
Modelling of Extreme Ocean Waves

Using High Performance Computing

Stuart Archibald

Department of Civil & Environmental Engineering

Imperial College London

Thesis submitted for the degree of Doctor of Philosophy

2

Declaration of originality

All the work presented herein is that of the author.

Any work or contributions made by others is referenced appropriately.

3

4

Abstract

This thesis describes the development of a fully nonlinear numerical model for

the simulation of surface water waves. The model has the ability to compute the

evolution of both limiting and overturning waves arising from the focussing of wave

components in realistic ocean spectra. To accomplish this task, a multiple-flux

implementation of a boundary element method is used to describe the evolution

of a free surface in the time domain over an arbitrary bed geometry.

Unfortunately, boundary element methods are inherently computationally ex-

pensive and although approximations exist to reduce the complexity of the prob-

lem, the effects of their use in physical space is unclear. To overcome some of

the computational intensity, the present work employs novel computational ap-

proaches to both reduce the run time of the simulations and make accessible

predictions of wave fields that were previously unfeasible. The advances in com-

putational aspects are made through the use of parallel algorithms running in

a distributed computing environment. Further acceleration is gained by running

parts of the algorithm on many-core co-processing devices in the form of the, habit-

ually called, graphics processing unit. Once a reasonably efficient implementation

of the boundary element method is achieved, attention is turned to further algo-

rithmic optimisations, particularly in respect of computing the kinematics field

underlying the extreme wave events.

The flexibility of the model is demonstrated through the accurate simulation

of extreme wave events, this includes near-breaking and overturning wave phe-

nomena. Finally, by harnessing the power of high performance computing tech-

nologies, the model is applied to an engineering design problem concerning the

wave-induced loading of an offshore jacket structure. The work presented is not

merely a study of a single wave event and its interaction with a structure, but

rather a whole multitude of wave-structure interaction events that could not have

been computed within a realistic time frame were it not for the use of high perfor-

mance computing. The outcome of this work is the harnessing of distributed and

accelerated computing to enable the rapid calculation of numerous fully nonlinear

wave loading events to provide a game changing outlook on structural design and

5

the reliability for offshore structures; such calculations having not previously been

possible.

6

I would like to dedicate this work to my dearest Emily

and loving family for putting up with my computers

(again!)

7

Acknowledgements

First, I would like to thank Prof. Chris Swan for having me in his research group,

for providing guidance, support and enthusiasm, and for letting me have the free-

dom of research to achieve my full potential. Thanks also go to Prof. Rod Sobey

for his continual support and for always fighting from my computational corner.

In addition, I am very grateful for the support provided by the UK Engineering

and Physical Sciences Research Council (EPSRC) under grant number F022964/1.

I’ve been very lucky to have such a lovely bunch of people with which to share

research offices. So thanks go to Vanessa, Alice, Eirini, Johannes, Latheef and

Francesco. Special thanks are required for: Adam, for being a good friend and

kindred spirit in the quest for better research practice. Milena, for so many helpful

conversations about BEM (especially the mathematics) and so much amusement

regarding Linux, your excitement over grep still makes me smile. Jannicke, for

tolerating three years of halls and nearly four years of sharing an office with me,

always being supportive, for so many laughs and for your friendship. Finally,

and most of all, Marios, for helping me with numerical methods, maths and co-

authoring the core of EPIC BEM, and despite having moved on still providing

opinions and thoughts on just about anything, but above all for your friendship.

Outside the research group a number of individuals and groups have been

very helpful. Thanks go to: Graham Markall for numerous fruitful discussions on

accelerator hardware and just about anything else computer related. The entire

of ICLUG for keeping the Linux community alive, particularly James Kimber,

Simon Fayer and Graham Markall. Alex Lamaison for “man coffee”, the many

geeky discussions and friendship. Bill and Dave, the lab technicians who always

make things entertaining. Becky, for ordering, organising and being helpful and

cheerful. Prof. Paul Kelly and the SPO group for many interesting presentations

and discussions.

I would like to thank Dr. Tamer Zaki and the Imperial College High Perfor-

mance Computing Service for loan of a GPU enabled cluster computer and indeed

maintaining and being exceedingly reasonable over the use of the HPC machines.

Special thanks go to Simon Burbidge and Matt Harvey, sysadmins extraordinaire.

8

Further thanks go to Matt for the numerous conversations and the odd code snip-

pit regarding CUDA, and to Simon for many helpful and humorous discussions.

Finally, but definitely not least, I would like to thank my family for their sup-

port. Mum and Dad, you have always been fantastic to me and I really appreciate

it. Thanks to Dad for proof reading this work, it was really helpful, and Mum, you

were right, I never was any good at simple problems. Thanks to Claire “subspace”

Archibald for proof reading, checking the mathematics and having a million con-

versations about subspace invariance, you’re a brilliant sister. Thanks to Hugh

for always being so entertaining, I always feel better about my work after you’ve

appropriately mocked it, you’re a brilliant brother!

Above all, I’d like to thank my wife, Emily. You have always been so support-

ive, patient, loving and caring and I couldn’t have done this without you.

9

Contents

Declaration of originality 3

Abstract 5

Acknowledgements 8

Contents 10

List of Figures 16

List of Tables 20

List of Algorithms 22

List of Listings 23

Glossary 24

1 Introduction 27

1.1 Motivation . 28

1.2 Aims . 29

1.3 Layout . 30

1.4 Context . 31

1.5 Achievements . 33

2 Boundary Element Method (BEM); a Generic Formulation 34

2.1 Introduction . 34

2.2 Governing equations . 34

2.3 Free surface boundary conditions 36

10

2.3.1 General expressions . 37

2.3.2 Frames of reference . 37

2.3.3 Generic Lagrangian boundary conditions 38

2.3.4 One-third-Lagrangian frame of reference 40

2.3.5 Two-thirds-Lagrangian frame of reference 42

2.3.6 Fully-Lagrangian frame of reference 43

2.4 Numerical implementation . 45

2.4.1 Computational domain . 45

2.4.2 Boundary value problem . 46

2.4.3 Application of the free surface boundary conditions 49

2.4.4 Discretising the BIE . 49

2.4.5 Rigid mode technique . 51

2.4.6 Numerical integration . 52

2.4.7 The treatment of corners and geometric discontinuities . . . 56

2.4.8 Sliding elements for gradients and velocities 57

2.4.9 Shape functions and their hierarchical nature 61

2.4.10 Time marching . 64

2.5 Algorithmic implementation . 65

2.5.1 Computational challenges 66

2.6 Conclusion . 67

3 Parallel Implementation of Matrix Formation 68

3.1 Introduction . 68

3.2 Parallel implementation of the BEM 68

On the use of distributed computing in a boundary element

method with applications to free surface waves 70

Abstract . 70

3.3 Introduction . 71

3.4 Previous methods . 71

3.5 Computational profiling . 73

3.6 Developing a fast algorithm . 75

3.7 The BEM algorithm . 75

11

3.8 The test bed . 79

3.9 Discussion of results . 80

3.10 Further considerations . 86

3.11 Concluding remarks . 87

3.12 HPC systems . 88

3.13 Conclusions . 88

4 Matrix Solving on GPUs 90

4.1 Introduction to matrix solving . 90

4.2 Using CUDA architecture . 93

4.2.1 CUDA hardware . 93

4.2.2 CUDA programming model 95

4.3 CUDA Induced Dimensional Reduction Solver 96

4.3.1 Appropriate solvers . 96

4.3.2 IDR(s) theory . 97

4.3.3 Preconditioners . 102

4.4 Using CUDA . 103

4.4.1 Write and optimise the algorithm in Fortran 104

4.4.2 Convert the Fortran algorithm into C/C++ 104

4.4.3 Prototype näıve kernels . 105

4.4.4 Move working prototypes into main C/C++ code 105

4.4.5 Allocate memory on the GPU 105

4.4.6 Remove ‘helper’ functions and just call the kernels. 105

4.4.7 Rewrite näıve kernels optimising efficiency 106

4.4.8 Using streams and interleaving 108

4.4.9 Bounce buffering and page locked memory 108

4.4.10 Map large arrays to textures for cached access 109

4.4.11 Deal with the memory limit of a single GPU. 110

4.5 Problems using CUDA for GPU accelerated matrix solvers 112

4.5.1 Data precision . 113

4.5.2 Internal precision . 113

4.5.3 Memory . 113

12

4.6 Test bed . 114

4.7 Discussion of results . 117

4.8 Outstanding issues. 122

4.9 Concluding remarks . 123

5 Efficient BEM Algorithm 125

5.1 Introduction . 125

5.2 Code with multi-level parallelism 126

5.3 Compiling code comprising multiple languages 127

5.4 Mixing Fortran with C/C++ . 127

5.5 The test bed . 128

5.6 Discussion of results . 129

5.7 Conclusion . 135

6 Kinematics Calculations, Code Validation and Practical Appli-

cation; Non-breaking waves. 137

6.1 Introduction . 137

6.2 Calculating the internal water particle kinematics 138

6.2.1 Method for computing internal kinematics 138

6.2.2 Mitigating the so-called “boundary layer” problem 140

6.2.3 A self scheduling adaptive integration scheme for computing

internal kinematics . 141

6.3 Model validation . 142

6.3.1 Prediction of the water surface elevation 143

6.3.2 Predictions of the water particle kinematics 150

6.4 Calculations of a 10−4 design wave case 155

6.4.1 Properties of real seas . 156

6.4.2 Model configuration for the 10−4 design conditions 158

6.4.3 Discussion of results . 161

6.5 Practical application: load predictions 162

6.5.1 Fundamentals of fluid loading 166

6.5.2 Loading recipes . 167

6.5.3 Loading calculations . 169

13

6.5.4 Loading trends . 173

6.5.5 Load comparisons . 175

6.6 Conclusions . 181

7 Overturning Wave Groups 184

7.1 Introduction . 184

7.2 Models of wave breaking . 184

7.3 A re-assessment of boundary kinematics 188

7.4 Computational domain and model set-up 190

7.4.1 Second-order random wave theory; an efficient calculation

procedure . 193

7.5 Discussion of results . 200

7.5.1 Breaking wave profiles . 200

7.5.2 Kinematics predictions beneath the breaking wave 211

7.6 Conclusions . 219

8 Concluding Remarks 220

8.1 Principal achievements . 220

8.2 Engineering significance . 223

8.3 Further work . 223

8.3.1 Wave modelling . 223

8.3.2 Computing techniques and hardware 226

8.4 Final thoughts . 228

References 229

Appendices 241

A IDR(s) theory 241

A.1 IDR theorem . 241

A.2 Explanation of the IDR(s) method 244

A.3 The IDR(s) algorithm . 247

B Further information relating to IDR(s) 251

14

B.1 An indication of how the general Krylov recursion is formed 251

B.2 The nature of the polynomial Φn 253

B.3 Explaining general Krylov recursions 254

15

List of Figures

2.1 2D section in x − z domain, schematic relating to mathematical

notation in equation (2.2). 35

2.2 Schematic of the numerical wave tank (NWT). 47

2.3 Schematic of wave basin found in the fluids laboratory in the Dept.

of Civil and Environmental Engineering at Imperial College London. 48

2.4 Schematic of an individual 9-node element. 50

2.5 Schematic of sub-element configurations adopted to avoid singular

integrals. 55

2.6 Side wall boundary condition schematic. 58

2.7 A schematic showing bias introduced as a result of a cubic polyno-

mial representation. 59

2.8 Schematic of the angles derived from unit vectors {m, s,n}. 60

3.1 A schematic of the G-H matrix decomposition. 77

3.2 Average computation times for one time step for 1, 4, 8, 16, 32 and

64 processors solving a problem of size 20000 nodes. 81

3.3 Demonstrating the scalability of the core integration algorithm. . . 84

3.4 Non-dimensional plot of problem size against step size using 1, 4,

8, 16, 32 and 64 processors with comparisons to the FMM. 85

4.1 Schematic of the CUDA GPU architecture. 94

4.2 Schematic of the subspace nesting key to the IDR theorem. 101

4.3 Raw execution timings for different algorithms solving various ma-

trix sizes. 118

4.4 Comparing IDR(s) implemented on a CPU with IDR(s) on a GPU,

both solving various matrix sizes. 120

16

4.5 Comparing the solution times for GMRES on a CPU with IDR(s)

on a GPU, both solving various matrix sizes. 121

4.6 Comparing the accuracy of the solution obtained by CPU GMRES,

CPU GMRES with OpenMP, CPU IDR(s), GPU IDR(s) and LA-

PACK. 122

5.1 Execution times for pure CPU and CPU with GPU implementation,

both applied to the solution of a range of matrix sizes. 131

5.2 Speed up in the computation time achieved using CPUs with the

GPU implementation compared to using CPUs alone. 132

5.3 Average time spent running each stage of the BEM calculations

with 64 processors applied to a range of problem sizes. 133

5.4 Normalised execution times for GMRES and IDR(s), s = 4, with

respect to the BEM time step number for various problem sizes. . . 134

6.1 Comparisons in time and space of the water surface elevation for a

steady wave form. 144

6.2 Time-history of the water surface elevation, η(t), for a linear focused

NewWave event, comparisons between the EPIC BEM solution and

an analytical solution based on linear random wave theory. 147

6.3 (a) Spatial history of the wave surface elevation in the mean wave

direction (x) at the focus time, η(x) at t = 0s, comparisons be-

tween the EPIC BEM solution and the results of linear random

wave theory. (b) Spatial history of the wave surface elevation in

the transverse wave direction at the focus time, η(y) at t = 0s,

comparisons between the EPIC BEM solution and the results of

linear random wave theory. 148

6.4 Comparison between the target NewWave spectrum and the results

of a discrete Fourier transform of the time history of the water

surface profile given in Figure 6.2. 149

6.5 Phasing of the wave components present at the focus location. . . . 150

17

6.6 (a) Prediction of the horizontal fluid velocities beneath the crest of

a regular wave form. Comparisons between the internal EPIC BEM

kinematics calculations and the EPIC BEM calculations undertaken

on a vertical side wall. (b) Prediction of the horizontal fluid veloci-

ties beneath the crest of a regular wave form. Comparisons between

the internal EPIC BEM kinematics calculations and two established

wave solutions, a 5th-order Stokes solution and a high order Fourier

solution. 152

6.7 Prediction of the horizontal fluid velocities beneath the crest of a

focused wave event, comparisons between the internal EPIC BEM

kinematics calculations and the EPIC BEM calculations undertaken

on a vertical side wall. 153

6.8 Comparisons between the horizontal velocity profile, u(z), predicted

using the EPIC BEM model and a linear, uni-directional solution. . 154

6.9 Time-histories of η(t), u(t), v(t) and w(t) at z = −3m beneath a

focused wave crest. 155

6.10 A comparison of the time history of the water surface, η(t), at focus

position for a linear input amplitude sum of A = 16m simulated

with ∆x = ∆y = 10m, 15m and 20m resolutions. 159

6.11 A 10−4 design wave case, comparisons with an “equivalent” Stokes

5th-order wave, (a) time history of the water surface elevation η(t)

and (b) spatial history of the water surface elevation η(x). 163

6.12 A spatial history of the water surface elevation in the transverse

direction, η(y), at the focus time. A 10−4 design wave case based

upon ηmax = 21.98m, Tp = 16.64s. 164

6.13 Kinematics predictions appropriate to a 10−4 design wave case,

comparisons between the EPIC BEM solution and an “equivalent”

Stokes 5th-order wave, (a) u(z) and (b) ∂u
∂t

(z). 165

6.14 Schematic of the structure under consideration (not to scale). . . . 170

6.15 Reduction in predicted base shear as a function of wave steepness. . 177

6.16 Reduction in predicted overturning moment as a function of wave

steepness. 178

18

7.1 Spatial description of the water surface elevation, η(x), on y = 0;

comparisons between different switching times and data correspond-

ing to the equivalent times taken from the best case switching time

of tsw = −17s. 201

7.2 Evolution of the spatial surface profile, η(x) on y = 0m, at varying

times (t). 202

7.3 A spatial description of the water surface elevation at the instant

of wave breaking, η(x) at t = −15.2s. 205

7.4 Evolution of the water surface, η(x, y), at varying times (t). 208

7.5 Enhanced view of Figure 7.4(d), a 3D image of the overturning wave.210

7.6 Position of the breaking wave crest as it evolves in time with linear

least squares best fits. 212

7.7 Spatial plots of the water particle kinematics along the centre line

(y = 0m) of a directionally spread breaking wave. 215

7.8 Spatial representation of the water surface elevation (η(x)) along

the centre line of the domain (y = 0). 217

7.9 Depth variation in the x-component of the horizontal velocity under

a breaking wave at x = 0m. 218

19

List of Tables

2.1 Quadratic shape functions, Si, at nodes i = 1, 2, 3. Values and

coefficients. 62

2.2 Quartic shape functions, Si, at nodes i = 1 . . . 5. Values and coeffi-

cients. 63

3.1 Profile summary for serial BEM code. 74

3.2 Dimensions used to generate the numerical wave tanks. 79

3.3 Increase in the computational speed of the ghmat() routine defined

in terms of the average computation time for one time step nor-

malised with respect to that achieved using 4 processors. 81

3.4 Increase in computational speed for the BEM scheme as a whole in

comparison to a 1 process “serial” version. 82

4.1 Comparisons between cublasSgemv() and the author’s implemen-

tation of a matrix-vector multiplication kernel. 107

4.2 Matrix solving algorithms and their properties. 115

4.3 Matrix order and condition numbers. 116

6.1 Parameters relating to a typical 10−4 design wave event. 160

6.2 Comparisons of the sub-structure loads arising in the 10−4 design

wave conditions from calculations undertaken using the fully non-

linear BEM and the Stokes 5th-order regular wave predictions. . . . 172

6.3 Down-crossing properties of the additional wave events calculated

using the fully nonlinear BEM solution. All waves were generated

using the parameters outlined in Table 6.1. 174

6.4 Ratios of the predicted sub-structure loads, FBEM

FStokes
and MBEM

MStokes
for

six wave cases with increasing wave steepness. 176

20

6.5 Summary of wave observations recorded at the Tern platform in the

Northern North Sea. 180

7.1 Dimensions relating to the NWTs used in the simulation of a break-

ing wave event. 190

7.2 Metocean and model parameters relating to the modelling of a

breaking wave event. 191

21

List of Algorithms

1 The IDR(s) algorithm. Taken verbatim from Sonneveld & van Gi-

jzen (2008). 248

22

Listings

3.1 A serial version of the integration scheme indicating the nested loops. 76

3.2 Master-slave algorithm outline for parallel matrix formation. 78

23

Glossary

This work has many connections to computing and computational matters where

acronyms are rife. In addition, there are a number of acronyms associated with

boundary element schemes, the numerical model used in the present study. There-

fore, for ease of reading, a glossary is provided below to assist those less familiar

with the large number of acronyms employed.

2-norm The 2-norm of variable x, ‖x‖2, is given by
√

(xTx) . It is also known as

the Euclidean norm or Euclidean length.

ABM Adams, Bashforth and Moulton, the authors of a predictor-corrector inte-

gration scheme as described in Butcher (2003).

ALU Arithmetic Logic Unit. An electronic unit that performs both arithmetic

and logical operations. They are the building blocks of microprocessors.

API Application Programming Interface. An software interface to allow actions

in one piece of software to interact with actions in another.

BIE Boundary Integral Equation. The governing equation on which boundary

element solutions are based. See equation (2.2).

BLAS Basic Linear Algebra Subprograms. An API standard for the publication

of libraries that perform basic linear algebra operations on vectors and

matrices.

CPU Central Processing Unit. The part of a computer that carries out the

instructions contained within a program, it is the piece of electronics that

allows a computer to function.

24

CUDA Compute Unified Device Architecture (depreciated acronym). A parallel

computing architecture developed by NVIDIA PLC.

FSBCs Free Surface Boundary Conditions. Refers to the dynamic and kinematic

free surface boundary conditions, DFBCS and KFSBCS respectively. See

§2.3.

GMRES Generalised Minimal Residual method. An iterative method for solving

a general system of linear equations developed by Saad & Schultz (1986).

GPU Graphics Processing Unit. A special microprocessor that offloads graphics

processing from the CPU.

HPC High Performance Computing. The use of specialised computing arrange-

ments for computational work. A prime example of this would be executing

programs on a cluster computer.

IP Internet Protocol. Part of the internet protocol suite, a set of communica-

tion protocols for networks including the internet. See also TCP.

LRWT Linear Random Wave Theory. A theory for predicting irregular wave

forms based on the superposition of sinusoidal forms.

MPI Message Passing Interface is a specification for an API that allows processes

to communicate by passing messages.

OpenMP Open Multi-Processing is an API that supports multi-platform shared

memory multiprocessing programming.

OS Operating System, a software interface between the computational hard-

ware and the user, responsible for managing hardware resources and soft-

ware activities.

PC Personal Computer.

PCIe (bus) Peripheral Component Interconnect express bus. An interface for

add-in expansion cards and a motherboard level interconnect. The main

25

performance difference between PCIe and previous buses is a point-to-point

serial link opposed to a shared parallel bus architecture.

SIMD Single Instruction, Multiple Data. In computing, the concept of multi-

ple processing elements simultaneously performing the same instruction on

multiple data.

SIMT Single Instruction Multiple Thread. A concept used by NVIDIA PLC. to

allow scalar thread processing on a data set.

SM Streaming Multiprocessor. A term coined by NVIDIA PLC. for use in

relation to the layout of ALUs in their CUDA enabled devices.

TCP Transmission Control Protocol. Part of the internet protocol suite, a set

of communication protocols for networks including the internet. See also

IP.

26

1

Introduction

Computing power has increased manyfold in the past decade, consequently the

numerical models run on today’s desktops can only have been dreamt of by pre-

vious generations of numerical modellers. In the world of offshore oil and gas

production, the increase in storm frequency and severity, coupled with the ever

increasing challenges that need to be overcome to design and operate in such ex-

treme circumstances, dictate that accurate numerical predictions of wave loading

behaviour are of increasing importance. More than a decade ago, it was possible

to provide reasonable numerical models of fluid loading on offshore structures.

However, these simulations took prohibitively large amounts of computational ef-

fort and so were rarely undertaken. With recent increases in computing power it

is now not only possible to provide even more accurate wave loading predictions

for structures, but with the introduction of so-called “super computers” it is pos-

sible to run a large number of these simulations and start to look at wave-induced

loading in a very different manner. In addition to simply providing fluid loading

information to structural engineers, accurate numerical predictions can be used to

provide information about what wave conditions will generate the worst loading

on the sub-structure; including variation in both space and time. Furthermore, as

numerous wave loading events can be simulated rapidly (and cheaply), the whole

concept of the reliability of existing structures can be revisited by statisticians giv-

ing better insight into structural safety in the offshore industry. The motivation

27

Chapter 1: Introduction

for the present work is to harness the very considerable power of distributed and

accelerated computing to enable the rapid calculation of numerous fully nonlinear

wave loading events thereby providing a game-changing outlook on the design and

reliability of offshore structures.

1.1 Motivation

The driving force behind the present work comes from two, different, but equally

important areas. The first being the advances made in numerical modelling tech-

niques for free surface flows, namely the multiple-flux approach in boundary el-

ement methods. This approach was outlined by Hague & Swan (2009) and is

directly relevant to simulations involving numerical wave tanks. The second area

is that of scientific computing and the readily available large computational pro-

cessing power made available through super-computing facilities.

The motivation surrounding advances in numerical modelling techniques arises

from the achievements of Hague (2006) in the development of a boundary element

method (BEM) for the modelling of free surface flows using a multiple-flux ap-

proach. This method was shown to work well in two spatial dimensions, and some

progress was also made in a three dimensional implementation. However, the three

dimensional application suffered two main problems. First, the boundary element

method is fundamentally an O(n2) scheme in computational time (presuming an

optimised indirect linear system solver is employed), where n is the number of

nodes describing a domain. Second, there was a lack of resolution in the diago-

nal direction caused by the use of eight node serendipity elements. As a result,

execution times for the three dimensional implementation developed by Hague

(2006) were excessive. For example, computing a focussed wave event in a fairly

standard domain with 12,000 nodes on a ∼3GHz Xeon dual processor workstation

took around two weeks. Clearly, this code base gave unacceptable run times and

left no possibility for the required increase in resolution or domain size necessary

to achieve accurate descriptions of highly nonlinear waves. As a result, reducing

the computational run time of such a scheme became a key theme to the present

work.

28

1.2 Aims

The motivation from the field of scientific computing is best summarised by

Gregory F. Pfister who famously wrote in his book on parallel computing, “In

Search of Clusters” (Pfister, 1998), that there are three ways to do anything faster:

‘work harder’, ‘work smarter’ and ‘get help’. He then showed how these concepts

can be applied to the field of computing. Since Pfister (1998) was first published a

lot of the concepts remain relevant, but the computing platforms on which they are

implemented have changed. Multi-core processors and multi-processor computers

now exist on most people’s desktops, making shared memory programming more

readily available. Clusters and massively parallel computers are now very common

with more applications making use of scalable computing power. Most recently,

accelerator hardware has been developed which will undoubtedly change the face

of scientific computing with special relevance to linear algebra.

The idea of ‘working harder’ on a problem can be applied using the newly

developed accelerator cards, ‘working smarter’ involves the use of more intelligent

algorithms, while ‘getting help’ comes in a variety of forms, but usually involves a

distributed computing environment. Within the present study, these concepts are

explored on as many levels as possible using a multitude of different programming

paradigms, hardware and algorithms.

To summarise, the focus of the present work involves coupling the world of high

performance computing with recent advances in the boundary element modelling

technique. The desired end result and underlying motivation for the whole project,

as mentioned previously, is to have an accurate fully nonlinear numerical modelling

technique for the simulation of surface water waves. The model must be able to

be run in reasonable time frames such that more information can be gained when

it comes to optimising the design (and hence the reliability of) offshore structures.

1.2 Aims

The primary goal of the work is the development and application of a numerical

model that is capable of dealing with high resolution, large, computational do-

mains thereby enabling the accurate prediction of extreme wave events and the

associated water particle kinematics. Splitting the work into manageable, self

29

Chapter 1: Introduction

contained, sub-tasks gives rise to the following goals.

i) To formulate a BEM to allow the modelling of large, complex or highly

nonlinear wave fields with high accuracy.

ii) To validate the model to ensure that it performs correctly.

iii) To optimise the computationally intensive aspects of the BEM such that the

solution time for the model becomes tolerable for realistic applications.

iv) To consider the application of the model to an actual engineering problem,

identifying the benefits of improved kinematics predictions.

v) To apply the model to investigate extreme ocean waves and, in particular,

wave overturning.

1.3 Layout

This thesis is divided into a number of sections and chapters, each containing some

introductory and concluding material surrounding the technical material under

discussion. In some sections the technical material is in the form of an academic

paper to be published in an internationally leading journal. In others, the material

is in a traditional thesis format. All the papers are co-authored by Prof. C. Swan

and where others are involved their contributions are stated and acknowledged.

The chapters are ordered in such a way that they address the above noted goals.

However, some goals are accomplished over multiple chapters, requiring a number

of techniques to be applied.

Chapter 1 introduces the thesis and describes the content of the work com-

pleted. It also briefly reviews the current state of the numerical modelling tech-

niques used to describe extreme ocean waves and the evolving state of computing

hardware at the time of writing.

Chapter 2 contains a generic formalisation and derivation of the BEM. The

features specific to the BEM employed for this work are discussed along with key

choices surrounding options that arise whilst implementing such a scheme.

30

1.4 Context

Chapter 3 discusses methods of reducing the computational run times asso-

ciated with BEM calculations and describes how BEM problems can be mapped

to a distributed computing environment.

Chapter 4 looks at employing a new Krylov subspace based iterative matrix

solver on a state-of-the-art parallel processing architecture for application in the

matrix solving phase of the BEM solutions.

Chapter 5 investigates the coupling of a BEM running in a distributed com-

puting environment (established in Chapter 3) with the hardware accelerated

Krylov subspace based matrix solver of Chapter 4.

Chapter 6 begins with a formal validation of the BEM model developed

herein. It returns to some of the theory derived in Chapter 2 and looks at reap-

plying the theory in a number of different ways to obtain kinematics predictions

associated with a given wave simulation. Finally, a real life engineering application

of the BEM with respect to loading on the sub-structure of an offshore platform is

considered. Comparisons are drawn against best practice outlined in the American

Petroleum Institute (APInst) design guidelines.

Chapter 7 turns to the topic of the breaking (or overturning) of focussed wave

groups arising from realistic spectra. Results are compared to a number of well

known analytical wave theories and some insight into the process of wave breaking

in real seas is presented.

Chapter 8 discusses future work that is needed in the field to supplement

the work completed in this thesis. This discussion revolves around the mapping

of existing algorithms to new hardware and the need for mesh free numerical

methods.

1.4 Context

In recent years there has been a considerable amount of research concerning the

application of a BEM for simulating free surface waves completed by other mem-

bers of Professor Swan’s research group. Their contributions are readily acknowl-

edged in the following text; their results being important to, but distinct from,

the achievements of the present study.

31

Chapter 1: Introduction

In 2006 Caroline Hague (Hague, 2006) completed her PhD thesis, the emphasis

of her research being the development of a two dimensional model for simulating

free surface flows using the “multiple-flux method” to mitigate the infamous “cor-

ner problem”. Both the multiple-flux method and the corner problem are discussed

later in this thesis. Hague (2006) also sought to extend the two dimensional model

to three dimensions and had some degree of success. The main issues with the

three dimensional model were two fold; first, a lack of adaptability of the compu-

tational domain generation system meant a regular spaced grid forming a single

box being the only option available. Second, the excessively long run times for

the code leading to the inevitable restrictions this places on the spatial resolution

and hence the accuracy of the wave calculations.

Building on the work of Hague, Christou (2008) extended the two dimensional

BEM model to include structural configurations such as barriers (Christou et al.,

2009) and breakwaters (Christou et al., 2008), as well as varying bathymetries such

as beach slopes. In the final year of Christou’s research period, the present author

joined Professor Swan’s research group. At this stage, it was decided that the

three dimensional BEM model of Hague needed considerable further development

to fulfil its maximum potential. Christou and the author started from scratch

designing and writing an entirely new code base, using the multiple-flux concept of

Hague, to develop the present BEM framework. The new framework was designed

with full adaptability in terms of the domains and boundary conditions used, and

at the same time makes considerable use of distributed computing to accelerate

the run time of the model employed. Indeed, if the overall code is considered in

its present form, approximately 50% of the code was developed in conjunction

with Christou (on a 50:50 basis) and the remainder of the code is entirely due to

the present author. In the chapters that follow, contributions by others, (notably

Christou) are explicitly noted and gratefully acknowledged.

Following the completion of Christou’s work, the author rewrote most of the

code base to improve the reliability of the model and added a large number of new

features, full details of which are given in the chapters that follow.

32

1.5 Achievements

1.5 Achievements

Within the present study, the main achievements are as follows:

i) The development of a three dimensional multiple-flux BEM running on a

distributed computing framework.

ii) The implementation of a Krylov subspace based linear system solver running

a new hardware architecture with a large number of processing cores.

iii) The application of the developed BEM solution to the calculation of the

wave loads acting on an offshore jacket (space-frame) structure. This repre-

senting a problem of significant practical importance and demonstrating the

necessity of accurate (fully nonlinear) descriptions of extreme ocean waves.

iv) New insights into the nature of the breaking of wave groups and their un-

derlying water particle kinematics.

33

2

Boundary Element Method (BEM); a Generic

Formulation

2.1 Introduction

This chapter concerns the mathematical derivation and subsequent numerical im-

plementation of the basic aspects of the BEM. The concept of a “numerical wave

tank” is explored and some insight into the choices that are available and the route

chosen during different stages of derivation and implementation are discussed. The

efficient numerical implementation of a BEM scheme is the subject of later chap-

ters. In the present discussion issues of numerical efficiency are highlighted, but

a thorough investigation is delayed until later in the thesis. In effect, this chapter

outlines the building blocks on which the final model relies.

2.2 Governing equations

The fluid within a domain, Ω, is assumed to be both incompressible and inviscid,

while the fluid flow is considered to be irrotational. These assumptions allow mass

continuity to be expressed in terms of Laplace’s equation and applied throughout

the domain,

∇2φ = 0 ∈ Ω, (2.1)

34

2.2 Governing equations

where φ(x, y, z, t) is the velocity potential. The variables x, y and z define a local

Cartesian coordinate system, where (x, y) define the horizontal coordinates, z is

measured vertically upwards from the mean water level, and t denotes time. From

φ, a velocity field u can be defined as u = ∇φ = (u, v, w).

q

z

x

rΩ

p

ΓΓ

Γ

Γ

n

Figure 2.1: 2D cross section in x− z domain, schematic relating to mathematical

notation in equation (2.2).

Within a BEM a fundamental solution to equation (2.1) can be described, in

the context of two points in real three dimensional space, by the free-space function

G(r) = 1
4πr

, where r = |r|, the magnitude of the vector between the source and

field points. Adopting Green’s second identity, the problem can be reduced from

one describing volumes to one describing surfaces. The resulting boundary integral

equation (BIE) being given by

cpφp +

∫
Γ

φq
∂G

∂n
dΓ =

∫
Γ

G
∂φq

∂n
dΓ, (2.2)

where n is the direction of the outward normal, cp is a geometric coefficient describ-

ing the exterior solid angle of the boundary at the source point, and Γ denotes

the boundary of the domain. Figure 2.1 indicates the relationship between the

quantities in equation (2.2) for a two dimensional (y = constant) slice through

a three dimensional domain. Further discussion of the calculation of cp follows

later as computing this term relies on mathematical relations that have not yet

35

Chapter 2: Boundary Element Method (BEM); a Generic Formulation

been expressed. As equation (2.2) describes the relation between the field poten-

tial, φ, and the potential flux, φn, this relationship can be used to define one of

these variables provided the other is known. This corresponds to the fundamental

methodology under-pinning any BEM solution.

2.3 Free surface boundary conditions

In order for a numerical model to be able to simulate the evolution of a free surface

in the time domain, a number of boundary conditions are required. The boundary

conditions are used to describe the behaviour of two fundamental properties of the

numerical domain. The first is the position of the points forming the boundary

of the domain and the second, the associated potential at these nodal positions.

These quantities correspond to the key variables identified in equation (2.2). To

ensure that the model has the ability to describe the evolution of the wave field

(or the fluid domain), the boundary conditions must be constructed in such a

manner that they are amenable to numerical time marching. To achieve this, the

boundary conditions must have an associated time dependence. The boundary

condition associated with positional change is the so-called “kinematic free surface

boundary condition” (KFSBC). This ensures the water surface is a streamline. In

contrast, the boundary condition associated with potential change is referred to

as the “dynamic free surface boundary condition” (DFSBC). This stipulates that

the pressure acting on the water surface is a constant.

In deriving and explaining the boundary conditions in the sub-section that

follows, some of the methods from the reference text of Dean & Dalrymple (1984)

are used. To begin the derivation some expressions common to the formulation of

the boundary conditions are given. These more general expressions lead to some

options regarding frames of reference. Following this discussion, a general method

for deriving a set of boundary conditions in any frame of reference is provided.

With this complete, constraints appropriate to the frames of reference discussed

earlier are applied and a complete set of boundary conditions derived.

36

2.3 Free surface boundary conditions

2.3.1 General expressions

To begin the derivation, it is assumed that there is a scalar velocity potential

within the domain

φ = φ(x, t), (2.3)

where, x is the position vector (x, y, z). In addition to the velocity potential it is

also assumed that there is an associated velocity vector,

v(x, t), (2.4)

which defines the movement of the frame of reference. This velocity vector is

entirely separate from the velocity vector describing the fluid velocity, u(x, t).

However, if desired, v may have components equal to those in the velocity vector,

u, such that the frame of reference moves in some directions at a velocity equal

to the velocity of the fluid.

To introduce the required time derivative for these variables, a total derivative

based upon the chain rule can be defined as follows:

d

dt
(φ(x, t)) =

∂φ

∂t
+∇φ · dx

dt
. (2.5)

In this case, it is clear that the total derivative is dependant on the velocity vector,

v(x, t), defined by
dx

dt
=

(
dx

dt
,
dy

dt
,
dz

dt

)
, (2.6)

which describes the chosen path x(t) in space.

2.3.2 Frames of reference

With equation (2.5) dependent on x(t), it is clear that the movement of this path,

or the choice of reference frame, will govern the nature of the derived boundary

conditions. If x(t) is set to zero then the frame of reference is Eulerian which

dictates that the positions at which the boundary condition is applicable are fixed

in space. In this case the movement of the nodal positions within the domain is

forbidden. This condition is not (generally) desirable for the purpose of simulating

an evolving nonlinear wave field, although it has obvious benefits in terms of defin-

ing the linearised boundary conditions, these being appropriate to the description

37

Chapter 2: Boundary Element Method (BEM); a Generic Formulation

of infinitesimally small waves. Indeed, Isaacson & Cheung (1990) adopted exactly

this approach and showed that with the adoption of a Taylor series expansion

about this fixed position (corresponding to still water level) a weakly nonlinear or

second-order approximation could be achieved.

An alternative to the Eulerian frame of reference is the so-called Lagrangian

frame. This allows movement in all Cartesian directions such that the frame of

reference moves with the fluid at a given position. A refinement to this frame of

reference is to allow the path to move in directions that are best suited to the

physical constraints of the model at a given position. With this in mind, three

frames of reference are useful in the current application. These all have some

elements of a fully-Lagrangian frame of reference; the reference frame moving in

some directions, but being fixed in others.

At this point it is necessary to briefly describe the different situations and

associated boundary conditions that may arise when implementing a numerical

model of free surface flow. First, if the free surface remains single valued, the

waves not being permitted to overturn, the points describing the free surface need

only be free to move in the vertical direction. This condition is henceforth referred

to as a one-third-Lagrangian, or semi-Lagrangian, frame of reference. However, if

the free surface is likely to become multi-valued (waves overturning), the points

describing the free surface will need the freedom to move in all Cartesian directions.

This condition is henceforth referred to as a fully-Lagrangian frame of reference.

It is also possible to have an “intermediate” situation in which the free surface

will need to be free to move in the vertical direction and one horizontal direction,

yet be fixed in the other. This is hereafter referred to as a two-thirds-Lagrangian

frame of reference and might be adopted where, for example, a multi-valued free

surface occurs against a reflective wall or barrier.

2.3.3 Generic Lagrangian boundary conditions

The method to derive the one-third, two-thirds and the fully-Lagrangian boundary

conditions, corresponding to their respective frames of reference, is the same in

each case; the only difference being the restrictions in movement applied to the

38

2.3 Free surface boundary conditions

frame of reference. For a generic KFSBC, the frame of reference is moved with

the free surface such that the free surface does not change. This condition is

applied through the use of a material derivative operating on an arbitrary function

F (x, t) = 0 which describes the free surface,

DF (x, t)

Dt
=
∂F (x, t)

∂t
+∇F (x, t) ·u = 0. (2.7)

The material derivative must be equal to zero as the free surface does not change

in the frame of reference employed. Expanding and rearranging this expression

gives,
∂F

∂t
= −u ·∇F. (2.8)

Written in this form, the boundary condition expresses the required time derivative

in terms of the spatial quantities and is therefore in a form appropriate to time

marching. In applying this method to the three (previously mentioned) frames

of reference, all that is required is the formulation of a function, F (x, t) = 0,

consistent with the given spatial constraints and the consequent evaluation of

equation (2.8).

Following the derivation of the KFSBC, it is possible to compute the DFSBC.

This seeks to express the time derivative of the velocity potential, φ, consistent

with the condition that the pressure on the free surface remains constant. With a

fully-Lagrangian frame of reference employed, the total derivative of the potential

is required and is given by equation (2.5). The first term, ∂φ
∂t

, can be calculated by

recalling that the free surface, η, is a streamline and as pressure is constant along

a streamline. Bernoulli’s equation can therefore be employed to give

− ∂φ

∂t
+
Pη

ρ
+

1

2

[(
∂φ

∂x

)2

+

(
∂φ

∂y

)2

+

(
∂φ

∂z

)2
]

+ gη = C, (2.9)

where Pη is the pressure on the water surface (z = η), ρ is the density of the fluid

and C is the Bernoulli constant. Defining a gauge pressure such that Pη = 0,

setting C = 0 and rearranging gives

∂φ

∂t
= −gη − 1

2

[(
∂φ

∂x

)2

+

(
∂φ

∂y

)2

+

(
∂φ

∂z

)2
]
. (2.10)

39

Chapter 2: Boundary Element Method (BEM); a Generic Formulation

This expression can be substituted into equation (2.5) giving

d

dt
(φ(x, t)) = −gη − 1

2

[(
∂φ

∂x

)2

+

(
∂φ

∂y

)2

+

(
∂φ

∂z

)2
]

+∇φ · dx
dt
. (2.11)

Recalling that ∇φ = ∂φ
∂x

= u in a fully-Lagrangian frame of reference, equation

(2.11) can be further simplified to give:

d

dt
(φ(x, t)) = −gη − 1

2
u2 + u · dx

dt
. (2.12)

Expressed in this form, the product u · dx
dt

is the only term that needs to be eval-

uated to complete the derivation of the DFSBC. However, since this directly de-

pends upon the frame of reference adopted, equation (2.12) gives the general form

of the required boundary conditions.

