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Abstract

A Markovian queue with both batch arrivals and batch departures is shown to have a ge-
ometric equilibrium queue length probability distribution after adding special arrivals and
departures to the system. From this, a similar result is obtained for a network of batch queues
by the use of the reversed compound agent theorem. Using the generating function method,
the Laplace-Stieltjes transform of the sojourn time random variable in the case of a tandem
network of batch-queues is obtained. This result is derived by first considering the marginal
sojourn time at the second queue and solving a recurrence for a vector of generating func-
tions rather than a single generating function. Then the marginal sojourn time at the second
queue and the reversed sojourn time at the first queue are considered jointly; however since
those are only conditionally independent, a complex integral must be evaluated in order to
pick out the desired coefficients.
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Chapter 1

Introduction

Performance modeling is an essential part of the design, optimization and development of
communication and computer systems. Due to rapid technological development allowing
faster transmission and bigger capacity, networks have become more and more complex,
hence requiring a more sophisticated approach to understand their behavior.
There are two main types of model available for this purpose: simulation and stochastic.
We focus on the latter. Communication and computer networks often evolve in time and
stochastic processes are suitable for modeling such evolving systems by describing the states
they enter.
We are using a queue-based model which is a common approach to describe systems where
there is contention for some resource. Good examples of the possible applications of a queue-
based model can be found in [2], where an M/M/1 discriminatory processor sharing queue
is used to investigate performance-energy trade-offs of smartphone applications, and in [9],
where the usage of replicas is considered in order to reduce the response time and improve
fault tolerance in a network.
One of the many performance measures one could use is the response time. It is particu-
larly important since it describes the waiting time users or participants face when using the
system. Obtaining the response time with a queuing model has been used, for example, to
minimize the waiting time in an emergency department [4, 3] or to optimize the scheduling
of police cars [14]. However, obtaining the mean response time or even moments of the
response time may not provide enough information. For instance, in a multi-user system a
mean response time of one minute can be tolerable provided that the standard deviation is
not too large, while a response time with a mean of five seconds which occasionally exceeds
five minutes will probably lead to dissatisfied users. Furthermore, international standards
for transaction processing (e.g TPC benchmarks) now include requirements for the 90% and
95% quantiles. That is, the given criterion – such as a response time of less then three sec-
onds – has to be met 95% of the time. Hence, the probability distribution of the response
time is required, which is significantly more expensive and difficult to obtain. In cases when
such densities can be calculated, one often gets the Laplace transform of the density as a
result which then needs to be inverted numerically.
In this thesis, Markovian batch queues and a path of two Markovian batch-queues in tandem
are considered. The aim is to obtain the distribution of the sojourn time random variable
corresponding to the whole network. Sojourn times in a tandem batch-network have been
obtained in special cases in [1, 12] but the result for the general case appears to be novel.
First, we describe the conditions under which a Markovian batch queue has a geometric
queue length probability distribution at equilibrium. Then we extend the theorem for a
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Chapter 1. Introduction

network of queues using the reversed compound agent theorem (RCAT). These results can
be found in [7]. A product form geometric equilibrium distribution makes it possible to use
the generating function method to calculate the Laplace-Stieltjes transforms (LST) of the
response time distributions.
Next, we calculate the LST of the response time distribution of both the normal and reversed
process of a single queue. The idea for the tandem-network is to move the origin of the
time-line to the instant at which the tagged task’s batch leaves the first queue and then to
consider the joint probability of the reversed process of the first queue back in time, and
the normal process of the second queue forward in time, conditioned on the state at the
origin. This is done by first calculating the LST of the marginal distribution of the response
time at the second queue using the generating function technique for a vector of generating
functions. Up to this point Harrison [5] is followed closely.
In order to obtain the LST of the joint distribution we would like to combine the results for
the reversed process in the case of the first queue and the LST of the forward sojourn time
at the second queue.
In the general case, the path is not overtake-free since the sojourn time of the tagged task
at the second queue may be affected by later arrivals from the first queue. This means that,
the sojourn time random variables are only conditionally independent; therefore using the
generating function to obtain the unconditional probabilities is no longer straightforward.
Before addressing the difficulties caused by this conditional independence for the general
problem, two special cases are considered, namely, the tandem network of two M/M/1
queues and a tandem network where only the first queue is M/M/1 and the second one
is a general batch queue.
My most significant contribution to Harrison’s work is to overcome the aforementioned diffi-
culty in the general case by taking a complex integral in order to pick out specific coefficients
from the generating function and therefore to obtain the LST of the unconditional joint prob-
ability distribution.
Finally, numerical results obtained by inverting the calculated LSTs are shown, all generated
by Mathematica, and potential areas of application are outlined.
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Chapter 2

Background

In this chapter, we cover the mathematical background material necessary for being able to
state and prove results about sojourn times in tandem networks. Starting from the basic
definitions and theorems of probability theory, we then move on to stochastic processes
and finally introduce the notations, definitions and selected results of queuing theory. The
material is based on the book: Performance modelling of communication and networks and
computer architectures [8].

2.1 Basic mathematical background

This section provides a quick overview of the most common definitions and theorems of
probability theory used throughout the thesis.

Definition 2.1.1 (Event space) E ⊆ 2Ω is an event space if

1. Ω ∈ E

2. E ∈ E ⇒ E ∈ E

3. Ei ∈ E i = 1, 2...⇒
∞⋃
i=1

Ei ∈ E

Definition 2.1.2 (Probablity measure) P : E → R is a probability measure if

1. 0 ≤ P (E) ≤ 1 ∀E ∈ E

2. P (Ω) = 1

3. P
( ∞⋃
i=1

Ei

)
=
∞∑
i=1

P (Ei); E1, E2... ∈ E : Ei ∩ Ej = ∅ ∀i 6= j

Proposition 2.1.1 (Law of total probability) P (A) =
∑
P (A|Bi)P (Bi) where {B1, B2, ...}

is a partition of A.

Definition 2.1.3 (Random variable) X : Ω → R, P (X ∈ I) = P (X−1(I)) where Ω is the
sample space and I is an interval. We assume that X−1(I) ∈ E ⊆ 2Ω ∀I ⊂ R.

Definition 2.1.4 (Distribution function) F (X) : R→ [0, 1], F (x) = P (X ≤ x).

3



2.1. BASIC MATHEMATICAL BACKGROUND Chapter 2. Background

Definition 2.1.5 (Density function) f(x) : R → R When X is continuous f(x) the function

for which: P (X ∈ S) =
∫
S

f(t)dt. So in this case F (x) =
x∫
−∞

f(t)dt. A necessary and sufficient

condition for the existence of f is F to be everywhere differentiable.

Proposition 2.1.2 Properties of the distribution function:

1. x ≤ y ⇒ F (x) ≤ F (y)

2. limx→∞ F (x) = 1

3. limx→−∞ F (x) = 0

4. F is right continuous

Definition 2.1.6 (Independence) X and Y are independent if any of 1− 3 holds:

1. F (x, y) = FX(x)FY (y) ∀x, y ∈ R

2. f(x, y) = fX(x)fY (y) ∀x, y ∈ R

3. P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B) ∀A,B ∈ E

Definition 2.1.7 (Expected value) The expected value of a random variable is defined as fol-
lows:
Discrete case: E(X) =

∞∑
i=0

iP (X = i) where X : E → Z+
0

Continuous case: E(X) =
∞∫
−∞

xdF (x) =
∞∫
−∞

xf(x)dx

Furthermore, given two independent random variables: E(XY ) = E(X)E(Y )

Definition 2.1.8 Commonly occurring discrete and continuous random variables and their ex-
pectation:

1. Geometric: X ∼ Geo(p) then P (X = i) = (1− p)pi, E(X) = p
1−p

2. Poisson: X ∼ Poisson(λ) then P (X = i) = e−λ λ
i

i! , E(X) = λ

3. Exponential: X ∼ Exp(λ) then f(x) = λe−λxI{x≥0}, E(X) = 1
λ

4. Erlang-n: X ∼ Erlang-n(λ) then f(x) = λ(λx)n−1e−λx

(n−1)! , E(X) = n
λ

Definition 2.1.9 (Conditional expectation) (Ω,F , P ) probability space, X : Ω → Rn, let
H ⊆ F be a σ-algebra. Then E(X|H) : Ω → Rn is H-measurable and satisfies the following
equation ∀H ∈ H ∫

H

E(X|H)dP =

∫
H

XdP

Or equally let FX|Y (x|y) = P (X ≤ x|Y = y) be the conditional distribution, then

E(X|Y = y) =
∞∫
−∞

xdFX|Y (x|y) =
∞∫
−∞

xfX|Y (x|y)dx where fX|Y (x|y) = f(x,y)
fY (y) , fY > 0.

Proposition 2.1.3 Basic properties of the conditional expectation:
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Chapter 2. Background 2.1. BASIC MATHEMATICAL BACKGROUND

1. if X and H are independent then E(X|H) = E(X)

2. if X is independent of σ(Y,H) then E(XY |H) = E(X)E(Y |H)

3. if X is H-measurable then E(X|H) = X

4. if X is H-measurable then E(XY |H) = XE(Y |H)

5. Law of total expectation: E(E(X|H)) = E(X)

6. if H1 ⊂ H2 ⊂ F then E(E(X|H2)H1) = E(X|H1)

7. linearity: E(aX + Y |H) = aE(X|H) + E(Y |H), a ∈ R

8. positivity: if X ≥ 0 then E(X|H) ≥ 0

Point 5 above is used quite frequently backwards, meaning that, given a random variable X
instead of calculating E(X) directly we condition on another random variable and calculate
the conditional expectation. For example X can be the number of arrivals during a service
period of a queue and conditioning on the service time random variable makes it easier to
obtain the expected value of it.

Definition 2.1.10 (Probability generating function) π(z) = E(zX). In the discrete case,

that is π(z) =
∞∑
i=0

piz
i using the definition of expectation.

As mentioned before, we usually obtain the Laplace transform of the density we are looking
for, which then needs to be inverted. Inversion of the Laplace transform is in itself challeng-
ing, since it usually cannot be inverted analytically and numeric methods are often unstable
or not precise enough, especially in the tail region.

Definition 2.1.11 (Laplace transform) Let F : R+
0 → R, then the Laplace transform of F is

a function itself L{F} : C→ C

L{F}(s) =
∞∫
0

e−stdF (t).

Using the definition of the expected value of a random variableX, if F is its distribution function

and f is its density functions, then we can also write: L{F}(s) = E(e−sX) =
∞∫
0

e−stf(t)dt

Proposition 2.1.4 (Inversion of the Laplace transform) If there are two functions with the
same Laplace transform, they can only differ on a set which has Lebesgue measure zero. Hence,
the inverse function is uniquely determined Lebesgue almost everywhere.

Proposition 2.1.5 Basic properties of the Laplace transform.

1. linearity: L{af1 + bf2} = aL{f1}+ bL{f2}

2. derivative: if f is differentiable, its Laplace transform is L and f ′ is the derivative of f
and is of exponential order then the Laplace transform of f

′
is sL(s)− f(0)

3. integral: the Laplace transform of
t∫

0

f(τ)dτ is 1
sF (s)

4. convolution: the Laplace transform of (f ∗ g)(t) =
t∫

0

f(τ)g(τ − t)dτ is F (s)G(s) where

F and G are the Laplace transforms of f and g, respectively.
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2.2. STOCHASTIC PROCESSES Chapter 2. Background

2.2 Stochastic processes

As stated before stochastic processes are suitable to model communication and computer
networks mathematically due to their ability to describe an evolving system. Let us first
define precisely a stochastic process.

Definition 2.2.1 (Stochastic process) A family of random variables {Xt|t ∈ T}, where T is
the parameter space and each Xt takes its values from some set S called the state space. Values
of T are often referred to as times.

Definition 2.2.2 {Xt} is stationary if
∀t1, t2, ...tn, t1 + τ, t2 + τ, ...tn + τ ∈ T, n ≥ 1 : FXt1 ...Xtn = FXt1+τ ...Xtn+τ

Definition 2.2.3 {Xt} has independent increments if
∀t1 < t2 < ... < tn ∈ T, n ≥ 1 : Xt1 , Xt2 −Xt1 , ..., Xtn −Xtn−1 are independent

Definition 2.2.4 {Xt} has the Markov property if
∀τ1 < τ2 < ... < τm < t1 < t2 < ... < tn ∈ T, n,m ≥ 1:
FXt1 ...Xtn |Xτ1 ...Xτm (x1, .., xn|y1, .., ym) = FXt1 ...Xtn |Xτm (x1, .., xn|ym)

The Markov property means, at any given time t , the future will only depend on the state at
t and not on the previous history before t.

2.2.1 Markov chains

Definition 2.2.5 (Markov chain) A Markov chain is a discrete time stochastic process with a
countable sample space which has the Markov property.

