
Imperial College London
Department of Computing

Structure-preserving automatic
differentiation and pull-backs in
a language for variational forms

Author:
Gavin Truter

Supervisor:
Prof. Paul Kelly

Submitted in partial fulfillment of the requirements for the MSc degree in
MSc Computing Science of Imperial College London

8 September 2017

Abstract

Unified Form Language (UFL) is a domain-specific language for expressing
and manipulating the variational forms that arise when using the finite ele-
ment method to approximate solutions to partial differential equations. One
of these manipulations is the pull-back from an arbitrary finite element to an
associated reference finite element, during which various quantities related to
the Jacobian of the mapping between the reference and physical cells emerge.
In some cases, the Jacobian-related factors cancel, but UFL was previously
unable to recognise such cancellation. In this project, enhancements were
made to preserve certain mathematical operators during transformations of
the variational forms, so that Jacobian cancellation could be recognised, and
to implement this cancellation. The success of the cancellation algorithm is
shown on a number of forms. Finite element solvers that use UFL may now
be adapted to extract a performance benefit from this enhancement.

Acknowledgements

I would like to thank Prof. Paul Kelly and Dr. David Ham for their excellent
supervision. It was a pleasure to work with them.

I was grateful to be funded on the MSc Computing Science by a Com-
monwealth scholarship.

I would also like to thank my family for their support.

Contents

1 Introduction 1
1.1 The finite element method . 1
1.2 Firedrake and UFL . 3
1.3 Project objectives and achievements 4
1.4 Report structure . 9

2 Tensor-valued functions and their spatial derivatives 10
2.1 Tensors . 10
2.2 Products . 11

2.2.1 Inner product . 11
2.2.2 Dot product . 11

2.3 Spatial derivatives . 12
2.3.1 Gradient . 12
2.3.2 Divergence . 12
2.3.3 Curl . 13

2.4 Spatial derivatives of products 13
2.4.1 Spatial derivatives of a dot product 13
2.4.2 Spatial derivatives of an inner product 16

3 Functional derivatives 17
3.1 The Fréchet derivative . 17

3.1.1 Definition . 18
3.1.2 Comparison with the conventional derivative 19

3.2 Solving nonlinear PDEs with functional derivatives 20
3.3 Linear maps . 21
3.4 Bilinear maps . 21
3.5 Chain rule . 22
3.6 Application to evaluation forms 23

3.6.1 First evaluation form 23
3.6.2 Second evaluation form 24

i

4 Pullbacks 25
4.1 Sobolev spaces . 25
4.2 Finite elements . 26
4.3 Reference elements . 27
4.4 Identity mapping . 28
4.5 Contravariant Piola mapping 29
4.6 Covariant Piola mapping . 30
4.7 Jacobian cancellation . 31

5 Unified Form Language 33
5.1 Specifying forms . 33
5.2 Computing form data . 38

5.2.1 Algebra lowering . 38
5.2.2 Applying derivatives 38
5.2.3 Applying pull-backs . 41
5.2.4 A second application of derivatives 41
5.2.5 Applying integral scaling 44

5.3 Implementation of form transformations 46
5.4 Operations in computing form data 48

6 Structure preservation and Jacobian cancellation 50
6.1 Choice of vector operators . 50
6.2 Algebra lowering . 51
6.3 Applying derivatives . 51

6.3.1 Functional derivatives 51
6.3.2 Spatial derivatives: Gradient 53
6.3.3 Spatial derivatives: Divergence 54
6.3.4 Spatial derivatives: Curl 55

6.4 Applying pull-backs . 55
6.4.1 Function pull-backs . 56
6.4.2 Special cases . 57
6.4.3 Spatial derivatives of pulled-back functions 58

6.5 Jacobian cancellation . 60
6.6 Jacobian determinant cancellation 65
6.7 Operations in computing form data 65

7 Evaluation 67
7.1 First form . 67
7.2 Second form . 74
7.3 Third form . 77

ii

8 Conclusion and further work 80
8.1 Contributions . 80
8.2 Further work . 81

8.2.1 Updates to downstream tools 81
8.2.2 Extension to mixed elements 81

Bibliography 82

Index 85

iii

Chapter 1

Introduction

This chapter describes the setting in which the work of this project occurred,
explains its objectives and achievements, and demonstrates its results with
a representative example.

The project consisted of enhancements to Unified Form Language, a
domain-specific language for expressing the variational forms that arise when
using the finite element method to approximate solutions to partial differen-
tial equations. These enhancements preserve certain mathematical structures
during transformations of the variational forms, which allows, in some cases,
simplifications that improve the performance of the subsequent numerical
approximation.

Section 1.1 discusses the finite element method and variational forms,
highlighting the concepts and terminology used later. Section 1.2 describes
Unified Form Language, while Section 1.3 summarises the enhancements
added by this project and demonstrates the effect of these enhancements
by an example. Finally, Section 1.4 explains the structure of the rest of this
report.

1.1 The finite element method

Partial differential equations (PDEs) arise in the study of many physical
phenomena. These equations can seldom be solved analytically, and so one
must resort to finding numerical approximations of their solutions.

The finite element method is a popular approach to finding such an ap-
proximation. Brenner and Scott [8] is a standard reference for the mathe-
matics of the finite element method.

In the finite element method, the PDE is rewritten into its variational

1

form: a solution of the PDE is a function u ∈ V such that

F (u; v) = 0 ∀v ∈ V ′, (1.1)

where V and V ′ are spaces of functions, and F : V × V ′ → R is a form.
By a form, we mean a function from one or more spaces of functions to the
reals. We separate the arguments u and v to F by a semicolon, rather than
a comma, because F is linear in v but is not necessarily linear in u. The
function F is typically a sum of integrals over the problem domain and its
boundary.

For example, the variational form corresponding to the Poisson problem

− div gradu = f (1.2)

on some two-dimensional domain Ω, where f is a given scalar-valued function,
is (see Section 1.1 of Logg, Mardal, and Wells [18])

F (u; v) =
∫

Ω
gradu · grad v dx−

∫
Ω
fv dx. (1.3)

If the PDE is linear then (1.1) takes the form

a(u, v)− L(v) = 0 ∀v ∈ V ′ (1.4)

where a : V × V ′ → R is bilinear (linear in each of its arguments) and
L : V ′ → R is linear, as in (1.3). The finite element method proceeds by
replacing V and V ′ by finite-dimensional subspaces Vh ⊆ V and V ′h ⊆ V ′,
leaving us to find uh ∈ Vh such that a(uh, vh)−L(uh) = 0 for all vh ∈ V ′h. This
reduces to large linear system of equations, which gives an approximation uh
to the solution u of the original problem.

The subspaces Vh and V ′h are not specified directly. Instead, the domain
of interest is partitioned into a mesh of cells. Finite-dimensional spaces of
functions are specified on each cell, and these, together with conditions for
the functions on the cell boundaries (such as continuity), imply a finite-
dimensional space of functions on the entire domain.

For example, a rectangle in two dimensions might be split into many tri-
angles, and on each of the triangles one might specify the three-dimensional
space of linear functions, plus the condition that the functions in neigh-
bouring triangles must agree on the common boundary, making the global
function continuous.

These subdomains, the functions specified on them, and the way in which
those functions are parameterised together constitute a finite element.

For performance reasons, calculations are not performed on each element
individually. Instead, we specify a reference element, and for each element we

2

find a mapping F that transforms the reference element into the element in
which we are interested. For example, for each triangle in the mesh mentioned
above, one can find an affine mapping F such that the triangle is a result
of applying F to the reference triangle with vertices at the origin, (0, 1) and
(1, 0). Having found such an F , one expresses all the relevant aspects of the
physical element in terms of the reference element. The process of rewriting
the variational form in terms of functions on the reference element is called
pull-back.

During pull-back, the determinant of the Jacobian matrix of F emerges
in the form, due to the change of integration variables. The Jacobian matrix
itself and its inverse may also emerge, either as a result of way in which
functions are transformed between the physical element and the reference
element, or because of the translation of gradients on the physical element
to gradients on the reference element. If the mapping F is not affine (so that
the Jacobian matrix varies over each subdomain) and the function spaces are
high-dimensional (so that the value of the Jacobian matrix must be found
at a large number of points in each subdomain) then the calculation of these
quantities may become a significant computational cost. However, in some
cases there is cancellation between these quantities, so that the pulled-back
form does not depend upon the Jacobian at all, or only depends upon it
through the sign of its determinant.

1.2 Firedrake and UFL
Firedrake [20, 13] is a tool for numerically approximating the solution of a
PDE using the finite element method. The PDE is specified in its varia-
tional form in near-mathematical terms in Python, and Firedrake automat-
ically generates efficient, parallelised code to find an approximate solution.
Firedrake is developed and used by the Computing, Mathematics, and Earth
Science and Engineering departments at Imperial College, amongst others.

Variational forms in Firedrake are represented in Unified Form Language
(UFL) [3, 1]. Other components of Firedrake include the Two Stage Form
Compiler (TSFC) [15], PyOP2 [21, 19], and the FInite element Automatic
Tabulator (FIAT) [16]. Firdrake also makes use of solvers from the Portable,
Extensible Toolkit for Scientific Computation (PETSc) [6, 5, 4] via the
Python interface petsc4py [12]. UFL and FIAT are actually part of the
FEniCS (pronounced “phoenix”) project [2, 18]. FEniCS solves many of the
same problems as Firedrake, but makes less use of symbolic mathematics to
do so. The Firedrake project maintains its own versions of UFL and FIAT.

This project focuses exclusively on UFL, which is a domain-specific lan-

3

guage embedded in Python for representing and manipulating variational
forms, including performing pull-backs. Before the work of this project, UFL
used to perform algebra lowering before pull-backs: variational forms were re-
expressed in lower terms by having dot products rewritten as indexed sums,
divergences and curls rewritten as the appropriate sums of elements of gradi-
ents, and so on. This type of lowering must occur at some point in UFL, as
it is necessary for other tools in the Firedrake stack; by performing it early,
the number of operations that the pull-back procedure had to support was
reduced. However, once algebra lowering had been performed, the Jacobian
cancellations mentioned above could not be recognised, and so users bore the
cost of Jacobian calculations even when these were unnecessary.

A form in UFL may also be a functional derivative: the derivative of
another form with respect to one of its function arguments. An important
step in UFL is the application of derivatives: the reduction, for example, of
the gradient (or functional derivative) of a sum to the sum of the gradients
(or functional derivatives), so that derivative operators are applied directly
to functions or are eliminated completely. UFL used to apply derivatives
after algebra lowering but before pull-backs.

1.3 Project objectives and achievements
The purpose of this project was to modify UFL such that the lowering of
certain operators would be delayed until after pull-backs had been performed,
so that Jacobian cancellations could be performed.

This consisted of the identification of appropriate operators to preserve,
and the following five modifications:

1. Shifting the appropriate part of the algebra lowering until after function
pull-backs.

2. Adding support for the vector operators in the application of spatial
derivatives.

3. Adding support for the vector operators in the application of functional
derivatives.

4. Expressing the pull-backs of physical-space derivatives in terms of the
vector operators, including the recognition of two special cases where
non-trivial simplifications are known.

5. Adding the explicit cancellation of Jacobian-related factors.

4

Jacobian cancellation in UFL is an important step towards improving the
performance of Firedrake on forms where this cancellation occurs, especially
in the cases of non-affine mappings F , where the Jacobian is not constant on
each cell, and high-order elements, where there are many evaluation points
within each cell. However, the realisation of this performance benefit was not
an objective of the project. Possible steps towards this performance benefit
are described in Section 8.2.

The following example form demonstrates the success of the project. In
Chapter 7 this example is discussed in more detail, and further results are
shown.

Define
a(q, f) =

∫
K
q · grad f dx (1.5)

where K is a domain and q and f are functions. Let ∂af (q, f ; v) be the
functional derivative of a with respect to f in the direction of another function
v. Then ∂af (q, f ; v) is itself a variational form.

Now let K̂ be the reference space, let F be the mapping between K and
K̂, and let q̂ and v̂ be functions on K̂ such that q = Fdiv(q̂) and v = F id(v̂)
(where Fdiv and F id are particular function mappings, described in Chap-
ter 4). Then we know, mathematically, that ∂af (q, f ; v) can be expressed in
terms of these reference-space quantities as

∂af (q, f ; v) = ±
∫
K̂
q̂ · ĝrad v̂ dx̂ (1.6)

where ± denotes the sign of the determinant of the Jacobian matrix of F
on K̂, and ĝrad is the gradient on the reference space. In particular, this
expression does not depend upon the Jacobian matrix of F , its inverse or its
determinant, except through the sign of the determinant.

We can express and process this form in UFL. The resulting UFL expres-
sion, before the modifications made in this project, is shown in Listing 1.
Terms related to the Jacobian have been highlighted in red. This expression
is not worth examining in detail; the important point is that the Jacobian
matrix, its inverse and its determinant all appear, and are separated by so
many operations that it appears difficult to cancel them.

The resulting UFL expression, after the modifications made in this project,
is shown in Listing 2. While this expression is much simpler than the previ-
ous one, this brevity is not in itself helpful. The important improvement of
the second expression over the first is the absence of any quantities related
to the Jacobian matrix except for the sign of its determinant.

Here and elsewhere, we say “before the modifications made in this project”
and “after the modifications made in this project”, which is shorthand for

5

the more complicated reality: The enhancements described in this report
were made in the vector_operator_derivatives branch to the Firedrake
version of UFL, which has not yet been merged into master. By “before
the modifications made in this project”, we mean “on the master branch of
Firedrake UFL”, specifically at revision 8caab; by “after the modifications
made in this project”, we mean “on the vector_operator_derivatives
branch” at revision e600a.

6

Product(
Product(

QuadratureWeight(domain),
Abs(JacobianDeterminant(domain))),

IndexSum(
Product(

Indexed(
ComponentTensor(

IndexSum(
Product(

Indexed(
JacobianInverse(domain),
MultiIndex ((Index (14), Index (13)))) ,

Indexed(
ReferenceGrad(

ReferenceValue(v)),
MultiIndex ((Index (14) ,)))) ,

MultiIndex ((Index (14),))) ,
MultiIndex ((Index (13),))) ,

MultiIndex ((Index (8),))),
Indexed(

ComponentTensor(
IndexSum(

Product(
Indexed(

ComponentTensor(
Product(

Indexed(
Jacobian(domain),
MultiIndex ((Index (9), Index (10)))) ,

Division(
FloatValue (1.0) ,
JacobianDeterminant(domain))),

MultiIndex ((Index (9), Index (10)))) ,
MultiIndex ((Index (11), Index (12)))) ,

Indexed(
ReferenceValue(q),
MultiIndex ((Index (12) ,)))) ,

MultiIndex ((Index (12),))) ,
MultiIndex ((Index (11),))) ,

MultiIndex ((Index (8),)))) ,
MultiIndex ((Index (8) ,))))

Listing 1: The processed evaluation form, prior to this project.

7

Product(
Product(

QuadratureWeight(domain),
Conditional(

LT(
JacobianDeterminant(domain),
Zero((), (), ())),

FloatValue (-1.0),
FloatValue (1.0))) ,

IndexSum(
Product(

Indexed(
ReferenceGrad(

ReferenceValue(v)),
MultiIndex ((Index (10),))) ,

Indexed(
ReferenceValue(q),
MultiIndex ((Index (10) ,)))) ,

MultiIndex ((Index (10) ,))))

Listing 2: The processed evaluation form, subsequent to this project.

8

1.4 Report structure
The remainder of the report is as follows.

Chapter 2 discusses the tensors, products and spatial derivatives used by
UFL, and the rules for simplifying the spatial derivatives of these products.

Chapter 3 defines functional derivatives, proves and lists some of their
properties, and shows how they are applied to certain variational forms.