In calculating the term dx
dt

, it is important to note that,

dx

dt
=

(
dx

dt
,
dy

dt
,
dz

dt

)
. (2.13)

Given that the position of interest is on the water surface, the movement of the

vertical coordinate with respect to time is identical to the movement of the water

surface with respect to time, hence, dz
dt
≡ ∂η

∂t
. With ∂η

∂t
calculated using the KFSBC,

there is a clear link between the two boundary conditions.

This completes the generic derivation of the boundary conditions, the appli-

cation of this theory to the three alternative frames of reference follow. In the

first case, corresponding to the one-third-Lagrangian case, a full description of the

derivation of the boundary conditions is provided. In the following two cases, the

similarity in the derivation is such that only limited explanation is required.

2.3.4 One-third-Lagrangian frame of reference

This constraint allows points on the free surface to move in the vertical direction

only.

KFSBC

To evaluate the one-third-Lagrangian case, the position of the free surface elevation

is a function of the two horizontal directions and time such that

z = η(x, y, t). (2.14)

40

2.3 Free surface boundary conditions

This can be rearranged into a function of F , with z measured vertically and z = 0

corresponding to the still water level,

F (x, y, z, t) = z − η(x, y, t) = 0. (2.15)

Applying equation (2.8) term by term

∂F

∂t
= −∂η

∂t
(2.16)

and

∇F =

(
−∂η
∂x
,−∂η

∂y
, 1

)
, u = (u, v, w), (2.17)

∇F ·u = −u∂η
∂x

− v
∂η

∂y
+ w, (2.18)

hence
∂η

∂t
= w − u

∂η

∂x
− v

∂η

∂y
. (2.19)

Equation (2.19) defines the KFSBC appropriate to points that can move in the

vertical directions only. This result is identical to that stated by Hague (2006)

and Christou et al. (2008), although neither provide detailed derivations.

DFSBC

To derive the DFSBC for the one-third-Lagrangian case the path x on which the

surface moves is restricted solely to the vertical direction so

x = (0, 0, z). (2.20)

Recalling that z = η(x, y, t) from above, it follows that

dx

dt
=

(
0, 0,

dη

dt

)
. (2.21)

Evaluating the final term in equation (2.12)

u · dx
dt

= (u, v, w) ·
(

0, 0,
dη

dt

)
= w

dη

dt
, (2.22)

substituting into equation (2.12) and adopting the dη
dt

term defined in equation

(2.19), gives the required form of the DFSBC appropriate to the one-third-Lagrangian

frame of reference,
d

dt
(φ(x, t)) = −gη − 1

2
u2 + w

dη

dt
. (2.23)

41

Chapter 2: Boundary Element Method (BEM); a Generic Formulation

Again, this result is consistent with those stated in Hague (2006) and Christou

et al. (2008).

2.3.5 Two-thirds-Lagrangian frame of reference

Within this frame of reference, points on the free surface are allowed to move in

the vertical direction and one horizontal direction. In the equations that follow,

the boundary conditions are derived for the case in which the constrained horizon-

tal direction is aligned with the y coordinate. This condition relates to conditions

arising on a boundary in the x− z plane. For completeness, the boundary condi-

tions appropriate to the case in which the surface points are constrained in the x

direction are also provided.

KFSBC

To evaluate the two-thirds-Lagrangian case, the position of the free surface eleva-

tion is a function of one horizontal direction and time such that,

F (y, z, t) = z − η(y, t) = 0. (2.24)

Applying equation (2.8)

∂F

∂t
= −∂η

∂t
, (2.25)

∇F =

(
0,−∂η

∂y
, 1

)
, u = (u, v, w), (2.26)

∇F ·u = −v∂η
∂y

+ w, (2.27)

hence
∂η

∂t
= w − v

∂η

∂y
. (2.28)

The corresponding expression for a surface point which is free to move in y

and z, but constrained in x, is given by,

∂η

∂t
= w − u

∂η

∂x
. (2.29)

42

2.3 Free surface boundary conditions

DFSBC

To derive the DFSBC for the two-thirds-Lagrangian case, the path x on which the

surface moves is restricted to the vertical, z, direction and the x direction so,

x = (x, 0, z). (2.30)

Recalling that z = η(y, t) from above, it follows that

dx

dt
=

(
dx

dt
, 0,

dη

dt

)
. (2.31)

Evaluating the final term in equation (2.12)

u · dx
dt

= (u, v, w) ·
(
dx

dt
, 0,

dη

dt

)
= u2 + w

dη

dt
, (2.32)

substituting into equation (2.12) and adopting the dη
dt

term defined in equation

(2.28), gives the required form of the DFSBC appropriate to the two-thirds-

Lagrangian frame of reference,

d

dt
(φ(x, t)) = −gη − 1

2
u2 + u2 + w

dη

dt
. (2.33)

The corresponding expression for a surface point which is free to move in y and

z, but constrained in x, is given by

d

dt
(φ(x, t)) = −gη − 1

2
u2 + v2 + w

dη

dt
. (2.34)

2.3.6 Fully-Lagrangian frame of reference

This frame of reference allows points on the free surface to move in all Cartesian

directions thereby allowing the simulation of overturning waves.

KFSBC

To evaluate the fully-Lagrangian case, the position of the free surface elevation is

a function of time only such that,

F (z, t) = z − η(t) = 0. (2.35)

43

Chapter 2: Boundary Element Method (BEM); a Generic Formulation

Applying equation (2.8)

∂F

∂t
= −∂η

∂t
, (2.36)

∇F = (0, 0, 1) , u = (u, v, w), (2.37)

∇F ·u = w, (2.38)

hence,
∂η

∂t
= w. (2.39)

This expression is identical to that adopted by Grilli et al. (2001), Hague (2006)

and Christou et al. (2008).

DFSBC

To derive the DFSBC for the fully-Lagrangian case, the path x on which the

surface moves is not restricted and so can move in any direction,

x = (x, y, z). (2.40)

Recalling that z = η(t) above, it follows that,

dx

dt
=

(
dx

dt
,
dy

dt
,
dη

dt

)
. (2.41)

Evaluating the final term in equation (2.12),

u · dx
dt

= (u, v, w) ·
(
dx

dt
,
dy

dt
,
dη

dt

)
= u2 + v2 + w

dη

dt
, (2.42)

and substituting into equation (2.12) gives

d

dt
(φ(x, t)) = −gη − 1

2
u2 + u2 + v2 + w

dη

dt
, (2.43)

where the dη
dt

term is given by the fully-Lagrangian KFSBC (equation (2.39)).

Evaluating this fully gives,

d

dt
(φ(x, t)) = −gη − 1

2
u2 + u2 + v2 + w2 = −gη +

1

2
u2, (2.44)

which is again consistent with the boundary conditions adopted by Grilli et al.

(2001), Hague (2006) and Christou et al. (2008).

44

2.4 Numerical implementation

2.4 Numerical implementation

This section discusses the numerical implementation of equation (2.2) and the

application of the boundary conditions described in §2.3. It also reviews some of

the choices that arise when implementing such a method, and explains how the

chosen paths give rise to varying outcomes.

2.4.1 Computational domain

The computational domain employed in the present numerical model takes the

form of a so-called “numerical wave tank” (NWT). The NWT has clear similarities

with its experimental equivalent, not least in the boundary conditions it applies.

With reference to Figures 2.2 and 2.3, comparisons between an actual laboratory

wave basin (as found in the hydrodynamics laboratory in the Dept. of Civil

and Environmental Engineering at Imperial College London) and the NWT used

in the present work can be drawn. The input to the laboratory wave basin is

produced along one side by flap type wave paddles. The wave basin being relatively

wide in comparison to its length to minimise the “shadow” region and associated

diffraction effects. In the NWT there is the possibility of having input conditions,

Γinput, specified on two sides of the domain. This allows a smaller domain to be

used as the shadow region is effectively eliminated. Within the NWT the input

conditions simply prescribe a flux along the boundary depending on the wave

conditions required.

At the downstream or far end of the wave basin there is a beach structure

of a parabolic shape. This is used to dissipate the wave energy in an attempt to

minimise the presence of unwanted wave reflections in the working area of the wave

basin. In the NWT the “beach” consists of a radiation condition (Sommerfeld,

1949) coupled with a numerical sponge layer, the validity of such an approach

affirmed by Hague (2006). The remaining vertical sides of both the laboratory

wave basin and the NWT are made up of reflecting walls. In the case of the wave

basin this is simply a glass panel, while in the case of the NWT this is a zero flux

(no flow) boundary condition. In addition, the two horizontal boundaries in the

NWT, the free surface, Γsurface, and bed, Γbed, behave identically to those in the

45

Chapter 2: Boundary Element Method (BEM); a Generic Formulation

laboratory wave basin. One obvious advantage of the NWT over the laboratory

wave basin is that changing the bed and tank geometry in the NWT takes a

couple of minutes and is limited only by the ability of the programmer designing

it. In contrast, changing just the bed geometry within the laboratory wave basin

can take many days and the designs are limited to what is achievable within the

bounds of the existing basin geometry. Furthermore, it should be noted that it is

common for a NWT to model only half the working area of the laboratory wave

basin. A plane of symmetry exists in a large number of typical wave scenarios,

as a result, employing a reflective wall along the plane of symmetry in a half size

NWT allows for greater computational efficiency with no loss of accuracy.

2.4.2 Boundary value problem

The concepts involved in producing a BEM for a NWT are relatively simple. The

NWT can be described in terms of mixed boundary conditions whereby the bed

and side walls are described in terms of Neumann boundary conditions (prescribed

φn), and at the free surface a Dirichlet boundary condition (prescribed φ). For

example:

∂φ

∂n
|Γbed

= 0, (2.45)

∂φ

∂n
|Γside,input,radiation

= u (specified), (2.46)

φ|Γsurface
= φ (specified). (2.47)

Using these results, solving a system based on equation (2.2) allows all the un-

knowns to be determined. In the present example, this involves solving for ∂φ
∂n

on

the free surface and φ on all other boundaries. On obtaining this solution, all the

spatial gradients of φ and η can be determined, and, the free surface boundary

conditions (§2.3) integrated with respect to time to define how both the water

surface elevation (η) and the velocity potential on the surface (φ|z=η) evolve over

a small time step. The calculation procedure can then be repeated to determine

the evolution of the wave field over many time steps.

46

2.4 Numerical implementation

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

inputΓ

N
um

er
ic

al
 s

po
ng

e

radΓ

bedΓ

surfaceΓ

sideΓ

inputΓ

radΓ

inputΓ

N
um

er
ic

al
 s

po
ng

e

sideΓ

inputΓ

surfaceΓ

bedΓ

Direction of wave propagation

Direction of wave propagation

x

z

y

x

Figure 2.2: Schematic of the numerical wave tank (NWT).

47

Chapter 2: Boundary Element Method (BEM); a Generic Formulation

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

Beach

Beach

Bed

Side Wall

Direction of wave propagation

Direction of wave propagation

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

Bed

Wave Paddles

Wave Paddles Free surface

Side Wall

Side Wall

Side Wall

Free surface

Figure 2.3: Schematic of wave basin found in the fluids laboratory in the Dept. of

Civil and Environmental Engineering at Imperial College London.

48

2.4 Numerical implementation

2.4.3 Application of the free surface boundary conditions

Given the boundary value problem outlined in §2.4.2, the free surface boundary

conditions would typically be applied as follows: whilst the model is run using a

one-third-Lagrangian frame of reference, all the nodes on the free surface, Γsurface,

would use the boundary conditions given in equations (2.19) and (2.23). If it

then became desirable to run the model with the free surface defined in a fully-

Lagrangian frame of reference (necessary for the description of wave breaking),

then Γsurface would use the boundary conditions given in equations (2.39) and

(2.44). The only exceptions to this rule being the nodes forming the intersections

between the surface and the vertical sides. The nodes at the Γsurface-Γinput and

Γsurface-Γrad interfaces would have the one-third-Lagrangian conditions applied

(equations (2.19) and (2.23)) such that the nodes at these interfaces can only move

in the z direction and therefore do not drift into the domain causing a distortion

of the NWT. In contrast, on the Γsurface-Γside interface the two-thirds-Lagrangian

condition (equations (2.28) and (2.33)) becomes applicable. On this interface the

nodes are providing a no flux (reflective) condition in the y direction to simulate

a wall, or a line of symmetry, but the nodes need to be free to move in the x and

z directions to allow a wave to break along this boundary.

2.4.4 Discretising the BIE

In solving the BIE, equation (2.2), a large number of integrals are required around

the boundary of the domain. To facilitate such calculations, the boundary of

the domain is discretised with N nodes forming M iso-parametric, bi-quadratic

Lagrange elements. Bi-quadratic elements are used based upon the assumption

that the discretisation is of sufficiently high resolution that the variation of ma-

terial quantities (that the elements represent) can be accurately described by a

quadratic function over the length scale of the element. The elements are made

up of nine nodes, as shown in Figure 2.4, and the nodes are ordered in an anti-

clockwise fashion to be consistent with Green’s identities. This ensures that the

fluid being modelled is explicitly defined as being internal to the domain.

Using iso-parametric bi-quadratic elements to discretise the domain allows the

49

Chapter 2: Boundary Element Method (BEM); a Generic Formulation

ξ

1 2 3

4

567

8 9

γ

Figure 2.4: Schematic of an individual 9-node element.

use of quadratic shape functions to express any property associated with the ele-

ment; examples of the latter being position, potential, and potential flux. To aid

the implementation of numerical methods, two intrinsic directions are associated

with the elements, ξ and γ, as indicated in Figure 2.4. With ξ and γ defined

such that −1 ≤ {ξ, γ} ≤ 1, any variable represented by an element can then be

expressed using the generic function,

%(ξ, γ) =
9∑

k=1

Sk(ξ, γ)fk (2.48)

where f is the function to be represented, k is the node number within an element,

and S are the well known quadratic shape functions defined in many texts (see for

example Brebbia & Dominguez (1992) and Dominguez (1993)).

By substituting these generic function expressions into equation (2.2), a form

closer to that required for computational purposes is obtained:

cpφp +
M∑

j=1

9∑
k=1

φk

∫
ξj

∫
γj

Sk(ξ, γ)
∂G

∂n
J(ξ, γ)dξdγ

=
M∑

j=1

9∑
k=1

∂φk

∂n

∫
ξj

∫
γj

Sk(ξ, γ)GJ(ξ, γ)dξdγ, (2.49)

where k is, again, the node number within an element, j indicates the element

number, ranging from 1 to M , and J(ξ, γ) is used to represent the Jacobian

transform required to map the 3D space in which the element resides to the finite

50

2.4 Numerical implementation

2D space of the intrinsic coordinates,

J(ξ, γ) =

∣∣∣∣∂x∂ξ × ∂x

∂γ

∣∣∣∣ . (2.50)

In the interests of vectorising the problem for solution on a computer, the

summations over each element in equation (2.49) can be rewritten:

M∑
j=1

9∑
k=1

φk

∫
ξj

∫
γj

Sk(ξ, γ)
∂G

∂n
J(ξ, γ)dξdγ =

M∑
j=1

hj ·φj, (2.51)

M∑
j=1

9∑
k=1

∂φk

∂n

∫
ξj

∫
γj

Sk(ξ, γ)GJ(ξ, γ)dξdγ =
M∑

j=1

gj ·
∂φ

∂n j
, (2.52)

where φj and ∂φ
∂n

are vectors with 9 members; each member corresponding to

the potential and potential flux for a node of element j. In a similar fashion, the

vectors with 9 members, hj and gj, correspond to the double integrals in equations

(2.51) and (2.52) respectively. The vectors hj and gj can then be summed and

inserted into fully populated arrays (often referred to as “influence matrices”), Ĥ

and G respectively. This leads to a simplification of equation (2.49) lending to,

cpφp + ĤΦ = GΦn, (2.53)

where Φ and Φn are used to express vectors of potential and potential flux, each

member corresponding to a node within the computational field.

2.4.5 Rigid mode technique

Rather conveniently, the value of cp defined in equation (2.53) can be computed

using a technique called the “rigid mode method” described in Becker (1992). If

equation (2.53) is rearranged as

cpφp = GΦn − ĤΦ, (2.54)

the cp coefficients can be absorbed in the diagonals of Ĥ to give H,

GΦn = HΦ. (2.55)

The absorption of cp only affects the diagonals of the H matrix and it is possible

to compute these terms using the following logic.

51

Chapter 2: Boundary Element Method (BEM); a Generic Formulation

If a constant potential φc were applied simultaneously to every node, and the

resulting zero change in the potential flux this produces, substituted into the

system equation (2.55), the following is obtained:

G ·0 = H ·Φc. (2.56)

Recalling that the diagonals in the H matrix contain unknowns from the intro-

duction of the cp coefficient, the sum of the diagonals in the H matrix can be set

equal to the negative sum of the off diagonals,

Hii = −
∑
i6=j

Hij. (2.57)

In this way the system can be solved giving a fully populated H matrix without

needing to explicitly compute cp. This method is valid for any domain where the

net global flux is zero and provides a convenient way of avoiding the computation

of cp.

2.4.6 Numerical integration

To evaluate the double integrals in equations (2.51) and (2.52) standard two di-

mensional Gaussian quadrature is used on the assumption that the integrals are

smoothly varying over the integration field. In the first instance it is possible to

express a generic double integral as:∫ 1

−1

∫ 1

−1

f(ξ, γ)dξdγ =

Nξ∑
l=1

Nγ∑
m=1

f(ξl, γm)wlwm (2.58)

where, once again, f is the variable to be integrated. The values of Nξ and

Nγ represent the number of integration points in the intrinsic ξ and γ directions

respectively, while, wl and wm are the weightings for the discrete coordinates ξl

and γm. Tables of wl and wm are given in Abramowitz & Stegun (1964), however,

the present work uses the a more adaptive approach for dynamically generating

the weightings as described in Press et al. (1990). From experience, in single

precision arithmetic, (Nξ = Nγ) ≥ 6. However, Nξ = Nγ = 4 can be used and, as

a consequence, a two fold speed up in computational time is obtained, this being

proportional to the square of the number of integration points. Unfortunately,

52

2.4 Numerical implementation

although such a speed up is desirable, the model typically becomes more unstable

with time as the cumulative error from the integrals increases.

The double integrals in equations (2.51) and (2.52) both contain 1
rk relations

(as part of G(r) = 1
4πr

or ∂G(r)
∂n

= −1
4π

r ·n
r3 , with n ≥ 1) such that when r → 0 a

singularity occurs. The generic Gaussian quadrature in equation (2.58) requires a

smoothly varying field to obtain accurate results and this is not possible should

a singularity occur. There are two ways around such a problem. The first is to

use a different quadrature scheme that is better equipped to deal with singular

behaviour; an example of this being tanh− sinh quadrature outlined by Bailey

et al. (2005). Although, theoretically, this option may produce good results, mea-

surement of the accuracy of the scheme would be difficult and would require extra

computational effort, which is undesirable.

The second, and perhaps more standard scheme, is to transform the awkward

integrals into integrals over finite fields. There are effectively three possible sce-

narios in the discretised scheme depending on the distance between the source

point p and the field point q.

i) Assume p and q belong to different elements. In this case r is some value

greater than or equal to an element length, and therefore equations (2.51)

and (2.52) are non-singular. As a result, standard Gaussian quadrature can

be employed.

ii) Assume p and q belong to the same element, but correspond to different

nodes within the element. In this case the value of r is less than an element

length.

(a) Evaluating equation (2.52), G(r) ∝ 1
r
, indicating singular behaviour as

r → 0. However, the shape function Sk tends to zero as r → 0 such that

the effect of the singularity in G(r) is cancelled out. It therefore follows

that standard Gaussian quadrature can again be used to evaluate the

integral.

(b) In evaluating equation (2.51), ∂G(r)
∂n

∝ 1
r2 and the shape function Sk

tends to zero as r → 0. This effectively leaves a 1
r

relationship to be

53

Chapter 2: Boundary Element Method (BEM); a Generic Formulation

evaluated. Some special consideration is required for this term and is

computed via coordinate manipulations discussed below.

iii) Assume p and q belong to the same element and correspond to the same

nodes within the element. In this case r = 0.

(a) Equation (2.52) becomes singular and therefore directly applying Gauss-

Legendre quadrature is inappropriate. In this case some coordinate

manipulation, again discussed below, is required.

(b) The evaluation of equation (2.51) is computed by the rigid mode tech-

nique as discussed in §2.4.5.

To avoid the evaluation of the singular integrals noted above some basic coor-

dinate transformations can be employed. The element in question can be divided

into a number of triangular sub-elements with one vertex per sub-element at the

source node (Dominguez, 1993). Integration can be undertaken over the sub-

elements using a new set of intrinsic coordinates associated with the sub-element

and the singularity issues are thereby avoided. Preliminary investigations have

shown that for single precision arithmetic there is no advantage in using more

sub-elements than the minimum required to describe the element. An example of

a minimum and a maximum number of sub-elements for a source point being at

node 1 of an element is given in Figure 2.5. Some examples of typical sub-element

configurations used in the present work are given in Dominguez (1993).

Using sub-elements and their associated intrinsic coordinates (−1 ≤ {ξ̃, γ̃} ≤
1), the original element’s intrinsic coordinates (ξ and γ) can be expressed as,

ξ =
3∑

n=1

S̃n(ξ̃, γ̃)ξn (2.59)

γ =
3∑

n=1

S̃n(ξ̃, γ̃)γn, (2.60)

where ξn and γn correspond to the nodes used to form the verticies of the tri-

angular sub-elements and S̃n are the shape functions for a triangular quadratic

element; details of the latter provided by Dominguez (1993). In a similar manner

54

2.4 Numerical implementation

Sub−element 1

Sub−element 2

ξ

1 2 3

4

567

8 9

γ

(a)

Sub−element 1

Sub−element 2

Sub−element 3
Sub−element 4

ξ

1 2 3

4

567

8 9

γ

(b)

Figure 2.5: Schematic of sub-element configurations adopted to avoid singular

integrals. (a) Minimum sub-element configuration for a source point at node 1.

(b) Maximum sub-element configuration for a source point at node 1.

to equation (2.49), a Jacobian can be formed from the sub-element coordinate

system to make Gaussian quadrature possible over the triangular elements,

J̃(ξ̃, γ̃) = det

∣∣∣∣∣∣
∂ξ

∂ξ̃

∂γ

∂ξ̃

∂ξ
∂γ̃

∂γ
∂γ̃

∣∣∣∣∣∣ . (2.61)

As a consequence of these manipulations, the double integrals in equations (2.51)

and (2.52) can now be written in such a way that they evaluate to the correct

finite quantities should the occasion arise,

Nse∑
i=1

∫ 1

−1

∫ 1

−1

Sk(ξ̃, γ̃)
∂G

∂n
J̃(ξ̃, γ̃)J(ξ̃, γ̃)dξ̃dγ̃, (2.62)

Nse∑
i=1

∫ 1

−1

∫ 1

−1

Sk(ξ̃, γ̃)GJ̃(ξ̃, γ̃)J(ξ̃, γ̃)dξ̃dγ̃, (2.63)

where Nse is the number of sub-elements used to divide the element in question.

This expression completes the derivation of terms required to implement the BIE

(2.2).

55

Chapter 2: Boundary Element Method (BEM); a Generic Formulation

2.4.7 The treatment of corners and geometric discontinu-

ities

Dealing with geometric discontinuities, arising in physical space as corners and

edges, has long plagued users of boundary element schemes. The BIE (2.2) is only

valid for smoothly varying boundaries and clearly corners do not come under this

category. Within the literature there are three main approaches for dealing with

corners, involving the implementation of double nodes, discontinuous elements and

multiple-fluxes.

The double node approach allows multiple nodes to exist in the same position,

with one node belonging to each element that forms the discontinuity. Each node

is then associated with one direction of the outward normal and, as a consequence,

one potential flux. When the boundary integral system is formed and solved, com-

patibility conditions are required to ensure that the potential at all nodes forming

the discontinuity is the same such that the model is physically real. Similarly,

compatibility conditions for the potential flux can be employed to incorporate

additional (known) physical information into the outward normal directions, an

example being zero flux at a wall. This method of using multiple nodes to describe

discontinuities has been used extensively by Grilli et al. (1989) and his co-workers

for many years ((Grilli & Subramanya, 1996), (Grilli et al., 2001)). Further dis-

cussion of the extended compatibility conditions is provided by Grilli & Svendsen

(1990).

The use of discontinuous elements to overcome the problem of discontinuities

involves the moving of the nodes of the element that would form a discontinuity

away from the intersection and into the actual element (albeit a small amount)

such that the discontinuity is not explicitly defined. This method has been used by

Hamano et al. (2003) and they report that it worked well for their application of

nonlinear standing waves in vessels. However, in the case of a NWT, the physics of

geometric discontinuities is of substantial interest and their accurate representation

essential to the successful modelling of free surface flows. The importance of this

matter is reviewed in detail by Hague & Swan (2009).

The multiple-flux approach is conceptually different in nodal representation

56

2.4 Numerical implementation

from the other two approaches in that it uses a single node at a discontinuity, this

node being shared by the elements that form the boundary of the corner or edge.

The fluxes that exist at the discontinuity are associated with the single node, but

are referenced with respect to the outward normal of the elements that make up

the discontinuity. Hence, in the formulation of the BIE (2.2) the discontinuity

can be fully represented in terms of the known information and the system does

not require any forcing of compatibility before or after the solution formulation.

The multiple-flux method was first employed by Brebbia & Dominguez (1992) in

the context of structural applications. This method was then taken and applied

successfully to a NWT by Hague & Swan (2009). In the interests of accuracy,

the multiple-flux approach is employed in the present work as it is believed that

retaining all the information available within the formulation and solution of the

BIE (2.2) is critical to the accurate modelling of free surface flows.

2.4.8 Sliding elements for gradients and velocities

To compute the free surface boundary conditions outlined in §2.3, velocities and (if

a semi-Lagrangian frame of reference is adopted), free surface gradients, need to be

calculated on the surface boundary of the NWT. Additionally, to assist accurate

integration of element properties, elements that form the side walls of the NWT

need to deform in a uniform pattern; the latter best calculated from the velocity

of the fluid represented by the element.

The boundary conditions relevant to the side walls of the domain are usually

known or prescribed. For example, Γside is often prescribed as a “zero flux” con-

dition to simulate the behaviour of a reflective boundary or plane of symmetry.

As a result, the nodes below the free surface that have this boundary condition

are simply place holders for values of potential used for integration purposes as in

equation (2.2). Figures 2.6(a) and 2.6(b) show schematics of part of the boundary

making up Γside. In Figure 2.6(a) only the nodes on the free surface are allowed

to move vertically and it can be seen that elements near the surface become very

distorted. As a result, they have poor aspect ratios which affects the accuracy

of the integration schemes. In contrast, Figure 2.6(b) allows the movement of all

57

Chapter 2: Boundary Element Method (BEM); a Generic Formulation

nodes on the boundary in proportion to the velocity field at the node concerned.

As a result, the nodes below the free surface move to reflect the disturbance of the

water surface, the amplitude of the movement reducing with vertical elevation.

This ensures that the aspect ratios of the elements are considerably improved.

Free Surface

x

z

(a) Boundary conditions applied to give

fixed points.

Free Surface

x

z

(b) Boundary conditions applied to give

moving points.

Figure 2.6: Side wall boundary condition schematic.

With regards to the velocity components on the boundary of the NWT, typi-

cally, some sort of numerical differentiation of the potential with respect to space

is employed, examples being provided by Grilli & Svendsen (1990), Grilli et al.

(2001), Hague & Swan (2009) and Christou et al. (2008). Similarly, the elevation

of the surface boundary can be differentiated with respect to space to gain infor-

mation about the spatial gradients. Clearly, it would be advantageous in terms

of numerical implementation if the same schemes could be used for both types

of derivative. Perhaps, the most common methods of numerical differentiation

involves fitting polynomials and splines (Press et al., 1990). Grilli et al. (2001)

use a mixture of cubic splines and polynomials and enforces gradient continuity

between elements to get the necessary gradients. Alternatively, Hague & Swan

(2009) use a quadratic “sliding element” to give linear derivatives and to maintain

a gradient continuity across element boundaries.

In the approach that follows, the numerical model has the facility to use

quadratic, cubic and quartic “sliding elements” in their pure polynomial form,

with gradient continuity ensured through spanning the interpolating polynomials

58

2.4 Numerical implementation

across the boundaries of the elements of the domain. Preliminary work suggested

that quadratic interpolating polynomials were not sufficiently accurate when com-

puting the gradients of the very steepest waves. The cubic interpolating polyno-

mials, although probably adequate for computing gradients of steep waves, have

an unfortunate directional bias because four point polynomials are not symmet-

rical. Figure 2.7 demonstrates the asymmetric nature of a cubic polynomial, the

node of interest (highlighted in black) can have its spatial derivatives computed

using information including two nodes from upstream and one from downstream

(polynomial option 1) or, alternatively, one node from upstream and two from

downstream (polynomial option 2). As a result, a directional bias exists which

can cause a number of problems and poses questions regarding the accuracy of

such a scheme. For these reasons quartic polynomial interpolation is used and

appears to be very successful in all but a few very steep wave cases. Further

discussion of this is given in §7.3.

Polynomial Option 1

Polynomial Option 2

Direction of wave propagation

Input Boundary
y

x

Figure 2.7: A schematic showing bias introduced as a result of a cubic polynomial

representation, ◦ nodal positions, • node at which a derivative in the x direction

is to be calculated.

The derivation of generic nth order shape functions is discussed in §2.4.9. How-

ever, at this stage it is possible to discuss their placement and relationships within

a “sliding element” and how this relates to physical quantities in a generic fashion.

The fluid velocities in Cartesian space can be summarised as u = ∂φ
∂x

; u corre-

59

Chapter 2: Boundary Element Method (BEM); a Generic Formulation

sponding to velocities in the three Cartesian directions denoted by x. Whilst it is

possible to calculate these terms entirely from simple geometry, there is the added

complication that the nodes used to define the polynomials may not be in line

with the Cartesian axes. Fortunately, the polynomials can be orientated to lie in

line with the intrinsic coordinate system (ξ, γ), and this can be resolved easily to

the Cartesian system. Having mapped the polynomials to the intrinsic coordinate

system, the velocities can be found by evaluating the following expressions:

∂φ

∂x
=

∂φ

∂s
cos(θs) cos(αs) +

∂φ

∂m
cos(θm) cos(αm) +

∂φ

∂n
cos(θn) cos(αn)(2.64)

∂φ

∂y
=

∂φ

∂s
cos(θs) sin(αs) +

∂φ

∂m
cos(θm) sin(αm) +

∂φ

∂n
cos(θn) sin(αn)(2.65)

∂φ

∂z
=

∂φ

∂s
sin(θs) +

∂φ

∂m
sin(θm) +

∂φ

∂n
sin(θn). (2.66)

αs

αm

αn

s

θθ

y

z

x

θ
m

n

s

n

m

Figure 2.8: Schematic of the angles derived from unit vectors {m, s,n}. In this

example the angles are defined relative to the horizontal plane.

The unknown variables in these equations can be defined as follows. The

variables θm,s,n are the angles made by the unit vectors {m, s,n} to the plane

defined by the boundary in which the element resides. Likewise, the variables

αm,s,n refer to the associated azimuthal angles made by the vectors {m, s,n} with

respect to the positive x direction. An example of these definitions, for an element

that resides on a horizontal plane, is given in Figure 2.8.

60

2.4 Numerical implementation

These angles can be computed from the differentiation of the polynomials

that form the shape functions within the “sliding element”. The velocities in

the intrinsic coordinate directions are given by:

∂φ

∂s
=
∂φ

∂ξ

(
∂s

∂ξ

)−1

and
∂φ

∂m
=
∂φ

∂γ

(
∂m

∂γ

)−1

(2.67)

and the value of ∂φ
∂n

is known from the solution to the BIE (2.2). Finally, the

expressions ∂s
∂ξ

and ∂m
∂γ

are given by,

∂s

∂ξ
=

√(
∂x

∂ξ

)2

+

(
∂y

∂ξ

)2

+

(
∂z

∂ξ

)2

, (2.68)

∂m

∂γ
=

√(
∂x

∂γ

)2

+

(
∂y

∂γ

)2

+

(
∂z

∂γ

)2

. (2.69)

In a separate stage of the computation, the spatial gradients (∂η/∂x and

∂η/∂y) required for the one-third- and two-thirds-Lagrangian boundary condi-

tions (equations (2.19) and (2.28)) need to be defined. This can be achieved using

the same polynomials and “sliding elements” as employed for the velocities derived

above. The specific terms required are given by the expressions:

∂η

∂x
=
∂η

∂ξ

(
∂x

∂ξ

)−1

and
∂η

∂y
=
∂η

∂γ

(
∂y

∂γ

)−1

(2.70)

2.4.9 Shape functions and their hierarchical nature

The generic quadratic function defined in equation (2.48) can be described using

shape functions, as can the higher order generic functions required for comput-

ing derivatives in §2.4.8. For a one dimensional line element lying in the range

−1 ≤ ξ ≤ 1, where ξ is an intrinsic coordinate, a simple method can be used to

compute shape functions to any order. Once computed, the expression for the line

element shape function can be convolved to form shape functions for any dimen-

sioned space on the condition that the space formed from the boundaries of the

line elements completely defines the space.

The algorithm for computing generic shape functions is relatively simple and

relies on the implementation of two rules. For a one dimensional shape function

61

Chapter 2: Boundary Element Method (BEM); a Generic Formulation

for node i, Si, that spans intrinsic coordinates −1 ≤ ξ ≤ 1 and is bound by m

evenly distributed nodes, the rules are:

Si at node i must have the value 1, (2.71)

Si vanishes over any node that is not i. (2.72)

These conditions are sufficient to define the form of the required shape functions.

For example, considering a quadratic line element of general form

Si = Aξ2 +Bξ + C, (2.73)

where A,B and C are unknown constants and the element has three nodes with

intrinsic coordinates ξ = {−1, 0, 1}. Applying the above noted rules at each nodal

position allows the shape function, Si, at i = 1, 2, 3 to be determined. Details of

this simple process being given on Table 2.1 and the results of the generic shape

functions for this element given in equations (2.74), (2.75) and (2.76).

i = 1 i = 2 i = 3 A B C

S1 1 0 0 1
2

−1
2

0

S2 0 1 0 −1 0 1

S3 0 0 1 1
2

1
2

0

Table 2.1: Quadratic shape functions, Si, at nodes i = 1, 2, 3. Values and coeffi-

cients.

S1 =
1

2
ξ(ξ − 1) (2.74)

S2 = 1− ξ2 (2.75)

S3 =
1

2
ξ(ξ + 1) (2.76)

This simple approach can be adopted for any polynomial representation. Details

of the adopted quartic representation are given in Table 2.2 with the coefficients

A− E relating to equation (2.77)

Si = Aξ4 +Bξ3 + Cξ2 +Dξ + E. (2.77)

62

2.4 Numerical implementation

i = 1 i = 2 i = 3 i = 4 i = 5 A B C D E

S1 1 0 0 0 0 2/3 −2/3 −1/6 1/6 0

S2 0 1 0 0 0 −8/3 4/3 8/3 −4/3 0

S3 0 0 1 0 0 4 0 −5 0 1

S4 0 0 0 1 0 −8/3 −4/3 8/3 4/3 0

S5 0 0 0 0 1 2/3 2/3 −1/6 −1/6 0

Table 2.2: Quartic shape functions, Si, at nodes i = 1 . . . 5. Values and coefficients.

To extend the shape functions to 2D space, simple convolutions of the expres-

sions obtained for a 1D case at each point can be used. Continuing with the simple

quadratic example, the shape function S1 corresponding to node 1 in the element

presented in Figure 2.4, comprises two 1D shape functions,

S1|ξ =
1

2
ξ(ξ − 1), (2.78)

S1|γ =
1

2
γ(γ − 1), (2.79)

and the simple convolution of these functions results in the 2D shape function,

S1 =
1

4
ξ(ξ − 1)γ(γ − 1). (2.80)

This method is rather convenient as it is hierarchical and so can be extended

to any order polynomial and yet it is still simple to program (a scripting language

can be used to generate the shape functions for use in Fortran).

Computing the derivatives of the shape functions with respect to their intrinsic

coordinates is equally trivial and can be summarised for the 2D boundary elements

used in the present work as follows:

∂%

∂x
=

Nξ∑
i=1

∂Si(ξ, γ)

∂ξ
%i (2.81)

∂%

∂y
=

Nγ∑
i=1

∂Si(ξ, γ)

∂γ
%i (2.82)

(2.83)

where, as before, % is a generic function, x and y are the Cartesian directions and

Nξ and Nγ are the number of intrinsic coordinates.

63

Chapter 2: Boundary Element Method (BEM); a Generic Formulation

2.4.10 Time marching

To calculate the evolution of the free surface, the boundary conditions are time

marched with a time step, ∆t. The size of the time step is determined according

to the (rearranged) Courant condition,

∆t =
|∆r|C0√
gd0

, (2.84)

where ∆r is the shortest distance between all two node pairings within the NWT,

C0 is the constant Courant number, g is the acceleration due to gravity and d0

is the initial water depth. Based on a large number of preliminary calculations,

C0 = 0.4 was typically found to give the consistently accurate results; a similar

value has been adopted by Grilli et al. (2001).

When the model ran in a semi-Lagrangian frame of reference, the combined 4th-

order-predictor and 5th-order-corrector scheme of Adams, Bashforth and Moulton

(ABM), described by Butcher (2003), was adopted. The Adams-Bashforth pre-

dictor is given by

ς∗n+1 = ςn +
∆t

24
(55fn − 59fn−1 + 37fn−2 − 9fn−3) (2.85)

and the Adams-Moulton corrector given by

ςn+1 = ςn +
∆t

720
(251f ∗n+1 + 646fn − 264fn−1 + 106fn−2 − 19fn−3). (2.86)

Within this formulation, ∆t is the time step, ς is the variable to be time-marched,

and f is its time derivative, or f = dς
dt

. With regard to the subscripts, n indicates

the current time, t, n+ 1 and n− 1 indicate t+ ∆t and t−∆t respectively, while

n− 2 and n− 3 denote t− 2∆t and t− 3∆t respectively. Finally, within equation

(2.86), f ∗n+1 = f(ς∗n+1) where ς∗n+1 arises from equation (2.85).

In its original form, the ABM scheme requires a fixed time step and information

from three previous time steps to predict and correct the next. To provide this

information at the beginning of the calculation a classic 4th order Runge-Kutta

integration scheme (Press et al., 1990) was adopted using the same fixed time step

required for the ABM calculations.

In those calculations in which it was desirable to switch the model from running

in a semi-Lagrangian frame of reference to a fully-Lagrangian frame of reference,

64

2.5 Algorithmic implementation

such that boundary nodes are permitted to move with the fluid’s velocity, the

necessity to maintain a constant Courant number requires the use of adaptive

time stepping. For this reason, in a fully-Lagrangian frame of reference, the model

employs an adaptive Runge-Kutta scheme based on keeping a stable Courant

number with respect to the minimum nodal spacing between the drifting nodes.

2.5 Algorithmic implementation

Having considered each part of the boundary element scheme together, an algo-

rithm is now required to join the parts to form a numerical model. The algorithm

on which the present numerical model is based is described as follows:

i) Data specific to the problem formulation is read into memory. This includes

coordinates, boundary conditions, element and node indices.

ii) The first three ‘kick start’ time steps are performed using a standard Runge-

Kutta algorithm. In undertaking this task, each Runge-Kutta step requires

four calls to the “intermediate step routine”, details of which are described

below.

iii) While the simulation time is less than the time at which the simulation

switches to run in a fully-Lagrangian frame of reference (the latter necessary

to model overturning waves), the solution is time marched using the Adam-

Bashforth-Moulton predictor-corrector scheme. This process requires calling

the “intermediate step” routine twice per time step.

iv) Once the simulation time is equal to or greater than the time at which

the simulation switches to run in a fully-Lagrangian frame of reference, the

solution is time marched using the adaptive Runge-Kutta scheme. This

involves calling “intermediate step” routine four times per time step.

