as through the implementation of a penalty algorithm.

The Source Inversion problem is a function-tracking model which attempts to minimize the
distance between the solution to a reference PDE ū and the solution to a source PDE u (which
is a Poisson equation with the source term equalling the sum of a host of source functions)
over the simple box domain Ω, paired with a Dirichlet boundary condition. This minimization
problem also requires that the maximum number of activated source functions does not exceed
a user-defined integer S, and that each source function at location kl is modeled as a Gaussian
function fkl with binary coefficient wkl (which controls the activation/inactivation of each source
function). In other words, we want to find the most accurate way to recreate the solution to the
reference PDE with a combination of up to S source functions.

min
u,w

J (u,w) =
1

2

∫
Ω

(u− ū)2dΩ s.t.


−∆u =

∑
k,l wklfkl ∈ Ω

u = 0 ∈ δΩ∑
k,l wkl ≤ S

wkl ∈ {0, 1} ∀k, l

(3.1)

At a high level, we can imagine the problem as such: first, we create a mesh (a 2-dimensional
grid that represents the box Ω) and define a finite function space (linear, polynomial, etc. basis
functions), elements of which will approximate the PDE over this mesh. As aforementioned, I am

using Gaussian reference (and source) functions, so that fkl(x, y) ≡ a · exp(−((xk−x)2+(yl−y)2)
σ ),

with a constant a (which is akin to a dirac pulse), and variance σ > 0. Each of these terms is
centered at a point in the mesh, and has some of its density spread over all other vertices.

Given our mesh and function space, we now create a reference function (with V = vertices
of the mesh) for given xi, yj :

f̄ij = a · exp(
−((xi − x)2 + (yj − y)2)

σ
) ∈ Ω; i, j /∈ V(mesh) (3.2)

Eliding the mathematical details (see the Appendix), the finite element method finds the
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solution to the discretized reference PDE ūd such that (v = test function, V = finite Hilbert
space): ∫

Ω
〈∇ūd,∇v〉dx =

∫
Ω
f̄ijv dx ∀v ∈ V (3.3)

Given this reference approximation, we now must create n2 source terms (also Gaussian
bumps) to embed within the larger m x m mesh (n < m). It is important to note that these
terms are created as a square submatrix so that the functions are evenly spaced on the mesh,
with each function centered on a mesh vertex. Given a field of n2 of such sources, we must sum
all of the sources, each of which is multiplied by a control variable wkl. We then solve the weak
formulation of the Poisson equation depicted below (see Appendix) using FEniCS, and denote
the solution to this discretized PDE ud.∫

Ω
〈∇ud,∇v〉dx =

∑
k,l

(wkl ·
∫

Ω
fkl · v dx) ∀v ∈ V (3.4)

After solving for ūd and ud – a task that is done automatically in the FEniCS framework,
the optimization problem can be transformed from a problem existing in continuous space over
Ω to a problem which exists in the discrete domain Θ. Thus we can reformulate our problem
(with ud = ud(w) and ūd being the finite vectors approximating the integral) as:

arg min
w

J (w) =
1

2
||ud(w)− ūd||22 s.t.


∑

k,l wkl ≤ S
wkl ∈ {0, 1} ∀k, l
u,w ∈ Θ

(3.5)

Given Equation 3.5, we have a few options. We can easily solve the continuous relaxation of
the problem; this is achieved using the sequential least squares quadratic programming (SQP)
algorithm as implemented in SciPy. Yet the binary integer constraints are the troublemaker
in this problem, rendering gradient-based techniques unusable (i.e. maintaining the constraints
necessitates employing MINLP algorithms such as branch and bound). In order to solve this
issue, we may add a penalty function to the objective functional in order to penalize non-binary
wkl values and extract a natural integer solution. Thus we change Equation 3.5 (eliding the
vector space for simplicity) to:

arg min
w

L(w) =
1

2
||ud(w)− ūd||22 + α

∑
k,l

wkl(1− wkl) s.t.
∑
k,l

wkl ≤ S (3.6)

As mentioned in the previous chapter, the parameter α must be tuned to properly penalize
non-binary values of wkl (also note that I am using a single α, as tuning αkl for each source
function would require far too much time). If α is too large, then the penalty term will change
the optimization problem so that the objective function is minimized just by finding a feasible,
rather than optimal, solution. If the α is too low, then the optimal solution will increasingly
approach the optimal continuous solution. Finding this optimal α∗ is an inexact task, but
ideally the optimizing algorithm is run repeatedly starting with α = 0, and increasing α in
tiny increments until an integer solution (or a solution that is integer within an accepted error
tolerance) is found. It is important to note that the bounds on wkl, 0 ≤ wkl ≤ 1 have been
removed due to numerical instability. While keeping the bounds in some situations causes no
issue, in a few of my tests, the bounds have prevented a proper integer solution from being found
– see Sager et al. [25] for an in-depth explanation of the issue applied to a mixed-integer control
problem.
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In order to solve this problem in any configuration and with any algorithm, the gradient of
the objective functional must be taken during each iteration. Depending on the dimensions of
the each component of the optimization problem, (i.e. J ,u,w), this gradient evaluation can be
computationally taxing. As this project is built using dolfin-adjoint (which also wraps around
SciPy), it is noted that any optimization algorithm automatically uses the adjoint approach in
finding the gradient during each iteration. This massively reduces the computational complex-
ity due to the inherent characteristics of PDE-constrained optimization [24]. A mathematical
overview of adjoints and their utility when applied to PDE-constrained optimization is available
in the Appendix.

3.2 Algorithms and Scalability

As aforementioned, due to the fact that wkl ∈ {0, 1}, I either must use a branch and bound to
preserve perfect accuracy, or use approximate gradient-based methods. As I am attempting to
build a scalable solution, and MINLP solvers are often computationally infeasible for real-world
applications (they produce enormous, albeit accurate, trees), I will test a heuristic gradient
based algorithm which rounds the continuous solution to an integer solution, a gradient-based
algorithm which incorporates a penalty function to yield an automatic integer solution (as above
in 3.6), and an algorithm which uses the continuous solution as inputs to the penalty algorithm
for another automatic integer solution. All of these are compared against a MINLP branch and
bound solver implemented in CasADi. Allowing n to be the number of wkl’s and m the number
of elements in the mesh, The key differences between the tested algorithms are as follows:

Table 3.1: Characteristics of Algorithms Solving the Source Inversion Problem

MINLP Heuristic Penalty Two-Step

Exact Solution Rounded Solution Approximate Solution Approximate Solution

∼ scalable in n ∼ scalable in n ∼ scalable in n ∼ scalable in n
∼ scalable in m scalable in m scalable in m scalable in m

As often happens, the algorithms boil down to efficiency vis-a-vis accuracy. While the MINLP
approach ensures a precise solution through near-exhaustive search, the size (the total number
of variables n+m) of the discetized PDE can be prohibitive, and we must resort to less accurate,
but computationally feasible, gradient-based heuristic, penalty, and two-step algorithms.

3.2.1 The Continuous Relaxation: an Alternate Route

In this MIPDECO problem, we are attempting to ascertain the optimal w which minimizes the
distance between the reference solution and the source solution. One must note, however, that
the computational complexity of this optimization problem necessarily increases in w. Though
the number of source functions is independent of the mesh size (hence we do not run into the
exploding-mesh problem whereby the number of decision variables necessary increase in increas-
ing mesh refinement), any optimization algorithm solving the aforementioned formulations of
the Source Inversion problem will scale poorly in w, and thus the number of source functions
embedded in the mesh will limit the solvability of the problem. Intuitively, one might think of
increasing the number of source functions as increasing the number of controls in the problem,
all of which must be optimized. Though there exists an easy remedy to this scaling issue, it is
only applicable in the continuous relaxation of this problem.

First, we can remove w from the problem; when we solve for ud as in Equation 3.4, we
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instead solve for ud as the solution to:∫
Ω
〈∇ud,∇v〉dx =

∑
k,l

(

∫
Ω
fkl · v dx) ∀v ∈ V (3.7)

Due to the fact that thew vector of coefficients is missing from the optimization problem, one can
create a constraint matrix A in order to implicitly extract the optimal wkl values in the following
step. The constraint matrix is created as follows: if we allow fabkl to denote the value of the source
function centered at mesh vertex (k, l) and evaluated at mesh vertex (a, b), then we can create
a row vector which contains the value of the given source function at every single point on the

mesh. That is, vkl =
[
f11
kl f12

kl f13
kl ... ...fklkl fk,l+1

kl ...fmmkl

]
. By constructing such a vector for

all n2 source functions, the constraint matrix is created by taking the transpose of each vector,
and stacking these column vectors next to each other so that A =

[
vT11 vT12... ...vTkl... ...vTll

]
.

This constraint matrix A is a m2 x n2 matrix, with n2 different source functions evaluated at
each of the m2 points on the mesh.

Given this constraint matrix, and solving 3.7 for ud, one can reform the optimization problem
in 3.5 by formulating u as a function of the sum of all source functions over the grid. In other
words, u = g(

∑
kl fkl), and instead of using w as a control (where increasing the number of

source functions increases the number of controls), one uses
∑

kl fkl as the control. The crucial
point is that this sum is always a single control variable, and thus adding or subtracting source
functions has no effect on the actual number of controls in the optimization algorithms. The
new optimization problem can be written as:

arg min∑
k,l fkl

J (
∑
k,l

fkl) =
1

2
||ud(

∑
k,l

fkl)− ūd||22 (3.8)

This unconstrained optimization problem is easily solved using BFGS in SciPy. It is impor-
tant to note that this problem does not solve for w, but rather the optimal value of the sum of
source functions at each vertex in the mesh. Reshaping the output of this optimization routine
into a m2 x 1 vector b, one then can form a second optimization problem in order to extract
the optimal value of w, which attempts to minimize the difference between the actual value and
optimal value of the sum of source functions at each vertex, given a vector of decision variables
w:

min
w
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(3.9)

This can be concisely written (recognizing that A is the constraint matrix):

min
w
L = 〈Aw − b,Aw − b〉 s.t. 0 ≤ wi ≤ 1 ∀i (3.10)

One may notice that this is simply an application of Ordinary Least Squares (albeit with a
constraint), whose convexity in w is a well-known result. Thus we can be assured that we will
find the optimal global solution for the coefficients w, given an optimal b. As a short proof of
convexity:

δL
δw

= 2ATAw − 2Ab =⇒ δ2L
δ2w

= 2ATA � 0 (3.11)
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3.3. THE HEURISTIC INTEGER ALGORITHM

The resulting Hessian is of full rank by construction of A and thus is strictly positive definite
∀d ∈ Ω.

After this long digression, we now arrive at the catch. While this technique might yield
the continuous solutions faster than algorithms which use w as a control (for a large number
of source functions), this method has no way of solving for integer values of w, as w is never
directly solved for. Compounding on this issue is the fact that convexity only holds assuming the
first-stage optimization problem returns the optimal value of b, of which there is no guarantee.

In the sections below, I present several algorithms which us w as the control variable. First,
I present a continuous algorithm which rounds the largest S wkl parameters as found in the
continuous solution to 1, and rounds all others to 0. The penalty algorithm is presented next,
which uses a penalty function to penalize non-binary values of wkl, eventually yielding an optimal
integer solution without any sort of heuristic method of morphing a continuous solution into an
integer solution. Finally, the two algorithms are combined so that the optimal continuous vector
w∗
cont becomes the initialization vector winit of the penalty algorithm.

3.3 The Heuristic Integer Algorithm

The heuristic integer algorithm takes the continuous relaxation of the wkl binary variables
and then rounds each continuous wkl either up or down depending on its optimal continuous
magnitude and the value of S. Note that the optimal continuous values may be obtained either
using the continuous relaxation of Equation 3.5, or the entirely different least-squares process
as described in the previous subsection. In practice, the former method was used.

Algorithm 7 Continuous (w control)/Heuristic Integer Algorithm (Source Inversion)

1: Choose mesh size m, number of sources n2, and activated source bound S.
2: Create Θ, a discrete m x m mesh (the discrete domain of the PDE)
3: Choose k, the order of the function space in which the the mesh, u, ū exist
4: Create the k-order function space V
5: Create Gaussian reference function f̄
6: Find reference PDE ūd, the solution to

∫
Θ〈∇ū

d,∇v〉dx =
∫

Θ f̄v dx ∀v ∈ V
7: Create n2 evenly spaced source functions and constant objects with winitkl = 1 ∀k, l
8: Project the sum of the source terms

∑
k,l w

init
kl fkl into Θ

9: Find source PDE ud, the solution to:
∫

Θ〈∇u
d,∇v〉dx =

∑
k,l(
∫

Θw
init
kl · fkl · v dx) ∀v ∈ V

10: Form the functional J(ud) = (1
2 ū

d − ud)2 and make w into a control object

11: Form reduced functional Ĵ(u(w)) and create bounds such that 0 ≤ wkl ≤ 1
12: Optimise the reduced functional min

w
Ĵ(w) with bounds using SLSQP in Scipy

13: Step 12 returns w∗, the optimal continuous values of w.
14: Create wint by rounding S largest elements of w∗ to 1 and setting all others to 0
15: Find recon. PDE ur, as solution to

∫
Θ〈∇u

r,∇v〉dx =
∑

k,l(w
int
kl ·

∫
Θ fkl · v dx) ∀v ∈ V

16: Assess the difference between ur, the reconstruction of the reference PDE given the optimal
integer (resp. continuous) values of wint for the Heuristic Integer Algorithm (resp. w∗ for
the Continuous (w control) Algorithm) and reference solution ū
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3.4. THE PENALTY ALGORITHM

3.4 The Penalty Algorithm

The penalty algorithm proceeds in a similar manner as the heuristic algorithm, but diverges
at step 10, where the objective functional is augmented with a term which penalizes non-binary
values of wkl. With a properly chosen α, this algorithm returns integer values. Note that this
algorithm assumes a pre-selected value of α∗.

