
Imperial College London

Department of Computing

After You: Intelligent Orchestration of
Queue-based Cryptocurrency Mining Pools

Author:
Sam M. Werner

Supervisor:
Prof. William J. Knottenbelt

Submitted in partial fulfillment of the requirements for the MSc degree in MSc Computing
Science of Imperial College London

September 2017



i



Abstract

Cryptocurrency mining has been seen as a means to turn electricity into digital gold. It
involves the guessing of a solution to a cryptographic puzzle, where the difficulty is decided
upon by the network. Individual miners may increase their aggregate chance of finding a valid
solution to the puzzle by joining a mining pool and subsequently combine their computa-
tional efforts. Mining pools employ different reward schemes in order to fairly distribute block
rewards amongst miners and have thus become a favorable means for individual miners to re-
ceive steadier payout streams. A new type of reward scheme has been introduced by Ethpool,
which uses a queue-based mechanism for distributing rewards amongst its miners.

This dissertation examines the workings of a queue-based mining pool, as implemented by
Ethpool, and thoroughly assesses the effectiveness of potential mining strategies which may
be employed in such a scheme. Hence a simulation framework was built in order to allow
for the modeling of queue-based mining pools. In addition, mining strategies which aim at
exploiting a mechanism specific to queue-based mining pools have been proposed. In order
to determine the effectiveness of these strategies, simulations of two miner and multi-miner
pools have been conducted and the strategies’ performance assessed.

The main findings arising from this dissertation suggest that miners with above average hash
rates can benefit from strategic mining in queue-based pools, given that certain conditions
prevail. The nature of these conditions is rooted in the hash rate distribution of a queue-based
pool and has thus made way for promising areas of future research.



ii



Acknowledgments

I would like to thank the following people, without whom this MSc dissertation would never
have been possible:

• My supervisor, Prof. William J. Knottenbelt, for his inspiration, encouragement and
guidance, as well as for teaching me about the beauty of C++ programming and intro-
ducing me to the exciting world of cryptocurrencies.

• My family for their ongoing love, belief and support.

• My short term research colleague and friend, Alexei Zamyatin, for his patience and
support in helping me familiarize myself with queue-based reward payout schemes.

• Paul Pritz and Fayzal Ghantiwala, two great friends, for insightful conversations and
discussions regarding mining strategies.

• My friends for being encouraging and supportive at all times.

iii





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Aims and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 A simulation framework for queue-based cryptocurrency mining pools 2
1.3.2 Potential issues with a queue-based payout scheme . . . . . . . . . . . 3
1.3.3 A comparison of mining strategies in queue-based mining pools . . . . 3
1.3.4 Limitations of mining strategies in queue-based mining pools . . . . . 3

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Statement of originality and publications . . . . . . . . . . . . . . . . . . . . . 5

2 Cryptocurrency mining, pools and reward schemes 6
2.1 Cryptocurrency mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Solo mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Mining pools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Miner rewards and reward payout schemes . . . . . . . . . . . . . . . . . . . . 9

3 Queue-based mining pools: Ethpool 12
3.1 Manipulating the queue: strategic mining . . . . . . . . . . . . . . . . . . . . 13
3.2 Share withholding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Tactical donation of mining power . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Second payout address (wallet) . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Pool hopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 EthSim: a mining pool simulator 18
4.1 The aims for the simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1 Simulating a queue-based mining pool . . . . . . . . . . . . . . . . . . 19
4.2.2 Simulating mining strategies . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.3 System design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Implementation: a queue-based mining pool . . . . . . . . . . . . . . . . . . . 22
4.3.1 Event queue and events . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.2 Share scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Implementation: mining strategies (scenarios) . . . . . . . . . . . . . . . . . . 24
4.4.1 Conditions and actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4.2 Scenario set up: condition and action . . . . . . . . . . . . . . . . . . . 25

4.5 Setting up a simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5.1 The simulation configuration and data collection . . . . . . . . . . . . 28

v



CONTENTS CONTENTS

4.5.2 Populating the pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 The Two Miner Case 30
5.1 A simple scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Simulation configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Simulation results and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3.1 Simulation of a two miner pool . . . . . . . . . . . . . . . . . . . . . . 31
5.3.2 Problems with the two miner case . . . . . . . . . . . . . . . . . . . . 35

6 The Multi-Miner Case 36
6.1 Simulation configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2 Naive conditions in the multi-miner case . . . . . . . . . . . . . . . . . . . . . 37
6.3 Expectation-based conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.3.1 Expected end of round queue constellation . . . . . . . . . . . . . . . . 43
6.3.2 Expectation-based condition 1: ExpVal1 . . . . . . . . . . . . . . . . . 43
6.3.3 ExpVal1: simulation results . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3.4 Expectation-based condition 2: ExpVal2 . . . . . . . . . . . . . . . . . 45
6.3.5 ExpVal2: a hypothetical example . . . . . . . . . . . . . . . . . . . . . 47
6.3.6 ExpVal2: simulation results . . . . . . . . . . . . . . . . . . . . . . . . 49

6.4 Luck-based condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.4.1 Hopping: a theoretical approach . . . . . . . . . . . . . . . . . . . . . 50
6.4.2 Simulation set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.4.3 Hopping: simulation results . . . . . . . . . . . . . . . . . . . . . . . . 50

6.5 Exponential difficulty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.6 Evaluation of queue-based mining strategies . . . . . . . . . . . . . . . . . . . 52

7 Conclusion 58
7.1 Summary of Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.3.1 Formal methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.3.2 An in-depth pool-hopping analysis . . . . . . . . . . . . . . . . . . . . 59
7.3.3 New mining strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Glossary 63

Appendices 66

A 67
A.1 Ethpool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
A.2 Hash rate distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

B 69
B.1 Design: EthSim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

vi



List of Figures

2.1 A representation of a blockchain and the relationship between individual blocks
[7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Screenshot: the top ten cryptocurrencies by market capitalisation . . . . . . . 8

3.1 Screenshot: the maximum priority queue as implemented by Ethpool showing
the fifteen miners with the highest accumulated credit balances. . . . . . . . . 12

3.2 Screenshot: A miner in Ethpool experiences a sudden increase in his hash rate
for a short period of time [20]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 A visualisation of the share scheduling and execution mechanism. . . . . . . . 20
4.2 A UML diagram showing the relationships between the different classes of

EthSim. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 A UML diagram showing the relationship of the different event classes and

event queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 A UML diagram exclusively showing the relationship between the different

action and condition classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 The credit development of two miners for the first 100 blocks . . . . . . . . . 32
5.2 The number of hashes computed by two miners per rewarded block correlated

with pool luck for the first 100 blocks . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 The credit development for two miners in a share withholding attack scenario

for the first 100 blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.1 The distribution of hash rates of 729 Ethpool miners (logarithmic scale). [20] 37
6.2 The distribution of hash rates of 1,000 miners in the constructed mining pool 38
6.3 Development of the top miners’ credits when winning a block compared to

their performed work per block, as well as the ratio of the winning miner’s
credits to his performed number of hashes per block in a pool of 1 000 miners
for 200 000 blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.4 The ratio of performed work per block in Ethpool relative to the average
amount of performed work per block (miners have been grouped by their hash
rate).[20] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.5 Screenshot: Ethereum block difficulty growth chart [2] . . . . . . . . . . . . . 51
6.6 The distribution of mining power in a constructed pool of 10 miners (logarith-

mic scale). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.7 The distribution of mining power in a constructed pool of 100 miners (loga-

rithmic scale). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.8 The number of credits the top miner was reset to for every mined block over

200 000 mined blocks in a 10, 100 and 1 000 miner pool. . . . . . . . . . . . . 54

vii



LIST OF FIGURES LIST OF FIGURES

6.9 The credits a miner has been reset to for 200 000 mined blocks, sorted in
descending order for pool sizes of 10, 100 and 1 000 miners. . . . . . . . . . . 55

6.10 The average credits a top miner is reset to after 200 000 mined blocks for pools
of various sizes of miners that have been generated from sampling from a log
normal distribution of hash rates. . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.11 The variance of the credits a top miner is reset to for a simulation of 200 000
blocks for pools of various sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.1 The top ten Ethpool miners by hash rate for a given time on 06-09-2017.[? ] . 67
A.2 The distribution of the logs of the hash rates for 729 miners in Ethpool resem-

bling a normal distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A.3 The distribution of the logs of the hash rates for a constructed pool of 1 000

miners, generated via sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

B.1 The full UML diagram of the EthSim event simulator. . . . . . . . . . . . . . 70

viii



List of Tables

3.1 The priority queue with miners of different sizes over a series of blocks. . . . . 14
3.2 A miner taking advantage of the credit resetting mechanism . . . . . . . . . . 15

5.1 Results for a simulation of a two miner case for 100 000 blocks . . . . . . . . . 31

6.1 Results for a simulation of a 1 000 miner pool for a duration of 200 000 blocks 41
6.2 Results for a simulation of a 100 miner pool for a duration of 200 000 blocks . 42
6.3 Results for a simulation of a 10 miner pool for a duration of 200 000 blocks . . 42
6.4 The results of the ExpVal1 strategy used in a 10, 100 and 1000 miner pool

compared to the rewards received when no strategy is pursued in a simulation
of 200 000 blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.5 A theoretical example of computing the expected end of round credit payout
relative to the cost of giving up a number of rounds . . . . . . . . . . . . . . . 48

6.6 The results of the ExpVal2 strategy used in a 10, 100 and 1 000 miner pool
compared to the rewards received when no strategy is pursued over a period
of 200 000 blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.7 The results of the Hopping strategy used in a 10, 100 and 1 000 miner pool
compared to the rewards received when no strategy is pursued over a period
of 200 000 blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

ix





Chapter 1

Introduction

1.1 Motivation

Ever since Satoshi Nakamoto first introduced the concept of Bitcoin in 2008, the cryptocur-
rency landscape has turned into a $163 billion1 digital gold mine [17]. This can be accredited
to certain features Bitcoin first introduced, perhaps the most notable, a decentralised con-
sensus mechanism. The consensus mechanisms is rooted in network nodes, called miners,
trying to solve computationally intensive cryptographic puzzles where the difficulty is deter-
mined by the network. Miners are incentivised by rewards given to the miner who solves the
puzzle, a compensation for his invested computational effort. By making use of a publicly
accessible distributed ledger commonly known as the blockchain, Bitcoin ultimately gave rise
to an entire new ecosystem of currencies which can cut out any form of central authority, yet
maintain the level of trust the later provides in centralised systems.

Cryptocurrency mining remains a fundamental structural component for the effective work-
ings of the decentralised consensus mechanism. However, rising difficulty levels of the cryp-
tographic puzzles underpinning the mining process have posed severe constraints on the
frequency of rewards paid to individual miners. Hence, cryptocurrency mining pools have
become a favorable means for the reduction of the high variance individual miners face. A pool
operator tracks the work each miner of the pool contributed and applies some type of reward
payout scheme in order to distribute block rewards. Various cryptocurrency mining pools
have evolved over the years, making use of several different reward payout schemes.

A relatively new reward payout scheme has been introduced and implemented by Ethpool,
a popular Ethereum mining pool, and shall be referred to as a queue-based reward payout
scheme. In such a scheme, the pool operator tracks the work each miner in the pool performs
and rewards the contributed work by giving out credits to the miners. The number of credits
a miner accumulates relative to the credit balances of the other miners in the pool determines
which miner receives the next block reward and consequently has his balance reset. Even
though currently Ethpool may be the only public mining pool using such a payout scheme,
given the recent increases in global cryptocurrency mining activity, it is beneficial for mining
pool miners of all sizes, to understand the benefits and limitations of such a scheme.

In this dissertation the workings of queue-based mining pools will be examined, as well as any

1Total cryptocurrency market capitalisation. Source: https://coinmarketcap.com. Accessed: 2017-09-08

1



1.2. AIMS AND OBJECTIVES

potentially exploitable aspects of the scheme. The amount of work miners of different sizes
perform in a queue-based pool will be assessed and compared against their obtained reward.
Additionally, the effectiveness of different mining strategies a miner could pursue in order to
benefit from the non-uniform credit-reset mechanism specific to queue-based pools will be
an area of focus. Furthermore, as part of this project, a simulation environment has been
created and allows for the modeling of the workings of a queue-based pool. This dissertation
adds to the literature on cryptocurrency mining pool reward payout schemes, by providing
an analysis of the workings of queue-based mining pools and of the effectiveness of different
mining strategies under such a scheme.

1.2 Aims and objectives

The aims and objectives of this dissertation are to:

• Examine the workings of a queue-based mining pool and assess the fairness of the
payout scheme.

• Develop a simulation framework that allows for the simulation of a mining pool that
makes use of a queue-based reward payout scheme and allows for the collection of data,
specifically the credits development of the pool, reward distribution, performed work,
as well as the credits development of individual miners.

• Develop a simulation framework that allows for the modeling of a scenario in which
more than one queue-based mining pool exists.

• Propose and simulate, using the simulation framework, different mining strategies a
miner could potentially employ in a queue-based mining pool to increase his payout.

• Identify under what conditions mining strategies can be employed effectively to increase
the number of blocks rewarded to a miner.

1.3 Contributions

This dissertation examines the workings of a queue-based cryptocurrency mining pool and
discusses the effectiveness of mining strategies which may be pursuable by miners with above
average hash rates in order to increase their earnings.

The specific contributions of this dissertation are described below:

1.3.1 A simulation framework for queue-based cryptocurrency mining pools

A queue-based cryptocurrency mining pool simulation framework called EthSim has been
developed in C++ using object-oriented design. The simulation environment allows for the
simulation of the normal workings of a queue-based mining pool as well as for the fair compar-
ison of different mining strategies a miner could employ under a queue-based payout scheme.
Furthermore, the simulator allows for the modeling of multiple different queue-based mining
pools and even for the theoretical effects of pool hopping between two or more queue-based
pools.

2



1.3. CONTRIBUTIONS

A user of EthSim can configure simulations via a detailed configuration file and obtain rele-
vant data for every simulation specified. Obtainable data includes but is not limited to the
development of one or more miners’ credit balances, the credit development of one or more
mining pools over a certain number of blocks mined, the luck of a pool for a given number
of rounds, the work a miner performed per rewarded block, as well as the work-payout ratio
of a miner in terms of the number of blocks a miner was rewarded by the pool compared to
the number of blocks for which he solved the cryptographic network puzzle, i.e. which he
mined.

1.3.2 Potential issues with a queue-based payout scheme

By examining the workings of a queue-based pool, particularly the rewards a miner receives
compared to the work he performs, it has been identified from joint work with William
J. Knottenbelt, Alexei Zamyatin, Katinka Wolter, Peter G. Harrison, and Catherine E.A.
Mulligan, that miners with above average hash rates are disadvantaged by the scheme as they
perform on average more work per block than small miners. However, mining strategies have
been proposed whereby a miner with an above average hash rate could potentially increase
his earnings through share withholding, the donation of blocks, or the use of multiple payout
addresses given that specific conditions prevail.

1.3.3 A comparison of mining strategies in queue-based mining pools

The simulation framework EthSim has been designed in a way to allow for the easy implemen-
tation of new condition-based mining strategies. The design of the simulator is very modular
and thus allows for the easy implementation of additional mining strategies by specifying a
new condition and linking it to an appropriate action a miner may pursue when generating a
share. Condition-based strategies allow for the configuration and specification of a particular
condition, i.e. a certain queue constellation, which is checked by a specific miner while he
submits shares to the pool operator. Each time the condition is active, a miner pursues an
action related to the share submission process, i.e. donate the share to some other miner.
Multiple strategies have been proposed, simulated and evaluated in this dissertation. It has
been found that a mining strategy that accounts for the other miners’ hash rates and credit
balances, the network and share difficulty, as well as the duration of the current pool round
by computing expected end of round queue constellations, can be used to potentially increase
a miner’s rewards.

1.3.4 Limitations of mining strategies in queue-based mining pools

The effectiveness of the different proposed mining strategies across queue-based pools of vari-
ous sizes has been found to be affected not only by the size of a pool but predominantly by the
distribution of hash rates in a pool. Simulation results have shown that a high variance and
average reset balance may pose favourable conditions for attacking miners aiming to exploit
the credit resetting mechanism. However, it has been found that effectiveness diminishes as
the distribution of hash rates for a pool approaches a log normal distribution, the assumed
distribution of hash rates in a queue-based pool, as observed in Ethpool. A mining pool in
which the hash rates of the miners are log normally distributed implies that end of round

3



1.4. OUTLINE

credit differences between the first and second ranked miners are most likely not large enough
for an attacking miner to benefit from intentionally missing out on a block reward.

1.4 Outline

The remainder of this dissertation is organised as follows:

Chapter 2 explains the concept of cryptocurrencies and the workings of cryptocurrency
mining. The notions of solo and pooled mining are introduced, leading up to the exami-
nation of traditional mining pool reward payout schemes, such as Pay-Per-Last-N-Shares
(PPLNS) and proportional payout schemes.

Chapter 3 examines a new queue-based reward payout scheme as first implemented by
Ethpool, a popular Ethereum mining pool. Potential issues rooted in an underlying
credit resetting mechanism of the scheme are discussed. A theoretical scenario whereby
a large miner may increase his credit balance by intentionally not winning a round is
provided and hence gives the motivation for examining these potential reward-increasing
mining strategies further.

Chapter 4 outlines the design and implementation of EthSim, an event-based simulation
framework that allows for the modeling of different queue-based mining pool scenarios.
The simulator is presented by primarily explaining the design and implementation of the
most important features and components, as well as discussing the underlying motivations
for the overall system design.