Chapter 4 describes pull-backs, including the pull-backs of physical-space
derivatives. The covariant and contravariant Piola mappings are defined, and
situations in which Jacobian cancellation occurs are pointed out.

Chapter 5 introduces Unified Form Language and shows the processing of
the same example form presented in this chapter, using UFL as it stood before
the work of this project. The aspects of the pre-existing implementation of
UFL that are relevant for this project are also described.

Finally, in Chapter 6, the contributions made in this project are described.
This chapter applies the mathematics of Chapters 2, 3 and 4 to the pre-
existing implementation of Chapter 5, resulting in modifications that allow
implicit and explicit Jacobian cancellation.

The effectiveness of these modifications is demonstrated on example forms
in Chapter 7.

Chapter 8 provides suggestions for further development and concludes.

9

Chapter 2

Tensor-valued functions and
their spatial derivatives

Unified Form Language supports general tensor expressions with arbitrarily
many dimensions, rather than just vector- or matrix-valued expressions. This
complicates the definitions of the dot and inner products, and the gradient,
divergence and curl operators. It also complicates the rules for the gradients,
divergences and curls of dot and inner products. This chapter discusses the
generalised definitions and rules in mathematical terms; their implementation
in UFL is discussed in Chapter 5. We refer to the gradient, divergence and
curl as spatial derivatives to distinguish them from the functional derivatives
discussed in Chapter 3.

Here and throughout this report we deal only with real-valued PDEs.

2.1 Tensors
A vector is a collection of scalars indexed by a single index:

v = (vi)i=1,...,n. (2.1)

A matrix is a collection of scalars indexed by two indices:

A = (Aij)i=1,...,n, j=1,...,m. (2.2)

A tensor, for our purposes, is just the natural extension of these two concepts
to an arbitrary number of indices:

x = (xi1,...,ip)i1=1,...,n1, ..., ip=1,...,np . (2.3)

Vectors and matrices are thus special cases of tensors. Spaces of tensors are
denoted in the natural way, as Rn1×...×np .

10

2.2 Products

2.2.1 Inner product
Given a real vector space V , a function 〈·, ·〉 : V × V → R is called an inner
product on V if it is

• bilinear (linear in each argument),

• symmetric: 〈x, y〉 = 〈y, x〉 for all x, y ∈ V , and

• positive definite: 〈x, x〉 ≥ 0 for all x ∈ V , and 〈x, x〉 = 0 iff x = 0.

See Coleman [11, Section 6.1].
Inner products on function spaces are extremely important for the finite

element method, but for our purposes the only relevant inner product is the
most prosaic one: on the vector space Rn1×...×np of rank-p tensors, we define

〈x, y〉 =
n1∑
i1=1
· · ·

np∑
ip=1

xi1,...,ip yi1,...,ip . (2.4)

That is, the inner product of two tensors of the same size is the sum of the
component-wise products of their elements.

2.2.2 Dot product
The dot product of two elements x and y of Rn is given by

x · y =
n∑
i=1

xiyi. (2.5)

This is a special case of the inner product of the previous section.
UFL also uses the dot product in a more general sense, which includes

both the usual dot product just mentioned and matrix multiplication. Given
tensors x and y of sizes n1 × . . . × np and m1 × . . . ×mq respectively, with
np = m1, their dot product is defined to be the tensor of size n1× . . .×np−1×
m2× . . .×mq where the element in position (i1, . . . ip−1, j2, . . . jq) is given by

np∑
k=1

xi1,...ip−1,k yk,j2,...,jq . (2.6)

That is, the two “inner” dimensions must be equal, and they are removed,
with summation over the products of their elements.

11

Here and in the sequel, the dot product (in this broader sense) of x and y
is denoted dot (x, y) to distinguish it from the standard vector dot product.
If x and y are (column) vectors and A is a matrix, then we have

dot (x, y) = x · y (vector dot product) (2.7)
dot (A, x) = Ax (matrix pre-multiplication) (2.8)
dot (x,A) = (xTA)T = ATx (matrix post-multiplication). (2.9)

2.3 Spatial derivatives
All of our functions are elements of Sobolev spaces, and so the derivatives
that we take are meant as weak derivatives – see Section 1.2 of Brenner and
Scott [8] or the brief summary thereof in Section 4.1.

2.3.1 Gradient
Traditionally, if u is a function from an open set Ω ⊆ Rn to R whose partial
derivatives exist everywhere, then the gradient of u is the function from Ω
to Rn (i.e. the vector-valued function) whose entries are given by

(gradu)i = ∂u

∂xi
. (2.10)

This is generalised to tensors as follows: If u is a sufficiently smooth
function from Ω ⊆ Rn to the space Rn1×...×np of rank-p tensors, then gradu
is the function from Ω to the space Rn1×...×np×n of rank-(p+1) tensors whose
entries are given by

(gradu)i1,...,ip,i = ∂ui1,...ip
∂xi

. (2.11)

Note that the gradient operator appends an axis to the tensor. UFL also
provides a “nabla-gradient” operator which prepends an axis instead.

If p = 1, then gradu, in this sense, is the Jacobian matrix of u. We
will never use this term in this sense; in this report, “the Jacobian matrix”
refers exclusively to the Jacobian matrix of the function mapping between
the reference and physical finite element domains.

2.3.2 Divergence
The divergence operator is generalised similarly: if u is a sufficiently smooth
function from Ω to the space Rn1×...×np×n of rank-(p+ 1) tensors, then div u

12

is the function from Ω to the space Rn1×...×np of rank-p tensors whose entries
are given by

(div u)i1,...,ip =
n∑
i=1

∂ui1,...,ip,i
∂xi

. (2.12)

Note that the length of the final axis of u must match the number of spatial
dimensions. The divergence operator removes an axis from the back of the
tensor; UFL also provides a “nabla-divergence” operator that removes an
axis from the front, with the obvious restriction on the dimension of that
axis.

2.3.3 Curl
Traditionally, if u is a map from an open subset Ω of R3 to R3 whose partial
derivatives exist everywhere, then the curl of u is the map curl u : Ω → R3

defined by

curl u(x) =

∂u3
∂x2

(x)− ∂u2
∂x3

(x)
∂u1
∂x3

(x)− ∂u3
∂x1

(x)
∂u2
∂x1

(x)− ∂u1
∂x2

(x)

 . (2.13)

UFL does not generalize the curl operator to arbitrary tensors, but it
does define curl in two other cases. In particular, for u : Ω ⊆ R2 → R, we
have

curl u(x) =
(

∂u
∂x2

(x)
− ∂u

∂x1
(x)

)
, (2.14)

and for u : Ω ⊆ R2 → R2, we have

curl u(x) = ∂u2

∂x1
(x)− ∂u1

∂x2
(x). (2.15)

2.4 Spatial derivatives of products

2.4.1 Spatial derivatives of a dot product
Gradient

We show the case of two-dimensional tensors, from which the general case
can be inferred.

Let f and g be smooth maps from Rn to Rp×q and Rq×r respectively.
Define h : Rn → Rp×r by

h(x) = dot (f(x), g(x)), (2.16)

13

that is, the entries of h are given by

(h(x))ik =
q∑
j=1

(f(x))ij(g(x))jk. (2.17)

Then gradh is the map from Rn to Rp×r×n with entries given by

(gradh)ik` = ∂hik
∂x`

(2.18)

=
q∑
j=1

∂

∂x`
[fijgjk] (2.19)

=
q∑
j=1

{
∂fij
∂x`

gjk + fij
∂gjk
∂x`

}
(2.20)

=
q∑
j=1

(grad f)ij`gjk +
q∑
j=1

fij(grad g)jk` (2.21)

=
q∑
j=1

(grad f)ij`gjk + (dot (f, grad g))ik` . (2.22)

While the second term can be reduced to an element of a dot product, the
second term cannot (at least without introducing a nabla-gradient). Only in
the standard case that f and g are vector-valued do we have

(gradh)` =
q∑
j=1

(grad f)j`gj + (dot (f, grad g))` (2.23)

= (dot (g, grad f))` + (dot (f, grad g))` (2.24)

and so

gradh = grad dot (f, g) = dot (g, grad f) + dot (f, grad g). (2.25)

It is easy to confuse the order of the arguments to the dot product in the
first term.

Divergence

To examine the divergence, it is helpful to consider three-dimensional tensors.
Let f and g be smooth maps from an open subset Ω of Rn to Rp×q×r and
Rr×s×n respectively. Note that the final dimension of g matches the number
of spatial dimensions. Define h : Ω→ Rp×q×s×n by

h(x) = dot (f(x), g(x)), (2.26)

14

so that the entries of h are given by

(h(x))ij`m =
r∑

k=1
(f(x))ijk(g(x))k`m. (2.27)

Then div h is the map from Rn to Rp×q×s with entries given by

(div h)ij` =
n∑

m=1

∂hij`m
∂xm

(2.28)

=
n∑

m=1
(gradh)ij`mm (2.29)

=
n∑

m=1

{
r∑

k=1
(grad f)ijkmgk`m +

r∑
k=1

fijk(grad g)k`mm
}

(2.30)

=
n∑

m=1

r∑
k=1

(grad f)ijkmgk`m +
r∑

k=1
fijk

n∑
m=1

(grad g)k`mm (2.31)

=
n∑

m=1

r∑
k=1

(grad f)ijkmgk`m +
r∑

k=1
fijk(div g)kl (2.32)

=
n∑

m=1

r∑
k=1

(grad f)ijkmgk`m + (dot (f, div g))ijl . (2.33)

As with the gradient, one term simplifies pleasantly but the other does not.
Here, the case in which both terms simplify is not the one in which f and

g are both vector-valued, but the one in which f is vector-valued and g is
matrix-valued, so that h is vector-valued and div h is scalar-valued; then the
indices i, j and ` in (2.33) disappear, and we have

div h =
n∑

m=1

r∑
k=1

(grad f)kmgkm + (dot (f, div g)) (2.34)

= 〈grad f(x), g(x)〉+ dot (f, div g). (2.35)

A special case, not covered by the calculations above, is that where g is
one-dimensional. In this case, we have

(div h)i =
q∑
j=1

(gradh)ijj (2.36)

=
q∑
j=1

{
r∑

k=1
(grad f)ijkjgk + (dot (f, grad g))ijj

}
(2.37)

=
r∑

k=1

 q∑
j=1

(grad f)ijkj

 gk +
q∑
j=1

(dot (f, grad g))ijj , (2.38)

which cannot be helpfully reduced.

15

Curl

There is no helpful simplification for the curl of a dot product.

2.4.2 Spatial derivatives of an inner product
Gradient

Again, we infer the general case from that of two-dimensional tensors.
Let f and g be smooth maps from an open subset Ω of Rn to Rp×q. Define

h : Ω→ R by

h(x) = 〈f(x), g(x)〉 =
p∑
i=1

q∑
j=1

(f(x))ij(g(x))ij. (2.39)

Then gradh is the map from Ω to Rn with entries given by

(gradh)k =
p∑
i=1

q∑
j=1

∂

∂xk
[fijgij] (2.40)

=
p∑
i=1

q∑
j=1

{
∂fij
∂xk

gij + fij
∂gij
∂xk

}
(2.41)

=
p∑
i=1

q∑
j=1
{(grad f)ijkgij + fij(grad g)ijk} . (2.42)

This cannot be reduced except when f and g are vector-valued, in which case
the inner product is exactly the dot product and we have

gradh = grad 〈f, g〉 = dot (g, grad f) + dot (f, grad g). (2.43)

Divergence

An inner product is always a scalar, so it makes no sense to take its diver-
gence.

Curl

Since the inner product is a scalar, its curl is only defined if n = 2. If
there were a helpful simplification of the curl of an inner product, it would
be in terms of the curls of the arguments to the inner products; but for
these curls to be defined, the arguments must be functions from R3 to R3

(a contradiction), from R2 to R (in which case the inner product is just a
standard product, for which there is no rule) or from R2 to R2. Even in this
last case, there does not appear to be a helpful simplification.

16

Chapter 3

Functional derivatives

Unified Form Language (UFL) expresses variational forms. A variational
form is a map from a sequence of function spaces to the reals. In the context
of partial differential equations, these function spaces may include the spaces
of test and trial functions, and the spaces of coefficients for the underlying
problem, such as boundary conditions. In UFL, one is able to calculate
the derivative of such a form. Since these derivatives are with respect to
functions, we call them functional derivatives.

Part of this project was an extension to the functional derivative capabil-
ities of UFL: the ability to calculate the functional derivatives of expressions
containing dot and inner products, and the gradient, divergence and curl
operators. This allows the preservation of these operators up to the point of
pull-backs.

In this chapter, we provide a precise mathematical definition for func-
tional derivatives, briefly show their usefulness, and prove or list the prop-
erties that are relevant for the vector operators. These properties are also
used to calculate the functional derivatives in the forms that will be used, in
Chapter 7, to evaluate the work of this project. The implementation of this
extension to UFL will be discussed in Section 6.3.1.

3.1 The Fréchet derivative
The derivative of a form with respect to a function is easily defined: if L is
a form, then its derivative at the function u in the direction of the function
v is the real number

lim
ε→0

L(u+ εv)− L(u)
ε

. (3.1)

if this limit exists. However, in order to differentiate complicated forms in an
automated fashion, we need a more sophisticated definition than this. For

17

example, to differentiate

L(u) = gradu · grad f, (3.2)

we must be able to differentiate the dot product and the gradient operator,
neither of which are forms. Crucially, we must also be able to combine the
derivatives of these operators with a chain rule, which we cannot do given
the simple definition (3.1).

Accordingly, we consider the functions, forms and operators with which
we work as points in normed vector spaces and as functions between normed
vector spaces. With this point of view, we use the derivative defined for maps
between normed vector spaces for which a chain rule is valid: the Fréchet
derivative.

3.1.1 Definition
We follow Ciarlet [9] closely in the definitions of this section.

Let X and Y be normed vector spaces over R.
A mapping from X to Y is said to be a linear operator if

A(x+ y) = A(x) + A(y) (3.3)

for all x, y ∈ X and
A(αx) = αA(x) (3.4)

for all x ∈ X and α ∈ R. In this case, it is common to write Ax for A(x),
and AB for A ◦B.

The set of continuous linear mappings fromX to Y is denoted by L(X;Y).
This set, together with an appropriately defined norm, is itself a normed
vector space.

(Note that functions between general normed vector spaces, unlike func-
tions from R to R, may be linear without being continuous, if the domain X
is infinite-dimensional. See Theorem 2.9-3 and the subsequent discussion in
Ciarlet [9].)

Now let Ω be an open subset of X. Let f be a mapping from Ω to Y , and
let a ∈ Ω. We say that f is differentiable at a if there exists f ′(a) ∈ L(X;Y)
such that

f(a+ h) = f(a) + f ′(a)(h) + ‖h‖δ(h) ∀(a+ h) ∈ Ω (3.5)

with limh→0 δ(h) = 0. This element f ′(a) is unique, and is called the Fréchet
derivative of f at a. If f is differentiable at all points of Ω, then it is said to
be differentiable.

18

It is easily shown that if f ′(a) is defined then

lim
ε→0

f(a+ εh)− f(a)
ε

= f ′(a)(h), (3.6)

which shows that the Fréchet derivative satisfies our initial definition (3.1).
However, a function can fail to be Fréchet differentiable even if this limit
exists for all a ∈ Ω and h ∈ X.

If X is a product space X1 × . . . × Xn, so that f is a function of n
arguments, then we can define the partial derivative of f at a with respect
to the jth argument aj, which we denote by ∂jf(a). See Ciarlet [9] for more
details.