Algorithm 8 Penalty Algorithm (Source Inversion)

1: Choose mesh size m, number of sources n2, and activated source bound S.
2: Create Θ, a discrete m x m mesh (the discrete domain of the PDE)
3: Choose k, the order of the function space in which the the mesh, u, ū exist
4: Create the k-order function space V
5: Create Gaussian reference function f̄
6: Find reference PDE ūd, the solution to

∫
Θ〈∇ū

d,∇v〉dx =
∫

Θ f̄v dx ∀v ∈ V
7: Create n2 evenly spaced source functions and constant objects with winitkl = 1 ∀k, l
8: Project the sum of the source terms

∑
k,l w

init
kl fkl into Θ

9: Find source PDE ud, the solution to:
∫

Θ〈∇u
d,∇v〉dx =

∑
k,l(
∫

Θw
init
kl · fkl · v dx) ∀v ∈ V

10: Form the functional J(w,ud) = 1
2(ūd − ud)2 + α∗

∑
k,l |wkl(1− wkl)|

11: Form reduced functional Ĵ(u(w)) and create bounds such that 0 ≤ wkl ≤ 1
12: Solve reduced functional for w∗ = arg min

w
Ĵ(w) with bounds using SLSQP in Scipy

13: Step 12 returns w∗, the optimal (hopefully integer) values of w
14: Find recon. PDE ur, as solution to

∫
Θ〈∇u

r,∇v〉dx =
∑

k,l(w
int
kl ·

∫
Θ fkl · v dx) ∀v ∈ V

15: Assess the difference between ur, the reconstruction of the reference PDE given the optimal
integer values of wint, and the reference solution ū

Naturally, we must find the proper α∗ in order to run the above algorithm for any config-
uration of n and m2. In practice, this has been obtained by running the algorithm a number
of times, starting with α = .001 or .0001 depending on the number of source functions, and
multiplying by step size k when the algorithm does not penalize the objective functional enough
while reducing k by 1

2 if the algorithm returns a w∗ that is uniformly shrinking towards zero.
One must note that in this formulation of the Source Inversion problem, the reference function is
a linear combination of Gaussians (suppose that there are T individual Gaussians). To preserve
scale (as the hyperparameters of the Gaussians are equal across source and reference functions),
we know that the integer solution will correspond to exactly T source functions being activated.
Thus we can form a function that automatically finds α by changing α in response to the sum
of the optimal w, which, in an integer setting, will equal T .
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3.5. THE TWO-STEP ALGORITHM

Algorithm 9 Finding the optimal penalty term α (Source Inversion)

1: Choose αinit = .001, k = 5, n, m, S. Choose error tolerance ε. Set w to a vector of 1s.
2: Define T as the number of individual Gaussians which make up the reference function
3: while ||w||22 > S or ||w||22 < T − ε or

⌊
||w||22

⌋
− ||w||22 > ε do

4: wopt = output of Penalty Function Algorithm(α)
5: if ||w||22 > T + ε then
6: α = α · k
7: else
8: α = α/k
9: k = k/2

10: if k < 1 then
11: k = 1 + .5 · (2 · k − 1)

12: α = α · k
13: return α∗ = α

3.5 The Two-Step Algorithm

The two-step algorithm combines the continuous (w control) and the penalty algorithms
into a single pipeline, following the work of Huang and Wang. In their paper examining a novel
method to efficiently solve integer linear programs, they formulate a two-step algorithm in which
they first reformulate all binary constraints into continuous constraints wi ∈ {0, 1} → 0 ≤ wi ≤
1, and then solve the relaxed LP using the interior point/revised simplex algorithm in order
to find a suboptimal but good starting point for step 2. In step 2, the binary constraints are
again reformulated as wi ∈ {0, 1} → wi(wi − 1) = 0, after which they can be incorporated
into a Lagrangian objective functional which can be optimized according to any gradient based
method [26]. Applying this methodology to the Source Inversion problem, we first solve for the
continuous solution, and then use the optimal continuous values as the inputs (i.e. the winitkl ) for
the penalty algorithm. While Huang and Wang used the interior point method to solve the first
stage algorithm, I have decided to stick with SQP in SciPy in order to maintain a consistency
across all of the gradient algorithms instead of using IPOPT for step 1 in the two-step algorithm
and SQP for step 2.

Algorithm 10 Two-Step Algorithm (Source Inversion)

1: Run steps 1-12 of the Continuous (w control) algorithm
2: Step 12 returns w∗, the optimal continuous values of w
3: Create n2 evenly spaced source functions and constant objects with winitkl = w∗kl ∀k, l
4: Project the sum of the source terms

∑
k,l w

∗
klfkl into Θ

5: Find source PDE ud, the solution to:
∫

Θ〈∇u
d,∇v〉dx =

∑
k,l(
∫

Θw
∗
kl · fkl · v dx) ∀v ∈ V

6: Form the functional J(w,ud) = 1
2 ||ū

d − ud||22 + α
∑

k,l w
∗
kl(w

∗
kl − 1)

7: Form reduced functional Ĵ(u(w∗)) and create bounds such that 0 ≤ wkl ≤ 1
8: Find wint = arg min

w
Ĵ(w∗) with bounds using SLSQP in Scipy

9: Step 8 returns wint, the optimal integer values of w
10: Find recon. PDE ur, as solution to

∫
Θ〈∇u

r,∇v〉dx =
∑

k,l(w
int
kl ·

∫
Θ fkl · v dx) ∀v ∈ V

11: Assess the difference between ur, the reconstruction of the reference PDE given the optimal
integer values of wint, and the reference solution ū
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3.6. THE BRANCH AND BOUND ALGORITHM

3.6 The Branch and Bound Algorithm
The MINLP algorithm proceeds in a similar way to the aforementioned algorithms. In par-

ticular, everything is identical until the optimization step. Instead of using SQP or optimizing
with a penalty functions, the MINLP algorithm uses branch and bound with IPOPT as the
subproblem solver to find exact integer solutions.

Algorithm 11 MINLP Algorithm (Source Inversion)

1: Run Steps 1-11 of the Continuous (w control) algorithm
2: Optimise the reduced functional min

w
Ĵ(w) using branch and bound implemented with

CasADi and IPOPT
3: Step 2 returns wbnb, the optimal integer values of w
4: Find recon. PDE ur, as solution to

∫
Θ〈∇u

r,∇v〉dx =
∑

k,l(w
bnb
kl ·

∫
Θ fkl · v dx) ∀v ∈ V

5: Assess the difference between ur, the reconstruction of the reference PDE given the optimal
integer values of wbnb, and the reference solution ū

3.7 A Source Inversion Error Metric
In this problem, the natural source of error comes from the difference between the solution

to the reference PDE and the solution to the reconstructed reference PDE (that is, ur that is
found in steps 14, 15, 18, and 5 respectively, in each algorithm). One must note, however, that
the absolute and per-grid-point difference is highly dependent on the size of the mesh. Thus it is
important to scale the error at each point in order to compare the errors across mesh sizes and
algorithms. As the error became quite small and was always less than 1 at each mesh vertex, I
used an L1 error metric which measures the average per-grid-point reconstruction error, scaled
my mesh size:

εL1 =
1

m2

m∑
i=1

m∑
j=1

|ūij − urij | (3.12)
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Chapter 4

Solving the Source Inversion
Problem

4.1 The Mesh and Reference Functions

In order to test algorithms across a variety of parameter configurations, I used a standard
reference function defined on a two-dimensional unit square mesh. Though the refinement of the
mesh varied across parameter configurations, each axis always had unit length (i.e. 0 ≤ x ≤ 1
and 0 ≤ y ≤ 1). For a 16 x 16 mesh, a unit square was broken up to have vertices in intervals
of .0625; on a 32 x 32 mesh, the vertices of the mesh are in intervals of .01325, and so on. In
my testing, I used the mesh sizes 16 x 16, 32 x 32, 64 x 64, and 128 x 128 (to illustrate time
complexity, I also tried out a few other mesh sizes, including m = 96,m = 200,m = 300).

The reference function was identical in all situations, being a linear combination of 3 Gaussian
functions, each of which having values of a and σ which are identical to those of the source
functions.

f̄ = a · (e−σ−1((x−.1)2+(y−.4)2) + e−σ
−1((x−.8)2+(y−.8)2) + e−σ

−1((x−.9)2+(y−.2)2)) (4.1)

The centroid of each Gaussian component of the reference function was picked soas to not
coincide with any mesh vertex, regardless of which mesh size (m = 16, m = 32, m = 64, etc...)
was used, ensuring that no source functions and Gaussian components of the reference function
share exactly the same footprint.

As aforementioned, the continuous reference function was discretized with the finite element
method, which works by finding a discrete vector ūd such that (v = test function, V = finite
Hilbert space): ∫

Ω
〈∇ūd,∇v〉dx =

∫
Ω
f̄v dx ∀v ∈ V (4.2)

Figure 4.1 below depicts both the initial reference function f̄ and the discretized solution
to the reference PDE ūd. While the image below corresponds to a 32 x 32 mesh, the peaks
are as one would imagine with the other mesh sizes – coarser Gaussians and a coarser discrete
reference solution for a 16 x 16 mesh, and more refined versions of the below image for a 64 x
64 mesh.
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4.2. GAUSSIAN HYPERPARAMETERS

Figure 4.1: The discrete solution to the PDE ūd (left) and the reference function f̄ (right)

4.2 Gaussian Hyperparameters

The Source Inversion problem requires two hyperparameters, a and σ, to construct the
Gaussian reference and source functions. While I ensured that the reference and source functions
always used the same a and σ, it is important to note that changing the σ parameter has
important ramifications for the problem, while changing a has little meaningful effect due to the
scale invariance of w. Due to this scale invariance, I set a = 100 for all configurations and tests.

Intuitively, the variance of each Gaussian source function represents the spread of its density
across the discretized domain Θ. With a high variance, the source function is flatter (in a one
dimensional setting, we would say that the Gaussian function has heavy tails), while if the
variance is low, the density function is sharply peaked. When creating a field of such source
functions, a high variance causes these functions to blend together, while a low variance results
in distinct peaks at each k, l source function centroid, which rapidly diminish to zero. As a
measurement metric for variance, I used the value of a given source function at its neighboring
source function centroids. Pictorally, this metric is measured as follows. If we consider source
function f23 which is centered at the 2nd row and 3rd column of the n x n source function matrix
embedded in the mesh, then f23(k, l) = 100 at its center, when k, l = 2, 3. We can find the value
of f23 by evaluating this source function at the coordinates of its immediate neighbors’ centroids
(any of the other source functions on the mesh in Figure 4.2), as any neighbor will return the
same value.
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4.2. GAUSSIAN HYPERPARAMETERS

f22 f24

f13

f33

f23

Figure 4.2: A small section of mesh with five source function centroids

Mathematically, we can formulate a simple problem to give a σ such that the value of a
source function f at its immediate neighbors’ centers is x% of the value at f ’s center (which, as
aforementioned, is 100). As the mesh is created first in the problem, and the square submatrix
positions for each source function directly thereafter, we note that the value of a source function
centered at xk, yk evaluated at the center of its neighbor can be written as:

val = 100 · exp{
−((xneighbor − xk)2 + (yneighbor − yk)2)

σ
} (4.3)

Naturally, val will be a number less than 100 (as the value of the source function must be lower
than its peak in all other locations, and so dividing out the 100 and taking logs we can set σ
by choosing the desired value of a source function at the centroid of an immediate neighbor as
a percentage of the source function’s peak value.

We then can set σ as

σ =
−((xneighbor − xk)2 + (yneighbor − yk)2)

log(pctval)
(4.4)

It is also noted that due to the fact that the source functions are on a grid, exactly one of
either the x or y coordinate of the source function and its neighbor will be identical, and so in
practice the equation to set sigma (arbitrarily choosing the source function f23 and neighbor
f24), the equation simplifies to:

σ =
−(y4 − y3)2

log(pctval)
(4.5)
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4.2. GAUSSIAN HYPERPARAMETERS

Having found a way to choose σ, we can now see how the problem changes when the pctval
metric is varied. Sager, Bock, and Reinelt solve a one dimensional version of the Source Inversion
Problem [25] also using a = 100, and a σ such that pctval is 45%. One must note, however, that
in the two-dimensional setting, a higher variance has more severe ramifications, as the value of
the field (the sum of all source functions) at any given point does not receive contributions from
the neighboring source functions in the only the x dimension, but the neighboring functions in
the y dimension as well. Additionally, a higher variance results in the value of any point in the
field being tangibly affected by not only its immideate neighbors, but also any nearby functions
(which again, results in a greater effect in the two-dimensional scenario compared to the one-
dimensional scenario). Below are examples of the field of source functions and the solution to
the source PDE ud, given different values of σ. These results are garnered with n2 = 16 source
functions on a 32 x 32 mesh.

Figure 4.3: The source field and solution to the source PDE (pctval = .45, n = 4, m = 32)

As one can see, the high variance results in each source function bleeding into its neighbor’s
sphere of influence too much – the field is increasingly uniform in the center of the domain, and
results are somewhat spurious. If we similarly visualize the reference function and the solution
to the reference PDE in Figure 4.4, one notices that the individual Gaussian component centers
are difficult to spot in the solution due to the high variance of each component of the function.
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4.2. GAUSSIAN HYPERPARAMETERS

Figure 4.4: The reference function and solution to the ref. PDE (pctval = .45, n = 4, m = 16)

Mathematically, this overlap has serious consequences. When solving the optimization prob-
lem, high variance of each Gaussian component will cause many different parameter configura-
tions to result in a near-optimal result (as the reference solution is not obviously composed of
three individual functions but is rather a smeared-out mass in the center of the domain, as one
can see in the left plot of Figure 4.4), and crucially, different integer solutions also yield nearly
the same result, as it is difficult to distinguish between neighboring source functions. In essence,
there is too much noise to properly distinguish between the source functions that should and
should not be activated.

As the pctval shrinks, so too does the variance of each Gaussian component. As a result the
source functions are more clearly distinguishable from each other in the field, and the reference
solution becomes sharply peaked at the reference function’s three Gaussian component centroids.
As the noise disappears and the separation between elements of the source and reference field
become sharper, so too does a clear continuous (and integer) solution become more obvious, as
activating source functions has a more local and less smeared-out effect.
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4.2. GAUSSIAN HYPERPARAMETERS

Figure 4.5: The source field and solution to the source PDE (pctval = .025, n = 4, m = 32)

Figure 4.6: The source field and solution to the source PDE (pctval = .001, n = 4, m = 32)
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4.2. GAUSSIAN HYPERPARAMETERS

Figure 4.7: The reference function and solution to the ref. PDE (pctval = .001, n = 4, m = 32)

In choosing the hyperparameters of the Source Inversion problem, it is important to note the
trade-off between variance and solving the optimization problem with integer constraints. By
choosing a high variance, it is difficult to find an optimal solution that does not simply assign a
low value of wkl to each source function. While finding continuous and integer solutions may be
difficult, the difference between the continuous and integer solution is assured to be significant,
as the continuous solution will have many sources activated with low values of wkl. Conversely,
if the variance is tiny, then the continuous solution will end up being sparse to the extent that
it is close to the integer solution, or rounding up the largest S optimal continuous wkl values
to 1, and rounding all others to zero will result in the optimal integer solution every time, thus
rendering the use of any (computationally more expensive) integer algorithm pointless (i.e. one
might as well solve the continuous problem and use a rounding heuristic to get the right answer).
In an effort to balance these two issues, I used pctval parameters of 1% and 2.5%, which ensured
that each Gaussian function in the source field and the reference solution has a distinct peak,
while maintaining enough variance so that the Gaussian components of the source and reference
functions still overlap significantly. Under various mesh sizes and source function numbers, the
value of the variance parameter σ is:

Value of σ
σ when pctval = .01 σ when pctval = .025

m=16 m=32 m=64 m=128 m=16 m=32 m=64 m=128

n = 4 .0136 .0136 .0136 .0136 .017 .017 .017 .017

n = 8 .0034 .0034 .0034 .0034 .0042 .0042 .0042 .0034

n = 16 N/A .0009 .0009 .0009 N/A .0011 .0011 .0011

Figure 4.8: Values of the source function variance hyperparameter σ for different n, m
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4.3. THE SOURCE FUNCTION UPPER BOUND PARAMETER (S)

4.3 The Source Function Upper Bound Parameter (S)

The parameter S governs the number of source functions which may have nonzero wkl
coefficients. In the continuous case, as the source function is composed of three Gaussians,∑

k,l wkl ∼ 3 in all cases. In the integer case, however, due to the inexact precision of turning
sources on and off, it is possible that a combination of four (or more) source functions is the
best approximator to the PDE in terms of minimizing overall reconstruction error. To reflect as
much, I tested two values of S. First, I used S = 3, hypothesizing that exactly 3 source func-
tions would be activated, each one being sufficiently close to one of the Gaussian components of
the reference function. This proved to be the case; for completeness, I tested S = 5, assuming
that the case could arise whereby source functions are not adequately close enough to each of
the reference Gaussian bumps, and so some of the source functions offset each other in order
to minimize the error – in practice, this did not occur unless the integrality constraints were
already violated. Consequently, all results presented in this section assume that S = 3.

