Abstract

A sequence of new experimental investigations is presented that addresses the
modelling of the wave loads within the crests of limiting and breaking waves. This
study identifies important sources of uncertainty within wave loading models that
are applied to the steepest wave conditions. By examining the origins of this
uncertainty, existing loading models are assessed and improvements proposed. In
particular, the local wave impact loads arising on individual horizontal and vertical
members in the crest region are evaluated.

In terms of wave modelling, the key factors are the wave shape and the asso-
ciated water particle kinematics. In addressing these points, the present results
have shown that only nonlinear modelling methods are capable of accurately de-
scribing a limiting wave profile. Indeed, the departures from established analytical
solutions, commonly used in design, highlight the importance of high-order effects
in steep waves approaching their breaking limit.

In predicting the wave impact forces on a body, the gradient or slope of the
water surface is of fundamental importance. Detailed experimental analysis of the
magnitude and direction of the impact force on a horizontal cylinder has high-
lighted an important source of uncertainty. This relates to the nonparallel nature
of the normal to the water surface and the direction of the resultant water particle
kinematics. The present work has shown that in the crests of large, steep waves,
this angular difference creates an important variability in the force predictions.
However, having taken account of this effect, the magnitude of the impact force
can be reliably predicted using a slamming coefficient of Cs = 5.19. This is shown
to be appropriate to a wide range of oblique wave-structure impacts.

When considering the wave forces on a vertical column the present study has
shown that it is crucial to consider both the type of wave breaking and also
the additional complexity of free surface deformation during the loading event.
Overall, measurements of wave run-up are shown to be less dependent on the
occurrence of wave impact forces than previously hypothesised. However, the
extent of the column area subject to large impact loads is shown to be critically

dependent upon the type of wave breaking.
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