
IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Bayesian Optimization for Black-Box Evasion
of Machine Learning Systems

Author:
Kenneth T. Co

Supervisor:
Luis Muñoz-González

Submitted in partial fulfillment of the requirements for the MSc degree in MSc Specialism
(Machine Learning) of Imperial College London

September 2017

Abstract

Machine learning and big data algorithms have had widespread adoption in recent times,
with extensive use in big industries such as advertising, e-commerce, finance, and health-
care. Despite the increased reliance on machine learning algorithms, general understanding
of its vulnerabilities are still in the early stages. Because of this, there has to be a better
grasp of its security implications to prevent attacks that could undermine the integrity of
machine learning systems. Currently, attackers can use adversarial samples to fool even the
state-of-the-art machine learning algorithms. Adversarial samples are legitimate inputs al-
tered by adding a specially crafted perturbation, these samples retain their true class while
forcing the target algorithm to misclassify them. However, current attack methods require
knowledge of the target’s underlying model or training data. To add to this, there is a lack
of a general technique that can detect adversarial samples. I introduce a novel black-box
attack against machine learning classifiers that uses Bayesian optimization. This technique
is data-efficient and model-independent, two properties that existing attacks do not have.
Its model-independence allows it to find adversarial regions regardless of the underlying
algorithm, and its data-efficiency makes it suitable for attacking machine learning systems
undetected. I demonstrate its effective against three different types of classifiers and show
that it outperforms a white-box attack, fast gradient sign method (FGSM), when against a
convolutional neural network (CNN). Bayesian optimization achieves an evasion rate of 99%
while FGSM achieves 62% for the same perturbation setting. This implies that Bayesian opti-
mization can be used to attack high-dimensional problems and supports the hypothesis that
machine learning algorithm have low effective dimensionality. The results also show that a
black-box attack through Bayesian optimization can potentially unmask adversarial samples
that are not even found by the strongest white-box attackers. It has the potential to become
a general framework for probing any machine learning algorithm or defense for adversarial
samples.

Acknowledgements

This project would not be possible without the novels ideas, insights, guidance, banter, ex-
citement, and encouragement from my advisor Luis.

I would also like to thank Eduardo and Leslie for welcoming me to their work environment
where I was able to do research all summer long.

And finally, a huge thank you to my family for sending me to Imperial College London.
Without their support, literally none of this would have been possible.

iii

Contents

List of Figures viii

List of Tables x

1 Introduction 1

2 Background & Related Work 4
2.1 Security of Machine Learning . 4

2.1.1 Adversarial Goals . 5
2.1.2 Types of Attacks . 6

2.2 Evasion Attacks . 7
2.2.1 White-Box Attacks . 7
2.2.2 Black-Box Attacks . 8

2.3 Bayesian Optimization . 9
2.3.1 Introduction . 9
2.3.2 Gaussian Processes . 10
2.3.3 Acquisition Functions . 11

2.4 Motivation . 12
2.4.1 Low Effective Dimensionality . 13
2.4.2 Model Independence . 13

3 Design 15
3.1 Theoretical Framework . 15
3.2 Threat Model . 16

3.2.1 Adversary’s Knowledge . 17
3.2.2 Adversary’s Capabilities . 17
3.2.3 Adversary’s Goals . 18

3.3 Bayesian Optimization . 19
3.3.1 Settings . 20
3.3.2 Strengths & Limitations . 22

3.4 Crafting Algorithms . 25
3.4.1 Random . 26
3.4.2 Bayesian Optimization (BO) . 27
3.4.3 BO with Dimensionality Reduction . 27
3.4.4 Fast Gradient Sign Method (FGSM) . 29

v

CONTENTS CONTENTS

4 Experiments & Results 30
4.1 Implementation . 30

4.1.1 Dataset & Classifiers . 30
4.1.2 Metrics & Settings . 32

4.2 Bayesian Optimization . 33
4.2.1 Attack Comparison . 34
4.2.2 Classifier Analysis . 38

4.3 Dimensionality Reduction . 40
4.3.1 Results . 41
4.3.2 Suggestions . 42

5 Conclusion 43
5.1 Suggested Defense . 44
5.2 Future Work . 44

Bibliography 47

vi

List of Algorithms

1 Bayesian Optimization . 10
2 Bayesian Optimization (Adversarial Setting) 20
3 General Query-Based Black-Box Attack . 25
4 Random . 26
5 Bayesian Optimization with N Initial Points 27
6 Bayesian Optimization with Dimensionality Reduction 28

vii

List of Figures

1.1 Adversarial Samples - (Left) ‘8’ misclassified to ‘3’. (Right) ‘9’ misclassified
to ‘3’. Adversarial perturbations cause misclassification. 1

1.2 Probing Attacks - an adversary probes the black-box model C to construct a
surrogate C′ to later generate adversarial samples with. 2

2.1 Adversarial Sample - an imperceptible adversarial perturbation overlaid on
a regular image causes the classifier to misclassify the panda as a gibbon [1]. 5

2.2 Adversarial Regions - in a simplified representation, the plane represents the
input feature vector space. Crosses are samples. Classes A and B are separated
by the curve which is the true decision boundary. The red line represent a
classifier’s learned decision boundary [2]. 14

3.1 Kernel Profiles - “(Left) Visualization of various kernel profiles. The x-axis
represents the distance r > 0. (Middle) Samples from GP priors with the
corresponding kernels. (Right) Samples from GP posteriors given two data
points (black circles). The sharper drop in the Matérn1/2 kernel leads to
rough features in the associated samples, while samples from a GP with the
Matérn3/2 and Matérn5/2 kernels are increasingly smooth” [3]. 21

4.1 MNIST Samples - first few images from the MNIST dataset. Labeled as 7, 2,
1, and 0 from left to right. 31

4.2 Norm Comparison - numbers x, y under each image show the perturbation’s
L1 norm (x) and L2 norm (y). 33

4.3 LR-FGSM Adversarial Samples - ‘6’ misclassified to ‘5’ in the last 10 images,
with the number under each image being the δ of the perturbation. 35

4.4 LR-BO Adversarial Samples - (Left) ‘8’ misclassified to ‘3’ with δ = 35.
(Right) ‘9’ misclassified to ‘3’ with δ = 53. 35

4.5 CNN Attack Comparison - evasion percentages against CNN for its corre-
sponding δ (maximum L1 norm). 36

4.6 LR Attack Comparison - evasion percentages against LR for its corresponding
δ (maximum L1 norm). 36

4.7 CNN-BO Adversarial Samples - (Left) ‘4’ misclassified to ‘9’ with δ = 60.
(Right) ‘1’ misclassified to ‘8’ with δ = 90. 37

4.8 CNN-FGSM Adversarial Samples - (Left) ‘1’ misclassified to ‘5’ with δ = 74.
(Right) ‘6’ misclassified to ‘5’ with δ = 110. 37

4.9 RF-BO Adversarial Samples - ‘9’ and ‘5’ are both misclassified to an ‘8’ with
δ = 20. 38

4.10 Classifier Vulnerability Comparison - each plot represents an attack method
and it compares its evasion percentage on each of the classifiers. 39

viii

LIST OF FIGURES LIST OF FIGURES

4.11 RF Confusion Matrices - cell (x, y) represents the number of samples with
true class label x classified as y for each attack at the listed δ value. 39

4.12 CNN Confusion Matrices - cell (x, y) represents the number of samples with
true class label x classified as y for each attack at the listed δ value. 40

4.13 LR Confusion Matrices - cell (x, y) represents the number of samples with
true class label x classified as y for each attack at the listed δ value. 40

4.14 LR-BO+PCA Adversarial Samples - (Left) ‘8’ misclassified to ‘3’ with δ = 93.
(Right) ‘4’ misclassified to ‘8’ with δ = 105. 41

5.1 CNN Attack Comparison - evasion percentages against CNN for its corre-
sponding δ (maximum L1 norm). 43

5.2 LR Attack Comparison - evasion percentages against LR for its corresponding
δ (maximum L1 norm). 43

ix

List of Tables

4.1 All Results - this shows the number of samples evaded out of a 100 for each
classifier-attack pair, with its corresponding maximum perturbation δ. Since
there were 100 samples, this is equivalent to their percentages. 34

4.2 CNN & LR Results - this shows the number of samples evaded (out of 100)
for each classifier-attack pair, with its corresponding maximum perturbation
δ. Since there were 100 samples, this is equivalent to their evasion percentages. 36

4.3 RF Results - this shows the number of samples evaded out of a 100 for each
classifier-attack pair, with its corresponding maximum perturbation δ. Since
there were 100 samples, this is equivalent to their percentages. 38

4.4 BO+PCA Results - this shows the best evasion rates for BO+PCA at δ = 125.
Since there were 100 samples, these numbers are equivalent to the evasion
percentages. 41

x

Chapter 1. Introduction

Chapter 1

Introduction

Advances in computational and storage capabilities of computers have paved the way for the
widespread use of machine learning and big data algorithms. These data-driven techniques
take advantage of the plethora of information gathered from various monitoring systems and
sensor networks, social media, and personal devices. These algorithms and their deployment
have fundamentally transformed how basic services are being implemented today, with ex-
tensive use in big industries such as advertising, e-commerce, finance, and healthcare [4].

Despite the increased reliance and use of machine learning algorithms, general understand-
ing of its vulnerabilities are still in the early stages. A lot of machine learning algorithms
operate under the assumption of stationarity, that is, the data distributions are identically
and independently distributed [4]. In an adversarial setting, attackers can violate this by
generating samples with perturbations that do not follow this stationary distribution [5].
Many papers have shown crafting algorithms that generate adversarial samples that fool
state-of-the-art machine learning techniques.

Adversarial samples are legitimate inputs altered by adding some perturbation. These sam-
ples retain their true class while forcing the target algorithm to misclassify them [5]. In a
way, these are optical illusions for machine learning algorithms, as illustrated in Figure 1.1.

A machine learning classifier is a model that learns a mapping between inputs and a set
of class labels. For example, a malware detector classifies files to ‘benign’ or ‘malicious’
classes. Any classifier deployed is vulnerable to probing attacks. Adversaries can use the
same channels as ordinary users to gain information about the targeted system and use that

Original
Label 8 (0.92)

Perturbed
Label 3 (0.53)

Perturbation
Norm (35.00)

Original
Label 9 (0.96)

Perturbed
Label 3 (0.45)

Perturbation
Norm (52.71)

Figure 1.1: Adversarial Samples - (Left) ‘8’ misclassified to ‘3’. (Right) ‘9’ misclassified to ‘3’.
Adversarial perturbations cause misclassification.

1

Chapter 1. Introduction

Figure 1.2: Probing Attacks - an adversary probes the black-box model C to construct a surro-
gate C′ to later generate adversarial samples with.

knowledge to craft adversarial samples for them.
Despite the amount of research currently being done in adversarial machine learning, a lot
of those methods rely on detailed knowledge of the underlying target model or access to a
large enough training dataset to create an auxiliary model [5]. This limited the viability of
those attacks to strong adversaries with insider knowledge. Existing black-box attacks such
as Papernot et al. [6] rely on gradient-based and transferability attacks. Gradient-based at-
tacks rely on having the gradient of the cost function of the target model to craft adversarial
samples, and transferability attacks use an auxiliary model under their control to generate
adversarial samples. The latter method is usually costly to train and gather data for. Addi-
tionally, no true model-independent frameworks for attack have yet been explored.

In this paper, we introduce a novel black-box attack against machine learning classifiers that
uses Bayesian optimization. This technique is data-efficient and model-independent, two
properties that existing attacks do not have. It has these two properties due to its use of
Gaussian processes. We demonstrate that this attack can perform successful evasion against
a few classifiers despite (1) having no information about the target model or what algorithm
it uses and (2) having no access to any large training dataset.

The threat model we implement has a weak adversary that only knows the input and out-
put representations of the machine learning model. We assume that the model outputs the
probability vector of its prediction. The adversary’s capabilities will be limited to querying
the target classifier and observing the corresponding outputs.

Bayesian optimization is a sequential query-based optimization algorithm that uses statisti-
cal surrogate models, in our case Gaussian processes, to model the target classifier. We take
advantage of Gaussian processes’ ability to model any function to make Bayesian optimiza-
tion a model-independent approach. This attack framework will be effective regardless of
the target’s underlying machine learning algorithm.

Defensively, this can be used as a general framework for machine learning developers to
probe their models for adversarial samples. It can also be used to test the vulnerability of
new or existing machine learning algorithms and defenses. This is important as current craft-
ing algorithms and defenses are too specific in their design to find all possible adversarial
samples.

2

Chapter 1. Introduction

In our experiments we attack three types of classifiers: convolutional neural network (CNN),
logistic regression (LR), and random forest (RF) ensemble using four types of attacks: Bayesian
optimization, Bayesian optimization with dimensionality reduction, fast gradient sign method
(FGSM), and random attack.

The contributions of this paper are the following.

• We introduce a novel black-box attack against machine learning classifiers that uses
Bayesian optimization. This algorithm is data-efficient and model-independent. We
show that it is performs well against all the classifiers and is even more effective than
a white-box attack against the state-of-the-art convolutional neural network.

• Because it outperforms a white-box attack, a much stronger adversary, Bayesian opti-
mization can potentially unmask adversarial samples that are not even discoverable by
current techniques.

• We perform the Bayesian optimization attack with dimensionality reduction via princi-
pal component analysis. Its failure implies that a pure Bayesian optimization attack is
able to exploit the less relevant features to evade the classifier.

• The ease at which the random forest ensemble was evaded brings into question the
security of the algorithm.

• The success of Bayesian optimization reinforces the hypothesis that machine learning
algorithms have low effective dimensionality and shows the potential for it to be a
general black-box attack regardless if inputs have a high number of features.

This paper is organized as follows.

• Section 2 presents the background and related work for the security of machine learn-
ing, evasion attacks, and Bayesian optimization.

• Section 3 presents the adversary threat model, formalization necessary for it, the de-
sign and parameter choices for Bayesian optimization, and the crafting algorithms we
use.

• Section 4 presents the experimental results and discusses the implications of it.

• Lastly, Section 5 discusses the conclusions, suggest some defenses, and presents vari-
ous extensions for future work.