We have used here the notation from Ciarlet [9]: f ′(a) for the derivative of
f at a and ∂jf(a) for its partial derivative with respect to the jth argument.
However, many texts (such as Schwedes et al. [24]) use different notation: in
terms of Ciarlet’s notation, we have

df(u;w) := f ′(u)(w) (3.7)

and, for a function f of two variables u and v,

∂fu(u, v;w) := ∂1f(u, v)(w) (3.8)
∂fv(u, v;w) := ∂2f(u, v)(w). (3.9)

Note that here again we have used the convention that arguments in which a
function is known to be linear follow the others and are separated from them
by a semicolon.

3.1.2 Comparison with the conventional derivative
Let us compare the Fréchet derivative with the usual derivative of a function
from R to R; that is, the case of X = Y = R. First, we note that the Fréchet
derivative f ′(a) is not an element of Y , as in the calculus of the reals; it is
instead an element of L(R;R): a continuous, linear function from X to Y .
Now L(R;R) is not the space of straight lines in the plane, but the subset
of these that pass through the origin, since, for A ∈ L(R;R) and x ∈ R we
have

A(x) = A(x1) = xA(1). (3.10)
So A is the straight line through the origin with slope A(1), and we can iden-
tify A ∈ L(R;R) with A(1) ∈ R. Now, if f : R→ R is Fréchet differentiable
at a then the usual derivative of f at a is

lim
h→0

f(a+ h)− f(a)
h

= lim
h→0

[f(a) + f ′(a)(h) + |h|δ(h)]− f(a)
h

(3.11)

19

= lim
h→0

hf ′(a)(1) + |h|δ(h)
h

(3.12)

= lim
h→0

[
f ′(a)(1) + |h|

h
δ(h)

]
(3.13)

= f ′(a)(1). (3.14)

So, when X = Y = R and the Fréchet derivative exists, then the conven-
tional derivative also exists. Using Taylor’s theorem, we can easily show
the converse as well: that if the conventional derivative exists, then so does
the Fréchet derivative. In both cases, the Fréchet derivative is the linear
function passing through the origin whose slope is equal to the conventional
derivative.

3.2 Solving nonlinear PDEs with functional
derivatives

In this section, we demonstrate one use of the functional derivative. For more
detail, see Schwedes et al. [24].

Let us consider again the general variational problem: find u ∈ V such
that

F (u; v) = 0 ∀v ∈ V ′ (3.15)

where V and V ′ are some function spaces and F : V × V ′ → R. If the
problem is nonlinear in u, then it cannot be solved directly by the finite
element method. However, suppose that we have an initial approximation to
the solution u. Then we can write, roughly, the truncated Taylor series

F (u+ w; v) ≈ F (u; v) + ∂Fu(u; v, w) (3.16)

in the direction w. Specifically, we may be able to find w such that F (u +
w; v) ≈ 0 ∀v ∈ V ′ by setting

∂Fu(u; v, w) = −F (u; v) ∀v ∈ V ′. (3.17)

If we fix u at our initial approximation, then this is a linear variational
problem in w with test functions v, which can be solved directly by the finite
element method. Updating u ← u + w and repeating the process, we can
produce a (hopefully improving) succession of estimates to the solution of
the original nonlinear problem by solving this sequence of linear problems.

20

3.3 Linear maps
Let f ∈ L(X;Y). Then for all a ∈ X, h ∈ X,

f(a+ h) = f(a) + f(h) + ‖h‖δ(h) (3.18)

with δ identically zero. Hence f ′(a) = f for all a ∈ X; in other notation,
df(a;h) = f(h) for all a ∈ X, h ∈ X.

Given a particular space of tensors, say Rm for concreteness, the gradient
operator is a map u 7→ gradu whose domain is some subset of Rm-valued
functions on an open subset Ω of Rn and whose codomain is a subset of
Rm×n-valued functions on Ω. Considered as such, it is clearly linear. The
domain is assumed to be regular enough that the gradient operator is also
continuous. (Note that it is important to distinguish between the continuity
of gradu, which would be guaranteed if u was restricted to be continuously
differentiable, and the continuity of the gradient operator itself.) Thus the
Fréchet derivative of the gradient operator is

(grad)′(u)(h) = gradh (3.19)

or, in alternative notation, d grad(u;h) = gradh.
Similarly, the divergence and curl operators are linear, continuous maps

between spaces of functions, and so we have

(div)′(u)(h) = div h (3.20)

and
(curl)′(u)(h) = curl h, (3.21)

or, in the alternative notation, d div(u;h) = div h and d curl(u;h) = curl h.

3.4 Bilinear maps
Let X, Y and Z be normed vector spaces. A map B : X × Y → Z is said to
be bilinear if it is linear in each argument.

Ciarlet [9] shows in Theorm 2.11-1 that a bilinear map is continuous if
and only if the following quantity is finite:

‖B‖ := sup
x∈X\{0}
y∈Y \{0}

‖B(x, y)‖
‖x‖‖y‖

. (3.22)

Now, suppose that B is continuous. Then we can find the Fréchet deriva-
tive of B with respect to the pair (x, y), following Ciarlet [9]: we have

B(x+ h, y + k) = B(x, y) +B(h, y) +B(x, k) +B(h, k) (3.23)

21

= B(x, y) +B(h, y) +B(x, k) + ‖(h, k)‖δ((h, k)) (3.24)

where

δ((h, k)) = B(h, k)
‖(h, k)‖ (3.25)

≤ ‖B‖‖h‖‖k‖
max(‖h‖, ‖k‖) (3.26)

≤ ‖B‖max(‖h‖, ‖k‖) (3.27)
= ‖B‖‖(h, k)‖ (3.28)
→ 0 as (h, k)→ 0. (3.29)

Also the mapping
(h, k) 7→ B(h, y) +B(y, k) (3.30)

is linear and continuous. Hence

B′(x, y)(h, k) = B(h, y) +B(x, k). (3.31)

Any inner product is bilinear by definition and can be shown to be con-
tinuous (Theorem 4.1-1 in Ciarlet [9]). Hence its Fréchet derivative is given,
in somewhat laboured notation, by

〈·, ·〉′ (x, y)(h, k) = 〈h, y〉+ 〈x, k〉 . (3.32)

The dot product is also bilinear and continuous, and so its Fréchet deriva-
tive is given by

dot′(x, y)(h, k) = dot (h, y) + dot (x, k). (3.33)

3.5 Chain rule
We require a chain rule so that we can calculate the Fréchet derivatives of
complicated expressions. The following is Theorem 7.1-3 in Ciarlet [9], where
a proof can be found.

Theorem 1 Let X, Y and Z be normed vector spaces, and let U and V be
open subsets of X and Y respectively. Let f : U → Y be differentiable at
a ∈ U and such that f(U) ⊆ V , and let g : V → Z be differentiable at f(a).
Then g ◦ f : U → Z is differentiable at a, and

(g ◦ f)′(a) = g′(f(a))f ′(a). (3.34)

22

Note that (3.34) uses the shorthands mentioned above; more explicitly,
the result is that

(g ◦ f)′(a)(h) = g′
(
f(a)

)(
f ′(a)(h)

)
(3.35)

or, in the notation of Schwedes et al. [24],

d(g ◦ f)(a;h) = dg
(
f(a); df(a;h)

)
. (3.36)

There are alternative definitions for derivatives of functions on normed
vector spaces, such as the Gâteaux derivative. The Fréchet derivative is
preferred precisely because it allows this chain rule.

3.6 Application to evaluation forms
The evaluation of this project in Chapter 7 uses three example forms, two of
which involve functional derivatives. This section shows how the functional
derivatives are applied in these forms.

3.6.1 First evaluation form
The first evaluation form, which was already presented in Section 1.3, is
∂af (q, f ; v) where

a(q, f) =
∫
K
q · grad f dx, (3.37)

K is some domain, and q and f are functions, q vector-valued and f scalar-
valued. (More precisely, q and f are elements of particular Sobolev spaces,
as described in Section 4.1.)

With a slight abuse of notation (shifting the subscript f), we have

∂af (q, f ; v) = ∂f [a(q, f)] (v) (3.38)

= ∂f

[∫
K
q · grad f dx

]
(v) (3.39)

=
∫
K
∂f [q · grad f] (v) dx (3.40)

since integration over a domain is linear and continuous, and using the chain
rule. We proceed to apply the rule for vector dot products (which is a special
case of that for the inner product (3.32)), and the rule for gradients (3.19):

∂af (q, f ; v) =
∫
K

(
[∂fq](v) · grad f + q · ∂f [grad f](v)

)
dx (3.41)

23

=
∫
K

(
[∂fq](v) · grad f + q · grad (∂f [f](v))

)
dx. (3.42)

Now, the Fréchet derivative of the constant mapping G(f) = q is the zero
mapping, for which G′(f)(v) is the zero function from Rn to R, since then

G(f + v) = q = G(f) +G′(f)(v) + ‖v‖δ(v) (3.43)

with δ(v) identically zero. The Fréchet derivative of the identity mapping
H(f) = f is again the identity mapping, H ′(f)(v) = v, since this is linear
and continuous and

H(f + v) = f + v = H(f) +H ′(f)(v) + ‖v‖δ(v) (3.44)

with δ(v) again identically zero. Hence we have

∂af (q, f ; v) =
∫
K

(0 · grad f + q · grad v) dx (3.45)

=
∫
K
q · grad v dx. (3.46)

3.6.2 Second evaluation form
The second evaluation form is ∂af (u, f ; v) where

a(u, f) =
∫
K
u div f dx, (3.47)

K is again a domain, and u and f are functions in some Sobolev spaces, u
scalar-valued and f vector-valued.

Then, applying the appropriate rules, we have

∂af (u, f ; v) = ∂f

[∫
K
u div f dx

]
(v) (3.48)

=
∫
K
∂f [u div f] (v) dx (3.49)

=
∫
K

(
∂f [u](v) div f + u∂f [div f] (v)

)
dx (3.50)

=
∫
K

(
0 div f + u div (∂f [f](v))

)
dx (3.51)

=
∫
K
u div v dx. (3.52)

In this case we have used a rule for the products of scalar-valued functions,
which clearly follows the pattern of the rule for inner products.

In both this and the previous form, the net effect of the functional deriva-
tive has been to replace f with v in the original form. This is, of course, not
the case in general.

24

Chapter 4

Pullbacks

This chapter briefly introduces Sobolev spaces and finite elements before
moving on to discuss the reference-space to physical-space function mappings
that give rise to the Jacobian-related quantities that we aim to cancel.

4.1 Sobolev spaces
Forms are maps from one or more function spaces to the reals. The function
spaces that arise naturally in solving partial differential equations are called
Sobolev spaces. Chapter 1 of Brenner and Scott [8] describe Sobolev spaces in
detail; this section provides a very brief overview, following that text closely.

We work on a domain Ω ⊆ Rn. A multi-index α = (α1, . . . , αn) is a tuple
of indices. For sufficiently smooth functions φ : Ω→ R, we define

Dαφ = ∂α1

∂xα1
1
· · · ∂

αn

∂xαn
n

φ. (4.1)

One can use an integration-by-parts formula to define a similar weak deriva-
tive Dα

wφ on the relatively wide class of locally integrable functions. This
weak derivative coincides with the classical derivative whenever the latter
exists, but is also defined for functions that are not differentiable in the
classical sense.

Let p ∈ [0,∞) and let k be a non-negative integer. Let A be the set
of multi-indices α where ∑n

i=1 αi ≤ k. Also, let f be a locally integrable
function for which Dα

wf exists for all α ∈ A. Then Sobolev norm of f is

‖f‖Wk
p (Ω) =

(∑
α∈A
‖Dα

wf‖
p
Lp(Ω)

) 1
p

(4.2)

25

where ‖·‖Lp(Ω) is the norm on Lp(Ω). (There is also a special case for p =∞.)
The Sobolev space W k

p (Ω) is the set of functions for which this norm is defined
and finite; it is a Banach space.

For given k, the space W k
2 (Ω), with p = 2, is also denoted Hk(Ω). With

an appropriate definition for the inner product, Hk(Ω) is a Hilbert space.
Very loosely, Hk(Ω) is the natural space of functions on which we can take
up to k partial derivatives.

Equivalently, Hk(Ω) is the space of functions f in L2(Ω) for which Dα
wf

is in L2(Ω) for all multi-indices α of order k or less. This is the definition
given by Rognes, Kirby, and Logg [23], who define the spaces H(div; Ω) and
H(curl; Ω) similarly: H(div; Ω) is the space of functions in L2(Ω,Rn) whose
divergences (in the sense of weak derivatives) are in L2(Ω). For n = 3,
H(curl; Ω) is the space of functions in L2(Ω,R3) whose curls are in the same
space. Thus, loosely, H(div; Ω) and H(curl; Ω) are the natural spaces of
functions on which we can take divergences and curls, respectively.

Rognes, Kirby, and Logg [23] give examples of problems in which H(div)
and H(curl) naturally occur.

4.2 Finite elements
We have not yet stated a precise definition for a finite element. The following
definition is taken from Brenner and Scott [8], who follow Ciarlet [10].

Definition 1 Let

1. K ⊆ Rn be a bounded, closed set with a nonempty interior and a
piecewise-smooth boundary,

2. P be a finite-dimensional space of functions from K to Rm, and

3. N be a basis for P ′ = L(P ,R), the space of continuous linear maps
from P to R.

Then (K,P ,N) is called a finite element.

The set K is called the element domain. The functions in P are called shape
functions. The finitely many elements of N are called the nodal variables.

A simple example is the linear Lagrange triangle. Here K is a triangle
with vertices z1, z2 and z3 and P is the set of linear functions on K. Since
P is three-dimensional, there must be three elements in N ; they are N1, N2
and N3, each defined by

Ni(v) = v(zi). (4.3)

26

That is, the three nodal variables map any shape function to its values at
the vertices of the triangle.

More complicated nodal variables include partial derivative values at cer-
tain points, and integrals of the function over the interior of the domain with
some weight function. Kirby et al. [17] (Chapter 3 of [18]) provide extensive
coverage of finite elements.

The nodal basis for a finite element is a basis (φj)j=1,...,k for P such that
Ni(φj) = δij where δ is the Kronecker delta. In other words, the nodal basis
is a set of functions such that every element of P is a linear combination
of these functions, and such that each function “triggers” exactly one of the
nodal variables.

4.3 Reference elements
Instead of constructing finite elements on arbitrary domains directly, we con-
struct such elements on reference domains, such as the triangle with vertices
(0, 0), (1, 0) and (0, 1), or the tetrahedron with vertices (0, 0, 0), (1, 0, 0),
(0, 1, 0) and (0, 0, 1). We then define elements on arbitrary domains in terms
of these reference elements.

Let the reference element be (K̂, P̂ , N̂), and let the domain of interest
be K. (We distinguish notationally between physical-space and reference-
space quantities by adding “hats” to the latter.) We suppose that there is
a smooth bijection F from K̂ to K whose Jacobian DF is invertible on K̂.
This quantity, DF , is the Jacobian in whose cancellation we are interested.
In many cases, F can be chosen to be affine, so that DF is constant; Jacobian
cancellation is most important in cases where F is not affine.

We must also choose a mapping F from functions in P̂ (which are on
K̂) to functions on K that will form P . The functions in P̂ usually form a
subspace of a particular Sobolev space on K̂, say H(div; K̂) for concreteness.
If the mapping F is an isomorphism between H(div; K̂) and H(div;K), then
P will form a subspace of H(div;K), and these two subspaces will have the
same dimension.

In most cases, the obvious identity mapping

F id(v) = v ◦ F−1 (4.4)

suffices: it is an isomorphism between Hm(K̂) and Hm(K) for all m. How-
ever, it is not an isomorphism between H(div; K̂) and H(div;K) or between
H(curl; K̂) and H(curl;K), so when dealing with these function spaces, it is
beneficial to work instead with mappings that are: the contravariant Piola

27

mapping Fdiv and the covariant Piola mapping F curl. These three map-
pings (F id, Fdiv and F curl) are discussed in the next three sections, following
Rognes, Kirby, and Logg [23] and Boffi, Brezzi, and Fortin [7].