The “intermediate step” routine comprises the following actions:

a) Create the input fluxes from an appropriate analytical wave theory.

b) Calculate the radiation condition (if requested).

65

Chapter 2: Boundary Element Method (BEM); a Generic Formulation

c) Formulate the influence matrix.

d) Solve the influence matrix.

e) Update the boundary conditions (Φ and Φn).

f) Compute the fluid velocities.

g) Compute the free surface gradients (only appropriate to calculations under-

taken in a semi-Lagrangian frame of reference).

h) Enforce the radiation condition (if requested).

i) Update the free surface boundary conditions, identifying dη
dt

and dφ
dt

for the

time marching outlined in steps ii) to iv) above.

Although simple in construction, developing the algorithm into a workable base

took a number of months and aspects of the procedure remain under continual

development.

2.5.1 Computational challenges

A number of computational challenges were envisaged in the building of the ap-

plication, most of these being gleaned from previous experience of other members

of the research group and extensive use of the code profiling tool, GNU gprof().

The first challenge in the new implementation of the BEM model (called

“EPIC BEM”, the reasons for which become apparent in Chapter 3) was to use

a different element type from eight node serendipity elements, thus nine node

Lagrangian elements were chosen. This change was implemented to increase the

resolution in the diagonal direction and to allow the existence of so called “bub-

ble” modes. These changes were made with the view that they would model wave

interactions in an improved manner, capturing more information in the diagonal

directions.

Further to this, spatially larger and higher resolution domains were desirable,

this requiring more nodes and elements to be used to define the numerical wave

tank. As a result of changing the element type and making larger, higher resolution

66

2.6 Conclusion

domains standard, both the node and element numbers had increased considerably

for a typical domain. Larger domains in the EPIC BEM model regularly having

over twice the number of nodes as used by Hague (2006).

To summarise the requirements of the new EPIC BEM code base, the following

features were set out as targets:

• the ability to run very large domains,

• employing as high a resolution as possible,

• in as short a time frame as possible.

In addition, it was envisaged that the numerical model could be applied to

other areas of free surface flow mechanics such as the interaction of waves with

ships, breakwaters and platforms to name a few. For this to be possible the code

had to have an adaptable, easy to use gridding system to form the numerical

wave tank. Furthermore the code had to be well written and modular to allow

extensions necessary to deal with specialised areas of free surface flows such as the

computation of the movements of floating bodies.

2.6 Conclusion

Although the BEM of Hague & Swan (2009) and Hague (2006) is excellent in that

it gives a good deal of insight into accurately predicting free surface flows and

addresses the infamous “corner problem”, there are a number of features that the

model lacks and indeed some features which are wholly undesirable. For example,

the excessive run time and limits to the resolution that this imposes. For these

reasons a completely new implementation of the BEM algorithm was produced,

with special attention paid to areas in computation efficiency and accuracy that

were perhaps overlooked when concentrating more on proof-of-concept work.

67

3

Parallel Implementation of Matrix Forma-

tion

3.1 Introduction

As discussed in §2.5.1 the computational intensity of the BEM is a real cause for

concern, especially in respect of simulating high resolution, realistically sized wave

fields. This chapter looks at the options available to reduce the run time of the

BEM scheme and the use of high performance computing to aid such a program.

First, benchmark tests are run on a serial implementation of the BEM code, and a

view is taken based on these results as to how to decrease run time and yet retain

a high level of accuracy. A method is developed to make use of a distributed

computational environment and, based on this, scaling and performance metrics

are investigated.

3.2 Parallel implementation of the BEM

Sections §3.3–§3.11 take the form of a technical paper, prepared for submission

to an internationally leading journal, addressing the use of distributed computing

in a boundary element method for applications in computational wave mechanics.

Following completion of the paper, sections §3.12–§3.13 provide some additional

68

3.2 Parallel implementation of the BEM

information and concluding remarks concerning the parallel implementation of the

matrix formulation.

69

On the use of distributed computing in a boundary

element method with applications to free surface

waves

S. Archibald

Dept. Civil and Environmental Engineering, Imperial College London, London,

SW7 2AZ.

Abstract

This paper discusses the computational requirements of a multiple-flux boundary

element method (BEM) applied to the description of free surface water waves that

are both fully nonlinear and directionally spread. Computational profiling is un-

dertaken, followed by an investigation into the available methods and technologies

necessary to achieve the required reduction in computational effort. A distributed

algorithm is developed and shown to be effective for large computational domains,

with the added advantage that it can be run on any machine that supports an

MPI environment. With the introduction of distributed computing a multiple-

flux boundary element model can achieve computational speeds comparable to

a BEM code employing a fast multipole method without the uncertainty in the

accuracy-computation time relationship associated with the latter.

Key words: distributed computing, parallel computing, boundary element

methods, matrix formation.

70

3.3 Introduction

3.3 Introduction

The multiple-flux boundary element method (BEM) first outlined by Brebbia &

Dominguez (1992) is ideally suited to the study of mixed boundary value problems

involving the specification of both Neumann conditions (prescribed ∂φ
∂n

) and Dirich-

let conditions (prescribed φ), where φ is the velocity potential on the boundary and

n the outward pointing normal. With the introduction of multiple-fluxes, difficul-

ties associated with the corner problem are avoided and the method shown to be

very successful at modelling surface water waves within what is commonly referred

to as a numerical wave tank (Hague & Swan (2009), Christou et al. (2008), Chris-

tou et al. (2009)). However, when this approach is applied in a three-dimensional

domain, which is necessary to incorporate the effects of directional spreading,

the number of nodal points rapidly increases leading to prohibitively long com-

putational times. To overcome this difficulty, an investigation into methods of

increasing the speed of the computation was undertaken and is reported herein.

The present paper does not concern the formulation of a 3D BEM, nor does it

present wave calculations arising from the model; it purely describes a method to

speed up the calculations without having to compromise the accuracy achieved.

Whilst this is obviously important from the practical perspective of run-times, it

is particularly important in the context of modelling realistic ocean wave fields;

the latter being characterised by a broad spread of wave energy across both the

frequency and the directional domains. As a consequence, the spatial (or nodal)

resolution (∆x, ∆y, ∆z) necessary to achieve realistic solutions is inevitably high

and this, in turn, necessitates a large computational effort.

3.4 Previous methods

There are various methods by which the computational time needed for a BEM can

be reduced. These range from algorithm advancements to the use of distributed

computing. A selection of commonly applied methods is reviewed as follows.

The method of domain decomposition is described in Trevelyan (1994) and

successfully applied by Bai & Eatock Taylor (2007). This approach reduces the

71

Chapter 3: Parallel Implementation of Matrix Formation

computational effort by splitting a large BEM domain into a number of smaller

subdomains. As a result, instead of the BEM algorithm being O(n2), where n

is the number of nodal points, it tends to O({n2

m̂
}), where m̂ is the number of

subdomains. Unfortunately, this approach is known to suffer from a number of

problems, the most significant of which concerns the convergence of the final solu-

tion. Further discussion of the difficulties associated with domain decomposition

is given by Strating & De Haas (1997).

A second, perhaps more rigorous, approach to reducing the computational ef-

fort of BEMs is the use of a fast multipole method (FMM), full details of which are

given in Greengard & Rokhlin (1987). This algorithm reduces the computational

effort of forming the influence matrix from O(n2) to a minimum of O(n). The

FMM works by classifying nodes as local or remote to a source node depending on

some predetermined kernel length. This allows contributions to the influence ma-

trix from the nodes classed as “remote” to be grouped together thus reducing the

computation time normally involved with evaluating every single node. The effi-

ciency of a FMM for a BEM used to model free surface waves has been investigated

by Yan et al. (2006). Furthermore, the method has been successfully employed to

describe surface waves by Xue et al. (2001) and Guyenne & Grilli (2006), and for

wave-body interactions by Liu et al. (2001). However, in considering this method

it is clear that the reduced computational effort is achieved by potentially com-

promising the accuracy of the overall solution; the exact relationship between the

accuracy achieved and the computational time taken being uncertain and problem

dependent. Chaillat et al. (2008) offer some insight into the specific issues relating

to the accuracy of the FMM. Whilst it is clear that high accuracy can be achieved

using the FMM, it can only be realised at the cost of increased computational

complexity. Further discussion regarding error bounds, accuracy and the choice

of parameters in the FMM is presented by Darve (2001), Kybic et al. (2005) and

Gumerov & Duraiswami (2009). However, there are some immediate advantages

of using the FMM, perhaps most notably that the method lends itself well to a

fast matrix-vector multiplication algorithm due to the hierarchical nature of the

algorithm. The benefits of such a scheme are immediately apparent when imple-

mented in indirect numerical linear system solvers, for example GMRES (Saad &

72

3.5 Computational profiling

Schultz, 1986).

To avoid difficulties associated with the FMM, efforts have turned to the use

of high performance computing (HPC) to assist with the solution of the problem

whilst maintaining full accuracy for a known computational effort. As a result,

there has been a rise in the use of distributed computing for increasing the speed

at which BEM calculations run. This development is timely in two important

respects. First, the availability of systems capable of running such code has risen.

Second, with changes in design methodologies there is a widely acknowledged need

to model the largest most nonlinear waves arising in realistic sea states; the success

of which is critically dependent on the ability to solve very large computational

domains. In the field of free surface wave mechanics most of the early attempts

at parallelisation of the BEM algorithms focussed on improving the speed of the

matrix solving phase of the problem, as this was the rate limiting part of the

solution e.g. Kreienmeyer & Stein (1995) and Natarajan & Krishnaswamy (1995).

However, improvements in matrix solvers and the need for larger computational

domains has reversed this trend such that matrix formulation now tends to be the

rate limiting factor.

The method chosen to improve the run times within the present study was a

novel matrix decomposition method which distributes the computational effort of

matrix formation over a number of processes in a distributed computing environ-

ment. This allows a large number of higher order elements to be used to more

accurately model larger, high resolution domains. As far as the authors are aware

this is the first time such a method has been used in a BEM model appropriate

to surface water waves.

3.5 Computational profiling

To establish where to focus the parallel programming effort, a serial version of

a BEM implementation developed by Hague & Swan (2009) was compiled using

GNU gfortran with the −pg switch, to enable code profiling, and as many speed

related optimisations as possible. The result of this compilation is an executable

which contains profiling symbols such that when it is executed it writes a run-time

73

Chapter 3: Parallel Implementation of Matrix Formation

profile to file. The file can then be parsed by the GNU gprof tool to create a call

graph and extensive code profile table. The call graph and profile table display

information about the number of times a routine is called and how much time is

spent computing each routine.

Key information from the profiling of the serial version of the BEM is provided

in Table 3.1. Intrinsic system calls have been left out of the table as they are an

unavoidable consequence of programming. The numerical scheme comprises two

main phases, the first, matrix formulation, and the second, matrix solution. The

routine ghmatpq(), is used to form the matrix from the integrated elements. The

ghmatpq() routine calls either extinpq(), which integrates elements external to

the current node, or locinpq(), which integrates elements local to the current

node. In addition to the matrix forming routines, main(), the entry point to

the code, and gmres(), the matrix solving routine, also merit mentioning as they

take small but significant amounts of run time. With the profiling complete, the

integration routines forming the influence matrix were shown to take by far the

most time per calculation step. Accordingly, these routines will be the focus of

reducing the computational run time.

Routine Name % Total Time Number of Calls

extinpq() 85.5 17784

main() 1.1 1

locinpq() 8.7 1021

ghmatpq() 3.1 1

gmres() 1.6 1

Table 3.1: Profile summary for serial BEM code.

Within the BEM algorithm, repeated spatial integration is a core activity and,

not surprisingly, one that accounts for much of the computational effort. Given

the nature of the boundary integral equation, the matrix is built of contributions

from every node being integrated with respect to all the nodal points; hence the

O(n2) computational effort. To perform these integrations a Gaussian quadrature

74

3.6 Developing a fast algorithm

scheme is adopted using a k̃ by m̃ grid of integration points in the two intrinsic

directions across each element. In terms of the integration, the computational

effort required will be O(k̃ · m̃). Therefore, there is the potential for both the

requirement of high resolution and ill conditioned integrals to occur in the same

problem requiring O(n2) ·O(k̃ · m̃) computational effort.

Finally, it should be noted in Table 3.1 that the general minimised residual

matrix solver, gmres(), proposed by Saad & Schultz (1986), only takes a small

percentage of the total computation time. However, it should be anticipated

that this value will rapidly increase with the matrix size and with poor matrix

conditioning.

3.6 Developing a fast algorithm

To develop a fast algorithm it is necessary to decide on what level the majority of

the computation should take place; at compute node level or at interconnect level.

Memory access times can be used to rapidly decide which scheme would be the

most efficient; remembering that a processor can only do work once it has fetched

data from memory.

The memory on each computer (compute node) in the distributed environment

can be accessed very quickly by the processors local to that specific compute node.

The distributed memory can be accessed by all machines but the access is slower

as it is achieved via an interconnect. However, this memory has a far greater

capacity than on any individual compute node.

Using this information it is logical to optimise the code so that as much com-

putation as possible takes place at compute node level and to only communicate

between compute nodes when absolutely necessary. This reduces distributed en-

vironment overheads and prevents data bottle-necks at the interconnects.

3.7 The BEM algorithm

It has already been noted that the largest effort in terms of parallelising the

algorithm should be concentrated on the integration scheme. A serial version of

75

Chapter 3: Parallel Implementation of Matrix Formation

Listing 3.1: A serial version of the integration scheme indicating the nested loops.

foreach node

foreach node with in each element

i f (node from inner loop i s in an element

to which a node on the outer loop be longs)

c a l l l o c inpq ()

else

c a l l ext inpq ()

end

push r e s u l t s o f i n t e g r a t i o n to

i n f l u e n c e matrix

end

end

this scheme is given for reference in Listing 3.1.

It can be seen that there are two loops, one nested in the other, both looping

in the order of n times, hence an O(n2) computational effort (see §3.5). The

outer loop can be distributed in an embarrassingly parallel fashion due to the

complete independence of the results in one part of the integration system to all

others; in effect the algorithm displays a high level of exploitable concurrency.

Thus, an algorithm could be made to distribute the outer loop among multiple

processes (process in the sense of a UNIX process) within a distributed computing

environment. It is the embarrassingly parallel nature of the integration scheme

that lends its name to the present project: Embarrassingly Parallel Integration

Code for Boundary Element Methods (EPIC BEM).

A general boundary element scheme involves the integration of each node with

respect to all other nodes to form two influence matrices G and H; the former

based on the free space Green’s function G(r), which is the fundamental solution

to Laplace’s equation, and the latter its normal derivative ∂G(r)
∂n

. The system

formed by matrix H multiplied by potentials φ and matrix G multiplied by the

potential fluxes φn essentially defines the boundary integral equation (BIE) and

can be manipulated to create the well known system of the form, Ax = b. This

76

3.7 The BEM algorithm

new system can then solved to give the unknown potentials and potential fluxes

that were originally present in the vectors φ and φn respectively; the detail of how

this is achieved in a multiple-flux formulation being provided by Hague & Swan

(2009). Referring to Figure 3.1, a theoretically simple one dimensional block

cyclic decomposition can be used to distribute the n nodes of the outer loop, in

the serial algorithm given above, onto P processes. Each process would then be

able to compute the integration for each of its m = n
P

nodes forming m rows of

the influence matrices.

Figure 3.1: A schematic of the G-H matrix decomposition.

Adopting this approach, the computation time, ignoring distributed environ-

ment overheads, should decrease in proportion to the number of processes em-

ployed so long as each process runs on a separate processor, or, in the case of a

processor with multiple cores, each process runs on a single processing core. An

example of a master-slave algorithm achieving this approach is given in Listing 3.2.

Although this algorithm is simply expressed on paper, programming it using

a parallel library such as MPI is nevertheless challenging. Difficulties arise when

the n nodes are not divisible by the number of processes available. Similarly, if

the slave processes do not have sufficient memory to hold the information to com-

pute the integration, or the result of the integration, then the algorithm requires

significant change. Along side these difficulties lie the standard problems with

distributed computing such as dead locking and race conditions, both of which

require careful planning to avoid.

77

Chapter 3: Parallel Implementation of Matrix Formation

Listing 3.2: Master-slave algorithm outline for parallel matrix formation.

A master s l a v e a l gor i thm i s shown where by one

process becomes the ‘ ‘ master ’ ’ and d i s t r i b u t e s

i n s t r u c t i o n s to the ‘ ‘ s l a v e ’ ’ p roce s s e s .

i f (p roc e s s==master)

broadcast a l l in fo rmat ion r equ i r ed to complete the

i n t e g r a t i o n to s l av e p r o c e s s e s . This i n c l ud e s coord inate s ,

boundary cond i t i ons , and element index in fo rmat ion

foreach s l a v e proce s s

r e c e i v e r e s u l t s from s l a v e s for

i n t e g r a t i o n o f m nodes ,

push r e s u l t s o f i n t e g r a t i o n to

i n f l u e n c e matrix

end

else #process i s a s l a v e

r e c e i v e broadcast o f in fo rmat ion from master ,

compute which ‘ ‘m’ ’ nodes should be c a l c u l a t ed

by t h i s s l a v e

foreach m nodes

foreach node with in each element

i f (node from inner loop i s in an element

to which a node on the outer loop be longs)

c a l l l o c inpq ()

else

c a l l ext inpq ()

end

s t o r e i n t e g r a t i o n r e s u l t s l o c a l l y with

r e f e r e n c e to ‘ ‘m’ ’

end

end

send r e s u l t s o f ‘ ‘m’ ’ nodes to master

end

78

3.8 The test bed

Case 1 Case 2 Case 3 Case 4

X-dimension (m) 0.0 → 3.0 0.0 → 4.0 0.0 → 6.0 0.0 → 8.0

Y-dimension (m) −1.0 → 0.0 −2.0 → 0.0 −3.0 → 0.0 −5.0 → 0.0

Z-dimension (m) −0.8 → 0.0 −0.8 → 0.0 −0.8 → 0.0 −0.8 → 0.0

Nodes 4962 10242 20162 40322

Table 3.2: Dimensions used to generate the numerical wave tanks.

3.8 The test bed

The boundary element code was applied to a numerical wave tank scheme; the

purpose of the computations being to calculate the propagation of regular waves

over a horizontal bed. Nine node Lagrange elements were used with a discretisation

of 0.05m in all directions. The shape of the tank was cuboid, with a geometry

chosen to give approximate problem sizes of 5000, 10000, 20000 and 40000 nodes in

a domain; hereafter referred to as Cases 1-4 respectively. Table 3.2 gives the exact

geometries used for the domains, each domain having a fixed depth of 0.8m and

the two horizontal dimensions altered to give the required number of nodes. The

wave simulation involved a regular wave input using a Stokes 5th order analytical

solution with a wave number of 4.0369 (rads ·m−1) and a wave height of 0.02m. An

open tank condition was applied at the downstream end of the numerical domain

using a radiation boundary based on Sommerfeld (1949) and the Courant number

defining the time step was set to 0.4 for all simulations.

Six integration points were used for each element on the grid such that in the

previously used O(k̃ · m̃) notation, k̃ = m̃ = 6. For each problem size the so-

lution was time marched in its respective domain for 103 time steps. Given the

nature of the information required for the time-marching, the first three time steps

were undertaken using a fifth-order Runge-Kutta integration scheme to kick-start

the calculation, followed by 100 steps of an Adams-Bashforth-Moulton predictor-

corrector scheme; the latter being more efficient given the required accuracy. Fur-

ther details of the time stepping procedures are given in Hague & Swan (2009).

The high performance computing (HPC) cluster at Imperial College London

was used for the speed testing. The cluster comprises a number of compute blades

79

Chapter 3: Parallel Implementation of Matrix Formation

linked by a gigabit ethernet interconnect. A single job on the HPC system can

use a maximum of 16 blades, each blade having 4 Xeon processor cores and 16Gb

RAM. Thus the largest computation environment encompasses 64 processors and

256Gb RAM. In the interests of fair testing, far more RAM was requested in each

job than needed by the tests to ensure that the use of virtual memory did not

skew the results. The code was run for each problem size on 1, 4, 8, 16, 32, and

64 processors; in all cases only one MPI process was run on a given processor at

a particular instance in time.

3.9 Discussion of results

The results from the proposed scheme were extremely promising. The most no-

table result being that for large problem sizes (n large) the computation time

is limited by the gmres() routine that solves the influence matrix to obtain the

solution.

Figure 3.2 shows the average computation time for one Adams-Bashforth-

Moulton time step when running the code on 1, 4, 8, 16, 32 and 64 processors

for Case 3 (20000 nodes). This figure illustrates that the time spent in serial op-

erations and performing the gmres() routine is, as expected, independent of the

number of processes used as they are undertaken as serial operations.

The speed up of the ghmat() routine as more processes are added to the parallel

environment is quantified in Table 3.3. This indicates that the ghmat() scales well

from 4-16 processors for all but the largest case (Case 4). However, the rate of

increase of computational speed decreases with the addition of further processes;

the benefit of 32 and 64 processes being progressively marginal. The most likely

explanation for this lies in the development of bottle-necks on the interconnect.

This slow down can also be seen in the case with the largest number of nodes,

Case 4. Once again this is believed to be due to bottle-necks within the HPC

system architecture.

Table 3.4 concerns the speed up of the computation time for the entire EPIC BEM

scheme. This table indicates that the use of a relatively inexpensive high end work-

station with 8 processing cores would compute BEM calculations approximately

80

3.9 Discussion of results

1 4 8 16 32 64
0

500

1000

1500

Number of processors

T
im

e
(s

)

gmres()
ghmat()
serial computation

Figure 3.2: Average computation times for one time step for 1, 4, 8, 16, 32 and

64 processors solving a problem of size 20000 nodes. Note: the time occupied

undertaking the serial calculation is very small and corresponds to the line at the

top of each bar.

Processes 4 8 16 32 64

Case 1 1 2.16926 4.06822 6.6744 9.39565

Case 2 1 2.17013 4.05827 6.69643 9.69873

Case 3 1 2.16884 4.04839 6.70988 9.7109

Case 4 - 1 1.86879 3.10181 4.48771

Table 3.3: Increase in the computational speed of the ghmat() routine defined in

terms of the average computation time for one time step normalised with respect

to that achieved using 4 processors. (Note: in Case 4 the speed is normalised

relative to that achieved with 8 processes; the reason for this being explained

below.)

81

Chapter 3: Parallel Implementation of Matrix Formation

five times faster than a serial BEM code. The table also demonstrates that it is

possible to reduce the run time of a very large problem by more than an order of

magnitude with a suitable algorithm and sufficient processors.

Processes 1 4 8 16 32 64

Case 1 1 2.81477 5.77145 9.77199 14.4517 18.0688

Case 2 1 2.74463 5.44375 8.92724 12.6888 15.7050

Case 3 1 2.64956 5.10663 8.03879 10.9712 13.1195

Case 4 1 - 4.82355 7.40905 9.8004 11.6004

Table 3.4: Increase in computational speed for the BEM scheme as a whole in

comparison to a 1 process “serial” version.

In considering the data presented in Table 3.3 and Table 3.4, two problems

arise relating to the implementation of Case 4 involving the largest computational

domain (n=40000 nodes). The first problem arises on both Table 3.3 and Table 3.4

and concerns the distributed implementation of the code on 4 processors on the

same blade. In this case, there is simply insufficient memory to cope with the

amount of data shuffling required to deal with a fully allocated n × n matrix

storage area for the master process and three n ×m matrices as required by the

slave processes. For this reason the implementation of Case 4 on 4 processors does

not feature in either of these tables and is missing from the subsequent figures.

The second problem concerns the implementation of Case 4 using 1 serial

process. In this case the speed of the computation was such that it did not

complete the 103 calculation steps within the three day run-time limit imposed on

the Imperial College London HPC system. To overcome this difficulty the Case

4 ratios presented on Table 3.4 were based upon an average time step calculated

over the 38 steps that were completed within the three day limit.

In most parallel implementations of an algorithm there are significant compu-

tational overheads associated with invoking a parallel environment. This means

that the scaling from 1 to 4 processes will not lead to a four times speed up in the

parallel section of the code. However, in the present case, these overheads require

approximately the same computational effort for four processes as for x processes,

82

3.9 Discussion of results

where x > 2. It therefore follows that in the case of the ghmat() algorithm, once

the decision to use a parallel environment has been made, adding more processes

to the computation environment simply speeds up the step time almost in propor-

tion to the number of processes added. This result demonstrates that the slowest

part of a boundary element computation, the influence matrix formulation, scales

very well in a parallel environment. This is demonstrated in Figure 3.3 in which

the average time step for four or more processors is compared with the perfectly

proportional scaling.

In §3.4 it was noted that the fast multipole method (FMM) is commonly

adopted to speed up BEM calculations. Figure 3.4 contrasts the overall scaling of

the EPIC BEM scheme with the theoretical speed of an FMM algorithm. Within

this figure both axes have been non-dimensionalised: the x-axis representing the

problem size, expressing the number of nodes as a ratio of those in Case 1, and the

y-axis the average time step expressed as a ratio of the value achieved in a “serial”

implementation of case 1. In respect of the FMM solution two indicative lines are

drawn, O(n) based on the findings of Greengard (1988) and O(n · log(n)) based

on the those of Barnes & Hut (1986). Although these lines are not absolute they

give an idea of the scaling properties of two of the most popular FMM algorithms

(assuming that for Case 1 the FMM algorithms take the same average step time as

the serial code for Case 1). The O(n2) line is also included on Figure 3.4 allowing

comparisons with a standard “serial” BEM algorithm.

Comparisons between these theoretical limits and the EPIC BEM results in-

dicate that the use of 16 processors, with one process per processor, gives an

equivalent run-time to that of even the fastest serial FMM codes. Should faster

run-times be required, simply adding more processors to the environment signif-

icantly reduces the run time. For example, with 64 processors the EPIC BEM

code is more than 40% faster than the FMM limit assuming they have the same

run time characteristics for Case 1 in serial. Most importantly, this enhanced

computational speed can be achieved without loss of accuracy.

83

Chapter 3: Parallel Implementation of Matrix Formation

4 8 16 32 64

50

100

150

200

250

300

350

400

450

500

Number of processors

A
ve

ra
ge

 ti
m

e/
st

ep
 (

s)

Case 1

Case 2

Case 3

EPIC_BEM GHMAT()
Perfectly Proportional Scaling

Figure 3.3: Demonstrating the scalability of the core integration algorithm.

84

3.9 Discussion of results

1 2 3 4 5 6 7 8

10

20

30

40

50

60

Nondimensional problem size (case 1 used as base)

N
on

di
m

en
si

on
al

 s
te

p
tim

e
(c

as
e

1
av

er
ag

e
tim

e
st

ep
 u

se
d

as
 b

as
e)

 1 process

4 processes

8 processes

16 processes

32 processes

64 processes

O(n2) Standard BEM method

O(n⋅log
2
(n)) FMM

O(n) FMM

Figure 3.4: Non-dimensional plot of problem size against step size using 1, 4, 8,

16, 32 and 64 processors with comparisons to the FMM.

85

Chapter 3: Parallel Implementation of Matrix Formation

3.10 Further considerations

In considering the results presented above, it has already been noted that the

scaling from 1 to 4 processes is poor due to the inevitable parallel overheads.

However, there is another factor due to the HPC environment on which the code

ran that exaggerates this behaviour and leads to an underestimate of the benefit of

the distributed algorithm. When the code was compiled for running on the HPC

cluster, the -parallel switch on the Intel compiler was used to request that as

many OpenMP type instructions as possible were built into the final executable.

The cluster blades each have 4 processing cores and any idle time on a core will,

where possible, be taken up processing OpenMP type instructions from the other

processes’ workloads. This is very important when seeking to run the code on a

single processor using a “serial” algorithm. In this case there are three additional

processors on the blade that are part of the job allocation. This means that al-

though the serial code is running in “serial”, there are 3 idle processors on the

blade performing any OpenMP type instructions in the code and running the op-

erating system load. This would not be the case in the “parallel” implementation

as none of the processors on a blade would be idle and therefore able to help with

the workload of others. Unfortunately there are no available single processing core

blades that are identical (in all other respects) to the blades on the cluster. As a

result, the serial code undoubtedly has a faster run time than it would in a true

single processor environment. Consequently the data presented on Table 3.4 and

Figure 3.4 are conservative in terms of the speed increases achieved.

With the code designed to run primarily on homogeneous distributed memory

cluster computers, the master-slave model inevitably leads to data bottle-necks.

Additionally, as the slave process undertake near-identical computations, it is

likely they will finish their tasks at approximately the same time. As a result they

will all wish to communicate with the master process simultaneously; the latter

taking place over the interconnect. In undertaking some initial calculations, it

was found that a 1Gb backbone ethernet interconnect was detrimentally flooded

with communication; the problem becoming exacerbated with increases in the size

of the computational domain (large n). Nevertheless, the effects of data transfer

86

3.11 Concluding remarks

bottle-necks can only be seen in the larger domain sizes, especially when using

large numbers of processes. As the domain sizes increase, continued problems are

anticipated.

Another problem that will inevitably arise in the near future is that bound-

ary element codes will reach and exceed physical memory limits. The influence

matrix scales as O(n2) such that 16Gb of RAM (16× 230) can hold ∼ 2.14× 109

numbers (assuming 4 bytes per float). Given the nature of the problem this also

approximately represents the square of the maximum number of nodes, n, defining

a problem. To avoid such limits it is possible to adopt distributed storage of the

matrix as in Cunha et al. (2002). However, this would cause the parallel solution

of the problem to become more fine grained and therefore communication intensive

at the interconnect level. This, in turn, would lead to a significant increase in the

complexity and run-time of the problem.

3.11 Concluding remarks

This paper demonstrates that a simple matrix decomposition method is suitable

for the parallelisation of a multiple-flux BEM. The method is shown to scale well

across large numbers of processes with the added advantage that it can be run on

any machine that supports an MPI environment. Using this approach it is possi-

ble to achieve computation speeds comparable to that of a BEM code employing

a fast multipole method. Most importantly, these speeds can be achieved with-

out (potentially) having to compromise the accuracy of the solution and without

introducing uncertainties in the accuracy-computation time relationship.

Acknowledgements

The authors gratefully acknowledge the financial support provided by the UK

Engineering and Physical Sciences Research Council (EPSRC) under grant num-

ber F022964/1, and the High Performance Computing centre at Imperial College

London.

87

Chapter 3: Parallel Implementation of Matrix Formation

3.12 HPC systems

To assist the development of the EPIC BEM code, the author designed and built

a small (∼12 computational nodes) cluster computer in the fluids laboratory in

the Dept. Civil and Environmental Engineering at Imperial College London. The

cluster computer was made of compute nodes that were not identical in processor

power or memory, hence the cluster computer had a heterogeneous architecture.

Having a private cluster computer was beneficial in the development of the al-

gorithms and ideas found in §3.3–§3.11 as there was no queue for resources, the

software layer on which parallel algorithms ran could be tuned and modified at

will and any code written for a heterogeneous machine required more thought with

respect to aspects such as load balancing and network latency. The latency of the

network being rather an important issue as it forms part of the serial workload as

seen in Figure 3.2 and therefore affects the maximum speed increase obtainable.

3.13 Conclusions

It is apparent from §3.3–§3.11 that implementing the influence matrix construc-

tion algorithm ghmatpq() to make use of a distributed computing environment is

conceptually sound and works well in terms of performance gain. The run time

of the construction phase is reduced sufficiently such that realisticly sized, high

resolution computational domains can now be computed within a reasonable time

frame.

There is, however, at least one further optimisation that could be made to

the algorithm that would help address the issue of a network bottle-neck in the

gathering phase of the algorithm when the parts of the influence matrices are

pooled on the master node. In a homogeneous distributed environment it is likely,

given that the decomposition of the work is one dimensional, that the compute

nodes will all have approximately the same run time for the work performed.

Therefore the gathering of the distributed matrix by the master node will occur

almost simultaneously across all the nodes, hence the network connection of the

master node becomes a bottle-neck for data transfer. There are two ways around

88

3.13 Conclusions

such a problem. The first is to use a lower latency network interconnect such as

Infiniband (InfiniBand Trade Association, 2000). The second, is to use a “guided”

(as in a guided schedule in OpenMP (Chapman et al., 2007)) decomposition of the

workload. Imperial College London’s HPC service has an Infiniband interconnect

on some parts of the system and so the first option has been tested. As expected,

additional performance is gained from using a higher performance connection.

The second option has not been tested as it requires a lot of computational book

keeping and overhead. In addition, there are other areas of greater concern with

respect to computational run time such that the small lag caused by network

bottle-necks is not considered the most pressing issue. These additional areas of

concern are addressed in the next chapter.

89

4

Matrix Solving on GPUs

4.1 Introduction to matrix solving

It has been shown in Chapter 3 that the distribution of the influence matrix

formation over multiple processes drastically reduces the run time of the code.

Indeed, the wall time of the formation stage is reduced so much that the time taken

to solve the matrix system can, in the worst cases, take up to approximately 65%

of the total time per step. This result is due to the fact that the influence matrix

condition generally worsens with time and therefore the results differ from those

presented in Chapter 3; the latter considering the first 100 steps of a calculation

when the matrix is better conditioned.

In the present EPIC BEM formulation, the matrix solving algorithm only

makes use of one compute node (a shared memory programming limitation). This

means that during the solution time the other nodes in the distributed computing

environment are idling. Consequently, the distributed computing environment is

only being used approximately one third of the time, and this is clearly a poor use

of computing power.

In the interests of addressing the problem of idle compute nodes during the

solution phase of the algorithm, described in §2.5, there are a number of options:

a) Use the idling processing cores on the compute node designated to matrix

solving to assist with the computation.

90

4.1 Introduction to matrix solving

b) Use the idling processing cores on the distributed compute nodes to assist

with the computation.

c) Accelerate the matrix solving phase in some way such that the solution time

becomes insignificant. As a result, the idle time will become negligible.

In both Chapters 2 and 3 it was noted that the matrix solver used to obtain

a solution to the system formed by the influence matrices, H ·Φ = G ·Φn, is an

implementation of the generalised minimal residual method (GMRES) first pro-

posed by Saad & Schultz (1986). The original implementation of the GMRES

code used for this work was written by Christou et al. (2008). However, the im-

plementation in current use is a version optimised for multi-core processors, via

the addition of OpenMP instructions, by the author. The OpenMP instructions

speed up the solver by making use of additional processing cores within a compute

node to increase the performance of BLAS (Basic Linear Algebra Subprograms,

(Lawson et al., 1979)) type operations and to distribute code loops. The perfor-

mance gain using OpenMP instructions is, however, limited as there are numerous

medium/fine grained operations (e.g. Jacobi rotations) within the GMRES al-

gorithm, a finite bandwidth on the bus transporting data to the processors and

significant overheads associated with a OpenMP environment.

With respect to points a)–c) above, the purpose being to enable a better use of

computing power during the matrix solving phase, the OpenMP enabled GMRES

algorithm addresses the first idea of using the idling processing cores within the

compute node on which the matrix is solved. Whilst there is some performance

gain using this method over a serial algorithm running on a single processing core,

the gain is not particularly large; full details of the comparison are provided in

§4.7.

The second idea of using the idling distributed environment to help solve the

matrix system may, in principle, seem worth investigating as there is potentially

a lot of processing power available. However, the distributed compute nodes are

harnessed together via a switched network and communicate via a TCP/IP layer.

This means that all the latencies and lag involved in communicating data would

slow any proposed algorithm down. This problem is commented on in the ScaLA-

91

Chapter 4: Matrix Solving on GPUs

PACK manual (Blackford et al. (1997)) and is generally tackled in their code

via extensive tuning. In addition, Vardon et al. (2009) considers using a hybrid

(distributed with MPI and threaded with OpenMP) parallel conjugate gradient

algorithm for solving sparse matrices resulting from finite element calculations.

The conclusion drawn from this work is that an approximately six times speed up

can be gained for very large problems. However, this requires a very expensive

Infiniband interconnect fabric to link the processing nodes and most of the gain

in speed was achieved within the addition of the first 7 processing cores.

Following a careful investigation by the author, it was revealed that the size of

the system to be solved in the present boundary element formulations is awkward

in the sense that it is at the upper limit of what a single compute node can solve

in a reasonable time. Compounding the awkwardness, the system size is generally

too small to make distributed solving worth while, especially if no Infiniband fabric

is available. The second idea, b), was therefore disregarded.

Recently, a new architecture called Compute Unified Device Architecture (now

depreciated and simply referred to as “CUDA”) was brought into the realm of com-

monly accessible scientific computing by engineers at NVIDIA Ltd. The CUDA ar-

chitecture takes the physical form of a specialised graphics processing unit (GPU)

accessed via a standard PCIe bus. The architecture uses a method akin to vector

processing called single instruction multiple thread (SIMT) and can be described

as “many-core” with each core being able to run thousands of threads simultane-

ously.

There has been a lot of interest in the many-core computing scene with im-

portant contributions from NVIDIA’s CUDA (NVIDIA, 2009), ATI’s CTM (Ad-

vanced Micro Devices Inc, 2006) now depreciated in favour of OpenCL (Khronos

OpenCL Working Group, 2009), Sony/Toshiba/IBM Cell BE architecture (Hofs-

tee, 2005), the CSX SIMD array architecture from ClearSpeed (ClearSpeed Tech-

nology, 2001-2009), and the yet to be released Larrabee architecture from Intel

(Seiler et al., 2008). NVIDIA appear to have clinched the early market by releas-

ing a relatively easy to use application programming interface (API) that allows

C/C++ code to be written with some extra instructions to permit the execution of

code on a specialised GPU running with many thousands of threads. With sev-

92

4.2 Using CUDA architecture

eral research groups starting to publish promising results (NVIDIA, 2009), it was

decided that it was worth investing the time and money in some GPU hardware;

the purpose of the work being to substantially reduce the wall time of the matrix

solution phase corresponding to point c) above.

4.2 Using CUDA architecture

To be able to write efficient software to run on any hardware, some knowledge of

the hardware and its general programming/operation is required. An introduction

to the CUDA architecture and programming for NVIDIA’s CUDA enabled GPUs

is provided in the next sub-section.

4.2.1 CUDA hardware

The CUDA hardware comes in the form of a, habitually called, graphics processing

unit and is attached to a standard personal computer either via the PCIe bus

directly or via a PCIe data cable attaching an external GPU to the PCIe bus.

The CUDA enabled GPUs range from video cards that can be bought “off-the-

shelf” relatively cheaply in most PC stores, through to rack mounted multiple

GPU enabled units. The latter being, perhaps, of greater interest to the scientific

community.

As most generic graphics hardware is used simply to offload the task of graphics

processing from the CPU, acting as a co-processor, the build process and electrical

design of these GPUs does not require them to be able to deal with general purpose

computing. The memory in these GPUs is not burned in and checked to ensure

the full memory range behaves as expected, simply because the occasional off-

colour pixel at a refresh rate of 60Hz is not going to be noticed. However, for

use in general purpose computing the full range of memory available must be

working correctly as the occasional floating point number not being manipulated

or stored correctly could easily lead to the wrong result in a numerical simulation.

As a result, NVIDIA released the professional ‘Tesla’ range of hardware that is

guaranteed to have a fully working memory unit (via soak tests among others).

93

Chapter 4: Matrix Solving on GPUs

The work described in the section that follows was performed on these GPUs.

In order to optimise a program it is essential to have some understanding of

the hardware on which the optimisation will take place. With this in mind the

architecture of the CUDA GPUs is briefly explored with reference to the schematic

of the architecture in Figure 4.1.

Figure 4.1: Schematic of the CUDA GPU architecture. Image taken from NVIDIA

(2008b).

The first obvious difference between a CPU and GPU architecture is that

the GPU assigns many more of its transistors (the electronic components that

do the work) to arithmetic logic units (ALUs) for data processing. This fact

leads to operations that are data parallel, and have a high arithmetic intensity,

performing far better on a GPU as there are simply more transistors to deal with

the computation. Each ALU can be dedicated to processing one data element,

so fine grained parallel operations are well suited to this architecture. In direct

relation to this, an ALU will deal with very few pieces of data at a time, and

all the ALUs will be running the same set of instructions. Therefore, there is no

need to dedicate a lot of processing power to flow control, this making the GPUs

potentially even faster for a given transistor density. The other most notable

difference between CPU and GPU hardware is the lack of a general cache on the

GPU. This is because if the amount of data parallel computation is sufficiently

large, the memory access latencies can be hidden by other data computations

taking place whilst the data is being accessed.