3

Chapter 2. Background & Related Work

Chapter 2

Background & Related Work

In this chapter, we give an introduction to adversarial machine learning, discuss the current
literature on evasion attacks, and give motivation for why Bayesian optimization is a suitable
approach for black-box attacks against machine learning systems.

• Chapter 2.1 illustrates the broad categories of attacker motivations and methods in
adversarial machine learning.

• Chapter 2.2 goes over the current techniques being used for evasion attacks, moving
towards the more realistic scenario of black-box attacks.

• Chapter 2.3 highlights the lack of a true black-box attack and proposes Bayesian opti-
mization as a solution, it gives more formal introduction to it as well.

• Chapter 2.4 goes over the theoretical motivations for why Bayesian optimization is a
suitable technique for black-box attacks against machine learning systems.

2.1 Security of Machine Learning

Despite advances in machine learning (ML), the general understanding on the flaws and
weaknesses inherent in the algorithms and systems that it is designed on, is still in its early
stages [5]. The versatility of machine learning algorithms to solve complex problems has
made it into a fundamental tool for computer systems and security. However, this versatility
can also be exploited by attackers to compromise the system [7].

In recent literature, machine learning algorithms have been shown to contain numerous ex-
ploits. This makes the algorithms primary weak points in the security chain, and if exploited
by attackers, could compromise the entire system or service that it is a part of. Additionally,
with its applications in security such as fraud, spam, and malware detection, vulnerabilities
in these ML algorithms will allow adversaries to bypass these anomaly detection mechanisms
[8].

It has even been shown that the state-of-art models in machine learning such as deep neural
networks (DNN) have weaknesses towards adversarial samples - seemingly benign inputs
that are intentionally designed to cause the learning algorithm to make mistakes [8]. These
are like optical illusions for ML algorithms [9].

4

Chapter 2. Background & Related Work 2.1. SECURITY OF MACHINE LEARNING

Figure 2.1: Adversarial Sample - an imperceptible adversarial perturbation overlaid on a regu-
lar image causes the classifier to misclassify the panda as a gibbon [1].

Attacks on machine learning systems such as autonomous bots, anti-virus software, and spam
filters have already occurred [4]. Research in this area aim to explore the weaknesses in
machine learning systems against malicious attacks. Using that knowledge, machine learning
developers can better design more resilient and robust systems.

2.1.1 Adversarial Goals

Adversarial goals can be put into four broad categories according to impact on: confiden-
tiality, integrity, availability, and privacy. The first three come from the classical CIA security
model [5]. These categories can be grouped into two pairs due to their inherent similarities,
(1) confidentiality and privacy, then (2) integrity and availability.

Confidentiality and Privacy
Attacks on confidentiality and privacy aim to gather information about the model or training
data. The model itself can be exposed to white-box attacks, so it requires that the model and
its parameters be confidential. In some contexts, it is important to maintain the privacy of
training data such as with financial records, medical information, or user history.

Most machine learning techniques aim to model the underlying distribution of its training
data. Hence, it learns the inherent properties of the training data. Because of this, it is
difficult to guarantee complete privacy of the dataset and the individuals it represents. The
data can be exposed by performing different types of queries: membership queries (whether
an individual is in the dataset), recovering partially known inputs, or extracting properties
of the training data using the model’s outputs.

Integrity and Availability
Attacks on integrity and ability aim to control model outputs in a way that the adversary
desires. By manipulating with the model’s behavior and therefore its output, the integrity
of the machine learning algorithm is undermined. Closely related, attacks on availability
look to reduce the quality or performance of the machine learning system. While they have
differences, the attack vectors are usually similar.

Integrity is a crucial factor for evaluating machine learning models as it is the basis of the
performance metrics used for them. This includes metrics such as accuracy, f-scores, and
false positive rates. It has been shown that the integrity of machine learning systems can
be compromised by adversaries that tamper with the target model’s training data or craft

5

2.1. SECURITY OF MACHINE LEARNING Chapter 2. Background & Related Work

specific inputs (adversarial samples) [5, 10].

Manipulating the training data could make the model learn the wrong underlying distribu-
tion and therefore perform poorly on actual data. Crafted inputs or adversarial samples are
inputs where the target model misclassifies them due to errors of the target model. These
have been shown to exist and occur in several machine learning models, including state-of-
the-art neural networks [11, 10]. For example, a classifier could assign the wrong class to
an authentic image or confidently classify a meaningless image.

Availability is about the prevention of access to a feature, making the target model incon-
sistent or unreliable. when some of their input features are corrupted or missing [8]. Most
availability attacks corrupt the model by tampering with its training data or by reducing its
confidence in ways similar to that or integrity attacks [5].

2.1.2 Types of Attacks

These attacks can be separated into two categories according to when they are deployed,
either during the training phase or during the inference phase of the model.

Training Phase
Attacks during the training phase aim to influence or corrupt the model. This is done through
altering the training data (poisoning attacks) or tampering with the learning algorithm (logic
corruption) [5]. The former is the more common and plausible case as it requires less insider
access and knowledge to the target model.

There are two general types of poisoning attacks. The first alters the training data either by
inserting adversarial inputs into the existing training data. The second alters the training
data directly. By doing either, the attacker can influence the behavior of the machine learn-
ing system, and degrade its overall performance. This affects its integrity and availability.

If the adversary has knowledge of the learning algorithm used by the target model, they
can build a surrogate model to assist with poisoning attacks. This is done by testing their
potential inputs with their surrogate model before submitting these to the target model.

Logic corruption is a more powerful attack during the training phase is when the adversary
can tamper with the learning algorithm itself. Adversary that has control over the target
model is clearly very powerful and extremely difficult to defend against once they have ac-
cess, making it not as likely to occur [5].

Inference Phase
Attacks during the inference phase aim to produce inputs that undermine the integrity of the
target model or gain more information about the target model and its training data. Unlike
training phase attacks, these do not tamper with the target model [5].

Depending on the amount of information known about the target model and its training
data, inference attacks can be classified as either white-box or black-box attacks.

In white-box attacks, the adversary has partial information, such as the model architecture,
model parameters, or the partial or full set of training data used. This information is then

6

Chapter 2. Background & Related Work 2.2. EVASION ATTACKS

leverage to craft exploits against the target model. For example, an adversary with access to
the model parameters, architecture, and training data can train a surrogate model to craft
adversarial examples with.

In black-box attacks, the adversary has no information aside from that gained by querying
the target model. In general, the adversary probes the model by asking about specific inputs
and observing the target model’s corresponding outputs [5]. Despite the scarcity of informa-
tion, it has been shown that enough information can be extracted from these input-output
pairs to mount black-box attacks. Black-box attacks are a more relevant threat than white-
box attacks since they do not need as much knowledge or access to the targeted models.

Machine learning has many applications in computer vision and is a popular topic of re-
search. For example, it is heavily used in self-driving cars and robotics. However, research
targeting neural networks working on computer vision problems have shown the existence
of adversarial samples, images that are misclassified due to perturbations that are impercep-
tible to humans [1, 8].

These attacks on classifiers with adversarial samples are a relevant threat because they vio-
late the integrity of the model and are not easily detected by humans. Many papers demon-
strate these “evasion attacks” against machine learning classifiers.

2.2 Evasion Attacks

Evasion attacks are a type of inference phase attack on classifiers with the goal of undermining
the availability or integrity of the algorithm. These attacks consist of finding or generating
the appropriate input that causes the target model to misclassify. For example, these can be
used to force misclassification of images, as described in the previous section, or to evade
detectors of malicious objects such as spam or malware [12].

Existing inference and evasion attacks have required a substantial amount of information
regarding the target model or its training data. To craft adversarial examples these methods
needed either detailed knowledge of the underlying model architecture and its parameters,
or enough labeled training data to create a workable surrogate model [5, 6]. These limited
the viability of the methods to adversaries with insider knowledge of the targeted model or
to those with the capability of collecting a large number of labeled training data, both of
which are niche cases.

Attacks can be separated into white-box and black-box attacks. The former assumes that the
adversary has substantial internal knowledge about the target model, while the latter does
not make that assumption.

2.2.1 White-Box Attacks

White-box attacks have varying degrees of access to the target model and its parameters.
This strong adversary will be able to conduct very powerful attacks because of their knowl-
edge of the target model. Realistically, it is often difficult to obtain this information and

7

2.2. EVASION ATTACKS Chapter 2. Background & Related Work

typically requires insider knowledge or reverse-engineering. However, this scenario is still
possible [5].

Majority of white-box attacks involve using a version of the fast gradient sign method sug-
gested by Goodfellow et al. [1]. This fast gradient sign involves using the gradient of of
the target f As a result of this, defenses have been made to tamper with adversarial crafting
heuristics such as by masking gradients, but these techniques do not mitigate the underly-
ing incorrect model predictions. Transferability-based black-box attacks have been shown to
evade this defense [5].

Reliance on gradient-based methods or transferability attacks from a surrogate model require
a strong adversary with enough information about the target model or its training data. We
look to a more realistic threat of an adversary with no detailed information about the target
model or its training data.

2.2.2 Black-Box Attacks

Black-box attacks are a realistic threat. Existing machine learning algorithms are vulnera-
ble to these attacks regardless of their underlying structure. Transferability attacks between
pairs of machine learning model classes are possible. However these attack require access to
a large enough dataset that is representative of the target model’s training data [11].

More realistic black-box attacks have been demonstrated against deep neural network clas-
sifiers. In their black-box attack, Papernot et al. [6] assumed that the adversary (i) had no
information on the model architecture and parameters, and (ii) did not have access to any
large training dataset. Their adversary was only capable of feeding its own queries to the
target deep neural network and observing the corresponding output labels assigned.

Papernot et al. [6] is so far the only comprehensive paper published that demonstrates an
effective attack against a black-box machine learning algorithm with no access to a large
dataset [5], our paper adopts a similar framework to theirs. Papernot et al. [6] illustrated
that their black-box attack demonstrates three key properties that made it applicable to many
systems whose decision-making is based on machine learning: “(i) the capabilities required
are limited to observing output, (ii) the number of labels queried is limited, and (iii) the
approach applies and scales to different ML classifier types, in addition to state-of-the-art
DNNs”. The attack we propose shall demonstrate these three key properties as well.

As in Papernot et al. [6], the adversary has to carefully select the next query for the target
classifier to gain the most information and come closer to the goal of forcing misclassification
on their specific input. This search for adversarial samples can be reformulated to finding a
solution for an optimization problem against the targeted machine learning model [9]. This
is generally done by estimating the target model’s classifier and minimizing its confidence in
predicting a sample’s true class label.

In an adversarial setting, the number of queries to the target model must be constrained to
avoid detection by the defender, so queries to the target model (i.e. the number of function
evaluations) are considered to be expensive. The most successful methods for expensive
black-box functions are based on surrogate models of the objective function built incremen-

8

Chapter 2. Background & Related Work 2.3. BAYESIAN OPTIMIZATION

tally from the queries [13]. Hence, it is necessary use a surrogate model the target classifier’s
behavior for our optimization problem.

In Papernot et al. [6], their surrogate model for the targeted deep neural network was a deep
neural network of their own. However, it could be argued that their’s is not a true black-box
attack because they knew the type of machine learning model they were attacking. They may
not have the same success if the targeted model was not similar to a deep neural network.
The type of machine learning algorithm being attacked can not always be known, there is
therefore a need for a model-independent approach when performing black-box attacks.

2.3 Bayesian Optimization

Bayesian optimization a sequential model-based optimization algorithms. These types of
models use previous observations of their target function to determine the next best point to
sample or query from.

Bayesian optimization is primarily used in optimizing expensive black-box functions. It has
proven to be an effective solution to various design problems and has made great impact in
a wide range of research such as in sensor networks, hyperparameter tuning, reinforcement
learning, robotics, and combinatorial optimization [3]. In the adversarial machine learning
setting, this method could provide more insight into the target model’s learned classifier
function.

This method has been used to find the global optima of unknown objective functions within
a design space of interest. Typically, the design space is a compact subset of its domain,
but the framework is adaptable and can be applied to various kinds of domains, discrete or
continuous [3]. This allows it to be used for the different kinds of feature input spaces used
by machine learning models.

2.3.1 Introduction

Bayesian optimization has a prior belief over the possible objective functions and then se-
quentially refines this model by making queries and then updating the posterior. The poste-
rior represents the updated belief given what was observed. Bayesian optimization consists
of two primary components, the first being a probabilistic surrogate model, such as a Gaus-
sian process, and the second being an objective function that describes its running perfor-
mance [3].

The first component, a probabilistic surrogate model, consists of a prior distribution that cap-
tures our known beliefs of the unknown function and an observation model that describes
the querying mechanism. A Gaussian process is the generalization of multivariate Gaussian
distributions to functions and is typically used as the surrogate model for Bayesian optimiza-
tion [3].

For this research we will use Gaussian processes as our surrogate model because it induces
a posterior distribution over the objective function that is analytically tractable. This allows
us to update our beliefs of what the objective function looks like after each iteration. We go

9

2.3. BAYESIAN OPTIMIZATION Chapter 2. Background & Related Work

into detail on Gaussian processes in the next subsection.

The second component is a objective function that “describes how optimal a sequence of
queries is”. Ideally, the expected objective function value is then minimized to select an op-
timal sequence of queries [3]. This is usually done through an acquisition function.

The acquisition function guides the search for an optimum. Intuitively, it evaluates the utility
of candidate points for the next evaluation. Acquisition functions are normally defined so
that high acquisition corresponds to potentially high values of the objective function. Max-
imizing the acquisition function is used to select the next point at which to evaluate the
function [14].

For each iteration n, Bayesian optimization uses its acquisition function to select an input
xn+1 to query the target classifier f and then observes the output f(xn+1) = yn+1. The prior
of the statistical model is then updated to produce a posterior distribution of functions that
is more representative of the observed data.

The algorithm stops once the best objective function value ceases to improve or when the
algorithm reaches a maximum number of iterations (queries). The algorithm then makes a
final recommendation that represents its best estimate of the optimum [3]. See Algorithm
1 for an illustration and pseudocode of the algorithm.

