# ICOLD Bulletin 164 on internal erosion of dams, dikes and levees and their foundations

Rodney Bridle

UK Member, ICOLD Technical Committee on Embankment Dams rodney.bridle@damsafety.co.uk

Workshop on seepage-induced geotechnical instability
Imperial College, London
31 August and 01 September 2017

### Internal erosion — the threat



2005 Katrina – New Orleans – 1,500 fatalities



1976 Teton – a few hours



2009 Situ Gintung – Jakarta – 100-200 fatalities

Fatalities
Rapidity of failure
50% of earth dam failures

## ICOLD Bulletin 164: Mechanics of internal erosion

INTERNAL EROSION OF EXISTING DAMS, LEVEES AND DIKES, AND THEIR FOUNDATIONS **BULLETIN 164** Volume 1: INTERNAL EROSION PROCESSES AND ENGINEERING ASSESSMENT 19 February 2015



### Internal erosion mechanics

- Internal erosion initiates when the hydraulic forces imposed by water flowing or seeping through a water-retaining earth embankment exceed the ability of the soils in the embankment and its foundation to resist them
- Load > Resistance
- Highest hydraulic loads normally occur during floods

## Four internal erosion mechanisms

- Bulletin makes it possible to estimate water level at which internal erosion will initiate for the four internal erosion mechanisms:
  - Contact erosion
  - Concentrated leak erosion
  - Suffusion
  - Backward erosion

## **Contact erosion**



## Contact erosion – critical hydraulic load



Figure 5.2 Volume 1 ICOLD 164 from Beguin (2011)

- Equation (Beguin, 2011) with D15=20mm
- Experimental data (Hoffmans, 2013)
- Equation (Hoffmans, 2008) with D15=20mm
- Experimental data (Istomina, 1957)
- Experimental data (Schmitz, 2008)

The filling of the symbols is function of the  $D_{15}$ 

## Internal erosion: between hydraulics and soil mechanics

Bed-load transport - Shields diagram



Shields, A., 1936, Anwendung der Ähnlichkeitsmechanik auf die Geschiebebewegung: Berlin, Preussische Versuchanstalt für Wasserbau und Schiffbau, Mitteilungen, no. 26, 25 p.

## Bed-load transport - Hjulström diagram



Hjulström, F. "Transportation of Debris by Moving Water." In Recent Marine Sediments. Edited by P. D. Trask, 1939; Tulsa, Oklahoma. "A Symposium." American Association of Petroleum Geologists. pp. 5-31

## Continuous contact erosion - determining critical Darcy velocity



Remi Beguin & Pierre Philippe presentations at EWGIE Vienna, 2013

## Sinkholes from slow contact erosion at sub-critical Darcy velocity



## Continuous contact erosion at critical Darcy velocity – rapid failure at CDV+



Remi Beguin & Pierre Philippe presentations at EWGIE Vienna, 2013

### Concentrated leak erosion

Cylindrical pipe

$$\tau = \rho_w \frac{gH_f d}{4L}$$

Vertical transverse crack

$$\tau = \frac{\rho_w g H_f^2 W}{2(H_f + W)L}$$

Compare  $\tau$  applied hydraulic shear stress to hydraulic shear strength from HET, JET or soil properties given in Bulletin

#### **Concentrated Leak Erosion**

Figure 2.2 Examples of possible locations of initiation of internal erosion in concentrated leaks



- 1 Vertical crack due to lateral straining
- 2 Lateral straining caused by differential settlement
- 3 Vertical crack due to desiccation
- 4 Vertical crack due to sliding of core along steep abutment wall with steps (protrusions)
- 5 Horizontal cracks due to sliding of core along steep abutment wall with steps (protrusions)
- 6 Dam core

Hydraulic forces causing 'segregation piping' Skempton-Brogan (1994)



$$i_{cr} = \alpha i_c$$

Fig. 9. Material A: strong general piping of fines (i = 0.22, v = 0.27 cm/s)

"... for unstable materials, the critical hydraulic gradient could be roughly 1/3 to 1/5 of the normal threshold of 1.0."

## Suffusion





Fig. 9. Material A: strong general piping of fines (i = 0.22, v = 0.27 cm/s)

Grain size distribution curves of soils in Skempton and Brogan (1994) tests. Samples A and B were suffusive, C and D were not.

Suffusion in upward flow initiated at critical hydraulic gradient  $i_{cr} = 0.2$  in A and  $i_{cr} = 0.34$  in B

In non-suffusive samples C and D, 'general piping' occurred at  $i_c \sim 1.0$ 



Identifying potentially suffusive soils: Ronnqvist's unified plot

(Ronnqvist, 2015; Ronnqvist et al, 2014)

## Hydraulic loads cause suffusion



The figure is a pictorial representation of the deterioration process at Sta. 15+07

## 'Homogeneous' (unzoned) dams cannot arrest erosion if it initiates



Possible locations of contact erosion initiation in homogeneous dam with layered fill and a coarse foundation soil (Beguin et al, 2009)

## Backward erosion



Figure 4.4 Critical gradient for various  $F_R * F_S$  values and embankment dimensions.

H, D and L are defined in Figure 2.5.

As an example, for  $F_R * F_S = 0.100$ , D/L = 1.0, critical gradient at which backward erosion will progress to form a pipe back to reservoir is H/L = 0.10.

## Backward erosion 2D & 3D



2D – initiates at 'free' continuous outlet into ditch or where 'confining layer' not present. Formula and diagram (Figure 4.4) in Volume 1 of Bulletin apply to 2D situation.

3D – initiates through single openings in confining layer – often forming sand boils. Not covered by Bulletin.

Occurs at lower gradient than 2D: higher risk. A challenge to be addressed – by application of geophysics, geomorphology and hydrogeology perhaps.



Ref: Van Beek, van Essen, Vandenboer & Bezuijen (2015) Geotechnique

## River morphology Paleo-channels revealed by LIDAR



Research News Issue 28 Flood and Coastal Erosion Risk Management

## Backward erosion – rapid failure



North Sea Coastal Dike: failed during 2-3 hour peak of 1953 storm surge

From: Marsland & Cooling (1954) ICE

## Hydraulic loads initiate internal erosion





 $\tau = \rho_{\omega} \, \underline{gH_f \, d}$  4L



Fig. 9. Material A: strong general piping of fines (i = 0.22, v = 0.27 cm/s)

H = water level that initiates internal erosion

## Recommendations to engineers: Addressing the threat of internal erosion

- ICOLD Bulletin 164: mechanics of internal erosion
- New knowledge that can be applied
- To carry out investigations and analyses to estimate actual hydraulic load (water level) causing internal erosion failure
- Remediate, if necessary, to provide an acceptable level of protection to people downstream
- Maintain dam in post-remediation condition, confirmed by routine surveillance and monitoring

## Conclusions

- The four internal erosion processes are caused by the hydraulic forces imposed by seepage or flow through soils
- The challenge is to estimate the hydraulic forces causing internal erosion in vulnerable soils
- ICOLD Bulletin 164 collects much current knowledge, provides guidance for engineers
- More to research and learn (e.g. Bridle, research suggestions, ICSE8, Oxford, 2016)