Chapter 5 assesses the workings of a two miner pool and specifically evaluates the work per-
formed and blocks received by a large miner that employs a variation of mining strategies.
The simulation set up is explained and data obtained from a mining pool simulation of
100 000 blocks is analysed. The potential risk of misinterpreting the performance of these
strategies in a two miner pool is pointed out and reasons as to why strategies should be
examined in a multi-miner case before drawing any conclusions about their effectiveness,
are given.

Chapter 6 proposes and explores the performance of different mining strategies, primarily
strategies which are aimed at benefiting from the scheme’s underlying credit reset mech-
anism. The same strategies that were pursued in the two miner pool are examined in a
pool of 10, 100 and 1 000 miners. In order to account for factors specific to queue-based
mining pools, mining strategies that aim to make use of expected end of round queue
constellations are proposed and their performance is assessed. Additionally, a theoretical
mining strategy based on the notion of pool hopping, assuming a second queue-based
pool exists, is proposed and simulated. Lastly a thorough evaluation of the effectiveness
of all considered mining strategies across the different pool sizes is provided.

Chapter 7 concludes this MSc dissertation by summarising and evaluating the achievements
presented and highlighting potential opportunities for future work.

4



1.5. STATEMENT OF ORIGINALITY AND PUBLICATIONS

1.5 Statement of originality and publications

I declare that this thesis was composed by myself, and that the work that it presents is my
own except where otherwise stated.

The following publication arose from work conducted during the course of this thesis:

• IEEE International Symposium on the Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems 2017 (MASCOTS) [20] presents
that cryptocurrency miners with above average hash rates are disadvantaged by the
underlying mechanism of a queue-based reward payout scheme as first implemented
by Ethpool. Furthermore, it is examined how three different mining strategies can be
pursued by a large miner to increase his earnings in a hypothetical two miner scenario.
This is joint work with William J. Knottenbelt, Alexei Zamyatin, Katinka Wolter, Peter
G. Harrison, and Catherine E.A. Mulligan.

5



Chapter 2

Cryptocurrency mining, pools and
reward schemes

This section explains the workings of cryptocurrencies and the underlying concept of cryp-
tocurrency mining. Additionally, the different types of mining pools and reward schemes that
have evolved over the years are presented.

2.1 Cryptocurrency mining

With more than 1 100 alternative cryptocurrencies1, or altcoins, the modern landscape for
cryptographic currencies has developed tremendously since the introduction of Bitcoin [17] in
2008. Bitcoin is a decentralised cryptocurrency that consists of a peer-to-peer network, where
different nodes may conduct transactions. Transactions represent the transfer of some token,
i.e. Bitcoin, from one wallet address to another and are stored in blocks on a distributed public
ledger known as the blockchain. A block is a data structure containing a list of transactions
between nodes in the network. Each block has a unique header, which contains, amongst a
timestamp and other fields, a hash of the header of the previous block, and is hence “chained“
to it. A visualisation of this relationship is presented in Figure 2.1, showing how all blocks
are linked via the hash of a previous block’s header.

Figure 2.1: A representation of a blockchain and the relationship between individual blocks [7].

1Source: https://coinmarketcap.com. Accessed: 2017-09-04

6



2.1. CRYPTOCURRENCY MINING

Once a block is appended to the blockchain, the transactions included get confirmed. A
potential problem with a decentralised log of transactions is the restriction of network partic-
ipants from double spending the same coins. As every node maintains a copy of the blockchain
this can be overcome by including only non-conflicting and valid transactions in each block.
However, this raises the issue of determining which node gets to append the next block of
transactions to the blockchain, as well as the problem of identifying the true state of the
blockchain given that there is no central authority governing this process.

In order to overcome these potential issues, Bitcoin introduced a new consensus mechanism
which allows for all network participants to determine the latest state of the blockchain and
hence avoids using a central authority [17]. This mechanism, also referred to as Nakamoto
consensus, which decides on the miner who gets to propagate a block through the network
and hence append the next block to the blockchain is governed by the Proof-of-Work (PoW).
The PoW is a computationally intensive puzzle that will be solved by some node in the
network in a process referred to as mining. Miners are participating nodes that receive and
accumulate transactions from all other network participants and store these in a block, by
solving the PoW puzzle. In order to determine which transactions should be included by a
miner in a block, miners evaluate the transaction fee associated with every transaction, as
these will be collected by the miner who gets to append his block to the chain.

Proof-of-Work algorithms are generally designed such that there is no better strategy to find
a valid nonce than trial and error, as this process is cheap and trivial [12]. In Ethereum, the
second largest cryptocurrency after Bitcoin in terms of market capitalisation2, the PoW uses
the Ethash algorithm, which requires a miner to find some nonce input to the algorithm, such
that the result is below a certain value that is determined by the PoW difficulty, commonly
referred to as the network difficulty [11]. When a miner computes a hash, a potential solution
to the puzzle, he will instantly see whether his solution is valid or not. Each tried nonce, or
computed hash, is a Bernoulli trial where the success probability is determined by the set dif-
ficulty [13]. Therefore, the number of attempts it takes a miner to find a valid solution to the
PoW puzzle and consequently mine a block, is random with a geometric distribution.

Finding a valid block is a Poisson process, where a miner’s probability of finding a valid
solution to the PoW puzzle in some period of time is determined by rate parameter h

D where
h is the miner’s computational power, or hash rate, and D the network difficulty. The
hash rate of a miner is the number of nonces tried per second and is typically measured as
megahashes (MH) per second, where 1 MH/s = 105 hashes per second. In Ethereum, the
difficulty dynamically adjusts itself such that the network finds a block every 12 seconds on
average [12]. However, it is important to note that the mining process is memoryless, as there
is no guarantee that a miner will find a block at the time he is expected to, which explains
the high variance individual miners face.

The role of the PoW and hence mining activity conducted by the miner nodes is to establish
a decentralised emergent consensus. Miners who invest their computational resources to try
to solve the PoW implicitly allow for all nodes in the network to independently select the
blockchain with the largest demonstrated computational effort [6]. Therefore, each time a
miner node finds a valid solution to the PoW problem, he appends the next block containing
transactions to the blockchain and will be rewarded for his computational effort a fixed
amount of newly minted units of the currency. This is referred to as the winning node having
mined units of the currency and consequently increased the overall volume of it. As all

2Source: https://coinmarketcap.com. Accessed: 2017-09-02

7



2.2. SOLO MINING

nodes in the network will receive this new block, everyone can agree on the same state of the
blockchain.

The emergence of Ethereum had a big impact on the cryptocurrency mining community.
Ethereum introduced a Turing-complete scripting language that allows for the creation of
so called smart contracts, programs that govern the transfer of Ether (ETH), which is the
underlying currency in Ethereum. This essentially allows for an easy creation of on-blockchain
token systems, and hence played a significant role in the rise of many altcoins. Apart from the
increase in the number of altcoins, the cryptocurrency landscape has experienced tremendous
increases in overall market capitalisation since the first introduction of Bitcoin and Ethereum.
Figure 2.2 shows the top ten cryptocurrencies by market capitalisation, which may justify
why cryptocurrencies are often referred to as digital gold.

Figure 2.2: Screenshot: the top ten cryptocurrencies by market capitalisation
3

2.2 Solo mining

Individuals mining independently are generally referred to as solo miners. As previously
mentioned, finding a block as a solo miner with some constant hash rate h follows a Poisson
process where h

D is the rate parameter. When a solo miner mines for time t he receives
on average ht

D blocks. The amount of blocks found follows a Poisson distribution where the
expected number of blocks is λ = ht

D . The expected payout of a solo miner would thus be
htB
D , where each found block has an associated block reward B [18]. The miner’s expected
revenue per hashing operation can be formulated, as stated by Rosenfeld [18], as

E[Rh] =
Re
D

8



2.3. MINING POOLS

and the miner’s corresponding variance as

V ar[Rh] =
R2
e

D .

2.3 Mining pools

A mining pool refers to a group of miners that pool together their computational resources
in order to increase their overall chance of finding a block. This allows individual miners to
earn a steadier payout stream of rewards as they reduce the variance between finding blocks.
The pools total hash rate H =

∑n
i=1 hi is the sum of the hash rates of all n individual miners

that make up the pool. Therefore the pool expects to find Ht
D valid blocks over time period

t [18].

Each mining pool has a pool operator, who charges a proportional fee f each time a block
reward B is received and splits up the remaining reward (1−f)B based on the reward payout
scheme implemented by the pool. In order for the pool operator to be able to assess every
miner’s contributed computational work, each pool member receives a computational puzzle
with a lower difficulty than the network difficulty. Every valid solution to the pool’s puzzle
is referred to as a submitted share by a miner. Therefore the submitted number of shares by
a miner is on average proportional to the number of hashes he computed while attempting
to find a block. The process of computing a share is identical to the process of trying to find
a valid block apart from the lower difficulty. The pool operator consequently tests whether
every submitted share is also a valid share to the network’s problem. Should a submitted
share also be a valid share (a solution to the network problem) then a block has been mined
by the pool.

2.4 Miner rewards and reward payout schemes

In Ethereum a block reward consists of 5 ETH, in addition to the total fees stemming from
the transactions in the block [8]. However, in Ethereum, one has to distinguish between full
blocks and uncle blocks. An uncle block is a block found, which does not become the new
head of the blockchain. This may occur when a competing miner finds a block and benefits
from his faster network connectivity, allowing his block to be propagated at a faster rate
through the entire network and consequently become the new head of the chain. However,
unlike Bitcoin, Ethereum rewards these uncle blocks and currently issues 3.75 ETH per uncle.
The probability of finding an uncle can be denoted as pu and hence the expected reward per
mined block can be denoted as

Re = Rb(1− pu) + Rupu.

It should also be noted that potential risks for mining pools have been identified. Rosenfeld
[18] introduces the notion of pool-hopping attacks, whereby miners may submit shares to
different pools based on favorable conditions in order to try to increase their rewards. An
examination of potential problems rooted in the prevention of such pool-hopping attacks was
conducted by Lewenberg et al. [15]. Further research on possible attack scenarios between
different mining pools has highlighted potential risks, such as possible block withholding [13],
[9], [16], and denial-of-service [14] attacks. Furthermore, Schrijvers et al. have shown that
under proportional reward schemes, miners may deliberately hold on to a PoW solution for a

9



2.4. MINER REWARDS AND REWARD PAYOUT SCHEMES

temporary period of time in order to increase their payout, consequently harming the pool in
which they mine[19]. In this dissertation, the employed term attacks refers to the potential
exploitation of a queue-based mining pool’s reward payout scheme. A mining pool’s reward
payout scheme refers to the mechanism which is employed by a pool operator to distribute
mined block rewards amongst the members of the pool.

Deciding on how to split up and allocate the block reward in a fair manner amongst the
members of a mining pool is not a trivial problem and may very well differ between pools.
Over the years different methods for splitting up rewards have been implemented by mining
pools. The most conventional of reward distribution schemes are proportional payout, pay-
per-share (PPS) and pay-per-last-n-shares (PPLNS). The following subsections will provide
a more detailed analysis of each reward payout scheme, based on Rosenfeld’s [18] analysis of
reward systems.

Proportional payout scheme

The proportional payout scheme is perhaps the most simple and intuitive approach towards
splitting up the block reward. This scheme is rooted in the concept of rounds, whereby a
round constitutes to the time between one block found to the next one [18]. As mentioned in
the previous section, miners in a pool compute and submit shares in order to prove that they
are performing work. The proportional scheme suggests that a miner’s claim of the block
reward B should be proportional to his number of shares submitted n as a fraction of the
total number of shares collected N by the pool in a given round [18]. Thus, a miner’s payout
per round should be equal to

n
N (1− f)B.

A problem rooted in the proportional payout scheme is that this scheme only works well under
the assumption that the number of miners in the pool is fixed [18]. In reality, however, a pool
using a proportional system might be subject to pool-hopping attacks. Pool-hopping may
occur when a miner leaves a particular mining pool if the pool has been unlucky for a longer
period of time and thus the expected reward of the miner is lower due to the increased number
of shares that have been submitted [9]. This may be reason enough for the miner to join a
different pool in a more favorable state. Rosenfeld [18] finds that when the shares submitted
are 43.5% of the network difficulty the point has been reached where the fair average payout
is equal to the expected payout. Furthermore, Rosenfeld suggests that a pool-hopper will
only mine before that point and subsequently leave the pool, before returning at the start of
a new round. This may seem more intuitive when one thinks about the possibility of finding
blocks early on in a round and that short rounds with fewer shares lead to higher revenue
per share, whereas long rounds decrease share utility.

Pay-per-share

PPS is one of the most common implementations of proportional payout scheme, in which
the mining pool operator absorbs all the variance individual miners are exposed to by paying
pool members directly for each submitted share. Thereby some miner i can expect a reward
per block of

E[Ri] = (1− f)Re
si∑n
j=1 hj

10



2.4. MINER REWARDS AND REWARD PAYOUT SCHEMES

in a pool of n miners [18]. At the start of every new round, after a block has been found,
every miner’s credits are reset to zero. The number of expected shares per block can be
expressed as

E[Sb] =
D
d

Although miners may still experience some variance in the number of shares found in a given
time period, they do no longer face variance in the reward per share [18]. More specifically,
Rosenfeld [18] further states that the variance faced by a miner of the pool is lower than had
he solo mined by a factor of D

lnD .

A major concern with this particular reward scheme is that the pool operator absorbs all
the variance. Individual miners are no longer negatively affected by unlucky mining streaks
experienced by the pool. In fact, the pool operator would be the only agent negatively
affected and could eventually run out of funds and thereby create a situation where miners
may not receive their expected payouts or even lead to the closing of the pool. To compensate
such a high risk, the pool operators in PPS schemes tend to charge higher fees at the cost of
the members of the pool.

Pay-per-last-n-shares

Unlike many other traditional schemes, PPLNS abandons the concept of splitting rewards
based on rounds, but rather distributes the block reward evenly among the last N shares
submitted by miners even if a block was not found in that period of time. This automatically
takes away the incentive to only submit shares during the early period of a round. The reward
is only paid out to miners of the pool when the number of shares submitted is greater than
the number of expected shares, N > E[S]. Thereby the expected revenue for some miner i
is

E[Ri] = (1− f)BRe
si
N

where si is the number of shares submitted by miner i and B the number of blocks found
during the last N shares [18].

11



Chapter 3

Queue-based mining pools: Ethpool

A new reward system has been implemented and introduced by Ethpool, which follows a
slightly different approach in keeping track of how much work every miner has performed than
more conventional mining pools. Each time a miner submits a share to the pool operator,
he receives a number of so-called credits equivalent to the share difficulty. The pool operator
maintains a maximum priority queue, ranking each miner according to their accumulated
credit balances. An example of Ethpool’s implementation of such a queue-based payout
system is shown by Figure 3.1 [4]. The wallet addresses of the fifteen miners with the highest
credit balances are displayed, as well as their respective hash rates, rank and estimated time
until each miner receives a block.

Figure 3.1: Screenshot: the maximum priority queue as implemented by Ethpool showing the
fifteen miners with the highest accumulated credit balances.

When a block is found by the pool, the pool operator allocates the full block reward1 to
the miner residing at the top of the queue. The credit balance of the first ranked miner is

1less pool fees

12



3.1. MANIPULATING THE QUEUE: STRATEGIC MINING

subsequently reset to the difference between his own and the second ranked miner’s credits.
This can be expressed formally by stating that for a first ranked miner m(1) and a second
ranked miner m(2), when a block is found miner m(1) receives the complete block reward and
his new credit balance is equal to

c(m(1)) := c(m(1))− c(m(2))

It should be noted that this credit resetting mechanism is non-uniform in the sense that the
credits of top miners may be reset to differing start balances.

Ethpool states that in order to win a block a pool member should expect to collect D credits
[3]. In case an uncle block is found rather than a full block the miner head of the queue will
receive the uncle reward Ru. However, the credits of the first ranked miner will not be reset
but rather the miner continues to reside at the top. Taking this into account the expected
number of credits of a miner on top of the queue at a time a block is found is equal to

E[c(m(1))] = (1 + pu)D

3.1 Manipulating the queue: strategic mining

As the end of round credit differences between the first and second ranked miners vary over
time, the credit balance of some miners is reset to a higher amount than for other miners.
The reason as to why credit balances are not reset to zero is primarily to incentivise miners
who are top of the queue to continue to maximise their work rather than to stop their mining
efforts [4]. By resetting their balance to the difference between their own and the second
ranked miner’s balance, the reset balance, the top miner will not lose any extra work he
performs.

A simple example that highlights the non-uniform credit resetting mechanism in more detail
is provided in Table 3.1. The example, which is similar to one proposed by Zamyatin et al.
[20], shows how two large miners, Bob and Alice, who each earn 10 credits per round, and
a smaller miner, Dave, who earns 5 credits per round, are affected by the credit-resetting
mechanism when a block has been found. Table 3.2a shows the initial priority queue order,
where Bob is positioned on top and is expected to received the block reward when the next
block is found by the pool. Once a block has been found Bob’s credit balance is reset to
the difference between his and Alice’s credits, namely 5 credits (Table 3.1b). The order
of the miners in the queue has now changed and Alice is the new head of the queue with
a new balance of 145 credits. Bob and Dave have also not stopped performing work and
subsequently increased their credit balances by 10 and 5 credits, respectively (Table 3.1c).
However, when the next block is won, Alice’s credit balance will be reset to 70, which is a
significantly higher amount than what Bob’s credits were reset to after the previous round
although his winning credit balance was almost identical to Alice’s. Furthermore, it can
be seen how Alice is now in a very favourable position to reach the top of the queue again
relatively soon, even though she did not perform any work yet.

The non-uniform credit resetting mechanism could give rise to potential attack vectors for
large miners, or more precisely, could allow large miners to increase their expected payout
at the cost of other miners. A miner could evaluate the non-uniform expected end of round
credit differences (reset balance) for the current and upcoming rounds. It could be the case
that a large miner, who is expected to win the current round anticipates to receive a higher

13



3.2. SHARE WITHHOLDING

Table 3.1: The priority queue with miners of different sizes over a series of blocks.