The processing power of the CUDA GPU is arranged in the form of a number of

94

4.2 Using CUDA architecture

“streaming multiprocessors” (SM) each of which contain (currently) 8 ALUs, some

fast local memory in the form of “shared” memory, a texture cache, a constant

cache and an instruction unit. In addition, the ALUs within the SMs all have a

large register file to try and help reduce memory requests. The CUDA GPU also

has a device memory (DRAM) available for general purpose storage. This memory

is accessible to all SMs and so can be used for sharing information between them

since no direct message passing is available between SMs. For more information

see NVIDIA (2009).

4.2.2 CUDA programming model

The CUDA programming model revolves around the concept of exposing the data

parallel processing nature of the GPU to the programmer. This is done via the

concept of parallel processing threads; a thread being a particular computation

path often resulting from a fork in program execution. To make the most use

of the ALUs on the GPU hardware, many threads should be in existence (“in

flight”) simultaneously such that all the ALUs are busy all the time. As a result,

any memory access latency is hidden by the threads queued for execution being

run whilst other threads wait for data. The threads are organised into blocks of

32, called warps, and each warp must execute the same function on all its assigned

ALUs simultaneously (instruction lock stepping). The thread scheduler requires

four clock cycles to switch single instruction multiple data (SIMD) groups and

only 192 threads are required to be in flight to cover pipeline latency, hence zero

latency is easily achieved if sufficient arithmetic intensity is present and the data

required for computation is available.

To aid the use of the CUDA enabled GPUs for general purpose computing,

NVIDIA have extended the C language by adding some CUDA specific syntax and

instructions. The most important of these extensions is the concept of “kernels”

which are specialised C functions that when called execute “N” times in parallel

on “N” different CUDA threads. This is in opposition to the calling of a standard

function from a CPU which would only be executed once on one thread. Further

to this, the programmer has the freedom to arrange the threads that are being

95

Chapter 4: Matrix Solving on GPUs

executed into arbitrarily sized execution blocks within a grid of up to three di-

mensions. Clearly it is advantageous to arrange the thread blocks such that they

align with the hardware warp sizes, hence thread blocks are commonly multiples

of 32 in size.

The CUDA architecture and programming model are fascinating and there

are many other features available in CUDA enabled hardware, especially memory

related, but they are beyond the scope of the present work. Those features that

have not yet been discussed, but which are used in the following work, will be

briefly explained immediately prior to the description of their use.

4.3 CUDA Induced Dimensional Reduction Solver

As the BEM involves the solution of a linear system involving a dense matrix, and,

in the field of accelerated computing, dense linear algebra is known to map well

to multi-core architectures, using multi-core architectures to solve such problems

may be advantageous. This work is to be considered as proof-of-concept work and

is designed to test ideas that can be implemented in the future.

4.3.1 Appropriate solvers

In its original form the GMRES algorithm (Saad & Schultz, 1986), although having

a number of excellent features, suffers from the fact that its memory footprint

increases with the number of iterations performed during the solution. During each

iteration a new basis in the Krylov subspace needs to be generated which is of the

same size as the leading dimension of the system. At each iteration, each of these

vectors needs to be stored and so, for a large number of iterations, the memory

requirement can be substantial. The GMRES memory footprint can be forced

to be of fixed size by restarting the solver with the basis of the last iteration as

the (re)starting basis. However, these restarts are expensive in terms of iterations

performed because useful, previously discovered, information is disregarded. More

importantly, should the solving algorithm be restarted there is no guarantee that

the new basis will actually allow the iterative system to converge on a solution

96

4.3 CUDA Induced Dimensional Reduction Solver

without considerable additional work being undertaken (Joubert, 1994).

Recently, Sonneveld & van Gijzen (2008) have developed a new Krylov based

gradient solver, called IDR(s), based on the concept of induced dimensional re-

duction (Wesseling & Sonneveld, 1980). This solver has the advantage of the user

being able to specify the size of the solution space in which the residual shall

be found and therefore has a fixed memory footprint. On first review it appears

that the fine/medium grained looping that makes GMRES hard to speed up is less

prevalent in this alternative method. In addition, the algorithm appears more sim-

ple to implement numerically than GMRES. Furthermore, although the properties

of the solver have not been investigated to the same extent as those of GMRES,

the initial results presented by Sonneveld & van Gijzen (2008) appear promising.

On the basis of algorithmic simplicity and the apparent level of parallelism achiev-

able in this algorithm, the IDR(s) method was chosen as the preferred algorithm

to develop for the CUDA architecture.

4.3.2 IDR(s) theory

A complete and detailed explanation of the IDR(s) theorem, algorithm and proofs

can be found in Sonneveld & van Gijzen (2008). In the context of the present study,

a brief overview of the IDR(s) concept is given below. More detailed information

relating the how the method works and further supporting commentary can be

found in Appendix A and Appendix B respectively.

Basic concepts

To solve a linear system of equations of the form,

Ax = b, (4.1)

an extensive repertoire of solvers is available. In the context of the boundary

element method considered herein, this linear system is obtained by manipulating

the H ·Φ = G ·Φn BIE as described in Hague & Swan (2009). When solving this

system of equations, the most efficient methods, in terms of the computational

effort required, are perhaps the iterative solvers based on solutions found in the

97

Chapter 4: Matrix Solving on GPUs

Krylov subspace. The Krylov subspace is defined as

Kn(A, r0) = span(r0, Ar0, A
2r0, ..., A

nr0) (4.2)

with n being the iteration number and an initial residual r0 being defined as

r0 = b− Ax0, (4.3)

where x0 is the initial guess to the solution. Within equation (4.2), the span of a

set Q, span(Q), is the set of all linear combinations of elements of Q.

Until recently, the search for efficient Krylov based solvers has revolved around

generalisations of the conjugate gradient method. These are categorised based on

their recurrences; short recurrences meaning that only a small number of vectors

are required to compute a solution. With the removal of the requirement of short

recurrences, methods such as GMRES are available. However, this method suffers

from a large memory footprint, as discussed earlier. If the requirement of short

recurrences is kept, a large family of modified conjugate gradient algorithms with

various efficiencies and features is available. For an extensive review of these

iterative methods, including those based on conjugate gradients, the reader is

directed to Saad & Vorst (2000).

The IDR method was originally developed by Wesseling & Sonneveld (1980),

but was largely ignored in favour of the conjugate gradient based solvers. The IDR

method has short recurrences and is guaranteed to compute an exact solution in

at most 2N steps, N being the system size. The basic concept of the IDR method

is that it generates residuals that are forced to be in subspaces of Gj of decreasing

dimension. These subspaces are nested and are related as given in equation (4.4).

An indication as to how this relation arises is given in Appendix B.1.

The IDR theorem, outlined below, follows directly the approach described by

Sonneveld & van Gijzen (2008), and begins as follows: Let A be any matrix in

CN×N , let v0 be any non-zero vector in CN , and let G0 be the full Krylov space

KN(A, v0). Let S denote any (proper) subspace of CN such that S and G0 do not

share a nontrivial invariant subspace of A, and define the sequence Gj, j = 1, 2, ...,

as

Gj = (I − wjA)(S ∩ Gj−1). (4.4)

98

4.3 CUDA Induced Dimensional Reduction Solver

Within this equation, I is the identity matrix, ωj are weightings and S is a fixed

proper subspace of CN . This relationship can be used to provide a recursion be-

tween successive iterated residuals, and therefore successive iterated solutions. In

the paragraphs that follow an overview of the IDR(s) scheme is provided. This is

sufficient to provide a basic understanding of the method adopted and to under-

stand its place within the current numerical scheme. However, for those readers

who require additional information, on both the background and the implementa-

tion of the IDR(s) method, this is provided in Appendices A and B.

On the basis of equation (4.4) an iterative procedure can be formed, the es-

sential components of which are as follows:

a) The procedure is appropriate to the solution of a set of linear simultaneous

equations in the for Ax = b.

b) It involves the calculation of a system of successive residuals of the form

rn = b− Axn.

c) It seeks to provide a recursion relation for the residuals, (rn), which will in

turn provide a recursion for the desired solution x.

d) The residuals must lie in a subspace Gj of reducing dimension and must

intersect with a chosen subspace S (which is of dimension s by N , where

s is user defined, see Appendix A). The fact that the intersection is also of

reducing size leads to the convergence of the solution. A schematic indicating

the subspace nesting appropriate to the IDR theorem is given in Figure 4.2.

e) Within the chosen scheme the residual at the n+ 1th iteration, rn+1, can be

formed from the previous iteration (rn) coupled with information concerning

the change in the residual (∆rn+1) from prior iterations.

f) By limiting the information used to the most recent iterations, the depth of

the recursion can be maintained in successive iterations thereby limiting the

memory (or storage) required.

g) When initiating the calculation an iteration similar to the modified Richard-

son iteration (see Appendix B.1) is employed to provide sufficient informa-

99

Chapter 4: Matrix Solving on GPUs

tion to allow the computation of the residual differences, the latter being

key to the scheme.

h) In calculating the next iteration of the residual, a weighting function (ωj)

is introduced to optimise the reduction of the residual. This is achieved by

minimising the 2-norm of the residual.

i) On completion of an iteration, calculation of rn+1 and hence the updating

of xn+1 is undertaken.

j) Assuming the residual remains larger than some target threshold, the change

in the residual (∆rn) is calculated and the procedure repeated. The calcu-

lation of ∆rn is based upon information from the most recent changes in

residual, the extent of this information being based on the chosen depth of

recursion.

Further information concerning the IDR(s) method, including the prototype

algorithm with full explanation and supporting material, is provided in Appendices

A and B.

Optimised IDR(s) algorithm

In their original paper, Sonneveld & van Gijzen (2008) gave a perfectly acceptable

algorithm using the IDR(s) method (Algorithm 1, in Appendix A). However, they

note that this algorithm is a pure translation of the mathematics. They also

state that there is considerable freedom available with regard to the choice of

matrix P (which describes the subspace S), the way in which the weightings

(wj+1) are selected, and how the intermediate residuals are computed. In a follow

up paper van Gijzen & Sonneveld (2008) exploited this flexibility and altered

the manner in which the iteration vectors were formed, using bi-orthogonalisation

properties between P and ∆R; ∆R containing successive residual differences. This

later method is slightly more stable, more accurate and, most importantly, has a

lower vector operation count than the directly translated algorithm. The actual

mathematics used in the later method is beyond the scope of the present work

and so is not presented. Nevertheless, it is a fascinating paper emphasising the

100

4.3 CUDA Induced Dimensional Reduction Solver

G0 = KN(A, v0)

CN×N

CN

G1

G2 S

Figure 4.2: Schematic of the subspace nesting key to the IDR theorem.

101

Chapter 4: Matrix Solving on GPUs

freedom available in the IDR(s) framework. For reasons of numerical stability and

efficiency, it is this later algorithm that is employed in the present work.

4.3.3 Preconditioners

To improve the rate of convergence of gradient based solvers it is common to ap-

ply a (matrix) preconditioner, M , to the system matrix in an attempt to improve

the amenability of the system to computation and, equally, to reduce the spec-

trum of the system matrix. In applying a preconditioner, the new system can be

classed in one of three ways depending on the preconditioner used. These classes

are described as being left (equation (4.5)), right (equation (4.6)) and left-right

preconditioned (equation (4.7))

M−1Ax = M−1b, (4.5)

AM−1y = b =⇒ x = M−1y, (4.6)

M−1
L AM−1

R y = M−1
L b =⇒ x = M−1

R y, (4.7)

where ML and MR denote the left and right preconditioners respectively. Ob-

viously a penalty is paid, in terms of the computational effort, for the use of a

preconditioner. This arises because the preconditioner needs to be computed, in

some cases stored, and then applied. The optimal preconditioner is M−1 = A−1,

but that would require calculating the inverse of A which is of no advantage. To

avoid issues relating to the computational effort, but still achieving a reasonable

level of preconditioning, a simple Jacobi preconditioner was used in the present

work. This can be defined as,

diag(A).1 (4.8)

In practice the inverse of M is never computed explicitly. Instead, a system

Mv = c is formed and solved for unknown v; the requirement of solving such a

system being another reason why Jacobi preconditioning is particularly favourable

as its inverse is trivial.

1diag(X), is a square matrix of the same dimensions as X with the leading diagonal being

identical to that of the leading diagonal of X and all other entries being zero.

102

4.4 Using CUDA

4.4 Using CUDA

As CUDA is a relatively new technology there is not a great deal of literature

available and a general lack of the commonly found “programming manuals”.

Consequently, strategies for converting and optimising algorithms rely on experi-

ence, some guidelines by NVIDIA (NVIDIA, 2008b), and the comparatively small

amount of published material. The basic methodology adopted by the author in

converting the outline of the IDR(s) algorithm provided by van Gijzen & Sonn-

eveld (2008) into code capable of running on CUDA hardware was as follows:

a) Write and optimise the algorithm in Fortran.

b) Convert the Fortran algorithm into optimised C/C++.

c) From the C/C++ algorithm try and classify operations such that similar oper-

ations can be grouped together (a similar strategy to BLAS (Lawson et al.,

1979), performed purely to reduce the amount of code required).

d) Address issues arising from calling C/C++ from Fortran.

e) Prototype näıve kernels for the classified operations wrapped in ‘helper’ func-

tions that copy data explicitly to and from the GPU either side of each CUDA

kernel.

f) Move working prototypes into the main C/C++ code isolating them with

compiler preprocessor directives.

g) Once all the kernels have been written, allocate memory on the GPU to

share all the necessary data used in the algorithm.

h) Remove the ‘helper’ functions and just call the kernels.

i) Rewrite the näıve kernels so that they are efficient, use shared memory and

have non-divergent warps. Try and make memory access coalesce and make

extensive use of accumulators in the GPU registers.

j) Create streams for copying data onto the GPU while the CPU/other GPU

streams do something useful.

103

Chapter 4: Matrix Solving on GPUs

k) Page lock host memory if possible to enable fast copies/bounce buffering.

l) Map large, read only, arrays to texture types for cached access.

m) Deal with cases when the system will not fit in the memory of a single GPU.

The following sections address each of these issues in turn:

4.4.1 Write and optimise the algorithm in Fortran

This task was not particularly challenging, the presence of a translation of the

algorithm into Matlab code by van Gijzen & Sonneveld (2008) made this task a

lot simpler. Matlab and Fortran both use one based indexing and are column

major languages, so translating the algorithm from one language to another did

not prove difficult. The author made a number of small changes to the original

algorithm, not least because many of the functions available in Matlab do not

exist in Fortran. In particular, a modified (for stability) Gram–Schmidt algorithm

(Golub & Van Loan, 1996) was used to compute the orthonormal matrix of random

numbers for ‘P’. In addition, a Jacobi preconditioning was added to the algorithm

to help speed up convergence as it is cheap to apply both in terms of memory and

of time.

4.4.2 Convert the Fortran algorithm into C/C++

Converting Fortran to C/C++ was again a relatively simple task once two essential

points were noted. The first being the underscoring notation used to describe

symbols to functions in object files differs between C/C++ and Fortran compilers.

The second being the respective row and column major data storage systems of

C/C++ and Fortran, special care was require to ensure that the correct data was

accessed and that the access was performed in the most efficient manner. Clearly,

C++ name mangling also needed to be addressed by ensuring all functions had the

extern "C" qualifier.

104

4.4 Using CUDA

4.4.3 Prototype näıve kernels

Prototyping the näıve kernels involved writing test beds for common functions

similar to the thinking behind BLAS (Lawson et al., 1979). In all prototypes

a linear grid and block system was used for simplicity of kernel calls and thread

management. Simple programs were written as a harness for the prototype kernels

which dealt with input and output (IO) and the set up to the helper functions.

Once a kernel appeared to be performing correctly the device emulation switch on

the NVIDIA compiler was used to compile the code to run purely on CPU with

an effective warp size of one. This was done to make sure that no race conditions,

hardware induced thread masking issues, or similar bugs existed in the code.

4.4.4 Move working prototypes into main C/C++ code

On passing testing, the prototype kernels with their helper functions were added

to the main algorithm. The calls to CUDA functions were isolated from the main

algorithm with the use of compiler preprocessor directives thus the GPU based

parts of the algorithm could be switched on and off for debugging purposes.

4.4.5 Allocate memory on the GPU

Once the algorithm worked using purely GPU kernels wrapped in ‘helper’ func-

tions, the task of swapping host (CPU) side memory allocations with their GPU

counterparts involved using the CUDA equivalent to C’s malloc() to allocate

memory on the GPU for each host variable. The host side variables could then be

copied to the GPU ready for use. It was important to test the calls to CUDA’s

malloc() on the GPU to ensure that they were successful as fitting large systems

onto the GPU memory was not always possible. This problem is further discussed

later in the chapter.

4.4.6 Remove ‘helper’ functions and just call the kernels.

Switching from host only memory with the ‘helper’ functions copying data to and

from the GPU to using pure GPU memory was probably the hardest part of the

105

Chapter 4: Matrix Solving on GPUs

process to debug. To achieve this operation in the most efficient manner, a logical

dependency table of all variables and functions was produced. Then, with extreme

care, host side variables and functions were swapped in logical order for their GPU

counterparts ensuring data dependencies were resolved. Once this was completed

and the whole algorithm ran on the GPU, the CUDA profiling tools were used to

observe the nature of the running code. Unsurprisingly, the initial copying of data

from host memory to GPU memory took a significant amount of the solution time

(5%). However, the BLAS level 2 type operations involving the system matrix

multiplied by a vector dominated the other 95%.

4.4.7 Rewrite näıve kernels optimising efficiency

Rewriting kernels to perform more efficiently revolved around the use of shared

memory access on the GPU. A 400-600 clock cycle penalty is paid (NVIDIA,

2008b) to access data in the GPU global memory. As a result, it is important

to minimise read/writes to this memory region. It is also necessary, for optimum

performance, to coalesce data access on the GPU, with all threads in a given

warp accessing contiguous GPU global memory regions. This requirement places

a further, complicated but important, constraint on the code optimisation.

The most computationally intensive kernel required was a matrix-vector mul-

tiplication kernel for multiplying the system matrix, A, by an intermediate vector.

Although there are several implementations of this kernel in the literature, none

of them are suitable (or optimal) for use within the CUDA implementation of

IDR(s). For example Fujimoto (2008) uses texture references (see §4.4.10) which

add complexity to an already complex code; while the NVIDIA cuBLAS (NVIDIA,

2008a) dense matrix-vector kernel appears to have less than optimal performance

that fluctuates with N with a period of 16; this being the half-warp size (Fuji-

moto, 2008). Indeed, by the time this thesis is completed it is expected that the

cuBLAS library will use the method of Fujimoto (2008). Furthermore, Volkov &

Demmel (2008) show that it is possible to considerably out perform the cuBLAS

implementation for the BLAS-3 matrix-matrix multiplication operation, perhaps

indicating that the vendor based cuBLAS is not optimal.

106

4.4 Using CUDA

Subspace Solution time using Solution time using Speed increase (%)

size s author’s kernel (s) cublasSgemv() (s) compared to cuBLAS

2 1.606 1.748 8.848

4 1.581 2.032 28.527

8 1.657 1.570 -5.254

16 1.836 1.734 -5.551

32 2.052 2.101 2.398

Table 4.1: Comparisons between cublasSgemv() and the author’s implementation

of a matrix-vector multiplication kernel. Note: s is defined in §4.3.2 and relates

to the number of columns in matrix P .

In the interests of personal development, and to understand more about opti-

mising kernels, the author decided to implement a new version of the matrix-vector

multiplication kernel. At the outset the author used a method similar to that de-

veloped by Fujimoto (2008). However, following discussion with Matt Harvey

(Harvey et al. (2007), Harvey et al. (2009)) and his donation of some proof of

concept code, a faster kernel was developed making extensive use of accumulators

that are assumed to reside in the ALU registers. The final kernel runs at about

30Gb/s, which is near half the bandwidth of the Tesla GPU on which it was de-

veloped (according to NVIDIA’s bandwidth test application, maximum achievable

bandwidth was 74.1Gb/s), and runs without the use of texture data types. To

draw a comparison to the equivalent cuBLAS kernel (cublasSgemv()), the run

times for solving a problem of dimension n ∼ 16000 using the IDR(s) method

with subspace sizes 2, 4, 8, 16 and 32 are given in Table 4.1. From these results

it is apparent that the author’s kernel executes at approximately the same speed

as cuBLAS without the performance fluctuations leading to poor performance at

some subspace sizes.

Once the matrix-vector multiplication kernel and others were optimised (to a

reasonable extent), attention was diverted to other slow parts of the code with

particular attention being paid to the copying of data between host side memory

and GPU memory.

107

Chapter 4: Matrix Solving on GPUs

4.4.8 Using streams and interleaving

To overcome the problem of waiting for the A, x0 and b vectors to be copied to

the GPU via cudaMemcpy() (this being a thread blocking function), some more

advanced features of the CUDA API can be used. If the A matrix is sufficiently

small that it can be stored in page locked memory (a more readily accessible form

that is explained in the next section), then CUDA streams can be employed to

allow asynchronous copying of memory to the device. As a result, a second stream

is free to deal with other computations whilst the copying takes place. The use of

page locked memory is quite dangerous in terms of causing operating system (OS)

lockups and the general slow down of a computer. If large amounts of memory are

page locked, the amount of free memory available to the OS for internal functions

and applications is limited. If this becomes too small, the system will grind to

a halt as the OS has to page everything to disk. With this in mind, should the

matrix A be too large to store in page locked memory, a technique similar to dou-

ble buffering and perhaps closest to bounce buffering can be employed (Gorman,

2004).

4.4.9 Bounce buffering and page locked memory

Access to host memory is handled by the OS which has the freedom to page out

sections of memory to disk, should it be required. Consequently, if a request for

data is made and the data is located in paged out memory (i.e. buffered on to a

disk) the OS has to move the data from the disk back in to main memory, which

is very slow. It is possible to allocate memory as “page locked” which in simple

terms means that the OS is forbidden to page the memory to disk; it has to sit

in memory. Clearly, there is a performance gain whilst copying from page locked

memory: no interaction with the OS is required as it is known a priori that all the

required data is stored in memory. Accordingly, a memcpy() can proceed blindly

and unhindered.

With knowledge of streams, asynchronous copying and page locked memory, a

technique similar to bounce buffering can be used for moving data from the host to

the GPU. In this technique two streams work together, copying data and executing

108

4.4 Using CUDA

computational kernels on the GPU. To start the method, a region of page locked

memory is created as a buffer in host memory and two regions of memory are

allocated on the GPU. The GPU memory regions can be conveniently accessed

via a double pointer of a type based on the type of data to be stored. Each

double pointer entry is then set to contain a pointer to an allocated region of

GPU memory.

With the memory allocated, stream one asynchronously copies some data into

the buffer and then onto the GPU memory (this is a “bounce” through the page

locked memory buffer) and stream two idles. Stream one then executes the kernel

on the data it “bounced” onto the GPU and stream two bounces its data onto

the vacant half of the GPU memory. Once stream one finishes, stream two can

execute the kernel on its data and stream one then makes use of the page locked

memory buffer to bounce its data onto its half of the GPU memory.

In comparison to a standard sequential ‘copy followed by compute’ mechanism,

where the GPU has to wait for the copy to complete prior to computing, a bounce

buffered method using interleaved concurrent streams leads to a shorter execution

time. The faster execution comes simply from hiding the copying of data and its

associated latencies by overlapping them with a computation stage. This technique

provides a theoretically faster mechanism for performing operations on sets of data

that are too large to fit in GPU memory, a problem that will be discussed later.

4.4.10 Map large arrays to textures for cached access

As the GPUs are fundamentally designed for graphics processing there exists the

opportunity to use native graphics based storage types. Operations such as binding

arrays to textures and then performing data loads via texture references, making

use of spatial reordering and locality in memory, can lead to faster execution times

for kernels that display spatial locality in their memory access patterns. The data

accessed via a texture reference is locally cached, which may also be beneficial

for kernels that make repeated use of certain parts of an array. However, these

features lead to an extra layer of complexity in the code base and there is a time

penalty associated with the GPU reordering the data in GPU global memory.

109

Chapter 4: Matrix Solving on GPUs

Furthermore, the textures are read only. After careful consideration, the author

decided not to use texture based functions. The reason for this was two fold;

first, it was not readily apparent that the kernels for the IDR(s) algorithm would

necessarily benefit from data caching since they are BLAS level 1 and 2 or similar.

Second, the extra layer of complexity would have hindered development speed in

an already complicated environment.

4.4.11 Deal with the memory limit of a single GPU.

The maximum memory available on any current NVIDIA CUDA GPU is 4Gb.

Speculatively, this is due to the limitations of a 32 bit addressing system, and will

undoubtedly be increased in future revisions of the architecture. The implication

of this limitation on the CUDA IDR(s) solver is that for a large system size, the

whole system may not fit in the memory of a single GPU. This gives rise to a

number of options:

a) Switch to a solely CPU based algorithm for large problems,

b) use a bounce buffering technique to move data on and off the GPU as re-

quired, or,

c) if multiple cards are available, distribute the computation across multiple

cards.

Addressing each of these options in turn. First switching to a solely CPU based

algorithm for large problems defeats the objective of having a GPU accelerated

solver. This option was not considered. Second, using bounce buffering to move

data on and off the GPU, although faster than waiting on blocking copies, still

produces a very slow execution time as data copying has to go through the PCIe

BUS. A full 16 lane PCIe 2.0 BUS can support 8Gb/s of data transfer at peak rate,

although this is unlikely to be achieved. In contrast, a NVIDIA Tesla GPU has a

theoretical maximum data transfer rate of about 102.4Gb/s (practical maximum

achieved was 71.4Gb/s). As a result, the GPU will be starved of data, permanently

having to wait for data to be bounced to it. Trials using this method suggested

that although the execution time on the GPU would give results significantly faster

110

4.4 Using CUDA

than using a CPU, the latency from data copying slows the algorithm down to

running at CPU speed or worse. As a result, this option was abandoned as being

too slow.

Third, there are a number of ways in which to distribute data over multiple

GPUs. All of these methods arise because, in the high level API, once a CPU

thread makes a call to the CUDA libraries, an immutable context is set that binds

that thread to a given GPU. Hence, should multiple GPUs be required to solve a

problem, either the low level API must be used or, the high level API calls need to

be threaded. The author attempted, but failed, to use the UNIX pthreads library

to continue using the high level API due to the code becoming very complicated.

As a result, the conclusion was drawn that simply rewriting the code to use the low

level API, or indeed source to source translating the API calls in the code, would

be a better option. However, the framework needed to distribute the Amatrix over

multiple GPUs, and call the necessary kernels, had been implemented. Therefore,

the multi-GPU method can be tested using a single GPU by storing multiple

sections of the A matrix in GPU memory and then performing the necessary

kernel calls sequentially and using the shared memory programming model of

sharing results via the host’s memory. Although this may not provide the optimal

result in terms of speed, as there is no concurrency between kernel invocations as

would be the case in a CPU threaded multiple GPU environment, this method

does provide some idea of the execution time wasted in having to explicitly share

partial results from different GPUs in host memory.

In simulating a multiple GPU environment, as suggested above, distributing

the data across multiple GPUs takes lot of book keeping (similar to that in MPI) to

keep track of allocated memory regions. The matrix-vector multiplication kernel

was the only kernel that required the use of the A matrix and so it was only

this kernel that needed to be rewritten to make use of multiple GPUs. For the

simulation of a multiple GPU environment the A matrix was split into two. For

example, in Listing 4.4.1, allocating A as floating point type memory of size,

bytes, in a number of blocks, blocks, and storing their addresses in d data.

When the A matrix matrix-vector multiplication was required, the vector was

copied to the host’s memory. The host then copied this vector to the GPU re-

111

Chapter 4: Matrix Solving on GPUs

Listing 4.4.1 Referencing memory regions in blocks.

f loat ∗∗ d data ;

d data=(f loat ∗∗) mal loc (b locks ∗ s izeof (f loat ∗)) ;

for (i =0; i<b locks ; i++) // loop through de v i c e s

{

// were cudaSetDevice (i) ; c a l l e d here , i t would f a i l on the

// second loop i t e r a t i o n as the f i r s t c a l l would have s e t

// an immutable con t ex t b ind ing t h i s thread to dev i c e 0 .

cudaMalloc ((void ∗∗) &d data [i] , bytes) ;

}

peatedly, once per block (as would be required in a multiple GPU environment).

The matrix-vector multiplication operation was then executed simply by calling

the kernel, in turn, on each block with respect to its part of the matrix and vec-

tor operation. The result of each invocation was then copied to memory on the

host and once all invocations were complete, the result was then copied from the

host back to the GPU’s memory. Execution of the CUDA IDR(s) algorithm then

proceeded as normal.

There is some slowing of the execution time when using the multiple GPU

based algorithm, in comparison to when the A matrix is not split into blocks,

due to copying vectors to and from the host and executing the kernels in turn.

However, this method is considerably faster than using bounce buffering. Indeed,

the results (see §4.7) suggest this method scales well and should definitely be

reimplemented to use multiple GPUs.

4.5 Problems using CUDA for GPU accelerated

matrix solvers

Although CUDA and GPUs provide a solution for accelerating the speed of matrix

solving, the methods and hardware do not come without problems; the most

important issues being discussed below.

112

4.5 Problems using CUDA for GPU accelerated matrix solvers

4.5.1 Data precision

The boundary element method for which the CUDA IDR(s) solver was developed

works sufficiently well in practice with single precision results from the matrix

solving process. If, however, single precision results were not sufficient for a given

application, the CUDA enabled GPUs do have a number of double precision ALUs

available. However, this number is small in comparison to the number of single

precision ALUs. In undertaking the calculations, the algorithm should map to the

GPU using double precision arithmetic in exactly the same way as single precision.

However, due to the reduced number of double precision ALUs available on the

GPU the computation will proceed more slowly. In the future it is believed that

NVIDIA will produce GPUs with larger numbers of double precision ALUs; the

current revision of the CUDA architecture being very much a first revision.

4.5.2 Internal precision

Whilst performing computations on a CPU, the CPU uses extended precision

internally thereby preserving results that might have otherwise under-flowed or

cancelled. Unfortunately, due to the more simple processing cores on GPUs, this

feature does not exist in the SM ALUs. If an algorithm is particularly susceptible

to under-flows or cancellations then the use of double precision is perhaps advis-

able. Fortunately, the CUDA IDR(s) algorithm does not seem to be particularly

prone to this problem unless a very high level of accuracy is required. As a re-

sult, single precision was adopted throughout and the absence of extended internal

precision was not considered an issue.

4.5.3 Memory

By far the greatest concern with respect to dense matrix solving on GPUs is

the GPU memory requirement. Although methods have been discussed to deal

with distributing the A matrix across multiple GPUs, the problem of keeping

sufficient GPU memory available for uses other than storing the A matrix puts

some overheads on the algorithm. Thankfully, the IDR(s) method has a fixed

memory footprint for a given problem size. As a result, it is complicated, but

113

Chapter 4: Matrix Solving on GPUs

possible, to work out exactly how much memory is needed to solve a particular

problem. This point is fundamentally important when working in limited memory

environments, giving iterative methods with, fixed depth, short recurrences an

inherent advantage over those with long recurrences such as GMRES (Saad &

Schultz (1986)).

4.6 Test bed

To demonstrate the improvements in speed achievable using GPUs, it was nec-

essary to look at a number of problem sizes and a number of algorithms. The

machine on which the code was run is a high end ‘gaming rig’ with the following

specification:

• CPU: Intel(R) Xeon(R) CPU E5405 Quad Core @ 2.00GHz

• Host Memory: 4x4GiB DDR2-667 ECC FBDIMM

• Intel D5400 XS Motherboard ‘Skull Trail’

• NVIDIA Quadro FX3700 512MB PCI Express GPU

• NVIDIA Tesla C1060 GPU

• Operating system: Fedora 10 (Linux) with 2.6.27.25-170.2.72.x86 64 kernel

• CUDA SDK 2.1, 64 bit driver version 185.12

This machine was specifically chosen for development work and is far from what

would be used in a production level HPC cluster environment. However, it does

allow some important insights into the speed up and scaling properties of CPU

and GPU based codes.

To investigate the algorithms and their various implementations, five methods

were tested on eight typical matrix orders. Details of the methods tested and

their properties can be found in Table 4.2. For method 5, the NETLIB release

of LAPACK’s (Anderson et al., 1999) single precision real linear equation solver,

SGESV(), was used such that comparisons to the industry standard algorithms

114

4.6 Test bed

can be made furthering the completeness of the study. All other methods were as

described previously.

Method Number Algorithm Language Version Executed on

1 GMRES Fortran Serial 1 Core of CPU

2 GMRES Fortran OpenMP All Cores (4) of CPU

3 IDR(s) Fortran Serial 1 Core of CPU

4 IDR(s) C/C++ CUDA CPU/GPU

5 Direct Fortran LAPACK 1 Core of CPU

Table 4.2: Matrix solving algorithms and their properties.

The matrix orders, N , investigated in the present study are based on typical

sizes for real applications of the BEM and the matrices are populated with genuine

BEM data. To put these sizes into perspective, the following guidance relating

matrix order and problem type is relevant.

a) A matrix order of N ∼4000 lies at the top end of a 2D BEM model e.g.

Christou et al. (2008).

b) An order of N ∼12000 is typical of the size used by Peric (2010) for work

on wave-structure and wave-ship interactions.

c) An order of N ∼16000 is chosen as a typical size for modelling the working

area of the wave basin at Imperial College London at 7.5cm resolution. This

would be adequate for modelling non-breaking waves (Chapter 6).

d) An order of N ∼24000 corresponds to a typical size for a higher resolu-

tion BEM solution for the previously mentioned wave basin. This would,

for example, be required for the modelling of breaking waves (Chapter 7).

Simulation would typically require a 7 day execution time on a 64 processor

cluster computer.

e) An order of N ∼30000 was chosen as being close to the largest size that

would fit in the 4Gb memory of a single Tesla GPU, with memory space left

for the GPU to execute the kernels.

115

Chapter 4: Matrix Solving on GPUs

Matrix order (N) Condition number

2026 312.0251

4026 448.5835

5986 550.2700

8066 640.5623

12154 787.4979

16146 911.6653

20066 1024.5050

23938 1125.7493

26226 1182.6130

30098 1272.2650

Table 4.3: Matrix order and condition numbers.

For each matrix size the condition numbers were computed using LAPACK’s

SGESDD() routine to obtain a singular value decomposition of the matrix. Then,

the ratio of the largest and smallest elements of the diagonal matrix (this contains

the matrix’s singular values and is referred to as SIGMA in the routine’s header)

was taken to give the condition number. The exact matrix orders and condition

numbers are given in Table 4.3.

For each matrix order the code was run ten times; the time taken to complete

a run based on calls to the OpenMP run time library timing routines. In each case

the run times from each execution of the code were averaged and intercomparisons

provided. The test for having achieved the desired accuracy was based on the

computation of the 2-norm of the residual from the solution in relation to the

2-norm of the right hand side vector b,

accuracy =
||r||2
||b||2

. (4.9)

Bettering or achieving a similar accuracy to that of the serial GMRES algorithm

provided the definition of a successful solution. When the accuracy of the solution

from the algorithm being tested (Table 4.2) reached the accuracy of the solution

from the serial GMRES algorithm for a given problem size, the solution was con-

sidered good enough and the timers were stopped. In addition, to improve the

116

4.7 Discussion of results

general performance of all the solvers, except in the case of LAPACK, a Jacobi

preconditioner was applied to the system matrix as described in §4.3.3.

As the IDR(s) algorithm has the ability to change the size of the shadow space,

s, in which the solution is sought, a number of sizes for s were tried for each matrix

order. The value of s was started at two and doubled on successive runs until it

reached 32. However, the variation in the run times with s was not considered a

problem as writing a simple code that varies s to get an optimal run time could

easily be added to any scheme that was to use the IDR(s) algorithm.

4.7 Discussion of results

Figure 4.3 contrasts the results arising from testing the various solving methods

and confirms that the IDR(s) algorithm running on the GPU is very effective. In

making these comparisons the run times for the LAPACK routine are predictably

larger due to the complexity of a direct solver which scales as O(n3). As a result,

data relating to this routine are not included. Considering the data presented in

Figure 4.3, it appears that the execution time for the IDR(s) algorithm scales more

poorly than the GMRES algorithm for the CPU implemented cases. Furthermore,

in these cases, it also appears that the size of subspace s used has a considerable

effect on the rate of convergence. Interestingly, this appears not to be the case

for the GPU enabled IDR(s) algorithm; the execution time relating to the various

subspace sizes effectively lying on top of each other on this scale plot.

Although Figure 4.3 is useful in terms of a general overview, the more impor-

tant results are found by comparing the CPU IDR(s) algorithm against the GPU

IDR(s) algorithm, and comparing the GPU IDR(s) algorithm against GMRES

running on multi-core CPUs. Figure 4.4 addresses the first of these tasks, identi-

fying the speed gain from using the GPU in comparison to the CPU for the IDR(s)

algorithm. The GPU IDR(s) scheme indicates a favourable speed up, and most

importantly, this speed up is linear, or better, with respect to matrix size. This

behaviour is expected as the larger matrices will perform better simply because

the memory access latencies can be hidden, or have proportionally less effect, due

to the excessive amount of computations on-going in such cases. This implies that

117

Chapter 4: Matrix Solving on GPUs

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

100

200

300

400

500

600

700

800

Matrix order (n)

E
xe

cu
ti

o
n

 t
im

e
[s

]

GMRES Serial
GMRES OpenMP
IDR(s), s=2
IDR(s), s=4
IDR(s), s=8
IDR(s), s=16
IDR(s), s=32
CUDA IDR(s), s=2
CUDA IDR(s), s=4
CUDA IDR(s), s=8
CUDA IDR(s), s=16
CUDA IDR(s), s=32

Figure 4.3: Raw execution timings for different algorithms solving various matrix

sizes. The results for CUDA IDR(s) are not missing, they just lie on top of each

other at this scale.

118

4.7 Discussion of results

larger matrices will be solved fastest, relatively, and that as CUDA architecture

becomes more efficient the benefits will become more apparent.

Some additional results corresponding to a matrix size of N ≈ 23000 are

also included on Figure 4.4; the relevant data points denoted by asterisks. These

results relate to the proof-of-concept trial where the A matrix was distributed over

multiple memory regions on the GPU (details of the process outlined in §4.4.11)

with data shared via the host’s memory when required. The behaviour of the

solver appears to be largely unaffected by such a scheme. This is very promising

for the future whereby whole numerical models could be run on multiple GPUs on

a single machine; the GPUs communicating via a shared memory model through

the RAM on the host.

The primary purpose of the work undertaken in this chapter was to see if

the bottle-neck associated with the matrix solving phase of the boundary element

scheme could be reduced by increasing the speed at which the solving phase takes

place. The multi-core version of GMRES was, in practice, the fastest available

solver prior to this investigation and so this must be the basis for any comparisons.

Accordingly, the speed up of the execution time obtained by CUDA IDR(s) over

the multi-core CPU based GMRES is indicated on Figure 4.5.

For completeness, Figure 4.6 shows the level of accuracy of the solutions ob-

tained by the five different methods. The CPU GMRES and multi-core CPU GM-

RES display the same accuracy. This is to be expected, as the non-deterministic

behaviour of OpenMP reduction clauses are unlikely to have any effect as un-

derflows and catastrophic cancellations do not regularly occur in the GMRES

algorithm. The LAPACK routine is clearly most accurate. Again, this is to be

expected since it uses a direct method. However, this optimal accuracy comes at a

very considerable computational cost. Indeed, were this approach to be adopted,

calculation of the most interesting wave forms (outlined in Chapters 6 and 7)

would simply become impossible. Furthermore, the CPU and GPU versions of

IDR(s) display different accuracies of solution; the CPU version perhaps tending

to be slightly more accurate for the smaller matrix sizes. However, the general

result is that the level of accuracy obtained from IDR(s) was, as required, better

than that obtained from GMRES. The one exception to this rule occurs for the

119

Chapter 4: Matrix Solving on GPUs

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

10

20

30

40

50

60

70

80

90

Matrix order (n)

S
p

ee
d

 u
p

 (
C

P
U

 ID
R

(s
)/

C
U

D
A

 ID
R

(s
))

IDR(s), s=2
IDR(s), s=4
IDR(s), s=8
IDR(s), s=16
IDR(s), s=32

Figure 4.4: Comparing IDR(s) implemented on a CPU with IDR(s) on a GPU,

both solving various matrix sizes. The additional markers (∗) at a matrix size of

N ≈ 23000 relate to using multiple memory regions and distributing computations

involving the A matrix as outlined in §4.4.11. The colour of the additional markers

indicate the size of the subspaces (s) employed used in the computation and are

consistent with the colours defined in the legend.