Algorithm 1: Bayesian Optimization

1: for n = 1, 2, . . . , do
2: select new xn+1 by optimizing acquisition function α

xn+1 = arg maxx α(x;Dn)
3: query objective function with input xn+1 to obtain its output yn+1

4: augment dataset Dn+1 = {Dn, (xn+1, yn+1)}
5: update statistical model

The Bayesian optimization framework is also very data efficient [3]. It is useful in situations
where function evaluations (queries) are costly, when one does not have access to deriva-
tives with respect to the input, or when the target function is non-convex and multimodal
[3]. Bayesian optimization makes use of all the information provided by previous queries to
make its search efficient.

In the next two subsections we explain the details behind Gaussian processes and acquisition
functions, two key components of our Bayesian optimization algorithm.

2.3.2 Gaussian Processes

A Gaussian process (GP) is a generalization of Gaussian distributions to a distribution over
functions [15]. Like how a Gaussian distribution is defined by a mean and variance, a
GP is defined by a mean and covariance (kernel) function. Formally, the Gaussian process
GP(µ0, k) is a nonparametric model that is fully described by a prior mean µ0 : X → R and
a positive-definite kernel k : X × X → R [3].

10

Chapter 2. Background & Related Work 2.3. BAYESIAN OPTIMIZATION

Definition: A Gaussian process is a collection of random variables, any finite number of
which form a Gaussian distribution.

Informally, you can think of a function as an infinitely long vector and the GP describes their
distribution. Just like how a set o n-dimensional vector can be described by an n-dimensional
Gaussian distribution.

Let f be the target objective function. To compute a posterior expectation in Bayesian opti-
mization, we need a likelihood model for samples from f , and a prior probability model on
f . Think of the GP as a function that instead of returning a scalar value f(x), it returns the
mean and variance of a normal distribution over the possible values of f at x.

Recall for a standard regression problem, we assume a normal likelihood with noise

y = f(x) + ε, ε ∼ N (0, σ2ε)

That is, we have y | f ∼ N (f(x), σ2ε).

Let x1:n = {x1, . . . ,xn} be a set of data points and f = f1:n = {f(x1), . . . , f(xn)}. For GP
regression, we write something analogous to the standard regression problem. Assume that
f is jointly Gaussian and the observations y = y1:n are normally distributed given f . This
gives the following generative model:

f |X ∼N (m,K) (2.1)

y | f , σ2 ∼N (f , σ2I) (2.2)

where elements of the mean vector m and covariance matrix K are given by mi = µ0(xi)
and Ki,j = k(xi,xj) respectively [3]. Equation (2.1) represents the prior distribution.

The marginalization property of Gaussian distributions is used to make calculating GPs ana-
lytically tractable. It has become a popular statistic model because of this property.

2.3.3 Acquisition Functions

As mentioned, the acquisition function guides the search for the next best values to query.
Typically, we choose the points that maximize the utility measured by the acquisition func-
tion. It is defined as a function of the posterior distribution over f that describes some form
of utility.

We discuss acquisition functions with the goal of minimizing the objective function. The
acquisition function has to balance the trade-off between exploration and exploitation. Ex-
ploration seeks high variance, where there is large uncertainty with the model. Exploitation
seeks places with low mean, where the model is confident of low values [3]. Too little explo-
ration can cause it to get stuck at local minima, while too much exploration does not allow
you to exploit observations made.

For iteration n, let Dn be the collection of queries and observations so far. The GP posterior
gives a predictive mean µn(x) and predictive marginal variance function σ2n(x). Define the

11

2.4. MOTIVATION Chapter 2. Background & Related Work

function γ below.

γ(x) =
µn(x)− τ
σn(x)

We now look at different kinds of policies for acquisition function. Given Dn, the goal is to
find xn+1 = arg maxx α(x;Dn).

Improvement-based acquisition functions go for points that are likely to improve upon the
current best value f(xbest) = τ . An example is the probability of improvement acquisition
function,

αPI(x;Dn) = P (f(x) > τ) = Φ(γ(x))

where Φ is the standard normal cumulative distribution function. A more common and
widely-used acquisition function is expected improvement,

αEI(x;Dn) = (µn(x)− τ)Φ(γ(x)) + σn(x)φ(γ(x))

where φ is the standard normal probability density function [15].

Another type are optimistic policy acquisition functions. The more popular one used is the
Gaussian process upper confidence bound. It is defined as,

αUCB(x;Dn) = µn(x)− βnσn(x)

where σn is a hyperparameter that adjusts for exploration [3].

These acquisition functions have varying properties and will be discussed further in Chapter
3.3.1, where we choose the settings for our implementation of Bayesian optimization.

2.4 Motivation

Going back to black-box attacks in adversarial machine learning, recall that at the end of
Chapter 2.2 we concluded that there is a need for a surrogate model-based attack that is not
reliant on the type of the machine learning algorithm being targeted. Bayesian optimization
fits this criteria as it makes use of a surrogate model in Gaussian processes. Because Gaussian
processes are a generalization of function distributions, it can model any unknown function
[3]. This last property allows general Bayesian optimization to be effective regardless of the
underlying machine learning algorithm.

The three key properties Papernot et al. [6] outline that general black-box attacks on ma-
chine learning systems should satisfy are: “(i) the capabilities required are limited to observ-
ing the output, (ii) the number of labels queried is limited, and (iii) the approach applies
to different ML classifier types, in addition to state-of-the-art DNNs”. Bayesian optimization
can be set up to have property (i). It satisfies the remaining properties (ii) and (iii) respec-
tively because it is data efficient and it does not need to have knowledge of the targeted ML
classifier. This makes Bayesian optimization a natural fit for black-box adversarial machine
learning.

12

Chapter 2. Background & Related Work 2.4. MOTIVATION

2.4.1 Low Effective Dimensionality

Bayesian optimization finds the best sequence of queries to the target model to gather infor-
mation. For high dimensions, this problem quickly becomes intractable as the search space
increases exponentially with the number of features and possible values. To illustrate, con-
sider a target model with M input features each having K possible values. The number
of possible inputs to query in the search space is therefore MK . The intractability is even
more apparent for input features in the continuous domain. This is why standard black-
box numerical optimization techniques such as quasi-Newton methods are not appropriate
for this problem due to high dimensionality. Surrogate models, like Bayesian optimization,
are the better choice for dealing with black-box functions having high-dimension inputs [13].

Bayesian optimization has had consistent success with problems of moderate dimensional-
ity; with state-of-the-art performance being achieved from tuning up to 76 parameters in
combinatorial optimization problems. For high dimensionality, most features do not actu-
ally change the objective function in a significant way for certain classes of problems. Some
papers have shown this including “hyperparameter optimization for neural networks and
deep belief networks and automatic configuration of state-of-the-art algorithms for solving
NP-hard problems” [3]. In effect, these problems with high dimensionality have low effective
dimensionality.

To take advantage of low effective dimensionality, there has been research on the use ran-
dom feature selection by Bergstra and Bengio [16] and random embeddings by Wang et al.
[17]. Aside from these, Goodfellow et al. [1] demonstrated that adversarial samples are
caused by machine learning models being too linear in high-dimensional space by applying
linear perturbations to create adversarial samples. They state that linearity makes the mod-
els easy to train, but susceptible to adversarial samples. This linearity suggests that machine
learning algorithms learn classifiers that have low effective dimensionality. If this hypothesis
holds, Bayesian optimization will be an effective technique for generating adversarial sam-
ples against machine learning algorithms even if their inputs live in high-dimension space.

The phenomena of the classifier being too linear is illustrated in Figure 2.2. If class A rep-
resents a benign sample and class B a malicious one, then the adversary can have malicious
samples identified as benign in the leftmost adversarial region. Goodfellow et al. [1] have
shown that this occurs in high-dimension spaces.

We hypothesize that machine learning algorithms have low effective dimensionality. As a re-
sult, this makes them vulnerable to Bayesian optimization modeling their learned classifier
functions and generating adversarial samples through that.

2.4.2 Model Independence

At the moment, [6] is the only effective black-box attack we can compare to, but it requires
prior knowledge of the target’s machine learning algorithm. In their case, it was a deep
neural network (DNN). If the target model is a DNN or a similar classifier that is vulnerable
to the same adversarial samples, then their may be a more efficient attack overall. How-
ever, decision trees (DT) and k-nearest neighbors (KNN) are fairly robust against adversarial
samples from DNNs [3]. The researchers noted that DTs and KNNs are non-differentiable

13

2.4. MOTIVATION Chapter 2. Background & Related Work

Figure 2.2: Adversarial Regions - in a simplified representation, the plane represents the input
feature vector space. Crosses are samples. Classes A and B are separated by the curve which is
the true decision boundary. The red line represent a classifier’s learned decision boundary [2].

machine learning algorithms whereas DNNs are not. Differences in differentiability, the use
of gradients, or convexity of the learned classifier function among other things greatly affect
the effectiveness of the method suggested by Papernot et al. [6]. Additionally, new classes
of machine learning algorithms may be discovered that behave completely differently from
existing ones.

The limited uses of current black-box attacks and the plethora of research with white-box
attacks [5] suggests that a different approach needs to be taken. Most adversarial sam-
ple crafting algorithms are based of the fast-gradient sign method suggested by Goodfellow
et al. [1]. This may not always be effective or transferable to all other machine learning
algorithms.

The robustness of Bayesian optimization, and Gaussian processes in particular, allows it to be
effective against any target model regardless of the underlying machine learning algorithm.
This is why Bayesian optimization is a promising technique for performing true black-box
attacks. If successful, this method can become a general-purpose black-box attack that will
be used to probe machine learning models for adversarial samples. This also has a potential
application as a security audit for machine learning algorithms.

14

Chapter 3. Design

Chapter 3

Design

In this chapter, we lay out the framework for attacking the target model from the adversary’s
perspective, talk about Bayesian optimization in an adversarial setting, and finally go over
several adversarial crafting algorithms.

• Chapter 3.1 defines the theoretical framework needed to quantify the adversary’s
goals.

• Chapter 3.2 outlines the threat model used and lists the assumptions made. This is the
primary section for understanding the problem setting and the adversary’s knowledge,
capabilities, and goals.

• Chapter 3.3 discusses Bayesian optimization in an adversarial setting, chooses the
hyperparameters, and lists its strengths and limitations.

• Chapter 3.4 details the various algorithms that we propose to craft adversarial sam-
ples. This sets up the experiments we will run in the following chapter.

3.1 Theoretical Framework

To properly measure the adversary’s goals, it is essential to formally define the problem.
This paper adopts the theoretical framework laid out in Wang et al. [18] with some minor
changes. In this section, we work towards formal definitions for learned classifiers, true class
labels, and adversarial samples.

Given a classification problem with K classes, let x be the input sample space of the feature
vectors and Y be the output space representing a categorical set. For simplicity, let the class
labels be integers 1, 2, . . . ,K.

Definition 1. A learned classifier f is a function from f : X → Y . For all x ∈ X and
1 ≤ k ≤ K, let fk(x) denote the probability that the classifier believes x belongs to the k-th
class.

From the definition, [f1(x), f2(x), . . . , fK(x)] ∈ [0, 1]K is the output probability vector for
x that corresponds to the learned classifier f . Note that the classifier-assigned label is also
given by f(x) = arg maxk fk(x). This is the classifier learned by the machine learning algo-
rithm.

15

3.2. THREAT MODEL Chapter 3. Design

Now the true class of an object is typically determined by a human observer. Wang et al.
describes an oracle with the following definition.

Definition 2. An oracle represents a decision process generating ground truth labels for a
task of interest. Each oracle is task-specific, with finite knowledge and noise-free.

Therefore, the goal of machine learning is to train a learning-based classifier f : X → Y to
approximate an oracle classifier τ : X → Y for the same classification task.

Definition 3. Given a classification task and its oracle τ : X → Y , the true class label of
x ∈ X is τ(x).

Definition 4. Given an oracle τ : X → Y and a learned classifier f : X → Y for the same
task, an adversarial sample x ∈ X satisfies f(x) 6= τ(x).

For most classification tasks like image recognition, the oracle τ are humans who observe
and label the objects. In most literature, the idea for generating adversarial samples is to be-
gin with a correctly classified sample and then apply to it a specifically crafted perturbation
to force misclassification. Given a target classifier f , the adversary begins with x ∈ X where
f(x) = τ(x), then their goal is to produce an x′ ∈ X such that f(x′) 6= τ(x) and d(x, x′) < ε
for some small ε > 0 [18].

d(·, ·) is a function measuring the distance between two points in x. The condition d(x, x′) <
ε means that x and x′ are close enough, which would imply that τ(x) = τ(x′). The true
class label is unchanged with the adversarial sample generated. Combining the two condi-
tions f(x′) 6= τ(x) and τ(x) = τ(x′) implies that f(x′) 6= τ(x′). Therefore making x′ an
adversarial sample.

Finding x′ ∈ X subject that satisfies the two conditions above can be reformulated to finding
a small enough perturbation r ∈ X such that x′ = x + r satisfies the conditions. You will
still have f(x + r) = f(x′) 6= τ(x), but the distance constraint d(x, x′) < ε can be replaced
with the condition ‖r‖ ≤ δ for some small δ > 0.

Definition 5. r ∈ X is an adversarial perturbation if (x+ r) is an adversarial sample.

It then becomes clear that the adversary’s goal would be to find adversarial perturbations.

3.2 Threat Model

In this section, we outline the threat model using the framework suggested in Papernot et al.
[5] and implemented in [6]. To explore the adversary’s mindset in performing an evasion
attack, it is necessary to make clear their knowledge, goals, and capabilities with respect to
the targeted model.

The adversary wants to generate adversarial samples, by adding small perturbations to le-
gitimate inputs, to fool the target classifier. To illustrate a black-box attack on an unknown
target classifier, we must assume that the adversary can only query the target classifier and
observe the corresponding output probability vector. The adversary has no knowledge of the

16

Chapter 3. Design 3.2. THREAT MODEL

internal details of the target classifier, this includes the type of algorithm it uses, its training
data, design, and settings.

3.2.1 Adversary’s Knowledge

• The adversary has knowledge of the target classifier’s input representation, expected
outputs, and the number of class labels.

• The adversary does not know anything about the inner workings of the target classifier
(e.g. learning algorithm, training data, etc.).

• The targeted machine learning model is a black-box image classifier that has finished
training and outputs class probability vectors.