Definition 2.2.6 (Time homogeneity) A Markov chain is time homogeneous if
P (Xt = j|X0 = i) = P (Xt+τ = j|Xτ = i), ∀τ > 0; i, j ∈ S.

Time homogeneity means that, given that the process is in state i at some point, the proba-
bility that it enters state j some t time after that, only depends on the elapsed time and not
the time instant we started measuring from.
We will only consider time homogeneous Markov chains.

Definition 2.2.7 (Transition probabilities) The n-step transition probabilities of a time ho-
mogeneous Markov chain is: p(n)

ij = P (Xm+n = j|Xm = i).
When n = 1 we use the notation: pij

A Markov chain is characterized entirely by its one-step transitions.

Definition 2.2.8 (Transition matrix) P = [pij ] which is a stochastic matrix.

Proposition 2.2.1 (Chapman-Kolmogorov equation) Let Pn, Pm be the n and m step tran-
sition matrices, respectively. Then Pm+n = PmPn.

Definition 2.2.9 Let Tii be the first return time to i if X0 = i.

1. i is a transient state if P (Tii <∞) < 1

2. i is a null-recurrent state if P (Tii <∞) = 1 but E(Tii) =∞

6
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3. i is a positive-recurrent state if P (Tii <∞) = 1 and E(Tii) <∞

So a positive recurrent state returns infinitely often with a finite expected recurrence time.

Definition 2.2.10 (Steady state) If ∀j : p
(n)
ij has a limit as n → ∞ which is independent of

i, then the chain is said to have a steady state or a state of equilibrium.

When modeling a real-world system we usually interested in its behavior at equilibrium if
there exists a steady state at all.
Probably the most important related theorem is Kolmogorov’s theorem. In order to be able
to state the theorem, two additional terms must be introduced.
We call a chain irreducible if the probability of getting from any state to any other state in n
steps is positive for some n. In other words, it is possible to enter any state after some time
from any given time t.
We call a chain aperiodic if the m step transition probabilities are positive for any m with
finitely many exceptions.

Proposition 2.2.2 (Kolmogorov’s theorem) In an irreducible, aperiodic Markov chain:

1. p(n)
ij →

1
E(Tii)

as n→∞

2. The chain is positive recurrent⇔ ∃!π stationary distribution, such that π = πP with πj =
1

E(Tjj)

In practice, we can search for a solution of the equation π = πP which always exists and
then normalize it, so it sums up to 1 which is a necessary and sufficient condition for π to
be a distribution. Therefore, using the theorem above, a nonzero normalizing constant is a
necessary condition for the chain to be positive-recurrent.

2.2.2 Markov processes

Definition 2.2.11 A stochastic process with continuous parameter space and discrete state
space which has the Markov property is called Markov process.

There is a special case of a Markov process which has great importance since it is the simplest,
most mathematically well-behaved example of a Markov process. It also commonly occurs
in real-world systems. This is the Poisson process.

Definition 2.2.12 (Poisson process) Let Ntτ denote the number of arrivals in the time period
(t, τ ]. {N0t|t ≥ 0} is a Poisson process if ∀t, h ≥ 0

1. it is time-homogeneous

2. it has independent increments

3. it is orderly: P (Nt,t+h≥2)
h → 0 as h→ 0

Or equivalently: ∃λ > 0,∀t, h ≥ 0

a P (Nt,t+h = 0) = 1− λh+ o(h)

b P (Nt,t+h = 1) = λh+ o(h)

7



2.2. STOCHASTIC PROCESSES Chapter 2. Background

c P (Nt,t+h ≥ 2) = o(h)

d N0t, Nt,t+h are independent

It is called a Poisson process since N0t is a Poisson variable.
The equivalence of the above two definitions can be proven easily, so they can be used
interchangeably. This property is used often in practice.

Proposition 2.2.3 The two definitions above are equivalent.

Sketch of the proof: First note that: 3. ⇔ (c) and 2. ⇔ (d). Furthermore, (b) is implied by
(a) and (c). Since t is not present on the right sides of (a), (b) and (c), time-homogeneity
must follow. It only remains to prove that (a) follows from the first definition. For that we
use the fact that P (N0,s+t = 0) = P (N0,s = 0)P (Ns,t = 0) which follows from (1) and (2).

Definition 2.2.13 (Memoryless distribution) P (T > t+ τ |T > τ) = P (T > t)

Proposition 2.2.4 A continuous/discrete random variable is memoryless ⇔ it is an exponen-
tial/geometric random variable

One of the nice properties of a Poisson process is that the time to the first arrival and the
time between two successive arrivals are both exponential variables. So by the memoryless
property of the exponential random variable, no matter how much time has passed since the
last arrival, the probability that the next arrival happens t time from now is still exponential
with the same parameter. In other words, the forward recurrence time is also exponential
and it is independent of past history.

Proposition 2.2.5 (Random observer property) Let {Xt|t ≥ 0} be a process with Poisson
arrivals. If there is an arrival at τ the state changes from Xτ− to Xτ+ . (For example Xτ− can
be the length of a queue before and Xτ+ after the arrival of a new task.) The random observer
property states that the distribution of Xτ− is independent of the event that there is an arrival
at τ . So the arriving task has the same information about the state that a random observer
would have.

The random observer property allows us, for example, to look at the length of the queue
of waiting tasks at a server from the arriving job’s perspective but still use the steady state
probabilities of the queue length.
Now returning back to Markov processes in general, we use the same notations that we used
for Markov chains. As before we only consider time homogeneous processes. We further
assume the transition matrix P (t) = [Pij(t)] satisfies the following conditions:

1. ∀t ∈ [0,∞) : P (t) is stochastic

2. P (t) is right continuous at t = 0

3. P (s+ t) = P (s)P (t)

The third point means the Chapman-Kolmogorov equation has to hold, which is a conse-
quence of the Markov property as well.
Now, in order to be able to use a steady state result similar to Kolmogorov’s theorem in the
discrete case, generators of a Markov process need to be introduced.

8
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Definition 2.2.14 (State holding time) If the process enters the state i at time t and the next
transition is at t+ T then we call T the state holding time of state i.

Proposition 2.2.6 Denoting the state holding time with T in state i, it is exponential with
parameter qi. We call this the transition rate from state i.

Definition 2.2.15 We say that i is:

1. stable if 0 ≤ qi <∞

2. instantaneous if qi =∞

3. absorbing if qi = 0

Proposition 2.2.7 (Instantaneous transition rate matrix) Let Q = [qij ] be a matrix for
which P (h) = I + Qh + o(h) so Q = P

′
(0). Such Q always exists due to the Chapman-

Kolmogorov equation. It can be shown that P (Xt+h = j|Xt = i) = qijh + o(h) ∀i 6= j and
−qii =

∑
j∈S

qij = qi.

In other words, qij is the instantaneous transition rate from state i to state j, and summing
for all j we get the instantaneous transition rate from state i.
Q is also called the generator of the Markov process since it determines the evolution of the
process entirely with the following equations:

Proposition 2.2.8 For every Markov process with the previously defined conditions:

1. Forward Kolmogorov equation: ∃M <∞ ∀i : qi < M ⇒ P
′
(t) = P (t)Q

2. Backward Kolmogorov equation: ∀i : qi <∞⇒ P
′
(t) = QP (t)

Given a Markov process we can define a Markov chain by looking at the state right after each
transition. We call it the embedded Markov chain. The precise definition is as follows:

Definition 2.2.16 (Embedded Markov Chain) Let {Xt|t ≥ 0} be a Markov process, and let
τ1, τ2, ... denote the time instants at which the state changes. Then the chain defined as {Zn|n =
0, 1, ...} where Z0 = X0 and Zn = Xτ+n

has the Markov property and it is called the embedded
Markov chain.

We can use the properties defined earlier for Markov chains such as irreducible, transient,
null-recurrent and positive-recurrent for Markov processes in the sense that the related EMC
has that property.

Proposition 2.2.9 (Steady state result) An irreducible Markov process with generator ma-
trix Q is

1. transient or null-recurrent⇒ π = 0, so there is no steady state

2. positive recurrent⇔ πQ = 0 has a non-zero solution

9



2.3. QUEUES Chapter 2. Background

This is a similar steady state result to Kolmogorov’s theorem. Using this result after some
transformation we get the balance equations:∑

j 6=i
πjqji = −πiqii =

∑
j 6=i

πiqij

Analyzing the above equation further, and writing it down for an arbitrary set of states A:∑
i∈A

∑
j 6=i

πjqji =
∑
i∈A

∑
j 6=i

πiqij

Note that all the pairs of states where both states are in A appear on both sides. Hence, we
can omit them and obtain the aggregated balance equations:∑

i∈A

∑
j /∈A

πjqji =
∑
i∈A

∑
j /∈A

πiqij

If we look at this as a transition graph where we map the states to nodes and πiqij is the
weight of the directed arc between node i and j, the above equation states that for an
arbitrary set of nodes, the sum of all the weights corresponding to the arcs entering the set
is equal to the sum of the weights corresponding to those leaving the set.
Choosing an appropriate set of states, this result can significantly simplify the equations we
have to solve in order to find the steady state solution.

2.3 Queues

Using queues to model communication and other systems is quite common, because queues
represent contention for some resource.
The resource subject to contention can be a police car awaited by a crime scene [14], doctors
in an emergency department [4] or a disk in a storage system completing I/O requests [15].
This section briefly introduces the basic notations used, lists a few queuing disciplines and
states Little’s theorem, which is a simple but fundamental result in this area.

2.3.1 Basic terms and Little’s result

A queue consists of three parts:

1. an arrival process which describes when customers arrive

2. the queue itself or, in other words, the waiting room where they wait to be served

3. the service time requirement for each customer

Queues are classified according to Kendall’s notation: A/S/m.
Here A describes the arrival process, for example A = M stands for Markovian, A = G
means general and A = D deterministic. S is the service time distribution; again we use M
for Markovian (that is, one with exponential distribution), and D for deterministic. Finally
m denotes the number of servers serving the queue.

Queuing disciplines

1. First come first served (FCFS)

10



Chapter 2. Background 2.3. QUEUES

2. Last come first served (LCFS)

(a) non-preemptive: the job currently being served is finished before a newly arrived
task takes its place.

(b) preemptive: a new job arriving to the queue immediately starts its serving time.
They can be either preemptive resume or preemptive restart. In the former one
the task which has been replaced will continue where it was left off while in the
latter case it will start from the beginning again.

3. Processor Sharing (PS) Given a processor sharing discipline, the service capacity is
equally divided amongst all the customers in the queue, so there is no real queuing.
The rate at which a task is being served decreases as the number of the waiting tasks
increases. Letting µ be the service rate of the server and n be the number of waiting
customers, each customer sees an instantaneous service rate of µ

n .

Proposition 2.3.1 (Little’s result) Suppose a queuing system which is in equilibrium. Let λ
be the mean arrival rate, L be the mean number of tasks in the system and W be the mean time
spent by a task in the system. The following equation holds:

L = λW

2.3.2 Simple Markovian queues: M/M/1

A simple Markovian queue is a birth-death process: a one-step transition can only change
the current state by one. In this case either a task arrives at the queue or there is a departure
when a task has completed its service. A Markovian queue has arrival rate λ(n), and service
rate µ(n), where n denotes the length of the queue in both cases.

Using the aggregated balance equations stated at the end of the previous section, we can find
the steady state solution for the queue length. Solving the aggregated balance equations, we
get:

π(j) =
ρj
∞∑
k=0

ρk

where ρ0 = 1 and ρj =

j∏
k=1

λ(k − 1)

µ(k)
for j > 0

Furthermore, π is a probability distribution if and only if
∞∑
k=0

ρk <∞. In the case that π is a

probability distribution, it is the unique stationary distribution of the Markov process which
is positive recurrent.
Note that when the arrival and service rates are constant, – therefore, they do not depend
on the queue length – this simplifies to π(n) = (1 − ρ)ρn where ρ = λ

µ which is a geometric
random variable with parameter ρ.

2.3.3 Response time distribution in an M/M/1 queue

We now consider deterministic arrival (λ) and service (µ) rates. In an M/M/1 queue the
mean waiting time can be obtained easily using Little’s result as follows.
The mean arrival rate is λ and the mean queue length in equilibrium is ρ

1−ρ which can be
easily calculated since the distribution of the queue length is geometric as obtained above.
Using Little’s theorem we have W = L

λ = 1
µ−λ . This holds for all queuing disciplines.

11



2.3. QUEUES Chapter 2. Background

As mentioned in the introduction, the mean response time does not give enough information
about the waiting time in most cases. Therefore we focus on the LST of distribution of the
waiting time from now on.
We give a proper proof in the case of an FCFS discipline, since this is used later in this thesis,
and the outline of the proof for the PS discipline.