4.4 Identity mapping

The identity mapping between functions on the reference domain K̂ and
functions on the physical domain K is

F id(v̂) = v̂ ◦ F−1. (4.5)

This means that if v = F id(v̂) and x = F (x̂), then

v(x) = v̂(x̂). (4.6)

The map F id is an isomorphism from Hm(K̂) to Hm(K).
When considering gradients, it may be helpful to distinguish notation-

ally between the gradients of physical-space functions and the gradients of
reference-space functions, even though this is strictly unnecessary. We do so
by denoting the latter by ĝrad. The following result (equation 2.1.60 in Boffi,
Brezzi, and Fortin [7]) relates grad v and ĝrad v̂:

grad v(x) = (DF (x̂))−T ĝrad v̂(x̂). (4.7)

This is easily shown for scalar- or vector-valued v, as follows. Note that
here we mix notation, using D[v] to represent (grad v)T , the usual Jacobian
matrix of v; elsewhere we reserve D for “the” Jacobian DF . We have

D[v](x) = D[v̂ ◦ F−1](x) (4.8)
= D[v̂](F−1(x))D[F−1](x) (4.9)
= D[v̂](x̂)D[F−1](F (x̂)) (4.10)
= D[v̂](x̂)[DF (x̂)]−1 (4.11)

using the chain rule and the fact that F is invertible everywhere. Taking
transposes, we obtain (4.7).

This is easily extended to tensor-valued v using the generalised dot prod-
uct:

grad v(x) = dot
(
ĝrad v̂(x̂), (DF (x̂))−1

)
. (4.12)

28

4.5 Contravariant Piola mapping
The contravariant Piola mapping is

Fdiv(v̂) = 1
detDF DF v̂ ◦ F−1 (4.13)

where detA means the determinant of the matrix A and v̂ is assumed to be
take values in Rn. This means that if v = Fdiv(v̂) and x = F (x̂), then

v(x) = 1
detDF (x̂) DF (x̂) v̂(x̂). (4.14)

The map Fdiv is an isomorphism from H(div; K̂) to H(div;K), which ex-
plains the notation Fdiv.

Note that we define Fdiv with the determinant of the Jacobian and not
its absolute value, unlike much of the literature, including Boffi, Brezzi, and
Fortin [7]. This follows the convention in UFL, which is explained by Rognes,
Kirby, and Logg [23]. When we quote results from Boffi, Brezzi, and Fortin
[7], the results are often adjusted accordingly by the sign of the determinant
of the Jacobian.

The contravariant Piola mapping is usually used for functions in H(div),
and the natural derivative operator on such functions is the divergence.
Again, we distinguish between the reference-space and physical-space diver-
gences; the former will be written d̂iv. The appropriate result is equation
2.1.71 in Boffi, Brezzi, and Fortin [7], adjusted for the definition of Fdiv:

div v = 1
detDF d̂iv v̂. (4.15)

This is easily shown for affine F . Letting tr denote the trace operator,
and J the constant value of DF , we have

div v(x) = tr (D[v](x)) (4.16)

= tr
(
D
[1
detDF DF v̂ ◦ F−1

]
(x)
)

(4.17)

= 1
det J tr

(
J D

[
v̂ ◦ F−1

]
(x)
)

(4.18)

= 1
det J tr

(
J D[v̂](x̂) J−1

)
(4.19)

= 1
det J tr (D[v̂](x̂)) (4.20)

= 1
det J d̂iv v̂(x̂). (4.21)

29

In (4.19) we have reused (4.8)-(4.11), and in (4.20) we have used the fact
that tr(ABA−1) = tr(B) for any square matrices A and B, A invertible.

For non-constant DF , the proof is much more subtle; Boffi, Brezzi, and
Fortin [7] defer it to Raviart and Thomas [22].

The mapping Fdiv is easily extended for tensor-valued functions as

Fdiv(v̂) = 1
detDF dot (DF, v̂) ◦ F−1. (4.22)

The result (4.15) holds unchanged for such functions. For example, let v be
a two-dimensional tensor with the second dimension matching the number
of spatial dimensions. Then the entries of div v are given by

(div v)i = div vi∗ (4.23)

= 1
detDF d̂iv v̂i∗ (4.24)

=
(1

detDF d̂iv v̂
)
i
, (4.25)

where we have used vi∗ to denote the vector of elements (vij)j=1,...,n.

4.6 Covariant Piola mapping
The covariant Piola mapping is

F curl(v̂) = DF−T v̂ ◦ F−1 (4.26)
where n = 3 and v̂ is assumed to take values in R3.

Again, this means that if v = F curl(v̂) and x = F (x̂), then
v(x) = DF−T (x̂) v̂(x̂). (4.27)

The map F curl is an isomorphism from H(curl; K̂) to H(curl;K).
The derivative operator naturally associated with this mapping is the

curl. Once again, we distinguish between the curls of physical-space and
reference-space functions, denoting the latter by ĉurl. The appropriate result
is equation 2.1.92 in Boffi, Brezzi, and Fortin [7], who defer proof to Girault
and Raviart [14]:

curl v = 1
|detDF |DF ĉurl v̂. (4.28)

We do not have to worry about the general tensor case, as in UFL one may
only take the curl of a vector. However, one can take the curls of functions
from R2 to R, and from R2 to R2. In the former case, the mapping F curl

does not make sense, as v and v̂ would take values in different spaces. In
the latter case, the mapping does make sense, and it is possible that (4.28)
might be extended for this situation, but this extension was not attempted.

30

4.7 Jacobian cancellation
If v = Fdiv(v̂), then div v is given by

div v = 1
detDF d̂iv v̂, (repeat of 4.15)

which does not involve the Jacobian matrix or its inverse. This occurs be-
cause the inverse Jacobian matrix that occurs in the transformation Fdiv is
cancelled, roughly speaking, by a Jacobian matrix that emerges from the
change of variables F .

Similar Jacobian cancellations can occur elsewhere. Boffi, Brezzi, and
Fortin [7] give results such as the following: for v = F id(v̂) and q = Fdiv(q̂),∫

K
q · grad v dx = ±

∫
K̂
q̂ · ĝrad v̂ dx̂ (4.29)

(2.1.72 in [7]) and, with u = F curl(û),∫
K
u · q dx = ±

∫
K̂
û · q̂ dx̂. (4.30)

Here we have written ± for the sign of the determinant of the Jacobian,
which must be added to the results from [7] because of our definition of
Fdiv, without the absolute value. Note that in these two equations, the
determinant of the Jacobian has been cancelled too, except for its sign.

These identities can be derived from the rules provided above as follows:
for (4.29), we have

q(x) · grad v(x) = q(x)T grad v(x) (4.31)

=
[

1
detDF (x̂)DF (x̂)q̂(x̂)

]T [
(DF (x̂))−T ĝrad v̂(x̂)

]
(4.32)

= 1
detDF (x̂)(q̂(x̂))T (DF (x̂))T (DF (x̂))−T ĝrad v̂(x̂) (4.33)

= 1
detDF (x̂)(q̂(x̂))T ĝrad v̂(x̂) (4.34)

= 1
detDF (x̂)(q̂(x̂)) · ĝrad v̂(x̂) (4.35)

and so∫
K
q · grad v dx =

∫
K̂
q(x) · grad v(x)|detDF (x̂)| dx̂ (4.36)

=
∫
K̂

1
detDF (x̂)(q̂(x̂)) · ĝrad v̂(x̂)|detDF (x̂)| dx̂ (4.37)

31

= ±
∫
K̂

(q̂(x̂)) · ĝrad v̂(x̂) dx̂. (4.38)

In the last step, the sign of the determinant of the Jacobian is brought outside
of the integration, as it is constant on K̂.

Similarly, for (4.30), we have

u(x) · q(x) =
[
DF−T (x̂)v̂(x̂)

]T [1
detDF (x̂)DF (x̂)q̂(x̂)

]
(4.39)

= 1
detDF (x̂)(v̂(x̂))T (DF (x̂))−1DF (x̂)q̂(x̂) (4.40)

= 1
detDF (x̂) v̂(x̂) · q̂(x̂) (4.41)

and so ∫
K
u(x) · q(x) dx =

∫
K̂
u(x) · q(x)|detDF (x̂)| dx̂ (4.42)

= ±
∫
K̂
v̂(x̂) · q̂(x̂) dx̂. (4.43)

These two cases illustrate that not all Jacobian cancellation occurs di-
rectly, as in the divergence of an Fdiv-mapped function (4.15). The simplifi-
cations in these short proofs are not obvious to a computer algebra system,
and if they are desired, they must be sought out. This sort of Jacobian can-
cellation was implemented as part of this project, as described in Section 6.5.

32

Chapter 5

Unified Form Language

This chapter discusses the representation of variational forms in Unified Form
Language (UFL), and the algorithms by which spatial derivatives, functional
derivatives and pull-backs are applied to these forms. This lays the ground-
work for Chapter 6, which discusses the modifications and additions made
to these algorithms to allow Jacobian cancellation. Everything presented in
this chapter thus relates to UFL before these modifications and additions, or
to UFL in general, both before and after this work.

5.1 Specifying forms
The objects of interest in UFL are variational forms as described in Section 2
of Alnæs et al. [3]. A variational form is a mapping from a product of function
spaces to the reals.

These function spaces are divided into argument spaces and coefficient
spaces. A form is linear in its arguments, but potentially nonlinear in its
coefficients. Note the potential confusion in that we separate the arguments
to a form (using the word “argument” in its usual mathematical meaning)
into arguments (now using the term in the specific sense just mentioned) and
coefficients. Coefficients represent functions in terms of which the PDE is
parameterised, such as the heat source over the domain. There are usually
just two arguments, the test and trial functions.

A form in UFL is a sum of integrals, each of which is over one of three
possible domains: the interiors of the cells of the finite element mesh, the
exterior facets of the mesh, or the interior facets of the mesh. For simplicity,
we focus on integrals over the interiors of the cells.

Each integrand must be a scalar-valued expression. We are interested in
the functional derivatives and pull-backs of forms, but, since forms are sums

33

of integrals, and differentiation and pull-backs pass through both summa-
tion (by linearity) and integration (by assumptions of smoothness), we often
consider expressions rather than forms.

To define expressions and forms in UFL, one typically starts by importing
all the relevant names:

from ufl import *

In order to form useful expressions in UFL, we need first to construct
finite elements. For simplicity, we can do this on a single cell. First, we
specify the cell itself:

cell = triangle

Alternatively, we might specify a tetrahedron, for a three-dimensional do-
main.

In either case, finite elements can now be specified, for example as follows:

cg_element = FiniteElement (’CG’, cell , degree =2)
rt_element = FiniteElement (’RT’, cell , degree =1)

This forms two finite elements on the cell. In the first, CG stands for Con-
tinuous Galerkin: the finite element function space consists of scalar-valued
second degree polynomials on the cell (and that, if we had more than one cell,
would be continous over cell boundaries). This space uses the identity map-
ping. In the second, RT stands for Raviart-Thomas: this H(div)-conforming
element provides vector-valued functions on the cell, and uses the contravari-
ant Piola mapping.

We create a pair of coefficients and an arguments like this:

q = Coefficient (rt_element)
f = Coefficient (cg_element)
v = Argument (cg_element , 0)

Coefficients are automatically numbered, while arguments must be numbered
manually. Arguments 0 and 1 can also be created by TrialFunction and
TestFunction, but we prefer to number arguments manually, since they may
not have interpretations as test and trial functions.

We can now create forms in an obvious way: the form

a(q, f) =
∫
K
q · grad f dx (5.1)

is constructed by

a = dot(q, grad(f)) * dx

34

The multiplication by dx means an integral over the interiors of the cells.
This is the form for which final results were displayed in Section 1.3, and
which will be discussed further in Section 7.1.

UFL forms and expressions are expression trees, and can be converted to
a graphical form. In particular, UFL includes utilities to convert them to
the popular DOT graph description language, from which the dot program
can convert them to an image format. The expression tree for a is shown
in Figure 5.1. We use UFL’s “compact” representation, and replace UFL’s
representations of the coefficients and arguments with our variable names q,
f and v, of which UFL is unaware.

Functional derivatives can now be formed using derivative: the func-
tional derivative of a with respect to f in the direction v,

∂af (q, f ; v) (5.2)

is specified in UFL by
a_prime = derivative (a, f, v)

We take derivatives with respect to coefficients because forms and expres-
sions may be nonlinear in them; the directions are arguments because the
derivative is linear in the direction. The expression tree for a_prime is shown
in Figure 5.2.

Functional derivatives are represented by the CoefficientDerivative
class in UFL. The first operand is the expression being differentiated. The
second and third operands are the coefficient with respect to which the deriva-
tive is being taken, and the direction of the derivative; each object can in
fact represent several differentiations with respect to different coefficients,
so these operands are lists. The fourth operand represents any explicitly
specified relationships between the differentiation coefficient and any other
coefficients in the form.

Note that the functional derivative has not yet been simplified: it is akin
to the expression d

dxx
2. The process akin to converting this to 2x is called

applying the functional derivative, and is discussed in the next section.

35

Form a

Cell integral everywhere

dot

q

L

grad

R

f

Figure 5.1: The expression tree for a(q, f).

36

Form a

Cell integral everywhere

CoefficientDerivative

dot

op0

ExprMapping

op3

ExprList

op2

ExprList

op1

grad

L

grad

R

v_1

v_0

w_0

Figure 5.2: The expression tree for ∂af (q, f ; v).

37

5.2 Computing form data
Once a form has been specified in UFL, it must have various tranformations
applied in order to prepare it for processing by a form compiler. The function
compute_form_data performs this series of transformations. In this section,
we perform the relevant transformations individually to examine their effects.
We use UFL without any of the modifications added in this project.

5.2.1 Algebra lowering
The first step of compute_form_data is to perform algebra lowering: to
rewrite the form such that it does not contain nodes such as dot products,
inner products, cross products, divergences, curls, matrix transposes, matrix
inverses, matrix determinants and cofactor matrices.

The expression tree for our example form, following algebra lowering,
is too large to display in its entirety, but the lowered form of the original
integrand, q · grad f , is displayed in Figure 5.3.

Starting at the bottom of the tree, we have q and grad f . The next nodes
up, indicated by [], are called Indexed by UFL: they “split up” the vector
quantities q and grad f into their components qi8 and (grad f)i8 . The next
node forms the products of these components, and the final node sums these
products, thus representing ∑

i8

qi8(grad f)i8 , (5.3)

a lowered version of q · grad f .

5.2.2 Applying derivatives
Applying derivatives means creating an equivalent expression in which deriva-
tives (functional or spatial) have been pushed towards the leaves of the
expression tree as far as possible. In particular, after the application of
derivatives, functional derivatives should be eliminated and gradients should
operate only on coefficients, arguments or other gradients.

The result of applying the derivatives in our example form is shown in
Figure 5.4.

If we had attempted to apply derivatives before performing algebra low-
ering, we would have received an error: “Missing differentiation handler for
type Dot. Have you added a new type?” Derivative application was only
supported for types that algebra lowering allowed to remain.

38

*

[]

R

[]

L

q i_8

f

grad

L

i_8

R

∑

L

i_8

R

L R

Figure 5.3: The expression tree for the integrand q · grad f after algebra
lowering.

39

Form a

Cell integral everywhere

∑

*

L

i_8

R

[]

R

grad

L

R

[]

L

v

q

R L

Figure 5.4: The expression tree for ∂af (q, f ; v) after the application of deriva-
tives.