The primary reason for image recognition is that it is one of the most studied classification
tasks in adversarial machine learning, and it is used in most research papers [5]. Identifying
true class labels for images is also effortless for humans, making adversarial samples easy to
identify in-person.

Because this project is a proof of concept, the simple image classification task is sufficient.
Images come in easy-to-process arrays of pixel intensities and there are benchmark datasets
such as MNIST [19]. Other classification tasks like malware and spam detection are more
complicated because their features vary and the classification of malware and spam is not as
straightforward, needing more time and domain knowledge to properly implement.

3.2.2 Adversary’s Capabilities

• The adversary can query any input to the target classifier and observe the correspond-
ing output probability vector.

• The adversary has access to some legitimate inputs that are correctly classified by the
target model.

• The adversary has access to an oracle τ since he can look at an image and identify its
true class label.

In formal terms, let f : X → Y be the learned classifier of the target model with K
class labels. The adversary can query the model any x ∈ X and observe the correspond-
ing output probability vector [f1(x), f2(x), . . . , fK(x)], which also implies the class label
f(x) = arg maxk fk(x).

Practical applications of image classifiers need to output the probability vector to show the
classifier’s confidence in its predictions, so it is not an unrealistic scenario. This choice of
output might be contentious because it leaks information, but without this, the attack with
Bayesian optimization is near impossible as nothing else is known about the target classifier.

Masking the output probability vector is a possible defense that is discussed later in Chapter
3.3.2 for the limitations of Bayesian optimization.

17

3.2. THREAT MODEL Chapter 3. Design

3.2.3 Adversary’s Goals

• The adversary wants to find inputs that the target model classifies to any class different
from the correct one.

In formal terms, the adversary wants to find adversarial samples. That is, x ∈ X such that
f(x) 6= τ(x) where τ is the oracle. There may be legitimate inputs that the target model
misclassifies. However, there is no consistent method for finding or generating these given
what the adversary knows about the target model.

The primary way to find adversarial samples, as discussed in sections 3.1, is to generate them
from correctly classified inputs. We’ve shown that it is sufficient to find a small adversarial
perturbation ‖r‖ < δ such that f(x+ r) 6= τ(x), for an x satisfying f(x) = τ(x).

If the original predicted class is f(x) = l, then the adversarial sample we want, x′ = x+ r,
must satisfy f(x′) 6= l. This implies that maxk 6=l fk(x′)− fl(x′) > 0 [4].

Given a correctly classified x, define the function Ωx(a) = maxk 6=l fk(x + a) − fl(x + a).
Hence, if we write x′ = x+ r, then Ωx(r) = maxk 6=l fk(x′)− fl(x′).

So with an objective function Ωx(r) = maxk 6=l fk(x′)− fl(x′), the adversary’s goal is to find
r so that Ωx(r) > 0. A stronger condition is to solve the following optimization problem.

max
r

Ωx(r) (3.1)

s.t. ‖r‖ < δ

This will be the goal of the Bayesian optimization. Larger Ωx(r) leads to misclassification
with higher confidence, but Ωx(r) > 0 is sufficient to force misclassification. This is impor-
tant to note because it may be unlikely to achieve global optima with Bayesian optimization
when working in very high-dimension space. For this project, it is enough to have Ωx(r) > 0.

Indiscriminate & Targeted Evasion
In this project, the adversary does an indiscriminate evasion since the goal is to force mis-
classification to any other class different from the correct one. If the adversary wanted to
force misclassification to a specific class m 6= l, a targeted evasion, then the objective function
would instead be Ωx(r) = fm(x′)− fl(x′) [4].

At the moment, the adversary does not have a heuristic for which class to force misclassifi-
cation towards, so targeted evasion is set aside for future work.

Secondary Goals

• The adversary wants to minimize the number of queries made to the target classifier
to avoid detection.

• The adversary wants the adversarial samples to be convincing to human observers to
avoid raising suspicion.

These secondary goals are outlined because they are desirable but not easy to measure. The
primary goal of the adversary is to generate adversarial samples, but it is also important to

18

Chapter 3. Design 3.3. BAYESIAN OPTIMIZATION

avoid detection and raising suspicion. If the owner of the targeted model becomes aware of
any attacks on their system, they will deploy countermeasures such as blocking the adver-
sary’s access.

At the moment, there are no clear measures for how intrusive the adversary can be. The
secondary goals correspond to the two ways the adversary could get caught: (1) from the
unusual amount and frequency of queries sent or (2) from the obvious manipulation of the
input queries.

For the first risk, the adversary can space out his queries and mix in some non-malicious
ones. In the analysis portion of our results, chapter 4, we address the number of queries and
compare our results to [6].

For the second risk, it depends on whether or not the adversarial perturbations generated
are noticeable to humans. The perturbation could be unnoticeable, noticeable but unob-
structive, or clearly obstructive. Large perturbations that are clearly obstructive of the image
make the true class label ambiguous, this is not desirable for the adversary.

To measure this rigorously, we would need to survey human subjects to classify the images
they see and to gauge the amount of noise they perceive. An example of this was done in
Papernot et al. [8], but we currently do not have the time nor resources to conduct that
survey at the moment.

To achieve the latter secondary goal, we restrict the magnitude of alterations (perturbations)
made on the original input sample. This is done by using a metric (e.g. L1 or L2 norm for
inputs in Rn) to minimize the perturbation ‖r‖ < δ. For the optimization problem, this will
manifest as an additional box constraint on the perturbation r.

With the design and threat model set, we can move on to the implementation and design of
the experiment.

3.3 Bayesian Optimization

In this section, we update the Bayesian optimization algorithm with the adversary’s goals
in mind. We then list our design choices for the algorithm’s hyperparameters and other
settings. We then list the strengths and limitations of Bayesian optimization in the general
context and how it affects its use in adversarial machine learning. These set up our discus-
sion in the following section for how the adversary can generate adversarial samples using
various crafting algorithms.

We will use Gaussian processes as our surrogate model as discussed in the background Chap-
ter 2.3, because it induces a posterior distribution over the objective function that is analyt-
ically tractable.

The objective function that we are trying to maximize is Ωx(r) = maxk 6=l fk(x′)−fl(x′) from
equation (3.1), with the box constraint ‖r‖ < δ.

19

3.3. BAYESIAN OPTIMIZATION Chapter 3. Design

x is the correctly classified sample, with predicted class label f(x) = l, that the adversary
wants to evade the classifier with, r is the perturbation generated, and δ > 0 is an upper
bound for the perturbation to ensure that the true class labels of x and x′ = x + r are still
the same.

The goal is to have Ωx(r) > 0. Since x is already given and fixed, we search in terms of r.
Though we query the target classifier with x+ r.

Given x and an initial perturbation r1, we have an updated Bayesian optimization algorithm.

Algorithm 2: Bayesian Optimization (Adversarial Setting)

1: for n = 1, 2, . . . ,M do
2: select new rn+1 by optimizing acquisition function α

rn+1 = arg maxr α(r;Dn)
3: query target classifier by getting output probability vector of x+ rn+1

this gives us the value of Ωx(rn+1)
4: augment dataset Dn+1 = {Dn, (rn+1,Ωx(rn+1))}
5: update GP prior and posterior distributions

GP here stands for the Gaussian process. The algorithm stops when the perturbation allows
evasion of the classifier, Ωx(rn+1) > 0, or when the maximum number of iterations M is
reached.

The adversary only interacts with the target model when querying on step 3 for the prob-
ability vector [f1(x + rn+1), f2(x + rn+1), . . . , fK(x + rn+1)]. This allows us to compute
Ωx(rn+1) = maxk 6=l fk(x+ rn+1)− fl(x+ rn+1).

3.3.1 Settings

We discuss the hyperparameter choices for the Gaussian process and acquisition function as
they are integral for implementing Bayesian optimization.

Design choices involving the maximum number of iterations, number of initial points, and
the distance metric used to measure adversarial perturbation are specific to the type of input
data used. These particular settings are discussed in the latter portion of Chapter 4.1 after
we describe the dataset used in the experiments.

Gaussian Process
The ability of Gaussian processes (GP) to model a rich distribution of functions rests on its
kernel function. The kernel function controls important properties of the function distribu-
tion such as smoothness, differentiability, periodicity, and amplitude [3].

Typically, any prior knowledge of the target function is encoded in the kernel’s hyperparam-
eters. Getting the kernel function wrong will result in models that can not accurately model
the target. However, since the adversary has little to no knowledge of the target model’s
internal machine learning algorithms, the adversary has to adopt a more general kernel

20

Chapter 3. Design 3.3. BAYESIAN OPTIMIZATION

Figure 3.1: Kernel Profiles - “(Left) Visualization of various kernel profiles. The x-axis rep-
resents the distance r > 0. (Middle) Samples from GP priors with the corresponding kernels.
(Right) Samples from GP posteriors given two data points (black circles). The sharper drop in
the Matérn1/2 kernel leads to rough features in the associated samples, while samples from a
GP with the Matérn3/2 and Matérn5/2 kernels are increasingly smooth” [3].

function [20].

The following are the most commonly used kernels, labeled by the smoothness parameter
and omitting a factor of 1/2,

kMATÉRN1/2(x,x
′) = θ20 exp(−r) (3.2)

kMATÉRN3/2(x,x
′) = θ20 exp(−

√
3r)(1 +

√
3r) (3.3)

kMATÉRN5/2(x,x
′) = θ20 exp(−

√
5r)

(
1 +
√

5r +
5

3
r2
)

(3.4)

ksq-exp(x,x′) = θ20 exp

(
− 1

2r2

)
(3.5)

where r2 = (x− x′)Λ(x− x′) and Λ is a diagonal matrix of d squared length scales θ2i . The
profiles of these kernels are illustrated in Figure 3.1.

In our research we will be using the GPyOpt library to implement the constrained Bayesian
optimization. Their authors have set it up so that the GP takes a more model-independent
approach with regards to the kernel. They implement their proposed kernel function, the au-
tomatic relevance determination (ARD) Matérn 5/2 kernel citing that other common choices
like the ARD squared exponential kernel as “unrealistically smooth for practical optimization
problems” [20].

kMATÉRN5/2(x,x
′) = θ20 exp(−

√
5r)

(
1 +
√

5r +
5

3
r2
)

The Matérn 5/2 kernel results in twice-differentiable functions, an assumption that cor-
responds to those made by popular black-box optimization algorithms like quasi-Newton
methods, without requiring the smoothness of the squared exponential.

For the remaining hyperparameters of the GP, they marginalize over hyperparameters and
compute the integrated acquisition function. With this, they blend acquisition functions aris-
ing from samples from the posterior over the GP hyperparameters and have an estimate of
the integrated expected improvement [20]. This is assuming that the acquisition function is

21

3.3. BAYESIAN OPTIMIZATION Chapter 3. Design

the Expected Improvement (EI), which is a choice that we justify next.

Acquisition Function
In the adversarial setting, it will not be practical to try out different acquisition functions
and measure each of their performances. For the acquisition function, the two most popular
choices are to either optimize the expected improvement (EI) over the current best result or
the Gaussian process upper confidence bound (UCB). EI and UCB have both been shown to
be effective and data-efficient in black-box optimization problems [20].

Recall from Chapter 2.3.1, that expected improvement is given by,

αEI(x;Dn) = (µn(x)− τ)Φ(γ(x)) + σn(x)φ(γ(x))

and the Gaussian process upper confidence bound is defined as,

αUCB(x;Dn) = µn(x)− βnσn(x)

Snoek et al. [20] have found the EI criterion to perform well in minimization problems,
require no tuning of its own parameters, and to be better-behaved than UCB. Expected im-
provement also converges near-optimally. Other references such as [14] and [3] also suggest
the use of expected improvement in the general case.

Prior Knowledge
We assume the adversary has extremely limited internal knowledge of the targeted model
as we described in Chapter 3.2.1. However, in the current real-world environment, for cer-
tain classification tasks there is a limited number of machine learning algorithms that could
achieve state-of-art performance. Hence, the adversary could infer certain properties about
their targeted model and craft their black-box attacks appropriately.

For example, in image classification, the state-of-the-art in machine learning are convolu-
tional neural networks. Knowing that their target achieves state-of-art performance, the
adversary can guess the use of neural networks and deploy attacks like Papernot et al. [6]
that specifically target neural networks. Or if no such method like this is available, they
can incorporate their guess or belief of the target model into the kernel function or other
hyperparameters of the Bayesian optimization model.

This is something that we will not do at the moment because we want to demonstrate that
a truly blind Bayesian optimization attack is feasible and perhaps even effective against a
targeted black-box classifier for any general classification task. Also, the type of guessing
illustrated above may not be helpful in the case where the target model implements their
own novel machine learning algorithm or if several families of machine learning algorithms
all could achieve similar state-of-the-art performance in that classification task.

3.3.2 Strengths & Limitations

We outline the general strengths and limitations of Bayesian optimization in the context of
adversarial machine learning.

Strengths

22

Chapter 3. Design 3.3. BAYESIAN OPTIMIZATION

• Allows for black-box attacks when nothing is known about the internal machine learn-
ing algorithm of the target model.

• Very data efficient, requiring only a few function queries to find an optimum.

These two are great strengths in an adversarial setting where information on the targeted
system is very scarce or unavailable. The first strength is very crucial because there are not
many methods that can boast this capability; it allows a black-box attack to be possible in
the first place. It is this model’s primary advantage over Papernot et al. [6].

One could argue that adversarial samples generated by machine learning models are trans-
ferable to others. However it has also been shown that certain types of machine learning
algorithms are resilient towards adversarial samples of other types [1]. Additionally, more
novel machine learning algorithms could be developed in the future that behave in com-
plete different ways (from existing ones). Thus, relying on gradient-based or transferability
attacks can not always lead to a general black-box attack; cementing the need for a model-
independent approach like Bayesian optimization.

Because Bayesian optimization is model-independent, it can be used defensively as a tool
to audit the vulnerability of new or existing machine learning algorithms and defenses to
adversarial samples. Existing defenses mask only a few vulnerabilities without addressing
the underlying error of the algorithm. The statistical nature of Bayesian optimization allows
it to reveal these adversarial regions so long as they exist.