(a) Before Block i

Position Miner Credits

1 Bob 140
2 Alice 130
3 Dave 70

(b) After Block i

Position Miner Credits

1 Alice 130
2 Dave 70
3 Bob 5

(c) Before Block i+1

Position Miner Credits

1 Alice 140
2 Dave 75
3 Bob 15

(d) After Block i+1

Position Miner Credits

1 Dave 75
2 Alice 65
3 Bob 15

amount of start credits and thus intentionally decides not to win the current round. The
miner that was expected to have the highest number of credits by the end of the round could
employ certain actions to allow some other miner to overtake him in terms of total credits.
Examining different conditions, which determine a favourable queue constellation such that
this behaviour could be rewarding, will be the focus of the upcoming chapters. For now, a
favourable queue constellation should be defined as: an expected end of round constellation of
a maximum priority queue whereby the credit difference between the first and second ranked
miners for round ri would exceed the expected end of round credit difference between the
first and second ranked miners for round rj , where i > j, and the attacking miner is expected
to win both rounds.

The following sections examine four different actions a miner could theoretically pursue at
any point in time in order to allow some other miner to overtake him in the queue. It is
assumed that only one miner takes such actions and that all other miners in the pool resume
their mining activity at all times. These four actions are share withholding, tactical donation
of mining power, the use of a second payout address, as well as pool hopping. The first
three actions have been first proposed and examined together with William J. Knottenbelt,
Alexei Zamyatin, Katinka Wolter, Peter G. Harrison, and Catherine E.A. Mulligan, and are
also presented in the conference paper “Beneath the Surface: Swimming in Ethereum Mining
Pools”, which was accepted over the course of this dissertation [20].

3.2 Share withholding

Share withholding is a strategy employed by a large miner, whereby the miner stops submit-
ting shares in order to alter the queue constellation in his own interest, trying to achieve a
favourable queue constellation. This can be seen in Table 3.2, which shows an initial con-
stellation of a priority queue, similar to the previous example. However, for this example we
make Bob out to be an attacker, a miner who is aware of the non-uniform credit resetting
mechanism and thus determines his mining behaviour in accordance with the current queue
constellation. Initially, Bob is first in the queue and hence the miner of the pool that should
expect to receive the next block rewarded. Bob can expect his credits to be reset to 5, as
this would be the current difference to Alice’s credits. However, when analysing the order

14



3.3. TACTICAL DONATION OF MINING POWER

of miners more closely, it can be seen that the credit difference between Alice and Dave is
substantially greater than the amount of credits Bob would currently be reset to. Therefore,
Bob may stop submitting shares, or withhold shares, until Alice has overtaken him in terms
of credits (Table 3.2b).

Table 3.2: A miner taking advantage of the credit resetting mechanism

(a) Before Block i

Position Miner Credits

1 Bob 140
2 Alice 135
3 Dave 70

(b) Block i is found

Position Miner Credits

1 Alice 145
2 Bob 140
3 Dave 75

(c) After block i

Position Miner Credits

1 Bob 140
2 Dave 75
3 Alice 5

(d) Block i+1 is found

Position Miner Credits

1 Bob 150
2 Alice 80
3 Bob 15

(e) After Block i+2

Position Miner Credits

1 Dave 80
2 Bob 70
3 Alice 15

(f) After Block i+3

Position Miner Credits

1 Bob 80
2 Alice 25
3 Dave 20

Once Alice has surpassed him, Bob can resume his mining activity by submitting shares
again. Now, when the next block is found by the pool, Alice’s credits are reset to 5, while
Bob finds himself at the top of the queue (Table 3.2c). When the next block is found and
Bob’s credits will be reset to 70 he finds himself in a much more favourable position than had
he not altered the initial order of the queue (Table 3.2e). In fact, if one considers the order
of the queue after the next block, Bob will be again at the top of the queue and thus entitled
to the next reward. The reason for using a credit resetting mechanism as implemented by
Ethpool, rather than resetting the credits of the top miner to zero when a block is found, is
to encourage the top miner to continue to submit shares given that his extra work will not
be lost. However, this simple example demonstrated that by making decisions based on the
expected credit difference, one miner, Alice, has been cheated out of a significant number of
credits, which consequently affects her pool earnings in a negative way.

3.3 Tactical donation of mining power

A drawback of share withholding is that the large miner employing that strategy, does not
only fail to maximise his share submission, but furthermore does not perform any work at
all while he waits to be overtaken by a different miner. When waiting to be overtaken by
a different miner, rather than doing no work and missing out on potential credits, a large
miner could donate his mining power to the potential overtaker. This ideally speeds up the
overtaking process, which may be beneficial to the attacker if the pool is in a situation, where

15



3.4. SECOND PAYOUT ADDRESS (WALLET)

it is expected to find a block relatively soon. Such a scenario has in fact been observed in
Ethpool by Zamyatin et al. [20] and is shown in Figure 3.2.

Figure 3.2: Screenshot: A miner in Ethpool experiences a sudden increase in his hash rate for
a short period of time [20].

It can be seen how a miner whose average hash rate remains at 200MH/s for long periods of
time, suddenly receives a significant boost in the number of his active workers, his associated
mining hardware, and hence an increase in his overall hash rate. The miner’s hash rate
increases from 200MH/s to almost 2.4GH/s for a short period of time before it falls back to
200MH/s. This may likely be a real world example of how a miner in a queue-based mining
pool has received an unexpected donation of computing power, potentially benefiting some
other miner.

The reason for why the donation of shares is even possible in the first place is due to how
miners inform pool operators about which payout address, or wallet, should receive credits for
their performed work. Any miner could use any payout address and inform the pool operator
to reward the credits to the respective address. This suggests that the pool operator is unable
to differentiate between mining power having been tactically allocated or actually belonging
to a specific miner. Therefore the attacker cannot be prohibited from donating his power in
the form of shares until the condition that he envisions has been met.

3.4 Second payout address (wallet)

The third action, which may be pursued by a larger miner, is similar to the proposed tactical
donation of mining power. However, rather than giving away credits, or performed work,
to the overtaker, the attacking miner could set up a second payout address (wallet). Hence
when an attacker waits to be overtaken by some miner, rather than donating his shares to
a different miner, and thereby giving away his performed work, he could submit shares to

16



3.5. POOL HOPPING

his second wallet. This method allows an attacking miner to alter the queue constellation
without having to stop lose, or give away, any of his work efforts to some other miner.

3.5 Pool hopping

A fourth action that is based on the notion of pool-hopping should be examined. Pool-
hopping, as discussed by Rosenfeld [18], is the exploitation of different levels of attractiveness
of mining across more than one pool. If a mining pool appears unattractive in terms of
variance and expected earnings at a particular point in time, a miner may be able to increase
his expected rewards should he switch to a pool whose attractiveness for mining is rather
high. However, this is damaging to all members of the pool who mine on a continuous basis.
Rosenfeld [18] therefore states that only pools resistant to pool-hopping or a system where
all miners mine solo are sustainable.

Even though Ethpool is the only queue-based mining pool at the time of writing, throughout
this dissertation the hypothetical scenario in which multiple queue-based mining pools exist
should also be accounted for. An action a miner could thus take is leave the current queue-
based pool and join a different one, or stop the submission of shares in one pool and redirect
work efforts to a different pool. Thus, each time a specified condition is met in pool p1, a
miner would submit shares to his other wallet in pool p2.

17



Chapter 4

EthSim: a mining pool simulator

This section outlines the design and implementation of EthSim1, the simulation environment,
which has been built as part of this dissertation in order to examine the workings of queue-
based mining pools and the effectiveness of different mining strategies. The initial aims for the
simulator are stated prior to reviewing the actual design and implementation of the system.
The later will be conducted by addressing each of the specified aims. Simulation results of
queue-based pools and mining strategies are examined throughout the later chapters.

4.1 The aims for the simulator

This dissertation focuses on examining the workings of queue-based mining pools, as well
as the potential exploitability of the underlying credit reset mechanism via strategic mining.
Hence the aim for designing a queue-based mining pool simulator was split into two main
parts:

• The simulator should allow for the modeling of the workings of queue-based mining
pools assuming all miners in the pool maximise their computational work efforts. A
user of the simulator should thus be able to obtain data of a pool’s performance and
of any miner in a pool. This data should include the performed work per block by a
miner, the credit development of a miner, as well as the payout ratio of blocks rewarded
to blocks mined for both.

• The simulator should allow for the evaluation of the effectiveness of different mining
strategies a miner could employ. More specifically, simulating the actions discussed
in the previous chapter in queue-based mining pools of any size should be accounted
for. Furthermore, the simulator should ensure that different mining strategies can be
compared in a fair and unbiased manner.

1The name EthSim was chosen given that Ethpool introduced the queue-based reward scheme and that
the simulator should be able to effectively model the workings of Ethpool

18



4.2. DESIGN

4.2 Design

The following subsections will address the design choices made for each of the specified
aims.

4.2.1 Simulating a queue-based mining pool

In order to simulate the cryptocurrency mining process in a pool, the choice for designing
an event based system has been made, where events represent valid shares submitted by
miners of a pool. An instance of a share event has a timestamp representing the time for
when the share is found and can either be a network share event or a mining pool share
event. Additionally, every share event has a reference to the miner who it was scheduled
by. A network share event represents a miner having submitted a valid share to the pool’s
problem, which is also a valid solution to the overall network problem and thus the pool
mines a block. A mining pool share event represents a miner having submitted a share that
is a valid solution to the mining pool’s problem but not to the network problem. The rate
at which a miner schedules shares is dependent on the hash rate of the miner.

An event queue contains all scheduled events ranked by their timestamp in ascending order.
The event with the lowest timestamp will be executed and the execution of the event depends
on the type of share, i.e. whether it is a network or mining pool share event. Before the
execution of the next share in the queue, the miner who scheduled the current executed share
will schedule a new share. His new share will be inserted into the appropriate slot in the
event queue, based on the share’s timestamp. The outlined share scheduling and execution
mechanism is visualised by a simple flow chart in Figure 4.1.

The time intervals between shares submitted by miners in the pool are created as a randomly
generated number following an exponential distribution with rate parameter λ = h

d , where
d is the share difficulty of the pool and h a miner’s hash rate. For every submitted share
by a miner, he receives an increase in his credits equivalent to the share difficulty. When a
network share is being executed, the miner that submitted the share receives the credits for
the submitted share. Additionally, the miner with the highest accumulated number of credits
in the pool is rewarded a block and has his credit balance reset to the difference between his
and the second ranked miner’s credits. At all times there can be no more than one event
share per miner in the event queue.

After every executed share the time of the simulation, which is used by miners to schedule
their shares, is set to the timestamp of the most recent executed share event. The number of
blocks that have been found, or mined, by a pool, are also recorded. Once the simulation has
run for the specified number of blocks found by the pool, no more shares are being executed
or scheduled.

4.2.2 Simulating mining strategies

For a fair comparison between different mining strategies, one has to compare the effectiveness
of each strategy employed over the same sequence of events. For example, had a miner
pursued a share donation strategy, in order to evaluate its performance, one has to compare
it to the scenario in which a miner did not employ the strategy. Hence, the same sequence of

19



4.2. DESIGN

Figure 4.1: A visualisation of the share scheduling and execution mechanism.

events should be used for the simulation of different mining scenarios, as it would be unfair to
compare mining strategies that have been employed over event sequences which considerably
differ. A simulation of a mining pool with N miners, where N > 1, and no miner pursues a
strategy should be referred to as the normal scenario. In order to evaluate the effectiveness of
different mining strategies on a fair basis, a new scenario using the same sequence of events
as the normal one, should be simulated for every proposed strategy.

In cryptocurrency mining, regardless of the mining pool, an individual miner can only affect
his own actions, i.e. the submission or withholding of shares. Whether an attacker miner
withholds, or donates his shares to some other miner or to his second wallet does not have any
direct effect on the share generation of the other miners in the pool. Under the assumption
that all non-attacking miners maximise their mining efforts at all times, different actions
employed by an attacker would never have any direct effect on the share scheduling of other
miners. Even for the attacker, the assumption is that the timestamps for his scheduled shares
should be the same for all scenarios. Thereby the only difference between different mining
scenarios would potentially be the handling of the attacker’s shares, i.e. whether a share
should be submitted and, if so, to which payout address.

Comparing different mining strategies therefore involves the simulation of multiple identical
pools over the same sequence of events. The share scheduling and execution mechanism, as
proposed in the previous subsection, would remain unchanged. Allowing for the simulation of
different mining scenarios proved to be the most challenging aspect of designing the simulator
system. As the simulator is event-based a choice had to be made of whether the share
structure should be altered, such that every mining strategy scenario has it’s own set of
shares and could thus be simulated independently. However, such a design would go against

20



4.2. DESIGN

what has been discussed so far, namely that the event sequence should be the same for all
simulated mining scenarios. Therefore, rather than altering share structures, every miner
in the pool keeps track of his performance across all scenarios. Each time a share event is
executed, the miner who scheduled the event adjusts his credits accordingly for every scenario.
Should the miner be an attacker pursuing a mining strategy then he may employ some action
with regards to the handling of the share for the respective scenario.

A miner thereby keeps count of his credit balances for every scenario, as well as other im-
portant information, such as the number of shares submitted, number of blocks received and
number of blocks mined. The number of blocks mined refers to the number of network shares,
or solutions to the network problem, a miner submitted/found. Therefore, the number of
blocks found also represents the number of blocks a miner would have received had he mined
solo. The number of blocks rewarded refers to the number of blocks a miner was actually
rewarded by the pool operator, i.e. the number of times the miner was top of the queue when
a block was mined by the pool.

For every attack strategy to be examined, a new scenario should be added to the simulation.
The only difference amongst all scenarios for a simulation is the share handling of the at-
tacking miner, which consequently may affect his own, as well as other miner’s performance.
A condition and action scheme has been proposed to allow for the construction of mining
strategies. Under such a scheme, the miner pursues a particular action, or behaviour, given
that a particular condition is met. Should the condition be false then a default action should
be undertaken. For example, a condition may refer to a particular queue-constellation or a
specified credit balance the succeeding miner should not exceed. A theoretical example would
be: if miner Eve is top of the queue and the second ranked miner’s credit balance is greater
than or equal to 90% of Eve’s total credits then the condition is true. An action refers to the
behaviour undertaken by the attacking miner should the condition be true and may be any
of the previously proposed attack actions. Thus the term mining strategy in a queue-based
mining pool setting can be defined as a specified action or set of actions that are undertaken
by an individual miner provided that some condition is met.

A condition should be checked when the share to be executed by the event queue is a share
that has been submitted by an attacker. For every scenario, apart from the normal scenario,
there can be one condition per scenario, apart from the normal scenario. Thereby, each time
an attacker share is executed, for every scenario the associated condition will be checked and
subsequently determine whether the share should be submitted normally and increase the
attacker’s credit balance for the respective scenario, be withheld, or donated to some other
payout address. The default action for an inactive condition is the same as under the normal
scenario, namely the submission of the share and the associated increase in the credits of the
attacker for that scenario. Non-attack miners should not be concerned with the condition
and action scheme but rather receive the appropriate amount of credits per share for every
scenario they are part of. By following this methodology, the main aspect that may differ
over time between different scenarios is the queue constellation, as well as the credits and
rewards miners have been reset to and received, respectively.

4.2.3 System design

An overview of the design of the simulator system is provided by Figure 4.2. This UML of
the simulator only shows the relationships between all the different classes of the system in

21



4.3. IMPLEMENTATION: A QUEUE-BASED MINING POOL

order to highlight the system’s complexity. A full UML of the system showing class member
variables and methods can be seen in Appendix B.1.

The two main components of the system are the generation and execution process of event
shares and the previously explained condition and action scheme. The following sections ex-
amine the design and implementation of these two components in further depth and highlight
the interaction between them. Lastly, the simulation configuration, data collection and pool
populating mechanisms are explained.

4.3 Implementation: a queue-based mining pool

The implementation of the share event scheduling and execution mechanism can be examine
by focusing on two key components of the system: the event queue and events, as well as the
scheduling of shares.

4.3.1 Event queue and events

The simulation has at most one event queue, which uses a minimum priority heap to find
the event with the lowest timestamp. The event queue maintains the time of the most recent
executed event, which is taken into account when future events are being scheduled. The
implemented share events are mining pool share events and network share events, both being
implemented as classes of the same name, derived from a ShareEvent class. How an event
is executed depends on the type of event and thus the Event method execute() is declared
as a pure virtual method. In an instance of a network share event, a share is a valid solution
to the network problem and thus not only are the credits of the miner who submitted the
share increased, but in addition a block is rewarded to the pool operator, who passes it on to
the miner with the most accumulated credits. Executing a mining pool share event simply
results in an expected increase in the credits of the miner who scheduled the share. A UML
diagram highlighting the relationship between the event and event queue classes is presented
in Figure 4.3.

4.3.2 Share scheduling

Share scheduling is one of the most essential components of EthSim. As previously mentioned,
a miner schedules a new share event as soon as he has no scheduled event left in the queue.
As previously explained, finding a solution to the mining pool problem is also a Poisson
process with rate parameter λ = h

d , where h is an individual miner’s hash rate and d is
the share difficulty of the mining pool. The probability for a pool share to also be a valid
solution to the network problem is given by d

D , where D is the network difficulty. Therefore
the type of a share is determined by randomly generating a floating point value between 0
and 1 and checking whether it is below the probability of the share being a network share.
Should this be the case then the share to be scheduled will be a network share event, else it
will be scheduled as a mining pool share event. For the pseudo-random number generation
the drand48() function is used, as it returns non-negative, floating-point values that are
uniformly distributed over the interval [0.0, 1.0) [1].