120

4.7 Discussion of results

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

1

2

3

4

5

6

7

8

Matrix order (n)

S
p

ee
d

 u
p

 (
C

P
U

 G
M

R
E

S
 (

O
p

en
M

P
))

/C
U

D
A

 ID
R

(s
))

CUDA IDR(s), s=2
CUDA IDR(s), s=4
CUDA IDR(s), s=8
CUDA IDR(s), s=16
CUDA IDR(s), s=32

Figure 4.5: Comparing the solution times for GMRES on a CPU with IDR(s) on

a GPU, both solving various matrix sizes.

121

Chapter 4: Matrix Solving on GPUs

matrix system of order ∼30000 when solved using CPU based IDR(s) where the

accuracy seems to be less good for subspaces of size 16 and 32. The reason for this

is as yet unknown. Nevertheless, on the basis of these results, there is no reason

why the CUDA enabled IDR(s) code should not be used in a production envi-

ronment as a replacement for GMRES in boundary element modelling; consistent

accuracy and improved speed being readily achievable.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Matrix order (n)

A
cc

u
ra

cy
 (

||r
es

id
u

al
||/

||b
||)

GMRES Serial
GMRES OpenMP
IDR(s), s=2
IDR(s), s=4
IDR(s), s=8
IDR(s), s=16
IDR(s), s=32
CUDA IDR(s), s=2
CUDA IDR(s), s=4
CUDA IDR(s), s=8
CUDA IDR(s), s=16
CUDA IDR(s), s=32
LAPACK

Figure 4.6: Comparing the accuracy of the solution obtained by CPU GMRES,

CPU GMRES with OpenMP, CPU IDR(s), GPU IDR(s) and LAPACK.

4.8 Outstanding issues.

There are two main issues that remain to be resolved with the CUDA IDR(s)

solver, both being due to external factors. The first is associated with the limited

memory available on GPUs. This has been discussed earlier along with the prob-

lems it causes in terms of deciding how much memory can be allocated on a GPU

122

4.9 Concluding remarks

without disrupting its internal function. Hopefully, this problem will be resolved

in the future with the release of a set of tools to probe internal memory usage,

or, perhaps more simply, the availability of cards incorporating large amounts of

memory.

The second issue relates to an interesting problem at compiler level. To fur-

ther speed up the multiple GPU matrix-vector multiplication process (discussed

in §4.4.7) the inherent parallelism of the tasks occurring individually on each

GPU need to be exploited. In particular, the copying of the vector from the host

memory to the GPUs and the subsequent kernel execution could be carried out

simultaneously. The results from each GPU can also be copied back to the host

simultaneously as there is no overlap between different parts of the result vector.

This whole process lends itself well to shared memory programming techniques

using threads; for example, those available in an OpenMP environment or calling

the UNIX pthread library. The author tried for some time to get this method

to work. However, it appears that some of the thread contexts assigned when

invoking OpenMP are lost between parallel regions, making it rather hard to im-

plement within the current code base. For the future, this issue clearly needs to be

addressed either by rewriting some of the code base or perhaps the use of the low

level API which seems to preserve the contexts. There are also some further issues

involved with mixing OpenMP thread information between different compilers.

The author is confident that this can be addressed, but the details lie outside the

scope of the present project description.

4.9 Concluding remarks

It is evident that GPU technology is very powerful; provided it is programmed

well and applied to an appropriate problem, the technology easily out performs

a standard CPU. The CUDA hardware and extensions to the C programming

language seem suitable for use in a scientific environment and allow access to

the compute power of a GPU co-processor with little difficulty. Nevertheless, the

present study has clearly shown that some issues still remain due to the infancy

of the technology.

123

Chapter 4: Matrix Solving on GPUs

The IDR(s) algorithm does not perhaps perform, in terms of raw speed, as

well as GMRES for the types of linear systems investigated. Even so, it represents

a promising method and is attractive in view of its adjustable and predictable

memory footprint. It is therefore concluded that there is no reason why the GPU

IDR(s) algorithm could not be used in combination with the distributed computing

methods outlined in Chapter 3 to create a combined BEM run time acceleration

scheme using both technologies. This concept is the topic of the next chapter.

124

5

Efficient BEM Algorithm

5.1 Introduction

This chapter evaluates the possibility of combining the concepts in Chapters 3

and 4 to give a boundary element scheme that uses distributed computing for the

influence matrix formation phase and is then locally accelerated on GPU(s) for the

matrix solving phase. The majority of the background to this combined code has

been explained in Chapters 3 and 4. In Chapter 3, the MPI libraries were shown

to provide an effective method with which to distribute computational workload in

a distributed computing environment. Likewise in Chapter 4, GPU hardware was

shown to provide an excellent platform on which to accelerate the computation.

With the introduction of NVIDIA Tesla C1070 hardware to a production level

cluster computer, as found in the HPC centre at Imperial College London, it is

possible to integrate both MPI and CUDA technologies in the same application.

Before investigating the performance characteristics of this combined code, some

additional discussion is required concerning the compiling of code with multiple

compilers and multiple languages. Once this is complete, the basis for comparison

will be outlined and the performance of the model reviewed.

125

Chapter 5: Efficient BEM Algorithm

5.2 Code with multi-level parallelism

The code for the EPIC BEM project was written in a reasonably modular fash-

ion, at least to the extent that Fortran allows. This approach was adopted for

ease of development. In addition, the core routines of the code were written with

the premise that they could be swapped and built ad hoc. The source code used

in a particular build is configured using GNU Autotools configuration scripts to

which a number of arguments can be appended on the command line using the

--enable and --with handles. These arguments, applied via the use of compiler

pre-processor directives, determine the functions that are included in the final

executable. As a result, the resulting executable does not have a monolithic func-

tion set and is, perhaps, more optimised in the sense that it is tailored to both

the executing machine’s architecture and the requirements of the numerical model

defined by the user.

The code for the CUDA based matrix solver, outlined in Chapter 4 was written

in such a way that it could be used as a drop in replacement to any matrix solving

routine written in Fortran or C/C++. Consequently, it was relatively easy to swap

the OpenMP enabled GMRES routine used by default in the EPIC BEM code for

the CUDA IDR(s) solver, on the condition that a CUDA enabled GPU is present

in the host machine (the machine executing MPI Rank 0).

With the addition of the CUDA enabled matrix solver, the EPIC BEM code

uses MPI to distribute the work as outlined in Chapter 3 and then the resulting

matrix is solved using the CUDA IDR(s) solver as described in Chapter 4. Hence,

the benefits of a fast, distributed, influence matrix formation phase are combined

with the benefits of accelerated matrix solving phase using the CUDA hardware.

The code combining the two technologies displays what is, perhaps, a more novel

parallel behaviour; work being executed in parallel on different CPUs using MPI

and then, potentially, on different threads of a GPU using CUDA. Studying this

behaviour and identifying its potential benefit is the focus of this chapter.

126

5.3 Compiling code comprising multiple languages

5.3 Compiling code comprising multiple languages

As described in Chapter 4 it is possible to link Fortran, C and C++ code in the same

application. Adding MPI into the equation simply adds another level of complexity

to the problem. The MPI Fortran compiler, mpif77, is often a wrapper for the

Fortran compiler standard to a system. Put more simply, the underlying compiler

has a number of includes and libraries against which to link, and the wrapper just

makes the problem of dealing with the link order easier for the user.

Taking this into account, and bearing in mind that only routines needing to

use MPI (and the final executable) need to be built with mpif77, it is possible

to classify the build process of the mixed MPI-CUDA code into routines that are

solely Fortran, Fortran with MPI calls, C, C++ and CUDA. Once this has been

achieved, it is simply a question of creating the object files for each routine based

on the contents of the source and linking them. In undertaking this task, the main

difficulty lies in mixing Fortran code with C/C++ code.

5.4 Mixing Fortran with C/C++

As discussed in §4.4, Fortran is a column major language. As a result, sequential

elements of an array stored in memory are accessed by incrementing the left most

index of an array descriptor. To compute a matrix-vector product in the fastest

possible manner the caching behaviour of the processing unit needs to be exploited.

In very simple terms, when a memory request is made, a whole strip of data (that

is known to contain the piece of information requested) is pulled from the main

memory on the computer and dropped into the processor’s cache. Therefore, if

the data is accessed sequentially, there is a high likelihood that the next piece of

data will also be found in cache, thereby speeding up the calculation taking place.

Based on this understanding, it is advantageous to form and store the influence

matrix in a transposed form (relative to what is seen mathematically) such that

the rows of the matrix are aligned with the column major storage format used

in Fortran. The advantage of this approach becomes apparent when a matrix-

vector product is required in the solving phase of the scheme. In this case the

127

Chapter 5: Efficient BEM Algorithm

operation will benefit from the caching behaviour of the processor. Furthermore,

the net result of aligning the matrix ordering with the storage ordering is doubly

beneficial when it comes to passing the array pointer to C/C++. This arises from the

array being effectively transposed by the column major storage order of Fortran

and then transposed again by storing sequential elements to be aligned with that

order. Hence, the net effect is that the array is oriented in the correct way for fast

access from either language simply because sequential elements in the array are

next to each other in the memory.

5.5 The test bed

The compute cluster on which the behaviour of the MPI-CUDA algorithm was

tested is a part of the CX1 cluster in the HPC centre at Imperial College London.

Each node of this part of the cluster contains two Intel Xeon processors each with

four processing cores, 16Gb RAM and a 10GigE ethernet interconnect along with

the usual parts found in a compute node. In addition to the compute nodes there

are GPU nodes. These are specialised units made up of four NVIDIA Tesla C1060

GPUs connected in pairs to the compute nodes so that each compute node has

access to two GPUs. The per compute node environment is summarised below:

• CPU: 2× Intel R© Xeon R© CPU E5462 Quad Core @ 2.80GHz

• Host Memory: 4× 4GiB DDR2-800 FBDIMM

• Supermicro motherboard-X7DWT

• 2× NVIDIA Tesla C1060

• Operating system: RHEL 5 2.6.18-164.6.1.el5 kernel

• CUDA SDK 2.3, 64 bit driver version 190.18

To investigate the properties of the MPI-CUDA algorithm, a number of test

cases were chosen. To be consistent with Chapter 3 the same problems of sizes

4962, 10242 and 20162 were used as defined in Table 3.2. The problem size of

40322 would not fit within the 4Gb of memory available on a Tesla C1060 GPU

128

5.6 Discussion of results

and so an alternative case with 30578 nodes assembled from a domain with a

0.05m discretisation in all directions occupying the dimensions 0.0m ≤ x ≤ 5.9m,

−5m ≤ y ≤ 0.0m and −0.8m ≤ z ≤ 0.0m, is used in its place.

The smallest available number of processing cores available for a job was eight,

as opposed to the four used in Chapter 3. This is simply because processor technol-

ogy advances very quickly, perhaps in accordance to Moore’s law (Moore, 1965).

As a result, the transistor density on processors could double twice within the

three years of research commonly required to write a doctoral thesis. The number

of processors on which the code ran are therefore all multiples of eight; specifically

8, 16, 32 and 64. For each number of processors the code was run twice, both for

103 steps. In the first run GMRES was used to solve the system matrix, whilst in

the second run CUDA IDR(s) provided the matrix solution.

In accordance with the comparisons outlined in Chapter 3, the first 103 steps of

a simulation involving a Stokes 5th-order wave entering the domain were timed, the

first 3 steps were ignored, and the rest used to calculate an average computation

time for a single time step. To maintain compatibility with the earlier (Chapter 3)

comparisons, several additional metrics were collected. These include the time

taken to form the system matrix, the time taken to solve the system matrix and

the time taken carrying out any serial processing needed.

The subspace chosen for the CUDA IDR(s) code was of size four. This is

because of its apparently stable behaviour with respect to both its speed increase

over the GMRES algorithm and the solution accuracy; full details of which are

provided in §4.7. Additionally, van Gijzen & Sonneveld (2008) suggests that a

recursion level of four is a good default value in terms of accuracy and the work

required to achieve this accuracy.

5.6 Discussion of results

The results of this investigation are rather promising both in terms of the in-

creased speed associated with the use of the CUDA IDR(s) solver and in terms of

some very interesting information about the solving characteristics of the GMRES

and IDR(s) algorithms. Figure 5.1 concerns the average execution time per time

129

Chapter 5: Efficient BEM Algorithm

step as described previously. The benefits of using the CUDA IDR(s) solver are

immediately apparent when comparing the execution time across an identically

sized distributed computing environments. The results show, once again, that us-

ing more processors produces shorter average step times. However, in the context

of the present study it is important to note that there is a constant decrease in

average step time for a given problem size when employing the CUDA IDR(s)

solver.

These benefits can also be expressed as a speed up in the computations by

dividing the time taken using only CPUs, by the time taken using CPUs with

GPUs. This data is given as Figure 5.2 and shows that for the larger distributed

computing environments, the benefits of using CUDA IDR(s) are (relatively) more

beneficial. This is not particularly surprising considering that the formation stage

is going to be quicker if more processors are used, but the solving time remains

approximately constant. For large sized problems, using 64 CPUs and one GPU, a

speed up of approximately 2.1 times is achieved. Whilst this figure may not sound

particularly impressive as a performance gain, the better use of computational

resources this permits is of considerable benefit.

The improvement in the use of the computational resources is best demon-

strated by considering the effort associated with the various stages of a computa-

tional step; specifically the general serial code, the parallel matrix formation and

the matrix solution. Details of this breakdown are provided in Figure 5.3; the

data arising from a 64 processor environment and relating to the problem sizes

discussed in §5.5. From this figure, it is readily apparent that the GPU solver

reduces the execution time of the matrix solving phase to the extent that the dis-

tributed processing environment is almost constantly busy. It therefore appears

that using GPUs to accelerate the solving phase not only speeds up the overall

step time but, in addition, results in a far better use of computational resources.

This is entirely consistent with the aim set out in §4.1.

In addition to the obvious benefits of using an accelerated computing plat-

form for the matrix solving stage, some secondary (beneficial) effects are evident

when comparisons are made with the commonly adopted GMRES algorithm. Fig-

ure 5.4 displays the execution time for the GMRES and the CUDA IDR(s) solvers

130

5.6 Discussion of results

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

100

200

300

400

500

600

700

Problem size

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
fr

om
 1

00
 s

te
ps

 (
s)

Figure 5.1: Execution times for pure CPU and CPU with GPU implementation,

both applied to the solution of a range of matrix sizes. CPU only () and CPU

with GPU acceleration (). Symbols used: 64 CPUs (♦), 32 CPUs (◦), 16

CPUs (×) and 8 CPUs (�).

131

Chapter 5: Efficient BEM Algorithm

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Problem size

S
pe

ed
 u

p
us

in
g

C
U

D
A

Figure 5.2: Speed up in the computation time achieved using CPUs with the GPU

implementation compared to using CPUs alone. 8 CPUs (), 16 CPUs (),

32 CPUs () and 64 CPUs ().

132

5.6 Discussion of results

0.5 1 1.5 2 2.5 3

x 10
4

0

50

100

150

Problem size

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
fo

r
10

0
st

ep
s

(s
)

(a) CPU only

0.5 1 1.5 2 2.5 3

x 10
4

0

50

100

150

Problem size

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
fo

r
10

0
st

ep
s

(s
)

(b) CPU with GPU

Figure 5.3: Average time spent running each stage of the BEM calculations with

64 processors applied to a range of problem sizes, (a) CPU only, (b) CPU with

GPU acceleration. Matrix formation (), matrix solution () and serial

processing ().

133

Chapter 5: Efficient BEM Algorithm

0 20 40 60 80 100 120
0.2

0.4

0.6

0.8

1

N
or

m
al

is
ed

 ti
m

e
to

 s
ol

ve

Step number

(a) 30578 nodes

0 20 40 60 80 100 120
0

0.5

1

N
or

m
al

is
ed

 ti
m

e
to

 s
ol

ve

Step number

(b) 20162 nodes

0 20 40 60 80 100 120
0

0.5

1

N
or

m
al

is
ed

 ti
m

e
to

 s
ol

ve

Step number

(c) 10242 nodes

Figure 5.4: Normalised execution times for GMRES and IDR(s), s = 4, with

respect to the BEM time step number for problem sizes as indicated below each

sub-figure. GMRES () and IDR(s) ().

134

5.7 Conclusion

for each of the 103 time steps, normalised against the maximum execution time

for each solver respectively. There is evidently a large fluctuation in the execution

time of the GMRES solver. The reasons for this are presently unknown. How-

ever, it is possible that there is some complicated interaction pattern between the

BEM scheme that forms the matrices and the GMRES solver which results in a

greater range of possible matrix conditions and therefore a large fluctuation in

solving times. This behaviour is presently under investigation, but regardless of

this fact, it is clear from these figures that the IDR(s) solver behaves far more

predictably in terms of execution time when compared to the GMRES algorithm.

This characteristic is particularly useful when it comes to predicting run times.

5.7 Conclusion

To conclude this chapter it is clear that the BEM benefits greatly from the use of

GPUs in the matrix solution phase. The use of CUDA IDR(s) for matrix solving

allows a considerable gain in performance to be achieved and results in a more

effective use of distributed processing power. Indeed, the entire processing envi-

ronment is almost constantly busy as opposed to the 50% work-50% idle scheme

that often occurs when just using CPUs. Furthermore, some interesting charac-

teristics surrounding the solution time behaviours of GMRES and IDR(s) solvers

have been noted. This suggest that it may be beneficial to use a scheme with short

recurrence relations should a more constant solving time be desired.

The combining of CPU and GPU technologies has led to some further thoughts

on the future of numerical modelling. Harnessing the massively parallel architec-

ture found in GPUs is a challenge, but if done correctly the benefits can be con-

siderable; evidence of this having been provided in the past two chapters. As the

cluster computer in the HPC centre at Imperial College London has a number of

GPU enabled nodes available, the question of the use of distributed GPU enabled

codes can be raised. Some discussion of this subject is found in §8.3.2 and will

almost certainly be fully implemented in the EPIC BEM model in the future.

This chapter concludes the work on improving the performance of the multiple-

flux BEM through the use of specialised hardware and software. This, however,

135

Chapter 5: Efficient BEM Algorithm

is not the end of the search for faster simulation times. Finally, it should be

mentioned at this point that although employing the algorithms and hardware

presented within this chapter lead to considerably improved simulation run times,

the hardware on which this was performed (specifically the C1070 GPU units)

was loaned to the author for the purpose of benchmarking this code. Therefore it

should be noted that all the results presented in the following chapters use solely

CPUs and implement the algorithms and methods described in Chapters 2 and 3.

136

6

Kinematics Calculations, Code Validation

and Practical Application; Non-breaking waves.

6.1 Introduction

The purpose of this chapter is twofold. First, a formal validation of the EPIC BEM

model is presented. Second, the model is employed in a practical application, and

in so doing, the necessity of such a model is demonstrated. To begin the chap-

ter, the methodology and calculation procedure relating to the prediction of the

water particle kinematics is described, this being a key part of both the valida-

tion and practical application. Following this, a formal validation of the model

is undertaken in which both regular and irregular waves are considered. This

addresses predictions of the water surface elevations and the underlying water

particle kinematics, both being compared to well known analytical theories and

existing numerical models. Having established the capabilities of the EPIC BEM

model, the discussion turns to the properties of real seas. The focus of the dis-

cussion becomes the numerical simulation of a wave with an annual probability of

exceedance of 10−4, this being commonly used as a design condition for the ap-

praisal of offshore structures. The chapter finishes by presenting results obtained

from employing the EPIC BEM in a practical situation relating to fluid loading

on a jacket structure. A brief review of fluid loading is given and the results from

137

Chapter 6: Kinematics Calculations, Code Validation and Practical Application;
Non-breaking waves.

the EPIC BEM model are reconciled with existing design practice. The purpose

is to demonstrate that the adoption of a substantially improved wave model has

significant benefits in terms of practical design calculations.

6.2 Calculating the internal water particle kine-

matics

As described previously, the BEM solution is undertaken on the discretised bound-

ary enclosing the fluid volume. As a result, only information such as the poten-

tial, the potential flux and the fluid velocities relating to points (or nodes) on this

boundary is known throughout the duration of the numerical calculation. Indeed,

this information is all that is required for the simulation to proceed. However, if

required, information at positions internal to the boundary can be computed to

facilitate a fuller description of the behaviour of the fluid within the domain. In

the present context, it is precisely this computation that is required to provide

a full description of the velocity field within the domain, or some specified sub-

domain. In turn, as will be described later, the velocity field is also required for

the computation of fluid loads acting on a body present in the flow. Indeed, the

computation of velocities at points internal to the domain is a necessary part of

using the EPIC BEM model in any practical application.

6.2.1 Method for computing internal kinematics

Within any BEM solution of a numerical wave tank (NWT) the fluid velocities

are known or calculated on the boundaries of the computational domain as these

are required to compute the free surface boundary conditions that drive the fluid

flow. To compute the water particle kinematics internal to the domain (henceforth

referred to as the “internal kinematics”), the boundary integral equation (2.2) can

be employed with a modified fundamental solution to reflect the fact that the

velocity vector is given by the derivative of the potential with respect to space.

It its original form, the boundary integral equation (BIE) contains a fundamental

solution based on potentials only. Once the BIE has been modified, it is simply a

138

6.2 Calculating the internal water particle kinematics

question of integrating the new equations in a similar manner to that set out in

§2.4.6.

Clearly, any position internal to the domain cannot fall directly on a boundary

node. It therefore follows that no explicitly singular integral exists. However,

the accuracy of the velocity components obtained for points computed near the

boundary nodes may be poor because the Gauss-Legendre numerical quadrature

scheme struggles to produce accurate results as the integral function tends towards

a singularity. This was previously discussed in §2.4.6. A partial solution to this

problem is discussed later in this section and is performed as part of an adaptive

integration scheme.

In deriving expressions for the computation of the velocity vector at a given

point internal to the domain, the BIE must first be differentiated with respect

to the three Cartesian directions. Taking the original BIE, equation (2.2), and

rearranging gives

cpφp =

∫
Γ

[
G
∂φq

∂n
− φq

∂G

∂n

]
dΓ, (6.1)

where the fundamental solution G(r) = 1
4πr

and r = |r|; all parameters having

previously been defined on Figure 2.1. Differentiating the fundamental solution

with respect to the Cartesian directions, in vector form, gives,

∇φp =

∫
Γ

[
Q
∂φq

∂n
− φq

∂Q

∂n

]
dΓ, (6.2)

Q(r) =
∂G(r)

∂x
=

1

4πr3
r, (6.3)

∂Q

∂n
(r) =

1

4πr3

[
n− 3(r ·n)

r

r2

]
, (6.4)

where, again, the symbols have the same meaning as those outlined in §2.4.6.

As internal points lie within the boundaries of the domain, cp = 1 and has been

removed from the equation.

In terms of positioning any internal kinematics calculations within the algo-

rithm set out in §2.5, there is really only one suitable location. Equation (6.2)

requires prior knowledge of both the potential and the potential flux at all points

defining the boundary. Consequently, the only logical place to compute internal

kinematics is following the formation and solution of the influence matrix within

139

Chapter 6: Kinematics Calculations, Code Validation and Practical Application;
Non-breaking waves.

the “intermediate step” routine (see §2.5). To minimise the computational effort

involved, the internal kinematics routines are only executed on the last call to the

“intermediate step” routine within the time marching scheme. As a result, the

values computed are in synchronisation with the coordinate, velocity and bound-

ary condition vectors that are written to output files prior to undertaking the next

time step.

6.2.2 Mitigating the so-called “boundary layer” problem

As mentioned previously, an important issue arises regarding the accuracy of the

internal kinematics if the position at which the kinematics are required is close

to a boundary. In the field of BEM solutions, this problem is commonly referred

to as the “boundary layer” problem. In this context the term “boundary layer”

refers to the proximity to the computational boundary and has nothing to do with

a viscous shear layer commonly described in other areas of fluid mechanics. More

explicitly, the “boundary layer” can be defined as any position internal to the

domain for which

r .
L

2
√

2
, (6.5)

where L is a length scale representative of length the of the element nearest to the

point of interest (Christou, 2008).

Unfortunately, the problem of computing velocities at points within this so-

called boundary layer cannot generally be avoided. The explanation for this is two-

fold. First, the most interesting physics generally occurs close to the free surface

boundary, not least because the boundary conditions applied on this surface are the

primary source of the nonlinearity which makes the problem so difficult to solve.

Second, the velocities arising close to this boundary have considerable importance

in terms of practical engineering, especially in terms of the applied fluid loads.

Regrettably, there has been very little published work on the subject of com-

puting integrals within this boundary layer. One exception is Sobey (2006) who

makes the observation that the BIEs are poorly calculated due to the rapidly

varying geometry that occurs as an internal point approaches a boundary. The

solution proposed in Sobey (2006) is to form and solve a system of ordinary dif-

140

6.2 Calculating the internal water particle kinematics

ferential equations (ODEs). These provide a better description of the geometric

variation and, as a consequence, reduce the steepness of the integral required from

the BIE. Alternatively, Christou (2008) suggests that for a two dimensional BEM,

applied to similar problems considered herein, increasing the number of evalua-

tion points within the Gauss-Legendre quadrature scheme has a similar effect to

that described in Sobey (2006) without the need to compute and solve systems of

ODEs. Christou (2008) proposes an empirical relationship between the number

of quadrature points required based upon the proximity of the internal point to

the nearest element and its associated length scale. However, this scheme is com-

putationally inefficient and somewhat cumbersome due to the arbitrary nature of

the empirically derived relations. To overcome these difficulties a new scheme is

proposed in the following section. This proves reliable with respect to computing

accurate internal kinematics, particularly close to the domain boundaries, whilst

at the same time minimising the required computational effort.

6.2.3 A self scheduling adaptive integration scheme for

computing internal kinematics

The key factors in developing a numerical scheme for computing internal kine-

matics within the EPIC BEM model were twofold. First, the scheme had to be

robust in the sense that it had to always work and, without exception, produce an

accurate result. Second, as the computational effort associated with computing

the kinematics at one point is similar to that of computing one row of the influ-

ence matrices, a serial implementation of any scheme was completely out of the

question; parallel computing was essential.

The core operation in the calculation of the internal kinematics is the evaluation

of equation (6.1). Numerically, this involves exactly the same behaviour as that

outlined in §2.4.6. Simply put, every node in every element is visited in turn and

the integral, equation (6.1), is evaluated to form two row vectors similar to those

found in the rows of the H and G influence matrices. These vectors are then

multiplied by the known potential and potential fluxes and the velocity vector for

that point is obtained.

141

Chapter 6: Kinematics Calculations, Code Validation and Practical Application;
Non-breaking waves.

To assist the robustness of the method, during the integration loop around

all the nodes and all the elements, a function is called to assess the proximity of

the internal point to the element under evaluation. Should the point fall within

a length scale associated with the maximum length across the element currently

queued for integration, a switch is triggered to demand adaptive integration to be

used for this element. If the point does not fall within this length scale a standard,

typically ten point, Gauss-Legendre quadrature is used (details of which are given

in §2.4.6.)

If the adaptive integration switch is triggered for an element, the 2-norm of both

integrals in equation (6.1) with respect to each direction is computed. The number

of integration points is then doubled and the 2-norms recomputed. An arbitrary

convergence of 1×10−5 between subsequent integrations for all Cartesian directions

and both integrals in equation (6.1) is required for the accuracy of the integral

to be deemed satisfactory. Should the number of integration points required for

convergence exceed 5000, after Christou (2008), the point is simply discarded

because the computed velocities are deemed too unreliable to be considered useful.

In making the method efficient in time, the processors within the distributed

computing environment can be used. Due to the adaptive work required in some

cases for the integrals to converge, the evaluation of each point may take a vari-

able amount of time. As a result, the one dimensional decomposition outlined in

Chapter 3 is unsuitable. Instead, a simple self scheduling environment is employed

where each computational process is given an internal point at which kinematics

are required. When it has finished computing kinematics for that point it will

send back the result to a controlling process and request another, the process con-

tinuing until all the required points are evaluated. The water particle kinematics

calculated using this method are validated later in §6.3.2.

6.3 Model validation

Within this section the numerical accuracy of the EPIC BEM model is considered.

A number of comparisons are made between existing analytical wave theories,

other available numerical models, and the EPIC BEM model. In all cases the

142

6.3 Model validation

success of the present model is clearly demonstrated indicating that the code is

well founded.

6.3.1 Prediction of the water surface elevation

Regular wave forms

To begin, comparisons are made with the classical 5th-order steady wave solution

of Fenton (1985) which is itself extended from the 2nd order solution of Stokes

(1847). The NWT adopted had the following dimensions, 0m ≤ x ≤ 1000m,

−80m ≤ y ≤ 0m and −126.4m ≤ z ≤ 0m, with a discretisation of ∆x = ∆y =

10m used in the horizontal directions, (x, y), and ∆z = 12.64m in the vertical

direction, (z). The boundary Γinput at x = 0m was prescribed in terms of a time

dependent Φn, based upon the solution of Fenton (1985). The two boundaries

running in the x direction (at y = −80m and y = 0m) were prescribed in terms

of a no-flux condition such that they acted as reflective walls. The radiation

boundary, Γrad, employed a Sommerfeld radiation condition (Sommerfeld, 1949)

and 170m of numerical sponge condition was adopted (§2.4.1).

A regular wave with a period of T = 14.36s and a wave height of H = 15m

was introduced into the NWT, with an initial ramping up period of 3s. This

period is necessary to mitigate numerical shock waves and avoid the excitation of

a longitudinal resonance or seiching within the NWT. Figure 6.1(a) considers a

single wave period within the developed wave field and contrasts the results of the

EPIC BEM solution with the analytical Stokes solution (Fenton, 1985). Despite

the steepness of the wave form under consideration (Hk/2 = 0.2967, where H is

the wave height and k the wave number) the agreement is very good. The small

departures undoubtedly being due to the onset of Benjamin-Feir type instabili-

ties (Benjamin & Feir, 1967), that are real, incorporated within the EPIC BEM

solution, but omitted in the analytical model.

Figure 6.1(b) provides further comparisons of this wave case, providing a de-

scription of the water surface elevation in the spatial domain. Once again, the

comparison between the EPIC BEM solution and the analytical solution is very

good.

143

Chapter 6: Kinematics Calculations, Code Validation and Practical Application;
Non-breaking waves.

130 132 134 136 138 140 142 144 146
−8

−6

−4

−2

0

2

4

6

8

Time (s)

E
le

va
tio

n
(m

)
[S

W
L=

0m
]

(a) Time history of the water surface elevation, η(t), for a steady

wave form, comparisons between the EPIC BEM solution (◦) and

the analytical model of Fenton (1985) ().

100 200 300 400 500 600 700 800 900
−8

−6

−4

−2

0

2

4

6

8

10

Space x(m)

E
le

va
tio

n
(m

)
[S

W
L=

0m
]

(b) Spatial history of the water surface elevation, η(x), for a

steady wave form, comparisons between the EPIC BEM solution

(◦) and the analytical model of Fenton (1985) ().

Figure 6.1: Comparisons in time and space of the water surface elevation for a

steady wave form.

144

6.3 Model validation

Irregular wave forms

Due to the simplicity of their formulation, regular waves are a useful tool for vali-

dation purposes. However, they do not challenge the model in terms of producing

a representation of a wave arising in a realistic sea state. As discussed previously,

a real sea state is directional, unsteady and nonlinear in nature. Unfortunately,

there are no analytical models capable of accurately modelling all these properties,

hence the development of models such as the present one. It therefore follows that

to provide a set of analytical results against which to validate the EPIC BEM

model, some of the properties of a real sea state must be simplified. The easi-

est way of doing this is through the use of a linear random wave theory, where

the surface profile takes the form of the superposition of wave components, each

assumed to be sinusoidal in form. Such an approach includes the unsteadiness

and directionality, but negelects the nonlinearity. As a result, it is appropriate to

the description of smaller (linear) waves. In adopting this approach, it is com-

mon practice to define a frequency spectrum and a directional spread, and to give

each component of the superposition a different amplitude, frequency, phase and

direction of propagation. These components are then summed according to

η(x, y) =
n∑

i=1

ai cos(kxix+ kyiy + ωit+ ψi), (6.6)

where η is the surface elevation, a is the wave amplitude, (kx, ky) is the wave

number resolved into the x and y directions respectively, ω is the wave frequency,

t is the time, ψ is the phase, and the subscript i refers to the ith wave component

which is summed from i = 1 to n; n being the total number of components.

Associated with this surface profile is a velocity potential given by

φ(x, y, z) =
n∑

i=1

aiωi
cosh(ki(z + d))

sinh(kid)
cos(kxix+ kyiy + ωit+ ψi), (6.7)

where the symbols represent the same quantities as those noted above with the

addition of φ(x, y, z) being the velocity potential and d the local water depth.

Assuming all the wave components are freely propagating, the wave number k

and the angular frequency ω are related by linear dispersion equation,

ω2 = gk tanh(kd), (6.8)

145

Chapter 6: Kinematics Calculations, Code Validation and Practical Application;
Non-breaking waves.

where g defines the acceleration due to gravity.

The irregular wave form chosen for validation is based on the focusing of a

JONSWAP spectrum to create a NewWave event (Tromans et al., 1991). This

latter solution described the most probable shape of a large linear wave based

upon the superposition (or focussing) of the underlying wave crests; effectively

setting ψi = 0 at x = y = t = 0 in equation (6.6). In the present example, the

spectrum comprises 128 components with a peak period of Tp = 16.64s, a linear

amplitude sum of A =
∑n

i=1 ai = 4m and a peak enhancement factor of γ = 2.5;

the latter value being representative of a realistic sea state. The spectral con-

tent was directionally spread over 76 directions, according to a Mitsuyasu (1975)

spreading parameter of s = 7. Again, this is a realistic value (Jonathan & Taylor,

1997) and corresponds closely to a wrapped normal distribution with a standard

deviation of σθ = 30◦. This directional spread was applied uniformly to all fre-

quency components with θ lying in the range −π
3
≤ θ ≤ π

3
rad, θ = 0 indicating

the mean direction of wave propagation.

In undertaking these calculations the NWT used had the following dimensions,

−720m ≤ x ≤ 600m, −720m ≤ y ≤ 0m and −126.4m ≤ z ≤ 0m, with a

discretisation of ∆x = ∆y = 15m and ∆z = 10.53m. The boundary Γinput at

x = −720m and the boundary running in the x direction at y = −720m were

prescribed a value of Φn derived from equation (6.7). The boundary running in

the x direction at y = 0 was prescribed a no-flux condition such that it acted as

a reflective wall. The radiation boundary Γrad employed a Sommerfeld radiation

condition and 25m of numerical sponge condition was used, the combination of

these conditions providing effective absorption/transmission at the downstream

boundary (§2.4.1). In this form the NWT is symmetrical about the plane y =

0m. This is consistent with the evolving wave field, and only simulating half the

physical domain leads to a significant computational saving.

Figure 6.2 concerns a time-history of the water surface elevation taken at x =

0m for the focussed wave event described above. The agreement between the

EPIC BEM calculations and the analytical solution (based on equation (6.6)) is

clearly very good. Indeed, the only discrepancy is small and arises in the leading

wave trough (at t ≈ −8s). It is believed that this is due to the highest frequency

146

6.3 Model validation

wave components having not reached the focus position at t ≈ −8s. However, in

the following wave trough (at t ≈ +8s) it is clear that they have reached the focus

position (x = y = 0m) and no such discrepancy arises.

−30 −20 −10 0 10 20 30

−3

−2

−1

0

1

2

3

4

Time (s)

E
le

va
tio

n
(m

).
 [S

W
L=

0.
]

Figure 6.2: Time-history of the water surface elevation, η(t), for a linear focused

NewWave event, comparisons between the EPIC BEM solution (◦) and an ana-

lytical solution based on linear random wave theory ().

Figures 6.3(a) and 6.3(b) concern the same focused NewWave event, providing

spatial profiles of the water surface elevation in the x and y directions respectively.

Once again, the agreement between the EPIC BEM solution and the analytical

solution is very good. The only small discrepancy arises in the trough immediately

down stream of the focus event in x, the explanation for this being the same as

that described above in relation to Figure 6.2. The data presented in Figure 6.3(b)

directly relates to the directional spread, σθ = 30◦ or s = 7, and confirms that

this has, indeed, been correctly introduced.

Setting aside the accuracy of the temporal and spatial comparisons provided

in Figures 6.2–6.3(b), it is possible to perform further checks to ensure that the

focused wave has the desired spectral content. Figure 6.4 contrasts the data aris-

147

Chapter 6: Kinematics Calculations, Code Validation and Practical Application;
Non-breaking waves.

−800 −600 −400 −200 0 200 400 600
−2

−1

0

1

2

3

4

5

Space x(m)

E
le

va
tio

n
(m

).
 S

W
L=

0.

(a) Spatial history of the wave surface elevation in the mean wave

direction (x) at the focus time, η(x) at t = 0s, comparisons be-

tween the EPIC BEM solution (◦) and the results of linear random

wave theory ().

−800 −600 −400 −200 0 200 400 600 800
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Space y(m)

E
le

va
tio

n
(m

).
 [S

W
L=

0]
.

(b) Spatial history of the wave surface elevation in the transverse

wave direction at the focus time, η(y) at t = 0s, comparisons be-

tween the EPIC BEM solution (◦) and the results of linear random

wave theory ().

Figure 6.3: Spatial histories of the water surface elevation for an irregular wave

form.

148

6.3 Model validation

ing from a discrete Fourier transform of the water surface elevation defined in

Figure 6.2, with the required spectral shape (JONSWAP, NewWave). It is clear

from this comparison that the generated wave spectrum is very close to the target

specified. In addition, a discrete Fourier transform also defines the phasing of the

components present in the signal. If the generated wave event is truly focused,

all of the wave components present within the spectrum with a non-negligible

amplitude will have a phase angle equal to zero (ψi = 0) at the focus location.

Figure 6.5 shows the phasing of the generated wave components. By superimpos-

ing a normalised amplitude spectrum, it is clear which wave components have a

non-negligible amplitude. Evidently, the data presented Figure 6.5 indicates that

all such components effectively have a phase angle equal to zero. This confirms

that the wave event generated within the NWT is correctly focused. In combina-

tion, the data presented on Figures 6.3(b), 6.4 and 6.5 confirm that the desired

NewWave event has indeed been generated.

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

0.05

0.1

0.15

0.2

0.25

Frequency (Hz)

A
m

pl
itu

de
 (

m
)

Figure 6.4: Comparison between the target NewWave spectrum () and the

results of a discrete Fourier transform of the time history of the water surface

profile (◦), η(t), given in Figure 6.2.

149

Chapter 6: Kinematics Calculations, Code Validation and Practical Application;
Non-breaking waves.

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (Hz)

1.
0−

|c
os

(ψ
i)|

 &
 N

or
m

al
is

ed
 a

m
pl

itu
de

 s
pe

ct
ru

m
 [−

]

Figure 6.5: Phasing of the wave components present at the focus location. Phasing

() and normalised amplitude spectrum ().

6.3.2 Predictions of the water particle kinematics

Having demonstrated that the EPIC BEM model is capable of accurately mod-

elling both regular and irregular wave profiles, the fluid velocities arising at the

water surface must be accurately predicted since it is these velocities which are

used to formulate the boundary conditions on which the model is based. However,

further validations of the predicted kinematics are necessary to ensure the accu-

racy of the velocity profiles with respect to depth (beneath the water surface) and

the phasing of fluid velocities with respect to the surface profiles. Once again con-

sideration is given to both regular (or steady) waves and irregular (or unsteady)

waves.

Regular waves

The details of the regular wave considered in this section are the same as those

described in §6.3.1. In order to prove that the method for computing the “internal

kinematics” is correct, its consistency with respect to water particle kinematics

150

6.3 Model validation

calculated using the “sliding elements” method, applied on a side wall or vertical

boundary (as described in §2.4.8) is presented in Figure 6.6(a). Clearly, the differ-

ence between the solutions is negligible, confirming that the “internal kinematics”

are consistent with the boundary kinematics. However, this does not offer proof

as to the accuracy of the kinematics in comparison to known analytical theories.