The second strength helps the adversary avoid detection by minimizing the number of
queries he needs to make. This second strength was discussed in the adversary’s secondary
goals in Chapter 3.2.3. Current evasion attacks involving surrogate models in adversar-
ial machine learning need to train an entire machine learning model to estimate the target
model [8]. This usually requires large amounts of training data that is representative of
the one used by the target model or, as done in Papernot et al. [6], the generation of data
through sampling methods. In the latter, the generated samples may not even be accurate.
Either way, building such a dataset still requires querying the target model significantly many
more times.

The number of iterations in a typical Bayesian optimization is less than a hundred to be effi-
cient and effective [3]. Bayesian optimization slows down for a higher number of data points
as we later explain when discussing limitations. This will be for each adversarial sample the
adversary tries to create. Hence, given a small set of samples that need evasion, Bayesian
optimization will be the more efficient technique with regards to the number of queries, as
current methods need to train entire machine learning models that require more data to
perform well.

Limitations

• Getting the function distribution (Gaussian process) of the target classifier wrong
would lead to a very inaccurate model.

• Does not scale to high dimensions or high numbers of samples.

• Relies on the output being a probability vector rather than just a class label.

23

3.3. BAYESIAN OPTIMIZATION Chapter 3. Design

These first two limitations mirror the first two strengths. The flexibility of Gaussian processes
could lead to the first limitation if it models the wrong function distribution.

The kernel function of the Gaussian process can model functions with properties that differ
greatly from that of the target classifier. We mitigate this by having a general approach to op-
timization as discussed in Chapter 3.3.1. By using the Matérn 5/2 kernel we assume twice
differentiability like in popular black-box optimization techniques such as Quasi-Newton
methods, but without the need for smoothness.

By taking this conservative approach, the Gaussian process may not be able to capture and
capitalize on all the properties of the target function, but it will not be inaccurate either.
Recall in Chapter 3.2.3 that the adversary’s goals does not yet require evasion with high
confidence. We have stated that it is enough to satisfy the weaker condition of achieving
evasion first, and we hypothesize that this can be done with a more general kernel function.

The second limitation is because for each iteration the Bayesian optimization searches for
the maximum of an acquisition function and recomputes the posterior of the Gaussian pro-
cess distribution. For the acquisition function, we find the global maximum according to the
expected improvement (in our case) while incorporating the new information from the last
query that was just made. Although the acquisition function is cheap to evaluate, a high
number of dimensions does not make the search trivial. Current methods for optimizing this
include discretization, adaptive grids, and divided rectangles [3].

Updating the posterior of the Gaussian process is affected by high dimensionality and a high
number of samples. This requires O(n3) where n is the training set size or the amount of
queries already made. This n increases as we make more queries and gather their outputs.
This makes it infeasible for the Bayesian optimization to take in a lot of data points at once.
The good thing is that Bayesian optimization is relatively effective without needing that
many evaluations (under 100). There are also techniques involving distributed computing
and sparse Gaussian processes to deal with large training datasets if this becomes a problem
later [3].

The issue of high dimensionality for Bayesian optimization is mitigated in certain classes of
problems. Papers have shown that most features do not actually change the objective func-
tion in a significant way for neural networks and deep belief networks, only a few do [3].
Recall also that adversarial samples are possible because machine learning classifiers are too
linear [1]. This is encouraging for the attacker as that implies the targeted models may have
low effective dimensionality.

Another minor limitation related to this is that an entire implementation of Bayesian opti-
mization is needed to generate adversarial perturbations for a single input sample x. This
may become inefficient if the adversary needs to evade using a very large set of input sam-
ples. Though most of the time, from the defender’s perspective, only a few malicious samples
need to get through to compromise the system.

The third limitation is raised because Papernot et al. [6] has shown that is possible to per-
form black-box attacks with only the output class labels. Bayesian optimization needs the
quantitative continuous output to be able to reasonably perform well. In general, the output
class label can always be expected, but not the output probability vector. However we ar-

24

Chapter 3. Design 3.4. CRAFTING ALGORITHMS

gue that applications of classification algorithms in decision-making systems typically would
want a measure of confidence from the classifier, so it is not unreasonable to expect the
probability vector to be a part of the output.

This vulnerability for machine learning systems can be remedied by (1) showing only the
output class label and its probability value, (2) masking the probabilities with more qualita-
tive measure such as “high confidence” or “low confidence”, or (3) simply not showing the
probabilities at all. We revisit this defense in Chapter 5.

3.4 Crafting Algorithms

In this section, we list the different crafting algorithms available to generate adversarial sam-
ples. These algorithms are what we evaluate in our experiments. To begin, we summarize a
general black-box attack algorithm from adversary’s perspective.

Let f : X → Y be the learned classifier of the target model with K class labels and x be a
correctly classified input. That is, f(x) = l where l is the true class label of x.

Write [f1(x), f2(x), . . . , fK(x)] ∈ [0, 1]K as the output probability vector for x and the
classifier-assigned label is given by f(x) = arg maxk fk(x).

The adversary wants to find a small adversarial perturbation r such that the adversarial sam-
ple generated from that x′ = x + r evades the classifier. That is, f(x′) 6= l, or equivalently,
fl(x

′) < fk(x′) for some k 6= l.

This evasion problem and its boundary conditions are summarized by the following opti-
mization problem.

min
r

Ωx(r)

s.t. ‖r‖ < δ

Where Ωx(r) = maxk 6=l fk(x′) − fl(x′) and it is sufficient for the adversary to achieve eva-
sion, or Ωx(r) > 0, rather than the stronger condition of finding a global maximum of the
function.

On each iteration, the adversary queries the target classifier with its perturbed input x′ =
x + r to get the output probability vector [f1(x

′), f2(x
′), . . . , fK(x′)] and classifier-assigned

label f(x′). So given an input x that is correctly classified by the target model, the adversary
does the following.

Algorithm 3: General Query-Based Black-Box Attack

1: for n = 1, 2, . . . ,M do
2: generate rn+1 using crafting algorithm . where rn+1 satisfies ‖r‖ < δ
3: query target classifier with x+ rn+1

4: get resulting output and update model

25

3.4. CRAFTING ALGORITHMS Chapter 3. Design

Stopping when evasion is achieved in step 3 or when the maximum number of iterations M
is reached.

This section explores the following crafting algorithms that the adversary can use for their
step 2.

1. Random: Perturbations are generated randomly.

2. Bayesian Optimization (BO): Perturbations are generated only with Bayesian opti-
mization.

3. BO with Dimensionality Reduction: Dimensionality reduction is applied first, then
perturbations are generated with Bayesian optimization.

4. Fast Gradient Sign Method: White-box attack that makes use of the target model’s
gradients to generate adversarial perturbations.

Random is a reasonable lower baseline for black-box attacks; anything worse is not an ef-
fective method. Fast gradient sign method (FGSM) is a white-box attack that a stronger
adversary will be able to perform. Matching the results of a white-box attack with a black-
box attack will exceed expectations, and surpassing it will be even better. Realistically, we
expect the second algorithm (Bayesian optimization) to do be better than random, but worse
than FGSM.

To make up for Bayesian optimization’s limitations when dealing with inputs from high-
dimension spaces, we experiment with dimensionality reduction. This assumes a stronger
adversary that has access to a sizable amount of labeled data that is representative of the
target classifier’s training data. It is worth exploring to see if Bayesian optimization attacks
can be enhanced by other techniques.

3.4.1 Random

This is a simple algorithm that randomly generates the perturbation r such that it is within
the boundary conditions ‖r‖ < δ. Depending on the metric or norm used, the boundary
conditions can be satisfied by dividing the generated vector by a scalar.

Since there is no information on the underlying machine learning algorithm of the target
model, it makes sense to generate r by sampling from a random multivariate uniform dis-
tribution. There are other methods to do random sampling, but this is the simplest one that
makes the least number of assumptions. This algorithm is illustrated below.

Algorithm 4: Random

1: for n = 1, 2, . . . ,M do
2: randomly generate rn+1 . where rn+1 satisfies ‖r‖ < δ
3: query target classifier with x+ rn+1

4: if f(x+ rn+1) 6= l then return x+ rn+1

5: get resulting output and update model

26

Chapter 3. Design 3.4. CRAFTING ALGORITHMS

3.4.2 Bayesian Optimization (BO)

In the first few iterations, Bayesian optimization has little to no data points to take advan-
tage of. To set it up better, we need a few evaluations at some initial points for r. These
are typically chosen randomly, since nothing yet is known about the target classifier. The
number of initial points N depends on the input data and its dimensionality. Choosing N is
discussed in Chapter 4.1.2.

So the random algorithm is used to generate the first N initial points. Then we add those
queries and their outputs to an initial dataset to be used for Bayesian optimization. The
resulting algorithm is illustrated below.

Given x and an initial perturbation r1, we have an updated Bayesian optimization algorithm.

Algorithm 5: Bayesian Optimization with N Initial Points

1: run Algorithm 4: Random with N maximum iterations
save queries and outputs to D1

2: using D1 as initial dataset, run Algorithm 2: Bayesian Optimization

The Algorithm 2 for Bayesian optimization can be found right before Chapter 3.3.1.

3.4.3 BO with Dimensionality Reduction

High dimensionality is a limitation we have discussed in Chapter 3.3.2. This issue, in partic-
ular, makes the optimization of the acquisition function quickly become intractable in higher
dimensions.

We have hypothesized that current machine learning algorithms have low effective effective
dimensionality, or are simply too linear [1, 3]. That is, the objective function is only affected
by a few of the input features.

Nevertheless, it is worth exploring techniques to mitigate the issue of high dimensionality,
so that optimizing the acquisition function will be easier and quicker. The general idea for
this attack is to do dimensionality reduction first, then perform Bayesian optimization in the
reduced (lower-dimensional) space.

The only step done in the original space will be querying the target classifier. That is, once
the acquisition function finds the next point to query in the reduced space, we transform
the query back into the original space to input into the target classifier. In theory, it should
be easier and quicker to find a global optima as the acquisition function works in a lower
dimension space.

For multimodal cases where the input feature space x consists of both discrete and continu-
ous features, it will be difficult to formalize a general framework on reducing its dimensions
as it will depend on the dataset. For now, we work with a continuous subspace of the real
numbers X ⊂ Rd, where dim(X) = d.

27

3.4. CRAFTING ALGORITHMS Chapter 3. Design

Formally, if the original input space is x with r ∈ X, let T : X → Xred be a transformation
that maps elements of x into a reduced space Xred with dim(X) � dim(Xred). To be able
to do Bayesian optimization on the reduced space and feed it back to the target classifier,
we also need to have a pseudo-inverse function T−1 : Xred → X to map input back to the
original space.

Define rred ∈ Xred and r̃ = T−1(rred). The original optimization problem

min
r

Ωx(r)

s.t. ‖r‖ < δ

becomes

min
r

Ωx(r̃)

s.t. ‖r̃‖ < δ

We update Algorithm 5 to include dimensionality reduction. This is illustrated in Algorithm
6.

Algorithm 6: Bayesian Optimization with Dimensionality Reduction

1: do dimensionality reduction to get transformation T
2: run Algorithm 4: Random in the reduced space . for initial points

save queries and outputs to D1

3: for n = 1, 2, . . . ,M do
4: select new rn+1 by optimizing acquisition function α

rn+1 = arg maxr α(r;Dn)
5: query target classifier by getting output probability vector of x+ r̃n+1

this gives us the value of Ωx(r̃n+1)
6: augment dataset Dn+1 = {Dn, (rn+1,Ωx(r̃n+1))}
7: update GP prior and posterior distributions

The acquisition function α and the Gaussian process GP work in the reduced dimension
space Xred.

Determining a δred so that the constraint ‖rred‖ < δred in the reduced space translates to
‖T−1(rred)‖ < δ in the original space depends on the transformations and norm used. This
is difficult even in the simple case where the transformation is linear, so this may become a
problem later on.

Recall that the purpose of the box constraint δ was to ensure that the perturbed sample
retains its true class label, so performing these transformations runs the risk of generating
adversarial samples that are legitimately from another class.

There are multiple ways to do dimension reduction, but most techniques need to identify
the most important features of the data. To do this requires a large enough labeled dataset
that is representative of the target model’s training data. However, gaining this advantage
requires us to give up our assumption of a weak adversary.

28

Chapter 3. Design 3.4. CRAFTING ALGORITHMS

The first dimensionality reduction technique we consider does not require us to change our
assumptions on the adversary. This was implemented by Wang et al. [17] where they im-
plement Bayesian optimization with random embeddings (REMBO). REMBO first draws a
random embedding, given by a random Gaussian matrix A, and then performs Bayesian op-
timization in this embedded space.

So in Algorithm 6, the transformation T becomes multiplication by A and the acquisition
function restricts its search to a bounded region B. However, the choice of B is very partic-
ular, and considering our additional boundary conditions, it becomes very restrictive for the
perturbation r. Overall, we think the adversarial setting is too restrictive for this implemen-
tation at the moment [17].

The other more simple dimensionality reduction technique we consider is principal compo-
nent analysis (PCA). We will have to relax our assumptions on a weak adversary here, but
this dimensionality reduction is simple and easy to implement. PCA works by using eigen-
vectors to choose the features that contribute to the largest amount of variance.

There is also the concern that some adversarial samples may not have a preimage in the
reduced space. Because T maps from a higher dimension space to a lower one, if x′ ∈ X
is an adversarial sample then there could be no rred ∈ Xred such that x′ = x + T−1(rred).
However, we will assume that there adversarial perturbations still exist.

Particular details on enforcing the box constraints and number of components used for PCA
depends on the data and will be determined as we run experiments in Chapter 4.3.

3.4.4 Fast Gradient Sign Method (FGSM)

Goodfellow et al. [1] outlined the fast gradient sign method (FGSM) for generating adver-
sarial examples against neural networks. This is a computationally efficient white-box attack
that can be used against any machine learning algorithms that makes use of gradients and
weights. FGSM is described in the following paragraph.

“Let θ be the parameters of a model, x the input to the model, y the targets associated with
x (for machine learning tasks that have targets) and J(θ,x, y) be the cost used to train the
neural network. We can linearize the cost function around the current value of θ, obtaining
an optimal max-norm constrained perturbation of ν = εsign(∇xJ(θ,x, y))” [1].

