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Introduction

Seepage-induced 
internal erosion (suffusion)
• Migration of fine particles through 

matrix formed by coarse particles 
under seepage flow.

Coarse particles Fine particles
Top view of sample in 
upward seepage test

Similar to Skempton & Brogan (1994) 
on Gap-graded soil (25% fines content; 60% relative density) 2

Summary of experimental findings

Expected consequence of internal erosion

• If volume change due to erosion is not so large, 

internal erosion results in increase of void ratio.

 Reduction in strength and increase in permeability are expected.

 Leading to instability and/or malfunction of hydraulic structures.

• Internal erosion makes drained strength smaller, 

while undrained strength larger.

• Stiffness of eroded soil is larger than that without erosion.

 We try to explain mechanism through optical observation.

 Attempt made by Higo and coworkers is also introduced;

Observation made by micro X-ray CT by Higo et al. (2017). 

Through tests on gap-graded soils, we found / confirmed that
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Equipment

Triaxial seepage permeameter
• Back pressure is applied 

through sedimentation tank.
• Erosion test and shear test can be 

done continuously.

Flow pump

Loading system with 
zero backlash

Pedestal

Base meshConical drainage

Top mesh

Eroded soil grain 
collection unit

Legend

Seepage flow

Clip gauges

Outer LVDT

LCDPT

Load cell

solenoid valves 
with timer

Back pressure

Load cell

Valves

Outlet

Cell pressure

Eroded soil 
grains

LCDPT: 
Low capacity difference 
pressure transducer
LVDT: 
Linear valuable 
displacement transducer

Constant flow 
rate control unit

Tap water
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Equipment (cont’d)

Plane strain erosion apparatus
• Observation of particle movement 

can be made through 
transparent window / membrane.

Water bladders

Transparent
membrane
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Materials
Mixtures of Silica #3 (coarse)  
and Silica #8 (fine)
• Fines content: 35%, 25%, 15%

• Relative density: 30%, 40%

• Confining pressure: 

50kPa, 100kPa, 200kPa

Fc = 15%

Fc = 35%

Fc = 35%
16 x 12 mm
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Example of erosion test
Fc = 35%, c = 50kPa
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Summary of erosion tests
Marked increase of void ratio after erosion

• Demarcation line: 
Intergranular void ratio is equal to maximum void ratio of skeleton sand.
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Drained triaxial compression tests
Fc = 35%, c = 50, 100 & 200 kPa

• Strength of eroded samples is smaller than those without erosion.
• Stiffness at small strain level is larger in eroded samples.
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Drained triaxial compression tests (cont’d)

• Drained strength of eroded soil is obviously smaller than uneroded one.
• In the seepage (internal erosion) stage, fines got trapped around contact 

points of coarse particles, which may have formed local reinforcement.
 Stiffness of the eroded soil at the beginning of shearing is large.
 Due to deterioration of the reinforcement with the progress of shearing, 

strength of the eroded soil becomes smaller than that without erosion.

Drained response at small strain level
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Drained triaxial compression tests (cont’d)
Fc = 15, 25 & 35%, c = 50 kPa

• Strength of eroded samples is smaller than those without erosion,
especially soil with larger fines content.

Fc = 15% Fc = 25% Fc = 35%
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Undrained triaxial compression tests
Fc = 15, 25 & 35%, c = 50 kPa

• Peak strength of eroded soils is larger, while plateau after the peak, 
i.e., quasi-steady state, in stress-strain curve is longer for eroded soils. 13

Undrained triaxial compression tests (cont’d)
Strength normalised by initial confining pressure

• Soil with smaller fines content shows larger normalised peak strength.
• Normalised peak strength increases after internal erosion

within the scope of this study.
14

Initial Fc = 25%
Fc after erosion = 21%

Overall response in plain strain drained tests
Erosion stage Shearing stage

• Very similar to the triaxial drained tests. 15

Optical observation using microscope
Coloured fines are used

Original
fines

Coloured
fines

Individual particles

Original image Segmented image

Grey: 
Coarse

Black: 
Fines
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Estimation of fines engaged in force chain
Fines at contact point of coarse particles are evaluated
(1) Original image (2) Enclose contact area

Pick up  
coordinates of 
contact points

[Contact area: 0.085 mm2]

(3) Fines in 
contact area (4) Calculate average 

percentage of fines 
in contact area 
by image analysis.
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Axial strain [%]

Change in percentage of fines in contact area

• At small strain level (strain of 0.6-1.0%), more fines remain in the contact 
area for eroded soil comparing with that without erosion.
 More fines are engaged in force chain for eroded soil.

• At medium strain level (strain of 15%), percentage of fines in contact area 
for soil with erosion is smaller than that for soils without erosion.
 As void size larger for eroded soil, fines released from force chain 

can easily disappear. 18

Summary

Mechanical response of internally eroded soil

• Tests on gap-graded soils reveal that

 Internal erosion makes drained strength smaller, 

while undrained strength larger.

 Stiffness of eroded soil is larger than that without erosion.

• Fines trapped around contact point of coarse particles 

during seepage stage seem to be engaged in force chain 

at small strain level. 

• Marked decrease in strength can occur even 

with localised / channelised internal erosion.

Microscopic observation
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