4.4 Optimizing the Penalty Term

One of the most computationally demanding tasks was to find the optimal hyperparameter
α∗ of the penalty function algorithm, as I was forced to selectively search using algorithm 9.
Unfortunately, discerning a reasonable error metric for α is difficult, as algorithm 9 attempts to
find the best α to solve the integer problem (i.e. minimizing reconstruction error of the source
solution using the optimal w∗ subject to each element in this optimal vector being binary).
Consequently, a classic error metric such as solving the penalty algorithm a number of times
and measuring reconstruction error for each α is not sensible, as α values which return a lower
reconstruction error with continuous values of w∗ are not preferred to α values which encourage
integer w∗, even if returning a higher construction error.

Under each configuration of n and m, I implemented algorithm 9 in order to find the α which
returned an integer solution. The optimal (or best found) values of α∗ are below:

Value of α∗
α∗ when pctval = .01 α∗ when pctval = .025

m=16 m=32 m=64 m=128 m=16 m=32 m=64 m=128

n = 4 .01625 .017 .017 .018 .04 .042 .044 .019

n = 8 .000125 .00015 .000175 .019 .0005 .00055 .0006 .019

n = 16 N/A N/A N/A .019 N/A N/A N/A .019

Figure 4.9: Values of penalty function hyperparameter α∗ for different n, m when S = 3

4.5 Tested Algorithms

In order to perform time and accuracy benchmarking, I tested the following five gradient-
based algorithms (in a later section, I contrast the results of each gradient-based algorithm to
non-gradient-based MINLP branch and bound baseline).
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Algorithm Description

Continuous (sum control) The algorithm which uses the sum of source functions as the
control (scales well in n but poorly in m) and finds optimal
values of 0 ≤ wkl ≤ 1

Continuous (w control) The algorithm which uses each wkl as the control (scales
poorly in n but well in m) and finds optimal values of 0 ≤
wkl ≤ 1

Penalty The algorithm which adds α
∑

k,l |wkl(1 − wkl)| in order to
encourage integer solutions

Two-Step The algorithm which takes the output of the continuous al-
gorithm (w control) as the winit input to the penalty algo-
rithm

MINLP A branch and bound algorithm which finds integer solutions
directly using a divide-and-conquer global search

4.5.1 Parameter Configurations

Given the above algorithms, I tested the following configurations of the Source Inversion prob-
lem in order to find scalability limits and to compare algorithm performance. All tests were
conducted on a laptop with a Intel Core i7-7500U CPU @ 2.70GHz with 16gb of RAM. Note
that none of these operations were run in parallel. I decided to use n = 4, n = 8, and n = 16
on each mesh in order to track the increasing computational complexity due to increasing the
number of source functions. The following table outlines the configurations of parameters tested.
As reported in the following sections, I calculated time complexity and error for each configura-
tion, using the L1 error metric (in practice this varied over n but not over m). Also note, not
pictured below, that this entire table was tested twice: once for Gaussian source functions with
σ such that pctval = .01 and once when pctval = .025. In the following section, pctval = .01 is
assumed, as changing pctval to .025 resulting in minor temporal differences across algorithms
results (a slight decrease in time complexity), but not structural differences. It is interesting to
note that while the time trends do not change as σ changes, increasing σ, that is, introducing a
higher variance, uniformly reduces the time of all tested configurations.

Configurations Tested
pctval = .01 pctval = .025

m=16 m=32 m=64 m=128 m=16 m=32 m=64 m=128

n = 4 X X X X X X X X
n = 8 X X X X X X X X
n = 16 X X X X X X X X

Figure 4.10: Parameter configurations tested for the Source Inversion problem

4.5.2 Optimization Hyperparameters

SciPy implementations of all optimization algorithms were used. In the continuous (w control),
heuristic integer, penalty, and two-step algorithms, optimizing with wkl’s as the controls was
done using sequential quadratic programming (SQP) using SciPy’s SLSQP. The convergence
criteria for the objective functional was 1e − 5 when n = 4, and 1e − 10 when n = 8, 16, with
a maximum of 400 iterations. In practice, SLSQP converged in a few hundred iterations for
the continuous (w control)/heuristic integer algorithms for any n, and for the penalty/two-step
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algorithms when n = 4. Above n = 4, the penalty/two-step methods did not converge; the
objective function value was still falling very slowly at 400 iterations. In the two-step algorithm,
the second stage of the optimization problem was run using SLSQP with the same functional
tolerance as the other algorithms. This converged each time in less than 20 iterations, likely due
to the convexity of the problem. For the sum control algorithm, I used SciPy’s implementation
of BFGS, which was capped at 150 iterations and had a functional tolerance of 1e− 7 for n = 4
and 1e− 10 for n = 8, 16.

4.6 Results and Discussion
The following results were obtained after testing each algorithm with the aforementioned

parameter configurations. Note the following abbreviations and units:

1. Time is measured in seconds

2. TO denotes ‘timeout’

3. N/A means that there is no error information due to algorithm timeout

4. X means that the configuration was not tested

5. * means that the two-step/penalty algorithm violated its integer constraints

As the continuous algorithm with w as a control for n = 16 took over four days to run, the
integer algorithms were not tested for n = 16. Though they likely would have converged with
properly chosen parameters, choosing a proper α that needs precision to six or more significant
figures proved quite difficult. In other words, the penalty method was generally not robust.

Cont. (w control)
Time Complexity Error

m=16 m=32 m=64 m=128 m=16 m=32 m=64 m=128

n = 4 68.23 65.76 142.01 190.11 .028 .043 .031 .031

n = 8 1657 1762 2753.49 4565.04 .0096 .0096 .0095 .0095

n = 16 X 5126.86 63,034.54 TO X .0019 .002 N/A

Figure 4.11: Results for the continuous (w control) algorithm

Cont. (sum control)
Time Complexity Error

m=16 m=32 m=64 m=128 m=16 m=32 m=64 m=128

n = 4 343 657 3110 TO .0367 .042 .057 N/A

n = 8 638 1051 7022 TO .045 .0407 .065 N/A

n = 16 X 13720 TO TO X .019 3 N/A

Figure 4.12: Results for the continuous (sum control) algorithm
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Heuristic Integer
Time Complexity Error

m=16 m=32 m=64 m=128 m=16 m=32 m=64 m=128

n = 4 68.23 65.76 142.01 190.11 .076 .071 .071 .071

n = 8 1657 1762 2753.49 4565.04 .01998 .0209 .021

n = 16 X 5126.86 63,034.54 TO X .019 .02 N/A

Figure 4.13: Results for the heuristic integer algorithm

Penalty
Time Complexity Error

m=16 m=32 m=64 m=128 m=16 m=32 m=64 m=128

n = 4 105.86 114.83 171.63 235.84 .077 .071 .071 .071

n = 8 2402.21 2760.45 3324.3 4839.23 .0077* .0077* .0077* .0077*

n = 16 X TO TO X N/A N/A N/A N/A

Figure 4.14: Results for the penalty function algorithm

Two Step
Two Step - Time Complexity Two Step - Error

m=16 m=32 m=64 m=128 m=16 m=32 m=64 m=128

n = 4 126.23 150.26 237.96 291.43 .077 .071 .071 .071

n = 8 4321.19 4456.21 5134.54 9345.24 .0062* .0062* .0062* .0062*

n = 16 X TO TO TO X N/A N/A N/A

Figure 4.15: Results for the two-step algorithm

4.6.1 Time Complexity

Glancing across the tables, it is easy to confirm that algorithm runtime generally increases in the
number of source functions used. Interestingly, however, it appears that for the continuous (sum
control) algorithm, the mesh parameter m dominates the n parameter in terms of complexity.
That is, the runtime of the algorithm scales well in n, but poorly in m. Using n = 4, the
continuous (w control), heuristic integer, penalty function, and two-step algorithms all had
n2 = 16 control parameters, one for each wkl. The sum control algorithm, as always, had one
control. Yet the bulk of the computational work for the latter four algorithms came from the
controls – thus as m was increased, the runtime of the algorithms increased by only moderately,
while the sum control algorithm run time increased exponentially, consistently timing out when
m = 128. See Figure 4.16 for a graphical representation.

The strength of the sum-control algorithm is seen when n is increased. At n = 8, the sum-
control algorithm still has a single control, while the other algorithms have 64 controls. Here,
the sum-control algorithm marginally outperforms all of the other algorithms in terms of time
complexity when m is small, though the difference is not compelling enough to make up for
the sum control algorithm’s poor accuracy. At n = 16, however, the sum control algorithm’s
runtime is already high for a small m, and quickly times out as m increases. Additionally, the
sum control algorithm is generally inaccurate, even with its continuous solutions. Without any
precise delineation, it is clear that the four algorithms which use each wkl as a control scale well
in mesh size m, but poorly in source function number n2, while the continuous (sum control)
algorithm does the opposite, scaling fairly well in source function number n2, and poorly in mesh
size m. While it is possible that the continuous (sum control) algorithm’s accuracy woes could
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be solved by increasing the tolerance in the first stage (when BFGS is used), any increase in
accuracy would come at the expense of an increase in the already oft-untenable time complexity.
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Figure 4.16: Time complexity across mesh size m of all algorithms when n = 4

4.6.2 Accuracy

The comparison of time complexity for the above parameter configurations is pointless, however,
without a comparing the accuracy of the solutions as well. Naturally, we desire to trade off time
complexity and accuracy to our liking, in that we tolerate a solution which takes a long time
to find if we highly prize accuracy, or we prefer a fast solution if we want a rough estimate
of optimality and a fast runtime. Before delving into a comparison of accuracy between the
algorithms, it is imperative to note a few structural differences between the algorithms.

Continuous and Integer Solutions

For a problem such as this one, the continuous solution is the relaxation of an integer solution,
That is, the requirement of integrality imposes more constraints on the Source Inversion problem.
Consequently, the solution to the continuous relaxation (i.e. 0 ≤ wkl ≤ 1) of the Source Inversion
problem is guaranteed to have an error equal to or lower than that of Source Inversion problem
with binary wkl’s.
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Penalty and Two-Step Algorithms

Both of these algorithms proceed by adding a penalty term – which relies on hyperparameter α
– to the objective functional which encourages integer solutions. In this problem, the objective
functional was extremely sensitive to α for penalizing non-binary wkl values with both L1 and
L2 norms. While α was relatively easy to find for the n = 4 case, when the number of source
functions increased, α became increasingly small, and the slightest of perturbations from the
optimal value yielded non-integer values – i.e. the penalty and two-step methods were not robust.
Consequently, the penalty and two-step algorithms returned very good error values (quite close
to the continuous error) in the n = 8 and n = 16 cases, but violated the integer constraints and
produced non-binary optimal wkl values. In practice these algorithms did converge to optimal
wkl values that were closer to being binary than the output of the continuous algorithm (for
instance, two wkl’s were 1, two were between 0 and 1, and all other values were zero), but I could
not find perfect binary solutions, even when testing α by increments of 1e − 7. In the n = 4
case, however, integrality constraints were satisfied and the heuristic integer, penalty function,
and two-step algorithms are returned the same exact solutions.

The Continuous (Sum Control) Algorithm

While the other four algorithms solved for the optimal wkl’s in one go, the continuous (sum
control) algorithm had two steps. As mentioned in the previous chapter, the second step of
the continuous (sum control) algorithm is a convex optimization problem, provided optimality
of the first step. That is, when the sum of source functions at each mesh vertex is optimized,
the resulting vector must be a global minimum of the first stage problem in order for global
optimality of the wkl values to be assured in the second stage. Unfortunately, there is not
certificate of global optimality for the first stage. Additionally, BFGS did not always terminate
due to convergence criteria, but sometimes due to an iteration maximum. While I chose the
maximum to be 150 iterations, and a tolerance of 1e − 10, more work would need to be done
to actually find the optimal iteration number and tolerance (I did a bit of testing but could not
afford to focus entirely on it). Consequently, I would venture a guess that the higher error rates
experienced by the continuous (sum control) algorithm are not a result of flawed ideology, but
rather imperfect convergence and iterations limits. Importantly, however, changing such limits
would affect time complexity, and without additional information, it is not possible to quantize
the trade-off.

General Accuracy Trends

As aforementioned, the accuracy of the continuous relaxation (i.e continuous (w control)) is
always the lower bound to the integer solutions. Indeed, we find this to be true. The accuracy
of the heuristic integer solution is as good or better than the penalty and two-step algorithms in
every case, and is much more time-efficient than the two-step algorithm. While the continuous
(sum control) algorithm has desirable properties for scaling and time complexity, it is noted
that it is quite inaccurate – even more inaccurate than the integer algorithms in the n = 8 case;
this could demonstrate improper convergence criteria (too large a tolerance), which, if properly
implemented, could increase the runtime of the continuous (sum control) algorithm quite a bit.
It is important to note that in Figure 4.18, while the penalty and two-step algorithms appear
to have better accuracy than the heuristic integer algorithm, the former two algorithms violate
their integrality constraints at n = 8 (but not at n = 4), and are thus invalid. Additionally, the
penalty and two-step algorithms timed out at n = 16, and thus do not have any error values.
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Figure 4.17: Accuracy of all algorithms across values of n

4.7 Error Contour Plots

As a more intuitive way of exploring error, the following contour plots present an error
gradient over the entire discrete domain Θ. It is clear that the error changes little when the
mesh is refined – the number of source functions and their general locations are still the same,
and thus the same source functions are usually activated as integers (or in the continuous case,
the magnitudes of wkl’s does not change much). For example, if we compare the n = 4 and
m = 16 case and the n = 4, m = 64 case when using the continuous (w control) algorithm, the
nonzero wkl’s are exactly the same. The magnitudes are perturbed only slightly (.11 → .14, or
.20 → .23), and the error rate changes only a bit. The distribution of error, however, is also
largely the same. This is depicted in Figure 4.19 below. Note that each black ’x’ corresponds
to an activated source function, and the number above and to the right of the ’x’ is the value of
its wkl coefficient. The black circles correspond to the centroids of the Gaussian components of
the reference function.
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(a) Error when n = 4, m = 16 (b) Error when n = 4, m = 64

Figure 4.18: The variation in error over mesh size

Correspondingly, the reconstructed solution to the reference PDE does not vary much in
terms of error across mesh sizes. One must note, however, that as both the reference and
source PDE are discretized in a certain mesh (i.e. 16 x 16 or 64 x 64), then the reconstruction
and reference solutions will look quite different across mesh sizes, despite the activated source
functions being nearly the same. For instance, taking the heuristic integer algorithm this time,
with n = 4, and m = 16, and n = 4 and m = 64:

Figure 4.19: Reconstruction solution (left) and reference solution (right) (n = 4, m = 16)
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Figure 4.20: Reconstruction solution (left) and reference solution (right) (n = 4, m = 64)

The above figures have demonstrated how accuracy is largely independent of mesh fineness
in the sense that changing mesh size does not affect the source functions activated to create
the PDE. If we increase the number of source functions, however, the case is quite different.
Consider the optimal binary vector when n = 4 and n = 8, using a mesh size m = 32. The
heuristic integer and continuous (w control) algorithms are presented.

(a) Error when n = 4, m = 32 (b) Error when n = 8, m = 32

Figure 4.21: The variation in error (heuristic integer) over source function number n

As one can see, increasing the number of source functions dramatically decreases error, as
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(a) Error when n = 4, m = 32 (b) Error when n = 8, m = 32

Figure 4.22: The variation in error (continuous (w control)) over source function number n

the increased number of source functions ensures that some source functions are closer to the
centroids of the Gaussian components of the reference function as compared to situations with a
smaller n. As n increases, the integer algorithms activate the source functions which are closer to
the Gaussian centroids, as seen in Figure 4.22. As we continue to increase n, one might inquire
about the asymptotic behavior of the optimal w vector – when n→∞, does the continuous (w
control) algorithm collapse to three integer wkl’s which correspond to source functions centered
nearly on top of the three Gaussian reference centroids? If so, this asymptotic behavior would
suggest that the continuous (w control) algorithm naturally tends towards integer solutions with
a large enough n, possibly allowing us to drop the binary constraints. Unfortunately, while I
cannot be certain of truly asymptotic activity, even at 256 source functions, the continuous
solution does not collapse to integer points, though the heuristic integer solutions can be seen
creeping closer and closer to the reference Gaussian centroids.