22



4.3. IMPLEMENTATION: A QUEUE-BASED MINING POOL

F
ig

u
re

4.
2:

A
U
M
L
di
ag
ra
m

sh
ow

in
g
th
e
re
la
ti
on

sh
ip
s
be

tw
ee
n
th
e
di
ffe

re
nt

cl
as
se
s
of

E
th
Si
m
.

23



4.4. IMPLEMENTATION: MINING STRATEGIES (SCENARIOS)

Figure 4.3: A UML diagram showing the relationship of the different event classes and event
queue

The time intervals by which shares are submitted by miners are constructed as a randomly
generated number following an exponential distribution, where the rate parameter is equal to
λ = h

d , where h is the hash rate of the miner who submits a share and d the share difficulty
set by a pool. This has been implemented as

t =
− log(drand48())

λ
(4.1)

In order for a miner to schedule his next share he creates the appropriate ShareEvent object
for the time that is equal to the current time, which can be obtained from the event queue,
plus the computed time for the submission of the next share, t.

4.4 Implementation: mining strategies (scenarios)

The implementation of mining strategies is presented by focusing on the interaction between
the condition and action classes.

4.4.1 Conditions and actions

The choice for a Condition class falls back on the aim to simulate different mining strategies.
As the simulator is event-based, a specified condition can be checked each time an attacking
miner’s scheduled share event is being executed. The way a condition is checked depends on

24



4.4. IMPLEMENTATION: MINING STRATEGIES (SCENARIOS)

the condition itself. As the nature of a condition may vary, the Condition class has been
implemented as an abstract class, where the method check(), which returns the active or
inactive state of the condition, is implemented as a pure virtual method. For the simulations
discussed in this thesis, four different conditions have been defined, these being a threshold
condition (ThreshCondition), a luck condition (LuckCondition), as well as two conditions
based on expected values (ExpValCondition and ExpValCondition2). However, any other
condition may be implemented in the future by deriving an additional class from the base
Conditionclass.

Every condition not only has a pointer to a miner who created the condition (the attacker),
but also a pointer to one associated action. This follows the condition and action scheme
proposed for the construction of mining strategies. The actions proposed in section 3.1 have
been implemented as derived classes from an Action abstract base class, where every instance
of Action has a pointer to an associated condition object.

The degree of complexity of the implemented conditions varies. The threshold condition is
rather simple and only checks the rank of the miner who specified the condition, as well
as the credit balances of some other miner. Even the luck condition is quote simple as it
only checks the number of shares the pool has submitted during the current round compared
to the number of shares the pool is expected to submit per round. However, the expected
value conditions make use of variables such as expected pool duration, all miners’ hash
rates in the pool, as well as current credit balances. In order to compute expected end
of round queue constellations, the ExpVal2Condition uses instances of MinerSortObject,
objects which resemble miner objects and allow for the theoretical estimation of end of round
credit balances.

4.4.2 Scenario set up: condition and action

Please note that the selection of these scenarios is not mutually exclusive meaning that the
simulation could consist of up to six different attack scenarios being modeled in addition
to the normal scenario. Every condition that is created needs an action and every action
needs to be aware of its associated condition. Any one of the four actions can be associated
with any of the four conditions, however, please note that hopping is primarily linked to a
LuckCondition and vice versa. Should none of these conditions and actions be selected for
the simulation then by default a simulation of a mining pool with no attacker will be run.
Throughout this section the different actions and conditions will be examined in depth by
focusing on theoretical assumptions, as well as certain implementation choices.

Once the mining pool for the normal scenario, or the base pool, has been populated, a new
mining pool object will be created for every attack scenario that has been selected to be
simulated. However, rather than populating these pools with a new set of miners, the newly
created pool objects will be populated with the same miner objects as the base pool. Fur-
thermore, all pools receive an ID, a number, where the base pool has ID 0. Essentially, all
pool objects will have a vector containing pointers to miners and all miners will have a vector
of pointers to the pools they mine in.

In order to set up the different scenarios properly, all mining pool objects apart from the base
pool receive a pointer to a Condition object that entails a specific Action based on their
pool ID. For example, a mining pool object that has ID 2 will receive a pointer to a condition
that has a pointer to a donation action. Every condition is set by an attacker miner and

25



4.4. IMPLEMENTATION: MINING STRATEGIES (SCENARIOS)

has a pointer to an Action object. Both, the Conditon and Action class are abstract classes.
The different type of conditions are:

• ThreshCondition: a condition that is based on the attacker being in the top N miners
by total credits, as well as a threshhold that specifies the number of credits the behind
the attacker may not exceed.

The condition is considered active when the attacker is in the top N miners and the
subsequent miner’s balance are relative to the attacker’s credits larger than the specified
threshold.

• LuckCondition: a condition that makes use of the overall performance of a mining
pool during a particular round for the pool by estimating the pool luck, which can be
expressed as

pool luck =
SE(P )

SA(P )
(4.2)

where SA(P ) is the actual number of shares submitted for a round by pool P and SE(P )
is the expected number of shares to be submitted per round by pool P .

Furthermore, the luck condition has a pointer to a second mining pool, to which the
attacker could, depending on the action associated with the condition, potentially sub-
mit shares to rather than continuing to mine for the current pool. The condition is
considered active when the pool luck is below the specified luck limit for a given round.

• ExpValCondition: a condition that uses expected values to compute the expected end
of round miner queue constellation.

• ExpVal2Condition: a condition that computes and compares an attacker’s expected
credit differences for N rounds.

As briefly mentioned before, every condition is associated with an action and every action
is aware of the condition it is linked to. An action determines the handling of a share
submitted by the attacker. Whether an action is pursued or not depends on the state of
associated condition. An action can be any of the following types, which are derived from
the abstract Action class:

• Share_withholding: a share is withheld, not submitted to the pool operator. The
share does not count towards the shares the miner generated nor his performed work.

• Donation: a share is donated to a miner that is specified by the condition. For this
report the miner who will receive the donation is the miner that should overtake the
attacker in the queue. Unlike share withholding, the work performed by the donating
miner, the attacker, is recorded.

• SecWallet: a share is donated to the attacker’s second wallet. Once a SecWallet
action object is constructed, a new instance of Miner is created and passed into the
pool corresponding to the second wallet scenario. This new Miner object does not have
a hash rate and does not submit any shares but solely receives credits and potential
blocks via the work performed by the attacker. It should be noted that although all
work performed by the attacker is recorded only one of his two wallets will receive
credits. Which of the two wallets should be used strictly depends on the state of the
associated condition.

26



4.5. SETTING UP A SIMULATION

Figure 4.4: A UML diagram exclusively showing the relationship between the different action
and condition classes

• Hopping: a share is submitted to the pool and the credits are updated. However, instead
of scheduling the next share, the attacker first checks whether the linked condition is
active. If the condition is active then the attacker will not schedule his next share in
the current pool, but rather leave that pool and join a different mining pool that is
specified by the condition. Should the condition be inactive or the share be a network
share then the attacker remains in the pool he currently mines in and schedules his
next share.

4.5 Setting up a simulation

This section outlines the simulation configuration and some of the data collection features
offered by EthSim. Furthermore, the construction of mining pools is explained by presenting
two possible methods for populating a pool with any number of miners.

27



4.5. SETTING UP A SIMULATION

4.5.1 The simulation configuration and data collection

The configuration file Config, a json file that is passed as a command line argument, allows
the user to specify a number of settings for the simulation, predominantly the duration of
the simulation denoted as number of blocks found by the pool, simulation name, network
difficulty, pool name, pool fee, as well as pool share difficulty. Furthermore, the user may
choose between populating the mining pool with his own miners by passing in a .csv file
consisting of miner data, namely miner name and the respective hash rate, or he may populate
the pool by sampling for N miners for the hash rate from a log normal distribution. The
log normal distribution paramaters mean and standard deviation, as well as potential upper
and lower bounds may also be specified by the user in the configuration file. In the sampling
approach, the name of a miner will also be generated by appending some randomly generated
up to eight digit number to the letter X. Given the miner population process, either via the
passing in of miner data or sampling, the user may also select specific miners to be monitored
by specifying their names or via sampling from the pool of generated miners by specifying the
percentile the miner’s hash rate should lie in, respectively. Miners selected to be monitored
will be marked in the simulation and all their actions will be recorded. EthSim allows for
the collection of various data points relevant for the effective comparison of different mining
strategies. A miner object who has been marked uses the method write_data() to write the
time and his credit balance to a specific file each time a share event scheduled by the miner
is being executed. This allows for the analysis of the credits development over a period of
time for a specific miner.

A mining pool records information by default. Each time a block is found, a network share
event is submitted to a particular pool, a mining pool object calls the method writeCSV().
Every mining pool object has an output file stream as a member variable and thus there
will be a file containing this information for every pool object in the simulation. Using the
writeCSV() method the mining pool object writes to a .csv file the time of the simulation
and credit balance of the top miner, the reset balance, the work per block, as well as the luck
of the pool for the completed round. By accumulating this data one can visualise the amount
of work performed per block relative to the network difficulty, as well as compute average
start or win credits, which will be presented throughout the upcoming chapters.

At the end of every simulation two files containing relevant information are created by default.
First, a .csv containing information, such as blocks won, avg. start credits, avg. win credits,
hash rate, number of miners and pool luck, for every mining pool of the simulation is created.
Second, a .json contains information about all miners that were part of the simulation. The
reason for this file to be in .json format is due to the existence of nested data for every
instance of a miner, such as blocks found, blocks received, total shares submitted, shares
donated, share donations received for every mining pool a miner mined in.

Should the user want to simulate a scenario in which there are one or more miners classified
as attackers and hence pursue particular actions in certain situations, the configuration file
allows for it. Similar to the initial miner populating process for the mining pool, the user can
specify the name of the attacker if the pool has been populated with miner data passed in
by the user. Alternatively, given a pool of miners that has been generated through sampling,
the attacker can be sampled from the pool of miners by specifying the percentile in which
the attacker’s hash rate should lie.

28



4.5. SETTING UP A SIMULATION

4.5.2 Populating the pool

Everything specified in the configuration file is processed within the Simulation object as
soon as the simulation is run. First, the mining pool for the normal scenario is setup by
creating a MiningPool object and populating it with Miner objects according to specifica-
tions in the configuration file. A miner object can be constructed by passing in constructor
arguments for the name of the miner, the miner’s hash rate, as well as a pointer to the mining
pool the miner mines in.

In the case that miners have to be generated from sampling, the Simulation object makes
use of the MinerGenerator object every instance of the class has. A MinerGenerator object
has a method named createMiners, which takes amongst other arguments a pointer to a
mining pool object that should be populated with miners. As the assumption is that the
hash rate of miners in Ethpool follows a log-normal distribution, the MinerGenerator object,
which is constructed by passing in lower and upper bound limits for the sampling, makes use
of the std::lognormal_distribution template. This template generates random numbers
that are greater than zero according to a log-normal distribution using the probability density
function (PDF):

f(x) =
1√
2πσx

e−
ln(x)−µ2

2σ2 (4.3)

where µ is the mean and σ the standard deviation [5]. When the createMiners method is
being called, one of its arguments is the number of miners that should be created, or sample
size. Thus, the MinerGenerator will sample a hash rate from the distribution, generate a
random number for the wallet address, or name, and subsequently create a new Miner object
and pass a pointer to the newly created miner to the mining pool for a number of times equal
to the sample size.

29



Chapter 5

The Two Miner Case

5.1 A simple scenario

This section evaluates potential attack strategies in a two miner case, as initially proposed
by Zamyatin et al. [20]. In the two miner case, the assumption is that only two miners, a
small one and a large miner mine in the same queue-based mining pool. The large miner,
miner one, mines at a rate of 1 GH/s1 and the small miner, miner two, at a rate of 100
MH/s. Even though such a scenario may not be an accurate representation of a real world
queue-based mining pool, such as Ethpool, it should provide a good overview of the workings
of a queue-based pool system, as well as allow for a first comparison of the effectiveness of
different attack strategies in this simplified scenario.

5.2 Simulation configuration

For the simulation configuration, the network difficulty has been set to 183.671TH (trillion
hashes) and the share difficulty to 3.6 billion hashes. Perfect network connectivity has been
assumed for all miners, as well as a constant hash rate. In addition, uncle blocks, as well as
stale and invalid shares are not taken into account. The Attacker is the 1 GH/s miner m1

and the Victim is the 100 MH/s miner, m2. The duration for the two miner case simulation
has been set to 100 000 blocks.

The attack strategies being simulated all follow the same condition:

If miner m1 is ranked top of the queue in terms of his overall credit balance and
the credit balance of miner m2 is within a 90% threshold of m1’s credits, then the
condition is active.

A scenario will be simulated for each of the three considered actions linked to the condition:
the withholding of shares, donation of mining power, as well as the use of a second wallet,
as explained in section 3.1. A normal scenario will be simulated, whereby the attacker does
not pursue any attack strategy, in order to have an appropriate scenario against which the
performance of each attack strategy employed can be compared.

11 GH/s = 109 hashes per second

30



5.3. SIMULATION RESULTS AND EVALUATION

5.3 Simulation results and evaluation

Table 5.1 shows the rewards received and work performed by both miners for each of the
different scenarios. Blocks rewarded refers to the number of blocks a miner has received, or
been granted, from the pool operator, i.e. the number of times a miner was top of the queue
when a block was found by the pool. Blocks mined refers to the number of shares submitted
by a miner, which were valid solutions to the network problem, i.e. a block was found by the
pool because of the submitted share.

Attack strategy Miner
Avg. performed
work per block
(trillion hashes)

Blocks
rewarded

Blocks
mined Ratio

None
(solo mining)

Attacker
Victim

183.683
183.423

90898
9102

90898
9102

1.0
1.0

None
(normal scenario)

Attacker
Victim

185.047
170.847

90228
9772

90898
9102

0.9926
1.0736

Share
withholding

Attacker
Victim

178.427
237.992

72973
7015

70886
9102

1.0294
0.7707

Tactical donation
of mining power

Attacker
Victim

182.892
191.700

91291
8709

90898
9102

1.0043
0.9568

Use of a second
payout address

Attacker
Victim

185.363
168.196

90074
9926

90898
9102

0.9909
1.0905

Table 5.1: Results for a simulation of a two miner case for 100 000 blocks

5.3.1 Simulation of a two miner pool

The credit development of miners m1 and m2 for the first 100 blocks in the normal scenario
is visualised in Figure 5.1. Due to the time scale in Figure 5.1, the credit growth may appear
linear at first. However, the figure also shows a small part of the credit development for the 10
GH/s miner m1 in a subplot with a zoom factor of ×3500. The subplot shows that the time
intervals in which valid shares are submitted by a miner are not constant. This should come
as no surprise given that finding a valid solution to the pool problem is a Poisson process. It
can be seen how the smaller miner m2 wins a block when his credit balance is close to the
network difficulty, whereas the large miner m1 maintains much larger credit balances, well
above the network difficulty.

Figure 5.2 shows the computed hashes per rewarded block for both miner m1 and m2, as well
as the correlated luck of the pool, for the first 100 blocks. Pool luck is computed as

Pool luck =
Expected number of shares per block

Actual number of shares perblock
(5.1)

for every round in a pool.

It can be seen that a miner performs fewer hashes than the network difficulty when the
pool is very lucky and vice versa. For example, during the time period between 6 million
and 8 million seconds, both miners m1 and m2 benefited from lucky rounds and performed
significantly less work than the expected amount per block. However, just by looking at

31



5.3. SIMULATION RESULTS AND EVALUATION

Figure 5.1: The credit development of two miners for the first 100 blocks

the performed work per rewarded block for the first 100 mined blocks, it appears that the
large miner m1 performs a lot more hashes, well above the difficulty, for a block notably
more often than the small miner m2. In fact, over the course of 100 000 blocks, miner m1

had to perform on average 14.2TH more per received block than miner m2. Furthermore,
miner m1 performed on average 1.376TH more than the network difficulty, whereas miner m2

surprisingly performed 12.824TH less than the network difficulty. In terms of the rewarded
blocks, miner m1 was rewarded fewer blocks (90 228) than how many he actually mined for
the pool (90 898), suggesting that he would have been better of by 670 blocks had he mined
solo. Consequently, the small miner m2, received 9 772 blocks, a substantially larger amount
than how many blocks he actually mined (9 102).

Zamyatin et al. [20] find that the reason for the small miner outperforming the large miner in
terms of work per block and blocks received relative to blocks mined is predominantly linked
to the attacker being faced with a higher probability than the small miner for reaching the
top of the queue during a time when the pool is unlucky, given the significant difference in
mining power between miners m1 and m2. More specifically, in such a queue-based scheme,
large miners, whose hash rate accounts for a significant amount of the pool’s hash rate, such
as miner m1, are more likely to absorb large amounts of the mining pools variance caused by
lucky and unlucky streaks than smaller miners [20]. This can partially be seen in Figure 5.2,
which shows the real work both miners perform per rewarded block, as well as the correlated
luck of the pool, for the first 100 blocks.

The credit development for both miners for the share withholding scenario is shown in Figure
5.3, which looks fairly similar to the credit development for both miners for the normal
scenario from Figure 5.1. However, even though both figures only account for the first 100
blocks, differences in terms of the credit development for both miners can be made out. In
Figure 5.3, the subplot with a zoom factor of ×5500 shows a condition being met multiple
times over a short period of time, as miner m1 stops his submission of shares and only
continues to work once miner m2 surpasses him in the hope that miner m2 will then win
a block and be reset. It can be seen how miners m1 and m2 alternate in terms of who is
top of the queue almost on a share by share basis. The effective use of the strategy can be

32



5.3. SIMULATION RESULTS AND EVALUATION

Figure 5.2: The number of hashes computed by two miners per rewarded block correlated with
pool luck for the first 100 blocks

seen at around 5 million seconds, where miner m1 waits to be overtaken by miner m2, who
subsequently wins the next block and is reset to almost zero credits. Minerm1 then continues
to maximise his mining efforts for a prolonged period of time, while minerm2 gradually builds
up his credits again. Interesting enough, at the same time in the normal case (Figure 5.1)
miner m2 benefits from a lucky round and wins two blocks over a rather short period of time
and has his credits reset to an amount significantly larger than zero.

