
Abstract

A new set of laboratory experiments to examine the short-term statistics of

crest elevation and wave heights has been undertaken. Sea states with a range of

steepness and directional spreading have been considered. Comparisons between

these data and a number of widely adopted short-term statistical models exhibit

clearly defined departures.

For a given sea state, the extent of these departures is directly proportional to

the sea state steepness and inversely proportional to the directional spread. With

directional spreading identified as a critical parameter, a detailed study of how

best to describe, define and model it has been undertaken. The key finding of this

study is that the average directional spread in the steepest sea states reduces. In

addition, it has also been shown that on average the largest waves in these steep

sea states are more uni-directional when compared to the sea state as a whole.

Further consideration of the data show that the two physical mechanisms lead-

ing to the alteration of the statistics are nonlinear amplification (leading to in-

creases above second-order) and the dissipative effect of wave breaking. Quan-

tification of the effects arising from these two competing mechanisms has been

undertaken based on additional simulations (both numerical and experimental) of

focused wave groups.

For uni-directional sea states, a classical expansion (truncated at a third order

of wave steepness) of the increased surface elevation obtained in a fully nonlinear

uni-directional focused wave group has been used to quantify the effect of am-

plification in the crest height statistics. Similarly, the dissipative effect of wave

breaking on crest elevations has been quantified based on the reduction in crest el-

evations in focused wave groups with linear amplitude sum larger than the limit at

which incipient spilling first occurs. These reductions are calculated as the differ-

ence in the maximum crest elevation in a breaking wave event and that predicted

by the third-order power series used for the quantification of nonlinear amplifici-

ation. Overall the two methods employed in quantifying the effect of nonlinear

amplification and wave breaking yield good agreement with the original (random)

laboratory data.

Finally, directionality is incorporated into these predictions based on the linear
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reduction in the wave front steepness with increasing directional spread. Both the

nonlinear amplification and the dissipative effect of wave breaking are calculated

based on this reduced steepness for the directional sea states. The predicted crest

heights from this simplified procedure compare well with the laboratory data; the

predictions remaining conservative throughout.
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