40

5.2.3 Applying pull-backs
The next step of compute_form_data is to pull back functions.

In mathematical terms, we have a mapping F ∈ {F id,Fdiv,F curl} be-
tween functions on the reference space v̂ and functions on the physical space
v = F(v̂). In UFL terms, the reference-space function associated with a
physical-space coefficient or argument is represented by a ReferenceValue
wrapping the coefficient or argument.

In our example form, the node for q is replaced by the set of nodes shown
in Figure 5.5.

Near the bottom of the tree, the Jacobian J and its determinant detJ
can be seen, each represented by its own type. The Jacobian is split into
its components, each of which is multiplied by one over the determinant;
the components are then rejoined in the ComponentTensor node indicated
by][and split up again. On the right, we can see the reference value of
q (that is, q̂), which is also split into its components. The combination of
the product, single-indexed sum and ComponentTensor at the top of the tree
constitutes a matrix multiplication expressed component-wise. This large
tree thus accurately represents

q = 1
detDF DF q̂. (5.4)

Since v uses the identity mapping, it is converted directly to its reference
value.

5.2.4 A second application of derivatives
The application of pull-backs has left us with the physical-space gradient of
the reference value of v. This is not a meaningful mathematical concept;
instead, it represents a halfway stage in the conversion

grad v → dot
(
ĝrad v̂, (DF)−1

)
.

The remainder of this conversion is achieved by a second application of deriva-
tives. While this call also pushes derivative operators towards the leaves of
the expression tree, its essential effect is to convert physical-space gradients
into reference-space gradients.

The transformed version of the subtree for Grad(v) is displayed in Fig-
ure 5.6.

The lower right subtree is the reference gradient of the reference value of
v; that is, ĝrad v̂. On the left, the inverse Jacobian K is also evident. These
two trees are combined by the component-wise representation of a matrix
multiplication.

41

∑

i_{16}

R

*

L

[]

i_{15}, i_{16}

R

][

L

q

i_{15}

[]

J

L

i_{13}, i_{14}

R

detJ

*

L

/

R

[]

ReferenceValue

L

i_{16}

R

1.0

R L

L

i_{13}, i_{14}

R

L R

][

L R

Figure 5.5: The pulled-back representation of q.

42

[]

K

L

i_{20}, i_{19}

R

*

L

[]

R

][

i_{19}

R

∑

L

ReferenceGrad

L

i_{20}

R

ReferenceValue

v

i_{20}

L R

Figure 5.6: The pulled-back representation of v, after the second application
of derivatives.

43

5.2.5 Applying integral scaling
The final step of the conversion to reference element quantities, and the last
relevant step of compute_form_data, is to apply integral scaling; that is, to
add the factor |detDF |, which arises from the change of variables, to the
integrands of integrals over the interiors of cells.

The final version of the example form, after this is done, is shown in
Figure 5.7.

The two subtrees from Figures 5.5 and 5.6 are evident, as is (near the
top) the multiplication by the absolute value of the Jacobian determinant
and a quadrature weight factor. The textual representation of the integrand
in this figure was shown as Listing 1 in Chapter 1.

44

Form a

Cell integral everywhere

*

∑

R

*

L

detJ

i_8

R

*

L

i_{11}, i_{12}

q

i_{12}

[]

J

L

i_9, i_{10}

R

*

[]

L

[]

R

[]

i_{18}

R

ReferenceGrad

L

][

∑

L

i_{17}

R

R

][

L

i_{11}

v

[]

R

][

L

ReferenceValue

RL

*

L

/

R

weight

L

Abs

R

*

R

[]

L

1.0

∑

R

L

[]

R L

i_{18}

detJ

ReferenceValue

L

R

i_{18}, i_{17} K

L R

R L

R L

LR

R L

Figure 5.7: The final representatin of ∂af (q, f ; v).

45

5.3 Implementation of form transformations
In this section, we discuss the implementation of the form transformations
described above, modifications to which will be described in Chapter 6.

The algebra lowering, derivative application and pull-back form trans-
formations all use the same structure, the core of which is the the function
map_expr_dags and the class MultiFunction. Here DAG means “directed
acyclic graph”; the expression trees are DAGs.

Each subclass of MultiFunction represents a transformation on UFL
expressions. Each of these subclasses has methods, called handlers, named
after UFL expression types; the superclass provides an exception-generating
default handler.

If the expression type has no operands (e.g. an argument, a coefficient,
or a fixed numerical value), then the method has two arguments: the multi-
function itself, and the expression. The return value is the transformed ex-
pression. For example, the application of the gradient to a coefficient is given
by the following method in the GradRuleset subclass of MultiFunction:

def coefficient (self , o):
if is_cellwise_constant (o):

return self. independent_terminal (o)
return Grad(o)

These handlers are typically uninteresting; in this one, the gradient of the
coefficient is left unchanged, unless the coefficient is constant, in which case
the gradient is zero.

If the expression type has operands, then the method has one extra ar-
gument for each operand, which represents the transformed operand. For
example, the handler for sums in GenericDerivativeRuleset, which pro-
vides default handlers for the application of all derivative types, is:

def sum(self , o, da , db):
return da + db

This expresses that the derivative of a sum is always the sum of the deriva-
tives.

A multi-function method for an expression type with operands can have
just two arguments, in which case the expression type is a cut-off type for
that transformation.

The transformation implied by a multi-function is applied to a list of UFL
expressions by calling the function map_expr_dags. The arguments to this
call are an instance of the multi-function and the list of expressions. For each
expression, a list is created of the nodes of that expression in post-order, so

46

that any operator appears after its operands. This avoids recursion. Then,
for each node in the list that is not of a cut-off type, the appropriate handler
is called, and the transformed result is stored. At the start of the list, near the
leaves of the expression tree, the nodes typically have no operands; later in
the list, when processing nodes that have operands, the transformed operands
are passed to the handler as necessary. The transformed version of the last
element of the list is the transformed version of the original expression.

An expression type should be marked as a cut-off type for a particular
transformation if it is impossible to express the transformed expression as
a function of the transformations of its operands. Before this project, cut-
off types were not particularly noticeable in the transformations that we
consider, but they are important for this work. For example, the divergence
of a dot product cannot be expressed as a function of the divergences of the
operands, and so the dot product will be a cut-off type for the application of
divergences.

An optional third argument to map_expr_dags enables (by default) or dis-
ables a compression algorithm, in which the transformed results are inserted
into and extracted from a dictionary in such a way that, upon returning,
there is no more than one representation in memory of any sub-expression of
any of the expressions.

The function map_expr_dags is wrapped by a couple of other functions
and a lambda to eventually produce map_integrand_dags, which takes a
multi-function and a form, and applies the multi-function transformation to
the integrands of each of the integrals constituting the form.

A typical transformation, then, consists of a subclass of MultiFunction
for which methods are overridden for all the relevant expression classes,
and a function that wraps the creation of this multi-function and a call to
map_integrand_dags.

Algebra lowering follows this pattern in a very straightforward way, leav-
ing most nodes unchanged, but rewriting nodes involving vector operators.

The application of function pull-backs needs to transform only argument
and coefficient nodes, so the associated multi-function has just a single non-
trivial method, named for the common parent of arguments and coefficients.

The application of derivatives also follows the pattern, but in a more
complicated fashion, because it must deal with various types of derivatives.
The traversal of the tree proceeds as follows: apply_derivatives creates
a DerivativeRuleDispatcher which traverses the tree in post-order, not
transforming nodes at all until it encounters a node that represents a deriva-
tive: a gradient, a divergence, a curl, a reference gradient, a variable deriva-
tive (which we do not deal with at all) or a functional derivative. Once it
encounters such a node, it instantiates another subclass of MultiFunction

47

to deal with this type of derivative (GradRuleset, say), and passes this and
the derivative node to map_expr_dags. This call then starts a nested traver-
sal of the associated subtree, performing the appropriate transformations.
Once the nested traversal has reach the original derivative node, the original
traversal continues.

Integral scaling does not follow this pattern at all, as it needs only to add
a factor to each integrand.

5.4 Operations in computing form data
The function compute_form_data weaves together algebra lowering, deriva-
tive application, function pull-backs, integral scaling and much else besides.
Listing 3 shows the structure of these operations from the start of the func-
tion call until the last call to any function affected by this work.

This function’s primary argument is a form, but it also has many optional
arguments (the do... flags) allowing one to specify precisely which opera-
tions are performed on that form. When compute_form_data is called by
TSFC, Firedrake’s form compiler, all of these flags are set to true by default,
and the geometry types to be preserved are cell volumes and facet areas.

We are able to ignore the calls to functions not affected by this work, and
may also ignore the last call to apply_derivatives (if it had any effect for
us, it would not be dependent on a otherwise unimportant flag). Thus the
important control path to consider is the following:
form = apply_algebra_lowering (form)
form = apply_derivatives (form)
form = apply_function_pullbacks (form)
form = apply_integral_scaling (form)
form = apply_derivatives (form)

The path consisting of lines 1 and 2 and the path consisting of lines 1, 2, 3
and 5 are also possible.

It is helpful for us to consider the effects of these operations on forms.
These effects are shown in Table 5.1 for the largest set of operations. For each
of three types of nodes or subtrees (vector operators, unapplied derivatives,
and reference values) the table indicates whether or not they are present in
the form at the start of the call to compute_form_data (“Original form”),
after the call to apply_algebra_lowering, and so on. Note that applying
function pull-backs leads to terms such as Grad(ReferenceValue(f)), which
we consider to be unapplied derivatives.

48

form = apply_algebra_lowering(form)
form = apply_derivatives(form)
form = group_form_integrals(form , self.original_form.ufl_domains ())
if do_estimate_degrees:

form = attach_estimated_degrees(form)
if do_apply_function_pullbacks:

form = apply_function_pullbacks(form)
if do_apply_integral_scaling:

form = apply_integral_scaling(form)
if do_apply_default_restrictions:

form = apply_default_restrictions(form)
if do_apply_geometry_lowering:

form = apply_geometry_lowering(form , preserve_geometry_types)
if do_apply_function_pullbacks or do_apply_geometry_lowering:

form = apply_derivatives(form)
Neverending story: apply_derivatives introduces new Jinvs ,
which needs more geometry lowering
if do_apply_geometry_lowering:

form = apply_geometry_lowering(form , preserve_geometry_types)
Lower derivatives that may have appeared
form = apply_derivatives(form)

Listing 3: The control flow of compute_form_data as it stood before the
start of this project.

Table 5.1: The effects of the successive operations of the original
compute_form_data. VO, UD and RV stand for “vector operators”, “un-
applied derivatives” and “reference values” respectively.

VO UD RV
Original form 3 3 7

Apply algebra lowering 7 3 7

Apply derivatives 7 7 7

Apply function pull-backs 7 3 3

Apply integral scaling 7 3 3

Apply derivatives 7 7 3

49

Chapter 6

Structure preservation and
Jacobian cancellation

This chapter discusses the changes made to Unified Form Language during
the course of this project. These changes enable Jacobian cancellation in
UFL.

6.1 Choice of vector operators
The objective of this project was to preserve certain vector- or tensor-related
operations through the application of derivatives and function pull-backs,
and to apply the Jacobian cancellations that this preservation allows.

It is not obvious which operators should be preserved. Clearly, given the
pull-back formulae (4.15) and (4.28), the divergence and curl operators must
be preserved. The gradient operator was already preserved. It is clear that
the dot product must be preserved, as this is necessary to allow Jacobian
cancellation. To this list, we add the inner product, which is sometimes used
as a synonym for the vector dot product, and is in general highly tractable.

It is tempting to add also the nabla-gradient and nabla-divergence op-
erators, as the appropriate manipulations are obvious given those for the
gradient and divergence operators. However, this leads to significant near-
repetition of the code for the non-nabla operators. Additionally, in the usual
cases (scalar and vector arguments, respectively), the nabla-gradient and
nabla-divergence are identical to the gradient and divergence, and are re-
duced to them before the application of derivatives and function pull-backs.
Finally, it appears from the Firedrake tests that the nabla operators are used
much more seldom than the usual operators. In conclusion, it appears that
preserving the nabla operators offers too little advantage to justify developing

50

and maintaining the appropriate code, and we do not preserve them.
Thus, this project adds the preservation of the following operators through

the application of derivatives and function pull-backs: the dot and inner
products, and the divergence and curl operators. In the sequel we loosely
refer to these and the gradient (which is affected by this work) as the “vector
operators” for brevity, or the “tractable vector operators” if it necessary to
distinguish them from the vector operators that are not preseved, such as
the cross product.

6.2 Algebra lowering
In order to allow the application of derivatives and function pull-backs while
vector operators are still present in expressions, algebra lowering is split into
two parts, one before these operations and one after. The tractable vector
operators are removed in the second round of algebra lowering, after the
application of derivatives and pull-backs. The intractable vector operators
(matrix inverses, cross products and so on) are removed immediately.

The implementation consisted of splitting the LowerCompoundAlgebra
multi-function into LowerIntractableCompoundAlgebra, which deals with
the intractable operators of the first round, and LowerAllCompoundAlgebra,
which inherits from LowerIntractableCompoundAlgebra and deals addi-
tionally with the preserved vector operators. These two multi-functions are
then packaged into the functions apply_minimal_algebra_lowering and
apply_algebra_lowering.

6.3 Applying derivatives
The second step in processing a form is to apply the derivatives present in
that form, which for our purposes are the functional derivatives and the
spatial derivatives grad, div and curl.

6.3.1 Functional derivatives
Dot and inner products

The implementations of the application of functional derivatives to dot prod-
ucts and inner products are direct representations of the rules (3.32) and
(3.33), for example the following method of GateauxDerivativeRuleset:
def dot(self , o, fp , gp):

f, g = o. ufl_operands

51

return Dot(fp , g) + Dot(f, gp)

In each case, the arguments passed to the handler are the rule-set itself, the
original product node, and the functional derivatives of the two arguments;
in each case, the result is the sum of the two appropriate products.

Gradient, divergence and curl

Prior to this project, the application of a functional derivative to a gradient
was already handled, in a complicated fashion. This is now replaced by the
following direct implementation of (3.19):
def grad(self , o, op):

if is_cellwise_constant (op):
return self. independent_operator (o)

return apply_derivatives (Grad(op))

The functional derivative of the gradient of a function is transformed to the
gradient of the functional derivative of the function.

There are, however, two additional features. First, there is a check for
the case where the application of the functional derivative to the argument
of the gradient has resulted in a zero function, in which case the gradient is
also zero (independent_operator returns a zero of the appropriate size).

Second, the new gradient is applied using apply_derivatives. In most
cases, the new argument to the gradient will simply be an Argument, and
so this application will have no effect. There are, however, at least two
cases when the application is necessary in order for apply_derivatives to
complete successfully:

1. It is possible in UFL to take a functional derivative with respect to a
component of a vector coefficient, like this:
derivative (grad(u), u[0], w)

where u is a Coefficient on a vector finite element and w is a scalar
Argument. In the body of derivative, this is converted to the func-
tional derivative of grad(u) with respect to u in the direction of a
ListTensor whose first element is w and whose other elements are ze-
ros. Thus the application of the functional derivative will result in the
gradient of this ListTensor. This gradient must be passed through
the ListTensor by a nested call to apply_derivatives in order for
the final result to have all its derivatives fully applied.

2. When taking a functional derivative, it is possible to explicitly specify
relationships between apparently independent coefficients in a form by

52

specifying the coefficient_derivatives argument to derivative.
In this case, the application of the functional derivative to the gradient
of a coefficient can result in the gradient of the product of an argu-
ment and another coefficient. Specifically, suppose that we have coef-
ficients f and h, and that we take the functional derivative of grad(f)
with respect to h in the direction w, specifying that the derivative of
f with respect to h is df. Then, applying derivatives, the functional
derivative of f is w*df, and so the functional derivative of grad(f) is
grad(w*df). The gradient must be applied to this product by a nested
call to apply_derivatives.