Additionally, the gradient needed can be computed efficiently via backpropagation. Hence,
this is a white-box that is efficient to execute if you know the internal weights and archi-
tecture of the machine learning algorithm. Moosavi-Dezfooli et al. [21] gives an FGSM
algorithm against a general image classifier in the multi-class case that we implement.

The white-box FGSM will be used as an upper benchmark to our black-box Bayesian opti-
mization attack. The random attack is the lower benchmark. We expect Bayesian optimiza-
tion to perform better than random, but not as good as FGSM.

29

Chapter 4. Experiments & Results

Chapter 4

Experiments & Results

In this chapter, we discuss our implementation specific to this problem and dataset. We then
present and discuss the results of the experiments.

• Chapter 4.1 lists the remaining implementation and design choices that need to be
made specific to our experiment.

• Chapter 4.2 compares the Bayesian optimization, fast gradient sign, and random at-
tacks. Bayesian optimization has better results than the other attacks.

• Chapter 4.3 evaluates the Bayesian optimization attack with dimensionality reduction.

4.1 Implementation

In this section we list the software, dataset, machine learning classifiers, and the other de-
sign choices used in the following experiments.

Software
This project is implemented on Python 3.6 with the following libraries.

• GPyOpt for constrained Bayesian optimization with Gaussian processes [22],
• Keras for convolutional neural networks [23],
• scikit-learn for the remaining machine learning algorithms [24], and
• cleverhans for implementing the fast gradient sign method against convolutional neu-

ral networks [25].

The GPyOpt library allowed us to set up the constrained Bayesian optimization as described
in Chapter 3.3.1.

4.1.1 Dataset & Classifiers

Dataset
For image classification tasks there are some benchmark datasets that are popular for re-
search such as, MNIST (handwritten digits recognition dataset), CIFAR10 (objects recogni-
tion dataset), SVHN (digits recognition dataset), STL10 (objects recognition dataset), and
ImageNet1000 (objects recognition dataset). For this research we only use the MNIST
dataset as it is widely used as a benchmark in the most prominent research for adversar-
ial machine learning like with Papernot et al. [5, 6, 8]. Additionally, when compared to the

30

Chapter 4. Experiments & Results 4.1. IMPLEMENTATION

other datasets, MNIST has the least number of features at 784 [19]. In image classification,
images have hundreds to thousands of pixel values. It is sensible to start with a lower “high”
number of dimensions to test if Bayesian optimization can perform well against these high-
dimension input.

The target classifier’s input are black and white 28 by 28 pixel images of handwritten digits.
These are flattened into vectors with 784 features, with each feature corresponding to a pixel
intensity taking normalized values between 0 and 1. The image represents digits from 0 to
9, so the output probability vector has 10 components, one for each label class from 0 to 9.

Figure 4.1: MNIST Samples - first few images from the MNIST dataset. Labeled as 7, 2, 1, and
0 from left to right.

Classifiers
For this research, we first work with the most common and effective machine learning algo-
rithms for image classification. We’ve chosen a convolutional neural network (CNN), logistic
regression (LR), and random forest (RF) ensemble.

Convolutional neural networks are a clear choice because they represent the state-of-the-art
in image recognition; most well tuned deep neural networks achieving upwards of 99% in
test accuracy. The logistic regression and random forest ensemble were both chosen because
of their simplicity, effectiveness, and wide use as machine learning algorithms. Other classes
of algorithms such as k-means clustering (KM), k-nearest neighbors (KNN), and support
vector machines (SVM) were considered, but due to time constraints we decided to first
focus on the more common and prominent classifiers for image recognition.

• CNN was implemented using Keras, we detail its architecture below.
• Multinomial LR was implemented using scikit-learn’s LogisticRegression class.
• RF ensemble was implemented using scikit-learn’s RandomForestClassifier class with

100 estimators and gini impurity as its criteria.

For the convolution neural network, the input is processed by the following layers (in this
order): two convolutional layers (32 then 64 kernels of 3 by 3 pixels), a pooling layer (2
by 2 filters), a fully connected hidden layer (128 neurons), and an output softmax layer (10
neurons). The output is a probability vector with 10 components, each corresponding to the
digits 0 to 9.

Training & Testing
The MNIST dataset was split into 60,000 training data points and 10,000 testing data points.
All classifiers were trained with the same test data and their accuracy evaluated with the
same test data. The classifiers label the input image with the class label assigned the largest
probability. The CNN achieved a test accuracy of 99.06%, the LR had 92.46% test accuracy,

31

4.1. IMPLEMENTATION Chapter 4. Experiments & Results

and the RF had 96.94% test accuracy.

We selected 100 test data points to attack and craft adversarial samples for. These samples
were used to evaluate the effectiveness of our attacks. The number of samples was restricted
to 100 due to time restrictions; Bayesian optimization is not a quick algorithm.

4.1.2 Metrics & Settings

Design choices involving the number of initial points, number of maximum iterations, and
the distance metrics are specific to the type of input data used. We discuss our choices below,
specific to the MNIST dataset and image classification task.

Queries
Bayesian optimization does not need many queries to find the optimum. Preliminary ex-
periments show that a little under 100 queries per sample is enough to be effective without
slowing down my computing equipment. We decided to use 30 initial points and a maximum
of 50 additional iterations as this setting was sufficient.

Note: Since we have a total of 80 queries for the Bayesian optimization attack, we set the
maximum number of queries to 80 for a pure random attack for comparison.

Increasing the number of initial points and maximum iterations will improve the perfor-
mance of the Bayesian optimization, but at the cost of computing time (exponentiallyO(n3)).
Due to time and computational constraints we put that aside for future work.

Distance Metrics
In our discussion of the adversary’s secondary goals in Chapter 3.2.3, we mentioned how
surveying human subjects to classify these modified images is needed to rigorously check if
perturbations change the true class labels. However, we are unable to do that due to time
constraints.

The best substitute for that would be to constrain the magnitude of the change. This is done
by using a distance metric to minimize the perturbation ‖r‖ < δ. Choosing this metric or
norm will have some effect on the perturbations generated in image classification tasks [26].

• The L1 norm
∑n

i=1 |ri| encourages localized deformations.

• The L2 norm
√∑n

i=1 r
2
i encourages less localized and more smooth deformations.

• The L∞ norm maxi |ri| encourages uniformly spread deformations.

Where ri is the i-th component of the perturbation vector r. Adversarial perturbations gen-
erated from the fast gradient sign method (FGSM) create relatively smooth or spread out
deformations [1, 21]. There are also adversarial perturbation generated by localized pixel-
by-pixel distortions [8]. Hence, for image classification problems, there is a case for each of
the norms.

If the classification problem is well studied for adversarial samples, the adversary can make
a better guess on which norm or metrics to use. For now, we choose to go with the L1 norm,
in line with our choice of the Matérn 5/2 kernel function, as it does not assume smoothness

32

Chapter 4. Experiments & Results 4.2. BAYESIAN OPTIMIZATION

in the target function.

Choosing δ
Now to determine δ for the box constraint the adversary can get any of his input samples
and apply varying magnitudes of perturbation to see for what values does the picture get too
occluded. This is illustrated in Figure 4.2.

0, 0.0 25, 1.0 50, 2.1 75, 3.1

100, 4.1 125, 5.2 150, 6.2 175, 7.3

200, 8.3 225, 9.3 250, 10.4 275, 11.4

Figure 4.2: Norm Comparison - numbers x, y under each image show the perturbation’s L1

norm (x) and L2 norm (y).

The noise is barely visible for L1 norm values from 0 to 50. It begins to show, but only
slightly, for 50 to 100. From 100 to 150 the true class label is unchanged, but the noise
is fairly obstructive. For higher values of the L1 norm, the true class label is unidentifiable
because of the obstruction. So a good range to test δ would be from 0 to 150.

Aside from the box constraint ‖r‖ < δ, there is also another boundary condition given by the
MNIST dataset. Since we flatten the inputs and normalize their features to the range [0, 1],
every input satisfies x ∈ [0, 1]784.

Given an input x with xi as its i-th component, the i-th component of x + r, given by
xi + ri, should be in the range [0, 1]. Thus, we have the additional boundary condition for
the perturbation r: we have ri ∈ [−xi, 1− xi] for all i = 1, . . . , 784.

4.2 Bayesian Optimization

We implemented a Bayesian optimization (BO) and a pure random attack on all three classi-
fiers: convolutional neural network (CNN), logistic regression (LR), and random forest (RF)
ensemble. Then we implemented the fast gradient sign method (FGSM) against the CNN

33

4.2. BAYESIAN OPTIMIZATION Chapter 4. Experiments & Results

and LR. We did not do this for the RF since it did not use gradients.

The 100 input samples for the adversarial attack were chosen from the testing data. The
attacks were done for δ values from 0 to 150. Naturally, evasion rates increase for larger δ
as it allows larger perturbations.

The best result was that BO successfully evaded these high-accuracy classifiers on a high per-
centage of the input samples within a reasonable δ. This shows its feasibility as a black-box
attack against machine learning classifiers with high-dimensional inputs (MNIST had 784
features). And, surprisingly, it was the most effective attack against the CNN.

CNN was the most resilient of the classifiers, followed by LR. It was moderately easy to evade
LR for both BO and FGSM attacks. RF was very easy to evade even for the random attack.
This can be seen when in the δ = 90 range, the evasion rates was at most 30% for CNN while
it was 99% for LR and 91% for RF. Light noise is visible at the 50 to 100 range for δ. Table
4.1 summarizes these results.

Classifier-Attack Pairs δ = 5 δ = 20 δ = 40 δ = 60 δ = 90 δ = 120 δ = 150

CNN-BO 1 2 6 11 30 68 99
CNN-FGSM 1 3 7 14 29 48 62
CNN-Random 0 0 1 1 3 13 32
LR-BO 4 19 77 89 98 99 100
LR-FGSM 12 89 99 99 99 99 100
LR-Random 0 4 23 53 76 81 84
RF-BO 53 78 85 89 91 93 96
RF-Random 28 68 82 86 88 90 92

Table 4.1: All Results - this shows the number of samples evaded out of a 100 for each classifier-
attack pair, with its corresponding maximum perturbation δ. Since there were 100 samples, this
is equivalent to their percentages.

4.2.1 Attack Comparison

In this part, we compare the various attack algorithms for each classifier. We show that
Bayesian optimization (BO) is effective as a black-box attack, outperforming the random at-
tack and having comparable results to the white-box attack (FGSM).

Logistic Regression
For logistic regression (LR), the fast gradient sign method (FGSM) should be the best attack
since it makes use of the gradients and LR is a linear convex model. The results verify this.
For δ = 20, FGSM has an 89% evasion rate and this goes up to 99% for higher δ.

BO does not do as well as FGSM for δ < 40, but it reaches comparable evasion rates for
δ ≥ 60. The random attack is used to set a baseline for evasion rates, and it identifies if the
target classifier is vulnerable to random noise. BO clearly outperforms the random attack
from the start. These are illustrated in Figure 4.6.

The results imply that BO is effective in evading a machine learning classifier despite the
high dimensionality of the input. This supports the hypothesis that the underlying machine

34

Chapter 4. Experiments & Results 4.2. BAYESIAN OPTIMIZATION

learning classifier has low effective dimensionality, and supports the claim that BO is viable
black-box attack against machine learning algorithms in general.

0.00 5.03 10.06 15.09

20.12 25.16 30.19 35.22

40.25 45.28 50.31 55.34

Figure 4.3: LR-FGSM Adversarial Samples - ‘6’ misclassified to ‘5’ in the last 10 images, with
the number under each image being the δ of the perturbation.

Original
Label 8 (0.92)

Perturbed
Label 3 (0.53)

Perturbation
Norm (35.00)

Original
Label 9 (0.96)

Perturbed
Label 3 (0.45)

Perturbation
Norm (52.71)

Figure 4.4: LR-BO Adversarial Samples - (Left) ‘8’ misclassified to ‘3’ with δ = 35. (Right) ‘9’
misclassified to ‘3’ with δ = 53.

Comparing the LR adversarial samples between BO and FGSM, the ones generated by BO
look less “obvious” than those made by FGSM of the same δ values. This may be due to our
use of the L1 norm, as it encourages localized rather than smooth perturbations like those
made by gradient-based methods.

Convolutional Neural Network
The convolutional neural network (CNN) is more resilient than the other classifiers. Even by
looking at Table 4.2, we can see the evasion rates reach double-digits only when δ ≥ 60 and
even δ ≥ 120 for random.

35

4.2. BAYESIAN OPTIMIZATION Chapter 4. Experiments & Results

0 20 40 60 80 100 120 140
L1 Norm

0

20

40

60

80

100

Pe
rc

en
t E

va
de

d
(%

)

CNN Attack Comparison
Random
Fast Gradient Sign
Bayesian Optimization

Figure 4.5: CNN Attack Comparison - eva-
sion percentages against CNN for its corre-
sponding δ (maximum L1 norm).

0 20 40 60 80 100
L1 Norm

0

20

40

60

80

100

Pe
rc

en
t E

va
de

d
(%

)

LR Attack Comparison

Random
Fast Gradient Sign
Bayesian Optimization

Figure 4.6: LR Attack Comparison - evasion
percentages against LR for its corresponding δ
(maximum L1 norm).

Note that L1 norm of Figure 4.5 goes from 0 to 150 while that of Figure 4.6 goes from 0 to 100.

Classifier-Attack Pairs δ = 5 δ = 20 δ = 40 δ = 60 δ = 90 δ = 120 δ = 150

CNN-BO 1 2 6 11 30 68 99
CNN-FGSM 1 3 7 14 29 48 62
CNN-Random 0 0 1 1 3 13 32
LR-BO 4 19 77 89 98 99 100
LR-FGSM 12 89 99 99 99 99 100
LR-Random 0 4 23 53 76 81 84

Table 4.2: CNN & LR Results - this shows the number of samples evaded (out of 100) for each
classifier-attack pair, with its corresponding maximum perturbation δ. Since there were 100
samples, this is equivalent to their evasion percentages.

For δ ≤ 90, BO and FGSM have similar or matching evasion rates. It is for large values,
δ > 90, where BO begins to outperform FGSM. At δ = 120, we have 68% evasion for BO and
48% evasion for FGSM. By δ = 150, BO is able to evade virtually all samples while FGSM
could only get to 62%. Despite this, the random attack did not evade CNN. It only begins to
evade at a higher rate at around δ > 110. This suggests that the CNN was extremely resilient
to random perturbations. These observations are illustrated in Figure 4.5.