This issue is considered in Figure 6.6(b) which compares the 5th-order regular wave

solution of Fenton (1985), the Fourier series based model of Sobey et al. (1987)

and the internal kinematics of the EPIC BEM model. Again, the comparisons are

extremely good; the small discrepancy, most noticeable at the bed, being asso-

ciated with the development of a Lagrangian drift and its corresponding return

flow, that is correctly predicated by the EPIC BEM solution, but is not present

in the analytical and Fourier theories.

Irregular waves

The irregular wave form used in this validation is identical to that presented in

§6.3.1. As with the regular wave forms, internal and boundary calculated kine-

matics are again compared. However, in the case of a directionally spread focused

wave form, the directionality (or short-crestedness) will cause the profile shape to

change with the y position for a fixed x location. Figure 6.7 compares the boundary

kinematics calculated at x = y = 0m (corresponding to the focus position) with

the internal kinematics calculated at x = 0m, y = −1m. The agreement between

these velocity profiles, u(z) again confirms the success of the internal kinematics

calculations, the small discrepancy between the calculated values being due to the

difference in the y coordinate.

Figure 6.8 concerns the accurate modelling of the directional nature of the

focused wave event. Within this figure comparisons are made between velocity

predictions based upon a uni-directional focused wave, arising in the same under-

lying frequency spectrum, and the EPIC BEM model for the directionally spread

focused wave event. To correct for high frequency contamination occurring in the

analytical solution the “stretching” algorithm of Wheeler (1970) is applied. In ad-

dition, a directional spread of s = 7 (Mitsuyasu, 1975) equates to a theoretically

calculated velocity reduction factor (VRF) of Υ = 0.87; the latter applied to ac-

151

Chapter 6: Kinematics Calculations, Code Validation and Practical Application;
Non-breaking waves.

0.5 1 1.5 2 2.5 3 3.5 4
−140

−120

−100

−80

−60

−40

−20

0

20

u(m/s)

z(
m

).
 [S

W
L=

0]
.

(a) Prediction of the horizontal fluid velocities beneath the crest

of a regular wave form. Comparisons between the internal

EPIC BEM kinematics calculations (×) and the EPIC BEM

calculations undertaken on a vertical side wall (◦).

0.5 1 1.5 2 2.5 3 3.5 4
−140

−120

−100

−80

−60

−40

−20

0

20

u(m/s)

z(
m

).
 [S

W
L=

0]

(b) Prediction of the horizontal fluid velocities beneath the crest

of a regular wave form. Comparisons between the internal

EPIC BEM kinematics calculations (◦) and two established wave

solutions, a 5th-order Stokes solution () and a high order

Fourier solution (+).

Figure 6.6: Predictions of the horizontal fluid velocities beneath the crest of a

regular wave form.

152

6.3 Model validation

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−140

−120

−100

−80

−60

−40

−20

0

20

u(m/s)

z(
m

).
 [S

W
L=

0]
.

Figure 6.7: Prediction of the horizontal fluid velocities beneath the crest of a

focused wave event, comparisons between the internal EPIC BEM kinematics cal-

culations (×) and the EPIC BEM calculations undertaken on a vertical side

wall (◦).

153

Chapter 6: Kinematics Calculations, Code Validation and Practical Application;
Non-breaking waves.

count for the lack of directionality in a uni-directional wave. Having applied these

two corrections (Wheeler stretching and a velocity reduction factor of Υ = 0.87),

Figure 6.8 demonstrates good agreement between the EPIC BEM model and the

corrected uni-directional velocity profile. This agreement confirms that the input

to the EPIC BEM model correctly described the target directional distribution

(s = 7), the calculated kinematics being entirely consistent with the water surface

elevation, η(y), presented in Figure 6.3(b)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−140

−120

−100

−80

−60

−40

−20

0

20

u (m/s)

z(
m

).
 [S

W
L=

0.
]

Figure 6.8: Comparisons between the horizontal velocity profile, u(z), predicted

using the EPIC BEM model (◦) and a linear, uni-directional solution ().

The linear solution is corrected using Wheeler stretching and a velocity reduction

factor of Υ = 0.87, the latter corresponding to s = 7 ().

Finally, Figure 6.9 depicts the relative phasing of the fluid velocities (u, v, w)

calculated using the EPIC BEM solution. The data provides time-histories of the

three velocity components (u(t), v(t), w(t)) at a single position, (x = y = 0m and

z = −3m), and superimposes these results on the time-history of the water surface

elevation, η(t). Comparisons between these results show the velocity records are

154

6.4 Calculations of a 10−4 design wave case

exactly as expected, u(t) is in phase with η(t), w(t) is phase shifted by 90◦, and

v = 0m/s due to the symmetry of the wave event.

−40 −30 −20 −10 0 10 20 30 40

−3

−2

−1

0

1

2

3

4

E
le

va
tio

n
(m

)
O

R
 V

el
oc

ity
 (

m
/s

)

Time (s)

Figure 6.9: Time-histories of η(t) (), u(t) (), v(t) () and w(t) ()

at z = −3m beneath a focused wave crest.

6.4 Calculations of a 10−4 design wave case

Having validated the proposed wave model, attention is turned to using the model

in a practical application. This section primarily discusses the properties of real

seas and goes on to outline an extreme design wave event, typical of those used

in industry in the appraisal of offshore structures. The section continues with a

description of the model configurations that will be used throughout the remain-

der of this chapter, and provides some results relating to the convergence of the

chosen configurations. Finally, results concerning a 10−4 (annual probability of ex-

ceedance) design wave case are presented and contrasted to a comparable Stokes

5th-order regular wave solution. The Stokes 5th-order regular wave solution being

155

Chapter 6: Kinematics Calculations, Code Validation and Practical Application;
Non-breaking waves.

commonly adopted by industry in both the design and re-assessment of offshore

structures, both fixed and floating.

6.4.1 Properties of real seas

To emphasise the potential importance of the calculations undertaken using the

EPIC BEM code, it is important to contrast the characteristics of a steady wave

solution, such as a Stokes 5th-order model, with those arising from the EPIC BEM

model. The EPIC BEM model providing an accurate and realistic representation

of the design wave event.

Unsteady or transient behaviour

The unsteadiness of a wave field relates to its evolution in space and time and arises

from the fact that any sea state is made up from a number of wave components with

different frequencies, amplitudes, directions and phasing. The most important

characteristics are defined by the frequency and directional spectra. Real waves

are therefore made of wave components travelling at different velocities and with

different relative phasing, the combined effect leading to a free surface that evolves

rapidly in both space and time. In the context of fully nonlinear wave modelling,

the EPIC BEM model can easily simulate the underlying frequency spectrum and

can hence model the unsteady behaviour of waves. In contrast, a Stokes 5th-order

wave solution is steady in that the surface profile propagates without changing

shape. Having failed to incorporate the appropriate evolution, a steady wave

solution is also limited in terms of the local wave steepness. The combination of

steady behaviour and limited steepness leads to the predictions of unrealistic wave

profiles when compared to extreme waves arising in real seas. It therefore follows

that the associated predictions of the water particle kinematics will be equally

unrealistic, particularly when close to the water surface.

Directionality or short-crestedness

As mentioned above, a real sea consists of a large number of wave components, all

potentially travelling in different directions. The directional properties are charac-

156

6.4 Calculations of a 10−4 design wave case

terised by a directional spectrum, or approximated by a directional spread, based

upon an assumed Gaussian or cosine-squared distribution. The directionality of

a sea is important in that it will create a surface profile that varies in all spatial

directions. As a consequence, the water particle kinematics will also vary in all

spatial directions. Unfortunately, a steady wave solution such as a Stokes 5th-order

solution is, by definition, unidirectional and cannot therefore model the directional

nature of a real sea. As a result, simplified corrections need to be applied such

as the velocity reduction factors applied in §6.3.2. In contrast, the EPIC BEM

model correctly simulates the directional nature of a sea state, both in terms of

the surface profile and the associated water particle kinematics.

Nonlinear effects

The nonlinear effects arising within a real sea state are both numerous and compli-

cated. First, nonlinear interactions between individual wave components can lead

to significant changes in the local wave spectrum. The effects arising at second

and third order are most significant, leading to an enhanced crest-trough asym-

metry, and in deep water, a transfer of wave energy to the higher frequency wave

components. These effects will increase the magnitude of water particle veloci-

ties arising close to the water surface. A Stokes 5th-order wave solution cannot

hope to model these effects, not least because the wave solution is based on a

single frequency component and its associated bound harmonics. In contrast, the

EPIC BEM model correctly incorporates the correct underlying frequency spec-

trum and applies the fully nonlinear boundary conditions. As a result, the energy

transfers noted above will be correctly modelled.

In addition to the local changes in the wave spectrum, the nonlinear wave-

wave interactions can also affect the local directionality of a large, isolated wave

event. As a result, the largest waves tend to be more long crested than would

be expected based on the underlying sea state. This also has important impli-

cations for the fluid velocities and hence the applied fluid loads, and is correctly

incorporated within the EPIC BEM code. Unfortunately, a Stokes 5th-order solu-

tion is uni-directional and neglects the underlying spectral shape. Subtle changes

in the directionality, irrespective of how important they are for the kinematics

157

Chapter 6: Kinematics Calculations, Code Validation and Practical Application;
Non-breaking waves.

predictions, are completely omitted.

Finally, it is most important to note that the effects of nonlinearity increase

with the steepness of a local wave form. Since design wave conditions will neces-

sarily involve the description of very large, steep waves, the practical importance

of the nonlinearity should not be underestimated.

6.4.2 Model configuration for the 10−4 design conditions

Model configuration

The NWT tank used for the simulation had the same dimensions as those outlined

in §6.3.1, the only difference being the discretisation employed. In the x and y

directions the nodes were spaced at ∆x = ∆y = 10m, whilst in the z direction,

∆z = 9.72m. To confirm the applicability of this discretisation, the focused wave

described in Table 6.1 (see below) was simulated with a linear input amplitude

sum of A = 16m. For this case a discretisation of ∆x = ∆y = 20m and ∆x =

∆y = 15m was compared to ∆x = ∆y = 10m. Details of this comparison are

provided in Figure 6.10 in which the time histories of the water surface elevation,

η(t) at the focus position, xf = 60m, are superimposed. The differences between

the data arising from the three different discretisations are small and convergence

is clearly seen to occur; evidence of the latter provided by the close-up of the wave

crest which is provided in the small insert. This data confirms the suitability of

a ∆x = ∆y = 10m discretisation for the modelling of the 10−4 design wave case

described in Table 6.1.

10−4 design conditions

Table 6.1 lists a set of parameters that describe a 10−4 wave event; the actual

data relating to a hindcast of a tropical cyclone in the Southern hemisphere.

The EPIC BEM model was set up with these parameters distributed in the same

manner as described in §6.3.1 and simulated in the NWT described in above.

As the evolution of extreme waves is known to be highly nonlinear, a number of

iterations were required to match the crest elevation specified in Table 6.1. The

results of these preliminary calculations confirmed that a linear amplitude sum of

158

6.4 Calculations of a 10−4 design wave case

−60 −40 −20 0 20 40 60
−15

−10

−5

0

5

10

15

20

25

Time (s)

E
le

va
tio

n(
m

).
 S

W
L=

0.

0 2 4
15

16

17

18

19

20

Figure 6.10: A comparison of the time history of the water surface, η(t), at focus

position for a linear input amplitude sum of A = 16m simulated with ∆x = ∆y =

10m (), 15m () and 20m () resolutions. Note: the small insert

depicts a close up of the focused crest region.

159

Chapter 6: Kinematics Calculations, Code Validation and Practical Application;
Non-breaking waves.

Property Value Comment

Spectral shape JONSWAP, NewWave NewWave theory following

Tromans et al. (1991)

Peak period (Tp) 16.64s -

Peak enhancement factor, γ 2.3 -

Directional spread s = 7 or σθ = 30◦ Mitsuyasu (1975) spreading

or equivalent wrapped nor-

mal distribution

Water depth (d) 126.4m Includes storm surge

Wave crest elevation (ηmax) 21.98m Maximum single crest eleva-

tion

Wave height (H) 35.24m Corresponding wave height

Courant number (C0) 0.4 Modelling parameter chosen

to maintain numerical sta-

bility (see §2.4.10)

Table 6.1: Parameters relating to a typical 10−4 design wave event.

160

6.4 Calculations of a 10−4 design wave case

A = 18.9m (equation (6.6)) gave a nonlinear wave crest elevation of ηmax = 22.19m

and it was decided that this provided a suitable match to the specified 10−4 crest

elevation of 21.98m.

6.4.3 Discussion of results

To emphasise the importance of using the present nonlinear kinematics calcula-

tions, it is necessary to compare the nonlinear calculations to those derived from

an “equivalent” 5th-order Stokes solution. Figures 6.11(a) and 6.11(b) contribute

to this comparison by respectively providing a time history, η(t), and a spatial his-

tory, η(x), of the water surface elevation for both the fully nonlinear EPIC BEM

and the Stokes 5th-order calculations. Within these comparisons, the Stokes 5th-

order solution used was based on the 10−4 design conditions: H = 35.24m and

T = 15.87s, where the local wave period was based upon T = 0.95Tp. It is obvi-

ous from these comparisons that the fully nonlinear calculations describe a wave

form that is very different from that predicted by the Stokes wave solution. In

particular:

a) The wave crest elevation, ηmax is higher.

b) The adjacent wave troughs (both preceding and following the largest wave

crest) are less deep.

c) The overall wave height is slightly smaller.

d) The crest-trough asymmetry is significantly larger; almost two-thirds of the

wave height (H) lying above the still water level (SWL).

e) The wave profile is steeper, with the steepest section of the wave profile

occurring at significant elevation above SWL.

f) The wave crest is narrower in both space and time.

Additionally, Figure 6.12 provides a spatial description of the water surface profile

in the y direction, η(y), at the instant of wave focussing. No comparison with

the “equivalent” Stokes solutions are available in the transverse direction since

161

Chapter 6: Kinematics Calculations, Code Validation and Practical Application;
Non-breaking waves.

the Stokes solution is uni-directional and therefore infinitely long crested. In

considering these results it is important to note that the nonlinear half wave

period (from leading wave trough to maximum wave crest) is only 6.96s. During

this time interval the water surface elevation changes from a minimum of −11.86m

to a maximum of 22.19m (H = 34.05). This corresponds to an extremely steep

wave profile, far in excess of that which could be sensibly represented by a Stokes

5th-order wave solution.

Furthermore, Figure 6.13(a) concerns the vertical variation of the maximum

horizontal velocity arising beneath the crest of the focused wave event. Once

again, comparisons are made between the predictions of the EPIC BEM solu-

tion and a 5th-order Stokes solution. Fitting the predicted velocity time-histories

with a cubic spline interpolation allows the time derivative of the water particle

kinematics and hence the unsteady component of the horizontal accelerations to

be determined. Figure 6.13(b) depicts the vertical distribution of the maximum

horizontal accelerations (∂u
∂t

) occurring beneath the steepest part of the focused

wave profile; comparisons between the present EPIC BEM predictions and the

results of a Stokes 5th-order solution again being provided. The data provided

on Figures 6.13(a) and 6.13(b) confirm that the fully nonlinear predictions show

marked departures from a 5th-order Stokes solution, the practical importance of

these results being emphasised by the calculation of the applied fluid loads (see

below). Taken as a whole, Figures 6.11-6.13 demonstrate the capabilities of the

EPIC BEM solution when applied to the description of an extreme (10−4) wave

event.

6.5 Practical application: load predictions

It is evident in the previous section that, in the case of a 10−4 design wave event,

the fully nonlinear water particle kinematics predictions of the EPIC BEM solu-

tion are substantially different to the Stokes 5th-order solution commonly employed

in industry. Wave-induced fluid loading is entirely a function of the water particle

kinematics acting on a body. In particular, drag based loading is proportional to

the square of the water particle velocity. As a result, even relatively small differ-

162

6.5 Practical application: load predictions

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

25

Time (s)

z(
m

).
 [S

W
L=

0.
]

(a) η(t)

−400 −300 −200 −100 0 100 200 300 400 500
−15

−10

−5

0

5

10

15

20

25

x (m)

z(
m

).
 [S

W
L=

0]

(b) η(x)

Figure 6.11: A 10−4 design wave case, comparisons between the EPIC BEM so-

lution () and an “equivalent” Stokes 5th-order wave (), (a) time history

of the water surface elevation η(t) and (b) spatial history of the water surface

elevation η(x).

163

Chapter 6: Kinematics Calculations, Code Validation and Practical Application;
Non-breaking waves.

−800 −600 −400 −200 0 200 400 600 800
−5

0

5

10

15

20

25

y(m)

E
le

va
tio

n(
m

).
 S

W
L=

0.

Figure 6.12: A spatial history of the water surface elevation in the transverse

direction, η(y), at the focus time. A 10−4 design wave case based upon ηmax =

21.98m, Tp = 16.64s.

164

6.5 Practical application: load predictions

1 2 3 4 5 6 7 8 9 10 11
−140

−120

−100

−80

−60

−40

−20

0

20

40

u (m/s) at focus

z(
m

).
 [S

W
L=

0.
]

(a)

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−140

−120

−100

−80

−60

−40

−20

0

Acceleration in x direction (m/s2). Position in field x=focus, y=−2m from focus

z(
m

).
 [S

W
L=

0.
]

(b)

Figure 6.13: Kinematics predictions appropriate to a 10−4 design wave case, com-

parisons between the EPIC BEM solution () and an “equivalent” Stokes

5th-order wave (), (a) u(z) and (b) ∂u
∂t

(z).

165

Chapter 6: Kinematics Calculations, Code Validation and Practical Application;
Non-breaking waves.

ences in the predicted water particle kinematics based upon the EPIC BEM and

Stokes 5th-order wave solutions may lead to significant differences in the predicated

wave-induced fluid loading. This will be considered in the following section.

6.5.1 Fundamentals of fluid loading

Calculating the wave induced loads acting on an offshore structure is both compli-

cated and central to the design process. The loads are related to the wave-induced

fluid velocities, the wave-induced fluid accelerations and any wave-structure inter-

actions; the latter leading to a local modification of the incident wave field due

to the occurrence of wave diffraction. To reduce this complexity, it is common

to adopt simplifications based on the flow regime in which the body is present.

An empirical relation, derived primarily from experimentation and commonly re-

ferred to as the Keulegan-Carpenter number (KC), is used for this purpose. This,

non-dimensional quantity, is defined by

KC =
UT

D
, (6.9)

where U is the amplitude of the horizontal wave-induced orbital velocity, T is

the wave period and D is a length scale based on the diameter of the structural

member under consideration. In flow regimes with a low KC number, typically

KC < 5, the fluid loading will be potential. If D/λ < 0.2, where λ is the incident

wave length, these potential loads will be dominated by inertia forces. In contrast,

if D/λ > 0.2, wave diffraction also becomes important and the nature of the wave-

structure interaction needs to be taken into account. Alternatively, if KC > 20,

the fluid loading is dependent on viscous forcing and characterised as being drag

dominated. In many practical structures, including all jacket (or space frame)

structures, the size of the individual members is such that there is no significant

disturbance of the incident wave field (diffraction effects being negligible). In

such cases the loads applied to the structure are referred to as slender body loads

and the structure said to lie within the so-called drag-inertia regime. Within this

regime it is common to apply the “Morison’s equation” (Morison et al., 1950).

This relates the force acting on a structural member to the sum of the drag and

166

6.5 Practical application: load predictions

inertial forces

F = Cd
1

2
ρDu|u|︸ ︷︷ ︸

drag term

+Cmρ
π

4
D2∂u

∂t︸ ︷︷ ︸
inertia term

, (6.10)

where F is the force per unit length acting on a cylindrical member of diameter

D in a fluid of density ρ. Cd and Cm are empirically derived loading coefficients

relating to drag and inertia respectively, whilst u is the incident wave-induced

velocity and ∂u
∂t

the corresponding unsteady acceleration.

Equation (6.10) frequently forms the basis for computing global loading; global

loading in the sense of a total load induced by fluid flow incident to the sub-

structure. For each member in a sub-structure the equation is applied taking into

account the local fluid velocities, the local accelerations and the dimensions of the

member. Once the loading on all the individual members has been calculated the

sum of these forces is computed to give a total base shear. Similarly, the forces on

individual members can be multiplied by the appropriate moment arm (represent-

ing the distance from the sea bed, or foundations), and the sum of these moments

can be used to define a total overturning moment. Taken together, the base shear

and overturning moment provide appropriate measures of the externally applied

global structural loading. In the calculations which follow, the sub-structural load-

ing calculations were undertaken by WS Atkins using the WAJAC fluid loading

software (Det Norske Veritas, 2010) based upon wave kinematics data provided

by the author.

6.5.2 Loading recipes

In most industrial applications, there are governing bodies and international stan-

dards which produce guidelines for commonly undertaken tasks. In terms of the

design of offshore platforms, the American Petroleum Institute (APInst) guide-

lines (American Petroleum Institute, 2000) is a commonly referenced document.

In the “Design Loads” section of the guidelines appropriate to fixed structures it

suggests that: “The wave loads on a platform are dynamic in nature. For most

design water depths presently encountered, these loads may be adequately repre-

sented by their static equivalents”. The document continues with a description of

167

Chapter 6: Kinematics Calculations, Code Validation and Practical Application;
Non-breaking waves.

the design procedure. It suggests that the wave loading induced by water particle

kinematics should be based on an appropriate two-dimensional wave theory com-

puted using predetermined parameters such as a wave height, associated period

(to include a Doppler shift due to any co-existing current) and a storm water

depth. It then states that, “in many cases a Stokes V [sic] order wave theory

will produce acceptable accuracy” and goes on to explain the computation of total

loads via Morison’s equation (as given above), with some modifications to account

for marine growth and other practical issues.

In the calculation of the applied loads on a structure, it is logical to assume

that the largest and steepest waves will provide the critical conditions in terms of

the wave elevation and the water particle velocities. Unfortunately, the APInst’s

suggested use of a Stokes 5th-order wave (or similar) gives rise to a situation where

the simulated wave does not adequately reflect the underlying physics governing

the evolution of either the largest or the steepest ocean waves. In particular, it

is well known that extreme ocean waves are transient or unsteady, directionally

spread and highly nonlinear. Unfortunately, a Stokes wave solution is regular,

or steady, uni-directional and only partially incorporates the correct nonlinearity.

The practical consequences of this can readily be seen by employing a Stokes 5th-

order solution with a large wave height, H, and noting that the elevation achieved

by the wave crest, ηmax, is considerably lower than that expected. In addition,

the crest-trough asymmetry is poorly represented, as is the maximum local wave

steepness. Furthermore, with a poor representation of an extreme wave profile,

coupled with inadequacies in the underlying physics, it is hardly surprising that

large errors in the representation of the associated water particle kinematics also

arise. When such solutions are used in the calculation of the drag loads, a 10%

error in the predicted kinematics will lead to a 20% error in the predicted loads;

a result clearly derived from equation (6.10). Furthermore, errors in a predicted

wave form, over length scales comparable to that of the overall structure, may

lead to additional inaccuracies in the applied global loading.

With respect to employing the EPIC BEM model, it is clear that a more ac-

curate representation of a specified design wave event and its associated water

particle kinematics will inevitably lead to an improved prediction of the applied

168

6.5 Practical application: load predictions

loads. Indeed, it is interesting to note that those closely involved with the ini-

tial formulation of the APInst guidelines (almost 20 years ago) appear to have

anticipated this development. For example, in a review of the APInst guidelines,

Heideman & Weaver (1992) noted in relation to the large uncertainty in the force

predictions for individual waves that:

“to reduce this uncertainty significantly one would probably have to abandon the

deterministic approach (i.e. Stokes 5th-order), and more accurately model the sur-

face and kinematics of individual waves in a three dimensional non-linear, random

wave sense”.

It is exactly this reduction in uncertainty that the present study seeks to address.

6.5.3 Loading calculations

The structure used in the following calculations is not a conceptual design or

test structure formulated for the purpose of this investigation, rather, it is a real

life structure that is currently used for oil and gas production. The structure

comprises a space frame construction and has a densely packed riser assembly

located between the centroid and the North side of the platform (a schematic is

provided in Figure 6.14). The structure resides in 126.4m of water and has a deck

elevation of 19.975m above mean water level. The plan area of the jacket (sub-

structure) is approximately 83.1m (North-South)× 67.7m (East-West). However,

to allow for as much flexibility as possible in the placement of the wave crest,

water particle kinematics calculations were carried out over an area of 240m by

120m in plan (this gives a working area of 240m by 240m because of the reflective

symmetry in the model) with a discretisation of ∆x = ∆y = 10m. An exception

to this discretisation was required for the points nearest the reflective boundary

(y = 0), as they would lie directly on the boundary wall. As discussed previously,

computing internal kinematics at points on or near boundaries is not desirable

in the interests of accuracy, therefore points that would lie on the boundary wall

were moved to y = ±2m.

In the z direction, internal kinematics were computed at 5m intervals from

the bed to the elevation of the deepest wave trough. Above this level and up to

169

Chapter 6: Kinematics Calculations, Code Validation and Practical Application;
Non-breaking waves.

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

�����������
�����������
�����������
�����������

���
���
���
���

��������
��������
��������
��������

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

126.4m

19.975m

83.1m

x

z

NOT TO SCALE

Key

Top Side

Jacket (space frame)

Sea Bed

Riser Assembly

North South

67.7m

6.
1m

22
.7

m

Figure 6.14: Schematic of the structure under consideration (not to scale).

170

6.5 Practical application: load predictions

the elevation of the highest wave crest, ηmax, a vertical spacing of ∆z = 2m was

adopted. This change in resolution was necessary due to the rapid variation of the

fluid velocities in the higher part of the water column. The kinematics data was

produced with a frequency of approximately 2Hz for a period of 40s either side of

the focus event. In retrospect, it was decided that only data corresponding to the

period of time between the crest prior to, and after, the focus event were required as

it was unlikely that smaller waves would produce greater loads. Once the internal

kinematics data were computed on the required grid, additional kinematics data

from the free surface and the bed were added to form an overall data set. This

full data set was then manipulated further in order to provide the data in a form

that was compatible with the structural loading program (WAJAC).

The first step in computing the sub-structure load was to determine the lo-

cation in both space and time of the maximum applied load. In the case of the

Stokes wave solution this was a simple procedure as the wave is steady. In this

case both time and space can be reduced to a simple phase angle. The loading on

the sub-structure was calculated for every 1◦ of wave phase. For the Stokes wave

with a 10−4 design wave period of T = 15.87s in a water depth of 126.4m and

with a wave height of H = 35.24m (Table 6.1), the corresponding wave length was

λ = 408.3m. As a result, calculations were undertaken at an effective spacing of

∆x = 1.13m or ∆t = 0.0441s.

Finding the maximum loads using the nonlinear kinematics calculations from

the BEM was considerably harder, not least because the nonlinear wave is un-

steady and therefore varies both in time and space. To reduce the search space it

was initially assumed that the kinematics under the highest crest elevation would

produce the largest loads. The kinematics data relating to this particular event

was first identified and the crest was positioned throughout the sub-structure in

a similar manner to the Stokes wave. These calculations were first undertaken

with a spacing of ∆x = 5m. Once complete, and an approximate location of

the maximum obtained, a second refined set of calculations were undertaken with

∆x = 1m. The combination of these results confirm that for both the Stokes

5th-order wave and the BEM nonlinear kinematics, both the base shear and the

overturning moment have maximum values at xs = −20m. This corresponds to

171

Chapter 6: Kinematics Calculations, Code Validation and Practical Application;
Non-breaking waves.

the focussed wave event, or ηmax, being located 20m North of the centroid of the

structure. This result is exactly as expected given the location and layout of the

riser assembly.

Having found the position at which the maximum load occurs in space, time

histories of the nonlinear kinematics were applied at locations in the immediate

vicinity of the xs = −20m maximum. The purpose of this latter exercise was

to ensure that there was not some slightly lower crest elevation, positioned at a

slightly different spatial location, that could produce a larger total sub-structural

load, perhaps due to inertial loading effects on the riser assembly. In considering

both the base shear and the overturning moment, the maximum load was indeed

found to occur at xs = −20m. Taken together, these results confirm that this

positioning relates to the maximum load in both space and time.

Loading Component
Base Shear,

F, (KN)

Overturning moment,

M, (KNm)

Calculations based on Stokes

kinematics:
103490 10485000

Calculations based on fully non-

linear BEM kinematics:
84731 8999037

Ratio of predicted loads, BEM/S-

tokes:
0.819 0.858

Percentage reduction: 18.1% 14.2%

Table 6.2: Comparisons of the sub-structure loads arising in the 10−4 design wave

conditions from calculations undertaken using the fully nonlinear BEM and the

Stokes 5th-order regular wave predictions.

Table 6.2 summarises the results arising from the calculations noted above.

Comparisons between the loads based upon the Stokes 5th-order wave model and

the EPIC BEM solution comfirm that the use of nonlinear kinematics dramat-

ically reduces the sub-structural loads both in terms of the base shear and the

overturning moment.

172

6.5 Practical application: load predictions

6.5.4 Loading trends

Given that the loads computed using nonlinear kinematics are considerably lower

than those calculated using “equivalent” Stokes kinematics, some additional work

was required to put this difference in context, especially with regards to the APInst

guidelines.

The strength of the APInst guidelines arises from the fact that they build

upon the best available field observations in which both the water surface eleva-

tions and the corresponding sub-structural loads were recorded. Indeed, a large

number of the field observations used to construct the guidelines came from an

extensive field monitoring program at Shell’s Tern platform. As a result, it is

difficult to criticise the procedures recommended in the APInst guidelines as they

have provided a design “recipe” that has effectively been calibrated using field

observations. However, such arguments only apply if the flow regime to which the

structure is subjected lies within the bounds of the calibration.

In the case of the current calculations, the steepness of the 10−4 design wave

event under consideration is far in excess of the observations used to calibrate

the APInst guidelines. As a result, it is likely that the procedure specified in the

guidelines is not wholly appropriate. Indeed, it would be very surprising if accurate

estimates of the applied loads could be obtained using inaccurate (or unrealistic)

descriptions of the water particle kinematics (Figures 6.11 – 6.13). It therefore

follows that to achieve a more accurate representation of the sub-structural loads

a set of fully nonlinear kinematics that better represent the reality of the situation

should be adopted. However, in making such an assertion it is important to stress

that if the steepness of the incident waves reduces, the predicted loads based upon

the fully nonlinear kinematics must converge to the APInst guidelines. Afterall,

these guidelines are based upon the best available field observations.

To address this point, a number of additional nonlinear kinematics calculations

were undertaken. The additional calculations were again based on the spectral

properties of the 10−4 sea state, as outlined in Table 6.1, but involve the simulation

of individual or focussed wave events with reduced crest elevations. By keeping the

spectral peak period constant and reducing the crest elevation, a series of waves

173

Chapter 6: Kinematics Calculations, Code Validation and Practical Application;
Non-breaking waves.

with varying steepness were produced. The details of these additional wave cases

are given in Table 6.3.

Case Linear am-

plitude sum:

A = Σan (m)

Crest elevation:

ηmax(m)

Wave height:

Hdc(m)

Wave period:

Tdc(s)

(a) 4.0 4.07 6.80 15.51

(b) 8.0 8.45 13.67 15.53

(c) 12.0 13.04 20.81 15.4

(d) 14.0 15.49 24.55 15.53

(e) 16.0 17.95 27.66 15.42

(f) 17.0 19.48 29.78 15.2

(g) 17.5 20.17 31.00 15.25

(h) 18.9 22.19 34.05 15.13

Table 6.3: Down-crossing properties of the additional wave events calculated using

the fully nonlinear BEM solution. All waves were generated using the parameters

outlined in Table 6.1.

Although eight wave cases were calculated, only the largest six cases ((c)−(h))

were used in the following analysis. The reason for not using cases (a) and (b)

is simply that with a reduction in wave height there is a corresponding reduction

in wave induced fluid velocities. This, in turn, leads to a relative increase in the

inertial loading. Since such results are not consistent with the 10−4 wave case, they

were ignored. Having generated each of these wave events using the EPIC BEM

model the resulting water surface elevations were analysed using a down-crossing

analysis to determine the wave height, Hdc, and the local wave period, Tdc, relating

to the focal event, the subscript dc referring to a down crossing value. This method

was adopted to be consistent with the analysis of field data used in the verification

of the APInst guidelines Heideman (2010). Once the fully nonlinear kinematics

and the “equivalent” Stokes 5th-order wave solutions based upon the down-crossing

analysis were obtained, the data was again passed to WS Atkins for use in the

WAJAC structural loading model.

174

6.5 Practical application: load predictions

It is important to note that, when compared to the original 10−4 wave case,

two modifications were made in relation to cases (c)− (h).

• The numerical model was run using a slightly coarser grid with ∆x = ∆y =

15m spacing. This change in resolution is also reflected in the internal kine-

matics sub-domain.

• It was assumed that the largest load was generated by the focused wave event

(or ηmax) and that the position at which this kinematics data was placed

matched the position of the maximum load found from the “equivalent”

Stokes wave.

The reason for both of these modifications was to reduce the computational work-

load. The discretisation used for the 10−4 wave event led to a run time of approx-

imately ten days on 96 processors. Running the eight wave cases outlined above

(Table 6.3) at the same resolution would take in excess of two months and this

was considered too long to wait for speculative work. The second modification

was a result of the substantial work undertaken in the 10−4 wave case to find

that the position of both the nonlinear and Stokes 5th-order wave was identical in

terms of producing maximum loads. Based on the earlier work, and noting that

the wave cases (a)-(g) are significantly less steep than the original 10−4 wave case,

it was concluded that these minor modifications had no significant effect on the

magnitude of the maximum loads.

6.5.5 Load comparisons

Table 6.4 defines the sub-structural loads arising from the kinematics calcula-

tions outlined in Table 6.3. The columns of most interest are three and four

which define the ratio of the predicted forces (FBEM/FStokes), and overturning

moments (MBEM/MStokes). As the ratio of the predicted forces is generally less

than unity, the percentage reduction in the applied local load can be expressed as

(1 − ratio) × 100%. These data are given in columns five and six and presented

graphically in Figures 6.15 and 6.16, the former relating to base shear and the

latter to overturning moment. In addition, these figures also contain a result from

175

Chapter 6: Kinematics Calculations, Code Validation and Practical Application;
Non-breaking waves.

a related study undertaken on a structure in the Ekofisk field (Swan (2007), Jo-

hansen & Nesteg̊ard (2008)). The significance of this additional result is explained

later. In considering the values presented in Table 6.4, and plotted in Figures 6.15

Case W
av

e
st

ee
p
n
es

s:
H

d
c
k
/2

B
as

e
sh

ea
r:

F
B

E
M

F
S

to
k

e
s

O
ve

rt
u
rn

in
g

m
om

en
t:

M
B

E
M

M
S

to
k

e
s

B
as

e
S
h
ea

r
%

re
d
u
ct

io
n
:

1
−

F
B

E
M

F
S

to
k

e
s
×

10
0

O
ve

rt
u
rn

in
g

m
om

en
t

%
re

d
u
ct

io
n
:

1
−

M
B

E
M

M
S

to
k

e
s
×

10
0

(c) 0.181 0.975 1.016 2.5 -1.5

(d) 0.210 0.942 0.997 5.8 0.3

(e) 0.240 0.961 0.983 3.9 1.7

(f) 0.265 0.940 0.972 6.0 2.8

(g) 0.274 0.934 0.973 6.6 2.7

(h) 0.310 0.871 0.886 12.9 11.4

Table 6.4: Ratios of the predicted sub-structure loads, FBEM

FStokes
and MBEM

MStokes
for six

wave cases with increasing wave steepness.

and 6.16, it is important to note that a number of hanging platforms (large box

like elements) located high in the sub-structure have been removed from the cal-

culations undertaken in the WAJAC software. The reason for removing these

elements is that their presence prevented meaningful inter-comparisons between

the BEM and Stokes 5th-order loads. The larger crest-trough asymmetry present

in the BEM waves meant that these waves would often just clip these platforms

and cause unrealistic, and incomparable, increases in the applied loads. In the

case of the 10−4 wave event described in §6.5.3 the platforms were present, hence

the reduction in load in comparison to a Stokes “equivalent” wave was greater in

the results presented previously (Table 6.2).

Prior to drawing conclusions from Figures 6.15 and 6.16, it is informative to

176

6.5 Practical application: load predictions

0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32
0

2

4

6

8

10

12

14

16

Wave Steepness Hk/2 [−]

R
ed

uc
tio

n
in

 p
re

di
ct

ed
 b

as
e

sh
ea

r
(1

−
F

B
E

M
/F

S
to

ke
s)×

10
0%

Figure 6.15: Reduction in predicted base shear as a function of wave steepness.

Calculated data (�), results from Ekofisk calculations (�), trendline (quadratic

least squares) () and limit of wave steepness used for calibration of APInst

guidelines ().

177

Chapter 6: Kinematics Calculations, Code Validation and Practical Application;
Non-breaking waves.

0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32
−2

0

2

4

6

8

10

12

14

Wave Steepness Hk/2 [−]

R
ed

uc
tio

n
in

 p
re

di
ct

ed
 o

ve
rt

ur
ni

ng
 m

om
en

t:
(1

−M
B

E
M

/M
S

to
ke

s)×
10

0%

Figure 6.16: Reduction in predicted overturning moment as a function of wave

steepness. Calculated data (�), results from Ekofisk calculations (�), trendline

(quadratic least squares) () and limit of wave steepness used for calibration

of APInst guidelines ().

178

6.5 Practical application: load predictions

consider some further information surrounding the calibration of the APInst guide-

lines and a similar calculation performed on a different platform. First, Heideman

& Weaver (1992) note that the quality assurance procedure performed on many of

the waves records taken at Shell’s Tern platform meant that many of the largest

waves recorded were discarded as spray adversely affected the recording equipment.

As a result, the wave force data used in the formulation of the APInst guidelines

related to wave heights in the range 8.6m ≤ Hdc ≤ 21.5m. Unfortunately, Hei-

deman & Weaver (1992) give little information about wave periods found in the

Tern study. However, this information can be gleaned from a summary provided

by Atkins et al. (1993). With regards to a number of key storms occurring in

1992, Atkins et al. (1993) give Tp ≈ 15s. Adopting the belief that the local down-

crossing period is approximately 0.9Tp, leads to Tdc = 13.5s. Evidence to support

this value is provided by Atkins et al. (1993) who present a record of the largest

wave measured at Tern with Tdc = 13.4s. This specific wave however had a wave

height of Hdc = 25.1m and can therefore be assumed to have been removed by

the quality assurance procedures outlined by Heideman & Weaver (1992). Further

evidence of the wave periods recorded at Tern are given by Jonathan & Taylor

(1995). After removal of any (obviously) spurious wave components, they provide

data describing the ten largest waves recorded at Tern in 1993. These wave records

include wave heights lying within the range 21 − 22m, with local down-crossing

periods of Tdc = 13.0 − 14.5s. A brief summary of the wave conditions recorded

at Tern is given in Table 6.5.

Second, a study performed by Swan (2007) and Johansen & Nesteg̊ard (2008)

relating to the Ekofisk field specified a one in ten thousand year wave event to

have Hmax = 32.96m and a corresponding Tp = 15.9s (again defined by 0.9Tp),

the resulting wave steepness being Hdck/2 = 0.294. The importance of this study

will be made clear shortly.

Returning to the results presented in Figures 6.15 and 6.16 the data presented

in red defines the percentage load reduction as a function of wave steepness for

the wave cases indicated in Table 6.4 along with the results from the 10−4 design

wave event. The solid black line is used to indicate the trend present in the data

and the dashed black line indicates the limit of the wave steepness encountered

179

Chapter 6: Kinematics Calculations, Code Validation and Practical Application;
Non-breaking waves.