In terms of overall performance and rewards during the share withholding scenario, miner m1

managed to perform better in terms of his block ratio (1.0294) than had he not pursued an
attack strategy (0.9926) or mined solo. Furthermore, compared to the normal scenario, miner
m1 manged to reduce his average work per block by 6.72TH, and thus performed notably
fewer hashes than the difficulty. Miner m2, however, had to perform 67.145TH more per
block than during the network difficulty.

Perhaps share withholding may therefore seem like an ideal reward increasing for miner m1,
however, the number of blocks found and received by both miners is remarkably lower than
for the normal scenario. This is due to all scenarios following the same timeline of events,
or shares are being submitted at the same time instances in every scenario. As the share
withholding scenario is the only setting in which a share may be ignored, which simulates the
real world case for a miner not generating a share at all, it may occur that a valid network
share is ignored and consequently no block is found. Taking this block loss into account, even
though an attacker like m1 would be able to reduce his work per block and improve his ratio
of blocks received to blocks found, his overall reward would be less for the given time frame
relative to the normal scenario, or 17 255 blocks less, as shown by Table 5.1.

33



5.3. SIMULATION RESULTS AND EVALUATION

Figure 5.3: The credit development for two miners in a share withholding attack scenario for
the first 100 blocks

The use of a second payout address, or wallet, strategy performed worse in terms of performed
hashes per rewarded block and number of blocks rewarded for miner m1 than any other
scenario. This may be due to a potential queue constellation in which the wallet of miner
m1 eats into the credit balance of miner m1’s first wallet [20]. More specifically, creating a
second wallet is equivalent to a third miner joining the pool. Therefore, at some point and
after several share submissions to the second wallet, it could be the case that miner m1’s
first wallet is top of the queue and the second wallet is ranked second of the queue. Given
that the credits of the second wallet are very high relative to the first wallet’s. Such a queue
constellation could imply that rather than miner m1 continuing to mine for his first wallet,
he submits shares to his second wallet instead, as the specified threshold condition would
be met. However, rather than building up his credit buffer to the second ranked miner, he
reduces it by submitting shares to his second wallet, which in fact is the second ranked miner.
Thus by indirectly causing the diminishing of his end of round credit differences, miner m1’s
second wallet strategy seems to boost the number blocks rewarded to miner m2 and thereby
reduce the average work miner m2 performed per rewarded block.

The last strategy to analyse is the tactical donation of mining power to the second miner,
when the condition is met. For miner m1, pursuing this strategy not only proved to be better
than the normal scenario in terms of performed work per block and block ratio, but also
performed better in terms of the number of blocks rewarded. Miner m1 received 1063 blocks
more than in the normal scenario, as well as 393 blocks more than had he solo mined. Miner
m2 on the other hand received 393 fewer blocks than how many he actually mined for the
pool with an average number of hashes per block that lies above the network difficulty.

The results for the tactical donation scenario not only imply that donating mining power is
the best out of all three considered strategies, but is also more profitable in terms of blocks
received and performed work than pursuing no attack strategies or mining solo. Even though
the results from the share withholding scenario may at first suggest that the strategy is better,
given that a significant number of blocks is lost relative to the normal scenario, it does not
outperform the donation strategy. For a two miner case, it could also be seen that the second
wallet approach is not worth to be pursued by a miner, as pursuing such a strategy has a

34



5.3. SIMULATION RESULTS AND EVALUATION

potential negative effect on a miners rewards, due to the creation of a third miner, namely
the second wallet.

5.3.2 Problems with the two miner case

Even though the results suggest that large miners can make up for the extra work they have
to perform per block, particularly by employing a donation strategy, one can not determine
whether such strategies will be viable in the real world case for Ethpool purely based on the
outcomes of a two miner case simulation. In fact the two miner case could be misleading as
the condition used by the attacker is very naive in the sense that it makes use of only two
variables, namely the attacker’s position in the queue relative to that of the small miner,
and the total credits of the small miner relative to the attacker’s credits. In reality Ethpool
would be considered a multi-miner case, where several additional variables have to be taken
into account in order to determine a favorable condition for a miner to pursue an effective
attack strategy.

In a multi-miner case an attacker has to be very attentive to the current constellation of the
queue when a condition is checked as part of a reward-increasing strategy. For example, in
the two miner case, when an attacker gives up a round by allowing the small miner to surpass
him in terms of total credits, the large miner is certain to win the next round. However, in a
multi-miner case, assuming the attacker is not the largest miner in the pool, it could very well
be the case that the attacker gives up a round to some miner, but fails to win the following
round as other miners with higher hash rates move up the queue a lot quicker, potentially
overtaking the attacker. Even if an attacker is the largest miner in the pool and gives up
a round it could be that the end of round credit difference he receives the following round
is significantly smaller than the initial difference he could have received. Such a situation
could arise from smaller miners with relatively lower hash rates residing close to the top of
the queue being overtaken by miners with significantly larger hash rates. Therefore, if an
attacker does not define a condition as part of his attack strategy, which accounts for factors
such as other miners’ hash rates, current credit balances, or the length of the current round,
he could actually find himself worse off in terms of his payout than had he not pursued any
attack strategy in the first place. How the naive conditions used in the two miner case would
perform in a multi-miner case, as well as what kind of conditions would take more variables
into account will be the focus of the next chapter.

35



Chapter 6

The Multi-Miner Case

6.1 Simulation configuration

Throughout this section multiple simulations of mining strategies in pools of various sizes
will be examined. All simulations discussed were set up using the same configuration settings
as the simulation for the two miner pool presented in section 5.2, apart from the simulation
duration, which was set to 200 000 blocks for the multi-miner pool simulations.

However, between the multi-miner case and the two miner case simulation setup one other
difference is the generation of miners for the simulated mining pools. In the two miner
pool simulation, both miners were specified by name and hash rate via a .csv file. For
the simulations used throughout this section, the miners have been generated by sampling.
Zamyatin et al. [20] obtained the name and hash rate for 729 miners in Ethpool via the public
Ethpool API between 21-02-2017 and 09-04-2017. Figure 6.1 shows the distribution of hash
rates for the 729 Ethpool miners. It can be seen that the hash rate distribution in Ethpool
resembles a log normal distribution. An additional representation of the Ethpool hash rate
distribution is provided in appendix A.2. Thus, in order to construct queue-based mining
pools of different sizes, sampling for the hash rate of miners using a log normal distribution
allows for the unbiased populating of each pool. The probability density (equation 4.5.2)
function employed for the sampling used the mean and standard deviation of the hash rate
data obtained for the 729 Ethpool miners1.

This chapter examines the workings and effectiveness of mining strategies employed in any
queue-based pool and should thus not be too specific to Ethpool. Therefore, instead of using
the data for the 729 Ethpool miners obtained by Zamyatin et al. [20], the standard deviation
and mean of the recorded hash rates have been used to create a log normal distribution of
hash rates and consequently sample from it in order to generate miners for a pool. Thus
for the populating of pools, it is assumed that the hash rate distribution of a queue-based
pool is log normal. Given recent increases in the number of miners in Ethpool, as well as
the sighting2 of very large Ethpool miners, the upper bound for the sampling has been set
to 120 GH/s. Therefore, for every simulation a mining pool will be populated by N miners
via sampling N hash rate values from the distribution. Once the pool size has been met, the
attacker will be determined by sampling a miner from the pool whose hash rate lies within

1The mean of the 729 hash rates was 0.959 GH and the standard deviation was 1.742
2Ethpool maintains a ranking of the top miners by hash rate, which is shown in Appendix A.1

36



6.2. NAIVE CONDITIONS IN THE MULTI-MINER CASE

Figure 6.1: The distribution of hash rates of 729 Ethpool miners (logarithmic scale). [20]

a specified percentile. For the simulations presented, an attacker’s hash rate was set to lie
within the 80th and 90th percentile of all miners in the pool. The reason for using these
particular percentile values is to ensure that the attacking miner should have a relatively
high hash rate compared to the other miners in a pool.

6.2 Naive conditions in the multi-miner case

The aim of this section is to analyse the effectiveness of the naive mining strategies presented
in the previous chapter in a multi-miner scenario. Specifically, the effectiveness of the condi-
tion specified for these mining strategies will be assessed. The condition from the two miner
case only took into account the second ranked miner’s credits when the attacking miner was
top of the queue.

For the evaluation of these strategies, three different simulations will be evaluated: a pool
with 1 000 miners, a 100 miners pool, as well as a relatively small 10 miners case.

The first multi-miner case to be examined is a queue-based mining pool with 1 000 miners.
The distribution of hash rates of the 1 000 miners that have been generated is displayed in
Figure 6.2 and appears to be, as expected, log normally distributed.

In terms of the pool behaviour over the course of 200 000 blocks, the top plot of Figure 6.3
shows the development of the credits a top miner had when a block was mined by the pool.
A miner is expected to win a block when he has performed an amount of hashes equal to the
network difficulty. However, the credit balance is not an accurate indicator of how much work
a top miner has actually performed prior to winning a block due to the scheme’s underlying
credit resetting mechanism. In fact, the effects of the non-uniform credit resetting mechanism
are visible in the top plot as the majority of the credit balances of winning miners appear to
lie above the network difficulty.

On average, a winning miner had a 184.15 trillion credits, which is approximately 0.48 trillion
credits above the network difficulty. The middle plot therefore shows the actual amount of

37



6.2. NAIVE CONDITIONS IN THE MULTI-MINER CASE

Figure 6.2: The distribution of hash rates of 1,000 miners in the constructed mining pool

work, or number of hashes, a top miner has performed prior to winning a block for each of
the 200 000 blocks mined by the pool. Compared to the credit balance of a winning miner, it
can be seen that the number of hashes performed by a miner who received a block is in fact
closer to the difficulty, the expected amount of work per block. This can also be seen by the
performed work of a winning miner, which is on average 183.35 tera hashes (TH), and hence
closer to the network difficulty of 183.6 TH than a winning miner’s credits3.

The comparison of credit balances and actual performed work of a winning miner implies
that a winning miner could have a higher ratio of credits received per computed hash. The
bottom plot of Figure 6.3 shows the actual number of credits received per computed hash
by a winning miner. For every block, the credit balance of the winning miner is divided by
the number of hashes he performed since the last time he was rewarded a block4. It can
be seen that some miners benefit from the credit reset mechanism and receive slightly more
credits than the amount they actually worked for. The average number of credits received
per performed hash by the winning miner was 1.0043 and only few miners actually received a
significantly higher amount of credits than the work which they actually contributed. These
credit development trends show perhaps what someone would already expect of a simulated
queue-based mining pool and is therefore a good indicator for the correct workings of a
simulated queue-based pool.

It should be noted that the simulations of the 10, 100, and 1 000 miner pools primarily
aim at examining the effectiveness of the proposed mining strategies and will not provide
an in-depth comparison between the work performed by large and small miners. However,
an in-depth evaluation on performed work in a multi-miner pool of 729 Ethpool miners has
been conducted in joint work with Zamyatin et al. [20], where it has been found that larger
miners are disadvantaged by the queue-based payout scheme compared to smaller miners in
a multi-miner pool. This is shown in Figure 6.4, which displays the ratio of performed work
per block relative to the average for the case of Ethpool.

3The average number of hashes per block being slightly less than the network difficulty may be explained
by the pool’s luck.

4This rests on the assumption that a miner receives one credit per computed hash

38



6.2. NAIVE CONDITIONS IN THE MULTI-MINER CASE

Figure 6.3: Development of the top miners’ credits when winning a block compared to their
performed work per block, as well as the ratio of the winning miner’s credits to his performed
number of hashes per block in a pool of 1 000 miners for 200 000 blocks.

The condition for the attack actions share withholding, tactical donation of mining power,
and use of a second payout address used for the simulations of multi-miner pools was the
same as for the two miner pool, presented in section 5.2. The results for each attack strategy
pursued in a pool consisting of 1 000 miners are shown in Table 6.1. The sampled attacker
had a hash rate of 9.134 GH/s, however, did not outperform the scenario of normal mining
in any of the strategic mining scenarios. In fact, using any of the three mining strategies
performed slightly worse, as the attacker received one block less (240 blocks opposed to 241).
Even though the results for employing the mining strategies are better in terms of average
work per block and blocks received than solo mining, the attacker would have been better off
pursuing no strategies.

The results for the performed attack strategies in a pool of 100 miners presented in Table
6.2 show that the performance of each attack scenario in terms of blocks received, differs
noticeably more than for the 1 000 miner pool. Even though the results still suggest that
not pursuing any mining strategy is the most rewarding strategy for a miner (1 790 blocks
received for 1 726 blocks mined), the three mining strategies do not all perform equally bad.
As for the two miner case, the withholding of shares results in a lower work per block ratio for
the attacker, however, at the cost of both, mining and receiving, a fewer number of blocks.
Interestingly, the use of a second wallet outperforms the tactical donation strategy by six
rewarded blocks. That is potentially due to the likelihood of the attacker’s second wallet
eating into the credits of his first wallet being less for a pool with many miners than for a
pool with only two.

39



6.2. NAIVE CONDITIONS IN THE MULTI-MINER CASE

Figure 6.4: The ratio of performed work per block in Ethpool relative to the average amount
of performed work per block (miners have been grouped by their hash rate).[20]

For the last simulation of a 10 miner pool, the trend that the normal scenario outperforms
the attack scenarios remains, as shown in Table 6.3. However, the scenarios in which attack
strategies have been pursued performed significantly worse than normal pool behaviour or
solo mining. Interestingly, this time the donation of shares outperformed the use of a second
payout address in terms of blocks rewarded, which may be due to the second wallet eating
into the attacker’s first wallet’s credits again. Nonetheless, substantial inconsistencies in the
performance of the three mining strategies compared to the normal scenario across the three
different pool sizes have been found.

A potential reason as to why the strategies perform a lot worse in a 10 miner case than a
1 000 miner case, may be due to the number of times the condition is set active. Across the
three different pools, the number of blocks an attacker receives decreases as the pool size
becomes larger, which is due to the attacker accounting for a higher proportion of the pool’s
total hash rate in a smaller pool than in a big pool. This suggests that the attacker reaches
the top of the queue more frequently in a small pool compared to a large pool over the same
number of blocks. As the condition for the mining strategies considered so far only checks
whether the attacker is top of the queue and the second miner has a relatively high number
of credits, the probability of a condition being active in the 10 miner pool may be higher than
for the 1 000 miner pool. In fact, for the second wallet strategy, in the 10 miner simulation,
the attacker donated 4.068% of his shares, whereas he only donated 0.898% and 0.117% of
his shares in the 100 and 1 000 miner simulations, respectively.

The main reason for the performance differences between the different attack strategies em-
ployed for the 10, 100, 1 000 miner pool simulations is rooted in the credit resetting mechanism
of the payout scheme. As the condition states that a miner has to be top and the second
ranked miner’s credit balance has to be within a 90% threshold of the attacker’s credits,
the ultimate aim of the three strategies examined is for the attacker to potentially receive

40



6.3. EXPECTATION-BASED CONDITIONS

Simulation: Sim_1000
Pool size (miners): 1000
Attacker size (GH/s): 9.134

Attack Strategy Avg. performed work per
block (TH)

Blocks
rewarded

Blocks
mined Ratio

None
(solo mining) 190.380 232 232 1.0

None
(normal scenario) 183.2707 241 232 1.0388

Share
withholding 183.8195 240 232 1.0345

Tactical donation
of mining power 184.0304 240 232 1.0345

Use of a second
payout address 184.0304 240 232 1.0345

Table 6.1: Results for a simulation of a 1 000 miner pool for a duration of 200 000 blocks

a higher end of round credit difference at some later round by allowing the second miner
to overtake him for the current round. The condition does not only ignore the actual im-
proved credit differences and consequent reset balance the attacking miner could earn, but
also does not take into account whether it is actually worth for a miner to give up a number
of rounds.

Assuming the attacker gives up his round by allowing some miner to overtake him and win
the round then a new round starts and 183 Trillion credits are expected to be earned by
miners in the pool before the next block is mined. During that time period the attacker
may be able to accumulate a very high balance and thereby be reset to an above average
number of credits when he wins the round. Alternatively, the queue constellation could
change significantly in the sense that some other bigger miner may move up the queue and
eat into the credit difference that has been built up by the attacking miner or even overtake
the attacking miner and win the next round. The current condition does not take either
of these potential outcomes into consideration, as it does not check whether the attacker is
expected to receive a higher amount of credits if he gives up the current round, or if he is even
expected to win the next round. Thus it may be of no surprise that a mining strategy, which
only makes use of a fixed credit threshold and ignores the other miners’ hash rates and credit
balances, may be ineffective in a queue-based mining pool of more than two miners.

6.3 Expectation-based conditions

The previous section highlighted that the mining strategies examined so far were ineffective
due to the their underlying condition. The condition was too naive in the sense that it did not
account for the hash rates of other miners, the current queue constellation, or the expected
end of round credit differences for the current and upcoming rounds.