We hypothesized that FGSM will outperform BO as it made use of internal knowledge of the
CNN where BO had none, but this did not turn out to be the case. It is possible that FGSM
was not the best white-box attack against CNNs for image classification, there are other pa-
pers that employ other techniques such as pixel-by-pixel distortion. However, these require
more a lot more queries [8].

To add to that, FGSM performed better on LR than on CNN because of fundamental dif-
ferences. The CNN models a more complex and robust function than LR. FGSM may get
trapped in local optima when traversing CNN’s function, whereas it will not with LR’s due to
its convexity. Despite the shortcomings of FGSM against CNN, it is still impressive that BO
manages to outperform it at higher δ values.

36

Chapter 4. Experiments & Results 4.2. BAYESIAN OPTIMIZATION

Original
Label 4 (0.84)

Perturbed
Label 9 (0.76)

Perturbation
Norm (60.00)

Original
Label 1 (1.00)

Perturbed
Label 8 (0.59)

Perturbation
Norm (89.99)

Figure 4.7: CNN-BO Adversarial Samples - (Left) ‘4’ misclassified to ‘9’ with δ = 60. (Right) ‘1’
misclassified to ‘8’ with δ = 90.

Original
Label 1 (1.00)

Perturbed
Label 5 (0.58)

Original
Label 6 (1.00)

Perturbed
Label 5 (0.75)

Figure 4.8: CNN-FGSM Adversarial Samples - (Left) ‘1’ misclassified to ‘5’ with δ = 74. (Right)
‘6’ misclassified to ‘5’ with δ = 110.

This implies that even the underlying classifier function of CNN has low effective dimension-
ality and can be optimized by BO. This is supported by studies that show hyperparameter
optimization of deep neural networks to have low effective dimensionality [3]. All these
imply that BO is an effective method for black-box evasion attacks against CNNs, a state-of-
the-art algorithm.

The CNN adversarial samples of BO resemble salt-and-pepper noise, most likely because of
the L1 norm. The adversarial samples generated by FGSM look more like smooth masks laid
over the original image. In all cases, the true class label still remains the same as can be seen
in the images.

Random Forest
The random forest (RF) ensemble classifier is a bit different from the other models. The
evasion percentage shoots up even at the slightest perturbation. This can be seen for δ = 20,
where BO evades it at 78% and random evades it at 68%. The attacks improve further for
δ = 40 with BO at 85% evasion and random at 82% evasion. However, the evasion rate
seems to plateau for higher δ.

These results, especially the high evasion rate of random noise, suggests a huge vulnerability
with the classifier. This vulnerability is surprising as random forests are one of the most
successful machine learning algorithms for classification and regression. It will be hard to
compare attack methods here since adversarial samples are generated with great ease. We
investigate this further in the next subsection.

37

4.2. BAYESIAN OPTIMIZATION Chapter 4. Experiments & Results

Classifier-Attack Pairs δ = 5 δ = 20 δ = 40 δ = 60 δ = 90 δ = 120 δ = 150

RF-BO 53 78 85 89 91 93 96
RF-Random 28 68 82 86 88 90 92

Table 4.3: RF Results - this shows the number of samples evaded out of a 100 for each classifier-
attack pair, with its corresponding maximum perturbation δ. Since there were 100 samples, this
is equivalent to their percentages.

Original
Label 9 (0.98)

Perturbed
Label 8 (0.28)

Perturbation
Norm (15.40)

Original
Label 5 (0.90)

Perturbed
Label 8 (0.36)

Perturbation
Norm (18.09)

Figure 4.9: RF-BO Adversarial Samples - ‘9’ and ‘5’ are both misclassified to an ‘8’ with δ = 20.

4.2.2 Classifier Analysis

The classifiers’ test accuracies were: CNN 99.06%, LR 92.46%, and RF 96.94%. It is no
surprise then that CNNs were the most robust to adversarial samples as they are the state-
of-the-art in machine learning algorithms for image classification.

CNN has the lowest evasion rate for each attack and LR is almost always second best in
lowest evasion. The results of our experiments confirm this and is illustrated in Figure 4.10.

However, as mentioned in the previous section, the vulnerability of RF to the slightest per-
turbation is surprising. The RF achieved a testing accuracy of 96.94%, far better than the
92.46% of LR. Yet it is more susceptible to adversarial samples. We have not yet encountered
any literature that explores the vulnerability of ensemble classifiers to random noise.

Ensemble methods are learning algorithms that construct a new model by taking the weighted
votes or average of several weaker models. For example, the RF ensemble is an aggregation
of decision tree (DT). These methods obtain better predictive performance together versus
any single one of their constituent learning models. These are also applicable to both classi-
fication and regression tasks.

It is possible that a good number of DTs are vulnerable to any perturbations. Hence, when
aggregated into an ensemble model, this weakness gets magnified as each of the DTs would
contribute their vulnerability.

The confusion matrices in Figure 4.11 show that the RF heavily favors classifying towards
‘8’ and then ‘2’ for all perturbed samples. This contributes to why the evasion rate plateaus
at about 90% because most adversarial perturbations on ‘8’ do not cause misclassification.
This could explain why BO could not achieve a better performance, as the input space that
gets labeled ‘8’ is so large, BO would have to explore more samples and a much larger space
to find adversarial samples against ‘8’.

38

Chapter 4. Experiments & Results 4.2. BAYESIAN OPTIMIZATION

0 20 40 60 80 100
L1 Norm

0

20

40

60

80

100

Pe
rc

en
t E

va
de

d
(%

)

Bayesian Optimization Results

Convolutional Neural Network
Logistic Regression
Random Forest

0 20 40 60 80 100
L1 Norm

0

20

40

60

80

100

Pe
rc

en
t E

va
de

d
(%

)

Fast Gradient Sign Results

Convolutional Neural Network
Logistic Regression

0 20 40 60 80 100
L1 Norm

0

20

40

60

80

100

Pe
rc

en
t E

va
de

d
(%

)

Random Results

Convolutional Neural Network
Logistic Regression
Random Forest

Figure 4.10: Classifier Vulnerability Comparison - each plot represents an attack method and
it compares its evasion percentage on each of the classifiers.

0 1 2 3 4 5 6 7 8 9
Predicted Label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 L
ab

el

0 0 2 0 0 0 0 0 7 0

0 0 0 0 0 0 0 0 14 0

0 0 4 0 0 0 0 0 4 0

0 0 1 0 0 0 0 0 4 0

0 0 1 0 0 0 0 0 14 0

0 0 1 0 0 0 0 0 12 0

0 0 2 0 0 0 0 0 8 0

0 0 2 0 0 0 0 0 6 0

0 0 0 1 0 0 0 0 7 0

0 0 1 0 0 0 0 0 9 0

RF BO, L1 = 60

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9
Predicted Label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 L
ab

el

1 0 0 0 0 0 0 0 8 0

0 0 0 0 0 0 0 0 14 0

0 0 1 0 0 0 0 0 7 0

0 0 0 0 0 0 0 0 5 0

0 0 0 0 0 0 0 0 15 0

0 0 0 0 0 0 0 0 13 0

0 0 0 0 0 0 0 0 10 0

0 0 0 0 0 0 0 0 8 0

0 0 0 0 0 0 0 0 8 0

0 0 1 0 0 0 0 0 9 0

RF Random, L1 = 60

0

2

4

6

8

10

12

14

Figure 4.11: RF Confusion Matrices - cell (x, y) represents the number of samples with true
class label x classified as y for each attack at the listed δ value.

For high enough δ, we see that the CNN greatly favors classifying towards ‘8’ first, and then
‘2’ and ‘3’ as shown by the BO and random attack matrices in Figure 4.12. The adversarial

39

4.3. DIMENSIONALITY REDUCTION Chapter 4. Experiments & Results

perturbations of FGSM are more scattered around multiple class labels.

0 1 2 3 4 5 6 7 8 9
Predicted Label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 L
ab

el

0 0 3 0 0 0 0 0 6 0

0 0 0 0 0 0 0 0 14 0

0 0 0 2 0 0 0 0 6 0

0 0 1 0 0 0 0 0 4 0

0 0 2 0 0 1 0 0 7 4

0 0 0 2 0 0 0 0 11 0

0 0 0 0 1 2 0 0 7 0

0 0 3 5 0 0 0 0 1 0

0 0 4 2 0 1 0 0 1 0

0 0 0 1 0 0 0 0 9 0

CNN BO, L1 = 150

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9
Predicted Label

0

1

2

3

4

5

6

7

8

9
Tr

ue
 L

ab
el

2 0 1 1 0 0 2 0 2 1

1 3 3 0 1 1 0 2 3 0

0 0 1 3 0 0 0 0 3 1

0 0 2 0 0 2 0 0 1 0

0 1 1 0 4 2 0 1 2 3

0 0 1 4 0 5 0 0 2 1

0 0 1 0 1 1 6 0 1 0

0 1 4 1 1 0 0 2 0 0

0 0 3 3 0 0 0 0 2 0

0 0 1 0 2 1 0 3 3 0

CNN FGSM, L1 = 167

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9
Predicted Label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 L
ab

el

5 0 2 0 0 0 0 0 1 1

0 0 1 0 0 0 0 0 13 0

0 0 4 1 0 0 0 0 3 0

0 0 0 3 0 1 0 0 1 0

0 0 0 0 2 0 0 0 11 1

0 0 0 1 0 10 0 0 2 0

0 0 0 0 0 0 6 0 4 0

0 0 4 2 0 0 0 3 0 0

0 0 0 0 0 0 0 0 8 0

0 0 0 0 0 0 0 0 8 2

CNN Random, L1 = 165

0

2

4

6

8

10

12

Figure 4.12: CNN Confusion Matrices - cell (x, y) represents the number of samples with true
class label x classified as y for each attack at the listed δ value.

In LR, all three attacks expose ‘2’, ‘3’, and ‘5’ as heavily favored classes of LR, with both BO
and FGSM also picking up a preference towards ‘8’ for certain class labels such as cell (5, 8).
This is illustrated in Figure 4.13.

0 1 2 3 4 5 6 7 8 9
Predicted Label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 L
ab

el

1 0 0 1 0 7 0 0 0 0

0 0 4 8 0 1 0 0 1 0

0 0 3 3 0 0 0 0 1 0

0 0 2 0 0 2 0 0 0 1

0 0 1 2 3 3 1 3 1 1

0 0 0 4 1 3 0 0 5 0

0 0 4 0 0 5 1 0 0 0

0 0 2 5 0 0 0 0 0 1

0 0 2 3 0 4 0 0 0 0

0 0 2 2 1 2 0 1 2 0

LR BO, L1 = 60

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9
Predicted Label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 L
ab

el

0 0 0 1 0 8 0 0 0 0

0 0 0 1 0 5 0 2 6 0

0 0 1 0 0 2 0 1 4 0

1 0 0 0 2 0 0 0 1 1

0 0 8 5 0 0 0 0 0 1

0 0 1 1 2 0 2 0 6 1

0 0 1 1 0 7 0 1 0 0

0 0 8 0 0 0 0 0 1 0

0 0 1 6 0 0 0 0 0 1

0 0 8 0 1 1 0 0 0 0

LR FGSM, L1 = 50

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9
Predicted Label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 L
ab

el

1 0 0 1 0 7 0 0 0 0

0 0 3 5 0 6 0 0 0 0

0 0 7 0 0 0 0 0 0 0

0 0 0 4 0 1 0 0 0 0

0 0 4 2 1 6 0 1 1 0

0 0 0 0 0 13 0 0 0 0

0 0 3 0 0 2 5 0 0 0

0 0 4 4 0 0 0 0 0 0

0 0 1 0 0 8 0 0 0 0

0 0 2 1 0 6 0 0 0 1

LR Random, L1 = 75

0

2

4

6

8

10

12

Figure 4.13: LR Confusion Matrices - cell (x, y) represents the number of samples with true
class label x classified as y for each attack at the listed δ value.

4.3 Dimensionality Reduction

We implemented a Bayesian optimization (BO) with dimensionality reduction on all three
classifiers: convolutional neural network (CNN), logistic regression (LR), and random forest
(RF) ensemble. Although we did not strictly measure the running time of these algorithms,
this version of BO seemed to run slightly faster than the regular BO.

We used principal component analysis (PCA) on the MNIST training dataset of 60,000 sam-
ples to do dimensionality reduction. The number of principal components used ranged was
from 15 to 75, testing every 15. The purpose of dimensionality reduction was to speed
up Bayesian optimization and hopefully make it more effective, that is why we did not go
for more principal components. The results did not vary for different number of components.

One of the primary challenges was adjusting the δ for Bayesian optimization in this reduced
space (δred) because the inverse transformation from the reduced to the original space does

40

Chapter 4. Experiments & Results 4.3. DIMENSIONALITY REDUCTION

Original
Label 8 (0.92)

Perturbed
Label 3 (0.63)

Perturbation
Norm (93.24)

ScoreDiff (0.26)

Original
Label 4 (0.86)

Perturbed
Label 8 (0.91)

Perturbation
Norm (105.54)

ScoreDiff (0.89)

Figure 4.14: LR-BO+PCA Adversarial Samples - (Left) ‘8’ misclassified to ‘3’ with δ = 93.
(Right) ‘4’ misclassified to ‘8’ with δ = 105.

not convert the norm linearly. It was difficult to constrain δred values.

BO+PCA did reasonably well against LR and RF, but it could not evade CNN. Pure BO had
better evasion rates than BO. This suggests that pure BO was able to identify certain features
to search through and evade the target classifiers. The failure of BO+PCA shows that evading
the CNN is not trivial, making the result of pure BO more impressive.

4.3.1 Results

For too low δred values, BO+PCA fails on all but a few (<10%) samples. For too high δred,
BO+PCA creates unrecognizable images. We found that each classifier had a certain range
for the δred where the evasion percentages were high and the perturbations were not ob-
structive of the image.

In the range where proper evasion occurs, we found that the resulting δ in the original space
fell to a narrow range, depending on the classifier. For LR, the δ ranged from 96 to 129
and the best evasion rate was at 72%. For RF, the δ ranged from 100 to 120 and the best
evasion rate was at 91%. CNN could not be evaded unless with high δred, which generated
unrecognizable images.