Proposition 2.3.2 (Waiting time distribution using FCFS discipline) Consider an M/M/1
queue with FCFS discipline, and fixed arrival and services rates λ and µ , respectively. In this
case, the generating function of the Laplace-Stieltjes transform of the waiting time distribution
is

G(x; θ) =
µ

θ + µ(1− x)

We obtain the LST of the unconditional probability distribution by evaluating the generating
function at ρ and multiplying it by (1− ρ):

W ∗(θ) = (1− ρ)G(ρ; θ) =
µ− λ

θ + µ− λ

Proof
Let I be the number of tasks the tagged task faces at its arrival. Conditioning on I = i,
the sojourn time of the tagged task is the sum of i exponential variables with parameter µ
and the remaining service time of the task that is currently being served. The remaining
sojourn time is also exponential with the same parameter due to the memoryless property of
the exponential distribution. Since the variables are independent, the LST of the conditional

distribution is W ∗i (θ) =
(

µ
θ+µ

)i+1
. Thus,

G(x; θ) =
∞∑
i=0

W ∗i (θ)xi =
∞∑
i=0

(
µ

θ + µ

)i+1

xi =
µ

θ + µ− µx

Furthermore, P (I = i) = (1 − ρ)ρi by the random observer property. Consequently, evalu-
ating the generating function at ρ and multiplying it by (1− ρ) gives the desired probability
distribution by the law of total probability. �

Proposition 2.3.3 (Waiting time distribution with PS) In a PS M/M/1 queue with fixed ar-
rival rate λ and service rate µ, the Laplace transform of the waiting time conditioned on the
customer’s service time is

W ∗(θ|x) =
(1− ρ)(1− ρr2)e−[λ(1−r)+θ]x

(1− ρr)2 − ρ(1− r2)e−(µ/r−λr)x

where r is the smaller root of the equation λr2 − (λ+ µ+ θ)r + µ = 0 and ρ = λ
µ .

Outline of the proof
Using the following notations:

• customer C arrives at 0

• faces a queue length N

• has service time X

12



Chapter 2. Background 2.3. QUEUES

• has waiting time T

We consider the time interval (0, t+h) and an initial infinitesimal interval (0, h). During that
short interval two things can happen:

1. a new task arrives at the queue with probability λh

2. a task other than C is completed with probability nµ
n+1h

We have

P (T ≤ t+ h|X = x,N = n) =

[
1− λh− nµ

n+ 1

]
P (T ≤ t|X = x− h

n+ 1
, N = n) +

+ λhP (T ≤ t|X = x,N = n+ 1) +
nµ

n+ 1
h P (T ≤ t|X = x,N = n− 1) + o(h).

We are taking advantage of the random observer property of the Poisson process which
allows us to use the same time variable T on the right hand side.
Letting Fn(t, x) = P (T ≤ t|X = x,N = n), after taking the limit h→ 0 and some rearrange-
ment we get:

(n+ 1)
∂Fn
∂t

= −∂Fn
∂x
− ([n+ 1]λ+ nµ)Fn + (n+ 1)λFn+1 + nµFn−1.

Now let Ln be the Laplace transform of ∂Fn
∂t . After differentiation by t, using the property of

the Laplace transform for derivatives we obtain:

(n+ 1)θLn = −∂Ln
∂x
− ([n+ 1]λ+ nµ)Ln + (n+ 1)λLn+1 + nµLn−1.

We solve this recurrence relation by introducing the generating function

G(z; θ, x) =
∞∑
n=0

Ln(θ;x)zn.

Note that W ∗(θ|x) = (1− ρ)G(ρ; θ, x) =
∞∑
n=0

Ln(θ;x)(1− ρ)ρn by the law of total probability.

Multiplying by zn and summing from n = 0 to ∞ results in the following first-order partial
differential equation:

[µz2 − (λ+ µ+ θ)z + λ]
∂G

∂z
− ∂G

∂x
= (λ+ θ − µz)G.

We solve this by solving the auxiliary equations. The Laplace transform of the unconditioned
waiting time can be obtained as an integral by using the fact that the service time of a
customer is exponential with parameter µ.

W ∗(θ) =

∞∫
0

W ∗(θ|x)µe−µxdx.

13



Chapter 3

Batch queues at equilibrium

The aim in this section is to state the product-form result for the equilibrium queue length
probabilities in the case of a tandem pair of batch-queues. This result uses the reversed
compound agent theorem, so we start by introducing the concept of reversing a stochastic
process and look at a simple example of a single queue where the reversed process can
be used to obtain the equilibrium queue length probabilities. Then we provide a proper
definition of the batch-queue model in question, noting that so-called special arrivals and
departures have to be added to the system; otherwise a product-form is known not to exist.
We investigate how the effect of these somewhat artificial external arrivals and departures
is minimized mathematically and what this means for the model. We then observe what
reversing the batch queue means in this particular model and finally state the product-form
theorem.

3.1 Reversed process

The analysis of a process can often be greatly simplified by looking at its reversed counter-
part. We use this for both the product form result and later on to obtain the joint probability
distribution of the tandem batch-network. The reversed process can be thought of as if we
stopped the time in the original process and then rewound the tape. In the case if the re-
versed process is stochastically identical to the original one, we say the process is reversible.
However, looking at the reversed process can still be useful even if the original process is not
reversible. Formally, reversibility is defined as follows.

Definition 3.1.1 (Reversibility) {Xt} is reversible if ∀t1, ..., tn, τ :

FXt1 ,...,Xtn = FXτ−t1 ,...,Xτ−tn .

It is straightforward to see that a reversed process must be stationary, but not all stationary
processes are reversible.

Proposition 3.1.1 The reversed process of a stationary Markov process defined by state space S,
instantaneous transition matrix Q, and equilibrium probabilities π is also a stationary Markov
process with the same π and its instantaneous transition matrix Q′ is defined by: q′ij =

πj
πi
qji

In practice, the above proposition can be used to find the equilibrium probabilities. First,
one needs to guess q′ij which can often be done by just imagining what the reversed process
would look like, and then guessing a collection of positive real numbers π with a finite sum

14
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P . If q′i = qi and q′ij =
πj
πi
qji then it follows directly that π satisfies Kolmogorov’s balance

equations so (π/P ) must be the equilibrium probability (the only one by uniqueness).
This leads to a necessary and sufficient condition for the reversibility of a stationary Markov
process.

Proposition 3.1.2 A process is reversible if and only if it satisfies the detailed balance equa-
tions:
∀i, j ∈ S

πiqij = πjqji

A related and more general result is Kolmogorov’s theorem:

Proposition 3.1.3 (Kolmogorov’s criteria) A stationary Markov process with generator ma-
trix Q and state spate S has a reversed process with Q′ if and only if

1. g′i = qi ∀i ∈ S

2. qi1,i2 ...qin−1,inqin,i1 = qi1,in ...qi2,i1 ∀i1, ...in ∈ S

In the case of a network of queues, reversibility is somewhat more complicated. We say
that two processes P and Q are cooperating if they synchronize over a set of actions. Here,
we always assume that there is an active and a passive participant, which means the active
process determines the rate of the synchronized action.
The reversed compound agent theorem (RCAT) defines the necessary conditions under which
a process can be reversed, and also provides an explicit formula to calculate the reversed
rates. We omit stating and proving the theorem since it requires the introduction of an
abbreviated PEPA syntax which is not particularly useful in the rest of the thesis. A detailed
explanation can be found in [6].

3.2 Equilibrium probabilities

As stated at the beginning of this chapter, the aim is to calculate the response time probabil-
ities in a tandem network of batch-queues. A batch-queue is an ordinary queue except that
tasks arrive and leave the queue in batches of possibly different sizes. In a tandem network
of batch-queues, there are two batch-queues after each other with given arrival and depar-
ture rates which can depend on the batch size. Both the arrival and departure processes
are Markovian. When a batch leaves the first queue it proceeds to the second one, after a
potential re-batching.
We wish to use the generating function method to obtain the LSTs of the sojourn time distri-
butions in the next chapter, as we did in the simple case of an M/M/1 queue in Proposition
2.3.2. Therefore, the joint equilibrium queue length probabilities have to be in product
form. In order to obtain a product form result in the tandem batch network mentioned ear-
lier, we appeal to RCAT. One of the conditions of RCAT is that all occurrences of a reversed
active action type must have the same rate. In our case, active actions are k-departures
from the first queue proceeding to the second queue. Assuming that the rate of departing
batches of size k does not depend on the local state of the node, the rate of a k-departure
is: µk : i + k → i ∀i ≥ 0. Now, using Proposition 3.1.1 to calculate the reversed rates of
k-batch departures we have µ′k =

πi+k
πi
µk. In the case of geometric equilibrium probabilities,

this simplifies to µ′k = ρkµk, which does not depend on i as required.

15
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Therefore, we are seeking the conditions under which the equilibrium probabilities are ge-
ometric and the joint distributions have a product form. The other advantage of geometric
equilibrium probabilities is that – in case of a single queue – the generating function can be
directly used to obtain the unconditional probability distribution.
It is well known that no such product-form exists in a tandem batch-network with only
normal batch arrivals and departures. Hence, we introduce special arrivals and departures
at both queues. This approach in itself is not new and similar results in special cases were
obtained in [10, 11].

The batch-queue model

Special arrivals can occur whenever the queue length is 0, and special departures empty the
queue (in the case of the first queue this also means that tasks in that particular batch do not
proceed to the second queue).

We are using the following notations from now on:

1. Ai(z) =
nai∑
s=1

ai;sz
s the generating function of the rates of normal arrivals at node i,

where nai is the maximum batch size for the normal arriving batches

2. Di(z) =
ndi∑
s=1

di;sz
s the generating function of the rates of normal departures at node i,

where ndi is the maximum batch size for the normal departing batches

3. Ai0(z) =
nai0∑
s=1

ai;0sz
s the generating function of the rates of special arrivals at node i,

where nai0 is the maximum batch size for the special arriving batches

4. Di0(z) =
ndi0∑
s=1

di;s0z
s the generating function of the special departures at node i, where

ndi0 is the maximum batch size for the special departing batches

Figure 3.1: The batch queue model.

In the case of a single queue we usually omit the index i. We only consider the sojourn
times in the case of finite maximum batch sizes, however in this section we only assume that
A(1), D(1), A0(1) <∞. Figure 3.1 represents the model graphically.

Proposition 3.2.1 The batch queue defined above has geometrically distributed equilibrium
queue length probabilities, that is πn = (1− ρ)ρn, if and only if

(1− ρz)[A0(z)−D0(ρz)] = [A(1)−D(ρ)]ρz −A(z) +D(ρz) (3.1)

for |z| < min(ρ−1, R) where R is the minimum of the radii of convergence of the four rate
generating functions.
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A queue that satisfies the above equation is called a geometric batch queue. This result is
proved using the balance equations which appear in the background chapter. While A0 and
D0 are not uniquely defined by (3.1), in practice we often aim to minimize the effect caused
by these somewhat artificial arrivals and departures. The following corollary shows what
minimizing the effect caused by the special arrivals and departures means mathematically.

Corollary 3.2.1 Suppose A(z), D(z) are given and A0(z), D0(z) are chosen to satisfy (3.1).

1. A0(z)−D0(ρz) has radius of convergence < ρ−1 unless

A(1) +D(1) = A(ρ−1) +D(ρ) (3.2)

which means it can only have an infinite radius of convergence if the above equation holds.

2. If ∃r ∈ (0, 1) : r−1 is strictly less than the radius of convergence of A(z) and A(1)+D(1)−
D(r) < A(r−1) then:

A(x−1) +D(x) = A(1) +D(1) has a unique root x0 ∈ (0, 1)⇔ A′(1) < D′(1)

In this case, the batch queue has a geometric equilibrium probability distribution with
parameter ρ = x0.

3. Conversely, if π has a geometric distribution then A(ρ−1) + D(ρ) = A(1) + D(1) when
A(ρ−1) <∞.

An important special case of the above model is when we allow partial departing batches.
That is, every time a departing batch size is larger than the current queue length, all the
tasks are discarded. Formally this means

dl0 =

nd∑
s=l+1

ds

In this case, D0(z) and A0(z) are both determined entirely by A(z) and B(z):

D0(z) =

nd−1∑
l=1

nd∑
s=l+1

dsz
l =

nd∑
s=2

s−1∑
l=1

dsz
l (3.3)

=

nd∑
s=2

ds
z − zs

1− z
=
zD(1)−D(z)

1− z
(3.4)

Now using this together with (3.1) we get:

A0(z) =
[A(1) +D(1)−D(ρ)]ρz −A(z)

1− ρz

This is called a discard batch-queue.
When in addition (3.2) is satisfied too, the formula for A0(z) simplifies to:

A0(z) =
ρzA(ρ−1)−A(z)

1− ρz
in which case it is called a minimal discard batch-queue.
There are some additional properties of a minimal discard batch-queue as follows.
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Proposition 3.2.2 In a minimal discard batch-queue defined by A(z), D(z):

1. A0(z) has finitely many terms⇔ A(z) has finitely many terms

2. A(z) =
n∑
i=1

aiz
i ⇒ A0(z) =

n−1∑
j=1

(ρz)j
n∑

i=j+1
aiρ
−i

3. A(z) = A(1) (1−α)z
1−αz (it is geometric with parameter α)⇒ A0(z) = A(z) α

ρ−α

Note that part two in the above proposition means that in the case of an M/M/1 queue with
deterministic arrival and departure rates, the degree of the generating function of the special
arrivals is 0. Furthermore, due to (3.4) the degree of the generating function of the special
departure is also 0. Thus, in this case there are no need for special arrivals and departures
in order to have a geometric probability distribution at equilibrium as expected.