There may also be other cases in which the gradient must be applied, so
we simplify our code by always calling apply_derivatives after wrapping
the result of a functional differentation in a gradient. This unified handling
risks inefficiency, but relieves us of the burden of identifying cases in which the
gradient must be applied, which may be complicated by the capability to take
function derivatives with respect to tuples of coefficients (a possibility that
is addressed directly in the previous implementation, but which is naturally
handled correctly here).

The implementations of the applications of functional derivatives to di-
vergences and curls correspond directly to that for the gradient, using (3.20)
and (3.21). Again, nested calls to apply_derivatives are used.

6.3.2 Spatial derivatives: Gradient

The application of the gradient to most existing expression types was already
handled before the start of this project, so implementations are only needed
for the vector operators. Additionally, the application of the gradient to a
ReferenceValue is changed, but as this forms part of the pull-back process
it is discussed in Section 6.4.3.

Dot and inner products

In the usual case, where the arguments are vectors, the gradient of a dot
product is given by (2.25); in the general case, it is given by (2.22). The
implementation of these rules is shown in Listing 4 to give an example of the
associated index manipulations.

The gradient of an inner product is given by (2.43) if the arguments are
both vectors (a case identical to the dot product), or (2.42) in general. The
implementation is very similar to that for the dot product.

53

def dot(self , o, grad_f , grad_g):
f, g = o.ufl_operands
if len(f.ufl_shape) == 1 and len(g.ufl_shape) == 1:

return Dot(g, grad_f) + Dot(f, grad_g)
else:

fi = indices(len(f.ufl_shape)-1)
gi = indices(len(g.ufl_shape)-1)
grad_index = indices (1)
sum_index = indices (1)
term1 = (grad_f[fi + sum_index + grad_index]

* g[sum_index + gi])
term2 = (f[fi + sum_index]

* grad_g[sum_index + gi + grad_index])
return as_tensor(term1 + term2 ,

fi + gi + grad_index)

Listing 4: The application of the gradient to a dot product.

Gradient, divergence and curl

The previous implementation of the application of a gradient to a gradient
is retained. It is notable that this implementation makes the inner gradient
a cut-off node, taking into account that the inner gradient will always have
been applied so that its operand is an argument, a coefficient or a third
gradient.

The gradients of divergences and curls are not implemented; they are not
used in Firedrake’s tests.

6.3.3 Spatial derivatives: Divergence

The rules for applying the divergence operator are all new. Fortunately, in
most ways they follow the pattern of the handling of gradients; this section
highlights the non-trivial implementations. The handling of the divergence
of a ReferenceValue is discussed in Section 6.4.3 because it forms part of
the pull-back process.

Coefficients and arguments

These are cut-off nodes; their divergences are left as such (except in the case
of a cellwise constant coefficient, when the divergence is reduced to zero).

54

Tensors and indexing

The handling of ListTensor, ComponentTensor and Indexed nodes, which
handle the joining of scalars into tensors and the splitting of tensors into
scalars, has some complexity, the upshot of which is that only in one case (a
ListTensor of non-scalar quantities) can the divergence be passed through;
in the other cases, the divergence is lowered to a sum of gradient components
and applied in that form.

Gradient, divergence and curl

The divergence of the gradient of a function is its Laplacian. The divergence
operator cannot pass through the gradient operator, though, so gradients are
cut-off nodes.

The divergence of a divergence is not supported.
The divergence of the curl of any function is zero, which is reflected in

the implementation.

Dot and inner products

The divergence of a dot product is handled in three cases, according to (2.33),
(2.38) and (2.35).

Since the result of an inner product is always a scalar, and the divergence
of a scalar is not defined, there is no need to handle this case.

6.3.4 Spatial derivatives: Curl
The majority of quantities are handled in the same way for curl as they are
for the divergence, with the obvious changes. The fact that the curl of the
gradient of any function is zero is reflected in the implementation. The curl
of a ReferenceValue is discussed in Section 6.4.3.

6.4 Applying pull-backs
The process of applying pull-backs consists of two steps: first, the pull-backs
are applied to the physical-space functions occurring in an expression, giving
reference-space functions; and then, through a call to apply_derivatives,
physical-space gradients, divergences and curls of these reference-space func-
tions are converted to reference-space gradients, divergences and curls. These
two steps are described in the following two subsections.

55

6.4.1 Function pull-backs
The function apply_function_pullbacks already implemented the pull-
backs of coefficients and arguments on finite elements that use the covariant
and contravariant Piola mappings (4.13) and (4.26). A result of the latter
implementation was demonstrated in Section 5.2.3. These implementations,
though, were based on scalar operations rather than vector operations – a
form of preemptive algebra lowering. We replace the original implementa-
tions with ones based on the dot product.

In these implementations, the input function is g, the value to be returned
is f and we have the following definitions:
r = ReferenceValue (g)
domain = g. ufl_domain ()
J = Jacobian(domain)
detJ = JacobianDeterminant(domain)
Jinv = JacobianInverse(domain)
transform_hdiv = (1.0/ detJ) * J

Each mapping is in fact handled twice: once for the case where the entire
finite element uses this mapping, and once for the case where it is used only
on part of the finite element, as may be the case on a mixed element. We
discuss only the first of these; the implementation for the other is clear.

We note here that the Jacobian cancellations described later do not work if
the coefficients and arguments are taken directly from a mixed element. This
is discussed further under the suggestions for further work, in Section 8.2.2.

For the covariant Piola mapping, the change is simple: we replace
f = as_vector (Jinv[j, i]*r[j], i)

by
f = Dot(r, Jinv)

For the contravariant Piola mapping, this is made slightly more difficult
by the factor 1

|detDF | . The Product expression type only allows its arguments
to be scalars, so we cannot directly express 1

|detDF |DF v. More precisely, we
can write
1.0/ detJ * Dot(J, r)

but this will immediately be reduced to
ComponentTensor (

Product (Indexed (Dot(J, r), MultiIndex (i ,))) ,
Division (FloatValue (1.0) , detJ)),

MultiIndex ((i ,)))

56

by the implementation of the * operator. From this expression, it would be
difficult to recognise any possible cancellation of J with a Jinv appearing
elsewhere in the form.

Accordingly, we add a new expression type ScalarTensorProduct to
UFL. It appears that this type should be used in the implementation of
*, so that 1.0/detJ * Dot(J, r) is automatically converted to
ScalarTensorProduct (

Division (FloatValue (1.0) , detJ)),
Dot(J, r))

However, this turns out to be impossible: if it were done, then scalar-tensor
products would propagate to other parts of Firedrake that do not know how
to handle them, because * is occasionally used in scalar-tensor situations
where no further algebra lowering occurs. Instead, we only introduce scalar-
tensor products when performing function pull-backs. They can be intro-
duced manually by a user, but will never be produced by *. (Unfortunately,
this means that the use of * in an expression within which there is Jacobian
cancellation can stop the recognition of this cancellation by the algorithm
described in Section 6.5, as the appropriate structure may be lost.)

Specifically, for the contravariant Piola mapping we replace
f = as_vector (transform_hdiv [i, j]*r[j], i)

with
f = ScalarTensorProduct (1.0/ detJ , Dot(J, r))

6.4.2 Special cases
There are two special cases to be considered. The first is the divergence of a
function that uses the contravariant Piola mapping, where we have

div v = 1
detDF d̂iv v̂. (repeat of 4.15)

The second is the curl of an R3-valued function that uses the covariant Piola
mapping, for which the relevant result is

curl v = 1
|detDF |DF ĉurl v̂. (repeat of 4.28)

It appears that these cases could be implemented as part of the appli-
cation of derivatives, as are the other conversions from physical-space to
reference-space derivatives. In particular, one could add these cases to the

57

handling of reference values in the multi-functions for applying divergences
and curls. However, by the point at which the associated divergence or curl
would be applied, its argument would no longer be a reference value: instead
it would be the product of the reference value with 1

detDF DF or DF−T , as
a result of the transformations of the previous section. Thus these special
cases must be handled in the same algorithmic step as the initial function
pull-backs.

Special care is taken in the implementations to ensure that reference-
space divergences and curls are not introduced: instead, the appropriate
combinations of the components of the reference-space gradient are used.
This has no apparent disadvantages, since the reference-space divergence and
curl do not allow any helpful simplifications during later transformations; and
it has the advantage that these two types do not need to be supported in
derivative application, Jacobian cancellation or algebra lowering, as they are
not used elsewhere in UFL.

6.4.3 Spatial derivatives of pulled-back functions
Following function pull-backs, forms may contain physical-space derivatives
of reference-space functions. A call to apply_derivatives replaces these
physical-space derivatives with reference-space derivatives.

Gradient

The physical-space gradient of a reference-space function was already imple-
mented before this project began. As with some of the pull-backs described
in the previous section, the work of this project was only to convert the pre-
emptively lowered expressions into their more natural forms, replacing the
implementation of Listing 5 with the one of Listing 6.

Divergence

The divergence of a reference-space function was not handled in UFL before
this project was begun, as pull-backs were performed after algebra lowering.
The case of the contravariant Piola mapping is handled directly, as described
above, so here we need only deal with the general case. However, in the
general case there is no need to treat the divergence specially, and so it
can be implemented in terms of the rule for gradients by being lowered to
an indexed sum, with a nested call to apply_derivatives to ensure that
the gradient is transformed appropriately. The implementation added to
DivRuleset is shown in Listing 7.

58

def reference_value(self , o):
grad(o) == grad(rv(f)) -> K_ji*rgrad(rv(f)) _rj
f = o.ufl_operands [0]
if not f._ufl_is_terminal_:

error("ReferenceValue␣can␣only␣wrap␣a␣terminal")
domain = f.ufl_domain ()
K = JacobianInverse(domain)
r = indices(len(o.ufl_shape))
i, j = indices (2)
Do = as_tensor(K[j, i]* ReferenceGrad(o)[r + (j,)], r + (i,))
return Do

Listing 5: The application of the gradient to a reference value prior to this
work.

def reference_value(self , o):
f, = o.ufl_operands
if not f._ufl_is_terminal_:

error("ReferenceValue␣can␣only␣wrap␣a␣terminal")
K = JacobianInverse(f.ufl_domain ())
return Dot(ReferenceGrad(o), K)

Listing 6: The application of the gradient to a reference value subsequent to
this work.

It is not immediately clear that it is worth applying the divergence in this
way rather than allowing it to remain and waiting for later algebra lower-
ing and derivative application to achieve precisely the same transformation.
However, for the clarity and brevity of compute_form_data, it is helpful
to impose the following post-condition on the call to apply_derivatives
currently under discussion: following this call, no physical-space derivative
operators remain in the expression. In fact, because the special cases of
the previous section do not introduce reference-space divergences or curls,
this can be strengthened: after application of derivatives, the only derivative
operators remaining in the expression are reference-space gradients. This
constraint is used in Section 6.7.

Curl

The curl of a reference-space function was not previously handled in UFL.
The special case of the covariant Piola mapping is covered separately, as
described in Section 6.4.2, and so, as with the divergence, the implementation

59

def reference_value(self , o):
f, = o.ufl_operands
if not f._ufl_is_terminal_:

error("ReferenceValue␣can␣only␣wrap␣a␣terminal")
return apply_derivatives(self.div_ito_grad(o))

Listing 7: The application of the divergence to a reference value.

def reference_value(self , o):
f, = o.ufl_operands
if not f._ufl_is_terminal_:

error("ReferenceValue␣can␣only␣wrap␣a␣terminal")
return apply_derivatives(self.curl_ito_grad(o))

Listing 8: The application of the curl to a reference value.

in CurlRuleset needs only to handle the general case, in which there is no
harm in lowering curl to components of the gradient. The implementation is
shown in Listing 8.

6.5 Jacobian cancellation
The aim of this project was to recognise cases in which the Jacobian and its
inverse both emerge during pull-back, and to ensure that they are cancelled
if possible. In some cases, this cancellation is implicit. For example, we have
that for v = Fdiv(v̂),

div v = 1
detDF d̂iv v̂, (repeat of 4.15)

which is a result, roughly speaking, of the cancellation of the Jacobian emerg-
ing from converting v to v̂ with the inverse Jacobian emerging from converting
the physical-space divergence to the reference-space divergence. This rule is
directly implemented in UFL, and so the cancellation is implicit. The original
intention of this work was to implement only such implicit cancellations.

However, consider the corresponding rule for the curl of v = F curl(v̂):

curl v = 1
|detDF |DF ĉurl v̂. (repeat of 4.28)

There is no similar cancellation here.

60

Instead, we can see cancellation in the following cases: for v = F id(v̂),
q = Fdiv(q̂), and u = F curl(û) we have∫

K
q · grad v dx = ±

∫
K̂
q̂ · ĝrad v̂ dx̂ (repeat of 4.29)

and ∫
K
u · q dx = ±

∫
K̂
û · q̂ dx̂. (repeat of 4.30)

In each of these cases, the Jacobian cancellation emerges from the dot product
of two functions or their derivatives, rather than from a single derivative of
a single function.

Directly recognising these two cases in UFL expressions appears possible.
It would also be reasonable to recognise the same expressions with the argu-
ments to the dot product reversed. However, this would lead to a situation
where one would have to maintain a list of all the situations in which helpful
Jacobian cancellation occurs. This list would have to recognise that the sum
of two functions with a particular mapping is equivalent for these purposes
to a single such function; that multiplication of a dot product by a scalar is
irrelevant, and so on and so forth. It appeared preferable instead to insert
the Jacobians and recognise where they cancel.

In general, recognising cancellations in expressions is difficult. However,
this is an extremely simple cancellation: it can only occur with a dot product,
it is unlikely to occur more than once in a given expression, and we can
enumerate the four ways in which it can occur. For A and B some tensors,
and J and K the Jacobian and its inverse, we have

dot (dot (A, J), dot (K,B)) = dot (A, dot (J, dot (K,B))) (6.1)
= dot (A, dot (dot (J,K), B)) (6.2)
= dot (A, dot (I, B)) (6.3)
= dot (A,B) (6.4)

using the easily-proved associativity of the dot product, and denoting by I
the identity matrix of the same size as the Jacobian. Similarly,

dot (dot (A,K), dot (J,B)) = dot (A,B). (6.5)

If the two arguments to the dot product are vectors, then we can transpose
them without changing the result, and so there are two more ways in which
the cancellation can occur: for A and B vectors,

dot (dot (J,A), dot (B,K)) = dot
(
(dot (J,A))T , (dot (B,K))T

)
(6.6)

61

= dot (dot (A, J), dot (K,B)) (6.7)
= dot (A,B) (6.8)

and similarly
dot (dot (K,A), dot (B, J)) = dot (A,B). (6.9)

These are the only four cases in which Jacobian cancellation is known to
occur.

It appears that there should be four more cases, based on the transposes
of the Jacobian and its inverse, but in fact these are never introduced during
function pull-back: the Piola transformations and the expression (4.12) for
the gradient of an F id-mapped function involve the untransposed matrices,
and the expression (4.28) for the curl of an F curl-mapped function, which
does involve the transpose, is rewritten to use the Jacobian directly without
loss of generality.