Source Wave height:

Hdc|max (m)

Wave period:

Tdc (s)

Wave steep-

ness: Hdck/2

Heideman & Weaver

(1992)

21.5 13.5* 0.238

Atkins et al. (1993) 25.1 13.4 0.282

Jonathan & Taylor

(1995)

19.7 13.0 0.235

Table 6.5: Summary of wave observations recorded at the Tern platform in the

Northern North Sea. (*Note: this value of Tdc was based upon 0.9Tp, where

Tp = 15s was adopted as the best available estimate.)

in the recording program at Tern. The conclusions that can be drawn from these

figures are as follows.

a) At the lower values of wave steepness (Hdck/2 = 0.2) the agreement between

the loads calculated using the fully nonlinear BEM model and the “equiva-

lent” Stokes 5th-order solution is good. In terms of the base shear, the fully

nonlinear calculations suggest that the Stokes 5th-order solution may over

predict the loads by 2.5%, while in the case of the overturning moment it

under predicts by 1.5%. In both cases it is clear that the results arising from

the use of the fully nonlinear kinematics are very similar to those arising

from a Stokes 5th-order solution, within this range of steepness.

b) When a fully nonlinear kinematics field is employed, an increase in the wave

steepness leads to a reduction in the applied loading when compared to that

predicted by an “equivalent” Stokes 5th-order wave model.

c) At the limit of wave steepness used in the validation and calibration of

the APInst guidelines (denoted by the vertical dashed line) the nonlinear

calculations suggest that the base shear is reduced by approximately 5%

and the overturning moment by 2%.

d) Although a 5% reduction in load, found at the limit of the wave steepness

180

6.6 Conclusions

observed at the Tern platform, may not be practically significant, in the con-

text of the present study, the predicted trends are entirely consistent with

analysis of field observations. Indeed, this is entirely congruent with expecta-

tions. The largest loads recorded at the Tern platform are slightly lower that

those predicted by the APInst guidelines. This confirming that the present

approach is fully consistent with the best available field observations.

e) At Hdck/2 = 0.294 a blue marker can be seen. This point relates to calcu-

lations undertaken for ConocoPhillips and BP for a similar jacket structure

in the Ekofisk field (Johansen & Nesteg̊ard, 2008). This point has not been

used in the calculation of trend lines and therefore provides an independent

result that is consistent with the trends seen in the present study. The small

departure in the load reduction relating to this data point is undoubtedly due

to changes in the effective water depth: at the Ekofisk field kpd = 1.18, while

at the present case kpd = 1.91 (where kp is the wave number associated with

the wave component at the peak of the frequency spectrum). The agreement

of the present data with the Ekofisk study is even more important because

the Ekofisk data was produced by the entirely separate (non-breaking) nu-

merical model of Bateman et al. (2003). In effect, this result provides a

completely independent verification of the present calculations.

6.6 Conclusions

This chapter began with a formal validation of the EPIC BEM model, the com-

parisons provided confirming that the model performs correctly when simulating

a number of well established wave conditions. Specifically, numerical predictions

of the free surface, in both time and space, for both regular and irregular waves

showed excellent agreement with available analytical theories. Furthermore, the

shape of the underlying spectrum, and the phasing of the wave components, in

the focused irregular wave case closely matched their respective analytical coun-

terparts. Building on the success of the free surface descriptions, predictions of

the water particle kinematics in both regular and irregular wave cases were shown

181

Chapter 6: Kinematics Calculations, Code Validation and Practical Application;
Non-breaking waves.

to be equally successful when compared to analytical results. It can therefore be

concluded that the EPIC BEM model produces accurate numerical predictions of

a number of established wave conditions.

On the basis of these results the model was applied to more testing wave condi-

tions. Specifically the EPIC BEM model was applied to the description of a design

wave event with an annual probability of exceedance of 10−4. Comparisons be-

tween the fully nonlinear kinematic predictions and the results of an “equivalent”

Stokes 5th-order wave calculations, the latter commonly used in design calcula-

tions, show marked differences both in terms of the water surface elevation and

the underlying kinematics. To emphasise the importance of these differences the

kinematics data were input into an established fluid loading model and the loads

on an offshort jacket structure calculated. When compared to established design

procedures (based on a Stokes 5th-order wave solution) the reduction in the global

loading when using the fully nonlinear kinematics predictions was found to be sig-

nificant. Indeed, an 18.1% reduction in the total base shear and a 14.2% reduction

in the total overturning moment were identified.

Given the magnitude of the presented load reductions, it was clearly necessary

to explain them in the context of the existing APInst guidelines. To this effect,

additional calculations were undertaken involving waves with the same spectral

properties but reduced wave height and therefore reduced steepness. Incorporating

these results with those from the 10−4 design wave it was possible to establish

trend lines indicating the reduction in the applied sub-structural loads in relation

to predictions based on “equivalent” Stokes 5th-order kinematics. It was found

that the steeper the incident waves, the greater the reduction in both the base

shear and the overturning moment. These trend lines provide a clear explanation

for the reduction in load prediction with wave steepness and, most importantly,

allow the present results to be reconciled with established design guidelines; the

latter having been calibrated using the best available field data.

The next chapter investigates another type of extreme wave, a deep water

breaking wave. Recent research undertaken in the Crest JIP (Joint Industry

Project) has confirmed that such waves should be taken into account within the

design process. The EPIC BEM solution provides a realistic tool with which to

182

6.6 Conclusions

do exactly this.

183

7

Overturning Wave Groups

7.1 Introduction

This chapter begins by reviewing progress to date in the numerical modelling of

overturning ocean waves in realistic sea states. Following this review, the calcu-

lation method for kinematics information on the domain boundary is revisited.

It appears that the accurate provision of this information is key to simulating,

and therefore understanding the nature of, breaking waves. This leads to some

further discussion of the EPIC BEM model relating specifically to the investiga-

tion of breaking waves. Particular attention is paid to the role of the so-called

switching time, when the free surface boundary conditions are changed from one-

third-Lagrangian form to a fully-Lagrangian form; the latter necessary to model

overturning waves. The final sections of the chapter provide some description of

wave breaking in a realistic ocean spectrum. Insights into the water particle kine-

matics associated with these waves are provided and comparisons to analytical

and fully nonlinear non-breaking waves given.

7.2 Models of wave breaking

In the investigation of three dimensional wave breaking, the boundary element

method has been the preferred numerical scheme for quite some time. Due to the

184

7.2 Models of wave breaking

non-dissipative nature of its formulation, the large physical space and evolution

times required to simulate the growth of extreme waves in realistic sea states can

be modelled without the loss of energy that typically occurs in other numerical

formulations. In this regard, an important contrast can be drawn between models

based on a BEM formulation and those based on the direct solution of the Navier

Stokes equations (Yan & Ma, 2010).

To date, the subject of wave breaking has been investigated by several research

groups. Historically, publications on the topic have considered two dimensional

wave breaking; the wave breaking event triggered by a variety of scenarios. Within

this early literature there appear to be two trends. The first, that two dimensional

wave modelling was universally chosen due to lack of computing power and mod-

elling techniques. The second, that most studies of wave breaking concerned the

simulation of regular steady waves or solitary waves. In addition, the earliest mod-

els tended to use periodic physical boundaries, while later models adopt NWTs,

often with bathymetries to assist the formation of breaking waves.

The first ever breaking wave simulation was undertaken by Longuet-Higgins

& Cokelet (1976) in a two dimensional, periodic, conformally mapped domain.

This initial simulation was the stimulus for a large volume of research that worked

towards removing the original constraints of periodicity, an assumed infinite wa-

ter depth and, the implementation within conformally mapped space. In striving

towards these goals, notable contributions have been made by Ortiz & Douglass

(1993), Grilli et al. (1997), and Drimer & Agnon (2006). With regards to two

dimensional wave breaking arising in realistic frequency spectra, Christou et al.

(2007) provide an excellent example of the use of a JONSWAP spectrum with real-

istic parameters to generate a two dimensional overturning wave and its associated

water particle kinematics.

Although the simulation of two dimensional wave breaking is of interest, the

use of these models for practical applications is limited for obvious reasons. How-

ever, Guyenne & Grilli (2006) noted that there are some similarities between the

breaking of two and three dimensional solitary waves. Indeed, on the basis of

these results it appears that a two dimensional model may be of use for an ini-

tial investigation of a breaking wave field as the computational effort required is

185

Chapter 7: Overturning Wave Groups

considerably less.

In the field of the numerical modelling of three dimensional wave breaking, a

number of attempts have been made. Again, these tend to be based upon solitary

waves, regular waves or the directional focussing of a small number of identical reg-

ular or steady wave components. The groups of Grilli, Dias, Guyenne, Fochesato,

along with their associated researchers, have provided a number of important in-

sights into the field of three dimensional wave breaking. Grilli et al. (2001) first

demonstrates solitary wave breaking on a uniform (plane) slope, giving a two di-

mensional wave profile, and contrasts these results with solitary wave breaking on

a ridged slope. This work was improved by Fochesato et al. (2005), in terms of

the accuracy of the boundary conditions applied. This led to a similar (related)

publication by Guyenne & Grilli (2006). More recently, the computational effi-

ciency of their code was then improved by the implementation of the fast multipole

algorithm, details provided by in Fochesato & Dias (2006).

In terms of simulating wave breaking in realistic, open ocean, conditions , Grilli

and his co-workers have made two attempts with varying success. In both cases the

waves were formed by the directional focussing of wave energy. This approach is

referred to in their paper as “directional energy focussing” and entirely neglects the

underlying frequency spectrum. For example, Brandini & Grilli (2001) attempted

to create a realistic breaking wave using eight regular waves, of identical frequency

and amplitude, with directions calculated such that they converge in phase to form

a steeper wave with a surface profile that varies in the two horizontal directions.

In the context of laboratory wave generation, these wave events are commonly

referred to as “bulleyes” due to the nature of their surface elevation contour plots.

Unfortunately, this scenario failed to produce a breaking wave despite the steepness

of the wave conditions present in the NWT. The authors suggest that the failure

was due to waves starting to spill near the input boundary. This caused the

rapid convergence of nodes which, in turn, caused “quasi-singularities” due to

node proximity. In terms of the mathematics described earlier in this thesis, their

computation broke down because r → 0 as the nodes became close and therefore

“quasi-singular”; details of the effect being given in §2.4.6.

In a later paper (Fochesato et al., 2007) a second attempt was made at “di-

186

7.2 Models of wave breaking

rectional energy focussing” to create a realistic breaking wave. Fochesato et al.

(2007) first argued that this was a suitable mechanism for the creation of realistic

breaking waves by claiming that “the large focussed waves show very similar fea-

tures near their crest and, hence, somewhat locally lose the memory of the physical

phenomenon that has caused energy focussing”. Such arguments seek to ignore the

fact that the real sea states are broad-banded in both frequency and direction with

frequency dispersion or frequency focussing playing a significant role in the evo-

lution of the largest waves. Indeed this process lies at the heart of the commonly

adopted NewWave model (Tromans et al., 1991) which describes the most proba-

ble shape of a large linear wave and which has been extensively validated on the

basis of field observations (Jonathan & Taylor, 1997). However, setting aside ar-

guments concerning the validity and practical relevance of the method of creating

these waves, Fochesato et al. (2007) used thirty identical regular wave components

in an identical manner to Brandini & Grilli (2001) and achieved a breaking wave

event. In addition, some insight into the kinematic field lying beneath breaking

waves of this nature was provided.

Outside the work undertaken by Grilli and his co-workers, it appears that only

one other group have produced 3D breaking waves using the BEM. Xue et al.

(2001) produced 3D wave breaking using a 5th-order Stokes regular wave solution

as the input, and then applied a 3D pressure distribution across the free surface to

modulate the initially long crested waves. Their model appears successful in the

sense that it produced breaking waves and allowed considerable insight into the

associated kinematics and acceleration fields. Unfortunately the stability of the

computations was poor and so a smoothing filter was applied to the free surface

at regular intervals. The loss of information and accuracy of the results arising

from such a method is of concern. Furthermore, as was the case in the earlier

2D attempts at modelling wave breaking, the practical relevance of using Stokes

waves as the initial or starting wave form needs to be carefully considered.

In the interests of completeness, some success in the modelling of 3D wave

breaking has also been reported using other numerical methods. In particular,

Yan & Ma (2010) use a finite element based method to simulate a NWT in a

similar fashion to that presented in the current work. A number of good results,

187

Chapter 7: Overturning Wave Groups

in comparison to other numerical models, are obtained for both 2D and 3D wave

breaking. The work is limited to solitary and regular waves, with the onset of

wave breaking instigated by the use of artificial reefs or slopes. As a result of both

the method used to produce wave breaking and the input wave characteristics,

the resulting wave forms are not comparable or consistent with the occurrence of

wave breaking in the open ocean.

To summarise this sub-section, as far as the author is aware there are no

examples of numerically modelled three dimensional breaking waves arising from

the focussing of wave components in a realistic ocean spectrum; the latter being

broad banded in both frequency and direction. It is precisely this key step to a

better understanding of real wave breaking that is presented in the following work.

7.3 A re-assessment of boundary kinematics

It is imperative that the water particle kinematics (u, v, w) computed on the do-

main boundaries, particularly Γsurface, are accurate as it is these values that dom-

inate the boundary conditions which drive the model. In §2.4.8 is was shown

that velocities and spatial gradients associated with nodal positions around the

domain can be easily computed by applying polynomial fits to potential and po-

tential fluxes at known locations in a local grid, or “sliding element”, around the

node of interest. For most circumstances this method is very fast and sufficiently

accurate. However, in modelling the extreme behaviour associated with breaking

waves, a number of potentially important problems arise.

The first problem associated with the use of polynomials occurs when a deriva-

tive is required at the interface between two boundaries, the boundary interface.

In this case, the end point of a polynomial fit is used. This is a well known recipe

for inaccuracy (Press et al., 1990). Fortunately, at the edges of the NWT where

this situation arises, additional physical information associated with the fluid flow

can be used to supplement the definition of the polynomial derivatives. For ex-

ample, at a reflecting wall, it is known that the spatial and potential gradients

perpendicular to the wall are zero. Hence, the exact value determined by the

physics of the problem can be used in the boundary conditions in place of the in-

188

7.3 A re-assessment of boundary kinematics

terpolated value. This principle can be extended to all boundary interfaces within

the NWT.

When considering the occurrence of wave breaking, two further problems arise

concerning the calculation of kinematics information. First, to allow a wave to

break, the model must run applying fully-Lagrangian boundary conditions to

nodes on the water surface. As a result of these boundary conditions, the sur-

face nodes can drift with the fluid. This permits the free surface to become

multi-valued such that a wave can break. The physical processes involved in wave

breaking often cause the nodes that form the water surface to drift in all Cartesian

directions. As a result the elements forming the domain become distorted. Fur-

thermore, as a consequence of the elements on the boundaries becoming distorted,

the sliding elements (§2.4.8) associated with the computation of the velocities and

gradients will also become distorted.

In §2.4.8 it was assumed that the {m, s,n} vectors, used to compute the spa-

tial gradients, were orthogonal. This holds true on the water surface (Γsurface)

in the semi-Lagrangian frame of reference. However, in a fully-Lagrangian frame

of reference once the nodes start to drift, the orthogonality of the unit vectors

{m, s}, used in the computation of velocities and gradients, ceases to hold. To the

author’s knowledge this problem has only been discussed once in the published

literature, by Fochesato et al. (2005). In considering this effect they acknowledge

the problem in relation to their earlier publication (Grilli et al., 2001) and make a

correction to their coordinate system to account for the change. To emphasis the

importance of this effect Fochesato et al. (2005) show some examples of solitary

waves breaking over a reef and compare results arising from their original formu-

lation and their new (corrected) formulation. A marked difference was seen in

the wave evolution following the application of the corrected boundary conditions,

thereby highlighting the importance of this effect. In light of this information,

if the EPIC BEM model is run using fully-Lagrangian boundary conditions, the

kinematics information on the boundaries is computed with the necessary correc-

tions to deal with the lack of orthogonality in the reference coordinate system as

suggested by Fochesato et al. (2005).

The second problem associated with wave breaking occurs when a wave begins

189

Chapter 7: Overturning Wave Groups

to overturn. A point often forms at the tip of the overturning wave crest and

this is generally modelled by a single node. Clearly, fitting a polynomial around

such large a geometric irregularity can cause considerable problems with accuracy,

especially with regard to the continuity of velocities around the plunging part of the

wave. To the author’s knowledge there are no solutions to this problem within the

present literature. However, to overcome this difficulty, some hints at a potential

solution are presented in §8.3.1.

7.4 Computational domain and model set-up

The set-up used in the EPIC BEM model for the simulation of breaking waves is

similar to that described in Chapter 6. Within this discussion two NWTs were used

in the simulation of the desired wave events: NWT-HR and NWT-LR, HR and LR

refer to high resolution and low resolution respectively. Both the NWTs simulate

an area that is approximately the same size as the wave basin in the fluids research

laboratory in the Dept. of Civil and Environmental Enginering at Imperial College

London. The exact dimensions of the domains and the discretisations employed

are given in Table 7.1. In both cases it should be noted that, to take advantage

of the symmetry of the wave field (about y = 0m), half size domains are used, as

described in §6.3.1.

NWT-HR NWT-LR

X dimension (m) [−410 : 5 : 300] [−410 : 10.25 : 307.5]

Y dimension (m) [−410 : 5 : 0] [−410 : 10.25 : 0]

Z dimension (m) [−110 : 5 : 0] [−110 : 11 : 0]

Table 7.1: Parameters relating to the NWTs used in the simulation of a breaking

wave event. Notation used, [start coordinate:discretisation step size:end coordi-

nate]

The only significant difference between the two NWTs is the discretisation

used in forming the boundary elements; NWT-HR being formed at considerably

190

7.4 Computational domain and model set-up

higher resolution than NWT-LR. The reason for choosing two NWTs of different

resolution lies in the difficulty of finding a set of initial conditions that produce

a breaking wave. Essentially, a parametric search was required to find a set of

initial conditions that create a wave that breaks by plunging or overturning. In

order to proceed through the search space as efficiently (or quickly) as possible, a

low resolution domain is used so that the computation time is reduced. Once a

likely set of conditions are found they are then simulated in the higher resolution

NWT. Following a considerable number of trials, the conditions given in Table 7.2

were found to generate a realistic overturning wave in deep water.

Property Value Comment

Spectral form JONSWAP

NewWave

NewWave formulated fol-

lowing Tromans et al.

(1991)

Peak period (Tp) 10.0s -

Spectral peak enhancement

factor (γ)

1.0 -

Directional spread (s) 7 Mitsuyasu spread (Mit-

suyasu, 1975)

Water depth (d) 110m -

Input amplitude (A) 19.0m Based on equation (6.6) as

outlined in §6.3.1

Courant number (C0) 0.4 -

Table 7.2: Metocean parameters relating to the modelling of a breaking wave

event.

As described in §2.5 the EPIC BEM model can be switched to use a fully-

Lagrangian frame of reference for computing both the boundary conditions and the

movement of the nodes which form the boundary or domain. Switching to a fully-

Lagrangian representation of the boundary conditions is necessary to allow the

formation of a multi-valued surface required for the occurrence of wave breaking.

At present there is no method employed for the automatic switching of boundary

191

Chapter 7: Overturning Wave Groups

conditions and so numerous switching times are tested. Each attempted switching

time results in slightly different movement of the nodes on the free surface. As a

consequence, some switching times cause nodes to “crash” prematurely into each

other, whilst others cause large elongations of the surface elements and the rapid

escalation of numerical errors. In both cases the numerical scheme comes to an

abrupt halt. In contrast, other switching times give rise to the desired overturning

motion. At first sight this appears to be a nondeterministic approach. However,

the movement of the free surface up to the point at which the model breaks down

is consistent regardless of switching time employed. It just so happens that in

some cases the model breaks down more quickly than in others. Proof of the

deterministic nature of this approach is given in §7.5.

Evidently, trying a large number of switching times with the model run-

ning from its start position is a waste of computing time. Therefore, to reduce

the computational effort associated with exploring different switching times, the

EPIC BEM code writes to disk all the information required to restart the code us-

ing Adams-Bashforth-Moulton time stepping (see §2.4.10). This effectively creates

a continuous set of check points for the simulation that allow it to be restarted

from a previous state. This is a particularly useful feature of the model as it

means that once the wave field has been simulated to a position near breaking,

the model can be restarted at multiple instances, to trial multiple switching times.

This avoids the unnecessary recomputing of known information.

With the information regarding switching times and restarting the model from

arbitrary check points in mind, the following parameters defining activities within

the time domain were found to produce a breaking wave. First, the model was

run from −230s to approximately −43s in a semi-Lagrangian frame of reference.

At the outset of these calculations, a 30s window was used to “ramp up” the

potential flux along the input boundary (thus avoiding the instigation of numerical

shock waves). The model was then restarted from a check point near −43s and a

number of switching times were used. Initial tests undertaken within the NWT-

LR domain suggested that switching times in the range −21s ≤ ts ≤ −16s were

likely candidates for producing overturning waves. Accordingly, switching times

within this range dictated the search for the development of breaking waves in

192

7.4 Computational domain and model set-up

the higher resolution (NWT-HR) domain. A comprehensive set of results and

observations relating to the occurrence wave breaking within the NWT-HR domain

is provided in §7.5. Prior to presenting the detailed numerical results, a brief

discussion of a new method used to compute the second-order wave model of

Sharma & Dean (1981) is provided. This method, developed by the author, is

used for comparisons with the breaking wave computations presented in §7.5.

However, given the practical importance of second-order calculations in design

applications, the proposed model has much wider applications than those simply

applied herein.

7.4.1 Second-order random wave theory; an efficient cal-

culation procedure

In the prediction of ocean wave profiles and their underlying water particle kine-

matics, linear random wave theory (equations (6.6) and (6.7)) is often used as

a first approximation for incorporating the directional characteristics of the fre-

quency spectrum describing the sea state. Unfortunately, weakly nonlinear waves

cannot be predicted accurately by such theories, but are not sufficiently steep to

warrant the use of a fully nonlinear wave model. In such cases the second-order

wave theory proposed by Sharma & Dean (1981) is often considered appropriate.

Indeed, this solution is often used in design calculations (or, at least, it should be),

because it allows the water surface elevations and the water particle kinematics to

be defined in a way which is consistent with commonly predicted crest statistics

(Forristall, 2000). However, one drawback of the method proposed by Sharma &

Dean (1981) is that the algorithm is O(n2), where n is the number of components

in the wave field distributed over both frequency and direction. As a result, the

method can be computationally intensive and, consequently, is not used as often

as it ought to be. This section briefly discusses a modification to the algorithm

that reduces the computational workload by at least an order of magnitude, for

the majority of calculations, without any significant loss of accuracy.

The second-order model of Sharma & Dean (1981) is based upon the summa-

tion of the two-wave interactions first identified by Longuet-Higgins & Stewart

193

Chapter 7: Overturning Wave Groups

(1960) and Longuet-Higgins (1963); the former dealing with uni-directional waves

and the latter incorporating the effects of directional spreading. In formulating

these interactions, it is shown that if two linear wave components, both freely

propagating and hence satisfying the dispersion equation, co-exist they will in-

teract to produce both frequency-sum and frequency-difference terms; the former

being at high frequency and the latter at low frequency. In addition, both indi-

vidual linear wave components will have second-order Stokes’, or self-interaction,

terms associated with them. All of these second-order terms (the sum-terms, the

difference-terms and the Stokes’ terms) correspond to bound waves and, as such,

do not satisfy the dispersion equation. In the case of the two-wave interactions,

the phase velocity depends upon the two interacting free waves and the nature of

the term involved (sum or difference); while the Stokes’ terms simply travel at the

speed of their associated free wave.

In applying these solutions to a random or irregular wave field, involving a large

number of frequency components, Sharma & Dean (1981) simply summed up the

sum and difference terms arising from every possible pair of wave interactions

and added the self interaction or Stokes terms. This gives rise to n2 second-order

components, where n is again the total number of wave components distributed

over both frequency and direction.

In undertaking a random wave simulation, the repeat period of the wave record

is inversely proportional to the spacing between adjacent frequency components

(∆f). If, as is usually the case, a long repeat period is required, this implies a

small (∆f) and hence large n for realistic ocean spectra. However, if n becomes

too large, the n2 computations may require prohibitively long computational runs.

Problems of this type become particularly apparent when calculations need to

be undertaken at a large number of spatial locations, as would be the case in,

for example, a pipeline design. The present work avoids this difficulty by the

introduction of a technique referred to as spectral priming.

Background

Sharma & Dean (1981) state that in a random sea the velocity potential, φ, and

194

7.4 Computational domain and model set-up

the sea surface elevation, η, can be represented as follows:

φ(x, y, z, t) = φ(1)(x, y, z, t) + φ(2)(x, y, z, t) + . . . , (7.1)

η(x, y, t) = η(1)(x, y, t) + η(2)(x, y, t) + . . . , (7.2)

where the superscript defines the order of the terms involved, (1) indicating terms

of O(ak) and (2) terms of O(a2k2). At a first order of wave steepness the solution

is as outlined in §6.3.1 and can be rewritten as

φ(1) =
n∑

i=1

bi
cosh ki(d+ z)

cosh kid
· sin(ki ·x− ωit+ ψi) (7.3)

and

η(1) =
1

g

n∑
i=1

biωi · cos(ki ·x− ωit+ ψi) =
∞∑
i=1

ai cos(Ψi) (7.4)

where

ai =
biωi

g
, (7.5)

ω2
i = gki tanh(kid), (7.6)

Ψi = ki ·x− ωit+ ψi, (7.7)

and

ki = (kx, ky) = (ki cos θi,ki sin θi). (7.8)

Within this solution, x is the position in the horizontal plane, (x, y). The expres-

sion ki is the wave number vector associated with wave component i; kx denoting

the wave number in the x direction, ky the wave number in the y direction and

ki =
√
kx

2 + ky
2 . The variables ai, ωi, θi and ψi are respectively the wave ampli-

tude, angular frequency, direction of travel and an arbitrary phase angle associated

with wave component i. The variable n indicates the number of wave components

under consideration. The symbol g defines the acceleration due to gravity, t ex-

presses time and d represents the local water depth. The variable, Ψ, is used as an

argument expressing the overall phasing, taking into account the spatial location

(x), the time (t) and the arbitrary phase angle (ψ).

195

Chapter 7: Overturning Wave Groups

At a second-order of wave steepness,

φ(2) = 1
4

∞∑
i=1

∞∑
j=1

bibj
cosh (k−ij(d+ z))

cosh(k−ijd)
·

D−
ij

(ωi − ωj)
sin(Ψi + Ψj) + (7.9)

1
4

∞∑
i=1

∞∑
j=1

bibj
cosh(k+

ij(d+ z))

cosh(k+
ijd)

·
D+

ij

(ωi + ωj)
sin(Ψi + Ψj)

and

η(2) =
1

4

∞∑
i=1

∞∑
j=1

aiaj (7.10){[
D−

ij − (ki ·kj +RiRj)√
RiRj

+ (Ri +Rj)

]
· cos(Ψi −Ψj) +[

D+
ij − (ki ·kj −RiRj)√

RiRj

+ (Ri +Rj)

]
· cos(Ψi + Ψj)

}
,

k−ij = |ki − kj|, (7.11)

k+
ij = |ki + kj|, (7.12)

and

D−
ij =

({
(
√
Ri −

√
Rj)

[√
Rj (k2

i −R2
i)−

√
Ri (k2

j −R2
j)

]}
(7.13)

÷
[
(
√
Ri −

√
Rj)2 − k−ij tanh(k−ijd)

])
+

([
2(

√
Ri −

√
Rj)2(ki ·kj +RiRj)

]
÷

[
(
√
Ri −

√
Rj)2 − k−ij tanh(k−ijd)

])
,

D+
ij =

({(√
Ri +

√
Rj

) [√
Ri (k2

j −R2
j) +

√
Rj (k2

i −R2
i)

]}
(7.14)

÷
[
(
√
Ri +

√
Rj)2 − k+

ij tanh(k+
ijd)

])
+

([
2(

√
Ri +

√
Rj)2(ki ·kj −RiRj)

]
÷

[
(
√
Ri −

√
Rj)2 − k+

ij tanh(k+
ijd)

])
,

and

Ri = ki tanh(kid). (7.15)

196

7.4 Computational domain and model set-up

With the aim of reducing the computational effort required to calculate the

second-order contributions, several points need to be considered. First, the inter-

action of component i with j is identical to the interaction of component j with i.

This means that if the second-order contributions between the Zij and Zji compo-

nents were placed in the ith and jth positions of an n by n matrix, Z, the matrix

would be symmetrical. This important fact reduces the number of interactions to

be calculated from n2 to n(n− 1)/2. Additionally, the self interaction, or Stokes’,

terms lie on the diagonal of the matrix. These terms exist only once and so can

be computed at the same time as the first order components.

Although the introduction of this symmetry is important in the numerical

evaluation of a second-order model, the method remains a fundamentally O(n2)

process. As a result, for any practically relevant problem, involving a large number

of wave components, the solution will be computationally intensive. In terms

of reducing this intensity, whilst maintaining a high degree of accuracy, a new

technique is introduced as outlined in the following section.

Spectral priming

In applying a second-order model to the description of the design wave conditions,

outlined in Chapter 6, it became clear that many of the two-wave couplings involv-

ing pairs of freely propagating wave components within a sea state yield negligible

contributions to the second-order description of both the water surface elevation

and the underlying water particle velocities. As a result, as far as the calculation

of the second-order terms is concerned, the underlying spectrum defining the sea

state can be manipulated, to include only those waves that are involved in signif-

icant two-wave interactions. This approach is subsequently referred to as spectral

priming; its objective simply being to reduce the number of free wave compo-

nents involved in the calculation of the second-order terms, thereby significantly

reducing the overall run time.

Spectral priming is performed by first creating a focussed wave group by giving

all components of the sea state a zero phase angle (ψi = 0). The second-order

description of this wave is then computed using the self interaction terms and

all possible couplings of two freely propagating wave components, as stated in

197

Chapter 7: Overturning Wave Groups

Sharma & Dean (1981). At this stage no manipulation of the underlying wave

spectrum has occurred and the calculations are only undertaken for one instant

in time and at one spatial location, corresponding to the occurrence of the largest

(focussed) wave crest. This point was chosen because, with the phasing of all the

wave components set to zero, the magnitude of all the second-order contributions is

maximised. The second-order calculation is then performed a number of times; the

starting point for these calculations being the inclusion of only those components

that when coupled together give the largest contributions to the second-order

part of the calculation. The numerical code then loops using increasingly more

components until a predetermined percentage (usually 90%) of the magnitude of

the complete second-order part of the calculation is reached. If the second-order

contribution accounts for 10% of the total solution (linear plus second-order), the

inclusion of 90% of the second-order total gives 99% of the total result. The pairs

of wave components necessary to achieve this threshold are then stored for later

use in their respective modified elevation and velocity routines.

Within the program structure there is a spectral priming routine for the cal-

culation of both the water surface elevation and the water particle kinematics,

the separate calculation routines being based on the results of the specific spec-

tral priming. Once the algorithm complexity is reduced, as previously discussed,

there are simply two vectors containing pairs (primed pairs) of wave components

that interact to produce significant second-order contributions. Accordingly, the

Sharma & Dean (1981) algorithm can be modified to use only the primed pairs

and can be easily exploited using parallel computing. The modified algorithm can

simply be cast as an embarrassingly parallel reduction operation which lends itself

well to both OpenMP and hybrid OpenMP-MPI programming models.

In the following sections all the results relating to the second-order wave model

have been calculated using the spectral priming method with at least 90% of the

second-order contribution to the calculation included. Generating second-order

water surface and velocity profiles without this method, using exactly the same

set of wave components as employed by the EPIC BEM model, would have taken

prohibitively large amounts of computation time and resources and therefore would

not have been easily possible.

198

7.4 Computational domain and model set-up

From a computational stance, it should be noted that the results presented

in the following sections were produced using the OpenMP enabled version of

spectral priming and the modified Sharma & Dean (1981) algorithm, whilst the

hybrid OpenMP-MPI version is available within the EPIC BEM code base to

produce second-order input conditions for the Γinput boundaries if desired.

It should also be noted that the spectral priming method was originally de-

veloped with the view of reducing the computational run time of the EPIC BEM

model. As the BEM scheme is primarily O(n2) in computational complexity, re-

ducing n is key in reducing run times. To reduce the magnitude of n whilst keeping

resolution constant, the computational domain must be reduced in size such that

the number of nodes is reduced. As, in general, the water depth and vertical

resolution is fixed, the only way of reducing the number of nodes in the NWT is

by reducing dimensions of the free surface area that is simulated. In shrinking

the free surface area, the distance from the input boundaries to the focal position

for focussed linear random wave events is shorter. As a result, the wave field at

the input boundaries is less dispersed, and therefore considerably steeper. Con-

sequently, prescribing φn derived from linear random wave theory on the input

boundary becomes invalid as the waves are too nonlinear. To overcome this issue,

a second-order wave theory such as Sharma & Dean (1981) can be employed to de-

scribe φn on the input boundaries. However, as explained above, such a method is

computationally intensive and therefore a new technique was required to overcome

this challenge, hence the spectral priming method was developed.

The spectral priming algorithm was implemented such that the computational

effort was distributed across multiple processors using an MPI-OpenMP frame-

work, this reducing the run time even further. Unfortunately, in practice, even

with the advancements noted above, it remains unclear whether the computational

effort of calculating the second-order input for a smaller computational domain

will consistently produce lower run times than the use of a larger domain and the

computationally cheap linear random wave theory input. This is largely due to

the rather unpredictable run times of the GMRES solver as the influence matrix

condition worsens with time. However, ignoring the direct applicability of the

spectral priming method to the EPIC BEM code, the overall scheme is extremely

199

Chapter 7: Overturning Wave Groups

successful and has many applications particularly with regards to long time do-

main simulations of random seas. In the section that follows all the second-order

calculations were undertaken using the spectral priming algorithm.

7.5 Discussion of results

The results presented herein are believed to be the first of their kind. The key

result is the evolution of a three dimensional breaking wave, arising in a sea state

that is broad banded in both frequency and direction. In other words, the sea state

is represented by both a realistic frequency spectrum (JONSWAP NewWave) and

a realistic directional spread (s = 7). First, proof of the convergence of the wave

profiles associated with different switching times is offered. Next, the evolution of

the surface profile of the breaking wave event is analysed in both space and time

with comparisons made to both linear and second-order wave theories. These

results show that in the vicinity of the breaking event, the departures from the

established theoretical models are quite remarkable. Attention is then turned to

the kinematics field underlying the breaking wave with comparisons being made

with both a focussed linear wave of identical crest elevation and a second-order

wave theory. The section concludes with some suggestions relating to further work

needed in the area of breaking waves.

7.5.1 Breaking wave profiles

In undertaking the high resolution numerical calculations it was found that a

switching time of tsw = −17s resulted in the most complete description of the

evolution of the breaking wave. To prove the convergent nature of the calculation

based upon different switching times, the surface profiles arising along the centre

line (η(x) on y = 0m) immediately prior to the point at which the computation

broke down are presented in Figure 7.1. Data relating to several different switching

times (tsw) are presented and, in each case, the closest match in time (adaptive time

stepping means exact matches are impossible) from the tsw − 17s switching time

case is also plotted. These comparisons confirm that regardless of the switching

200

7.5 Discussion of results

time employed, the evolution of the free surface is essentially identical. This proves

that the switching time has no influence over the evolution of surface profile, it

simply affects the end point of the numerical calculations; the latter being critically

dependent on the local node spacing which is in turn dependent on the switching

time tsw. In the results that follow, all of the data relate to a switching time

of tsw = −17s, such that data allowing the furthest possible evolution of the

overturning wave is employed.

−100 −90 −80 −70 −60 −50 −40 −30
−15

−10

−5

0

5

10

15

x(m)

z(
m

)

Figure 7.1: Spatial description of the water surface elevation, η(x), on y = 0; com-

parisons between different switching times and data corresponding to the equiva-

lent times (indicated by line style () of the same colour) taken from the best

case switching time of tsw = −17s. Legend: −17s (), −18s (), −19s

(), −20s (), −21s ().

Having established that the use of different switching times produces conver-

gent results, further analysis can be undertaken. Figure 7.2 provides a series of

plots in time that show the evolution of the surface profile taken along the centre

line (y = 0m) of the domain. In addition to the nonlinear profile, calculations

based upon a linear solution (see equation (6.6)) and the second-order solution

of Sharma & Dean (1981) (see §7.4.1) are superimposed. It is clear from these

comparisons that the fully nonlinear sea state evolves in a very different manner

from that predicted by the analytical solutions. In less steep wave situations aris-

ing at earlier times (t = −42.2s and t = −32.2s in Figures 7.2(a) and 7.2(b)) a

201

Chapter 7: Overturning Wave Groups

reasonable level of agreement is observed. However, at times beyond this point the

evolution of the fully nonlinear free surface is markedly different, most noticeably

so in Figure 7.2(h) in which the wave overturns. It is apparent from the figures

showing the time evolution of the breaking wave that the fully nonlinear wave

has a higher phase velocity than the waves predicted by analytical theories. This

behaviour is entirely consistent with both the experimental and the numerical

observations reported by Johannessen & Swan (2001, 2003).

−300 −250 −200 −150 −100 −50 0
−10

0

10

x(m)

z(
m

)

(a) t = −42.2s

−300 −250 −200 −150 −100 −50 0
−10

0

10

x(m)

z(
m

)

(b) t = −32.2s

−300 −250 −200 −150 −100 −50 0
−10

0

10

x(m)

z(
m

)

(c) t = −26.2s

−300 −250 −200 −150 −100 −50 0
−10

0

10

x(m)

z(
m

)

(d) t = −22.2s

Figure 7.2: Evolution of the spatial surface profile, η(x) on y = 0m, at vary-

ing times (t); comparisons between linear (), second-order () and fully

nonlinear () computations.

Figure 7.3 concerns the transverse variation of the spatial profile of the breaking

wave, η(t) at varying y, and presents comparisons with the linear and second-order

analytical solutions displaying similar trends to those identified in the time domain.

202

7.5 Discussion of results

−300 −250 −200 −150 −100 −50 0
−10

0

10

x(m)

z(
m

)

(e) t = −21.2s

−300 −250 −200 −150 −100 −50 0
−10

0

10

x(m)

z(
m

)

(f) t = −18.2s

−300 −250 −200 −150 −100 −50 0
−10

0

10

x(m)

z(
m

)

(g) t = −16.2s

−300 −250 −200 −150 −100 −50 0
−10

0

10

x(m)

z(
m

)

(h) t = −15.2s

Figure 7.2: (continued). Evolution of the spatial surface profile, η(x) on y = 0m,

at varying times (t); comparisons between linear (), second-order () and

fully nonlinear () computations.

203

Chapter 7: Overturning Wave Groups

Within this figure, the individual subplots display cross sections in the x direction

taken at the y location specified under each plot. All the plots relate to the furthest

point of wave evolution prior to the break down of the computation. Comparisons

with the linear and second-order analytical solutions show reasonable agreement

for the less steep wave profiles occurring some distance from the centreline; y =

−90m on Figure 7.3(a). However, as the cross sections are taken at positions

progressively closer to the centre line of the domain (Figures 7.3(b) – 7.3(h)) the

departure of the fully nonlinear predictions from the analytical theories becomes

more rapid. The final cross section at y = 0m is identical to that in Figure 7.2(h)

as the spatial and time profiles coincide at this point. To reiterate the comments

made previously, the difference between analytical and fully nonlinear profiles is

most apparent at this time and position; the differences having obvious practical

implications.

Figures 7.2 and 7.3 evidently provide a two dimensional interpretation of the

evolving wave field. In contrast, Figures 7.4 and 7.5 provide a number of three-

dimensional plots indicating the evolution of the wave field at varying times (Fig-

ure 7.4) and a close up of the predicted wave form (Figure 7.5) as it undergoes

wave overturning. Taken together, these figures allow some insight into the way

in which an extreme ocean wave evolves and breaks. The first observation is

simply that the wave predictions are consistent with the notion of a large break-

ing wave appearing, apparently, from nowhere. This is commonly reported by

mariners, several examples being reported by Lawton (2001) and Kharif & Peli-

novsky (2003). In respect of the present calculations, it is clear that outside the

immediate vicinity of the breaking wave the wave motion is substantially smaller.

In fact it is smaller than that predicted by linear theory because the large wave

has evolved due to nonlinear energy gains from the surrounding sea. With respect

to the overall shape of the breaking wave, it evidently has a very flat top in both

horizontal dimensions (x, y). Again, this is likely to be caused by energy exchanges

in the local wave spectrum forcing more energy into wave components aligned with

the mean wave direction (Gibson & Swan, 2007). As a result, the wave becomes

more long crested than would be envisaged based upon the underlying directional

spread.