(a) Error when n = 16, m = 32 (b) Error when n = 16, m = 32

Figure 4.23: Continuous error (left) does not collapse to an integer solution at n = 16
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4.8 Comparing Branch and Bound & Gradient-Based Algorithms

The algorithms presented so far offer a fairly comprehensive overview of how gradient-based
optimization techniques may be applied to the Source Inversion problem. Although these tech-
niques are assured to yield inexact results, their utility lies in the promise that their algorithmic
efficiency makes up for any potential loss of accuracy. What remains, then, is a comparison of
these four algorithms to an exact integer solution found using MINLP techniques. As described
in Chapter 2, I compared the gradient-based algorithms to the MINLP algorithm branch and
bound (implemented using the open source numeric optimization library CasADi, with IPOPT
as the subproblem solver). Branch and bound proved to be extremely fast and accurate in most
scenarios, and for most situations, seems objectively better than any gradient-based approach
on all metrics. Yet the key difference between gradient-based algorithms and branch and bound
lies in their different scaling paradigms. As aforementioned, the gradient based algorithms which
create a control for each source function scale well in mesh size, yet poorly in the number of
source functions. The gradient-based algorithm which uses the sum of source functions as a
control scales poorly in mesh size, yet well in the number of source functions, though this algo-
rithm was less accurate than all other algorithms used. The branch and bound algorithm fits
neither of these paradigms, however, as it scales in the total number of variables. That is, branch
and bound performs well when n2 + m2 is small, but performs poorly as the total number of
variables is increased (whether by increasing the number of source functions or by refining the
mesh). Consequently, while branch and bound outperforms all of the other algorithms in terms
of time complexity in most of the scenarios – and as it is an integer programming algorithm,
it returns the exact optimal integer solution – this third scaling paradigm causes branch and
bound to perform terribly when refining the mesh. For instance, when the mesh is refined from
16 x 16 to 128 x 128, the gradient-based algorithms which scale well in mesh size see moderately
increased time complexity. These algorithms still only need to find derivative information for n2

variables. Yet as m increases to 128, branch and bound must handle and integer program with
n2 +m2 constraints during each iteration of the algorithm – by increasing m to 128, the number
of constraints increases from 256+n2 to 16384+n2! In the Source Inversion problem, n <<< m
by construction, and thus mesh refinement will often be the bottleneck whilst scaling. Finally,
it is interesting to note how the number of nodes processed by branch and bound increased in
n: when n = 4, roughly 50 nodes were processed in the optimization routine, regardless of mesh
size. When n = 8, roughly 200 nodes were processed while when n = 16, the number was around
500.

In terms of accuracy, the branch and bound method and the heuristic integer method picked
the same exact Gaussians to activate, and thus produced the same amount of error. In short,
neither method is outright superior to the other for these limited testing configurations. One
must note that the slight discrepancies in error between the algorithms and parameter configu-
rations are a result of an error tolerance – in some cases, the optimal ’integer’ wkl was equal to
.998 or the like, rather than precisely 1.0. When taking error tolerance into account, however,
the branch and bound and heuristic integer algorithms had identical accuracy, and only varied
in algorithm runtime.

As one can see in a graphical depiction of gradient-based and branch and bound algorithm
runtimes, it appears that the gradient-based algorithms and branch and bound both scale in
exponential time, yet branch and bound has a far higher coefficient than gradient-based algo-
rithms. In other words, if K = n2 + m2, and branch and bound is O(aK) while the gradient
based algorithms are O(bK), then a >>> b.

49



4.8. COMPARING BRANCH AND BOUND & GRADIENT-BASED ALGORITHMS

Title
Branch and Bound - Time Complexity Branch and Bound- Error
m=16 m=32 m=64 m=128 m=16 m = 32 m = 64 m=128

n = 4 1.3 21.84 126.88 2412 .077 .071 .071 .071

n = 8 24.39 126.61 535.53 32268.28 .020 .021 .021 .021

n = 16 X 908.03 3921.83 TO X .0037 .0035 N/A

Figure 4.24: Results for the branch and bound algorithm
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Figure 4.25: Gradient vs. MINLP complexity analysis across values of m

In order to better visualize the time complexities for low values of m, Figure 4.26 uses
a log2 scale for time. In this figure, the exponential scaling of all algorithms is revealed by
the linear trend (on the semi-log plot), at least at values of m greater than 128 (note that
m = 128, 200, 250, 300 were tested), while the higher slope of branch and bound vis-a-vis the
those of the gradient-based algorithms re-affirms branch and bound’s higher scaling coefficient.
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Figure 4.26: Gradient vs. MINLP complexity analysis across values of m (log2 scale)
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Chapter 5

The Tidal Turbine Problem

5.1 Background Information
As the production of energy via renewable methods becomes increasingly socially and po-

litically popular, advances in engineering methods are beginning to render tidal stream energy
production economically viable as well. Yet tidal energy generation still requires high fixed in-
stallation costs and is a nascent concept with few large-scale industrial examples, though fields
of tidal turbines are in construction/operation in Sihwa Lake, South Korea (254 MW, opened in
2011), La Rance, France (240 MW, opened in 1966), Swansea, Wales (400MW, in construction),
and Pentland Firth, Scotland (398 MW, in construction) [28]. Note that these are the largest
four tidal arrays in the world – three of them are either in construction or began operations
within the past six years! As tidal energy production continues to gain steam – with increased
scrutiny upon production efficiency driving costs down through R&D – optimization method-
ologies focusing on maximizing tidal stream energy generation as a function of turbine location
are required.

Tidal turbines have several unique characteristics predisposing them to a well-defined opti-
mization problem. For instance, compared to wind turbines, whose energy output depends on
fickle wind speeds and direction, the movement of the tides is predictable [27]. Consequently, it
is relatively easy to find regions which would be suited for tidal turbine arrays, though it has
been noted a tidal range of at least 7m is required for cost-effective operation at the present
level of technology [27]. The problem, then, is not to find the area where the turbines are suited,
but rather to optimize the placement of the individual turbines within any suitable region (also
known as micro-siting). Much of the difficulty in finding optimal placement results from the
physical constraints of the problem: the local geography and bathymetry, the physics governing
movements of tides and their interactions with each individual turbine (which is accurately mod-
eled by a system of partial differential equations), and attributes of the water itself. Due to the
complexity of the problem, there exists a broad trade-off between accuracy and computability.
For instance, by simplifying the system of PDE constraints which governs the physics of the
problem into a set of equations which are analytically tractable and less sophisticated, we are
able to compute the optimal placement of turbines efficiently, at the expense of a less-realistic
model (for instance, a MIP). Conversely, including the PDE constraints using the Navier-Stokes
equation would result in an extremely accurate model, yet it would be nigh-impossible to solve.
While I will enumerate upon previous MIP and PDE-based approaches and trade-offs, first I
will flesh out the problem a bit more qualitatively. As a general note, the following optimiza-
tion problems automatically incorporate the aforementioned adjoint approach to design, which
is extremely effective in reducing computational complexity of PDE-constrained optimization
problems without heavily affecting the accuracy of the resulting solutions. For an in-depth
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mathematical explanation of adjoint-based first-order optimization, see the Appendix.

5.2 Four Methods of Tidal Power Generation

Currently, there are four paradigms for tidal energy generation. The first method utilizes a
dam, called a tidal barrage, which has sluice gates that allow water to flow into a bay during
high tide (the dam is built across the entrance of the tidal inlet). Tidal turbines are a fixture
of these dams so that water flows through the turbines into the bay during high tide, and back
through the turbines out of the bay during low tide.

Figure 5.1: Cross-section of a tidal barrage during high tide [29]

Theoretically, the tidal barrage can use either one-way or two-way turbines (allowing power
to be collected as the tide flows in and as the tide flows out). Neither method is objectively
superior, however, as two-way turbines tend to cost more and can be less efficient than one-way
turbines. The spectre of concerns other than expensive turbines is also present: from a cost
standpoint, building the tidal barrage itself incurs substantial installation costs as an entire bay
must be dammed off, after which years of constant maintenance fees are accrued. Additionally,
there has been concern from an environmentalist perspective about the effects of damming a
bay or inlet on the local ecosystem, though studies from the oldest tidal barrage in La Rance,
France have demonstrated the environment’s robust ability to recover, settling at an – albeit
precarious and dependent on the continued operation of the tidal barrage – equilibrium [30] [31].

The second method of capturing tidal energy is quite similar to the idea of tidal barrages,
though instead of relying on a natural bay or inlet, one can construct a man-made lagoon in
the open water to simulate the same effects as a tidal barrage. Currently, a tidal lagoon is in
development in Swansea, Wales.
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Figure 5.2: The outline of a man-made lagoon in Swansea, Wales (in construction) [34]

The third method of harvesting tidal energy was recently proposed by two Dutch coastal
engineers. The as-of-yet untested idea, named Dynamic Tidal Power, is a natural extension
of tidal lagoons to the open ocean and involves the creation of a massive causeway (with bi-
directional tidal turbines embedded within) running parallel to the coast. These turbines are
able to constantly generate power with the influx and efflux of the tides.

Figure 5.3: Dynamic Tidal Power (DTP) generation [33]

While Dynamic Tidal Power generation has not yet been proven, a massive project evaluating
potential sites for DTP generation is underway in China [32].

The last method of generating tidal energy (and the one that will be considered in this
chapter) is known as tidal stream generation. Under this paradigm, tidal turbines are anchored
to the sea floor in certain areas where currents bottleneck due to natural (in theory, one could
artificially create an impediment) obstruction – for instance, at the entrance of bays, rivers,
between the shore and offshore islands, etc. — and tidal energy is constantly drawn from the
subsurface currents brought about by natural tidal flows.
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Figure 5.4: A field of tidal turbines (Tidal Stream Turbine generation) [35]

Figure 5.5: A tidal turbine destined for the Pentland Firth tidal array [36]

Tidal turbines have been increasing in size (and therefore power output) in the past decade
as interest in tidal stream energy generation as increased. In Figure 5.4, we can see an idealized
field of tidal stream turbines deployed on the sea bed. The following image of a turbine before
its installation into the Pentland Firth tidal farm in Figure 5.5, however, gives a good sense of
the scale of these turbines. Built by Atlantis Resources, this AR-1500 turbine has a 1500kW
rating, and weighs 150 tonnes – while this may seem large, other turbines deployed in Orkney,
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Scotland, weigh over 500 tonnes. To summarize, tidal turbines are enormous, are built for a
long lifetime (25+ years), and require a massive initial construction and installation cost, though
these initial costs are projected to fall with increasing research and development of new tidal
stream turbine technologies [37].

5.3 The Tidal Stream Turbine Problem Layout
In the tidal stream turbine optimization (TSTO) problem there is a two-dimensional or

three-dimensional domain Ω in which the tidal turbines are placed. Generally there is also a
sub-domain Θ ∈ Ω such that the tidal turbines are all placed in Θ, with tidal modelling also
occuring around the farm area in Ω. In the following examples, I consider unidirectional tidal
currents in a 2-D rectangular domain. That is, the tidal velocity enters Ω from a boundary δΩin

and flows out from δΩout. There is assumed to be no tidal activity on the other two boundaries.

δΩother

δΩoutδΩin

δΩother

Ω

ΩΩ

Ω

Θ

5.3.1 A Note on Tidal Cycles

As a PDE models the flow of water over time and two-dimensional space Ω, the choice of
boundary condition is quite important. In the following scenarios, a constant velocity of water
is assumed (i.e. water flows in δΩin at the same rate over the entire boundary at all times
during the simulation). One can increase the complexity of the tidal inflow by using a sinusoidal
model such as Funke et al. [38], or more complex models tailored to fit the actual natural region
one is modeling (i.e. measure the tides at Pentland Firth and construct custom-made boundary
conditions). Crucially, the assumption of a constant tidal flow allows us to remove time as a
variable (because all points in time have the same exact inflow/outflow) in the PDE governing
the movements of the tides.

5.4 Approaches in Tidal Stream Turbine Optimization (TSTO)
As aforementioned, tidal stream turbine optimization (TSTO) necessarily entails a trade-off:

one can model the physics of the problem accurately using PDEs and produce a model which
is computationally demanding to solve, or one can simplify the physics of the problem (using
a non-PDE multi-wake model), and produce a solvable, but inaccurate result. Much of the
optimization task, therefore, depends on the objective: how accurate of a solution do we need,
and what are the runtime and memory constraints? Paired with these general goals, there exist
a number of optimization methodologies (adjoint-based optimization, two-stage optimization,
etc.) to mollify the complexity issue, which will be discussed in due time. These methods
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may been seen as an attempt to preserve the accuracy of the model by incorporating proper
physics constraints, while intelligently choosing the formulation of the problem and the solution
methodology in order to minimize computational complexity. For a comprehensive overview of
TSTO modelling approaches, see the introduction of Funke et al.’s 2013 paper [40], or Funke et
al.’s 2014 paper [39] which describes the continuum of options for modelling the tidal turbine
problem in order to achieve specific goals; I will present here a cursory examination of previous
methods.

Funke et al. have presented PDE-constrained optimization models for TSTO in several dif-
ferent papers, each of which incorporate an adjoint approach to design. Funke et al. show that
if one uses an adjoint-based gradient approach (among other important specifications), a highly
accurate and efficient model can be produced, one which incorporates the PDE constraints into
the optimization problem, but is both computationally efficient and scalable to a high number of
turbines. In their 2013 paper, they present a model in which they maximize the energy captured
by the turbine farm (energy being a proxy for profit), subject to the shallow water equations
(PDEs), the proximity constraints (the turbines must be a minimum distance away from each
other), the boundary constraints (the turbines are placed inside a predefined domain), and the
chosen number of turbines [40]. In a 2014 paper, the Barnett et al. use a simplified wake model
instead of PDEs in order to globally optimize arrays of tidal turbines (noting this as fast, but
inaccurate), and then implement a two-stage model in which the output of the cheap global opti-
mizer is piped into the local gradient-based model which incorporates the PDE (the same model
as in Funke et. al.’s 2013 paper), a process which they note improves both speed and accuracy
in most cases [42]. In a 2016 paper, Funke et al. reconsider the TSTO problem by replacing
the power maximization objective functional with an extensive cost-modelling functional and
cable-routing optimization sub-problem (i.e. the problem morphs to minimizing the net present
value of lifetime tidal turbine field cost rather than maximizing raw power) [41]. Finally, Funke
et al. propose a continuous model which finds the most profitable field of tidal turbines while
modelling the turbines as a continuous density function rather than discrete bumps. This last
paper both incorporates cost into the objective functional and does not require the authors to
pre-specify the number of turbines to be placed. Additionally, the authors show that the re-
sults from the continuous model largely agree with those of the discrete model from the 2013
paper [38]. It is noted, however, that the methodology of converting a continuous density field
into optimal discrete turbine locations is a simple stochastic method which I will endeavour to
improve upon later in this chapter.