Jacobian cancellation, being a form transformation, is naturally imple-
mented with MultiFunction and map_expr_dags as described in Section 5.3.
To understand the necessary implementation, it is helpful to consider an ex-
tension to (4.29) and (4.30) that we hope the cancellation to be successful
on: with v = F id(v̂), u = F id(û) and q = Fdiv(q̂),

q · (grad v + gradu) (6.10)
= qT (grad v + gradu) (6.11)

=
[1
detDF DFq̂

]T [
(DF)−T ĝrad v̂ + (DF)−T ĝrad û

]
(6.12)

= 1
detDF q̂

T (DF)T (DF)−T
(
ĝrad v̂ + ĝrad û

)
(6.13)

= 1
detDF q̂

T
(
ĝrad v̂ + ĝrad û

)
(6.14)

= 1
detDF q̂ ·

(
ĝrad v̂ + ĝrad û

)
. (6.15)

Expressed in terms of UFL’s dot product, we have

dot (q, grad v + gradu) = 1
detDF dot

(
q̂, ĝrad v̂ + ĝrad û

)
. (6.16)

For Jacobian cancellation to occur in this expression, at the point at which
the dot product node is processed, the algorithm must be aware that the
right-hand operand (the sum) contains an inverse Jacobian, so the tree must
be traversed in post-order, child before parent. However, once the dot prod-
uct node is processed and it is clear that the inverse Jacobian must be can-
celled in the sum, one must start another algorithm processing the sum sub-
tree in pre-order to cancel the Jacobian. This appears to result in multiple
traversals of various sub-trees.

62

def jacobian(self , o):
dim1 , dim2 = o.ufl_shape
if dim1 == dim2:

return (o, Identity(dim1), Identity(dim1), None , None)
else:

return (o, None , None , None , None)

def jacobian_inverse(self , o):
dim1 , dim2 = o.ufl_shape
if dim1 == dim2:

return (o, None , None , Identity(dim1), Identity(dim1))
else:

return (o, None , None , None , None)

def terminal(self , o):
return (o, None , None , None , None)

Listing 9: The Jacobian cancellation methods for Jacobians, their inverses,
and terminals (arguments, coefficients and similar).

In the implementation given as part of this project, we complete the
cancellation in a single post-order traversal of the tree. This is achieved by,
at each node, returning not just the node with any Jacobian cancellation
completed, but a five-tuple with the following elements:

• The node, with any Jacobian cancellation completed (call it N).

• N with any Jacobian on the left removed; if there is no Jacobian on
the left, then None. Alternatively phrased, this element of the tuple
contains N multiplied by the inverse Jacobian on the left, provided
that this results in some cancellation, or otherwise None.

• N with any Jacobian on the right removed, or None.

• N with any inverse Jacobian on the left removed, or None.

• N with any inverse Jacobian on the right removed, or None.

This implemented as the JacobianCancellation multi-function. The han-
dlers for several leaf nodes are shown in Listing 9. (Note that the implemen-
tation allows for non-square Jacobians, but does not support their cancella-
tion.)

These tuples provide the handler for dot products precisely enough infor-
mation to check for the cancellations (6.1) to (6.9). For example, for (6.1),
the handler checks if the tuple from the left-hand operand has a non-None

63

def dot(self , o, left_tuple , right_tuple):
_sjl means "sans Jacobian on the left", etc.
left , left_sjl , left_sjr , left_skl , left_skr = left_tuple
right , right_sjl , right_sjr , right_skl , right_skr = right_tuple
transpose_allowed = o.ufl_shape == ()
if left_sjr and right_skl:

return (Dot(left_sjr , right_skl),
None , None , None , None)

elif left_skr and right_sjl:
return (Dot(left_skr , right_sjl),

None , None , None , None)
elif transpose_allowed and left_sjl and right_skr:

return (Dot(left_sjl , right_skr),
None , None , None , None)

elif transpose_allowed and left_skl and right_sjr:
return (Dot(left_skl , right_sjr),

None , None , None , None)
else:

return (Dot(left , right),
Dot(left_sjl , right) if left_sjl else None ,
Dot(left , right_sjr) if right_sjr else None ,
Dot(left_skl , right) if left_skl else None ,
Dot(left , right_skr) if right_skr else None)

Listing 10: The core of the implementation of Jacobian cancellation.

third entry (a version with the Jacobian cancelled on the right) and the tu-
ple from the right-hand operand has a non-None fourth entry (a version with
the inverse Jacobian cancelled on the left); if so, then the result from the
dot product node is the dot product of those two versions, along with four
Nones. The handler for dot products, which is the core of the implementation,
is shown in Listing 10.

An extra level of indirection is required in wrapping this multi-function
because it returns tuples instead of expressions; it is wrapped first into a
function that cancels Jacobians in expressions, using map_expr_dag and dis-
carding, on completion, the four extra elements of the final tuple. Then
this function is used with map_integrands to cancel Jacobians in each in-
tegrand of a form. This does not impede the compression algorithm usu-
ally used in traversing expression trees. The top-level function is called
apply_jacobian_cancellation.

64

6.6 Jacobian determinant cancellation
Following full algebra lowering, integral scaling may be applied: each inte-
grand may be multiplied by the absolute value of the determinant of the
Jacobian, |detDF |.

Following this, an attempt can be made to cancel this factor with any fac-
tors 1

|detDF | or 1
detDF that already existed in the integrand. This algorithm,

apply_det_j_cancellation, follows the same pattern as the Jacobian can-
cellation, except that it uses a triple instead of a 5-tuple, because there are
only two ways in which cancellation can occur. The implementation is also
particularly simple because many expression types behave similarly to each
other: four types of products share an implementation, as do three indexing-
related types.

6.7 Operations in computing form data
This section discusses the changes made to the structure of compute_form
_data in the course of this project to support the operations described in the
previous sections. The original structure of compute_form_data was shown
in Listing 3.

The first and most obvious change is that the call to apply_algebra
_lowering is replaced by a call to apply_minimal_algebra_lowering, and a
call to apply_algebra_lowering is added after all the other transformations
discussed here.

The second change is the addition of apply_jacobian_cancellation.
Since this is only required if function pull-backs are applied, it is added
to the block in which apply_function_pullbacks is called. However, an
application of derivatives is necessary between the calls to apply_function
_pullbacks and apply_jacobian_cancellation, so this is added too.

Finally, after the call to apply_algebra_lowering, another call to apply
_derivatives is necessary, at least in the case that function pull-backs were
not applied.

It turns out that these are the only changes required, but this fact is not
as obvious as it seems. In particular, it depends upon our post-condition
that the call to apply_derivatives following function pull-backs reduces
all spatial derivative operators to reference gradients. If, for example, this
call left physical-space divergences of identity-mapped functions unchanged,
because there is no vector operator simplification, then another application
of derivatives and two full algebra lowerings would be required to cover the
case of such a divergence.

65

Table 6.1: The effects of the successive operations of the new
compute_form_data. IVO, TVO, UD and RV stand for “intractable vector
operators”, “tractable vector operators”, “unapplied derivatives” and “refer-
ence values” respectively.

IVO TVO UD RV
Original form 3 3 3 7

Apply minimal algebra lowering 7 3 3 7

Apply derivatives 7 3 7 7

Apply function pull-backs 7 3 3 3

Apply derivatives 7 3 7 3

Apply Jacobian cancellation 7 3 7 3

Apply integral scaling 7 3 7 3

Apply Jacobian determinant cancellation 7 3 7 3

Apply algebra lowering 7 7 3 3

Apply derivatives 7 7 7 3

The results of the sequence of operations are shown in Table 6.1.
If function pull-backs are not performed, then the full algebra lower-

ing follows immediately on from the first call to apply_derivatives, again
resulting in an expression that is free from all vector operators and from
unapplied derivatives.

66

Chapter 7

Evaluation

In this chapter, the success of Jacobian cancellation is demonstrated on three
example forms.

The first of these forms has already been discussed: Chapter 1 showed
the results of the transformations before and after this work in textual form
(Listings 1 and 2); and the effect of the transformations prior to this work
were displayed graphically in Chapter 5 (Figures 5.1 to 5.7). Section 7.1
shows the effects of the new transformations graphically. Sections 7.2 and 7.3
will show the results on two other forms textually.

In each case, let the physical spaceK, reference space K̂, and the mapping
F between them be given.

7.1 First form
Let q = Fdiv(q̂) and f ∈ H1(K). Define

a(q, f) =
∫
K
q · grad f dx (7.1)

and let ∂af (q, f ; v) be the functional derivative of a with respect to f in the
direction of v = F id(v̂) ∈ H1(K).

It was already shown, in Section 3.6.1, that

∂af (q, f ; v) =
∫
K
q · grad v dx. (7.2)

Thus the rule (4.29) is directly applicable, and we have

∂af (q, f ; v) = ±
∫
K̂
q̂ · ĝrad v̂ dx̂ (7.3)

where ± denotes the sign of the determinant of the Jacobian on K̂.
This form illustrates:

67

• Structure-preserving functional derivatives of the gradient operator and
the dot product.

• Jacobian cancellation in the dot product of an Fdiv-mapped function
and the gradient of an F id-mapped function, according to (4.29).

The representation of the form after minimal algebra lowering is shown
in Figure 7.1. This is identical to Figure 5.2, as minimal algebra lowering
has no effect on this form: the dot product is preserved.

Following the application of derivatives, then, one obtains Figure 7.2.
The representation of this form following pull-backs and the subsequent

application of derivatives is shown in Figure 7.3. The subtrees representing
the pulled-back versions of q and v use the dot product and the scalar-tensor
product, and so are much simpler than the corresponding quantities before
(Figures 5.5 and 5.6). The potential for Jacobian cancellation is clear.

The representation following Jacobian cancellation is shown in Figure 7.4,
and clearly illustrates that the cancellation has occurred.

The representation following integral scaling and Jacobian determinant
cancellation is shown in Figure 7.5. This form still depends upon the deter-
minant of the Jacobian, but only through its sign. The final form, after full
algbra lowering, is not shown.

The fully processed forms, before and after completion of this project,
were shown in Listings 1 and 2 respectively.

These listings and those in the following sections are the representations
of the integrands of these forms, with Coefficients and Arguments replaced
by their names; for example, v stands for
Argument (

FunctionSpace (
Mesh(

VectorElement (
FiniteElement (’Lagrange ’, triangle , 1),
dim =2),

-1),
FiniteElement (’Lagrange ’, triangle , 1)),

0,
None)

Even in the case where the Jacobian cancellation has occurred, the result-
ing expression is fairly long and difficult to read, as a result of the full algebra
lowering. However, terms related to the Jacobian have been highlighted in
red, so it should be clear when cancellation has occurred.

68

Form a

Cell integral everywhere

CoefficientDerivative

dot

op0

ExprMapping

op3

ExprList

op1

ExprList

op2

q

L

grad

R

f

v

Figure 7.1: The first evaluation form after minimal algebra lowering.

69

Form a

Cell integral everywhere

dot

q

L

grad

R

v

Figure 7.2: The first evaluation form after the application of derivatives.

70

Form a

Cell integral everywhere

dot

ScalarTensorProduct

L

dot

R

dot

J

L

ReferenceValue

R

q v

K

R

/

L R

ReferenceGrad

L

detJ 1.0 ReferenceValue

R L

Figure 7.3: The first evaluation form after function pull-backs and the asso-
ciated application of derivatives.

71

Form a

Cell integral everywhere

dot

ScalarTensorProduct

L

ReferenceGrad

R

ReferenceValue

R

/

L

q vdetJ 1.0

ReferenceValue

R L

Figure 7.4: The first evaluation form after Jacobian cancellation.

72

Form a

Cell integral everywhere

*

*

L

dot

R

Conditional

R

weight

L

q1.0

0 detJ

-1.0

op2 op1

LT

op0

ReferenceValue

L

ReferenceGrad

R

v

R L

ReferenceValue

Figure 7.5: The first evaluation form after integral scaling and determinant
cancellation.

73

7.2 Second form
Let u = F id(û) and f ∈ H(div;K). Define

a(u, f) =
∫
K
u div f dx (7.4)

and let ∂af (u, f ; v) be the functional derivative of a with respect to f in the
direction of v = Fdiv(v̂).

It was already shown, in Section 3.6.2, that

∂af (u, f ; v) =
∫
K
u div v dx. (7.5)

This is now exactly (2.1.73) in Boffi, Brezzi, and Fortin [7], which we have
not reproduced; instead, we use (4.15) and a change of variables to get

∂af (u, f ; v) =
∫
K
u(x) div v(x) dx (7.6)

=
∫
K̂
û(x̂)

(
1

detDF (x̂) d̂iv v̂(x̂)
)
|detDF (x̂)| dx̂ (7.7)

= ±
∫
K̂
û(x̂) d̂iv v̂(x̂) dx̂. (7.8)

This form illustrates:

• The structure-preserving functional derivative of the divergence oper-
ator.

• Implicit Jacobian cancellation in the divergence of an Fdiv-mapped
function, based on (4.15).

The results of processing this form before and after the work of this
project are shown in Listings 11 and 12 respectively.

74

Product(
Product(

QuadratureWeight(domain),
Abs(JacobianDeterminant(domain))),

Product(
IndexSum(

Indexed(
ComponentTensor(

Indexed(
IndexSum(

ComponentTensor(
Product(

Indexed(
ComponentTensor(

Indexed(
ComponentTensor(

IndexSum(
Product(

Indexed(
JacobianInverse(

domain),
MultiIndex ((Index (19), Index (18)))) ,

Indexed(
ReferenceGrad(

ReferenceValue(v)),
MultiIndex ((Index (17), Index (19))))) ,

MultiIndex ((Index (19),))),
MultiIndex ((Index (17), Index (18)))) ,

MultiIndex ((Index (13), Index (20)))) ,
MultiIndex ((Index (20),))) ,

MultiIndex ((Index (21),))) ,
Indexed(

ComponentTensor(
Product(

Indexed(
Jacobian(domain),
MultiIndex ((Index (10), Index (11)))) ,

Division(
FloatValue (1.0) ,
JacobianDeterminant(domain))),

MultiIndex ((Index (10), Index (11)))) ,
MultiIndex ((Index (12), Index (13))))) ,

Listing 11: The processed second evaluation form, prior to this work (first
42 lines of 50).

75

Product(
Product(

QuadratureWeight(domain),
Conditional(

LT(
JacobianDeterminant(domain),
Zero((), (), ())),

FloatValue (-1.0),
FloatValue (1.0))) ,

Product(
IndexSum(

Indexed(
ReferenceGrad(

ReferenceValue(v)),
MultiIndex ((Index (10), Index (10)))) ,

MultiIndex ((Index (10),))) ,
ReferenceValue(u)))

Listing 12: The processed second evaluation form, subsequent to this work.

76

7.3 Third form
Let u = F curl(û), v = F curl(v̂), and q = Fdiv(q̂). Define

a(u, v, q) =
∫
K
u · (q + curl v) dx. (7.9)

Then, using a change of variables and applying pull-backs, including the
use of (4.28), we have

a(u, v, q) =
∫
K̂

(
[DF]−T û

)
·

(1
detDF [DF]q̂

)
(7.10)

+
(

1
|detDF | [DF] ĉurl v̂

)|detDF | dx̂ (7.11)

=
∫
K̂

(
[DF]−T û

)T (
(±[DF]q̂) +

(
[DF] ĉurl v̂

))
dx̂ (7.12)

=
∫
K̂

(û)T [DF]−1[DF]
(
±q̂ + ĉurl v̂

)
dx̂ (7.13)

=
∫
K̂
ûT
(
±q̂ + ĉurl v̂

)
dx̂ (7.14)

=
∫
K̂
û ·
(
±q̂ + ĉurl v̂

)
dx̂. (7.15)

This form illustrates:

• Jacobian cancellation in the dot product of an F curl-mapped function
and an Fdiv-mapped function according to (4.30).

• Jacobian cancellation in the dot product of an F curl-mapped function
and the curl of another such function, based on (4.26) and (4.28). These
circumstances were not discussed earlier.

• Jacobian cancellation in the presence of intermediate operators (in this
case, the sum).