The reversed batch-queue

Using Proposition 3.1.1, the rates of the reversed process can be easily determined for both
the geometric batch-queue and the more special minimal discard batch-queue.

Proposition 3.2.3 The reversed process of a geometric batch-queue with parameter ρ defined
by A,A0, D,D0 is also a geometric batch queue with the same parameter and the following rate
generating functions:

A′(z) = D(ρz) A′0(z) = D0(ρz)

D′(z) = A(ρ−1z) D′0(z) = A0(ρ−1z)

The above proposition is easily proved by obtaining the individual reversed rates from Propo-
sition 3.1.1. To check if the reversed process is also a geometric batch-queue, we apply
Proposition 3.2.1 and check that equation (3.1) holds.

Proposition 3.2.4 The reversed process of a minimal discard batch-queue with parameter ρ
defined by A,D is also a minimal discard batch queue with the same parameter and rate gener-
ating functions:

A′(z) = D(ρz) D′(z) = A(ρ−1z)

Proof
It is already known that the reversed process is a geometric batch-queue using the previous
proposition. It is only left to prove that it is a minimal discard queue. We do that by proving
that (3.4) holds.

D′0(z) = A0(ρ−1z) =
zA(ρ−1)−A(ρ−1z)

1− z
=
zD′(1)−D′(z)

1− z
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We also have to check that (3.2) is satisfied, which follows easily using the equations we
obtained above and the fact that the original process is a minimal discard batch queue.

A′(1) +D′(1) = D(ρ) +A(ρ−1) = D(1) +A(1) = A′(ρ−1) +D′(ρ)

�

We only consider minimal batch queues from here onwards; therefore the rate generating
functions are determined uniquely by A(z) and D(z).

Product form result

Now we are ready to state the product-form theorem for a network of discard batch-queues.
It is the generalization of equation (3.2) and therefore Proposition 3.2.1.

Theorem 3.2.1 A network of M minimal discard batch-queues at equilibrium has P (N =

n) =
M∏
j=1

(1 − ρj)ρ
nj
j where N = (N1, ..., NM ),n = (n1, ..., nM ) and (ρ1, ..., ρM ) are the

solutions of:

Aj(1) +Dj(1) +
M∑

k=1,k 6=j
Bkj(ρk, 1) = Aj(ρ

−1
j ) +Dj(ρj) +

M∑
k=1,k 6=j

Bkj(ρk, ρ
−1
j ) (3.5)

The extra terms correspond to the arrivals at node j coming from another node k and are thus
determined by RCAT.

Bkj(ρk, z) =
∞∑
l=1

∞∑
i=1

pkijl(ρ
i
kdk;i)z

l

where pkijl is the so-called routing probability, the probability that a batch of size i leaving node
k will arrive at j as a batch of size l.
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Chapter 4

Sojourn times

In the minimal discard batch-queue model, a task can be discarded both halfway – finishing
its service at the first queue – and at the end – finishing its service at the second queue. We
are interested in the case when it finishes its service normally, that is, goes along the path
without being discarded.
It is particularly challenging to calculate sojourn times for a tandem networks of batch-
queues because the path is not overtake free. This means that even after the tagged task
arrives at the second queue its sojourn time is not independent of the events happening at
the first queue. More specifically, certain arrivals from the first queue can influence whether
the tagged task departs in a partial or complete batch.
In this chapter, we first consider sojourn times in the case of a single batch-queue and its
reversed counterpart. Then we calculate the sojourn times for the tandem network without
distinguishing between special and normal batches. Relaxing this condition results in over-
take free paths, hence the LST of the joint sojourn time can be achieved more easily. Next,
we move to the more interesting general case, and obtain the LST of the marginal distribu-
tion of the sojourn time at the second queue. This requires the solution of a recurrence for
a vector of generating functions rather than a single generating function. Finally, we put
everything together and calculate the LST of the joint probability distribution of the sojourn
times at the first queue and the second queue.

4.1 Sojourn time in a single batch-queue

Before we start calculating the sojourn time itself, we look at two proposition corresponding
to properties of the exponential random variable. Both are used several times later on.

Proposition 4.1.1 X1, ..., Xn are independent exponential random variables with parameters
λ1, ...λn , respectively.

P (min(X1, ..., Xn) > t) = exp

(
−

n∑
i=1

λit

)

In other words, the minimum of n independent exponential variables is also exponentially dis-

tributed with parameter
n∑
i=1

λi.
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Proof

P (min(X1, ..., Xn) > t) = P (X1 > t, ...,Xn > t) =
n∏
i=1

e−λit = e
−t

n∑
i=1

λi

�

Above we only calculate the distribution of the minimum, but we often need to know the
probability that a specific variable has the smallest value.

Proposition 4.1.2 X1, ..., Xn, Y are independent exponential random variables with parame-
ters λ1, ..., λn, µ, respectively.

P (X1, ..., Xn > Y ) =
µ

n∑
i=1

λi + µ

Proof

P (X1, ...Xn > Y ) =

∞∫
0

P (X1, ..., Xn > t|Y = t)fY (t)dt

=

∞∫
0

e
−(

n∑
i=1

λi)t
µe−µtdt =

µ
n∑
i=1

λi + µ

�

As has been stated earlier we usually use the Laplace-Stieltjes transform to determine the
probability distribution. The exponential distribution appears many times, so we calculate
its LST in advance.

Proposition 4.1.3 X is an exponential random variable with parameter λ.

L∗(θ) =
λ

θ + λ

Proof

L∗(θ) = E(e−Xθ) by the definition of the LST

=

∞∫
0

e−θtλe−λtdt =
λ

θ + λ

as stated. �

Using the propositions above, we can immediately calculate the LST of the time to the next
departure of either kind, since that is just a minimum of some exponential variables:
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1. normal departure of size k ∼ Exp(dk)

2. special departure ∼ Exp(dl0), when the current queue length is l

The time to the next departure is the minimum of these exponential variables, so by Propo-

sition 4.1.1 it is itself exponential with parameter
l∑

i=1
di + dl0 = D(1).

Hence, by Proposition 4.1.3 the LST of the random variable is:

S∗(θ) =
D(1)

θ +D(1)
(4.1)

Normal-to-any paths

We denote the remaining sojourn time of a task at position m + 1 with Rm and the corre-
sponding LST by R∗m. Let GR(z, θ) be the generating function of R∗m.
In the easiest case, there is only one queue and we do not care about the type of the departing
batch.

Proposition 4.1.4 In an equilibrium minimal discard batch-queue defined by A,D

GR(z, θ) =
D(1)−D(z)

(1− z)(θ +D(1)−D(z))
(4.2)

Proof
If the current queue length is l, by the law of total probability the remaining sojourn time
is S if the next departing batch contains the tagged task or (S + Rn−j) if it is a j-departure
without the tagged task:

Rn =

l∑
i=n+1

di + dl0

D(1)
S +

n∑
j=1

dj(S +Rn−j)

Now, taking the LST of both sides we have

R∗n =
S∗

D(1)

dn+1 + dn+1,0 +

n∑
j=1

djR
∗
n−j


Multiplying by zn and summing from n = 0 to∞:

GR(z) =
S∗

D(1)

 ∞∑
n=0

dn+1z
n +

∞∑
n=0

dn+1,0z
n +

∞∑
n=0

n∑
j=1

djR
∗
n−jz

n


=

S∗

D(1)

z−1(D0(z) +D(z)) +
∞∑
j=1

∞∑
n=0

djR
∗
nz

n+j


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=
S∗

D(1)

[
z−1(zD(1)−D(z) + (1− z)D(z))

1− z
+D(z)GR(z)

]
Thus

GR(z)(D(1)−D(z)S∗) =
S∗(D(1)−D(z))

1− z
Plugging in (4.1) for S∗ we get the desired result. �

Since the reversed process is also a minimal discard batch queue as stated in Proposition
3.2.4, a similar result for it can be easily obtained:

G̃R(z, θ) =
A(ρ−1)−A(ρ−1z)

(1− z)[θ +A(ρ−1)−A(ρ−1z)]

Now, in order to calculate the actual sojourn times, we have to consider three cases sepa-
rately:

1. First task in the batch

By the random observer property (2.2.5), the probability that a tagged task faces a
queue length n at its arrival is geometric with parameter ρ. Thus, using the generating
function we can easily obtain the sojourn time as

T ∗F (θ) = (1− ρ)GR(ρ, θ) =
D(1)−D(ρ)

θ +D(1)−D(ρ)

which is an exponential random variable with parameter D(1)−D(ρ).

In case of the reversed process we similarly get an exponential variable with parameter
A(ρ−1) − A(1) . Furthermore, A(ρ−1) − A(1) = D(1) − D(ρ) by (3.2); hence we get
the same exponential variable for the reversed process when we consider the first task
in the batch.

2. Last task in the batch

The last task in a batch joins the queue at position M+K where M is the queue length
at the arrival instant and K is the batch size. Hence, we have P (M = n) = (1 − ρ)ρn

and P (K = k) = ak
A(1) and

T ∗L(θ) =
(1− ρ)

A(1)

∞∑
m=0

∞∑
k=1

akρ
mR∗m+k−1(θ) =

(1− ρ)

A(1)

∞∑
m=0

m+1∑
k=1

akρ
m−k+1R∗m(θ)

which in case A(z) is geometric simplifies to

T ∗L(θ) = (1− ρ)(1− α)
ρGR(ρ)− αGR(α)

ρ− α

3. Random task in the batch

The tagged task joins the queue at M +H where M is the current queue length and H

is the tagged task’s position in the arriving batch. Now, bk = P (H = k) =
∞∑
j=k

aj
A′(1) by

a well-known result for the backwards recurrence time.

T ∗R(θ) =

∞∑
m=0

m+1∑
k=1

bkρ
m−k+1R∗m(θ)

If A(z) is geometric, we get the same result as for the last task in the batch as expected
by the memoryless property of the geometric distribution.
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Figure 4.1: Single batch-queue at the arrival instant of the tagged task.

Normal-to-normal paths

A significantly harder case and also more interesting, when we only consider those tasks that
depart in a normal batch. Up to this point, this section has mainly used results from [5];
however in the following proposition (4.1.5) when obtaining a recurrence for the generating
function, we deviate from the article and do not take into account the tagged task’s position
in the departing batch since it is not needed for the joint case and omitting it makes the
statement and the proof neater. Furthermore, we also prove that the matrix on the left hand
side of equation (4.4) can indeed be inverted, and therefore that a solution for the vector of
generating functions can be obtained, which was omitted from the article [5].

As shown in figure 4.1, we use L to denote the number of tasks in front of the tagged one
and M for the number of tasks behind it.
We seek the quantities γlm(t) = P (R < t, I = 1|L = l,M = m), where I is the indicator
function of the event that the departing batch is normal and R is the response time random
variable. We keep using the *-notation to mean the LST of a function, in this case γ∗lm(θ).

Let Hm(x; θ) =
∞∑
l=0

γ∗lm(θ)xl be the generating function of the conditional probabilities. First,

we obtain a recurrence relation for the generating functions.

Proposition 4.1.5 Hm is as above but we omit θ from the argument for brevity.

[A(1) +D(1)−D(x) + θ]Hm(x) =

na∑
s=1

asHm+s(x) +

nd−1∑
i=0

min(i+m+1,nd)∑
s=i+1

dsx
i (4.3)

Proof
If we consider an infinitesimal period of time, the following events can occur:

1. normal arrival

2. normal departure without the tagged task

3. normal departure containing the tagged task

Note, there cannot be any special arrivals, because the queue length is at least 1.
Since both the arrival and departure processes are Poisson, we know that the probability that
an event with rate λ happens in an interval of size h is λh+ o(h) by Definition 2.2.12.
Therefore, by using the memoryless property of the exponential distribution we have
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γlm(t+ h) =h

na∑
s=1

asγl,m+s(t) + h

min(l,nd)∑
s=1

dsγl−s,m(t) + h

min(l+m+1,nd)∑
s=l+1

ds+

h[1−A(1)−D(1)]γlm + o(h)

After rearranging, dividing by h and taking the limit h→ 0, we take the LST of both sides,

[θ +A(1) +D(1)]γ∗lm =

na∑
s=1

asγ
∗
l,m+s +

min(l,nd)∑
s=1

dsγ
∗
l−s,m +

min(l+m+1,nd)∑
s=l+1

ds

Multiplying by xl and then summing from l = 0 to∞ we get

[θ +A(1) +D(1)]Hm(x) =

na∑
s=1

asHm+s(x) +

∞∑
l=0

min(l,nd)∑
s=1

dsγ
∗
l−s,mx

l +

∞∑
l=0

min(l+m+1,nd)∑
s=l+1

dsx
l

where the second term has a closed form:

∞∑
l=0

min(l,nd)∑
s=1

dsγ
∗
l−s,mx

l =

nd∑
s=1

∞∑
l=s

dsγ
∗
l−s,mx

l =

nd∑
s=1

∞∑
l=0

dsγ
∗
l,mx

l+s = D(x)Hm(x)

Hence, we get the stated equation. �

Moving forward, notice that as soon as there are at least nd − 1 tasks behind the tagged
one, a new arrival can no longer influence the tagged task’s response time, which means
Hm = Hnd−1 for all m ≥ nd − 1.