Other formulations of TSTO (or similar wind farm optimization problems) use simpler equa-
tions to model the physics of the problem. These formulations, as Funke et al. note:

[They] simplify the tidal flow model such that the solutions are either available as
explicit analytical expressions, or are extremely fast to compute... While this ap-
proach can provide a coarse estimate for the power potential of a site, these simplified
models cannot accurately capture the complex nonlinear flow interactions between
turbines. [40]

On the most-simplifying end of TSTO and TSTO-like models are mixed-integer programs.
Though to my knowledge no purely MIP model exists for tidal turbine optimization, there are
multiple papers which use MIP models for wind turbine optimization. Zhang et al. propose a
MIP model for optimizing the placement of a given number of turbines in a fixed n x n grid
domain, subject to the relevant aerodynamic (wind and wake) constraints. They create models to
maximize the expected power of the wind farm and the average power captured at each grid point
labelled by i ∈ 1, ..., n2. Yet these models incorporate the physics of the problem as analytical
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multi-wake equations not governed by PDEs, which are baked into the objective function or
added as constraints. The decision variables are integer variables corresponding to the choice
of placement of the fixed number of turbines. Simplifying greatly, with predetermined number
of turbines k, energy = E, energy per grid unit = Ei, the variable xi being a binary variable
taking value 1 if a turbine is placed at i and 0 otherwise, and N (i) a set of all points proximal to
any given location i (the set is determined by the chosen grid and proximity constraints), their
model takes the form:

max E s.t.


∑n

i=1 xi = k

xi + xj ≤ 1 ∀j ∈ N (i)

xi ∈ {0, 1} ∀i ∈ 1, ..., n

(5.1)

It is noted by Zhang et al. that their initial optimization problem is nonlinear in the objec-
tive, and thus they construct more complex and accurate models to which they add a host of
constraints, allowing for linearization of the objective function. I will not discuss this further,
however, as I will be focusing on tidal turbines. For more information on the specific models,
see Zhang et al. [43]. For our purposes, the most important takeaway from their paper lies in
modeling each possible turbine location with a binary variable; their MIP algorithm then finds
which binary variables to turn on and off, subject to the required number (or maximum num-
ber) of activated turbines. This method is similar to the Source Inversion problem (in which
the optimization algorithm must pick which source functions to activate and which to set to
zero), and is a decision methodology I will try to incorporate into a MIPDECO formulation of
the TSTO problem in a later section.

The final paradigm used in wind turbine optimization is exemplified by Fagerfjall, who creates
a similar model to Zhang et al. for optimizing wind turbine layout using a MIP model, albeit
with a far simpler objective function and more constraints [44]; in this case, the optimization
algorithm is neither MINLP nor gradient-based, but is a heuristic global search, which would
be infeasible in any optimization problem containing PDEs for the aforementioned reasons.

5.5 The Shallow Water Equations
In the following sections, I will examine a continuous and discrete approach to TSTO, and

attempt my own formulation of a continuous-to-MIPDECO optimization pipeline. In each of
these scenarios, the physics of the TSTO problem will be approximated using the shallow water
equations, following a series of papers by Funke et. al. [38] [40] [41] [42]. A cursory explanation
of the shallow water equations as applies to the TSTO problem follows.

The motion of viscuous fluid substances may be accurately described by the nonlinear PDE
known as the Navier-Stokes equations. Unfortunately, the Navier-Stokes equations are analyti-
cally intractable (existence and smoothness of N-S solutions are considered one of the seven most
important unsolved problems by the Clay Mathematics Institute). Consequently, the Navier-
Stokes equations are approximated by the two-dimensional shallow water equations, which are
derived by depth-integrating the Navier-Stokes equations. As Randall notes:

The shallow water equations are the simplest form of the equations of motion that
can be used to describe the horizontal structure of an atmosphere. They describe
the evolution of an incompressible fluid in response to gravitational and rotational
accelerations. The solutions of the shallow water equations represent many types of
motion, including Rossby waves and inertia-gravity waves [45].

While the shallow water equations are a set of nonlinear PDEs, it is noted that a more realistic
model could incorporate even more complex PDEs such as the Reynolds-averaged Navier-Stokes

58



5.5. THE SHALLOW WATER EQUATIONS

equations (RANS) and three-dimensional Actuator Disk Momentum (ADM) theory. Though
it seems work on integrating Funke’s work and open-source code OpenTidalFarm with ADM
theory and the Fluidity framework is ongoing, the scale of the integration is regrettably out of
the scope of this project [40]. The interested reader can refer to an excellent overview of RANS
and ADM applied to the TSTO problem given by Abolghasemi et al. [46].

In the following sections, the shallow water equations are used with parameters described in
the table below. The TSTO problem occurs in domain Ω. Each turbine is modelled as a smooth
differentiable bump which represents the increased bottom friction resulting from the existence
of a turbine centered at a given pair of two-dimensional coordinates. The decision variable m
is the vector of these turbine coordinates, x1, y1....xN , yN , which can include friction coefficients
K1...KN if the coefficients are individually tuned to the turbines (or alternatively a single value
of K can be ubiquitous).

The shallow water equations have several parameters. First, κ ∈ {0, 1} is a binary variable
which determines stationarity. If κ = 0, then the velocity of flow (that is, the tidal currents)
are considered stationary over time. If κ = 1, we allow the tidal currents to change over the
time simulation period. Assuming time-invariance for now, u represents the depth-averaged
velocity of water flow at any given point in the domain, and thus u : Ω→ R2; note that u is a
two-dimensional vector, which will have important ramifications for the finite element method
later on. The next parameter is the free-surface displacement, η : Ω → R. Acceleration due to
gravity is accounted for by g ∈ R. The resting water depth is given as H : Ω → R (which also
satisfies h = η + H, where h is the total water depth), and the constant natural background
friction cb : Ω→ R. The farm-induced friction flow (i.e. the artificial friction which the turbines
induce on the natural current) is given by ct : Ω→ R, and finally, the kinematic viscosity term
ν ∈ R, while eddy viscosity is a fixed constant which does not appear.

There is a Dirichlet boundary condition applied to u on the inflow boundary δΩin, with
g(.) a predefined function of u. For instance, g(.) can be chosen to represent sinusoidal tidal
movement, or g(.) could return a vector of constants specifying a constant time-invariance water
flow velocity. Free-surface displacement is set to zero on the outflow boundary δΩout. A strong
no-slip boundary condition is imposed on u on the two other boundaries δΩother. The shallow
water equations are presented below in 5.2 and 5.3, along with the boundary conditions in 5.4.

Parameter Description

t t ∈ (0, T ), the simulation period

m Locational decision variables

Ω Turbine farm state space

ρ Fluid (water) density

u Velocity of the flow

η Free surface displacement

g Acceleration due to gravity

ν Kinematic viscosity

cb Constant background bottom friction

ct Enhanced friction of parametrized turbines

H Resting water depth

κ 0 if stationary, else 1

κ
δu

δt
+ u · ∇u− ν∇2u+ g∇η +

cb + ct(m)

H
||u||u = 0 (5.2)

κ
δη

δt
+∇ · (Hu) = 0 (5.3)
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Boundary Conditions =


u = g(u) u ∈ δΩin

η = 0 η ∈ δΩout

u = 0 u ∈ δΩother

(5.4)

5.6 TSTO Formulated as a Discrete Problem
Funke et al. approach TSTO as a PDE-constrained optimization problem which approximates

the physics of the situation by the two-dimensional shallow water equations (assuming boundary
equations in the previous section) and tidal turbines by bumps of increased friction. It is
important to note that the number of turbines N to place in the domain Ω must be predefined,
and a minimum distance between any two turbines d is introduced (typically a function of
turbine blade diameter or turbine length).

κ
δu

δt
+ u · ∇u− ν∇2u+ g∇η +

cb + ct(m)

H
||u||u = 0 (5.5)

κ
δη

δt
+∇ · (Hu) = 0 (5.6)

In the following I assume stationarity (that is, the average power extracted from each turbine
does not vary over time, and thus κ = 0 and time can be eliminated as a parameter of interest
in this situation). Each turbine is parametrized as a two-dimensional bump resulting from the
multiplication of the below bump equation in each dimension:

ψp,r =

{
e1−1/(1−||x−p

r
||) ||x−pr || < 1

0 otherwise
(5.7)

Given a friction coefficient Ki, the friction function of each turbine with a center at xi, yi is
given by:

Ci(m)(x, y) = Ki · ψxi,r(x) · ψyi,r(y) (5.8)

Then in the above PDE, ct(m) =
∑N

i=1Ci(m). The objective functional is given by the average
power extracted from the field:

P (m) =

∫
Ω
ρct(m)||u||3dx (5.9)

The PDE-constrained optimization problem is written below. Note that the last constraint
ensures that a minimum distance d exists between all turbine locations.

P (m∗) ≡ max
m

P (m) s.t.


u · ∇u− ν∇2u+ g∇η + cb+ct(m)

H ||u||u = 0

∇ · (Hu) = 0

||pi − pj ||22 ≥ d2 1 ≤ i < j ≤ N
(5.10)

This model can then be solved using a gradient-based approach similar to that of the Source
Inversion problem, again incorporating the adjoint approach to design, as described in the
Appendix. As with the Source Inversion problem, the PDE constraint must first be discretized
by finding the solution to the weak formulation of the system of equations. Yet a key difference
exists between the two problems, as in Source Inversion problem, u : Ω → R. Consequently, it
was sensible to use piecewise linear finite elements to represent u over its discretized domain. In
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the TSTO problem, free surface displacement η will similarly be represented by elements drawn
from the space of all piecewise linear functions. As the depth-averaged velocity u : Ω → R2,
however, u will now be represented by finite elements drawn from the space of all piecewise
quadratic functions. For the mathematics of the finite element method as applied to this problem,
see the Appendix.

5.6.1 A Solved Discrete TSTO Example

Suppose we want to optimize the placement of 32 tidal turbines in a rectangular domain Ω
following Funke et al. [40] closely, with some parameter modifications as stated and justified.
For the purposes of this toy example, we assume the farm is placed in the rectangular sub-
domain Θ nested in the center of the domain (this makes handling boundary conditions easier).
Ω is assumed to be a 800m x 600m domain with mesh vertices 30m apart outside the farm area,
and 3m apart inside the farm area (with mesh construction occuring in open source software
gmsh). The ν, H, cb and K (constant across turbines) were adapted from Funke et. al [40],
while gravity and water density assume their usual values.

The Atlantis AR-1500 tidal turbine (15 meters tall and 16 meters in blade diameter, minimum
deployment depth of 30m [37]) which was recently placed in Pentland Firth is used as an example
for turbine. Consequently, I use a blade diameter of 16m (radius rb = 8) and minimum distance
d = 20m between turbines. The boundary conditions hold as aformentioned, with a constant
horizontal velocity of 2m/s on the inflow boundary so that g(u) =

[
2 0

]
u ∈ δΩin.

Parameter Description

Domain Ω 600m x 800m

Farm Area Θ 400m x 200m

Water Density ρ 1000kg/m3

Kinematic Viscosity ν 3m/s

Gravity g 9.81m/s2

Constant Background Friction cb 0.0025

Turbine Friction CoefficientK 21

Turbine Blade Radius rb 8m

Resting Water Depth H 50m

Velocity of Flow uin 2m/s

Figure 5.6: Discrete TSTO Parameters

61



5.6. TSTO FORMULATED AS A DISCRETE PROBLEM

Figure 5.7: The 800 x 600 mesh Ω with a refined farm area Θ

Given the above mesh and parameters, 32 turbines are created as friction bumps. In this
initial configuration, 30.2 megawatts (MW) of power are extracted, or .94375 MW per turbine.

Figure 5.8: Initial layout of turbines

With the minimum distance between turbines as d = 20, I used SLSQP in SciPy to optimize
the placement of the 32 turbines in the area of the farm, which converged after 82 iterations

62



5.7. TSTO FORMULATED AS A MIPDECO PROBLEM

with a tolerance of 1e − 6. In this final layout, 47.6 MW of power are extracted, or 1.49 MW
per turbine, a 54% increase in power!

Figure 5.9: Optimized layout of turbines

5.7 TSTO Formulated as a MIPDECO Problem
There are a few principal shortcomings of the above model. The first is that is uses the

shallow water equations and simple friction bumps for turbines instead of the more accurate
ADM theory, a topic that will not be treated here. Another issue is that the precise number
of turbines to be placed must be pre-specified. That is, exactly N turbines are coded in 2 · N
coordinates – there is no option to place more or less than N turbines. This is a solution which is
easily remediable using a MIPDECO approach, or the continuous approach, which is explored in
a later section. Next, the objective functional attempts to maximize power, an imperfect proxy
for profit. Later papers by Funke et al. incorporate an extremely complicated explicit profit
function derived from an optimal cable-routing sub-problem, as well as a simple profit function
which is reliant on a predefined profit margin; I will soon present a model which attempts to
take a middle ground in presenting a fairly simple profit function which still takes into account
time discounting and power prices with no a priori profit margin. The last issue is the constant
bane of gradient-based optimization: any solution will necessarily be a local minima. Funke et
al.’s later two-step global to local optimization algorithm, also discussed in a later section, is a
solution to this.

It is important to note that allowing variation in the chosen number of turbines and analyzing
profit instead of power inherently changes the optimization problem and objective functional. If
we maintain the objective functional as power extracted, then it is likely that the optimal number
of turbines is simply the total number of turbines which can safely fit in the farm domain, as
the marginal power increase from adding one turbine, however minute, will almost always be
positive unless including so many turbines that they crowd each other’s power generation out.
In reality, this marginal increase in power will be offset by a somewhat-fixed marginal cost of
placing a new turbine and the variable marginal cost of adding a new turbine to the network.
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To avoid a spurious optimization problem, we can change the objective functional to average
profit extracted from the array, rather than average power. Note that time must be included
even if stationary power extraction still holds, as net present value and its relation to profit is
inherently non-stationary. For now, I will present a high-level MIPDECO approach assuming a
predefined profit function, which will be presented in a later section.

Consider Funke et al.’s optimization formulation, which we can tweak into a MIPDECO.
First, we can discretize the continuous domain Ω (which is necessary anyhow to solve using any
gradient-based method) into a n x n mesh (I will continue to call this Ω), and assign a binary
variable to each mesh vertex. All of the parameters from section 5.4 remain the same. Given
a friction coefficient Ki, we now depart from Funke at add binary variables to each turbine’s
friction function. Thus the friction function of each turbine with a center at xi, yi is given by:

Ci(wi) = wi ·Ki · ψxi,r(x) · ψyi,r(y) (5.11)

In the shallow water equations, we now have ct(w) =
∑n2

i=1Ci(wi). The objective functional is
given by the average power extracted from the field – note that this is now a function of the
binary controls, rather than turbine location (note that technically the integral changes to a
summation operator due to discretization):

P (w) =

∫ T

0

∫
Ω
Profit(w)dxdt (5.12)

Similarly to the Source Inversion problem, we need to pick up to N sources to turn on in
order to maximize the energy captured. Note the implicit assumption that each mesh vertex is
d units apart, undertaken so that the last constraint ensures that any activated turbine has no
other active turbines among its neighboring mesh vertices (denoted N (.)), which are distance d
away.

max
w

P (w) s.t.



u · ∇u− ν∇2u+ g∇η + cb+ct(w)
H ||u||u = 0

∇ · (Hu) = 0∑
wxy ≤ N

wxy ∈ {0, 1} ∀x, y ∈ Ω

wxy · wab = 0 ∀x, y ∈ Ω,∀a, b ∈ N (x, y)

(5.13)

At first glance, this formulation may seem promising, as it directly optimizes for profit with-
out requiring a prespecified number of turbines (just an upper bound). Unfortunately, this
MIPDECO formulation is restricted in that a mesh fineness must be set so that each binary
variable is exactly d meters apart. Naturally, if one increases the size of the domain (i.e. in-
creasing the domain from 800m x 600m to 2000m x 2000m), then so too does the number of
binary variables increase, as this formulation has exponentially mesh-dependent variables. Con-
sequently, any computation with a realistic domain will be nearly impossible (as opposed to
the Source Inversion problem, the meshes in this scenario need to be far larger than 64 x 64
as our actual domain will be hundreds of meters by hundreds of meters). As a result, a direct
MIPDECO formulation is out of the cards. What is possible, however, is to solve this problem
in a continuous fashion or two-step fashion which will be enumerated upon in the following
sections. After a solution is obtained, the near-optimal solution can be converted into a mesh-
independent MIPDECO and solved for enhanced accuracy. This can be done, for instance, by
creating an optimal turbine density field and then converting the largest 2N or so hotspots into
turbines with corresponding binary variables, which can then be fed into a MIPDECO problem.
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5.8 TSTO Formulated as a Continuous Problem
Along with the discrete TSTO framework, Funke et al. present a continuous model which

optimizes a turbine density field, as opposed to individually resolving the locations of a prede-
termined number of turbines [38]. The continuous TSTO problem attempts to maximize the
profit of a farm with domain Ω over its lifetime as a function of parameter d : Ω → R, which
measures turbine density at any location x on the farm. The value of d(x) is upper bounded by
a maximum turbine density d̄, which is 0 where no turbines can be installed (areas that are too
steep, too shallow, have natural physical impediments, etc.). The maximum turbine density is
defined as d̄ = 1/min dist2, where min dist is the minimum distance required between turbines
if they were discrete and individually resolved. By using d(x) as a control, this method is able
to automatically find the optimal number of turbines by integrating the density over the domain
Ω. That is, for optimized turbine density d∗(x), one can find the optimal number of turbines
N :

N =

∫
Ω
d∗(x)dx (5.14)

The objective functional is modelled as:

Profit(d) ≡ Revenue(d)− Cost(d) = IkE(u, d)− C
∫

Ω
d(x)dx (5.15)

In this formulation, I is the income per energy unit, k a coefficient between 0 and 1 which
accounts for efficiency losses over the lifetime of the farm, and E is the total amount of energy
produced by the farm over its lifetime given lifetime velocity u, and d is the turbine density.
C accounts for fixed and variable costs of a single turbine over its lifetime. The shallow water
equations again model the physics of the situation, though the continuous formulation and
profit necessitates the use of the time-variant formulation and turbine friction is a function of
the density field rather than discrete turbine locations.

