Seismic response and numerical modelling of earthfill dams

Stavroula Kontoe, Loizos Pelecanos & Lidija Zdravković

Nicholas Ambraseys memorial symposium, 19th of March 2014

Seismic response of earthfill dams

The "Ambraseys legacy" in seismic response of dams

- Established analytically the transverse dynamic response of homogeneous dams
- Extended the shear beam method to account for truncated wedge shape, rectangular canyon and underlying elastic layer
- Sliding block analysis to calculate permanent seismically induced displacements
- Detailed investigation of numerous case studies of dam performance during earthquakes

(a) Mode (n,r) = (1,1)

(b) Mode (n,r) = (2,1)

First 2 natural transverse modes of vibration (Ambraseys 1960a, BBSA, Vol.50)

Ambraseys & Sarma (1967)

Ambraseys & Menu (1988)

Case study: La Villita dam, Mexico

Project construction: 1964-1968 Embankment construction: 1967 Reservoir Impounding: 1968

(Google Earth, 2010)

- Experienced a number of seismic events of varying intensity
- No severe damage, but suffered significant deformations
 Crest settlement
 - Slope movements
- Available measurements:
 settlement history
 acceleration recordings

	Date	Ms	Epicentral Distance (km)	PGA (g) (rock)	PGA (g) (crest)	
EQ1	11/10/1975	4.5	52	0.07	0.36	
EQ2	15/11/1975	5.9	10	0.04	0.21	
EQ3	14/3/1979	7.6	121	0.02	0.4	
EQ4	25/10/1981	7.3	31	0.09	0.43	
EQ5	19/11/1985	8.1	58	0.12	0.76	
EQ6	21/11/1985	7.5	61	0.04	0.21	
EQ6 21/11/1985 7.5 61 0.04 0.21 Right -						

Material	Cohesion	Angle of shearing resistance	Shear modulus	Stiffness degradation/ damping curves
	cʻ (kPa)	φ՝ (degrees)	G _{max} (MPa)	
Clay Core	5	25	spatially varying	Vucetic & Dobry (1991)
Sand Filters	0	35	spatially varying	Seed et al. (1986)
Rockfill	5	45	spatially varying	Rollins et al. (1998)
Alluvium	5	35	200	Rollins et al. (1998)

Material properties based on Elgamal (1992)

Stiffness variation for the clay core

Cyclic nonlinear model combined with a Mohr-Coulomb failure criterion

$$J = E_d G_{max} \left[1 - \alpha ln \left(1 + \frac{G_{max} |E_d|}{J_L} \right)^R \right]$$

Taborda (2011) (Puzrin & Burland 2000)

Coupled consolidation, plane strain analyses with ICFEP

Static analysis

- Layered construction
- Water impoundment
- Consolidation up to the 1st seismic event (6.5 years)

Static analysis results: after impoundment

ICFEP PLOT CONTOURS OF ACC. FLUID STRESS: Sf

Static analysis results: Crest settlement during impoundment and consolidation

Dynamic analysis results: Response spectra (ξ =5%) at the crest

Canyon effects?

Hatanaka (1952), Ambraseys (1960)

Dams built in narrow canyons have a stiffer response than dams built in wide canyons

Case study: La Villita dam, Mexico

Canyon effects?

Analyses with stiffer properties

Case study: La Villita dam, Mexico

Canyon effects?

Analyses with stiffer properties

Asymmetry in the crest response

Asymmetry observed:

- Only in the crest response (not at bedrock or toe records)
- More pronounced in the strong events, i.e. EQ3, EQ4, EQ5

Postulation: The high positive peaks are a consequence of a localised slip (Elgamal et al 1990)

Asymmetry in the crest response

Vectors of accumulated displacement- end of EQ5

Case study: La Villita dam, Mexico

Filtered recorded motion at crest for f>4HZ

Effects of hydrodynamic pressures

Effects of hydrodynamic pressures

Distribution of peak hydrodynamic pressure on the upstream face

Effects of hydrodynamic pressures

Earthquake	F _{st}	F _{dyn}	F _{dyn} /F _{st}
	(kN)	(kN)	(%)
EQ2	14303	618	4.3
EQ5	14303	1605	11.2

Vertical profiles of max displacement & acceleration

Conclusions

- Case studies of recorded ground motion in dams are scarce and are very useful for the validation and improvement of numerical modelling procedures.
- Plane stain analyses can lead to a softer dam response in narrow canyons. In the La Villita case this led to an underestimation of the seismic response.
- □ The numerical model captured well the acceleration response of the dam, but did not indicate any localised failure for EQ5. This could be due to the existence of a slip surface within the downstream slope as well as the simplicity of the adopted constitutive model.
- □ A numerical procedure has been developed for the accurate simulation of hydrodynamic pressures. However this study suggests that their impact on the overall response is not significant.

Thank You !