This section proposes two alternative expected value-based conditions used for two new mining
strategies: ExpVal1 and ExpVal2. Both strategies make use of expected end of round queue
constellations and use these to determine whether an associated action should be pursued or

41



6.3. EXPECTATION-BASED CONDITIONS

Simulation: Sim_100
Pool size (miners): 100
Attacker size (GH/s): 6.950

Attack Strategy Avg. performed work per
block (TH)

Blocks
rewarded

Blocks
mined Ratio

None
(solo mining) 184.199 1726 1726 1.0

None
(normal scenario) 177.613 1790 1726 1.0371

Share
withholding 177.4964 1775 1712 1.0368

Tactical donation
of mining power 179.0135 1776 1726 1.0290

Use of a second
payout address 178.4107 1782 1726 1.0324

Table 6.2: Results for a simulation of a 100 miner pool for a duration of 200 000 blocks

Simulation: Sim_10
Pool size (miners): 10
Attacker size (GH/s): 14.400

Attack Strategy Avg. performed work per
block (TH)

Blocks
rewarded

Blocks
mined Ratio

None
(solo mining) 184.683 16 545 16 545 1.0

None
(normal scenario) 183.078 16 690 16545 1.0088

Share
withholding 182.353 16 044 15 816 1.0144

Tactical donation
of mining power 187.574 16 290 16 545 0.9846

Use of a second
payout address 190.2954 16 057 16 545 0.9705

Table 6.3: Results for a simulation of a 10 miner pool for a duration of 200 000 blocks

42



6.3. EXPECTATION-BASED CONDITIONS

not. The simulation results discussed in this section were obtained from the same simulations
of the 1 000, 100, and 10 miner pools discussed in the previous section. Therefore it is fair to
compare the effectiveness of the previously examined strategies to the performance results of
the new strategies.

6.3.1 Expected end of round queue constellation

In the real world case of Ethpool expected end of round credit balances can be calculated
for a miner, if one knows the miner’s current credit balance and hash rate, assuming the
later remains constant. The expected time it takes Ethpool to find a block is always equal
to D

H seconds, where D is the network difficulty and H the pool’s overall hash rate per
second.

In order to compute the expected end of round queue constellation, one can calculate the
expected number of credits remaining E[cremain]r for a round r. The expected number of
outstanding shares E(So) for round r can be computed as

E[So]r =
D

d
− Ssr (6.1)

where D
d is the expected number of shares to be submitted by the pool to find a block and

Ssr is the total number of shares submitted by the pool so far in round r. The expected
number remaining of credits for round r is thus equal to

E[c(remain)]r = E[So]rd (6.2)

assuming that the credits rewarded per submitted share is equal to the share difficulty d.
Hence in order to compute the expected end of round credit balance E[c(m(i))]r for some
miner mi one can calculate

E[c(m(i))]r =
h(m(i))

H
E[(cremain)]r + c(m(i))r (6.3)

where c(m(i))r is the current credit balance of miner mi in round r.

Equation 6.3 allows for the estimation of the end of round credit balances for all N miners
in the pool. Ranking these miners based on their credit balances in descending order gives
the expected end of round queue constellation for a given moment in time. The calculation
for the expected end of round credit balance for some pool miner mi remains unaltered as
the amount of credits a miner will receive from the outstanding credits for the given round
is proportional to the miner’s hash rate relative to the total hash rate of the pool (equation
6.3). It should be noted that these computations are using expected values and thus there is
no guarantee for an outcome.

6.3.2 Expectation-based condition 1: ExpVal1

The first expectation-based mining strategy that is proposed, makes use of end of round
queue constellations in order to prevent the attacker from performing more work than is

43



6.3. EXPECTATION-BASED CONDITIONS

necessary for him to win a round and receive a block. For this new strategy, which shall be
called ExpVal1 strategy, it is checked whether the attacker is in the top N miners in terms of
total credits out of all miners in the pool. Given that is the case, the expected end of queue
constellation for the current round is computed and it is checked whether the attacker is
expected to win the current round. If the attacker miner mA is expected to win the current
round then his expected end of round credit balance is compared to the expected end of
round credit balance of miner m2, the miner who is expected to accumulate the second most
credits by the end of the round. Should the current credit balance of miner m1 be greater
than the expected end of round credit balance of the expected miner m2 then it is expected
that the attacker does not have to do any more work in order to win this round and finish
top of the queue. If that is the expected outcome then the condition is set active.

We can thus define the condition as follows:

If the attacker, miner mA, has the highest accumulated credit balance out of all
miners in the pool, then the expected end of round queue constellation should be
computed given the other miners’ current credit balances, hash rates, as well as
the expected number of credits outstanding for the current round. If miner mA

is expected to be top of the queue by the end of the round and the current credit
balance of the attacker exceeds the expected end of round credit balance of the
miner m2 that is expected to accumulate the second highest credit balance, then
the condition shall be set active.

Instead of defining three different strategies, one for each of the three actions previously
examined, the action that is linked to the ExpVal1 condition is the use of a second payout
address. The motivation for the strategy’s underlying condition is that when an attacking
miner is expected to win the current round and has already accumulated more credits than
the expected end of round credits of the miner with the second highest balance, he is already
expected to win the round. Therefore, rather than building up his buffer, he will submit shares
to his second wallet until the condition becomes inactive. Perhaps the attacker maximising
his work efforts for his first wallet and thereby building up a credit buffer may seem like the
more appropriate behaviour at first. However, if the end of round constellation is different to
the expected constellation, or the pool is unlucky, it could be that a bigger miner is eating into
the attacker’s accumulated credit buffer. As the idea for Ethpool’s credit resetting mechanism
is to reward top miners for the extra work they do, missing out on credits due to a big miner
eating into the accumulated credit buffer of the top miner may be a scenario worth avoiding.
Submitting shares to a second wallet is therefore an appropriate action an attacker may take
in order to maximise his work efforts by building up a second wallet, rather than focusing on
maximising the credit difference to the second ranked miner.

It should be noted that the ExpVal1 strategy has been implemented in a way such that
when a pool is unlucky during the current round and hence the actual number of shares
submitted exceeds the expected number of shares to be submitted by the pool to find a
block, the condition is set inactive 5. Each time the condition is set inactive, the attacking
miner submits his share normally to his first wallet.

44



6.3. EXPECTATION-BASED CONDITIONS

Simulation Attack Strategy Avg. performed work per
block (TH)

Blocks
rewarded

Blocks
mined Ratio

None (normal) 183.078 16 690 16 545 1.0088Sim_10 ExpVal1 189.941 16 087 16 545 0.9723
None (normal) 177.613 1 790 1 726 1.0371Sim_100 ExpVal1 178.011 1 786 1 726 1.0348
None (normal) 183.270 241 232 1.0388Sim_1000 ExpVal1 184.0343 240 232 1.0345

Table 6.4: The results of the ExpVal1 strategy used in a 10, 100 and 1000 miner pool compared
to the rewards received when no strategy is pursued in a simulation of 200 000 blocks.

6.3.3 ExpVal1: simulation results

The performance of the ExpVal1 mining strategy compared to the case of not pursuing any
mining strategy is shown in Table 6.4. The strategy does outperform the case of solo mining
yet fails to perform better than mining in the pool normally. Even though the attacker is
not giving away any of his credits by donating shares to other miners, he may suffer from
the second wallet, once again, eating into his first wallet’s credits, especially in a pool of a
smaller size, as he is more likely to be top of the queue. The condition does make use of
expected end of round queue constellations, and thereby takes into account variables specific
to a queue-based pool with more than two miners, yet, it focuses on not performing any extra
work rather than taking advantage of above average reset balances.

6.3.4 Expectation-based condition 2: ExpVal2

The second proposed expectation-based strategy, ExpVal2, makes use of a new condition that
aims to identify, for a given queue constellation whether it is worth for an attacker to give up
the round or not. The condition for ExpVal2 is similar to the condition proposed for ExpVal1
in the sense that it also computes expected end of round queue constellations. However, the
idea for the condition is that it is only worth for a miner to give up a round he could win
if the credit payout, the end of round credit difference he could receive by winning a later
round, is greater than the credit cost. The term credit payout for this strategy refers to the
number of credits a miner could receive by giving up N rounds relative to the total cost of
credits. The credit cost for giving up N rounds refers to the maximum number of credits a
miner could have had by winning an earlier round and resume mining until round N .

For the ExpVal2 strategy, the condition entails several aspects. First, the expected end of
round credit balances for all pool miners are computed. It is checked whether the attacker
is expected to be top of the queue by the end of the current round, and thereby expected
to receive the next block reward. Instead of computing the expected credit balances for
all miners in the pool, the balances are only calculated for the miners whose current credit
balance is greater than the attacker’s credit balance less than the expected number of credits
remaining for the given round. If the expected number of credits remaining is greater than
the attacker’s current credit balance, then the expected end of round credit balance will be
computed for all miners in the pool.

5This is due to expected end of round queue constellations not being able to be computed, as there is no
expected number of credits remaining

45



6.3. EXPECTATION-BASED CONDITIONS

If the attacker is expected to win a round, he has two options. He could either continue to
submit his shares normally as he is expected to win the round or he could pursue an action,
i.e. donate to a second wallet, and let someone else win the round. The reason for why
a miner might want to let some other miner "steal" his round is due to the non-uniform
end of round credit differences between the first and second ranked miners. If the attacking
miner estimates that he would still be in a favourable position to win the succeeding round
given that he intentionally does not win the current round, then he might anticipate a larger
difference in credits and thus a better resetting position.

Whether an attacker should deliberately not win a pool round depends on the upcoming
expected end of round credit differences between the top two miners for the next N rounds.
More specifically, once the attacker miner has checked whether he is expected to win the
current round he can also check the expected end of round credit difference for the first
and second ranked miner, himself being the former. Thus the expected end of round credit
difference between the first and second ranked miners m1 and m2, respectively, is

E[c(m1)]− E[c(m2)] (6.4)

where c(m1) is the expected credit balance of the miner that is expected to have the highest
credit balance of all miners and c(m2) the expected end of round credit balance of the miner
that is expected to have the second most accumulated credits in the pool.

For a miner to give up a round suggests that a miner, who is expected to have the highest
credit balance by the end of a round, deliberately chooses not to win the current round in the
pool by allowing some other miner to accumulate a higher credit balance. A miner can do
this by computing the expected end of round queue constellation and checking the expected
credit difference between the miners that are expected to be ranked first, m1, and second,
m2, in terms of credits. Thus, miner m1 could give up a round by not submitting shares
accounting for a total of c(m1) − c(m2) credits to his main wallet. How to deal with the
shares that should not be submitted depends on the action taken by miner m1, i.e. donate
shares to a second wallet until the attacking miner is no longer expected to win the current
round.

In order to be able to compare the expected credit differences a miner could be reset to
after he gives up N rounds, the expected cost of deliberately giving up a round, or waiting
a round, has to be determined. Were a miner to give up one round r1, assuming he would
win the following round, then the end of round credit difference of r2 should be greater than
the initial expected end of round credit difference for r1. However, this implies that a miner
could give up r1, maximise his work throughout r2, only to end up winning r2 and receive a
slightly larger amount of credits. This may seem a bit unfair given that had he won r1, he
would have already started working his way up from the bottom of the queue again by the
time r2 finishes.

As Ethpool rewards one credit per computed hash the expected number of credits given to
miners per round is equal to D, the network difficulty. Any miner mj in the pool can thus
expect to receive h(mj)

H D credits for a round, assuming that the hash rate for some miner mj ,
h(mj) , and the pool hash rateH remain constant. Therefore an approach towards estimating
the expected credit payout of an attacker accounting for giving up i rounds is

E[P ]ri = E[erd]ri − (max(E[erd]ri−1 , E[cgr]ri−1)) (6.5)

46



6.3. EXPECTATION-BASED CONDITIONS

E[erd]ri =

{
E[c(m(A))]− E[c(m(2))], if E[c(m(A))] > E[c(m(j))]∀j
0, otherwise

(6.6)

E[wpr(mA)] =
h(mA)

H
D (6.7)

E[cgr]ri = max(E[erd]ri−1 , E[cgr]ri−1) + E[wpr(mA)] (6.8)

E[cgr]r0 = 0 (6.9)

where E[P ]ri is the expected credit payout and E[erd]ri is the expected end of round credit
difference an attacking miner mA could receive after giving up i rounds. The expected credit
payout after waiting i rounds is E[c(mA)]r1 − E[c(m2)]ri , where E[c(mA)]r1 is the expected
end of round credit balance of the attacker and E(c(m2))ri the expected end of round credits
of the second ranked miner. If miner mA is not expected to be top of the queue by the end
of round i, the expected end of round difference is 0. The expected cost of giving up i rounds
is subtracted from the expected end of round difference for round i. This cost is computed
by comparing the amount of credits miner mA has lost by giving up a round E[cgr]ri

6 (the
expected end of round difference) and the number of credits miner mA could have had if he
won the previous round ri−1 and resumed normal mining for round ri, thus receiving the
expected number of credits for his work per round E[wpr(mA)]

7. The larger of these two
credit values should be carried forward as the expected cost of giving up ri+1 rounds. Only
if the expected payout after giving up N rounds is greater than zero, it is worth for a miner
not to win the current round in order to benefit from a larger end of round credit difference
in a later round.

6.3.5 ExpVal2: a hypothetical example

Perhaps it is worth examining a hypothetical example in order to fully understand the moti-
vations for the ExpVal2 strategy. Table 6.5 shows for a given instance in a round r0 (current
round) the expected credit payouts a miner, mA, computes for giving up a maximum of 5
rounds. It is assumed that miner mA receives 5 credits for the work he performs per round.
The miner would compute these expected payouts in order to determine whether it is worth
for him to pursue a particular action or not, or whether the condition is met or not.

The table shows that miner mA is expected to win the current round and have his credit
balance reset to 10 credits, assuming he has not given up any rounds yet. By computing the
expected end of round differences between the top two miners for the following 5 rounds it
can be seen that the end of round difference is greater than zero, suggesting that miner mA

is expected to win each of the rounds. If miner mA would give up, for example, round r0 and
not be expected to win the following round r1, the expected end of round credit difference for
miner mA would be zero for the respective round. By looking at the expected end of round
credit difference miner mA could be reset to if he does not win round r0, it can be seen that
the expected new end of round difference for round r1 is 22 credits. However, one has to bear

6cgr = cost of giving up round
7wpr = work per round (denoted in credits received for a round)

47



6.3. EXPECTATION-BASED CONDITIONS

Rounds
Waited

0
(current) 1 2 3 4 5

Exp. end of
round difference 10 22 30 36 32 38

Cost of giving
up round (0) (15) (20) (25) (30) (35)

Exp. credit
payout

0 +7 (27) (32) (37) (42)
+3 (35) (40) (45)

+1 (41) (46)
-9 (37)

-8

Table 6.5: A theoretical example of computing the expected end of round credit payout relative
to the cost of giving up a number of rounds

in mind that miner mA has an expected cost for giving up one round, namely the number of
credits he is expected to receive for one round worth of his work. In addition, he misses out
on the initial credit difference he could have been reset to after winning round r0, namely
10 credits. Therefore, miner mA should only give up round r0 for round r1 if the expected
credits miner mA would be reset to after winning round r1 (22 credits) is greater than the
expected number of credits miner mA would have received for the round he has given up,
h(mA)

H D, or 5 credits. Additionally, the expected difference which miner mA missed out on
by giving up round r0 (10 credits) should be taken into account, giving a total expected cost
of 15 credits. Therefore, when only taking into account the next round, miner mA would in
fact be better off giving up one round.

It becomes more interesting when looking at the expected credit payouts for giving up 2 to
5 rounds. Miner mA is expected to win a round after giving up the next 5 rounds and have
his balance reset to 38 credits. If one accounts for the 5 rounds of work he has lost, as well
as the number of credits he could have been reset to by winning round r0, he would face an
expected cost of 35 credits, and hence benefit from an additional 3 credits, suggesting it is
worth to give up the next 5 rounds. Even though it is correct to account for the work lost
for every round given up, the initial end of round difference given up should not necessarily
be taken from round r0. In fact, not only the initial end of round difference for r0 should
be carried forward. For every additional round a miner gives up r0+i, the expected end
of round credits for round r0+i should also be carried forward as an expected cost for any
additional round given up. For example, giving up 2 rounds could leave miner mA with an
expected credit difference of 30 credits after winning round r2. However, there are two costs
to consider. First, the cost of winning round r0 plus the expected credits miner mA could
have received from mining normally until round r2. The second cost would be the expected
cost of giving up one round r0, winning round r1 and continuing to mine normally for round
r2. The example shows that miner mA could have had an expected amount of 20 credits
had he won round r0 and mined for two rounds normally, or, alternatively 27 credits had
he given up round r0, won round r1 and mined for round r2. Therefore, using the highest
expected cost, it can be seen that miner mA’s benefit would be an extra 3 credits and hence
it would be favourable for him to give up the next two rounds. For determining expected
costs, always the highest accumulated cost should be taken forward and compared to new
cost incurred from giving up the following round. A good example can be seen when miner
mA estimates the cost for giving up 5 rounds, which shows that the maximum expected cost

48



6.3. EXPECTATION-BASED CONDITIONS

would be of giving up rounds r0, r1, r2, winning round r3 and mining for rounds r4 and r5,
or 46 credits.

6.3.6 ExpVal2: simulation results

The theoretical example highlighted that accounting for various scenarios, in terms of credit
costs, is essential in order to determine whether it is worth for a miner to give up a certain
number of rounds or not. For the implemented ExpVal2 condition in EthSim, the historic
cost, namely the number of rounds a miner has already given up, is also taken into account.
Thereby each time a miner is about to schedule the next share, he computes the expected
payouts for the next N rounds taking into account the cost incurred by the number of rounds
he has already given up. As soon as he wins a round, the historic cost is reset to zero.

The performance of the ExpVal2 strategy applied in the same 10, 100 and 1000 miner sim-
ulations used for the evaluation of the previous strategies are given by Table 6.6. For the
10 miner pool simulation, the ExpVal2 strategy outperformed the normal scenario by an
impressive 390 blocks. Given that a miner receives 5 ETH per rewarded block (minus the
pool fee), the attacker would have made an extra $698,860 8 more from pursuing the ExpVal2
strategy. As the attacker would have already received more blocks by mining normally in
the pool opposed to by himself, the ExpVal2 strategy thereby also performs better than the
solo mining case by 535 blocks, and hence outperforms all the naive strategies, as well as the
ExpVal1 strategy, which performed worse than solo mining as presented in sections 6.2 and
6.3.2, respectively.