δu

δt
+ u · ∇u− ν∇2u+ g∇η +

cb + ct(d)

H
||u||u = 0 (5.16)

δη

δt
+∇ · (Hu) = 0 (5.17)

Correspondingly, while most parameters stay the same as in the discrete formulation, in the
time-invariant case, it is assumed that the depth-averaged velocity u : Ω x (0, T )→ R2, and the
free surface displacement η : Ω x (0, T )→ R.

In order to use d as the control, it is necessary to derive a relationship between the artificial
friction generated by the farm of turbines at time t, ct, and turbine density d. The authors note
that:

To derive the relationship between the farm induced friction ct and the turbine den-
sity function d, we use an idea very similar to the enhanced bottom drag formulations
(Divett et al., 2013; Funke et al., 2014; Martin-Short et al., 2015), where the turbine
induced drag is chosen such that the resulting force approximates the drag force of
an analytical model of the turbines [38].

Using the depth-integrated momentum equation obtained from the shallow-water equations,
Funke et. al model the force produced by the farm as

Ffarm(t) =

∫
Ω
ρct(d(x))d(x)||u(x, t)||u(x, t)dx (5.18)
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They then consider each turbine with 3-dimensional flow, upstream velocity ||u||∞, and with
CT being the constant drag coefficient of each turbine and AT being the constant surface area
of the blade-span of each turbine (both of which are assumed constant across all turbines), and
model the force of each turbine (and the force of the farm as just the sum of N individual turbine
forces) as:

Fturbine(u∞) =
1

2
ρCTAT ||u||∞u∞ (5.19)

Ffarm =
N∑
i=1

1

2
ρCTAT ||u||∞u∞ (5.20)

Correspondingly, they parametrize the farm drag force as the integral of continuous drag
scaled by the turbine density function d, so that:

Ffarm(t) =

∫
Ω
d(x) · 1

2
ρCTAt||u(x, t)||u(x, t)dx (5.21)

They obtain ct(d(x)), then, from comparing Equations 5.18 and 5.21, and making the ap-
propriate substitutions.

ct(d(x)) =
1

2
CTATd(x) (5.22)

The power extraction of the farm at time t is given by the dot product of the force of the
farm and the depth-averaged velocity, and is integrated over the lifetime of the farm, yielding:

E(u, d) = ρ

∫ T

0

∫
Ω
ct(d(x))||u(x, t)||32dxdt (5.23)

Finally, the authors divide the objective functional by TIK, noting scale-invariance of this
optimization paradigm. This yields the continuous PDE-constrained optimization problem:

max
d

1

T
E(u, d)− C

TIk

∫
Ω
d(x)dx s.t.


δu
δt + u · ∇u− ν∇2u+ g∇η + cb+ct(d)

H ||u||u = 0
δη
dt +∇ · (Hu) = 0

0 ≤ d(x) ≤ d̄(x) ∀x ∈ Ωfarm

d(x) = 0 ∀x ∈ Ω \ Ωfarm

(5.24)

To estimate the cost coefficient, the authors use a tidal cycle with peak velocity upeak (note
that with constant tidal flow, upeak is the constant tidal flow; if using sinusoidal tidal flow,
however, upeak is the peak velocity of the tidal period) and profit margin m = Revenue−Cost

Revenue , the
authors estimate:

C

TIk
=

1

2
CTAT (1−m)ρu3

peak (5.25)

An important point to note is that C
TIk is extremely easy to calculate and becomes a constant

– when the user defines the profit margin. Thus one is able to ignore many difficult parameters
required to make an accurate profit calculation, at the expense of making the profit function
entirely dependent on a user-specified profit margin. While this certain cleans calculations up,
the profit margin varies greatly between situations and estimating a margin is quite difficult due
to the nascency of tidal stream power generation and the related lack of historical information
regarding the operations of tidal turbine farms.
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This model can be solved in a fashion similar to the discrete case, using OpenTidalFarm and
gradient-based optimization. As there are no inequality constraints, L-BFGS-B is an ideal opti-
mization algorithm, as its limited-memory properties reduce the stress of storing large Hessian
approximations in the computer’s memory. As aformentioned, the output of this model is d∗(x),
the optimal turbine density function. Funke et al. use a probabilistic algorithm to convert this
continuous density field into its discrete approximation, first by integrating the optimal field
over the domain to find the number of discrete turbines, before micro-siting the turbines [38]:

Algorithm 12 Transforming a continuous density field to discrete turbine farm

1: Determine the number of turbines, N =
∫

Ω d
∗(x)dx

2: while number of turbines deployed is less than N do
3: Pick a random point x in the domain
4: Place a turbine at x with probability d(x)/d̄ if the distance constraint is satisfied

5: Return optimal discrete field of turbines

Though I will not further examine the derivation of continuous model, one can refer to
sections 2, 3, and 4 of Funke et al.’s recent paper for a detailed mathematical derivation and
justification [38]. While I will implement this model as a baseline solution, my intention is
to use it as the starting point of my model in the next section, which will incorporate time-
discounting and actual cost and revenue estimates (as opposed to a predefined profit margin).
More importantly, I intend to replace the heuristic process which converts the density field to
individually resolved turbines by introducing a targeted MIPDECO problem that will take the
optimal density field as its initial input.

5.8.1 A Solved Continuous TSTO Example

If we take the continuous optimization problem in Equation 5.24, we can see that it is essen-
tially an extension of the discrete case. The shallow water equations have been augmented to
include variation in the tides over time, and the decision variables are now a continuous density
field rather than discrete bumps. The former objective functional (power extraction) is now
a component on the new objective functional, which models profit as a function of cost and
revenue (which depends on power). Let us consider Equation 5.24 using the same domain Ω and
parameters for H, ν, g, ρ, rb, and cb as in the discrete case. As in the discrete case, we assume
a simple tidal flow of 2m/s. Consequently, we may ignore the time parameters as the velocity
of the flow is time-invariant, and no discounting is applied to the profit function. Thus we can
simply solve the same steady-state shallow water equations as in the solved discrete example. In
order to estimate a profit over the lifetime of a farm, this model would simply scale profit by the
appropriate time period (for instance, if we assume δt = 1, total profit from t = 0 to t = 5 would
simply be 5 · Profit|t=0). For modelling purposes, time invariance can be realized by ignoring
the time derivative terms in the shallow water equations, and setting T = 1. Before running
the optimization problem, we can calculate the cost coefficient C by defining the turbine blade
radius rb = 8m and finding the area swept out by the turbine blades AT = 2πrb = 201.06m2.
Funke et al.’s baseline parameters for the profit margin m = 40% and and thrust coefficient
Ct = .6 are used, yielding a cost coefficient value of 289.5kW
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Parameter Description

Domain Ω 600m x 800m

Farm Area Θ 400m x 200m

Water Density ρ 1000kg/m3

Kinematic Viscosity ν 3m/s

Gravity g 9.81m/s2

Constant Background Friction cb 0.0025

Turbine Blade Radius rb 8m

Thrust Coefficient CT 0.6m

Cross-Sectional Turbine Surface Area AT 201.06m2

Cost Coefficient C
TIk 289.5 kW

Resting Water Depth H 50m

Velocity of Flow uin 2m/s

Figure 5.10: Continuous TSTO problem parameters

After setting up the optimization problem with the above parameters and domain, I used L-
BFGS-B with a tolerance of 1e−6. Converging after 47 iterations, the following optimal density
field was produced, with N = 53 (rounded down from 53.2) being the optimal number of turbines
obtained by integrating d∗(x) over Ω. 20.06 MW of power was produced at a cost of 15.4 MW,
yielding 4.7 MW of power in profit. Note that the red regions in Figure 5.11 correspond to the
highest-density of turbines, while blue regions correspond to the lowest turbine density.

Figure 5.11: Optimal turbine density field

Using Funke et al.’s conversion method (algorithm 12), I extracted coordinates of the first
N turbines placed and create a discrete turbine field.

To estimate the accuracy of the continuous method, one can refer to Funke et al. [38] for a
thorough examination, in which the authors find that the continuous method has high fidelity
to the findings of the discrete method. Taking the same parameters used in this continuous
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Figure 5.12: Optimal discrete turbine field (using algorithm 12)

optimization, a visual confirmation is easily obtained by optimizing the placement of N = 52
turbines using the discrete method in the same domain.

5.9 TSTO Formulated as a Two-Step MIPDECO
Using the continuous model in the previous section as a baseline, this section will present

a modified version of the continuous model, whose output (the optimal density field of tidal
turbines) serves as the input to a modified version of the MIPDECO formulation presented
earlier. The profit equation is modified to reflect time-discounting and and an explicit currency
cost of power generation based on the levelized cost of energy (LCOE) methodology and an
revenue function based upon UK government subsidies to the tidal stream turbine industry;
consequently, no profit margin is assumed.

5.9.1 Step 1: A New Continuous TSTO Model

In the first step, we introduce an explicit quantification of the cost function modelled by the
LCOE, for which estimates exist in [47] [48]. The major components of LCOE are the present
value of energy output and the present value of energy generation cost, both of which are
modulated by a discount rate, which reflects human preference for present satisfaction over
future satiation, as well as the private cost of capital.

5.9.2 Discount Rates

Numerous psychological and economic studies have shown that discount rates are complex;
generally, these studies revolve around a choice presented to an individual of accepting a reward
immediately, or a greater reward in the next time period. For instance, a subject may be offered
$100 today, or $105 tomorrow. If presented with a selection of similar scenarios, one should
theoretically be able to derive a discount rate which measures how an individual values presently-
held money and future cash income as a function of time. Though a simple exponential discount
rate is often used (i.e. a human equally prefers $100 immediately to 100

(1+r)t in period t given
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their subjective discount rate r), researchers such as Kahneman and Tversky (prospect theory),
Bordalo et al. (salience theory) have shown that human preferences are intertwined with risk
and uncertainty, and are generally quite complex and evidentiary of human irrationality. Studies
have revealed well-known situations such as the Allais Paradox, which empirically invalidates
expected utility theory, a cornerstone of Economics. Put simply, there is no empirically satisfying
theory for universal human discounting.

Discount rates can also be disentangled from single subjects and applied to markets. For
instance, when investors are presented with a host of companies seeking investment, discount
rates for firms are often tied to the interest rate, industry indicators, and particular aspects of
the firm itself. All of these factors come together in a metric known as the cost of capital – i.e.
the interest rate which a firm pays on the loans required to fund its projects. Risker projects
(i.e. unproven alternative energy projects such as tidal stream turbines) typically incur a higher
interest rate than less risky projects, as the implicit risks of default or less-than-optimal returns
are priced in by investors who are loaning companies money [47]. Consequently, following Allan
et al., a high discount rate of 10% will be used. It would be interesting, however, to survey
literature and business decisions in order to find an accurate discount rate for the tidal stream
industry in the UK, perhaps incorporating hyperbolic discounting or some other recent empirical
findings regarding human discounting and preferences.

5.9.3 Levelized Cost of Energy

Using the LCOE, we can model the lifetime cost of a single turbine with discount rate r = 10%,
time period (0, T ), value of energy output Ot, and cost Ct at time t as:

LCOE =

∑T
t=0Ct/(1 + rt)

t∑T
t=0Ot/(1 + rt)t

(5.26)

From this, given a predfined constant LCOE, we can easily calculate:

Total Discounted Cost =

T∑
t=0

Ct/(1 + rt)
t = LCOE ·Ot/(1 + rt)

t (5.27)

The calculation of energy output has been presented in the previous section. The calculation
of cost is out of the scope of this project, though one can refer to Allan et al. [47] for a thorough
analysis of the levelized costs of wave and tidal stream energy generation in the United Kingdom.
Given the 10% discount rate, Allan et al. found the LCOE for tidal stream energy generation
in the UK to be £81.25 MWh in 2006 prices. Adjusting this LCOE for inflation to 2016 prices,
I will use an LCOE of £107.89 MWh. Additionally, all further monetary values will be quoted
in 2016 prices.

For a single turbine, Ot is simply the energy produced at time t, et. I will consider a constant
tidal cycle with peak velocity flow uc. As energy generation is considered stationary, the power
production at any interval t for a single turbine can be derived from Equation 5.20, where the
final answer results from the fact that

∫
Ω d(x)dx = 1 when considering a single turbine.

e =

∫
Ω
d(x) · 1

2
ρCTATu

3
cdx =

ρ

2
CTATu

3
c (5.28)

It is important to note that power is originally measured in watts. I will be using a 5 year testing
period, with yearly time steps to reflect time discounting. As LCOE is measured in £/MWh,
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the energy for each time period et is given in MWh by the formula et = 365·24·e
1e6 . We then model

the total discounted cost per turbine as:

C =
ρ

2

T∑
t=0

LCOE · et
(1 + rt)t

(5.29)

It is important to note that this cost coefficient assumes that the LCOE is constant each year,
and thus changes only due to inflation each year, which is controlled for when prices are converted
to 2016 GBP.

5.9.4 A Revenue Function

Modelling revenue is a bit trickier than cost as it cannot be modelled per turbine, due to the
fact that power extraction (and thus revenue) is highly dependent on configuration of the entire
turbine field. Consequently, I will create a revenue function primarily dependent on the 10%
discount rate, the power produced by the entire field at each time step, a constant k which
corrects for efficiency losses, and the income per unit of energy I(t) at time t.