The above proposition can be written in matrix form as follows:

L(x)H(x) = YDv(x) (4.4)

where v(x) = (1, x, ..., xnd−1), L(x) = (A(1) + D(1) −D(x) + θ)I −M − K, and D,Y,M,K
are nd × nd matrices defined as follows:

D =


d1 . . . dnd−1 dnd
d2 . . . dnd 0
...

... ...
...

dnd 0 . . . 0

 Y =


1 0 . . . 0
1 1 0 . . . 0

...
...

1 . . . 0
1 1 . . . 1


M :

{
mij = aj−i 0 ≤ i ≤ nd − 1, i+ 1 ≤ j ≤ min(na + i, nd − 1)

0 otherwise
/upper triangular/

K :

kij =
na+i∑
s=nd

as−i 0 ≤ i ≤ nd − 1, j = nd − 1

0 otherwise
/only the last column is non-zero/
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Assuming that L(x) can be inverted and therefore we can solve the equation for H(x), the
vector of generating functions can be used to obtain the LST of the response time in the
following way.

We start by looking at a special case when the maximum batch size is two for both the
arriving and departing batches, then move on to the general case.

Proposition 4.1.6 When na = nd = 2 the LST of the sojourn time of a task arriving and
departing in a normal batch considering a random task in the batch is:

T ∗(θ)/T ∗(0)

where

T ∗(θ) =
(1− ρ)[(a1 + a2

ρ )H0(ρ; θ) + a2H1(ρ; θ)− a2
ρ H0(0; θ)]

a1 + 2a2

and

H0(x; θ) =

(1− x)d2
1 + [θ + a1 + a2 + (1− x)(1 + 2x)d2]d1 + [xθ + (1 + x)(a1 + a2) + x(1− x2)d2]d2

[θ + a1 + a2 + (1− x)d1 + (1− x2)d2][θ + (1− x)d1 + (1− x2)d2]

H1(x; θ) =
d1 + (1 + x)d2

θ + (1− x)d1 + (1− x2)d2

In addition, the probability that a task arriving in a normal batch departs in a normal batch is
T ∗(0).

Proof
Using the matrix form of Proposition 4.1.5 and omitting θ for brevity we have,

[a1 + a2 + d1(1− x) + d2(1− x2) + θ]H0(x) = a1H1(x) + a2H1(x) + d1 + d2x

[a1 + a2 + d1(1− x) + d2(1− x2) + θ]H1(x) = a1H1(x) + a2H1(x) + d1 + d2(1 + x)

Solving the above equation, we get the stated solution for H0(x) and H1(x).

Let πlm be the probability that there are l tasks before and m tasks behind the tagged one at
its arrival instant.

πlm = (1− ρ)
l∑

s=0
fsmρ

l−s by the random observer property, where fsm is the probability that

there are s tasks in front of and m tasks behind the tagged one in its arrival batch.

1. First task in the batch: fsm = am+1

A(1) I{s=0}

2. Last task in the batch: fsm = as+1

A(1) I{m=0}

3. Random task in the batch: fsm = as+m+1

A′(1)

We carry on by looking at the most difficult case, when the tagged task is in a random
position (the other two cases can be obtained similarly).

T ∗(θ) =

na−1∑
m=0

∞∑
l=0

γ∗lm(θ)πlm =

1∑
m=0

∞∑
l=0

γ∗lm(θ)(1− ρ)

l∑
s=0

fsmρ
l−s =
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(1− ρ)
∞∑
l=0

[
γ∗l0(θ)(f00ρ

l + f10ρ
l−1I{l≥1}) + γ∗l1(θ)f01ρ

l
]

=

(1− ρ)
H0(ρ; θ)(a1 + a2

ρ ) +H1(ρ; θ)a2 −H0(0; θ)a2ρ
a1 + 2a2

�

For the general case, following the same method and noting that fsm = 0 whenever s+m ≥
na we get,

T ∗(θ) = (1− ρ)

na−1∑
m=0

na−1−m∑
l=0

ρ−lflm

[
Hmin(m,nd−1)(ρ; θ)−

l−1∑
s=0

ρs

s!

∂sHmin(m,nd−1)(x; θ)

∂xs

∣∣∣∣
x=0

]
(4.5)

In order for L to be invertible, it cannot be singular inside the unit disk. Since it is an upper
triangular matrix, this means the diagonal elements have to be nonzero.

1. All but the last diagonal element is equal to: A(1) +D(1)−D(x) + θ

|A(1) +D(1)−D(x) + θ| ≥ |A(1) +D(1) + θ| − |D(x)|

by the reverse triangle inequality. Assuming that Re(θ) ≥ 0 and noting that |D(x)| ≤
D(1) inside the unit disk,

|A(1) +D(1) + θ| − |D(x)| ≥ A(1) +D(1)−D(1) = A(1) > 0

2. Last diagonal element: D(1)−D(x) + θ

Similarly,

|D(1)−D(x) + θ| ≥ |D(1) + θ| − |D(x)| ≥ D(1)−D(1) = 0

However if both inequalities are in fact equalities, we have to assume that Re(θ) ≥ ε
in order for it to be strictly greater than 0.

We showed for both cases that the absolute value of the diagonal elements is strictly larger
than 0 inside the unit disk; therefore there cannot be any roots there.
These restrictions for θ are ubiquitous and do not prevent the inversion of the LST since it
can be done along a vertical line.

4.2 Sojourn time in a tandem batch-network

The general idea for calculating the sojourn time for a tandem batch-network is the follow-
ing. We move the origin of the time axis to the instant when the tagged task leaves node 1
and enters node 2. Then we look at the joint probability of the forward sojourn time at the
second queue and the reversed sojourn time at the first queue given the middle state I, L
and in-transit batch position J,K.
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Figure 4.2: State at t=0, when calculating the joint probability distribution of the forward
sojourn time at node 2 and the reversed sojourn time at node 1.

As is shown in figure 4.2, I is the number of tasks in the first queue, L is the number of tasks
in the second queue. Note that we leave out the tagged tasks batch from both places. We
denote the number of tasks behind and in front of the tagged task in its batch by J and K,
respectively.
We start by looking at the middle state probabilities and the distribution of the position in
the batch.

Proposition 4.2.1 The joint probability of I and L above is:

P (I = i, L = l) = (1− ρ1)(1− ρ2)ρi1ρ
l
2

where ρ1 and ρ2 are the solutions of (3.5).

Proof
Let πil be the joint probability of the queue length and pss′ be the probability that an s-batch
leaving node 1 arrives to node 2 as a s’-batch.
Then the flux into the middle (I, L) is:

nd1∑
s=1

na2∑
s′=1

πi+s,ld1;spss′ =

nd1∑
s=1

na2∑
s′=1

(1− ρ1)(1− ρ2)ρi+s1 ρl2d1;spss′ = (1− ρ1)(1− ρ2)ρi1ρ
l
2D1(ρ1)

while the total departure flux is:

∞∑
i=0

∞∑
l=0

(1− ρ1)(1− ρ2)ρi1ρ
l
2D1(ρ1) = D1(ρ1)

The middle state probability is the ratio of the flux into the middle state to the total flux,
which is (1− ρ1)(1− ρ2)ρi1ρ

l
2 as stated. �

From now on we assume that a normal batch proceeds to node 2 without changing its size.

Proposition 4.2.2 The size of an in-transit batch at equilibrium is independent of the middle
state and has probability generating function:

D1(ρ1z)

D1(ρ1)
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In addition, when the tagged task is at a random position within its arriving batch the proba-
bility generating function of the joint probability of (J,K) is:

F (z1, z2) =
D1(ρ1z1)−D1(ρ1z2)

ρ1(z1 − z2)D′(ρ1)

Proof
The flux corresponding to an in-transit batch of size n – when the middle state is (i, l) –
is (1 − ρ1)(1 − ρ2)ρi+n1 ρl2d1;n and the total flux is (1 − ρ1)(1 − ρ2)ρi1ρ

l
2D1(ρ1). Hence, the

probability that an in-transit batch has size n is d1;nρn1
D1(ρ1) .

When the tagged task is at a random position, the probability generating function of its
position within the batch is:

nd1∑
s=1

d1;sρ
s
1

ρ1D′1(ρ1)

s−1∑
j=0

zj1z
s−1−m
2 =

nd1∑
s=1

d1;sρ
s
1

ρ1D′1(ρ1)

zs1 − zs2
z1 − z2

=
D1(ρ1z1)−D1(ρ1z2)

ρ1D′1(ρ1)(z1 − z2)

�

4.2.1 Overtake-free path

As stated several times before, the paths are not overtake-free in the general case, but under
certain conditions they can be overtake-free. In this section we look at the special case when
these conditions are met, and calculate the LST of the joint sojourn time with little effort.
In order to achieve overtake-free paths, a task at position k in the second queue cannot be

affected by later arrivals. That is,
l∑

s=k

ds + dl0 = ck where l is the current queue length, and

ck can depend on at most k (but not l). We may as well write
l∑

s=k

ds +
k−1∑
s=1

ds + dl0 = ck since

the extra term only depends on k. So, dl0 = ck −D(1) +
nd∑

s=l+1

ds. If we choose ck to be D(1)

we get the discard model back except that we do not distinguish between special and normal
batches.

By using proposition 4.1.4 to obtain the generating function for both the reversed sojourn
time at node 1 and the forward sojourn time at node 2, we are now able to calculate an exact
result for the LST of the joint sojourn time in the case of overtake-free paths.

Proposition 4.2.3 In a tandem pair of discard batch-queues defined by A1, D1, A2, D2, the LST
of the joint probability distribution of the sojourn times of tasks arriving and departing in either
a special or a normal batch is:

R∗(θ1, θ2) =
[A1(ρ−1)−A1(1)][D2(1)−D2(ρ2)]F (ρ−1

1 , ρ−1
2 )

[θ1 +A1(ρ−1
1 )−A1(1)][θ2 +D2(1)−D2(ρ2)]

−

(1− ρ1)(1− ρ2)

nd1∑
j=0

nd1∑
k=0

j−1∑
i=0

k−1∑
l=0

g̃1;ig2;lfjkρ
i−j
1 ρl−k2

where ρ1, ρ2 are the solutions of (3.5), fjk is the joint probability of the tagged task’s position in
its in-transit batch and F (x, y) is the probability generating function corresponding to the fjks.

29



4.2. SOJOURN TIME IN A TANDEM BATCH-NETWORK Chapter 4. Sojourn times

Finally, g̃1;i is the LST of the remaining reversed sojourn time of a task at position (i + 1) at
node 1 and g1;l is the remaining forward sojourn time of a task at position (l+ 1) at the second
node.

Proof
Using the same notations as before, by the properties of the conditional expectation,

R∗(θ1, θ2) = E
[
E
(
e−θ1R̃1(I,J,K,L)−θ2R2(I,J,K,L)|I, J,K,L

)]
= (1− ρ1)(1− ρ2)

nd1∑
j=0

nd1∑
k=0

∞∑
i=0

∞∑
l=0

fjkρ
i
1ρ
l
2g̃1;i+jg2;l+k

where R̃1(I, J,K,L), R2(I, J,K,L) are the sojourn times given the states I, J,K,L, which
are independent, since the paths are overtake-free. Furthermore, the joint probability of
(I, J,K,L) is fjk(1− ρ1)(1− ρ2)ρi1ρ

l
2 by proposition 4.2.1 and 4.2.2.