Simulation Attack Strategy Avg. performed work per
block (TH)

Blocks
rewarded

Blocks
mined Ratio

None (normal) 183.078 16 690 16 545 1.0088Sim_10 ExpVal2 178.898 17 080 16 545 1.0323
None (normal) 177.613 1 790 1 726 1.0371Sim_100 ExpVal2 176.922 1 797 1 726 1.0411
None (normal) 183.271 241 232 1.0388Sim_1000 ExpVal2 183.271 241 232 1.0388

Table 6.6: The results of the ExpVal2 strategy used in a 10, 100 and 1 000 miner pool compared
to the rewards received when no strategy is pursued over a period of 200 000 blocks.

For the case of a 100 miner pool, the Expval2 strategy once more outperformed all other
strategies presented so far. The number of blocks the attacker was rewarded in the ExpVal2
scenario exceeds the number he received in the normal scenario by 7 blocks, a significantly
smaller difference than for the 10 miner pool. Perhaps even more interesting, for the case
of 1000 miners, the ExpVal2 strategy performed equally well as not pursuing any mining
strategy. Before potential reasons are discussed as to why the effectiveness of the ExpVal2
strategy differs so much across pools of different sizes, a last strategy based on pool luck
rather than credit differences is examined.

8Using the price of $362.01 per Ether as of 29-08-2017, obtained from https://coinmarketcap.com/

49



6.4. LUCK-BASED CONDITION

6.4 Luck-based condition

So far the majority of attack strategies discussed aimed at increasing rewards for a miner
by exploiting the credit resetting mechanism of a queue-based pool. This section proposes a
different and more hypothetical approach rooted in the luck of a mining pool.

6.4.1 Hopping: a theoretical approach

Currently, Ethpool is the only Ethereum mining pool that uses a queue-based reward pay-
out scheme. Therefore, in this section the hypothetical scenario in which a second mining
pool exists that also employs a queue-based reward payout scheme will be examined. More
specifically, rather than trying to propose a condition based on the current or expected queue
constellations, a simple luck condition should be examined and linked with a hopping action.
Hence, an attacker checks the luck of the pool each time before he schedules a share and to
see whether it is below a specified limit. Should the pool in which the attacker mines be very
unlucky and reach the specified luck limit then the condition will be active and the attacker
will leave the pool and start submitting his shares to the second pool. The luck limit is
expressed as the expected number of shares a pool has to submit to mine a block relative to
a specified maximum number of actual shares submitted by a pool for a given round.

The luck condition has been set to:

If an attacking miner is about to schedule the next share for the pool he mines in,
and the current luck of the pool is greater or equal to the specified luck limit, the
condition is set active.

The action that is associated to this luck-based condition is the hopping action presented in
section 3.1, the strategy shall simply be referred to as hopping strategy.

6.4.2 Simulation set up

The simulation configuration is identical to that of the previous multi-miner case configura-
tions. However, one additional mining pool is created and populated with miners that are
also sampled from the same log normal distribution of hash rates as for the first pool. For
every simulation, the pool sizes for pool 1 and pool 2 have been set to be identical. Fur-
thermore, it is assumed that there is no network lag a miner would face by changing the
pool he mines in. A luck limit of 3.5 has been selected for the condition to be active. That
would mean that for a given round r in some pool pi the number of shares that have been
submitted are 3.5 times as many as the number of shares the pool is expected to submit to
mine a block.

6.4.3 Hopping: simulation results

The simulation results for hopping strategy pursued in a 10, 100 and 1 000 miner pool com-
pared to the miner’s performance of not using a strategy are presented by Table 6.7. In
the simulation of the 10 miner pool, the hopping strategy performed noticeably better than
any of the other strategies previously evaluated. Hopping between two queue-based pools
resulted in the attacker receiving 2,301 blocks more than had he mined solo. The attacker

50



6.5. EXPONENTIAL DIFFICULTY

also received 2,156 blocks more than had he not pursued a mining strategy. However, even
though the results for the 100 miner pool simulation still show that using the hopping strat-
egy was the more rewarding scenario, the extra number of blocks won relative to not using a
mining strategy diminishes to 1 block for the simulation of the 1 000 miner pool.

Simulation Attack Strategy Avg. performed work per
block (TH)

Blocks
rewarded

Blocks
mined Ratio

None (normal) 183.078 16 690 16 545 1.0088Sim_10 Hopping 169.598 18 846 16 545 1.1391
None (normal) 177.613 1 790 1 726 1.0371Sim_100 Hopping 172.221 1 847 1 726 1.0701
None (normal) 183.270 241 232 1.0388Sim_1000 Hopping 183.497 242 232 1.0431

Table 6.7: The results of the Hopping strategy used in a 10, 100 and 1 000 miner pool compared
to the rewards received when no strategy is pursued over a period of 200 000 blocks.

The luck-based condition which has been specified for the hopping strategy may also be naive
in the sense that it only considers the luck of the pool the attacker currently mines for, rather
than checking the luck of both pools at all times. Furthermore, it does not check any end of
round credit balances. In fact, given that only the pool luck of the current round is taken
into account, whether an attacker actually benefits from being in a different pool for any later
rounds can not be predetermined. Yet, the effectiveness of the strategy varies significantly
across the different pools and performs very well for the small pool. The reason as to why
the effectiveness of this strategy varies so much for queue-based pools of different sizes may
be rooted in some other variable than luck after all.

6.5 Exponential difficulty

Throughout all simulations, it has been assumed that the network difficulty stays constant
at 183TH. However, in reality the difficulty may adjust after each mined block. In fact,
substantial increases in the Ethereum network difficulty have been observed and are displayed
in Figure 6.5. Between March and September 2017, the difficulty rose from 183TH to 2305TH,
an increase by 1159.56% [2].

Figure 6.5: Screenshot: Ethereum block difficulty growth chart [2]

51



6.6. EVALUATION OF QUEUE-BASED MINING STRATEGIES

The growth resembles exponential growth at an approximate rate of 3.0356 × 10−6. The
start and end blocks used to compute this rate are block number 3356815 and 4233747 for
difficulties 183.657TH and 2305.356TH, respectively. Zamyatin et al. [20] have accounted for
exponentially increasing PoW difficulty for the two miner and multi-miner cases. However,
results suggested that large miners remain the same for a two miner case. Furthermore, large
miners remain disadvantaged in a multi-miner pool but at a vaguely smaller scale. Hence it
can be assumed that for all simulated mining pools the performance of large miners in the
normal scenario should not deviate significantly under exponential difficulty. Additionally, it
can be assumed that the effectiveness of the considered mining strategies should not differ
significantly under exponential difficulty from constant difficulty, apart from an increase in
the performed work.

6.6 Evaluation of queue-based mining strategies

Throughout this chapter several different mining strategies have been proposed and their
simulated performance examined. Simulations of three different pool sizes have shown that
the naive strategies, which focus on a credit threshold and fixed queue position as successfully
utilised in a two miner pool (section 5.3), turn out to perform rather poorly in pools of 10,
100 and 1 000 miners. In fact, pursuing no mining strategy proved to be more rewarding than
using any of the naive strategies for each of the three different simulations.

The ExpVal1 strategy did not result in significantly better performance than the naive strate-
gies. The aim of the strategy was to use the expected end of round queue constellation to
make an anticipative mining decision and to avoid building up a large credit buffer relative
to the miner with the second most credits. Instead the attacking miner would build up a
second wallet. Yet, again, not pursuing any attack strategy performed better in each of the
three pool simulations.

The ExpVal2 strategy was different to all the other considered strategies, as it focused on
identifying favourable queue constellations based on the other miners’ hash rates, the queue
constellation, and the round duration, as well as the expected cost of giving up rounds, in
order to determine the viability of giving up one or more rounds. Employing the ExpVal2
strategy significantly outperformed normal mining or solo in both, the 10 and the 100 miner
simulations, but performed equally well as pursuing no mining strategy in the 1 000 miner
simulation.

A hopping strategy was proposed as an alternative focusing on the luck of the pool rather
than on expected end of round credit differences between the two miners with the highest
number of credits. The strategy itself was also rather naive as it did not account for luck of
the other pool, which a miner could potentially submit his shares to. Furthermore, the luck
of one round does not allow for any predictions about the luck of future rounds as the mining
process is memoryless due to the underlying Poisson process. However, the results were
slightly better than for the ExpVal2 strategy, but the strategy’s effectiveness also diminished
as the pool size increased.

There have been noticeable inconsistencies in the effectiveness of the considered mining strate-
gies across queue-based mining pools of different sizes. Initially it was proposed, given that
the hash rate distribution in EthPool resembles a log normal distribution, simulated mining
pools of various sizes should be constructed via sampling from a log normal distribution for

52



6.6. EVALUATION OF QUEUE-BASED MINING STRATEGIES

Figure 6.6: The distribution of mining power in a constructed pool of 10 miners (logarithmic
scale).

the hash rates. The underlying motivation for such an approach is rooted in the need to
examine mining strategies and the workings of queue-based pools of different sizes. Sampling
hash rates from a log normal distribution, which used parameters obtained from the Eth-
pool data set of miners, allowed for the unbiased populating of queue-based mining pools.
However, a 10 miner pool’s hash rate distribution may deviate from the log normal sampling
distribution due to the small sample size. As observed in Figures 6.6 and 6.7, the sample
distributions for the constructed 10 and 100 miner pools are far from resembling a log normal
distribution.

Figure 6.7: The distribution of mining power in a constructed pool of 100 miners (logarithmic
scale).

Even for a pool of 100 miners, the sample size may not be sufficient to generate a pool whose
hash rates resemble a log normal distribution. In fact comparing these three different mining
pools shows that they vary significantly in terms of the average hash rate and hash rate

53



6.6. EVALUATION OF QUEUE-BASED MINING STRATEGIES

variance of the miners in each pool. In the 10 miner pool, the average hash rate of a miner
was 17.34 GH/s, whereas for the 100 and 1 000 miner pools the average hash rates were 8.03
GH/s and 7.60 GH/s. The hash rate variance was also significantly higher for the 10 miner
pool (432.38 trillion) than for the 100 (290.85 trillion) and 1 000 miner (188.3 trillion) pools,
potentially highlighting larger differences between the hash rates of miners in the small pool
than for the others.

Figure 6.8: The number of credits the top miner was reset to for every mined block over 200 000
mined blocks in a 10, 100 and 1 000 miner pool.

The hash rate distribution of a pool may thus be very telling in the sense that it directly
affects the credit differences between miners. Figure 6.9 shows for each of the three simulated
pool sizes, the credit reset balance of a winning miner for each of the 200 000 mined blocks
in a scenario in which no mining strategy was pursued9. For the 10 miner pool, the average
reset balance was 45.52 trillion credits (TC) and hence significantly higher than for miners
in the 100 and 1 000 miner pools. In the simulation of the 100 miner pool, the average reset
balance for a miner was 9.83 TC, whereas for the 1 000 miner pool, a miner’s average reset
balance was only 0.78 TC, less than 2% of the average reset balance of the 10 miner pool. The
reset balance variance is also significantly higher in the 10 miner pool: 3.1241e+27 compared
to 1.3739e+26 and 1.0804e+24 in the 100 and 1 000 miner pools, respectively.

Even though the variance is high, the results show that miners who win a round in the 10
and 100 miner pools obtain substantially higher reset balances than in the 1 000 miner pool.
The same data displayed in Figure 6.8 is presented by Figure 6.9, however, the reset balances
have been sorted by size and are shown in descending order for each of the three simulated
pools. Again, it can be seen that the reset balances were not only significantly higher in the
10 miner pool, but also the range of reset balances was substantially larger than for the 100
or 1 000 miner pool simulations.

The majority of the considered mining strategies focused on exploiting the non-uniform credit
resetting mechanism of the queue-based scheme. Strategies like ExpVal2 specifically aimed at
an attacking miner maximising his reset balances less the cost of giving up a specified number
of rounds. The observed reset balances across all three pools may be a justification as to

9The y-axis label of Figure 6.9, Start credits, refers to the reset balance of a miner who wins a block

54



6.6. EVALUATION OF QUEUE-BASED MINING STRATEGIES

Figure 6.9: The credits a miner has been reset to for 200 000 mined blocks, sorted in descending
order for pool sizes of 10, 100 and 1 000 miners.

why the ExpVal2 strategy’s performance varied so much across the three pools. High reset
balances, as seen in the simulation of the 10 miner pool, would be a favourable prerequisite
for employing a strategy which aims at maximising the former for a given miner. The
considerably high variance of the reset balance in the 10 miner pool suggests that a miner
could end up with a reset balance significantly larger than the average, by employing such
a strategy. In fact, in the 10 miner pool, the highest obtained reset balance of a miner was
almost 800TC, as shown in Figure 6.9. Such a high reset balance could result in a miner being
close to the top of the queue again, as soon as his credits have been reset. When looking
at the observed reset balances of the 1 000 miner pool, such a scenario seems rather unlikely
given the low reset balance average. Additionally, even if a reset balance that would set a
miner to the top of the queue was achieved, a great number, relative to the smaller pools,
of other relatively large miners would potentially eat into this buffer. The low variance of
reset balances in the 1 000 miner pool further suggests that the likelihood for an end of round
credit difference between the top two miners being significantly greater than the average
reset balance is rather unlikely. This is also suggested by the frequency of the underling
ExpVal2 condition being active, i.e. an expected reset balance being big enough for a miner
to benefit from giving up one or more rounds, for each of the three simulated pools. In the 10
miner pool, for every 24th share submitted by the attacker the ExpVal2 condition was active
compared to every 295th share in the 100 miner pool and every 1966th share in the 1 000
miner pool. This suggests that end of round credit differences between the top miners were
favourable more often for an attacking miner in a small pool than in the larger pools. Hence
a miner trying to maximise his reset balance could potentially benefit more from mining in
a queue-based pool with a high average reset balance and a high variance, than mining in
a queue-based pool with a low reset balance average and variance. It can thus be derived
that a high variance and and average reset balance may pose favourable conditions, whereas
a low variance and average reset balance are adverse for mining strategies aiming to exploit
the credit-resetting mechanism of queue-based mining pools.

A high average and variance of the reset balance may thus also explain the effectiveness of
the pool hopping strategy in the 10 miner pool. The second 10 miner pool used for the

55



6.6. EVALUATION OF QUEUE-BASED MINING STRATEGIES

hopping strategy was also populated with miners that were generated by sampling for the
hash rates. However, this second pool had an even higher average and variance of credit
reset balances than the first 10 miner pool, namely 64.24 TC and 4.2566e+27, respectively.
Hence for the hopping scenario between the two constructed 10 miner pools, the attacking
miner was essentially mining in two pools, which both posed favourable reset balances for
miners, even if an employed mining strategy did not explicitly aim at exploiting the former.
The extra blocks the attacker received in the 10 miner pool hopping scenario may thus be
accredited to the high average and variance of reset balances in the second pool, as well as
to the attacker for not giving up any rounds.

Figure 6.10: The average credits a top miner is reset to after 200 000 mined blocks for pools of
various sizes of miners that have been generated from sampling from a log normal distribution
of hash rates.

Given the potential relationship between the effectiveness of mining strategies and the reset
balances of queue-based pools, the underlying determinants of these balances should be fur-
ther examined. The presented findings suggest that the hash rate distribution of a pool, and
hence the hash rate differences between the miners of a pool, directly affect the reset balances.
In order to further examine this relationship, simulations of pools of various sizes have been
run for 200 000 mined blocks and the reset balances have been recorded for each. The average
reset balances for each of the simulated pool sizes are displayed by Figure 6.10.

Given that all miners in the simulated pools are created via the previously explained sam-
pling method, as the number of miners in a pool (the sample size) increases, the hash rate
distribution of the pool approaches a log normal distribution. Taking that into account, a
general trend can be made out: as the pool size increases, the average reset balance decreases.
The slight oscillations for when the pool size is between 50 and 100 miners are due to the
relatively small sample sizes of miners and the risk of constructing pools with very different
hash rate distributions. For example, a small pool in which the hash rates of miners lie
closer together may experience lower reset balances than a small pool in which hash rates
are further apart.

The reset balance variance for the same pool simulations as presented by Figure 6.10 is
shown by Figure 6.11. Again, a trend can be seen: as the pool size increases, the reset
balance variance decreases.

56



6.6. EVALUATION OF QUEUE-BASED MINING STRATEGIES

Figure 6.11: The variance of the credits a top miner is reset to for a simulation of 200 000
blocks for pools of various sizes.

The trends shown by Figures 6.10 and 6.11 are in line with the previously discussed findings
for the 10, 100 and 1 000 miner pools. As the pool size increases and the distribution of
hash rates increasingly starts to resemble a log normal distribution, the average reset balance
for a miner, as well as the reset balance variance decrease. This consequently affects the
effectiveness of mining strategies that are aimed at exploiting the credit resetting mechanism
of queue-based pools by maximising their expected reset balance over a given number of
rounds. Under these conditions, less favourable queue constellations, which could be exploited
by an attacking miner with an above average hash rate, arise.

These findings are based on a number of assumptions. It has been assumed that a queue-
based mining pool’s distribution of hash rates is log normal based on data obtained from
Ethpool. However, as mining activity continues to increase and Ethpool experiences an
increase in miners, it could well be that the hash rate distribution deviates from a log normal
distribution. Furthermore, it has been assumed that a maximum of one miner can employ
a mining strategy in a pool. In the real world of cryptocurrency queue-based mining pools
this could very well differ as there is no limit for the number of miners that could engage in
strategic mining. Lastly, it should be taken into account that all results were obtained from
conducted event-based simulations. Even though the theoretical workings have been found
to be correct, factors such as a miner’s network connectivity, lags, or downtime of mining
equipment have not been accounted for.