The results of processing this form before and after the work of this
project are shown in Listings 13 and 14 respectively.

77

Product(
Product(

QuadratureWeight(domain),
Abs(JacobianDeterminant(domain))),

IndexSum(
Product(

Indexed(
ComponentTensor(

IndexSum(
Product(

Indexed(
JacobianInverse(domain),
MultiIndex ((Index (15), Index (14)))) ,

Indexed(
ReferenceValue(u),
MultiIndex ((Index (15) ,)))) ,

MultiIndex ((Index (15),))) ,
MultiIndex ((Index (14),))) ,

MultiIndex ((Index (8),))),
Indexed(

Sum(
ListTensor(

Sum(
Indexed(

ComponentTensor(
Indexed(

IndexSum(
ComponentTensor(

Product(
Indexed(

JacobianInverse(
domain),

MultiIndex ((Index (19), Index (18)))) ,
Indexed(

ComponentTensor(
Indexed(

ComponentTensor(
IndexSum(

Product(
Indexed(

JacobianInverse(
domain),

Listing 13: The processed third evaluation form, prior to this work (first 42
lines of 256).

78

Product(
Product(

QuadratureWeight(domain),
Conditional(

LT(
JacobianDeterminant(domain),
Zero((), (), ())),

FloatValue (-1.0),
FloatValue (1.0))) ,

IndexSum(
Product(

Indexed(
Sum(

ListTensor(
Sum(

Indexed(
ReferenceGrad(

ReferenceValue(v)),
MultiIndex ((FixedIndex (2), FixedIndex (1)))) ,

Product(
IntValue (-1),
Indexed(

ReferenceGrad(
ReferenceValue(v)),

MultiIndex ((FixedIndex (1), FixedIndex (2)))))) ,
Sum(

Indexed(
ReferenceGrad(

ReferenceValue(v)),
MultiIndex ((FixedIndex (0), FixedIndex (2)))) ,

Product(
IntValue (-1),
Indexed(

ReferenceGrad(
ReferenceValue(v)),

MultiIndex ((FixedIndex (2), FixedIndex (0)))))) ,
Sum(

Indexed(
ReferenceGrad(

ReferenceValue(v)),
MultiIndex ((FixedIndex (1), FixedIndex (0)))) ,

Product(
IntValue (-1),
Indexed(

ReferenceGrad(
ReferenceValue(v)),

MultiIndex ((FixedIndex (0), FixedIndex (1))))))) ,
ReferenceValue(q)),

MultiIndex ((Index (17),))) ,
Indexed(

ReferenceValue(u),
MultiIndex ((Index (17) ,)))) ,

MultiIndex ((Index (17) ,))))

Listing 14: The processed third evaluation form, subsequent to this work.

79

Chapter 8

Conclusion and further work

This chapter summarises the contributions made by this project, and provides
suggestions for further development.

8.1 Contributions
This project has successfully enabled Jacobian cancellation in UFL, as shown
in Chapter 7. Specifically, the contributions made by the project are:

• The identification of a set of vector operators that can be helpfully
preserved through automatic differentiation and function pull-backs.

• The addition of support for functional and spatial derivatives of ex-
pressions involving these vector operators.

• The automatic recognition of the special case of the divergence of a
function on a finite element that uses the contravariant Piola mapping,
and the application in this case of the identity (4.15), a form of implicit
Jacobian cancellation.

• The automatic recognition of the special case of the curl of a func-
tion on a finite element that uses the covariant Piola mapping, and
the application in this case of the identity (4.28), which leads to the
emergence of a Jacobian matrix that may later be cancelled.

• An algorithm for performing the explicit cancellation of factors in an
expression in a single traversal of the expression tree, in cases where
the number of possible cancellations is small.

• Implementations of this cancellation for the Jacobian and its inverse,
and for the determinant of the Jacobian.

80

8.2 Further work
Significant further work remains for the benefits from this solution to reach
Firedrake users.

8.2.1 Updates to downstream tools
Tools downstream from UFL in the Firedrake toolchain may not yet recognise
forms in which the evaluation of the Jacobian is unnecessary, and so may not
yet reap the performance gain of avoiding that computation.

In many cases, despite significant cancellation, the Jacobian remains in
the processed form through the sign of its determinant. We know mathe-
matically that this factor is constant on each cell, and hence does not need
to be recalculated at each relevant point in the cell, but downstream tools
will need modification in order to realize the associated performance benefit.
It seems likely that this quantity would have to be represented by its own
type, much as the determinant of the Jacobian is, but this change cannot be
made at the moment without affecting these tools.

8.2.2 Extension to mixed elements
Coefficients and arguments from different finite element spaces have in this
project been obtained from separate elements, like this:
cell = triangle
rt_element = FiniteElement ("RT", cell , degree =1)
cg_element = FiniteElement ("CG", cell , degree =1)
q = Coefficient (rt_element)
v = Coefficient (cg_element)

A natural alternative, in UFL, is to obtain these coefficients and arguments
from a mixed element, like this:
cell = triangle
rt_element = FiniteElement ("RT", cell , degree =1)
cg_element = FiniteElement ("CG", cell , degree =1)
element = MixedElement (rt_element , cg_element)
coeff = Coefficient (element)
q, v = split(coeff)

This use of a mixed element disallows Jacobian cancellation, as each split
coefficient is a collection (a ListTensor) of the elements of the mixed element
coefficient, a situation which the current Jacobian cancellation algorithm
cannot handle. The extension to this case does not appear to be trivial.

81

Bibliography

[1] Martin S. Alnæs. “UFL: a Finite Element Form Language”. In: Auto-
mated Solution of Differential Equations by the Finite Element Method.
Ed. by Anders Logg, Kent-Andre Mardal, and Garth N. Wells. Vol. 84.
Lecture Notes in Computational Science and Engineering. 2012. Chap. 13.
url: https://fenicsproject.org/book/.

[2] Martin S. Alnæs et al. “The FEniCS Project Version 1.5”. In: Archive
of Numerical Software 3.100 (2015). doi: 10.11588/ans.2015.100.
20553.

[3] Martin S. Alnæs et al. “Unified Form Language: A Domain-specific
Language for Weak Formulations of Partial Differential Equations”. In:
ACM Trans. Math. Softw. 40.2 (Mar. 2014), 9:1–9:37. issn: 0098-3500.
doi: 10.1145/2566630.

[4] Satish Balay et al. “Efficient Management of Parallelism in Object
Oriented Numerical Software Libraries”. In: Modern Software Tools
in Scientific Computing. Ed. by E. Arge, A. M. Bruaset, and H. P.
Langtangen. Birkhäuser Press, 1997, pp. 163–202.

[5] Satish Balay et al. PETSc Users Manual. Tech. rep. ANL-95/11 – Re-
vision 3.7. Argonne National Laboratory, 2016.

[6] Satish Balay et al. PETSc Web page. 2016. url: http://www.mcs.
anl.gov/petsc.

[7] Daniele Boffi, Franco Brezzi, and Michel Fortin. Mixed Finite Element
Methods and Applications. Vol. 44. Springer Series in Computational
Mathematics. Springer, 2013. isbn: 978-3-642-36518-8. doi: 10.1007/
978-3-642-36519-5.

[8] Susanne C. Brenner and L. Ridgway Scott. The mathematical theory
of finite element methods. Third edition. Vol. 15. Texts in Applied
Mathematics. Springer, New York, 2008. isbn: 978-0-387-75933-3. doi:
10.1007/978-0-387-75934-0.

82

https://fenicsproject.org/book/
http://dx.doi.org/10.11588/ans.2015.100.20553
http://dx.doi.org/10.11588/ans.2015.100.20553
http://dx.doi.org/10.1145/2566630
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://dx.doi.org/10.1007/978-3-642-36519-5
http://dx.doi.org/10.1007/978-3-642-36519-5
http://dx.doi.org/10.1007/978-0-387-75934-0

[9] Philippe G. Ciarlet. Linear and nonlinear functional analysis with ap-
plications. Vol. 130. Other Titles in Applied Mathematics. Siam, 2013.

[10] Philippe G. Ciarlet. The Finite Element Method for Elliptic Problems.
Vol. 4. Studies in Mathematics and its Applications. North-Holland,
1978.

[11] Rodney Coleman. “Differentiation”. In: Calculus on Normed Vector
Spaces. New York, NY: Springer New York, 2012, pp. 35–60. isbn:
978-1-4614-3894-6. doi: 10.1007/978-1-4614-3894-6_2.

[12] Lisandro D. Dalcin et al. “Parallel distributed computing using Python”.
In: Advances in Water Resources 34.9 (2011). New Computational
Methods and Software Tools, pp. 1124–1139. doi: http://dx.doi.
org/10.1016/j.advwatres.2011.04.013.

[13] Firedrake website. Sept. 2017. url: http://firedrakeproject.org.
[14] V. Girault and P.A. Raviart. Finite Element Approximation of Navier-

Stokes Equations. Vol. 749. Lecture Notes in Mathematics. Springer-
Verlag, 1979.

[15] Miklós Homolya et al. “TSFC: a structure-preserving form compiler”.
In: CoRR abs/1705.03667 (2017). url: http://arxiv.org/abs/1705.
03667.

[16] Robert C. Kirby. “Algorithm 839: FIAT, a New Paradigm for Comput-
ing Finite Element Basis Functions”. In: ACM Transactions on Math-
ematical Software 30.4 (2004), pp. 502–516. doi: 10.1145/1039813.
1039820.

[17] Robert C. Kirby et al. “Common and unusual finite elements”. In: Auto-
mated Solution of Differential Equations by the Finite Element Method.
Ed. by Anders Logg, Kent-Andre Mardal, and Garth N. Wells. Vol. 84.
Lecture Notes in Computational Science and Engineering. Springer,
2012. Chap. 3. url: https://fenicsproject.org/book/.

[18] Anders Logg, Kent-Andre Mardal, Garth N. Wells, et al. Automated So-
lution of Differential Equations by the Finite Element Method. Springer,
2012. isbn: 978-3-642-23098-1. doi: 10.1007/978-3-642-23099-8.

[19] Graham R. Markall et al. “Performance-Portable Finite Element As-
sembly Using PyOP2 and FEniCS”. In: 28th International Supercom-
puting Conference, ISC, Proceedings. Ed. by Julian Martin Kunkel,
Thomas Ludwig, and Hans Werner Meuer. Vol. 7905. Lecture Notes in
Computer Science. Springer, 2013, pp. 279–289. doi: 10.1007/978-3-
642-38750-0_21. url: http://dx.doi.org/10.1007/978-3-642-
38750-0_21.

83

http://dx.doi.org/10.1007/978-1-4614-3894-6_2
http://dx.doi.org/http://dx.doi.org/10.1016/j.advwatres.2011.04.013
http://dx.doi.org/http://dx.doi.org/10.1016/j.advwatres.2011.04.013
http://firedrakeproject.org
http://arxiv.org/abs/1705.03667
http://arxiv.org/abs/1705.03667
http://dx.doi.org/10.1145/1039813.1039820
http://dx.doi.org/10.1145/1039813.1039820
https://fenicsproject.org/book/
http://dx.doi.org/10.1007/978-3-642-23099-8
http://dx.doi.org/10.1007/978-3-642-38750-0_21
http://dx.doi.org/10.1007/978-3-642-38750-0_21
http://dx.doi.org/10.1007/978-3-642-38750-0_21
http://dx.doi.org/10.1007/978-3-642-38750-0_21

[20] Florian Rathgeber et al. “Firedrake: automating the finite element
method by composing abstractions”. In: ACM Trans. Math. Softw. 43.3
(2016), 24:1–24:27. issn: 0098-3500. doi: 10.1145/2998441. arXiv:
1501.01809.

[21] Florian Rathgeber et al. “PyOP2: A High-Level Framework for Performance-
Portable Simulations on Unstructured Meshes”. In: High Performance
Computing, Networking Storage and Analysis, SC Companion: Los Alami-
tos, CA, USA: IEEE Computer Society, 2012, pp. 1116–1123. isbn:
978-1-4673-3049-7. doi: 10.1109/SC.Companion.2012.134.

[22] P.A. Raviart and J.M. Thomas. “A mixed finite element method for
second order elliptic problems”. In: Mathematical Aspects of the Finite
Element Method. Ed. by I. Galligani and E. Magenes. Vol. 606. Lectures
Notes in Mathematics. Springer-Verlag, 1977.

[23] Marie E. Rognes, Robert C. Kirby, and Anders Logg. “Efficient As-
sembly of H(div) and H(curl) Conforming Finite Elements”. In: SIAM
Journal on Scientific Computing 31.6 (2009), pp. 4130–4151. doi: 10.
1137/08073901X.

[24] Tobias Schwedes et al. Mesh dependence in PDE-constrained optimi-
sation. An Application in Tidal Turbine Array Layouts. First edition.
SpringerBriefs in Mathematics of Planet Earth. Springer International
Publishing, 2017. isbn: 978-3-319-59483-5. doi: 10.1007/978-3-319-
59483-5.

84

http://dx.doi.org/10.1145/2998441
http://arxiv.org/abs/1501.01809
http://dx.doi.org/10.1109/SC.Companion.2012.134
http://dx.doi.org/10.1137/08073901X
http://dx.doi.org/10.1137/08073901X
http://dx.doi.org/10.1007/978-3-319-59483-5
http://dx.doi.org/10.1007/978-3-319-59483-5

Index

Fréchet derivative, 18

algebra lowering, 38
argument

meaning in UFL, 33

coefficient
meaning in UFL, 33

curl
definition, 13

divergence
definition, 12
of dot product, 14

dot product
definition, 11
divergence of, 14
gradient of, 13

finite element, 26
reference element, 27

form, 33
functional derivative, 17

gradient
definition, 12
of dot product, 13
of inner product, 16

identity mapping, 28
inner product

definition, 11
gradient of, 16

Jacobian matrix
usage of term, 12

mapping
contravariant Piola, 29
covariant Piola, 30
identity, 28

multi-function, 46

nabla-
divergence, 13
gradient, 12

Piola mapping
contravariant, 29
covariant, 30

Sobolev space, 25

tensor, 10

85

	Contents
	Introduction
	The finite element method
	Firedrake and UFL
	Project objectives and achievements
	Report structure

	Tensor-valued functions and their spatial derivatives
	Tensors
	Products
	Inner product
	Dot product

	Spatial derivatives
	Gradient
	Divergence
	Curl

	Spatial derivatives of products
	Spatial derivatives of a dot product
	Spatial derivatives of an inner product

	Functional derivatives
	The Fréchet derivative
	Definition
	Comparison with the conventional derivative

	Solving nonlinear PDEs with functional derivatives
	Linear maps
	Bilinear maps
	Chain rule
	Application to evaluation forms
	First evaluation form
	Second evaluation form

	Pullbacks
	Sobolev spaces
	Finite elements
	Reference elements
	Identity mapping
	Contravariant Piola mapping
	Covariant Piola mapping
	Jacobian cancellation

	Unified Form Language
	Specifying forms
	Computing form data
	Algebra lowering
	Applying derivatives
	Applying pull-backs
	A second application of derivatives
	Applying integral scaling

	Implementation of form transformations
	Operations in computing form data

	Structure preservation and Jacobian cancellation
	Choice of vector operators
	Algebra lowering
	Applying derivatives
	Functional derivatives
	Spatial derivatives: Gradient
	Spatial derivatives: Divergence
	Spatial derivatives: Curl

	Applying pull-backs
	Function pull-backs
	Special cases
	Spatial derivatives of pulled-back functions

	Jacobian cancellation
	Jacobian determinant cancellation
	Operations in computing form data

	Evaluation
	First form
	Second form
	Third form

	Conclusion and further work
	Contributions
	Further work
	Updates to downstream tools
	Extension to mixed elements

	Bibliography
	Index