Thus, by proposition 4.1.4 and its reversed counterpart,

R∗(θ1, θ2) = (1− ρ1)(1− ρ2)

nd1∑
j=0

nd1∑
k=0

∞∑
i=j

∞∑
l=k

fjkρ
i−j
1 ρl−k2 g̃1;ig2;l

= (1− ρ1)(1− ρ2)

nd1∑
j=0

nd1∑
k=0

∞∑
i=0

∞∑
l=0

fjkρ
i−j
1 ρl−k2 g̃1;ig2;l

−
nd1∑
j=0

nd1∑
k=0

j−1∑
i=0

k−1∑
l=0

fjkρ
i−j
1 ρl−k2 g̃1;ig2;l


= (1− ρ1)(1− ρ2)

[
F (ρ−1

1 , ρ−1
2 )[A1(ρ−1)−A1(1)][D2(1)−D2(ρ2)]

(1− ρ1)(1− ρ2)[θ1 +A1(ρ−1
1 )−A1(1)][θ2 +D2(1)−D2(ρ2)]

−
nd1∑
j=0

nd1∑
k=0

j−1∑
i=0

k−1∑
l=0

fjkρ
i−j
1 ρl−k2 g̃1;ig2;l


In the case of a random task in a batch, F (z1, z2) is given by Proposition 4.2.2. �

This result provides a fairly efficient way to calculate the LST of the joint distribution, since
the first term is in closed form and the second term is a finite sum.
We get the LST of the total sojourn time by evaluating the function at θ1 = θ2 = θ, R∗(θ, θ) =

E
(
e−θ(R̃1+R2)

)
.

4.2.2 Non-overtake-free paths

Finally, arriving to the general case where we take into account that the paths are not
overtake-free, we first consider the marginal sojourn time at node 2 given the middle state
I, L and batch position J,K. The method is similar to what we did in the case of a sin-
gle queue with normal-to-normal paths, but notice that in this case the sojourn time also
depends on the state I at the first queue.

Proposition 4.2.4 In a tandem pair of discard batch-queues defined by A1, D1, A2, D2, the LST
of the marginal distribution at node 2 – only considering the tasks leaving in a normal batch –
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given I, J,K at its transition instant has generating function Gj(x, z; θ) with respect to I and
K:

L(x, z; θ)G(x, z; θ) = E(x, z; θ)

where I, J is as before, K is the sum of the number of tasks at the second node and before the
tagged one in its transition batch (K ← K + L). Furthermore,
G(x, z; θ) = (G0(x, y; θ), ..., Gnd2−1(x, y; θ)),
L(x) = (A1(1) +A2(1) +D1(1) +D2(1)−A1(x−1)−D2(z) + θ)I−M1(x)−K1(x)−M2−K2,
and M1(x),K1(x),M2,K2 are nd2 × nd2 matrices defined as follows:

M1(x) :=

{
m1;ij(x) = d1;j−ix

j−i 0 ≤ i ≤ nd2 − 1, i+ 1 ≤ j ≤ min(nd1 + i, nd2 − 1)

0 otherwise

K1(x) :=

k1;ij(x) =
nd1+i∑
s=nd2

d1;s−ix
s−i 0 ≤ i ≤ nd2 − 1, j = nd2 − 1

0 otherwise

M2 :=

{
m2;ij = a2;j−i 0 ≤ i ≤ nd2 − 1, i+ 1 ≤ j ≤ min(na2 + i, nd2 − 1)

0 otherwise

K2 :=

k2;ij =
na2+i∑
s=nd2

a2;s−i 0 ≤ i ≤ nd2 − 1, j = nd2 − 1

0 otherwise

Finally, E = (e1, ...end2−1)

ej =

na1−1∑
i=1

[
a1;0i − xi

na1∑
l=i+1

a1;lx
−l

]
gij(z; θ)+[

D1(1)−D1(x)

1− x
−A1(x−1)−A10(1)

]
g0j(z; θ)+

1

1− x

[
D2(1)−D2(z)

1− z
−

nd2∑
l=1

d2;l

l−j−2∑
k=0

zk

]

where the gij(z; θ) = 1
i!
∂iGj(x,z;θ)

∂xi

∣∣∣
x=0

are unknown functions of z.

Proof
Let τijk = P(R2 ≤ t,N = 1|I = i, J = j,K = k), where N is the indicator function of the
event: the tagged task departs in a normal batch. Following the previous method we take an
infinitesimal step during which the following events can happen:

1. normal/special arrival/departure of size s at node 1

2. normal arrival of size s at node 2

3. normal departure of size s at node 2 without the tagged task

4. normal departure of size s at node 2 with the tagged task

Using the memoryless property of the exponential distribution,

τijk(t+ h) =(1− h[A1(1) + I{i=0}A10(1) +A2(1) +D1(1)I{i>0} +D2(1)])τijk+
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h

na1∑
s=1

a1;sτi+s,jk(t) + I{i=0}h

na1−1∑
s=1

a1;0sτs,jk(t) + h

na2∑
s=1

a2;sτij+s,k(t)+

I{i>0}h

min(i,nd1)∑
s=1

d1;sτi−s,j+s,k(t) + I{i>0}h

nd1∑
s=i+1

d1;sτ0,jk(t)+

h

min(k,nd2)∑
s=1

d2;sτi,j,k−s(t) + h

min(j+k+1,nd2)∑
s=k+1

d2;s + o(h)

where we used that the degree of Ai0 is nai − 1 by proposition 3.2.2.
After rearranging, dividing by h, taking the limit h→ 0 and dropping θ for brevity we have

[θ +A1(1) + I{i=0}A10(1) +A2(1) +D1(1) +D2(1)]τ∗ijk =

na1∑
s=1

a1;sτ
∗
i+s,jk+

I{i=0}

na1−1∑
s=1

a1;0sτ
∗
sjk +

na2∑
s=1

a2;sτ
∗
i,j+s,k +

min(i,nd1)∑
s=1

d1;sτ
∗
i−s,j+s,k +

nd1∑
s=i+1

d1;sτ
∗
0jk+

min(k,nd2)∑
s=1

d2;sτ
∗
ij,k−s +

min(j+k+1,nd2)∑
s=k+1

d2;s

Note that we omit the indicator I{i>0}, but the extra terms cancel each other out. We once
again use the fact that any arrivals later than nd2 − 1 after the tagged task do not affect its
sojourn time. Therefore, Gj(x, z; θ) = Gnd2−1(x, z; θ) when j ≥ nd2 − 1.

Next, we multiply by xizk and sum from i = 0 to∞ and k = 0 to∞.

Starting on the left hand side:

∞∑
i=0

∞∑
k=0

I{i=0}A10(1)τ∗ijk =
∞∑
i=0

∞∑
k=0

A10(1)τ∗0jk = A10(1)g0j(z)

Now, looking at the right hand side and reducing it term by term:

1.

∞∑
i=0

∞∑
k=0

na1∑
s=1

a1;sτ
∗
i+s,jkx

izk =
∞∑
k=0

na1∑
s=1

∞∑
i=s

a1;sτ
∗
ijkx

i−szk

=
∞∑
k=0

na1∑
s=1

∞∑
i=0

a1;sτ
∗
ijkx

i−szk −
na1∑
s=1

s−1∑
i=0

a1;sx
i−s

∞∑
k=0

τ∗ijkz
k

= A1(x−1)Gj(x, z)−
na1∑
i=0

gij(z)

na1∑
s=i+1

a1;sx
−(s−i)

The first term appears on the left hand side, while the second one is part of E.
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2.
∞∑
i=0

∞∑
k=0

I{i=0}

na1−1∑
s=1

a1;0sτ
∗
sjkx

izk =
∞∑
k=0

na1−1∑
s=1

a1;0sτ
∗
sjkz

k =

na1−1∑
i=1

a1;0sgij(z)

This appears in E combined with the previous term.

3.
∞∑
i=0

∞∑
k=0

na2∑
s=1

a2;sτ
∗
i,j+s,kx

izk =

na2∑
s=1

a2;sGmin(j+s,nd2−1)(x, z)

=

na2+j∑
s=j+1

a2;s−jGmin(s,nd2−1)(x, z)

=

min(na2+j,nd2−1)∑
s=j+1

a2;s−jGs(x, z) +

na2+j∑
s=nd2

a2;s−jGnd2−1(x, z)

These terms are precisely the matrices M2, K2 on the left hand side multiplied by G.

4.

∞∑
i=0

∞∑
k=0

min(i,nd1)∑
s=1

d1;sτ
∗
i−s,j+s,kx

izk =
∞∑
k=0

nd1∑
s=1

∞∑
i=s

d1;sτ
∗
i−s,j+s,kx

izk

=

∞∑
k=0

nd1∑
s=1

∞∑
i=0

d1;sτ
∗
i,j+s,kx

i+szk =

j+nd1∑
s=j+1

d1;s−jx
s−jGmin(s,nd2−1)(x, z)

=

min(j+nd1,nd2−1)∑
s=j+1

d1;s−jx
s−jGs(x, z) +

j+nd1∑
s=nd2

d1;s−jx
s−jGnd2−1(x, z)

These terms are precisely the matrices M1(x), K1(x) on the left hand side multiplied
by G.

5.
∞∑
i=0

∞∑
k=0

nd1∑
s=i+1

d1;sτ
∗
0jkx

izk =

∞∑
k=0

nd1∑
s=1

s−1∑
i=0

d1;sτ
∗
0jkx

izk

=
∞∑
k=0

nd1∑
s=1

d1;sτ
∗
0jkz

k 1− xs

1− x
=
D1(1)−D1(x)

1− x
g0j(z)

These terms appear on the right hand side of the equation as part of E.

6.
∞∑
i=0

∞∑
k=0

min(k,nd2)∑
s=1

d2;sτ
∗
ij,k−sx

izk =

∞∑
i=0

nd2∑
s=1

∞∑
k=s

d2;sτ
∗
ij,k−sx

izk

=

∞∑
i=0

nd2∑
s=1

∞∑
k=0

d2;sτ
∗
ij,kx

izk+s = D2(z)Gj(x, z)

This is part of the left hand side.
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7.

∞∑
i=0

∞∑
k=0

min(j+k+1,nd2)∑
s=k+1

d2;sx
izk =

1

1− x

∞∑
k=0

min(j+k+1,nd2)∑
s=k+1

d2;sz
k

=
1

1− x

nd2∑
s=1

d2;s

s−1∑
k=max(s−j−1,0)

zk =
1

1− x

nd2∑
s=1

d2;s

(
1− zs

1− z
−
s−j−2∑
k=0

zk

)

=
1

1− x

(
D2(1)−D2(z)

1− z
−

nd2∑
s=1

d2;s

s−j−2∑
k=0

zk

)

These terms also appear on the right hand side of the equation.

�

The above proposition and corresponding proof is where Harrison’s work has been left off.
Although the proof is omitted in [5] it was provided for this project. The material that
follows continues this work of Harrison’s.

Determining the unknown gij(z; θ) and Gj(x, z; θ) functions

L(x, z) is upper triangular and the diagonal elements are all identical except the last one. We
denote them by f1(x) and f2(x) respectively, treating z as a parameter. We find the unknown
functions going row by row starting at the lowermost one.

1. Finding Gnd2−1:

f2(x)Gnd2−1(x, z) = end2−1 and only gi,nd2−1 0 ≤ i ≤ na1 − 1 appear on the right
hand side. Claiming that f2(x) has na1 roots within the unit disk, we can determine
all gi,nd2−1s and then express Gnd2−1(x, z) = end2−1/f2(x) for all x except the roots of
f2(x) where it can be approximated.

2. Determining Gk(x, z) when all Gs(x, z), s > k are already known:

f1(x)Gk = ek − (u1Gk+1 + ...+und2−k−1Gnd2−1) where the us coefficients are from the
kth row of L. Again, we claim that f1(x) has na1 roots inside the unit disk, therefore all
the unknown gik functions can be determined in ek and Gk can be expressed as before.
Gk has to be approximated at the roots of f1 again.

We appeal to Rouche’s theorem to show that there are enough roots in the unit disk in both
cases.

Proposition 4.2.5 (Rouche’s theorem) Let f, g be holomorphic functions inside some region
K and |g| < |f | on ∂K, then f + g and f have the same number of roots inside K.

In our case K is the unit disk and by the definitions of L:

f1(x) = A1(1) +A2(1) +D1(1) +D2(1)−A1(x−1)−D2(z) + θ

First, we multiply it by xna1 to get rid of the negative powers of x. Using the notations of the
theorem above,

f(x) = [A1(1) +A2(1) +D1(1) +D2(1)−D2(z) + θ]xna1
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g(x) = −A1(x−1)xna1 =

na1∑
s=1

−a1;sx
na1−s

In order to use the theorem, we have to prove that f is strictly larger than g when |x| = 1.
If this condition is met, f1(x)xna1 = f(x) + g(x) has the same number of roots in the unit
disk as f which has at least na1, given that 0 is a root with na1 multiplicity. Furthermore,
evaluating f1(x)xna1 at 0 we get −a1;na1 6= 0. Hence, f1(x) has at least na1 roots in the unit
disk as required.

|[A1(1) +A2(1) +D1(1) +D2(1)−D2(z) + θ]xna1 | ≥ by the reversed triangle inequality

|A1(1) +A2(1) +D1(1) +D2(1) + θ| − |D2(z)| ≥ assuming Re(θ) ≥ 0 and |z| ≤ 1

A1(1) +A2(1) +D1(1) +D2(1)−D2(1) > A1(1) ≥ |g(x)|

The same has to be proven for f2(x) too.

f2(x) = A1(1) +D1(1) +D2(1)−A1(x−1)−D2(z) + θ −D1(x)

We follow the same steps. Making exactly the same argument, it is enough to prove that
f2(x)xna1 has at least na1 roots inside the unit disk.
Now, we have:

f(x) = [A1(1) +D1(1) +D2(1)−D2(z) + θ]xna1

g(x) = (−A1(x−1)−D1(x))xna1 =

na1∑
s=1

−a1;sx
na1−s +

nd1∑
s=1

−d1;sx
na1+s

Similarly, we get

|f(x)| ≥ |A1(1) +D1(1) +D2(1) + θ| − |D2(z)| > assuming Re(θ) ≥ ε and |z| ≤ 1

A1(1) +D1(1) +D2(1)−D2(1) ≥ A1(1) +D1(1) ≥ |g(x)|

Therefore, we have enough roots to determine all gijs and then solve the equations for Gj .