57



Chapter 7

Conclusion

7.1 Summary of Achievements

This dissertation addressed the workings of queue-based payout schemes implemented by
cryptocurrency mining pools and examined the effectiveness of mining strategies aimed at
exploiting the scheme’s underlying credit-reset mechanism.

An event-based simulator was developed in order to model the behaviour of queue-based min-
ing pools of various sizes over a specified number of mined blocks. Furthermore, the simulation
framework allowed for proposing and simulating different mining strategies which could be
employed by miners with above average hash rates. The effectiveness of such strategies was
consequently examined for pools of different sizes. Noticeable performance differences of an
attacking miner in a two miner pool and a multi-miner pool have highlighted the importance
of well-defined conditions that determine the actions an attacking miner employs. It has thus
been proposed that mining strategies which aim at exploiting the credit reset mechanism of
the queue-based payout scheme should take into account the other miners’ hash rates, the
current queue constellation, as well as the work that has been performed by a pool during a
round. Additionally, as the ExpVal2 strategy stated, the expected credit cost for an attacking
miner giving up a round should be taken into account at all times.

Furthermore, it has been found that the effectiveness of such queue-based mining strategies,
depends on the reset balances of a pool. Simulation results have shown that a high variance
and and average reset balance may pose favorable conditions for attacking miners, whereas a
low variance and average reset balance are adverse for mining strategies aimed at exploiting
the non-uniform reset balances. An underlying assumption to the simulations is rooted in
the observed hash rate distribution of Ethpool resembling a log normal distribution. Under
the assumption that large queue-based mining pools resemble a log normal distribution of
hash rates, pools of different sizes have been constructed. Simulation results have led to
the conclusion that as the hash rates of a pool approach a log normal distribution, the
average reset balance and variance decrease. This directly negatively affects the effectiveness
of mining strategies which focus on the non-uniform credit reset mechanism.

58



7.2. APPLICATIONS

7.2 Applications

With the increase in cryptocurrency mining and the introduction of a queue-based payout
scheme, understanding the benefits and potential risks of such a scheme is essential for partici-
pating miners. The queue-based mining pool scheme insights that stem from this dissertation
could benefit the cryptocurrency mining community in several ways.

Miners Cryptocurrency miners with above average hash rates mining in a queue-based
pool, i.e. Ethpool, can potentially increase their rewards by employing mining strategies
under certain favourable conditions. Based on the findings presented by this dissertation, an
attacking miner may be able to partially predetermine the effectiveness of strategies aimed
at exploiting the non-uniform credit resetting mechanism by analysing a queue-based mining
pool’s hash rate distribution.

Academia Researchers with an interest in the workings of queue-based mining pools could
benefit from using EthSim, the queue-based mining pool simulator which was created as part
of this dissertation. The presented simulations have shown that EthSim can be used reliably
to obtain data in order to evaluate the effectiveness of different mining strategies, as well
as the performance of miners in a queue-based mining pool. Therefore EthSim has multiple
applications for any researcher or individual with an interest in queue-based mining pools.
The framework could be used for the simulation of newly proposed and implemented mining
strategies, or for the further examination of the proposed strategies by constructing pools
from the latest obtainable Ethpool miner data.

7.3 Future Work

In this section potential areas of research are discussed, which would further add to the
findings presented throughout this dissertation.

7.3.1 Formal methods

It has been found that there is a clear trend that the end of round credit differences between
the top two miners decreases for larger pools where the distribution of hash rates is log
normal. However, rather than simulating various pool sizes, a mathematical model which
would formally use a pool’s hash rate distribution to determine the expected end of round
credit difference would be very beneficial. Furthermore, a formal analytical model proving
the workings of the queue-based payout scheme and underlying credit resetting mechanism
would add further value to the cryptocurrency community, researcher, and possibly to the
field of queuing theory.

7.3.2 An in-depth pool-hopping analysis

Theoretical pool hopping scenarios for queue-based mining pools have only been discussed
briefly. Research focusing on the potential vulnerability of mining in multiple queue-based
pools, specifically when a pool hopper takes into account the luck, hash rate distribution
and queue constellation for every pool he mines in could turn out to be very interesting.
Such work could also shed light on the potential effects of not setting the credits of a miner

59



7.3. FUTURE WORK

who has not submitted shares for a longer period of time to zero. Currently, Ethpool does
not reset the credits of a wallet. Understanding the broader implications of queue-based
pool-hopping through a formal analysis could prove to be very useful for the cryptocurrency
mining community, as well as for queue-based mining pool operators.

7.3.3 New mining strategies

This dissertation highlighted how an event-based simulator can be used in order to simulate
the performance of mining pools for different mining behaviour. The notion of queue-based
mining strategies was introduced and both, naive and expectation-based, strategies have been
considered and simulated. However, the strategies examined throughout this dissertation are
by no means all possible strategies a miner could pursue. In fact, a proper strategy tailored
towards pool hopping using a condition that takes into account the states of multiple pools
could be proposed.

Should additional queue-based mining pools emerge then given that research on queue-based
mining strategies continues, cryptocurrency miners of all sizes could be in a position to deter-
mine which pool suits their needs and ambitions best. The future growth of cryptocurrency
mining and the evolution of queue-based mining pools will certainly be an exciting field to
watch.

60



BIBLIOGRAPHY

Bibliography

[1] Drand48. http://man7.org/linux/man-pages/man3/drand48.3.html. Accessed:
2017-09-04.

[2] Etherscan. https://etherscan.io/chart/difficulty. Accessed: 2017-09-04.

[3] Ethpool mining pool. http://ethpool.org/. Accessed: 2017-09-04.

[4] Ethpool reward payout scheme. http://ethpool.org/credits. Accessed: 2017-09-04.

[5] Lognormal distribution. http://en.cppreference.com/w/cpp/numeric/random/
lognormal_distribution. Accessed: 2017-07-22.

[6] A. M. Antonopolous. Mastering Bitcoin: Unlocking Digital Currencies. Sebastopol, CA,
1 edition, 2014.

[7] V. Buterin. Ethereum: A next-generation smart contract and decentralized application
platform. https://github.com/ethereum/wiki/wiki/White-Paper, 2014. Accessed:
2017-06-24.

[8] E. community. Ethereum mining rewards. https://github.com/ethereum/wiki/wiki/
Mining#mining-rewards. Accessed: 2017-06-26.

[9] N. T. Courtois and L. Bahack. On subversive miner strategies and block withholding
attack in bitcoin digital currency. arXiv preprint arXiv:1402.1718, 2014.

[10] Crypto Coin News. Cryptocoinnews. https://www.cryptocoinsnews.com/altcoin/.
Accessed: 2017-09-07.

[11] Ethereum community. Ethash. https://github.com/ethereum/wiki/wiki/Ethash.
Accessed: 2017-06-18.

[12] Ethereum community. Ethereum mining. https://github.com/ethereum/wiki/wiki/
Mining. Accessed: 2017-09-04.

[13] I. Eyal. The miner’s dilemma. In Security and Privacy (SP), 2015 IEEE Symposium
on, pages 89–103. IEEE, 2015.

[14] B. Johnson, A. Laszka, J. Grossklags, M. Vasek, and T. Moore. Game-theoretic analysis
of DDoS attacks against Bitcoin mining pools. In International Conference on Financial
Cryptography and Data Security, pages 72–86. Springer, 2014.

[15] Y. Lewenberg, Y. Bachrach, Y. Sompolinsky, A. Zohar, and J. S. Rosenschein. Bitcoin
mining pools: A cooperative game theoretic analysis. In Proceedings of the 2015 In-
ternational Conference on Autonomous Agents and Multiagent Systems, pages 919–927.
International Foundation for Autonomous Agents and Multiagent Systems, 2015.

61

http://man7.org/linux/man-pages/man3/drand48.3.html 
https://etherscan.io/chart/difficulty 
http://ethpool.org/ 
http://ethpool.org/credits 
http://en.cppreference.com/w/cpp/numeric/random/lognormal_distribution 
http://en.cppreference.com/w/cpp/numeric/random/lognormal_distribution 
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/Mining#mining-rewards 
https://github.com/ethereum/wiki/wiki/Mining#mining-rewards 
https://www.cryptocoinsnews.com/altcoin/
https://github.com/ethereum/wiki/wiki/Ethash 
https://github.com/ethereum/wiki/wiki/Mining 
https://github.com/ethereum/wiki/wiki/Mining 


BIBLIOGRAPHY

[16] L. Luu, R. Saha, I. Parameshwaran, P. Saxena, and A. Hobor. On power splitting games
in distributed computation: The case of bitcoin pooled mining. In Computer Security
Foundations Symposium (CSF), 2015 IEEE 28th, pages 397–411. IEEE, 2015.

[17] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/
bitcoin.pdf, Dec 2008. Accessed: 2017-06-18.

[18] M. Rosenfeld. Analysis of bitcoin pooled mining reward systems. arXiv preprint
arXiv:1112.4980, 2011.

[19] O. Schrijvers, J. Bonneau, D. Boneh, and T. Roughgarden. Incentive compatibility of
bitcoin mining pool reward functions. Financial Cryptography and Data Security, 2016.

[20] A. Zamyatin, K. Wolter, S. Werner, C. Mulligan, P. Harrison, and W. Knottenbelt.
Swimming with fishes and sharks: Beneath the surface of queue-based ethereum mining
pools, 2017. viewed 10 July 2017.

62

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf


Glossary

Glossary

Altcoins Cryptocurrencies which can be seen as an alternative to Bitcoin, to the extent that
each altcoin aims to improve some component of Bitcoin[10]. At the time of writing
more than 1 100 altcoins existed.

Attacker A miner in a queue-based mining pool that pursues some behaviour or action
with the intent of altering the queue constellation of miners in order to benefit from
the non-uniform credit reset mechanism.

Block A data structure containing a list of transactions between nodes in the network.
Blocks are the fundamental building units of the blockchain and consist of (amongst
other fields) a block header, a time stamp, a nonce, the difficulty and the hash of header
of the block it is being appended to.

Blockchain A distributed ledger in a peer-to-peer network, which is publicly accessible by
all network participants (in the context of Bitcoin and Ethereum). The blockchain
consists of blocks, where each block, or data structure, contains a list of confirmed
transactions and is linked to the previous block in the chain via the hashed header of
the former.

Condition and action scheme Amechanism for defining and implementing mining strate-
gies in queue-based mining pools. A specified condition is checked each time an attack-
ing miner submits a share. Should the condition be true, then the action which has
been associated with the condition will determine the behaviour of the miner. Condi-
tions could focus on current or expected queue-constellations, whereas actions relate to
the way a share is handled by a miner.

Credits In a queue-based mining pool, a miner receives for every share he submits to the
pool operator a number of credits equivalent to the share difficulty. In a queue-based
reward scheme, the miner with the highest accumulated credit balance receives the
entire reward (less pool fees) when a block is found by the pool.

Ethash The Proof-of-Work algorithm used in Ethereum which requires a miner to find some
nonce input to the algorithm, such that the result is below a specified value (the PoW
difficulty).

Hash A potential solution computed by a miner to the Proof-of-Work cryptographic puzzle,
i.e. the PoW in Bitcoin.

63



Glossary

Hash rate The computational power of an individual miner over a given period of time,
generally seconds, expressed as either megahashes (MH), gigahashes (GH) or terahashes
(TH).

Miner Nodes in the peer-to-peer network of a cryptocurrency such as Bitcoin or Ethereum,
which try to solve the Proof-of-Work in order to be allowed to append the next block
and hence receive the associated block reward.

Mining scenarios A queue-based mining pool in which no miner employs any mining strate-
gies can be referred to as the normal scenario. Queue-based pools in which one or more
miners do pursue mining strategies are alternative scenarios. For simulation purposes
in this thesis, different scenarios were created and compared.

Mining strategy A miner pursuing an action when a specified condition is met in a queue-
based mining pool, aiming to increase his reward payout.

Nakamoto consensus A common name for Bitcoin’s decentralised consensus mechanism.
Consensus within the network is needed in order to determine which miner node gets
to append the next block to the blockchain, and hence alter the true state of the chain.
The consensus mechanism predominantly consists of the Proof-of-Work, a cryptographic
puzzle, which needs to be solved by some miner in the network.

Network difficulty A numerical value which must be greater than a potential solution to
the Proof-of-Work in order for the solution to be valid.

Normal scenario A queue-based mining pool in which all miners aim to maximise their
computational efforts and no miner tries to pursue any mining strategy.

Pool fee A small proportion of a block reward, collected by the pool operator to compensate
his efforts. At the time of writing, the pool fee in Ethpool was 1%.

Pool-hopping A miner who switches between two or more pools in terms of the shares he
submits to a pool, based on some favorable condition.

Proof-of-Work A computationally intensive puzzle requiring a miner to find some valid
input, or nonce, to an algorithm (i.e. SHA-256 or Ethash) such that it is below a
specified threshold, the network difficulty.

Queue-based attacks Actions employed by miners in a mining pool using a queue-based
reward scheme in order to potentially exploit the underlying credit resetting mechanism.

Reset balance The number of credits a winning miner is reset to. A winning miner refers to
a miner in a queue-based mining pool, who had accumulated the highest credit balance
out of all miners in the pool when a block was mined by the pool.

Reward payout scheme A mechanism implemented by the mining pool that defines the
distribution of rewards amongst the miners of the pool.

Rounds A round refers to the time period between one block found by a mining pool to the
next one found by the same pool.

64



Glossary

Share A solution to a Proof-of-Work (PoW) puzzle with a considerably lower difficulty than
the network PoW, which has been set by the operator of a mining pool. This allows
for a pool operator to track how much work each miner in the pool as performed over
a given period of time.

Smart contracts In Ethereum, smart contracts can be described as programs that gov-
ern the transfer of Ether. These programs are written in solidity, a Turing-complete
programming language called Solidity, which was created by the Ethereum Foundation.

Transaction fee The difference between the total inputs and outputs of all transactions in
a block, which may be received by the miner who appends the block.

Transactions The transfer of some token, i.e. Bitcoin or Ether, between two wallet ad-
dresses. A transaction becomes confirmed once it is contained in a block, which has
been appended to the longest blockchain.

Uncle A valid block found by a miner, which does not become the new head of the blockchain.
This may occur when a competing miner also finds a block and benefits from his faster
network connectivity.

65



Appendices

66



Appendix A

A.1 Ethpool

Figure A.1: The top ten Ethpool miners by hash rate for a given time on 06-09-2017.[? ]

A.2 Hash rate distributions

67



A.2. HASH RATE DISTRIBUTIONS

Figure A.2: The distribution of the logs of the hash rates for 729 miners in Ethpool resembling
a normal distribution.

Figure A.3: The distribution of the logs of the hash rates for a constructed pool of 1 000 miners,
generated via sampling.

68



Appendix B

B.1 Design: EthSim

69



B.1. DESIGN: ETHSIM

F
igu

re
B

.1:
T
he

fullU
M
L
diagram

of
the

E
thSim

event
sim

ulator.

70


	1 Introduction
	1.1 Motivation
	1.2 Aims and objectives
	1.3 Contributions
	1.3.1 A simulation framework for queue-based cryptocurrency mining pools
	1.3.2 Potential issues with a queue-based payout scheme
	1.3.3 A comparison of mining strategies in queue-based mining pools
	1.3.4 Limitations of mining strategies in queue-based mining pools

	1.4 Outline
	1.5 Statement of originality and publications

	2 Cryptocurrency mining, pools and reward schemes
	2.1 Cryptocurrency mining
	2.2 Solo mining
	2.3 Mining pools
	2.4 Miner rewards and reward payout schemes

	3 Queue-based mining pools: Ethpool
	3.1 Manipulating the queue: strategic mining
	3.2 Share withholding
	3.3 Tactical donation of mining power
	3.4 Second payout address (wallet)
	3.5 Pool hopping

	4 EthSim: a mining pool simulator
	4.1 The aims for the simulator
	4.2 Design
	4.2.1 Simulating a queue-based mining pool
	4.2.2 Simulating mining strategies
	4.2.3 System design

	4.3 Implementation: a queue-based mining pool
	4.3.1 Event queue and events
	4.3.2 Share scheduling

	4.4 Implementation: mining strategies (scenarios)
	4.4.1 Conditions and actions
	4.4.2 Scenario set up: condition and action

	4.5 Setting up a simulation
	4.5.1 The simulation configuration and data collection
	4.5.2 Populating the pool


	5 The Two Miner Case
	5.1 A simple scenario
	5.2 Simulation configuration
	5.3 Simulation results and evaluation
	5.3.1 Simulation of a two miner pool
	5.3.2 Problems with the two miner case


	6 The Multi-Miner Case
	6.1 Simulation configuration
	6.2 Naive conditions in the multi-miner case
	6.3 Expectation-based conditions
	6.3.1 Expected end of round queue constellation
	6.3.2 Expectation-based condition 1: ExpVal1
	6.3.3 ExpVal1: simulation results
	6.3.4 Expectation-based condition 2: ExpVal2
	6.3.5 ExpVal2: a hypothetical example
	6.3.6 ExpVal2: simulation results

	6.4 Luck-based condition
	6.4.1 Hopping: a theoretical approach
	6.4.2 Simulation set up
	6.4.3 Hopping: simulation results

	6.5 Exponential difficulty
	6.6 Evaluation of queue-based mining strategies

	7 Conclusion
	7.1 Summary of Achievements
	7.2 Applications
	7.3 Future Work
	7.3.1 Formal methods
	7.3.2 An in-depth pool-hopping analysis
	7.3.3 New mining strategies


	Glossary
	Appendices
	A 
	A.1 Ethpool
	A.2 Hash rate distributions

	B 
	B.1 Design: EthSim


