Nickolas Ambraseys Memorial Symposium

Deep Immersed Tunnel Subjected to Fault Rupture Deformation + Strong Seismic Shaking

George Gazetas, N.T. Univ. of Athens Ioannis Anastasopoulos, Univ. of Dundee Rallis Kourkoulis, N.T. Univ. of Athens

The two components of an Earthquake

The main question:

Can Immersed Tunnels be Designed to withstand a sequence of:

(a) a fault rupturing underneath(b) strong seismic shaking

The Rion – Antirrion Straits and the Rail Link

UNDER-SEA RAILWAY LINK Difficult + Pioneering Project

- Great Water Depths: 65 70 m
 for a total length of > 1 km
- Very High Seismicity (PGA > 0.50 g)
- Soft Soils to large depths (> 60 m)

Borings near Tunnel axis

Combination of Immersed and TBM Tunnels

Immersed + TBM Tunnels

Immersed Tunnel Cross-section

Towing

Immersion

The floating tunnel segment is towed close to the previously installed

The tunnel segment is filled with water (or other type of ballast) and immersed

The hydrostatic pressures acting on the two bulkheads are equal

The Gina profile is not yet compressed

The water between the two bulkheads is pumped out

The hydrostatic pressure is now acting only on the left bulkhead

The Gina profile is compressed

The bulkhead is removed and the omega profile is installed

Critical Element: the Joints

Major Concerns:

Behaviour of Joints:

(a) Decompression of Gina Rubber leading to: net tension, . . joint opening, . . . flooding Behaviour of Joints:

(b) Additional Compression leading to: Failure of Rubber in Lateral Tension 2 Types of Seismic Loading in the life of the tunnel:

(a) Quasi-STATIC: Fault Rupture Underneath , Imposes Deformation on the Surface

(b) DYNAMIC: Seismic Shaking from Waves Propagating through Soil (a) Quasi-STATIC: Fault Rupture Imposed Deformation

(b) DYNAMIC: Seismic Shaking

The two loading situations from two different seismic events

which may occur many years apart

The Question is: How will the "injured" tunnel from the fault rupture behave during a very strong seismic shaking ??

DESIGN SITUATIONS:

(a) "Dislocation" $\Delta \approx 3 \, m$ at bedrock level

(b) **selected** time histories from world-wide records with strong directivity effects (Kobe, Aegion, Rinaldi, Lefkada,...) all scaled to $PGA \approx 0.24$ g at bedrock level

GINA Hyperelastic Behaviour

Dislocation

$\Delta \approx 3 m$ at bedrock level

Distance (km)

Seismic Excitation

0.24 g at bedrock level

1-D Dynamic Wave Propagation Analysis

Application of Seismic Base Excitation

 C_a : apparent wave velocity \Rightarrow Time lag

 $t_i = x_i/C_a$

Joint Deformation

CONCLUSIONS

1. Immersed Tunnels:

Capable of Withstanding Significant Fault + Dynamic Deformations

PREREQUISITE:

(a) Special Gina Profiles

(e.g., h = 50 cm)

(b) Small Length of Segments

(e.g., L = 70 m)

CONCLUSIONS

2. The "injury" of Immersed Tunnels from Fault Offset at the Baserock can be "healed" after strong seismic shaking

Thank you for your attention