Expressing the probability distribution with Gj(x, z)

By the law of total probability and using proposition 4.2.1, the LST of the probability distri-
bution Tjk(t) = P (R2 ≤ t,N = 1|J = j,K = k) and both j and k are bounded by nd1, which
is the maximum batch size for the departure process at the first queue:

T ∗jk(θ)

=
∞∑
i=0

∞∑
l=0

(1− ρ1)(1− ρ2)ρi1ρ
l
2τij,k+l(θ) = (1− ρ1)(1− ρ2)ρ−k2

∞∑
i=0

∞∑
l=k

ρi1ρ
l
2τijl(θ)

= (1− ρ1)(1− ρ2)ρ−k2

(
Gmin(j,nd2−1)(ρ1, ρ2; θ)−

k−1∑
l=0

ρl2
1

l!

∂lGmin(j,nd2−1)(ρ1, z; θ)

∂zl

∣∣∣∣∣
z=0

)
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Therefore we get the LST after unconditioning with respect to J,K, and normalizing with
the probability that the tagged task departs in a normal batch is:

T ∗(θ)/T ∗(0) =

nd1−1∑
j=0

nd1−1−j∑
k=0

fjkT
∗
jk(θ)/T

∗(0)

In the case of the first or last task in the batch fjk is determined by 4.2.2.

Joint probability distribution

Now, we have the generating function of both the reversed process at the first queue and the
forward process at the second queue in closed forms. We will look at the LST of the joint
probability distribution and see if it can be expressed by the aforementioned generating
functions.
Note that since the process is Markovian, once we condition on the present state of I, J,K,L
the forward and reversed sojourn time random variables are independent.

Hence, we are seeking a closed form for the following expression, omitting θ and the tildes
from the top of the gamma functions (which we used before to denote that they corre-
sponded to the reversed process) for brevity:

T ∗jk =
∞∑
i=0

∞∑
l=0

γ∗i+j,kτ
∗
ij,k+l(1− ρ1)ρi1(1− ρ2)ρl2 (4.6)

=
∞∑
i=0

∞∑
l=k

γ∗i+j,kτ
∗
ijl(1− ρ1)ρi1(1− ρ2)ρl−k2 (4.7)

= (1− ρ1)(1− ρ2)ρ−k2

[ ∞∑
i=0

∞∑
l=0

γ∗i+j,kτ
∗
ijlρ

i
1ρ
l
2 −

∞∑
i=0

k−1∑
l=0

γ∗i+j,kτ
∗
ijlρ

i
1ρ
l
2

]
(4.8)

= (1− ρ1)(1− ρ2)ρ−k2

[
Fjk(ρ1, ρ2)−

k−1∑
l=0

ρl2
l!

∂lFjk(ρ1, z)

∂zl

∣∣∣∣
z=0

]
(4.9)

where a closed form for F ∗jk(x, y) =
∞∑
i=0

∞∑
l=0

γ∗i+j,kτ
∗
ijlx

iyl is not yet known.

The obvious problem with this scenario is that the sojourn times are only conditionally inde-
pendent. Therefore, we need to be able to extract infinitely many coefficients (namely each
coefficient for which i+ j = i′ ) from the expression below:

Gj(x, z)Hk(y) =
∞∑
i=0

∞∑
l=0

∞∑
i′=0

τ∗ijlγ
∗
i′kx

izlyi
′

This difficulty will be overcome shortly, but let us consider two special cases first, neither of
which requires dealing with the issue of conditional independence.
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M/M/1 case

First, we look at the case when both queues are M/M/1 queues with arrival and departure
rates λ1, λ2, µ1, µ2 respectively. Thus, the reversed rates of the first queue are µ1ρ1 and λ1ρ

−1
1

by Proposition 3.2.3.
All batches have size one, hence na1 = na2 = nd1 = nd2 = 1. Using the matrix form equation
(4.4) for the reversed part we have:

(µ1ρ1 + λ1ρ
−1
1 − λ1ρ

−1
1 x+ θ − µ1ρ1)H0(x; θ) = λ1ρ

−1
1

H0(x; θ) =
λ1ρ
−1
1

[λ1ρ
−1
1 (1− x) + θ]

Therefore, evaluating the generating function at ρ1 and multiplying by (1− ρ1) we get

R̃∗1(θ) = (1− ρ1)H0(ρ1; θ) = (1− ρ1)
λ1ρ
−1
1

(λ1ρ
−1
1 (1− ρ1) + θ)

=
µ1 − λ1

µ1 − λ1 + θ
(4.10)

Note that in case of the first queue in the tandem network the parameter of the equilibrium
queue length probability calculated by the product form result is the same as if we calculated
it considering the first queue alone. Therefore, it is valid to use the ρ1 = λ1/µ1 identity.
By Proposition 4.2.4 in the case of the forward sojourn time at the second queue we get

[
λ1 + λ2 + µ1 + µ2 −

λ1

x
− µ2z + θ − µ1x− λ2

]
G0(x, z; θ)

=

[
µ1 −

λ1

x

]
G0(0, z; θ) +

µ2

1− x

Plugging in x0 for which λ1 + µ1 + µ2 − λ1
x0
− µ2z + θ − µ1x0 = 0

G0(0, z; θ) =
µ2

x0 − 1

1[
µ1 − λ1

x0

] =
µ2

x0µ1 − µ1 − λ1 + λ1
x0

=
µ2

µ2(1− z) + θ

Thus,

G0(x, z; θ) =
µ2[(µ1 − λ1

x )(1− x) + θ + µ2(1− z)]
(1− x)[θ + µ2(1− z)]

1

(λ1 + µ1 + µ2 − λ1
x − µ2z + θ − µ1x)

=
µ2

(1− x)[θ + µ2(1− z)]

The sojourn time at the second queue is independent of the length of the first queue now;
therefore τijl = τ0jl.
This can also be shown through the generating function, since

R∗2(θ) = (1− ρ1)(1− ρ2)G0(ρ1, ρ2; θ) =
µ2(1− ρ2)

θ + µ2(1− ρ2)
(4.11)

which is precisely what we get by ignoring the first queue and using G0(0, z; θ) instead of
the general generating function.
By formula 4.9 and keeping in mind that τijl does not depend on i, the required LST is:
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(1− ρ1)(1− ρ2)F ∗00(θ) = (1− ρ1)(1− ρ2)
∞∑
i=0

∞∑
l=0

γi0τi0lρ
i
1ρ
l
2 (4.12)

= (1− ρ1)(1− ρ2)H0(ρ1; θ)G0(0, ρ2; θ) (4.13)

=
µ1 − λ1

θ + µ1 − λ1

µ2(1− ρ2)

θ + µ2(1− ρ2)
(4.14)

as expected. Since this is a well known result, it also acts as a verification of the reliability
of the model.

Note that ρ2 is different from the parameter of the equilibrium probability distribution if the
second queue was considered alone. Hence, in this case we cannot simplify with it.

We can take one more step towards the general solution with little effort. If we leave the
first queue as an M/M/1 queue but let the second one be a general batch queue we can still
obtain a closed form for the required LST.
Considering the γij coefficients individually and noting that each is the sum of both i ex-
ponential variables (with parameter λ1ρ1) and the remaining service time of the current
task at the server which is also exponential with the same parameter due to the memoryless
property of the distribution:

γij(θ) =

(
λ1ρ
−1
1

θ + λ1ρ
−1
1

)i+1

=

(
µ1

θ + µ1

)i+1

Plugging this into the formula we get

(1− ρ1)(1− ρ2)F ∗j0(θ) = (1− ρ1)(1− ρ2)
∞∑
i=0

∞∑
l=0

γi+j,0τijlρ
i
1ρ
l
2

= (1− ρ1)(1− ρ2)
∞∑
i=0

∞∑
l=0

[
µ1

θ + µ1

]i+j+1

τijlρ
i
1ρ
l
2

= (1− ρ1)(1− ρ2)

[
µ1

θ + µ1

]j+1

Gj

(
µ1ρ1

θ + µ1
, ρ2; θ

)

General case

Returning to the original problem, we have to extract the coefficients for which i + j = i′

from Rjk(x, z, y) = Gj(x, z)Hk(y) =
∞∑
i=0

∞∑
l=0

∞∑
i′=0

τ∗ijlγ
∗
i′kx

izlyi
′
.

We achieve this by evaluating a complex integral.

Proposition 4.2.6
2π∫
0

eiktdt =

{
2π k = 0

0 k 6= 0

where i is the imaginary unit and k ∈ Z .
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Using the proposition above, evaluating Rjk(x, z, y) at x = reit, y = re−it where r ∈ R, r < 1
and then integrating from t = 0 to t = 2π we have

cxmyn = crm+nei(m−n)

{
0 m 6= n

c2πr2m m = n

where c denotes everything except the powers of x and y in each term in the infinite sum.
Hence, in the case j = 0

F0k(r
2, z) =

1

2π

2π∫
0

R0k(re
it, z, re−it)dt

and in the general case,

Fjk(r
2, z) =

1

2π

2π∫
0

Rjk(re
it, z, re−it)

[
reit
]j
dt (4.15)

Thus, plugging (4.15) into (4.9) we have a closed formula for the LST of the joint probability
distribution.

4.3 Numerical results and application

Both the single queue model and the more complicated one for the joint probability distri-
bution have been programmed in Mathematica.
We use the following method when calculating the density functions:

1. Find the parameters ρ or (ρ1, ρ2) of the geometric equilibrium distribution. (When
there are no solutions for ρ or (ρ1, ρ2) we cannot proceed any further.)

2. Calculate the generating functions.

3. Express the LST of the distribution with the generating functions.

4. Invert the LST numerically.

In the case of a single queue we use arrival rates: a1 = 2, a2 = 1, a3 = 1 and a4 = 1 and
departure rates: d1 = 20 and d2 = 10.
Figures 4.3 and 4.4 show the density of the sojourn time considering the last and a random
task in the batch, respectively. As can be seen considering a random task instead of the last
task does not make a huge difference; the density function in the first case is slightly flatter.
Next, we consider a tandem batch-network with arrival rates: a1;1 = 2, a1;2 = 1, a1;3 =
1, a1;4 = 1; a2;1 = 3, a2;2 = 1 and departure rates: d1;1 = 20, d1;2 = 10; d2;1 = 8, d2;2 =
4, d2;3 = 1, d3;4 = 1, d2;5 = 2, for the first and the second processes respectively. We calculate
the density of the sojourn time for the reversed process at the first node considering the last
task in the batch. The results are shown in figure 4.5.
In the case of the joint probability distribution, numerical stability issues were encountered
during the inversion of the LST. The most challenging part computationally is the determi-
nation of the vector of generating functions in the case of the forward sojourn time at the
second node.
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Figure 4.3: Density function of the sojourn time random variable in case of a single queue with
arrival rates a1 = 2, a2 = 1, a3 = 1, a4 = 1 and departure rates d1 = 20, d2 = 10 considering the
last task.
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Figure 4.4: Density function of the sojourn time random variable in case of a single queue with
arrival rates a1 = 2, a2 = 1, a3 = 1, a4 = 1 and departure rates d1 = 20, d2 = 10 considering a
random task.
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Figure 4.5: Density function of the sojourn time random variable of the reversed process at the
first queue.

However, for the simple case of two M/M/1 queues in a tandem network the results are
quite accurate. The arrival rates now are a1;1 = 1.5, a2;1 = 1 and the departure rates are
d1;1 = 3, d2;1 = 3.
Figure 4.6 shows the results obtained by calculating the LST of the forward and reversed
sojourn times and then inverting it numerically for 300 points between 0 and 10. For figure
4.7, we invert the exact LST given by equation (4.14). As can be seen, the density function
calculated by the model is really close to the exact solution, which makes the method itself
highly promising.
Finally, we consider a tandem network with rates a1;1 = 2, a1;2 = 1; a2;1 = 3, a2;2 = 1 and
d1;1 = 2, d1;2 = 10; d2;1 = 8, d2;2 = 1.
Figure 4.8 shows the marginal density of the sojourn time at the second queue while figure
4.9 presents the density function of the joint distribution inverting the LST at θ1 = θ2. In
other words, this figure shows the density function of the sum of the two sojourn time ran-
dom variables. There are some spikes in the graphs due to the aforementioned numerical
instability during the inversion of the Laplace transforms. This instability only appears in
the case of complex θs which makes it difficult to fix the problem. Overcome the difficulties
caused by the inversion, was not part of this project but it will be investigated in the fu-
ture. We intend to try different available inversion methods and/or approximate the density
function by the first 4-5 moments if necessary.