As Funke et al. [38] note, the energy-capture model is over-optimistic due to neglection of
energy mixing and efficiency losses. To penalize the energy optimism, I will set k = .5, so that
only 50% of theoretically extractable energy is actually captured by the farm. Furthermore,
the income per energy unit I(t), is based upon the UK government’s Electricity Market Reform
(EMR) programme which encourages (and subsidies) renewable electricity generation. The EMR
programme includes the Contract for Difference (CfD) mechanism; therein, contracts are set up
between the government and private power providers to which the government agrees to the
difference between a ‘Strike Price’ based upon the electricity provider’s industry (coal, nuclear,
wind, tidal, etc...) and the prevailing market price for each MWh of electricity generated.
As the EMR and CfD encourage renewables, the Strike Price in 2012 pounds for tidal stream
energy generation is £305/MWh, or £330.51/MWh in 2016 prices (though it is noted that this
subsidy is only intended for the first 30MW capacity of any tidal stream project) [49], nearly
five times the prevailing power rate. These contracts hold from 2014-2019 (at the same prices),
at which point the programme will likely be renewed. Given this information, I will hold the
income per energy unit to be constant (growing at the same rate of inflation as the LCOE) so
that I(t) = I = £330.51/MWh, though this will be discounted at the aforementioned discount
rate. It is important to note that due to the fact that the strike price for tidal stream energy
generation is constant through 2019 (other types of energy generation have strike prices which
vary from year to year), the income per energy unit is thus temporally constant when we control
for inflation and convert the strike price to 2016 dollars. In general, however, this is not true,
and the revenue (or cost) function can easily be changed to reflect differences resulting from a
LCOE and I(t) which do not grow conterminously with inflation, or predefined yearly variations
in the strike price which are codified in the original 2014 ERm CfD contract.

Given these definitions, the total revenue for a field for turbines may be modelled as:

Total Discounted Revenue = R(u, d) = k
T∑
t=0

IEt(u, d)

(1 + rt)t
(5.30)

Where Et is the power generated in MWh over the course of each time step and is given by:

Et(u, d) = 365 · 24 · 1e6 · ρ
∫

Ω
ct(d(x))||u(x, t)||32dx (5.31)
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It is also important to note that this form is tailored for the continuous case, in which turbine-
induced friction ct is a function of turbine density d(x), though this need not be the case. For
instance, friction could be a function of location as in the discrete model, or of the binary
variables which activate/deactivate turbines as in the MIPDECO formulation in Equation 5.13.

After implementing time-discounting and an explicit cost and revenue per unit of energy,
the first-step continuous model becomes:

max
d

R(u, d)−C
∫

Ω
d(x)dx s.t.


δu
δt + u · ∇u− ν∇2u+ g∇η + cb+ct(d)

H ||u||u = 0
δη
dt +∇ · (Hu) = 0

0 ≤ d(x) ≤ d̄(x) ∀x ∈ Ωfarm

d(x) = 0 ∀x ∈ Ω \ Ωfarm

(5.32)

Assuming identical velocity over time, this model can easily be solved in the same manner as
Funke et al’s continuous model, using a gradient-based optimization algorithm. Having used d
as the control, the optimal density field is then extracted and used as input to the second step
of the algorithm.

5.9.5 Step 2: A New MIPDECO TSTO Model

Using the new continuous model, a density field can be derived which reflects the cost of energy
more accurately than when using a model which assumes a certain profit margin. In order to
provide a more accurate solution, however, I propose a second step, in which the regions of the
density field for which d∗(x) > 0 (i.e. regions in which the optimal turbine density is nonzero)
are assigned binary integer variables and discrete turbine bumps. Ideally, one could assign every
mesh vertex with a nonzero d∗ value a binary variable; in practice, while this would massively
reduce the required control variables from the mesh dependent MIPDECO case as described
in section 5.7, there still may be a prohibitively large number of control variables to allow for
optimization. Instead, we may augment Funke et. al’s original continuous-to-discrete conversion
algorithm by picking a number z (such that zN > N and zN is an integer), and placing zN
turbines as opposed to placing an optimal N turbines.

Algorithm 13 Modified Continuous to Discrete Turbine Algorithm

1: Determine the optimal number of turbines, N =
∫

Ω d
∗(x)dx and choose integer z

2: while number of turbines deployed is less than zN do
3: Pick a random point x in the domain.
4: Place a turbine at x with probability d(x)/d̄ if the minimum distance to all other turbines

is at least Dmin.

5: Return optimal discrete field of turbines

Each of the placed turbines is then assigned a binary variable; finally, with a manageable
number of controls, we can solve a MIPDECO which activates up to zN of the binary variables
to provide the optimal configuration. This formulation conveniently eliminates the necessity
of prespecifying the number of turbines to place (we only need an upper bound), as well as
the need for constrained optimization, as algorithm 13 ensures that the minimum distance
constraint is satisfied. Consequently, this algorithm may be seen as combining the best of both
worlds in a reduced domain – the two step MIPDECO approach is able to optimize profit (not
energy) over a flexible number of turbines like the continuous approach, but still resolves the
turbines individually and micro-sites them as in the discrete approach (though it is noted that the
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continuous solution is a necessary pre-requisite to the MIPDECO problem), while incorporating
useful information gleaned from the initial continuous optimization.

In order to solve the problem, the we must introduce the zN binary variables w1...wzN , each
of which correspond to a turbine location as chosen by algorithm 1. In other words, a turbine
friction function as in Equation 5.11 is added for each of the zN potential turbine locations.
The energy function is changed slightly to be a function of the binary variables w rather than
the actual locations they correspond to:

Et(u,w) = ρ

∫
Ω
ct(w)||u(x, t)||32dx (5.33)

The power function is changed to reflect its dependence on w rather than the density field d(x):

Total Discounted Revenue = R(u,w) = k
T∑
t=0

IEt(u,w)

(1 + rt)t
(5.34)

Given these changes, the objective functional is slightly modified from the continuous version,
as MIPDECO formulation optimizes over binary variables which either activate or deactivate
the potentially optimal pre-chosen turbine locations.

max
w

J(w) = R(u,w)− C
zN∑
i=1

wi (5.35)

Finally, the second stage MIPDECO is solved:

P (w∗) ≡ max
w

J(w) s.t.


u · ∇u− ν∇2u+ g∇η + cb+ct(w)

H ||u||u = 0

∇ · (Hu) = 0

wi ∈ {0, 1} ∀i ∈ 1...zN

(5.36)

Hearkening back to the Source Inversion problem, we arrive at the binary variable issue
again. While a branch and bound or branch and cut approach is possible, it is impractical
due to the enormity of the mesh (n + m > 90, 000 in my test case), and thus I will use simple
rounding similar to the heuristic integer algorithm used for the Source Inversion problem. First,
the binary variables will be relaxed so that 0 ≤ wi ≤ 1 ∀i ∈ 1...zN . This optimization problem
can then be solved using L-BFGS-B with bounds on the binary variables. The solution w∗ will
be an array of continuous values corresponding the intensity of turbine activation (more than
half of these binary variables naturally tended to 0 or 1 in my tests). A rounding heuristic can
then be used to choose the best N turbine locations.

5.10 Tested Algorithms

In order to compare the various algorithms from Funke et al.’s papers and my own MIPDECO
formulation, I tested each algorithm using the same parameters with the goal of maximizing
profit.
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Algorithm Description

Continuous Algorithm Calculates the optimal continuous density field, profit (and
power extraction/cost), and number of turbines

Two-Step Algorithm Uses continuous solution and algorithm 12 to set up an ini-
tial layout for the discrete problem with the number of tur-
bines prespecified by the optimal continuous density field

MIPDECO Uses continuous solution and algorithm 13 as an initial lay-
out for a MIPDECO problem without prespecified number
of turbines

In each of the three algorithms, the following parameters were used. Note that the velocity
of flow is constant and time-invariant, and thus time only impacts the optimization problem
through its effect on monetary discounting in the revenue and cost functions. For a justification
of the thrust coefficient and turbine blade radius parameters, see Funke et al. [38].

Parameter Description

Domain Ω 2400m x 2400m

Farm area Θ 800m x 800m

Water density ρ 1000kg/m3

Kinematic Viscosity ν 2m/s

Gravity g 9.81m/s2

Constant bottom friction cb 0.0025

Turbine blade radius rb 8.35m

Thrust coefficient CT 0.86m

Minimum distance between turbines 40m

Blade-swept surface area AT 201.06m2

Resting water depth H 50m

Velocity of flow uin 2m/s

Discount rate rt 0.1

Timeframe t (0, 5) [5 years, annual steps]

LCOE £107.89/MWh

Energy revenue I £330.51/MWh

Efficiency rate k 0.5

Discounted lifetime turbine cost C £2,971,450.19

Figure 5.13: Tidal stream turbine optimization problem parameters

In order to properly convert units, I assumed that each time step was a year long (primarily
for time-discounting purposes). Based upon this, energy output and cost were converted from
watts to megawatt hours (using the LCOE and I which are measured in megawatt hours), so
that the profit functional and cost are able to be measured in 2016 Great Britain Pound Sterling.

5.11 TSTO Optimization Results
Using the parameters as described in the previous section, as well as the new formulation of

the profit objective functional, I obtained the following results from each of the three optimiza-
tion algorithms, as well as a baseline measurement for the initial two-step layout resulting from
algorithm 12. A mesh size of 4m in the farm area and 100m outside the farm area was used,
yielding a computational mesh of 90,500 elements. As one can see, the results lie on a spectrum.
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Algorithm Profit (GBP) Number of Turbines Runtime (seconds)

Continuous 9.57e7 122.5 7978

Two-Step Discrete 5.04e7 123 38363

MIPDECO 4.021e7 123 9622

Initial Two-Step 3.11e7 123 7979

Figure 5.14: Results for tidal stream turbine optimization (all algorithms)

The continuous formulation automatically yields the optimal number of turbines and supposedly
yields the highest profit, though as it does not individually resolve turbines, the profit compari-
son between the continuous and discrete situations is spurious. Crucially, however, optimization
of the continuous case takes a relatively short period of time (∼ 133 minutes), despite the large
number of elements in the mesh. After running the continuous example, I placed 123 turbines
using algorithm 12. This initial placement from the two-step algorithm yielded 3.11 x 107 GBP
of profit.

Figure 5.15: Optimal continuous turbine field (domain and farm area shown)
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Figure 5.16: Initial two-step turbine field (only farm area shown)

In order to improve the baseline result, I implemented the second step of the two-step
algorithm, in which I ran a full discrete optimization using the layout as provided by algorithm
12 as the initial layout. While the optimization resulted in 5.04 x 107 GBP of profit, a large
increase over the baseline, the increase in profit came at the cost of a severe increase in time
complexity as the second step of the two-step algorithm individually resolves the location of
each turbine.

Figure 5.17: Two-step discrete turbine field (only farm area shown)
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In order to use the MIPDECO algorithm, I ran algorithm 13 to place 200 turbines using
the output of the continuous algorithm. Instead of incrementally modifying the fixed number of
turbine locations, the MIPDECO algorithm fixes the possible turbine locations to a subset of the
200 locations, and then optimizes binary variables assigned to each fixed turbine. Consequently,
(remembering that the MIPDECO algorithm runtime includes that of the Continuous algorithm)
the total MIPDECO runtime is roughly one fifth of the Discrete algorithm’s runtime – in this
case 2.65 hours instead of 12.87 hours. Additionally, the MIPDECO turbine layout improved
profit as compared with the initial two-step heuristic layout by 33.5%, though still yielded far
less profit than the discrete case, which improved upon the initial layout by 62.1%. In short,
the two-step discrete method returned a a significantly higher profit than the baseline, at the
expense of a significant increase in algorithm runtime. The MIPDECO formulation improved
moderately upon the baseline, with comparatively little time increase.

Figure 5.18: Optimal MIPDECO turbine field (only farm area shown)
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Chapter 6

Summary and Further Research

This MSc individual project has endeavoured to provide a background to Mixed-Integer PDE-
Constrained Optimization (MIPDECO) and introduce gradient-based approximation methods
for manipulating and solving the Source Inversion problem and Tidal Stream Turbine Optimiza-
tion (TSTO) problem in a MIPDECO framework.

6.1 The Source Inversion Problem
In the Source Inversion problem, this project introduced the heuristic integer, penalty, and

two-step algorithms in order to solve a MIPDECO with an integer or near-integer solution
while using gradient-based methods. These algorithms were benchmarked against a continuous
algorithm and branch and bound to compare both accuracy and time complexity. The most
important results from this benchmarking are as follows:

1. The baseline continuous algorithm was implemented in two different ways,
which resulted in a trade-off between accuracy and time-complexity. The con-
tinuous algorithm (w control) assigned a single control variable to each source function’s
binary variable. Optimization runtime for this algorithm increased in the number of source
functions (i.e. in the number of controls), but maintained good accuracy across all test
settings. The continuous algorithm (sum control) assigned a single control variable to the
entire source field (the sum of source functions), resulting in a slower rate of optimiza-
tion runtime increase in source function number. As a tradeoff, however, the continuous
algorithm (sum control) requires a chained two-step optimization problem, with a convex
second problem guaranteeing a global optimum given the globally optimal output of the
first stage of the optimization problem. The inability to guarantee the optimal output
from the first stage of the problem resulted in a generally non-robust optimization algo-
rithm with a wildly varying accuracy. Increasing the convergence tolerance on the first
stage o the optimization problem may have increased the robustness of the sum control
algorithm, though at the expense of greatly increasing algorithm run-time which already
bottlenecked at the first stage.

2. The penalty and two-step algorithms were not robust. Both algorithms failed to
provide a consistent integer solution due to difficulties in calculating the α hyperparameter,
which in many test situations still required tuning at 7 significant figures. If one is able to
calculate the proper α, however, these algorithms hold great promise.

3. The heuristic integer algorithm performed quite well against the penalty/two-
step algorithms. In many of the test scenarios, rounding the largest optimal continuous
values of the decision variables to 1 and all else to 0 mostly coincided with the exact integer
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solution obtained from branch and bound. Further research is needed to determine whether
this correspondence holds true in a wide variety of problems with different parameter
configurations, or if the excellent heuristic integer algorithm results are due to the specific
nature and parameters of this problem.

4. Branch and bound was the best algorithm when the number of total variables
was small, but timed out with a large number of total variables. When the number
of total variables (source function number n2 + number of mesh vertices m2) was small,
branch and bound returned a configuration of activated source functions yielding the least
– and assuredly global minimum – reconstruction error, while also taking the least amount
of time. Yet the branch and bound solver’s time complexity increased exponentially with
a large coefficient, while the gradient-based algorithms were subject to exponential time
complexity with a lower coefficient (i.e. with K = n2 +m2, branch and bound was O(aK)
while gradient algorithms were O(bK), where a >>> b) and thus a drastically smaller
runtime. In essence, it appears that neither MINLP or gradient-based methods are strictly
better for the Source Inversion problem, though each is uniquely suited to any given
situation depending on the refinement of the mesh and the number of decision variables.

5. Future research could examine the effect of varying the Gaussian hyperparam-
eters or changing the nature of the source functions to a non-Gaussian type.
While I tested a slew of parameter configurations for the Source Inversion problems, more
hyperparameter diversity is required in order to extrapolate broader conclusions. For in-
stance, it is difficult to assess whether the two-step/penalty methods will be useful without
examining the difficulty of finding α in a host of different situations. Furthermore, the cor-
respondence between branch and bound results and the heuristic integer algorithm needs
to observed in a broader variety of test cases before a more robust linkage can be proposed.

6.2 Tidal Stream Turbine Optimization
In Chapter 5, this project attempted to approach TSTO from a MIPDECO standpoint,

fusing the use of binary variables for individual turbines (bump functions) with gradient-based
discrete and continuous optimization methods as developed in a series of papers by Funke et al.
[38] [40] [41]. The most important contributions and results from this case study are summarized
below.