δ = 125 CNN LR RF
BO+PCA 3 72 91

Table 4.4: BO+PCA Results - this shows the best evasion rates for BO+PCA at δ = 125. Since
there were 100 samples, these numbers are equivalent to the evasion percentages.

The adversarial samples generated looked like the original inputs superimposed with the
principal components. This was to be expected since the BO was done on the reduced space
that consists of these principal components.

We have discussed in Chapter 4.2.2 how easy it was to evade the RF classifier, so we can
not conclude much from attacks against it. However for the remaining classifiers, the CNN
and LR, pure BO achieved much higher evasion at >99% on both of the classifiers at δ ≥ 100.

Dimensionality reductions took away a lot of features so that BO could be done on a lower-
dimensional space. BO+PCA performed worse than BO most likely because PCA took away
important features relevant to the target classifier. This is more evident with CNN, which

41

4.3. DIMENSIONALITY REDUCTION Chapter 4. Experiments & Results

BO+PCA could not evade in a reasonable way (with legitimate looking adversarial samples).

PCA takes away features with the lowest variance between classes, and it looks primarily for
hidden linear correlations. CNN is a more complex algorithm that uses a neural network to
create a highly non-linear classifier. It was most likely that PCA took away important features
that this BO could have exploited. Our success with pure BO verifies this. BO+PCA however
had reasonable success with attacking LR due to the classifier’s linear nature.

Combining the results of pure BO and BO+PCA against the CNN, we can infer that BO was
able to find and exploit seemingly unimportant (low variance) but vulnerable features of the
CNN learned classifier.

4.3.2 Suggestions

PCA may not be the best dimensionality reduction technique that the adversary could have
used. Since this is a stronger adversary with access to a representative labeled dataset, he
could have done white-box attacks or other forms dimensionality reduction.

Analysis of the images using specialized techniques could have been used. However, these
techniques assume certain properties of the target classifier and therefore may only work
against certain types of machine learning algorithms. Additionally, these techniques exploit
properties specific to the data and image classification tasks. It is in our interest to find a
more general framework that can be applied to various classifications tasks.

For a dimensionality reduction technique to utilize the model-agnostic property of BO, the
adversary can use something like random embeddings (REMBO) or find a more clever way
of reducing the dimensions. The challenge would be to impose the box constraints of the
original space so that the adversarial samples generated will retain their true class label. For
the image classification problem in particular, the adversary can perhaps choose to only alter
a select number of pixels. The challenge with this would be finding the right number of
pixels and choosing a good enough combination that allows evasion.

42

Chapter 5. Conclusion

Chapter 5

Conclusion

In this paper, we presented a black-box attack against several machine learning algorithms
using Bayesian optimization (BO). We have shown that it is reasonably effective against
three different types of classifiers. It was shown to be better than random attacks against
all classifiers, and it was shown to have a comparable performance to the white-box FGSM
attack against logistic regression.

But more surprisingly, BO outperformed FGSM when attacking the convolutional neural net-
work (CNN) with an evasion rate of 99% for BO and 62% for FGSM at δ = 150. This is
important as it shows that Bayesian optimization is an effective technique for generating ad-
versarial samples despite having no information of the target model. It unmasks adversarial
samples unknown to the white-box attacks.

The failure of BO with dimensionality reduction against CNN implies that pure BO was able
to find and exploit the seemingly unimportant (low variance) but vulnerable features of
CNN. All these results support the hypothesis that the underlying machine learning classifier
has low effective dimensionality and that BO is a viable black-box attack against machine
learning algorithms in general.

0 20 40 60 80 100 120 140
L1 Norm

0

20

40

60

80

100

Pe
rc

en
t E

va
de

d
(%

)

CNN Attack Comparison
Random
Fast Gradient Sign
Bayesian Optimization

Figure 5.1: CNN Attack Comparison - eva-
sion percentages against CNN for its corre-
sponding δ (maximum L1 norm).

0 20 40 60 80 100
L1 Norm

0

20

40

60

80

100

Pe
rc

en
t E

va
de

d
(%

)

LR Attack Comparison

Random
Fast Gradient Sign
Bayesian Optimization

Figure 5.2: LR Attack Comparison - evasion
percentages against LR for its corresponding δ
(maximum L1 norm).

These are the primary results comparing Bayesian optimization and fast gradient sign on the
more robust convolutional neural network and logistic regression.

43

5.1. SUGGESTED DEFENSE Chapter 5. Conclusion

These preliminary results are promising and indicate that black-box attacks driven by Bayesian
optimization can be effective regardless of the target model or classification task. It has the
potential to become a general framework for auditing and performing black-box attacks
against existing or new machine learning algorithms and their defenses.

5.1 Suggested Defense

Adversarial samples are difficult to defend against because they require machine learning
models to produce good outputs for every possible input. Because of its statistical nature,
there is no sure way to defend against Bayesian optimization without getting rid of all the
adversarial regions. To do this requires a “perfect” classifier. Researchers acknowledge that
it is difficult to make assertions that a specific defense will rule out a set of adversarial sam-
ples with absolute certainty because there is no robust theoretical framework for adversarial
attack problems [9].

A possible defense against the Bayesian optimization attack would be to mask the output
probability vectors. Bayesian optimization needs the continuous, rather than discrete, output
to fully utilize and easily compute the Gaussian process. The defender can choose to output
only the class label with the highest probability. In applications where the classifier needs to
indicate its confidence in the output, it can mask the probability by putting discrete indicators
such as ‘high confidence’, ‘low confidence’ or by using a discrete scale (e.g. from 1 to 3).

5.2 Future Work

Many interesting ideas and potential improvements for this research were not implemented
due to time constraints. We list out some of these ideas as well as some of our shortcomings
that can be improved upon in future research.

• Complex Datasets
• Other Classifiers
• Other Classification Tasks
• Ensemble Methods
• Augment Transferability Attacks
• Dimensionality Reduction
• Targeted Evasion

Complex Datasets
For the image classification task, further work can be done on larger more realistic datasets
such as the CIFAR or ImageNet datasets. It will be a big result if Bayesian optimization can
reliably generate adversarial samples against classifiers for these datasets. We suspect that
it can be done because these datasets have a far larger input space, which would mean an
exponentially larger search area but also exponentially larger adversarial regions. Attacking
classifiers with a larger number of class labels may be easier as well since the confidence of
a classifier will be distributed between many more classes.

Other Classifiers
To further test the model-independent property of the Bayesian optimization attack, it can

44

Chapter 5. Conclusion 5.2. FUTURE WORK

be deployed against other types of classifiers. This include classifiers we did not cover like
decision tree, k-means, k-nearest neighbors, support vector machines, and other types of
neural networks.

Other Classification Tasks
The current image classification task only handles with a set of continuous input features.
There are classification tasks that are multimodal - they deal with both continuous and dis-
crete input features. It is worth trying, as GPyOpt has an implementation for handling mul-
timodal features. These other classification tasks could include spam filtering or malware
detection. Security-oriented applications would be more relevant.

One of the trickier things for these would be to set boundary constraints. The purpose of
boundary constraints is to maintain the true class of the original sample. For example, in a
malware evasion task, you would start with malware that is correctly classified as one. The
boundary constraints should then be set up so that the malware will remain functional after
the perturbations have been applied onto it.

Ensemble Methods
As a tangent from Bayesian optimization, one of the interesting results that came up was the
vulnerability of random forest ensemble classifiers. These classifiers were surprisingly easy
to fool even with small amounts of random noise. It is worth investigating if this was just a
fluke or if it is an inherent vulnerability of ensemble classifiers. This has huge implications
if it is the latter as ensemble methods are one of the most effective and widely used class of
algorithms for classification and regression.

Augment Transferability Attacks
Transferability attacks like those shown in Papernot et al. [6] do not perfectly transfer all
their adversarial samples to other machine learning algorithms. We can build a new Bayesian
optimization attack using those failed adversarial samples as initial points, rather than using
random ones as in this paper’s experiment. The idea being that adversarial samples of a
classifier may not transfer as adversarial samples to others, but they are most likely in close
proximity to one. Using these as initial points, Bayesian optimization can find the adversarial
samples for the target classifier much quicker and more efficiently.

Dimensionality Reduction
As discussed in Chapter 4.3.2, other ways of dimensionality reduction should be explored.
Trying out existing techniques such as linear discriminant analysis or random embeddings, or
creating more novel ones would be helpful in making Bayesian optimization more efficient.
One can also randomly select a fraction of the features and do adversarial perturbations only
on those.

Another idea would be to modify principal component analysis (PCA) to take away the fea-
tures with the most variance rather than those with the least. It may be these lesser features
that need be manipulated in order to evade the classifier, as shown by the results of pure
BO compared to BO+PCA. Again, one of the issues with all these methods is setting the box
constraints in the reduced space. This may not always translate nicely or linearly when going
from the reduced to the original space.

Targeted Evasion

45

Chapter 5. Conclusion

This experiment was mostly concerned with indiscriminate evasion. In the case where the
adversary knows which class they want their sample to be misclassified towards, we would
need to do targeted evasion. It is worth exploring to see if Bayesian optimization would be
as effective or if its capabilities would be restricted and diminished by this.

46

BIBLIOGRAPHY

Bibliography

[1] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[2] P. McDaniel, N. Papernot, and Z. B. Celik. Machine learning in adversarial settings.
IEEE Security Privacy, 14(3):68–72, May 2016. ISSN 1540-7993. doi: 10.1109/MSP.
2016.51.

[3] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando de Freitas.
Taking the human out of the loop: A review of bayesian optimization. Proceedings of
the IEEE, 104(1):148–175, 2016.

[4] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Marco Melis, Fabio Roli, and
Emil C. Lupu. Machine learning under attack. 2017.

[5] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael Wellman. Towards the
science of security and privacy in machine learning. arXiv preprint arXiv:1611.03814,
2016.

[6] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and
Ananthram Swami. Practical black-box attacks against machine learning. In Proceed-
ings of the 2017 ACM on Asia Conference on Computer and Communications Security,
pages 506–519. ACM, 2017.

[7] Marco Barreno, Blaine Nelson, Anthony D Joseph, and JD Tygar. The security of ma-
chine learning. Machine Learning, 81(2):121–148, 2010.

[8] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and
Ananthram Swami. The limitations of deep learning in adversarial settings. In Secu-
rity and Privacy (EuroS&P), 2016 IEEE European Symposium on, pages 372–387. IEEE,
2016.

[9] OpenAI. Attacking machine learning with adversarial examples, March 2017. URL
https://blog.openai.com/adversarial-example-research/.

[10] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

[11] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine
learning: from phenomena to black-box attacks using adversarial samples. arXiv
preprint arXiv:1605.07277, 2016.

47

https://blog.openai.com/adversarial-example-research/

BIBLIOGRAPHY

[12] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel
Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine learning at
test time. In Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, pages 387–402. Springer, 2013.

[13] Andrea Cassioli and Fabio Schoen. Global optimization of expensive black box prob-
lems with a known lower bound. Journal of Global Optimization, 57(1):177–190, 2013.

[14] Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on bayesian optimization
of expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning. arXiv preprint arXiv:1012.2599, 2010.

[15] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT Press, 2005. ISBN
026218253X.

[16] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13(Feb):281–305, 2012.

[17] Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando de Feitas.
Bayesian optimization in a billion dimensions via random embeddings. Journal of
Artificial Intelligence Research, 55:361–387, 2016.

[18] Beilun Wang, Ji Gao, and Yanjun Qi. A theoretical framework for robustness of (deep)
classifiers under adversarial noise. arXiv preprint arXiv:1612.00334, 2016.

[19] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL
http://yann.lecun.com/exdb/mnist/.

[20] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization
of machine learning algorithms. In Advances in neural information processing systems,
pages 2951–2959, 2012.

[21] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a
simple and accurate method to fool deep neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2574–2582, 2016.

[22] The GPyOpt authors. Gpyopt: A bayesian optimization framework in python. http:

//github.com/SheffieldML/GPyOpt, 2016.

[23] François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[25] Nicolas Papernot, Ian Goodfellow, Ryan Sheatsley, Reuben Feinman, and Patrick Mc-
Daniel. cleverhans v1.0.0: an adversarial machine learning library. arXiv preprint
arXiv:1610.00768, 2016.

[26] Alex Kantchelian, JD Tygar, and Anthony Joseph. Evasion and hardening of tree en-
semble classifiers. In International Conference on Machine Learning, pages 2387–2396,
2016.

48

http://yann.lecun.com/exdb/mnist/
http://github.com/SheffieldML/GPyOpt
http://github.com/SheffieldML/GPyOpt
https://github.com/fchollet/keras

	List of Figures
	List of Tables
	1 Introduction
	2 Background & Related Work
	2.1 Security of Machine Learning
	2.1.1 Adversarial Goals
	2.1.2 Types of Attacks

	2.2 Evasion Attacks
	2.2.1 White-Box Attacks
	2.2.2 Black-Box Attacks

	2.3 Bayesian Optimization
	2.3.1 Introduction
	2.3.2 Gaussian Processes
	2.3.3 Acquisition Functions

	2.4 Motivation
	2.4.1 Low Effective Dimensionality
	2.4.2 Model Independence

	3 Design
	3.1 Theoretical Framework
	3.2 Threat Model
	3.2.1 Adversary's Knowledge
	3.2.2 Adversary's Capabilities
	3.2.3 Adversary's Goals

	3.3 Bayesian Optimization
	3.3.1 Settings
	3.3.2 Strengths & Limitations

	3.4 Crafting Algorithms
	3.4.1 Random
	3.4.2 Bayesian Optimization (BO)
	3.4.3 BO with Dimensionality Reduction
	3.4.4 Fast Gradient Sign Method (FGSM)

	4 Experiments & Results
	4.1 Implementation
	4.1.1 Dataset & Classifiers
	4.1.2 Metrics & Settings

	4.2 Bayesian Optimization
	4.2.1 Attack Comparison
	4.2.2 Classifier Analysis

	4.3 Dimensionality Reduction
	4.3.1 Results
	4.3.2 Suggestions

	5 Conclusion
	5.1 Suggested Defense
	5.2 Future Work

	Bibliography

