NICHOLAS AMBRASEYS MEMORIAL SYMPOSIUM His influence on our work in the field of Earthquake Engineering **Kypros Pilakoutas** rofessor of Construction Innovation At IC 81-84 BSc, 86-91 PhD, Postdoc

Five Adjectives Inspirational Metoikos* •Thinker* Efficient Pioneering/Innovative Successful •Gentleman* •*Friendly* •Intelligent

Why we are here On Life & who we are Scholarship/Ethos Legacy Out of the box

- •Peaceful
- Compassionate
- •Gentle

- •Peaceful
- •Patient
- Practical

- •Famous
- Stubborn
- •Open minded
- •Impatient
- Straightforward

Earthquake Engineering Group in Sheffield

Academics:

K Pilakoutas, M Petkovski, I., Hajirasouliha, Dr Zuhal Ozdemir and M. Guadagnini

PhD Researchers (*Grand-students!*):

Earthquake Engineers

M Frangou, S Kythreoti, N Kyriakides, P Papastergiou, S. Khan, S Ahmad, A Bagheri, R Garcia Lopez, Y Helal, Y Jemma, R Mulyani, R Ahmadi, Y Eljajeh, H C Quintana, W Q Mahdi

Others on FRP, FRC, Concrete and Innovations 27 Completed

My Journey

- •Earthquake Prediction!!!! (BSc project)
- •Seismic Resistance of RC Walls (PhD)
- Imperial •Seismic Strengthening (PD +)

Shake-table tests 1987

- Seismic Resistance of substandard buildings
- Earthquake Risk Assessment and Management
- •Seismic Performance Based Design of Structures

•Concrete Behaviour (Shear/Punching Shear, Deflections, Ductility) •FRP (Internal Reinforcement and External Strengthening) •FRC (All fibres, including recycled) -•Construction Innovations (>30 patents)

Seismic strengthening

From Field Missions

Poor anchorage & lack of confinement

Use of poor quality concrete

Inadequate detailing at critical zones

Lack of design/supervision

Lap-Splices

Lap-spliced beams confined with steel or CFRP

Issues to investigate:

- Lap splice length (10d_b, 25d_b)
- c_c/d_b ratio
- Bar size (12 & 16 mm)
- Type of confinement (nil, steel, CFRP, PTMS)
- Number of CFRP & PTMS layers

View of beams (Series "S", splice=10d_b)

Load-midspan deflection behaviour:

CFRP confinement produces a more desirable failure

Modelling of beams using ABAQUS®

Joints

Full-scale RC beam-column joints strengthened with CFRP composites or PTMS

General view of the joint

Actuator to apply cyclic load on the beam

Actuator to apply a constant axial load on the column

Column with lap spliced bars to be confined with CFRP

Strengthening of Joints

Poorly detailed buildings

Test Rig

JA-1

Poor detailing

Shear failure mechanism

Column and Core

Column, beam & core

Strengthening

PTMS Joint Strengthening

Scheme 2:

FRP Strengthening

Removal of damaged concrete

Re-casting using high-strength concrete

Strengthening with CFRPS

BANDIT building (Part of EU Series project)

Goal: test the effectiveness of PTMS & CFRPs on deficient full-scale RC buildings

- Substandard 3D frame building
- Unidirectional, bidirectional and 3D shake table tests
- H=6.6m, W=4.26m
- Cols. 26×26 cm; beams 26×40 cm (X) and 26×30 cm (Y)
- f_c=26-32 MPa; f_v=526 MPa

General view of BANDIT building

BANDIT building

Test sequence (29 tests in 5 Phases)

Test Phase	Direction of test	PGA (g)	Observations
1 - Bare condition	X axis	0.05	Initial tests to produce damage in X direction
	(0.15 (a,b)	
2 - PTMS-strengthened	X axis	0.05	Tests to verify the effectiveness of the PTMS technique
		•••	
		0.35	
3 - PTMS-strengthened	Y axis	0.05	Tests to produce controlled
			damage in Y direction
		0.30 ^(b)	
4 - PTMS & CFRP-strengthened	Y axis	0.05	Test to compare PTMS vs CFRP strengthening
		0.20	
		0.30	
		0.35	
5 - PTMS & CFRP-strengthened	Bi-axial	0.10	Tri-axial (XYZ) tests
	Tri-axial	0.10	
		0.20	
		0.30	
		0.35	
		0.40	
		0.50	
		0.60	

^(a) Test at PGA=0.15g was repeated due to issues with AZALEE shake table

^(b) After this test PTMS were removed, cracks resin-injected & spalled/damaged concrete replaced

Post-Tensioned Metal Strapping (metal straps + strapping tools)

Roll of metal straps

Confinement/ductility

BANDIT building

Phase 1: tests on bare building (X dir.)

PGA_{max}=0.15 g Unidirectional test

Damage concentrated at 2nd floor joints and columns (cover splitting)

BANDIT building

Rehabilitation & PTMS strengthening

Crack injection & replacement of damaged concrete

PTMS strengthening of joints

PGA_{max}=0.35 g Unidirectional test (X dir.)

BANDIT building

Rehabilitation & CFRP strengthening

Orthogonal strengthening of joints

BANDIT building

Phases 4 & 5: tests on PTMS+CFRP-strengthened building

PGA_{max}=0.60 g 3D test Tests were halted because the limits of the table (±125 mm) were exhausted

No major damage; minor damage at beams and columns

Earthquake Risk Assessment and Management

A Framework for Earthquake Risk Assessment In Developing Countries

Earthquake Risk Assessment

Framework

Analytical Vulnerability Framework

Low Strength Concrete

Strength below 25 MPa Normally 5-15 MPa

Vulnerability of Sub-standard buildings

Seismicity Vulnerability Assessment

Satellite Imagery with Minimal Field Sampling

Case Study: Pakistan

Study Area with in Pakistan (2009 figures)

Case Study: Cyprus

(Konca et al., 2008)

Case Study: West Sumatra

Flow chart to produce Synthetic Gap Events (SGE).

Case Study: West Sumatra

Results

Tsunami Hazard:

Average tsunami wave height is ~ 5 m

Inland Penetration:

- Smooth terrain : 2.2 km
- Densely populated buildings: 0.5 km
- Densely treed landscape: 0.1 km

Bathymetry and preliminary tsunami hazard analysis for Padang City

Societal Impact

1. Mitigation strategies:

- Seismic demands for structures.
- Seismic strengthening of existing building stocks.
- Assessing appropriate locations for tsunami vertical evacuation systems.
- Tsunami evacuation maps.
- Compare mitigation scenarios
- 2. Determine premiums for insurance companies.
- 3. Future town planning to deal with earthquake and tsunami hazards.

NICHOLAS AMBRASEYS MEMORIAL SYMPOSIUM Lasting influence on our work Kypros Pilakoutas