1. A new profit-based functional was defined for the TSTO problem, which takes
revenue, cost, and time-discounting into account. I used Levelized Cost of Energy
estimates for the UK energy sector and defined a discount rate from data in Allan et
al. [47] and Astariz et al. [48], as well as government subsidies for TST energy [49] to
create a profit-based (as opposed to power-based) functional. This functional does not
rely on a prespecified profit margin and can be modified easily to include differing rates of
revenue/cost inflation or depreciation.

2. A great share of runtime differences in TSTO benchmarking can be traced
to the requirements (or lack thereof) of minimum distance bounds. The dis-
crete model attempted to micro-site turbines by using discrete bumps which are subject
to inequality constraints and are able to move freely throughout the domain. This in-
creased flexibility resulted in the highest objective function value (the most power/profit
extracted) at the expense of requiring a pre-specified number of turbines, and poor scal-
ability properties due to its high time complexity. As opposed to the time-complex and
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powerful discrete model, the continuous model included no constraints or individually re-
solved turbines, but rather assigned a turbine density to each region of the discretized
domain. Consequently, the continuous algorithm loses quite a bit of accuracy, but is an
extremely efficient way to roughly estimate an optimized turbine farm as well as to provide
starting locations for the discrete algorithm. The initial two-step algorithm chained the
continuous and discrete model together, converting the optimal continuous density field to
a discrete turbine farm by using algorithm 12 to stochastically place individual turbines
with probability of placing a turbine on a mesh region increasing in its assigned optimal
turbine density. The full two-step algorithm optimized the initial two-step algorithm’s
turbine farm (as constructed by algorithm 12) using the discrete method, once again using
the flexible, but time-demanding minimum distance constraints. Finally, the MIPDECO
algorithm took an initial layout of turbines as determined by algorithm 13; no minimum
distance constraints were introduced, and thus possible turbine locations of the MIPDECO
algorithm were restricted to a preselected number of mesh regions (greater than the opti-
mal number of turbines as determined by the continuous model) selected with probability
increasing in optimal turbine density.

3. The MIPDECO algorithm poached the best aspects of the discrete, continuous
and full two-step models by creating a time-efficient model which does not
require a prespecified number of turbines and retains most of the accuracy of
the discrete model. The key aspect of the MIPDECO model is to use algorithm 13 to
place a superset of potential turbines. Assuming that the continuous algorithm determines
the optimal number of turbines to beN , algorithm 13 places z·N initial turbines, where z >
1. With a manageable number of binary variables, the MIPDECO algorithm maximizes
profit, automatically finding the number of optimal turbines (guided by, but independent
of the continuous model’s determination), while maintaining low time complexity, and
retaining most of the power of the discrete model. While providing functionality for
MIPDECO optimization with inequality constraints (i.e. using SQP instead of L-BFGS-
B) and allowing for initial turbine placements to violate minimum distance constraints
would improve the final profit yielded (as well as allow for far more initial turbines to be
placed), this increase in flexibility would come at the cost of severely increasing runtime,
possibly removing all of the time advantages of the MIPDECO algorithm.

4. Against the discrete, continuous, and two-step algorithms, the MIPDECO
algorithm provided a jack-of-all-trades result. The MIPDECO algorithm yielded a
significantly higher profit than the initial two-step algorithm while requiring a negligible
increase in time, but significantly less profit than the full two-step algorithm which requires
a significantly longer runtime due to the need for each turbine to be individually resolved.
This was the expected result, as the MIPDECO algorithm optimizes binary variables for
z ·N locations – and thus is more flexible than the initial two-step algorithm which simply
places N turbines sans any further optimization)– but does not add inequality constraints
(and so is more restrictive than the discrete or full two-step algorithms, which are not
restricted to z ·N predetermined locations).

5. This work has demonstrated that embedding a MIPDECO optimization prob-
lem as a second step in a continuous TSTO problem may prove fruitful if min-
imizing algorithm runtime is desired. Further research could seek a way to define a
metric with which to measure the optimality of z or to introduce a heuristic which allows
z to be tailored to a specific problem. Another useful study might extend the MIPDECO
algorithm to incorporate the minimum-distance constraint and use SQP for optimization.
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Additionally, the development of novel continuous-to-integer conversion heuristics would
likely prove quite useful when optimizing the field of binary variables using gradient-based
methods.
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Appendix A

Appendix

A.1 Convexity and MIPDECO
It would be remiss of me not to distinguish between convex and nonconvex optimization.

Formally, a function is said to be convex if, for a convex set X and function f : X → R:

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2) ∀x1, x2 ∈ X , ∀α ∈ [0, 1] (A.1)

Intuitively, the definition in Equation A.1 says that forming a line segment between any two
points of the convex function must result in a line which is above the function everywhere
between the two chosen points. Below, the graph on the left clearly satisfies this requirement,
while the graph on the right does not. This leads to an important result of convexity: any
convex function has a single unique global minima, while the same is not true of nonconvex
functions.

(a) A convex function with a single local and
global minima)

(b) A nonconvex function with a multiple
local minima

Figure A.1: Convex (left) and nonconvex (right) functions

Following from the above, any local minimizer of a convex optimization problem will also
be a unique global minimizer, while nonconvex functions may have multiple local minimizers
[5]. Thus if we solve an optimization problem with decision variable x using an appropriate
optimization technique for a minimizer x∗:

Optimization Problem is Convex: x∗ =⇒ x∗ = argmin
x

f(x) ∀x ∈ Rn

Optimization Problem is not Convex: x∗ 6=⇒ x∗ = argmin
x

f(x) ∀x ∈ Rn
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In other terms, convexity gives a certificate of optimality, while nonconvexity still allows one
to find a good point – a point corresponding to one of the two local minimas in Figure 2 – but
not necessarily the best point.

A.2 Discretizing the Source Inversion Problem
In this optimization problem, there is a reference PDE ū and a source PDE u, both of which

are created by finding the solutions to the weak formulation of the Poisson equation, using the
reference function or the sum of source functions as the respective source terms. In the general
case, we can apply the finite element method to the Poisson equation in the following way (note
that a full mathematical treatment of the method is outside of the scope of this individual
project):

Suppose we have a Poisson Equation defined in Ω with a Dirichlet boundary condition. We
want to find a u such that: {

∆u = f ∈ Ω

u = 0 on δΩ

Now if u solves the above system, then for any test function v that satisfies the boundary
conditions of the above system, the following holds, with H being the appropriate Sobolev space:∫

Ω
fv dx =

∫
Ω

∆uv dx u, v ∈ H (A.2)

Integrating the right hand side by parts (noting that ∆u is the Laplacian and 〈., .〉 is the L2
inner product): ∫

Ω
fv dx = −

∫
Ω
〈∇u,∇v〉 dx u, v ∈ H (A.3)

The finite element method then finds a suitable ud ∈ V, such that Equation A.3 holds for all
test functions v ∈ V, where V is a finite dimensional subspace of H (for this problem I use the
space of linear piecewise functions). In short, this method allows one to replace a PDE defined
in some arbitrary dimension with a tractable approximation to it by using a test function and
a subspace of the original domain. Applying the FEM to the present problem, and noting the
sign change in the constraint, the finite element method finds a solution vector ud (which is the
solution to the discretized source PDE) such that the following equation holds (with or without
the wkl depending on the algorithm used):∫

Ω
〈∇ud,∇v〉dx =

∑
k,l

(wkl ·
∫

Ω
fkl · v dx) ∀v ∈ V (A.4)

In order to create ūd, the solution to the discretized reference PDE, I assume that the
reference function is of the same form as the source functions (where i, j are not on the vertices
of the mesh):

f̄ij = a · exp(
−(xi − x)2 − (yj − y)2

σ2
) ∈ Ω; i, j /∈ V

I use the finite element method to find a ūd such that∫
Ω
〈∇ūd,∇v〉dx =

∫
Ω
f̄ijv dx ∀v ∈ V (A.5)
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A.3 Discretizing the TSTO Problem
The discretization process for TSTO generally uses the same finite element method, albeit

with a more complex PDE. Choosing the test functions ψ and φ, the two shallow water equations
are discretized by finding the depth-averaged velocity, and free surface displacement ud, ηd,
respectively. Thus the goal is to find ud, ηd ∈ V x W such that ∀ψ, φ ∈ V x W , the following
equations hold.〈

ud · ∇ud, ψ
〉

Ω
+ ν

〈
∇ud,∇ψ

〉
Ω

+ g
〈
∇ηd, ψ

〉
Ω

+

〈
cb + ct(m)

H
||ud||ud, ψ

〉
Ω

= 0 (A.6)

−
〈
Hud,∇φ

〉
Ω

+
〈
Hud · n, φ

〉
δΩin∪ δΩout

= 0 (A.7)

As above, 〈., .〉Ω denotes the L2 inner product over domain Ω, and n is the outward facing
normal vector to the boundary of the domain, δΩ. Additionally, V is chosen to be the space of all
continuous piecewise quadratic functions, while W is the space of all piecewise linear functions.

The above discretization scheme assumes time invariance. That is, we assume the velocity
v to enter the farm at a constant rate over the lifetime of the farm. In reality, the farm exists
in time period (0, T ) with time step δt. Assuming a constant velocity of flow, however, results
in the discretization in each time period being exactly the same; thus it is done only once and
can be applied across all time steps by scalar multiplication. When the velocity of flow does
vary over time – for instance, if we assume a sinusoidal tidal cycle and the aforementioned time
domain, then, with k denoting the current time, δt the time step, the following shallow water
equations must be solved for each time step during each iteration. It is assumed that initial
conditions u0, η0 are supplied.

〈
udk − udk−1

δt
, ψ

〉
Ω

+
〈
udk · ∇udk, ψ

〉
Ω

+ν
〈
∇udk,∇ψ

〉
Ω

+g
〈
∇ηdk, ψ

〉
Ω

+

〈
cb + ct(m)

Hk
||udk||udk, ψ

〉
Ω

= 0

(A.8)〈
ηdk − ηdk−1

δt
, ψ

〉
Ω

−
〈
Hku

d
k,∇φ

〉
Ω

+
〈
Hku

d
k · n, φ

〉
δΩin∪δΩout

= 0 (A.9)

A.4 The Adjoint Approach to Design
Consider the PDE-constrained optimization problem with PDE F and decision variable m.

Note that the objective functional, as well as u are implicitly parameterized by control m. Our
objective is to minimize the objective functional by picking the optimal controls m∗ using a
gradient-based method.

min
m

J(u(m),m) s.t.


F(u(m),m) = 0

g(m) = 0

h(m) ≤ 0

m,u ∈ H1,H2

(A.10)

As mentioned in Chapter 2, the optimal parameters m∗ of PDE-constrained problems are
usually found via a first order iterative method such as gradient descent (or second-order approx-
imations using first-order information such as BFGS), as gradient-free approaches are generally
generally computationally intractable for any practical applications of PDE-constrained opti-
mization [51]. Then to solve for the gradient of Ĵ = J(m), we can use one of three methods. We
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could approximate each partial derivative dĴ
δmi

, ∀i ∈ 1, ...,m, which is generally a poor method
due to the difficulties of choosing the perturbation for each decision variable (and there are
generally many) [51]. The better options are to either solve forward (i.e. the primal problem),
or formulate and solve backward (i.e. the dual, or adjoint problem). The optimal strategy
will depend on the number of inputs and outputs. As shown by Giles and Pierce [50] and
Funke et al. [51], the adjoint formulation is generally superior to the primal formulation in the
PDE-constrained optimization case, due to the presence of a single objective functional and a
large number of decision variables. An overview of the mathematical justification for preferring
adjoint-based optimization follows.

A.4.1 Solving the Primal Problem

To solve the primal, or forwards optimization problem, the gradient of the objective functional
is found using the multivariate chain rule:

dĴ

dm
=
δJ

δu

du

dm
+
δJ

δm
(A.11)

While we have an equation for the objective functional and can generally calculate the direct
derivatives δJ

δu and δJ
δm , we have no concrete function u(m), which is only implicitly defined by

any particular choice of decision variables m. Using the chain rule on the original system of
PDE constraints, however, one can fix a value for m, say mt (i.e. the value of the parameters
at the t’th iteration of gradient descent), and then solve for the total derivative of the PDE

solution vector with respect to the decision variables. In other words, we evaluate d(u,m)
dmt

to

find the Jacobian du
dmt

, where F is from equation A.11. Note that this Jacobian is (assuming
u ∈ Ru,m ∈ Rm) of dimension u x m. Assuming that there are many decision variables and
many PDE constraints, this matrix will be quite large. Taking our derivative, we end up with
the tangent linear system of the PDE constraint:

δF(u,m)

δu

du

dmt
= −δF(u,m)

δmt
(A.12)

In this system, δF(u,m)
δu is the linearisation around a certain solution u [51]. This system can

be constructed and solved during every iteration of gradient descent, but due to the memory
requirements likely will not be possible. If it were, however, one must note that these gradients
are with respect to any arbitrary functional J(m). Consequently, solving this primal problem is
only efficient if the input parameters u,m are small, whereas the number of outputs (functionals)
is large. In other words, if we have a few decision variables which exist in a small parameter space
but a large number of objective functionals, then the primal approach may be efficient. Generally,
however, a PDE constrained optimization problem has a single objective functional that is known
before undertaking the optimization process, and a large number of PDE constraints and decision
variables. Thus the primal approach is generally inefficient due to the large set of parameters
and parameter space [51].

A.4.2 Solving the Dual (Adjoint) Problem

Using the adjoint method, instead of fixing our vector of decision variables m ∈ Rm, we fix
our objective functional J ∈ R. By assuming that δF(u,m)

δu is invertible, one can derive an
expression for the total derivative of the functional with respect to the decision variables, take
the Hermetian transpose (just the transpose if all entries of the various Jacobians are real) and
solve for the adjoint equation. Thus we have:
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du

dmt
= −

(
δF (u,m)

δu

)−1 δF (u,m)

δmt
(A.13)

dĴ

dmt
= −δJ

δu

(
δF (u,m)

δu

)−1 δF (u,m)

δmt
+

δJ

δmt
(A.14)

Taking the Hermetian transpose and creating a new variable λ:

dĴ∗

dmt
= −

(
δF (u,m)

δmt

)∗(δF (u,m)

δu

)−∗ δJ∗
δu

+
δJ∗

δmt
(A.15)

λ =

(
δF (u,m)

δu

)−∗ δJ∗
δu

(A.16)

(
δF (u,m)

δu

)∗
λ =

δJ∗

δu
(A.17)

Note that λ is the dual (or adjoint) variable of u, so that λi is the dual variable for ui.

Correspondingly,
(
δF(u,m)

δu

)∗
is the Hermetian (or normal if all entries are real) transpose of the

tangent linear operator (i.e. it is the constraint matrix of the dual formulation of this optimization
problem). Importantly, the transposition of the primal constraint matrix reverses all information
flow so that the the adjoint PDE will run backward in time instead of forward, or the flow of
water will be downstream instead of upstream, and so on. Now all of the above information has

important ramifications for the problem: like the forward tangent system,
(
δF(u,m)

δu

)∗
is also

linear in u, and thus linear in the adjoint variable λ as well. Then if we solve for λ, and and
make the appropriate substitutions, we have:

dĴ∗

dmt
=

〈
−δF (u,m)

δmt
,λ

〉
+
δJ∗

δmt
(A.18)

Equation A.19 provides an alternative method of calculating the gradient – one that does
not require calculation of the U x M matrix as in the primal method, but rather the solving of
a linear system for the U x 1 adjoint vector λ, a far less memory-complex task. This adjoint
vector is tied to a specific functional, however, and thus if one wants to run a gradient-based
descent algorithm on multiple objective functionals, adjoint vectors must be calculated for each
objective functional. Yet in the case of PDE-constrained optimization, we generally have a
single fixed objective functional and many decision variables; consequently, we use the adjoint
approach.
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