Application

Tandem batch-networks have been used to model wireless sensor networks to find the opti-
mal centralized or decentralized sensor scheduling [16].
Furthermore, batch networks are suitable to model bursty traffic which occurs in several
types of networks such as IP networks [13] or data transfer in storage systems [15]. Data
centers consume a vast amount of energy, so it is essential to make them as efficient as
possible in terms of energy usage. One possible way of saving energy is using devices with
multiple power levels of operation: on, off and possibly an intermediate sleep state. This
allows the devices to be switched off when they are not in use. However, in case of steady
traffic – no long idle periods – switching off the device is not beneficial. In fact, since it
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Figure 4.6: Density function calculated by the generating functions in the case of two M/M/1
queues with rates: a1;1 = 1.5, a2;1 = 1 and d1;1 = 3, d2;1 = 3.
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Figure 4.7: Density function inverting the exact LST in the case of two M/M/1 queues with
rates: a1;1 = 1.5, a2;1 = 1 and d1;1 = 3, d2;1 = 3.
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Figure 4.8: Density function of the marginal sojourn time at the second node. The rates are:
a1;1 = 2, a1;2 = 1; a2;1 = 3, a2;2 = 1 and d1;1 = 2, d1;2 = 10; d2;1 = 8, d2;2 = 1.
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Figure 4.9: Density function of the sum of sojourn time random variables for rates a1;1 =
2, a1;2 = 1; a2;1 = 3, a2;2 = 1 and d1;1 = 2, d1;2 = 10; d2;1 = 8, d2;2 = 1 in a tandem network of
batch-queues.
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has to be powered up again quickly, switching off could potentially cause energy overheads,
penalizing the unprovoked changing of states [17].
Therefore, it is important to model these types of networks in order to predict the load
of traffic in the future and hence be able to construct an efficient scheduling algorithm.
Using the batch queue model, regular traffic can be represented by normal batch arrivals.
Furthermore, when a device is switched off some tasks already sent to the device might get
lost, and similarly when it is switched on again there can be a backlog of work which causes
a sudden burst of activity. This atypical behavior is well modeled by the special arrivals and
departures.
One could argue that the odds that a real-world system satisfies the conditions of the product
form theorem are low. However, modeling a network with exact parameters is too expensive
in most cases, which means that a good approximation is important and useful.
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Chapter 5

Summary

We started the thesis by laying down the necessary mathematical background in Chapter 2,
which covered the most relevant definitions and theorems of stochastic processes and queu-
ing theory. The aim in Chapter 3 was to state the product-form theorem, since an equilibrium
queue length probability distribution in product form makes it possible to use the generating
function method to obtain the LSTs of the unconditional sojourn time distribution for the
whole network (as we do in Chapter 4). We start by describing the reversal of a stochastic
process and give a proper definition of the batch-queue model, noting that special arrivals
and departures must be allowed in order to be able to obtain a product-form equilibrium
queue length distribution. Next, we look at what reversing the process means in the case of
a single batch-queue. To obtain a product-form result for the tandem network we appeal to
RCAT. We make the observation that a geometric queue length distribution at equilibrium
ensures that the conditions of RCAT are satisfied. In addition, this also allows us to express
the LST of the unconditional sojourn time distribution in terms of the generating functions.
Hence, we seek conditions under which the equilibrium queue length distribution is geomet-
ric, first considering a single queue and then extending the result for a network of queues
using RCAT.
Chapter 4 then focuses on the sojourn times of batch queues, first considering a single batch
queue and its reversed counterpart. We then analyze the challenges faced in the case of the
tandem network and obtain the LST of the marginal sojourn time distribution at the second
node. This partial result required solving a recurrence of a vector of generating functions
and Rouche’s theorem was used to show that a solution can be obtained even though the
matrix in the equation is singular.
After considering a few special cases with M/M/1 queues in the tandem network and overtake-
free paths, we return to the original problem and use the results for the reversed process at
the first node and the forward process at the second node together. We evaluate a com-
plex integral to overcome the difficulties caused by the non-overtake-free paths or, in other
words, the lack of unconditional independence between the two processes, and therefore
obtain the LST of the joint sojourn time distribution. This completes the theoretical solution
of the problem.
The thesis concludes by showing some numerical results generated by an initial implemen-
tation of the model in Mathematica. However, due to numerical instability issues during the
inversion of the LST of the joint distribution, it is left for future work to make the implemen-
tation complete and stable by testing different inversion methods or using an approximation
of the densities by moments of the sojourn time.
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Appendix A

Mathematica code

(********** LT inversion ***********)

FT[F_, t_, M_: 32] := Module[{np, r, S, theta, sigma}, np = Max[M, $MachinePrecision];

r = SetPrecision[2 M/(5 t), np];

S = r theta (Cot[theta] + I);

sigma = theta + (theta Cot[theta] - 1) Cot[theta];

(r/M) Plus @@ Append[Table[Re[Exp[t S] (1 + I sigma) F[S]], {theta, Pi /M, (M - 1) Pi /M, Pi /M}], (1/2) Exp[r t] F[r]]]

(********** Product-form solution ************)

(* Task proceeds from queue 1 to queue 2 and then finishes *)

BGen[rates_, z_] := rates.z^Range[Length[rates]];

ProdForm[as_, ds_] := Module[{x, z, na1, na2, nd1, nd2},

Clear[x, z];

A0[z_] := {(ρ1 z BGen[as[[1]], 1/ρ1] - BGen[as[[1]], z])/(1 - ρ1 z), (ρ2 z BGen[as[[2]], 1/ρ2] - BGen[as[[2]], z])/(1 - ρ2 z)} // Simplify;

a0s = If[Length[#] == 0, {}, Drop[CoefficientList[#, z], 1]] & /@ A0[z];

{na1, na2} = Length /@ as;
{nd1, nd2} = Length /@ ds;
NSolve[{BGen[as[[2]], 1/ρ2] + BGen[ds[[1]], ρ1 /ρ2] + BGen[ds[[2]], ρ2] - BGen[as[[2]], 1] - BGen[ds[[1]], ρ1] - BGen[ds[[2]], 1] ⩵ 0,

BGen[as[[1]], 1/ρ1] + BGen[ds[[1]], ρ1] - BGen[as[[1]], 1] - BGen[ds[[1]], 1] ⩵ 0, ρ1 > 0, ρ2 > 0, ρ1 < 1, ρ2 < 1}, {ρ1, ρ2}] // Flatten // N]

(* Equilibrium probability parameter in case of a single queue *)

ProdFormSingle[as_, ds_] := Module[{x, z, na, nd},

Clear[x, z];

A0[z_] := (ρ1 z BGen[as, 1/ρ1] - BGen[as, z])/(1 - ρ1 z) // Simplify;

a0s = If[Length[A0[z]] == 0, {}, Drop[CoefficientList[A0[z], z], 1]];

na = Length[as];
nd = Length[ds];
NSolve[{BGen[as, 1/ρ1] + BGen[ds, ρ1] - BGen[as, 1] - BGen[ds, 1] ⩵ 0, ρ1 > 0, ρ1 < 1}, ρ1] // Flatten // N]

Figure A.1: Finding the equilibrium probabilities
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Chapter A. Mathematica code

(********** LT inversion ***********)

FT[F_, t_, M_: 32] := Module[{np, r, S, theta, sigma}, np = Max[M, $MachinePrecision];

r = SetPrecision[2 M/(5 t), np];

S = r theta (Cot[theta] + I);

sigma = theta + (theta Cot[theta] - 1) Cot[theta];

(r/M) Plus @@ Append[Table[Re[Exp[t S] (1 + I sigma) F[S]], {theta, Pi /M, (M - 1) Pi /M, Pi /M}], (1/2) Exp[r t] F[r]]]

(********** Product-form solution ************)

(* Task proceeds from queue 1 to queue 2 and then finishes *)

BGen[rates_, z_] := rates.z^Range[Length[rates]];

ProdForm[as_, ds_] := Module[{x, z, na1, na2, nd1, nd2},

Clear[x, z];

A0[z_] := {(ρ1 z BGen[as[[1]], 1/ρ1] - BGen[as[[1]], z])/(1 - ρ1 z), (ρ2 z BGen[as[[2]], 1/ρ2] - BGen[as[[2]], z])/(1 - ρ2 z)} // Simplify;

a0s = If[Length[#] == 0, {}, Drop[CoefficientList[#, z], 1]] & /@ A0[z];

{na1, na2} = Length /@ as;
{nd1, nd2} = Length /@ ds;
NSolve[{BGen[as[[2]], 1/ρ2] + BGen[ds[[1]], ρ1 /ρ2] + BGen[ds[[2]], ρ2] - BGen[as[[2]], 1] - BGen[ds[[1]], ρ1] - BGen[ds[[2]], 1] ⩵ 0,

BGen[as[[1]], 1/ρ1] + BGen[ds[[1]], ρ1] - BGen[as[[1]], 1] - BGen[ds[[1]], 1] ⩵ 0, ρ1 > 0, ρ2 > 0, ρ1 < 1, ρ2 < 1}, {ρ1, ρ2}] // Flatten // N]

(* Equilibrium probability parameter in case of a single queue *)

ProdFormSingle[as_, ds_] := Module[{x, z, na, nd},

Clear[x, z];

A0[z_] := (ρ1 z BGen[as, 1/ρ1] - BGen[as, z])/(1 - ρ1 z) // Simplify;

a0s = If[Length[A0[z]] == 0, {}, Drop[CoefficientList[A0[z], z], 1]];

na = Length[as];
nd = Length[ds];
NSolve[{BGen[as, 1/ρ1] + BGen[ds, ρ1] - BGen[as, 1] - BGen[ds, 1] ⩵ 0, ρ1 > 0, ρ1 < 1}, ρ1] // Flatten // N]

Figure A.2: Finding the generating functions

(********** LT inversion ***********)

FT[F_, t_, M_: 32] := Module[{np, r, S, theta, sigma}, np = Max[M, $MachinePrecision];

r = SetPrecision[2 M/(5 t), np];

S = r theta (Cot[theta] + I);

sigma = theta + (theta Cot[theta] - 1) Cot[theta];

(r/M) Plus @@ Append[Table[Re[Exp[t S] (1 + I sigma) F[S]], {theta, Pi /M, (M - 1) Pi /M, Pi /M}], (1/2) Exp[r t] F[r]]]

(********** Product-form solution ************)

(* Task proceeds from queue 1 to queue 2 and then finishes *)

BGen[rates_, z_] := rates.z^Range[Length[rates]];

ProdForm[as_, ds_] := Module[{x, z, na1, na2, nd1, nd2},

Clear[x, z];

A0[z_] := {(ρ1 z BGen[as[[1]], 1/ρ1] - BGen[as[[1]], z])/(1 - ρ1 z), (ρ2 z BGen[as[[2]], 1/ρ2] - BGen[as[[2]], z])/(1 - ρ2 z)} // Simplify;

a0s = If[Length[#] == 0, {}, Drop[CoefficientList[#, z], 1]] & /@ A0[z];

{na1, na2} = Length /@ as;
{nd1, nd2} = Length /@ ds;
NSolve[{BGen[as[[2]], 1/ρ2] + BGen[ds[[1]], ρ1 /ρ2] + BGen[ds[[2]], ρ2] - BGen[as[[2]], 1] - BGen[ds[[1]], ρ1] - BGen[ds[[2]], 1] ⩵ 0,

BGen[as[[1]], 1/ρ1] + BGen[ds[[1]], ρ1] - BGen[as[[1]], 1] - BGen[ds[[1]], 1] ⩵ 0, ρ1 > 0, ρ2 > 0, ρ1 < 1, ρ2 < 1}, {ρ1, ρ2}] // Flatten // N]

(* Equilibrium probability parameter in case of a single queue *)

ProdFormSingle[as_, ds_] := Module[{x, z, na, nd},

Clear[x, z];

A0[z_] := (ρ1 z BGen[as, 1/ρ1] - BGen[as, z])/(1 - ρ1 z) // Simplify;

a0s = If[Length[A0[z]] == 0, {}, Drop[CoefficientList[A0[z], z], 1]];

na = Length[as];
nd = Length[ds];
NSolve[{BGen[as, 1/ρ1] + BGen[ds, ρ1] - BGen[as, 1] - BGen[ds, 1] ⩵ 0, ρ1 > 0, ρ1 < 1}, ρ1] // Flatten // N]

Figure A.3: Expressing the LSTs with the generating functions and inverting them to get the
density functions
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