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The Canadian context...

Canada is the world's biggest producer of hydroelectric power.

British Columbia generates almost 90 % of its energy from renewable
hydropower sources.

The Bennett Dam in British Columbia was, &
in 1967, the largest embankment dam in the\&
Mica, and Revelstoke dams) generate over &8
They represent an enormous investment b
of our public infrastructure, these embankmig# =

potential for water seeping from the reserv 3
and its foundation. oy /
Internal erosion is a dam safety risk that was not understood at the time of
construction - it is now recognised to pose one of the greatest risks to dam

safety.




CGS annual conference (2000)

THE WAC BENNETT DAM SINKHOLE INCIDENT

R.A_ Stewart, Director of Dam Safety,

BC Hydro, Vancouver, Canada

B.D. Watts, Vice President,

Klohn Crippen Consultants Lid., Vancouver, Canada

At the time of the sinkhole the freshet was underway and he crest of the 183 m high
. Following this incident the

the reservoir was rising towards full pool. In order to halt jons of the dam. This paper

the reservoir filling and provide additional freeboard as a he crisis, to control the risks
» provide additional details of

precautionary measure, the spillway gates were IZJ[JE!FIE!d
on 24 June. For the next f weeks about 3,000 m *Is were
released over the spillway (Figure 7) in addltmn to the
2000 m'/s through the turbines. This was only the
second spill in the 30-year history of the ::Iam The spill
became a tourist attraction as the 3000 m°/s spill was
slightly larger than the typical flow over the Canadian
MNiagara Falls. Over the 7 weeks, the reservoir dropped
only 2 m, reflecting the enormous area of the reservoir.




Internal erosion
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Empirical screening tools

Foster-Fell threshold index

Filter incompatibility: D15maf§/D15EE)
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Internal instability:((H/F)min>

. Kenney-Lau threshold index
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Ronnqist, H. et al. (2014) Géotechnique Letters 4, 272-282, htip://dx.doi.org/10.1680/geolett.14.00055

On the use of empirical methods for assessment of filters in
embankment dams

H. RONNQVIST*, J. FANNINt and P. VIKLANDER*
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On progress and needs...
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Knowledge gaps: research needs

« Empirical criteria provide a screening tool for evaluating the
susceptibility of a gradation to internal instability

‘ > SPATIAL
 Howeever they do not, indeed cannot, address the question

othe onset of internal erosion occurs, nor tht
h

ich It b ted t :
which it can be expected to progress TEMPORAL )

« Laboratory testing, and companion theoretical development,
are needed to advance a mechanics-based understanding
of the response that offers potential to address these key
concerns for dam safety engineering.




Internal instability
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Fannin R. J. and Slangen P. (2014) Géotechnique Letters 4, 289-294, hitp.//dx.doi.org/0.1680/geolett.14.00051

Fluidization

On the distinct phenomena of suffusion and suffosion BBV

ation
R. J. FANNIN*® and P. SLANGEN~*



IV-4. Internal Erosion Risks for
Embankments and Foundations

/ \

Internal instability

USBR-USACE
(2015)

(Note: Reclamation’s description of the
mechanisms for internally unstable soils
are applicable to USACE.)
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Dam Safety Best Practices and Risk Methodology

Contacts The Bureau of Reclamation has been using risk analysis as the primary support for dam safety decision-making for about 15
Funding years, and has developed procedures to analyze risks for a multitude of potential failure modes. Manuals, guidelines, standards.
Links and practical reference material on how to perform risk analysis for dam safety applications are lacking. The Best Practices

Training Manual contains what are considered the "Best Practices" currently in use for estimating dam safety risks at the Bureau of
Reclamation. Risk analysis at the Bureau of Reclamation has evolved over the years and will continue to evolve. Therefore,
updates to this manual are planned in the future as significant improvements are developed.
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Internal Instability - Suffusion, and \)
ffosion: Both are internal erosion
mechanisms THarce cur with internally
unstable soils. It 1s possible that these
mechanisms as well as internal migration
(stoping) can occur in complex glacial
environments where tills. glacio-

d outwash deposit co-exist.
Suffusion inyolves selective erosion of
rcles from the matrix of coarser
particles (that are in point-to-point
contact) in such a manner that the finer
particles are removed through the voids
between the larger particles by seepage
flow. leaving behind a soil skeleton
formed by the coarser particles. With
suffusion there is typically little or no
volume change.

Suffosion is a similar process. but results
RV ange (voids leading to
sinkholes) because the coarser particles
are not in point-to-point contact.
Suffosion is less likely under the stress
conditions and gradients typically found
in embankment dams. Note: This
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WAC Bennett Dam: core and transition materials
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Rigid-wall permeameter |
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Rigid-wall permeameter |

Test: T-0-25-D (i, = 11)
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Rigid-wall permeameter |

Fig. 9. Material A: strong general piping of fines (i = 022, v = 027 cm/s)

“... for unstable materials, the critical hydraulic gradient
could be roughly 1/3 to 1/5 of the normal threshold of 1.0.”
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Rigid-wall permeameter Il
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Stress reduction a-concept:
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Expanding the a-concept in stress-gradient space:

Li, M. & Fanmin, R. L (2011). Géofechnigue 61, No. 00, 1-4 [dei: 10.1680/gect 2011.61.00.1]

i
! TECHNICAL NOTE
_ A theoretical envelope tfor internal instability of cohesionless soil
IC
M. LI* and R. J. FANNINY
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Flexible wall permeameter
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Suffusion vs. Suffosion

- Internal instability
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Summary remarks: experimental research

- model-informed
experimental investigations
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- “normative” procedures for specimen reconstitution

and laboratory testing
- inter-laboratory comparison of test results