204

7.5 Discussion of results

−200 −180 −160 −140 −120 −100 −80 −60 −40 −20 0
−20

−10

0

10

20

x(m)

z(
m

)

(a) y = −90m

−200 −180 −160 −140 −120 −100 −80 −60 −40 −20 0
−20

−10

0

10

20

x(m)

z(
m

)

(b) y = −70m

−200 −180 −160 −140 −120 −100 −80 −60 −40 −20 0
−20

−10

0

10

20

x(m)

z(
m

)

(c) y = −50m

−200 −180 −160 −140 −120 −100 −80 −60 −40 −20 0
−20

−10

0

10

20

x(m)

z(
m

)

(d) y = −40m

Figure 7.3: A spatial description of the water surface elevation at the instant of

wave breaking, η(x) at t = −15.2s. Comparisons between linear (), second-

order () and fully nonlinear () computations at varying cross sections.

205

Chapter 7: Overturning Wave Groups

−200 −180 −160 −140 −120 −100 −80 −60 −40 −20 0
−20

−10

0

10

20

x(m)

z(
m

)

(e) y = −30m

−200 −180 −160 −140 −120 −100 −80 −60 −40 −20 0
−20

−10

0

10

20

x(m)

z(
m

)

(f) y = −20m

−200 −180 −160 −140 −120 −100 −80 −60 −40 −20 0
−20

−10

0

10

20

x(m)

z(
m

)

(g) y = −10m

−200 −180 −160 −140 −120 −100 −80 −60 −40 −20 0
−20

−10

0

10

20

x(m)

z(
m

)

(h) y = −5m

Figure 7.3: (continued). A spatial description of the water surface elevation at

the instant of wave breaking, η(x) at t = −15.2s. Comparisons between linear

(), second-order () and fully nonlinear () computations at varying

cross sections.

206

7.5 Discussion of results

In addition, the wave face is exceedingly steep with water being thrown for-

ward as part of the breaking jet. This motion will further exacerbate the flat

topped nature of the breaking wave and may even account for a small depression

(corresponding to a locally reduced crest elevation) forming along the centreline

of the wave form. In terms of the shape of the breaking wave face, it is fairly

broad with a relatively shallow trough. Furthermore, higher surface elevations

(presenting “shoulders” to the wave) can be seen to form at either side of the

jet formation where the wave is insufficiently steep to break. As a consequence

of this formation, the face that this wave would present to a shipping vessel or

offshore structure would be approximately 15m high by 60m wide. This appears

to be entirely consistent with the frequently used description of a “wall of water”.

Although this may not seem particularly formidable in comparison to the waves

described in Chapter 6, the kinematic results presented in the next section clearly

suggest otherwise.

207

C
h
ap

ter
7:

O
vertu

rn
in

g
W

ave
G

rou
p
s(a) t = −42.2s

(b) t = −32.2s

Figure 7.4: Evolution of the water surface, η(x, y), at varying times (t).

208

7.5
D

iscu
ssion

of
resu

lts

(c) t = −18.2s

(d) t = −15.2s

Figure 7.4: (continued). Evolution of the water surface, η(x, y), at varying times (t).

209

C
h
ap

ter
7:

O
vertu

rn
in

g
W

ave
G

rou
p
s

Figure 7.5: Enhanced view of Figure 7.4(d), a 3D image of the overturning wave taken at time, t = −15.2, rendered using

OpenGL patches.

210

7.5 Discussion of results

7.5.2 Kinematics predictions beneath the breaking wave

In considering the water particle kinematics underlying the breaking wave, the

analysis begins by quantifying the horizontal velocity in the x direction with re-

spect to the phase velocity (c) of the breaking wave. To obtain the phase velocity

of a wave it is common to track the position of the wave crest as it evolves in

time, thereby giving the necessary space-time relationship from which c can be

calculated. For a non-breaking wave case, this task is relatively straight forward

as the crest is well defined and can be found by searching for the maximum local

elevation of the free surface at a given instant in time. Unfortunately, the 3D

breaking wave produced in this study has a very flat top (as noted previously).

This feature makes it very difficult to decide the exact position of the wave crest

for a given time; a simple search for the maximum local elevation is not suitable.

To overcome this difficulty, the evolution of the breaking wave crest in the present

study was estimated by visual means, the relevent data is presented on Figure

7.6(a).

To compute the phase velocity of the breaking wave, the gradient of the es-

timated crest positions with respect to time can be taken. To this end, a linear

least squares fit was applied to all the data (Figure 7.6(a),) and the gradient

of this line gives a phase velocity of c = 18.85m/s. However, recent work suggests

that the wave crest should slow down as it approaches the breaking point, the

physical explanation for this is as follows. As the wave becomes very steep, the

energy distribution in the local spectrum changes with lower frequency wave com-

ponents transferring energy to higher frequency wave components. This has been

observed by a number of researchers, most notably Johannessen & Swan (2003)

and Gibson & Swan (2007). The explanation of this shift is the rapid growth of

third-order resonant (or near resonant) wave components. By simply considering

the dispersion relationship (equation (6.8)) it can be seen that higher frequency

wave components propagate more slowly. As a result, this energy transfer in the

vicinity of a large wave event should result in a gradual reduction in phase velocity

as the wave steepens. Taking this information into account, a number of alterna-

tive (perhaps better) estimates of the phase velocity of the breaking wave can be

211

Chapter 7: Overturning Wave Groups

−28 −26 −24 −22 −20 −18 −16 −14
−300

−250

−200

−150

−100

−50

Time (s)

x(
m

)

(a)

−16 −15.8 −15.6 −15.4 −15.2 −15
−75

−70

−65

−60

−55

−50

Time (s)

x(
m

)

(b)

Figure 7.6: Position of the breaking wave crest as it evolves in time (o) with linear

least squares best fit based upon: all data points (), data arising in the 0.2s

between the wave becoming vertical and the end of the computational run (),

data arising in the 0.2s before the wave face becomes vertical () and data from

the 0.2s either side of the wave face becoming vertical (). Note: Sub-figure (a)

displays all data and corresponding least squares fit. Sub-figure (b) is a close up

of (a) with the addition of lines representing the alternative data fitting criteria.

212

7.5 Discussion of results

obtained by using only data relating to when the wave becomes particularly steep

(Figure 7.6(b)). The first approach considers only data arising from the point at

which the wave face becomes vertical (t ' −15.3s) to the point of computational

breakdown (approximately 0.2s later) results in a phase velocity of c = 12.02m/s

and is denoted by () on Figure 7.6(b). Second, data relating to the time in-

terval of approximately 0.2s immediately prior to the wave face becoming vertical

gives a phase velocity of c = 15.32m/s. Finally, data arising from the 0.2s before

and after the wave face becomes vertical results in a phase velocity of 13.47m/s.

Clearly, phase velocities calculated using information relating to the final stages

of computation are slower than those calculated if all the data are used. Whilst

this is consistent with the findings of Gibson & Swan (2007), as described previ-

ously, it is also apparent that the notion of a phase velocity is somewhat arbitrary

and considerably harder to compute for waves without distinct (maximum) crest

elevation. In light of this difficulty, the phase velocity arising from crest position

data both before and after the wave face becomes vertical (c = 13.47m/s) will be

used for normalisation purposes.

For wave breaking to occur, it is usually anticipated that the x component of

the horizontal water particle velocity (or the component in line with the mean wave

direction) exceeds the phase velocity. This condition is met when the wave face

becomes vertical at −15.315s; where the x component of the maximum horizontal

fluid velocity is 14.32m/s. At this point, the ratio of the water particle velocity

to the phase velocity is defined by crat = 1.063. This result is interesting, not

least because it is in stark contrast to the equivalent 2D calculations presented by

Christou (2008) which gives crat values in the range of 1.21−1.29. The larger ratios

observed by Christou are likely to arise because the model he employed was two

dimensional and therefore incapable of incorporating directional effects. Indeed,

when observing the real ocean, most waves that break do so through collapsed

plunging jets or local spilling at or near the wave crest (New et al., 1985). This is

consistent with a small crat and reinforces the realism of the presented 3D breaking

wave.

With regards to the overall magnitude of the velocities present in the breaking

wave, the evolution of the velocity field on the centre line (y = 0) can be seen in

213

Chapter 7: Overturning Wave Groups

Figure 7.7. The colour scheme in these images is set such that it indicates the

magnitude of the velocity field normalised against the phase velocity of the wave,

√
u2 + v2 + w2

c
, (7.16)

where (u, v, w) are the three components of the wave induced fluid velocity. This

normalisation makes it considerably easier to visualise that portion of the wave

that matches, or exceeds, the phase velocity of the wave, this being a key feature

in the following analysis.

From the sequence of images in Figure 7.7, a number of interesting conclusions

can be drawn. To begin with, the time elapsed between the first (Figure 7.7(a))

and last image (Figure 7.7(c)) is approximately one second. This indicates a very

rapid evolution of both the free surface and the associated fluid velocities; the

latter implying very large fluid accelerations. What is perhaps more remarkable is

that in Figure 7.7(a) the magnitude of the fluid velocity barely reaches 0.75c with

the majority of the fluid that makes up the wave crest having a velocity magnitude

of approximately 0.5c. In contrast, a mere half a second later (Figure 7.7(b)), a

significant volume of the wave face has a velocity magnitude near that of the phase

velocity, but the bulk of the wave crest still remains with a velocity magnitude

of near 0.5c. Finally, the velocity magnitudes near the point of computational

breakdown are displayed in Figure 7.7(c). At this point, the wave has started to

overturn and, as expected, the magnitude of the velocity at the breaking wave face

exceeds the phase velocity of the wave. It is also apparent that all the water on

the wave face and above the still water line has a velocity magnitude at or above

that of the phase velocity. However, it should also be noted that the magnitude

of the velocity below still water level, and outside the immediate influence of the

breaking wave face, is very small and remains unchanged over the time interval

under consideration.

To enable further comparisons with the breaking wave case, velocity predictions

from a number of additional wave models have been employed. For each model,

the parameters in Table 7.2 were used to describe the distribution of the wave

components in both the frequency and directional domain. Each wave was then

generated as a focussed wave event with a crest elevation specified to match the

214

7.5 Discussion of results

(a) t = −16.2s

(b) t = −15.7s

(c) t = −15.2s

Figure 7.7: Spatial plots of the water particle kinematics along the centre line

(y = 0m) of a directionally spread breaking wave. The colour bars indicate the

magnitude of the water particle kinematics,
√
u2 + v2 + w2 , normalised with re-

spect to the phase velocity of the wave (c = 13.47m/s). The time at which each

snap shot was taken is indicated below each sub-plot.

215

Chapter 7: Overturning Wave Groups

maximum found in the case of the breaking wave (ηmax = 10.11m). In total,

three alternative wave models were chosen for comparison purposes. First, an

analytical linear model derived from linear random wave theory (equation (6.7))

with empirical stretching applied following Wheeler (1970). Second, an analytical

second-order model after Sharma & Dean (1981) and implemented as outlined in

§7.4.1. Finally, the fully nonlinear EPIC BEM solution as outlined herein was also

applied (as described above) to create an ‘equivalent’ non-breaking wave case.

Figure 7.8 concerns each of the three wave models, superimposing the predicted

spatial variation of the water surface along the centre line of the domain (η(x) on

y = 0m). In addition, the profile corresponding to the breaking wave case has

also been superimposed. Individual wave profiles have, where necessary, been

shifted in space such that the maximum elevation for each model aligns with the

point (x = 0m); the shift in coordinates simply employed to facilitate comparisons

between the different predictions of the water surface. At the position x = 0m,

the depth variation in the x-component of the wave induced velocities has been

calculated for each of the four solutions and the data presented on Figure 7.9. In

the case of the breaking wave, the velocities were actually computed on the section

(x = 0m, y = −2m) with relation to Figure 7.8. This small shift in the location

has no bearing on the magnitude of the predicted velocities, but allows the data

to be calculated using the internal kinematics scheme presented in §6.2.1. This, in

turn, allows the resolution of the velocity profile to be improved relative to that

which is available on the boundary of the domain (y = 0m).

In considering these comparisons, it is clear that the linear, second-order and

fully nonlinear (non-breaking) velocity profiles shown in Figure 7.9 are very similar.

In particular, they all have approximately the same profile shape. The only obvious

difference is present in the second-order velocity profile in the range (5m ≤ z ≤
10.11m) where the solution has clearly broken down. This effect arises due to

inconsistencies in the way in which the second-order solution predicts the velocities

arising from the wave components in the tail of the spectrum. This effect has been

noted by others (notably Jensen (2004)), only arises in steep wave conditions, and

cannot be eliminated by a simple truncation of the frequency spectrum. Indeed,

in the present calculations the frequency spectrum has been truncated at three

216

7.5 Discussion of results

−80 −60 −40 −20 0 20 40 60 80
−10

0

10

x(m)

z(
m

).
 S

W
L=

0.

Figure 7.8: Spatial representation of the water surface elevation (η(x)) along the

centre line of the domain (y = 0m). Linear theory (), second-order theory

after Sharma & Dean (1981) (), fully nonlinear BEM profile applied to a

non-breaking and matched to the predicted crest elevation (), fully nonlinear

BEM from the breaking wave simulation (). Note: all profiles are shifted in

space such that their maximum elevation is located at x = 0m.

times the spectral peak (a(ω) = 0 ∀ ω ≥ 3ωp, where ωp defines the spectral peak).

In making comparisons with the breaking wave profile, it is clear that there

is reasonable correspondence with the other profiles from the sea bed to approxi-

mately 10m below still water level. At this point there is a rapid departure from

the other three profiles; the breaking wave case achieving a maximum horizontal

velocity of 12.85m/s = 0.95c. This maximum is just over twice the value of the

maximum velocities predicted by the other three wave models despite the fact that

all the wave models have been applied to identical crest elevations. The velocity

profiles presented on Figure 7.9 clearly indicate that as far as the water parti-

cle kinematics are concerned, the occurrence of wave breaking is fundamentally a

near-surface issue. This being evident from the kinematics at some depth beneath

the still water level being largely unchanged. However, very significant changes

can occur above still water level, and particularly high in the wave crest. Indeed

the increase in the maximum fluid velocities can be very substantial and will have

important implications in relation to structures and vessels for both local (impact)

loading and global loads, particularly the total overturning moment.

217

Chapter 7: Overturning Wave Groups

0 2 4 6 8 10 12 14
−120

−100

−80

−60

−40

−20

0

20

U (m/s)

Z
 (

m
).

 S
W

L=
0.

Figure 7.9: Depth variation in the x-component of the horizontal velocity at x =

0m. Linear theory with Wheeler (1970) stretching (), second-order theory

after Sharma & Dean (1981) (), fully nonlinear BEM profile applied to a

non-breaking and matched to the predicted crest elevation (), fully nonlinear

BEM from the breaking wave simulation ().

218

7.6 Conclusions

7.6 Conclusions

This chapter has involved the application of the EPIC BEM solution to the de-

scription of a breaking wave event in a realistic sea state. Although wave breaking

is an attractive topic from an academic point of view, evidence of this being pro-

vided by the number of publications in the area, the provision of results relating

to waves arising from realistic ocean conditions is rare. The present study has

produced an example of such a result in three dimensional space and this is be-

lieved to be the first of its kind. In addition to the calculation of a breaking wave

event, the evolution of both the wave profile and the water particle kinematics

has been considered. Perhaps the most striking result that can be taken from the

present work is the very rapid evolution of the wave event, both in terms of the

wave profile and water particle velocities. Furthermore, it has been shown that

the breaking wave event is highly localised in both space and time. Indeed, it has

been shown that in both space and time, departures in the free surface profile from

the well known wave theories is relatively small outside the immediate vicinity of

the breaking wave event. Similarly, the velocity profile, u(z), associated with the

breaking wave event only differs from that computed using standard models in

the very upper most parts of the water column. However, this difference can be

substantial in the breaking wave crest where velocities are twice that predicted by

other means. Clearly, the engineering implications of such rapid wave evolution

and large crest velocities are considerable. This is notable particularly in relation

to the loads associated with wave slamming where the magnitude of the load is

proportional to the square of the incident fluid velocity.

219

8

Concluding Remarks

The primary goal of the present study was the development and application of a

numerical model that is capable of dealing with relatively large computational do-

mains, with a high spatial resolution, to enable the accurate prediction of extreme

wave events and their associated water particle kinematics. The primary goal was

split into a series of tasks, set out below:

• Formulate a BEM to allow the modelling of large, complex wave fields with

high accuracy.

• Validate the model to ensure that it performs correctly.

• Deal with the computationally intensive aspects of the BEM such that the

solution time for the model becomes tolerable for practical applications.

• Apply the model to a practical engineering problem requiring state-of-the-art

wave predictions coupled with high spatial and temporal resolution.

• Use the model to investigate extreme ocean waves and wave breaking.

8.1 Principal achievements

The above tasks have been completed in the following manner:

220

8.1 Principal achievements

a) A full discussion of a BEM scheme applied to a NWT has been provided; spe-

cific attention being paid to details of the mathematical model, the boundary

conditions, fundamental numerical methods, core algorithms and the imple-

mentation choices available.

b) The development of a modular code base including:

(a) A source code organisation and revision scheme.

(b) The use of the GNU Autotools tool chain to detect, set-up and build

the EPIC BEM code.

(c) Support for multiple programming languages and environments within

the tool chain.

(d) Modular Matlab/GNU Octave code for the assembly of the NWT with

the scope to easily implement additional features within the NWT.

(e) A patch and path builder, hooking into the OpenGL libraries, to allow

3D visualisations of the NWT.

c) The application of a multiple-flux BEM to a 3D NWT.

d) Providing a parallel implementation of a block decomposition method for

assembling the BEM influence matrices in a distributed computing environ-

ment with MPI support.

e) An investigation into, and the application of, accelerator hardware in the

form of NVIDIA CUDA enabled GPUs for solving linear systems via the

IDR(s) method. This included much discussion on the nature of the hard-

ware and techniques for overcoming common problems and was followed by

the description of a work flow to map serial CPU based code to code for the

massively parallel GPU architecture.

f) Some insight into the application of multiple levels of parallel computing

behaviour. This was achieved through the coupling of a distributed influence

matrix assembly scheme with an accelerated linear system solving scheme.

221

Chapter 8: Concluding Remarks

g) The validation of the EPIC BEM 3D NWT free surface modelling in relation

to both regular waves and irregular waves.

h) The design and implementation of a self scheduling, distributed, method of

computing kinematics internal to a NWT. This included some discussion of

methods to mitigate the “boundary layer” problem and highlighted methods

of increasing algorithmic efficiency; the overall scheme being fully validated

with respect to both regular and irregular waves.

i) The developed wave model has been applied to the description of a 10−4

design wave condition and the kinematics prediction used for a re-appraisal

of the applied sub-structure loads on a typical jacket structure. Substantial

loads reductions are identified. In addition, comments are made regarding

the validity of the current APInst loading recipe and suggestions on its future

improvement.

j) A review of the current state of the numerical simulation of wave breaking,

particularly in respect of modelling realistic sea states. This was followed

by some discussion on the importance of the non-orthogonal nature of the

mapping to the reference coordinate system resulting from element distor-

tion.

k) The presentation of the first three dimensional, fully nonlinear, directionally-

spread, breaking wave event based upon a realistic ocean wave spectrum.

Included in these results were the kinematics fields associated with these

waves, with comparisons to their non-breaking equivalent focussed waves.

In summary, the targets set out at the beginning of the dissertation have

been achieved. As a result, there have been successes in a number of areas and

the final numerical model is comparable to the state-of-the-art. However, in the

endeavour of research there is always scope for improvement and some of these

areas are discussed shortly. First, some comments on the relevance of the work to

engineering practice must be made.

222

8.2 Engineering significance

8.2 Engineering significance

The present work is of significance in a number of fields. Clearly there is consid-

erable benefit in the use of a numerical model, like EPIC BEM, in the calculation

of the loading on an offshore jacket structure; the accurate computation of the

water particle velocities being key to the study. As a consequence of the present

investigation, there also arises the question of whether overturning waves with

reduced wave heights could produce larger local and perhaps also global loads.

Some insight into this is given in §7.5.2. This highlights the necessity for the accu-

rate modelling of realistic 3D wave breaking, with direct applications in offshore

engineering design.

In addition to the offshore engineering application, some advances have been

made in the field of software engineering. The most important of these lies in the

coupling of a distributed and accelerated code for respectively forming and solving

the BIE (equation 2.2). This code runs on a distributed computing framework

with centralised GPU acceleration and is an indication of one of the possible

future directions to be taken by software engineering developed in the context of

numerical modelling.

8.3 Further work

In keeping with the theme of the thesis, there are two main areas for discussion

with regards to the scope of further work. The first concerns further work required

in the field of wave modelling, while the second looks at the use of computing

techniques and hardware.

8.3.1 Wave modelling

There are a number of improvements possible to enhance the accurate modelling

of free surface waves within EPIC BEM. A few suggestions for further research

are given as follows.

223

Chapter 8: Concluding Remarks

Computing boundary kinematics

In Chapter 7 it was seen that a point often forms at the tip of the overturning wave

crest and this is generally modelled by a single node. Clearly, fitting a polynomial

around such a large geometric irregularity can cause considerable problems with

accuracy, especially with regard to the continuity of velocities around the plunging

part of the wave. In considering this issue, a new formulation to completely

avoid the use of polynomial approximations for calculating velocities on the fluid

boundary would be highly desirable.

Based on a similar theory to that proposed in §6.2.1 for computing internal

kinematics, it should be possible to compute the velocity vector at a given node on

the boundary by employing the BIE. In effect, equation (6.1) could be used in the

exact same form as for the internal kinematics calculations. However, there are two

additional problems. The first is associated with the occurrence of singularities

because |r| → 0. However, it is anticipated that these can be mitigated using the

methods described previously. Second, the cp term (the external solid angle) is

not zero as the node of interest is on the boundary. As a result, this term has

to be explicitly evaluated. Nevertheless, since both Φ and Φn are known a priori

from the solution of the BIE (2.2), the following simple manipulation of the BIE

leads to an expression for the velocity vector at point p. To begin, the exterior

solid angle cp can be computed from

cp =

∫
Γ

[
G
∂φq

∂n
− φq

∂G

∂n

]
dΓ/φp, (8.1)

where the symbols have the same meaning as given in §2.2. Furthermore, taking

the spatially differentiated BIE given in equation (6.2) and rearranging gives

cp∇φp =

∫
Γ

[
Q
∂φq

∂n
− φq

∂Q

∂n

]
dΓ, (8.2)

where the symbols have the same meaning as given in §6.2.1. Combining these

equations and eliminating cp gives

up =
φp

∫
Γ

[
Q∂φq

∂n
− φq

∂Q
∂n

]
dΓ∫

Γ

[
G∂φq

∂n
− φq

∂G
∂n

]
dΓ

, (8.3)

224

8.3 Further work

which defines the velocity vector at point p. In terms of a method for implementing

the mathematics, a decomposition similar to that outlined in Chapter 3 would be

sensible, given the obviously heavy computational workload required.

Automatic switching

In the present implementation of the EPIC BEM code, user input defines tsw,

the time at which the boundary condition framework alters to allow the fully-

Lagrangian movement of selected nodes. Although this method is good in the

sense that it quickly develops the users’ instinct for when a wave will break, the

experimental nature of such an approach has to be questioned. A more intelligent

approach would involve the projection of the movement of the surface nodes in

a fully-Lagrangian frame of reference onto the computed movement of the nodes

whilst remaining in a semi-Lagrangian frame of reference. If a good match is

achieved then the semi-Lagrangian frame of reference is suitable for the wave

conditions present. If the match is poor, then the model should automatically

switch to using the fully-Lagrangian frame of reference. Such an approach would

remove the somewhat arbitrary nature of the present methods which are largely

based upon some wave steepness.

Absorbing input boundary

The input for the EPIC BEM model is currently expressed in the form of the nor-

mal derivative of the velocity potential calculated using a user selected analytical

wave theory; the derivative being applied to the nodes on the input boundaries

at each time step. It would be of obvious benefit if the input boundaries had

the ability to absorb incoming waves in the same manner as the radiating bound-

ary. This would allow longer simulations of domains containing reflecting bodies

such as ships (Peric, 2010). Since the potential derivative is known on the input

boundaries and the gradient of the potential can be easily computed in the adja-

cent volume of fluid, implementing absorbing input boundaries does not represent

a difficult task.

225

Chapter 8: Concluding Remarks

Post breaking wave behaviour

In Chapter 7, wave groups were simulated up to the point at which a plunging jet

is formed. Unfortunately, computations break down at this point due to the prox-

imity of nodes creating quasi-singular behaviour. In addition, the BEM domain

can only be deformed elastically, it cannot be broken. Therefore, even if it were

possible to simulate the plunging jet to the point of re-entry on the water surface,

this would be the absolute limit of calculations possible using the BEM.

An alternative class of numerical methods revolve around the use of discrete

particles to simulate a fluid flow; smoothed particle hydrodynamics being one

example. Within such methods the fluid is modelled as a set of discrete units such

that the fluid can separate and reform. Obviously, the separation and reformation

of a fluid body is an important feature of wave breaking as the plunging jet forms

and re-enters the water surface. It therefore follows that this behaviour, along

with other impacts such as those on structures, could be modelled using particle

based methods. However, an unfortunate disadvantage of particle based methods

is that the free surface is described by a large number of discrete particles and

so the exact position of the free surface is unlikely to be defined as accurately as

it is in the BEM. This is exacerbated by the fact that the free surface boundary

conditions are not explicitly applied within particle based methods.

Taking into account the above, there is an obvious advantage in coupling a

BEM with a discrete particle method. In this way, an accurate description of the

free surface up to the point of wave breaking can be simulated using the BEM.

This can then be followed by a particle method to simulate wave plunging, the

re-entry of the jet, and the post breaking behaviour. A coupled scheme of this

form is currently under investigation within the Fluid Mechanics Section in the

Department of Civil and Environmental Engineering at Imperial College London.

8.3.2 Computing techniques and hardware

A number of improvements to the EPIC BEM code base could be made both in

relation to the use of new hardware and to the introduction of improved numerical

methods.

226

8.3 Further work

Massively parallel element integration

In Chapter 4 it was explained that computing architectures now exist that allow

massively parallel fine grained operations. With this in mind, it is not difficult

to see a large number of ways in which the influence matrix assembly could be

designed to run on a massively parallel architecture. What is most important is not

the implementation of this concept, but the optimisation of the work distribution

within the implementation to achieve the most efficient use of the processing power.

This idea is currently being explored in the field of finite element matrix assembly

in the Department of Computing at Imperial College London (Markall, 2010).

It is hoped that some of the results of this work can be shared and be equally

implemented within the EPIC BEM code.

Kinematics field

In §6.2.1 calculations of the kinematics field internal to a BEM domain were out-

lined. Fortunately, in the case presented, the free surface remained single valued

and so deciding whether each point in the kinematics grid lay within the fluid was

just a question of testing if the point was below the free surface. With regard

to overturning waves, the free surface is not single valued and so deciding if a

point is within the fluid becomes much more complicated. It is recommended that

a technique based on knowledge of the Jordan curve theorem is applied (Hales,

2007). Alternatively, the more complicated alpha shape (Edelsbrunner & Mücke,

1992) of the domain could be computed to assist with this important task.

Preconditioners

In Chapter 4 a Jacobi preconditioner was used to accelerate the convergence rate of

the system solution. Many other preconditioners exist, some of which can be tuned

to the nature of the system being solved; for example, successive over-relaxation

(Young, 1950). In the present context, it is recommended that an eigenvalue

analysis of the system matrix is undertaken to assist in finding a more optimal

preconditioner; the work of Golub & Van Loan (1996) being particularly useful

for this task.

227

Chapter 8: Concluding Remarks

8.4 Final thoughts

Within the lifetime of the present work, computer hardware, and consequently

programming techniques, have evolved rapidly. Indeed, at the conception of the

present work dual core processors were just becoming available. Currently, it is

common for server hardware to have two processing sockets with each processor

having four or six cores with hyper-threading. Thus giving an order of magnitude

of more computing power. However, this extra computing power can only be har-

nessed through the use of threaded programs. Furthermore, with the availability

of massively parallel devices (as seen in Chapter 4) acceleration of fine grained al-

gorithms is possible in a manner not previously available. Taking this information

into account, the future of numerical modelling clearly lies in the exploitation of

modern hardware through the use of parallel programming. The techniques used

in the present work merely represent the tip of the parallel iceberg.

228

References

Abramowitz, M. & Stegun, I. A. 1964 Handbook of Mathematical Functions

with Formulas, Graphs, and Mathematical Tables , ninth dover printing, tenth

gpo printing edn. New York: Dover.

Advanced Micro Devices Inc 2006 ATI CTM Guide Technical Reference

Manual . Advanced Micro Devices Inc.

American Petroleum Institute 2000 Recommended Practices for Planning,

Designing and Constructing Fixed Offshore Platforms - Working Stress Design.

Report.

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Don-

garra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney,

A. & Sorensen, D. 1999 LAPACK Users’ Guide, 3rd edn. Philadelphia, PA:

Society for Industrial and Applied Mathematics.

Atkins, N., Lyons, R. & Rainey, R. 1993 Summary of findings of wave load

measurements on the Tern platform. Report prepared by WS Atkins for the UK

Health and Safety Executive., Data presented on Table 4.1, pp15.

Bai, W. & Eatock Taylor, R. 2007 Numerical simulation of fully nonlinear

regular and focused wave diffraction around a vertical cylinder using domain

decomposition. Applied Ocean Research 29, February-April, Issues 1 - 2, 55

– 71.

Bailey, D. H., Jeyabalan, K. & Li, X. S. 2005 A Comparison of Three

High-Precision Quadrature Schemes. Experimental Mathematics 14,3.

229

References

Barnes, J. & Hut, P. 1986 A hierarchical O(N log N) force-calculation algo-

rithm. Nature 324, 446 – 449.

Bateman, W., Swan, C. & Taylor, P. 2003 On the calculation of the wa-

ter particle kinematics arising in a directionally spread wave field. Journal of

Computational Physics 186, 70 – 92.

Becker, A. A. 1992 The Boundary Element Method in Engineering: A Complete

Course. London: McGraw-Hill Book Company.

Benjamin, T. B. & Feir, J. E. 1967 The disintegration of wave trains on deep

water Part 1. Theory. Journal of Fluid Mechanics 27 (03), 417 – 430.

Blackford, L. S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J.,

Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A.,

Stanley, K., Walker, D. & Whaley, R. C. 1997 ScaLAPACK Users’

Guide. Philadelphia, PA: Society for Industrial and Applied Mathematics.

Brandini, C. & Grilli, S. 2001 Modeling of Freak Wave Generation in a 3D-

NWT. In The Proceedings of The Eleventh (2001) International Offshore and

Polar Engineering Conference Volume III .

Brebbia, C. A. & Dominguez, J. 1992 Boundary Elements: An Introductory

Course, 2nd edn. London: Computational Mechanics Publications (McGraw-

Hill).

Butcher, J. C. 2003 Numerical methods for ordinary differential equations , 2nd

edn. John Wiley and Sons.

Chaillat, S., Bonnet, M. & Jean-Franois Semblat 2008 A multi-level

fast multipole BEM for 3-D elastodynamics in the frequency domain. Computer

Methods in Applied Mechanics and Engineering 197 (49-50), 4233 – 4249.

Chapman, B., Gabriele, J. & van der Pas, R. 2007 Using OpenMP: portable

shared memory parallel programming Scientific and engineering computation

Scientific Computation Series . MIT Press.

230

References

Christou, M. 2008 Fully Nonlinear Computations of Waves and Wave-structure

Interaction. PhD thesis, Imperial College London.

Christou, M., Hague, C. & Swan, C. 2009 The reflection of nonlinear irreg-

ular surface water waves. Engineering Analysis with Boundary Elements 33 (5),

644 – 653.

Christou, M., Swan, C. & Gudmestad, O. 2008 The interaction of surface

water waves with submerged breakwaters. Coastal Engineering 55 (12), 945 –

958.

Christou, M., Swan, C. & Gudmestad, O. T. 2007 The Description of

Breaking Waves and the Underlying Water Particle Kinematics. In Proceedings

of the 26th International Conference on Offshore Mechanics and Arctic Engi-

neering: Volume 5 .

ClearSpeed Technology 2001-2009 ClearSpeed Technology: The CSX archi-

tecture. http://www.clearspeed.com. Online.

Cunha, M. T. F., Telles, J. C. F. & Coutinho, A. L. G. A. 2002 Par-

allel Boundary Elements Using Lapack and ScaLapack. In Proceeding of the

14th Symposium on Computer Architecture and High Performance Computing

(SBAC-PAD’02), p. 0051.

Darve, E. 2001 The Fast Multipole Method I: Error Analysis and Asymptotic

Complexity. SIAM Journal on Numerical Analysis 38 (1), 98 – 128.

Dean, R. G. & Dalrymple, R. A. 1984 Water Wave Mechanics for Engineers

and Scientist , Advanced Series on Ocean Engineering , vol. 2. World Scientific

Publishing Co. Pte. Ltd.

Det Norske Veritas 2010 SESAM loading suite. On line.

http://www.dnv.com/services/software/products/sesam/, visited 08/06/2010.

Dominguez, J. 1993 Boundary Elements in Dynamics . Computational Mechan-

ics Publications, Elsevier Applied Science, Southampton Boston.

231

References

Drimer, N. & Agnon, Y. 2006 An improved low-order boundary element

method for breaking surface waves. Wave Motion 43 (3), 241 – 258.

Edelsbrunner, H. & Mücke, E. P. 1992 Three-dimensional alpha shapes. In

VVS ’92: Proceedings of the 1992 workshop on Volume visualization, pp. 75 –

82. New York, NY, USA: ACM.

Fenton, J. D. 1985 A fifth-order Stokes theory for steady waves. Journal of

Waterway, Port, Coastal and Ocean Engineering 111, 216 – 234.

Fochesato, C. & Dias, F. 2006 A fast method for nonlinear three-dimensional

free-surface waves. Proceedings A of The Royal Society 462 (2073), 2715 – 2735.

Fochesato, C., Grilli, S. & Dias, F. 2007 Numerical modeling of extreme

rogue waves generated by directional energy focusing. Wave Motion 44 (5), 395

– 416.

Fochesato, C., Grilli, S. T. & Guyenne, P. 2005 Note on non-orthogonality

of local curvilinear co-ordinates in a three-dimensional boundary element

method. International Journal for Numerical Methods in Fluids 48 (3), 305

– 324.

Forristall, G. Z. 2000 Wave Crest Distributions: Observations and Second-

Order Theory. Journal of Physical Oceanography 30 (8), 1931 – 1943.

Fujimoto, N. 2008 Dense matrix-vector multiplication on the cuda architecture.

Parallel Processing Letters 18, 511 – 530.

Gibson, R. & Swan, C. 2007 The evolution of large ocean waves: the role of local

and rapid spectral changes. Proceedings of the Royal Society A: Mathematical,

Physical and Engineering Science 463 (2077), 21 – 48.

Golub, G. H. & Van Loan, C. 1996 Matrix computations , 3rd edn.

Gorman, M. 2004 Understanding the Linux Virtual Memory Manager . Prentice

Hall. Part of the Bruce Perens’ Open Source Series series.

232

References

Greengard, L. 1988 The rapid evaluation of potential fields in particle systems .

MIT Press.

Greengard, L. & Rokhlin, V. 1987 A Fast Algorithm for Particle Simulations.

Journal of Computational Physics 73, 325 – 348.

Grilli, S. & Svendsen, I. 1990 Corner problems and global accuracy in the

boundary element solution of nonlinear wave flows. Engineering Analysis with

Boundary Elements 7 (4), 178 – 195.

Grilli, S. T., Guyenne, P. & Dias, F. 2001 A fully non-linear model for

three-dimensional overturning waves over an arbitrary bottom. International

Journal for Numerical Methods in Fluids 35 (7), 829 – 867.

Grilli, S. T., Skourup, J. & Svendsen, I. A. 1989 An efficient boundary

element method for nonlinear water waves. Engineering Analysis with Boundary

Elements 6 (2), 97 – 107.

Grilli, S. T. & Subramanya, R. 1996 Numerical modeling of wave breaking

induced by fixed or moving boundaries. Computational Mechanics 17 (6), 374

– 391.

Grilli, S. T., Svendsen, I. A. & Subramanya, R. 1997 Breaking Criterion

and Characteristics for Solitary Waves on Slopes. Journal of Waterway, Port,

Coastal, and Ocean Engineering 123 (3), 102 – 112.

Gumerov, N. A. & Duraiswami, R. 2009 A broadband fast multipole acceler-

ated boundary element method for the three dimensional Helmholtz equation.

The Journal of the Acoustical Society of America 125 (1), 191 – 205.

Guyenne, P. & Grilli, S. T. 2006 Numerical study of three-dimensional over-

turning waves in shallow water. Journal of Fluid Mecahnics 547, 361 – 388.

Hague, C. & Swan, C. 2009 A multiple flux boundary element method applied

to the description of surface water waves. Journal of Computational Physics

228 (14), 5111 – 5128.

233

References

Hague, C. H. 2006 Fully Nonlinear Computations of Directional Waves, Includ-

ing Wave Breaking. PhD thesis, Imperial College London.

Hales, T. C. 2007 The Jordan curve theorem, formally and informally. Amer.

Math. Monthly 114 (10), 882 – 894.

Hamano, K., Murashige, S. & Hayami, K. 2003 Boundary element simu-

lation of large amplitude standing waves in vessels. Engineering Analysis with

Boundary Elements 27 (6), 565 – 574.

Harvey, M., Giupponi, G., Villa-Freixa, J. & De Fabritiis, G. 2007

Distributed and Grid Computing - Science Made Transparent for Everyone.

Principles, Applications and Supporting Communities , chap. PS3GRID.NET:

Building a distributed supercomputer using the Playstation 3.

Harvey, M. J., Giupponi, G. & Fabritiis, G. D. 2009 ACEMD: Accelerating

Biomolecular Dynamics in the Microsecond Time Scale. Journal of Chemical

Theory and Computation 5(6), 1632 – 1639.

Heideman, J. & Weaver, T. 1992 Static wave force procedure for platform

design. In Proceedings of the International Conference: Civil Engineering in the

Oceans (V).. ASCE.

Heideman, J. C. 2010 Personal communication between P. S. Tromans and J.

C. Heideman. Email correspondence.

Hofstee, H. P. 2005 Power Efficient Processor Architecture and The Cell Pro-

cessor. High-Performance Computer Architecture, International Symposium on

0, 258 – 262.

InfiniBand Trade Association 2000 Infiniband Architecture Specification

Volume 1 Release 1.0. Available from the InfiniBand Trade Association,

http://www.infinibandta.org.

Isaacson, M. & Cheung, K.-F. 1990 Time-Domain Solution for Second-Order

Wave Diffraction. Journal of Waterway, Port, Coastal, and Ocean Engineering

116 (2), 191 – 210.

234

References

Jensen, J. J. 2004 Conditional short-crested second waves in shallow water and

with superimposed current. In Proc. OMAE 2004 . Vancouver, BC, Canada.

Johannessen, T. & Swan, C. 2001 A laboratory study of the focusing of tran-

sient and directionally spread surface water waves. Proceedings of the Royal

Society of London. Series A: Mathematical, Physical and Engineering Sciences

457 (2008), 971 – 1006.

Johannessen, T. B. & Swan, C. 2003 On the nonlinear dynamics of wave

groups produced by the focusing of surface-water waves. Proceedings of the Royal

Society of London. Series A: Mathematical, Physical and Engineering Sciences

459 (2032), 1021 – 1052.

Johansen, A. & Nesteg̊ard, A. 2008 ConocoPhillips Greater Ekofisk area

jacket load comparison, stokes 5th order regular wave and fully non-linear ran-

dom wave kinematics. Tech. Rep. Report No. 2008-1264. Revision No. 01. Det

Norske Veritas.

Jonathan, P. & Taylor, P. 1995 Vertical asymmetry of ocean waves: Mea-

surements of waves at Tern. External Shell Report, number RKER.95.066.

Jonathan, P. & Taylor, P. H. 1997 On Irregular, Nonlinear Waves in a Spread

Sea. Journal of Offshore Mechanics and Arctic Engineering 119 (1), 37 – 41.

Joubert, W. 1994 On the convergence behavior of the restarted GMRES algo-

rithm for solving nonsymmetric linear systems. Numerical Linear Algebra with

Applications 1, 427 – 447.

Kharif, C. & Pelinovsky, E. 2003 Physical mechanisms of the rogue wave

phenomenon. European Journal of Mechanics - B/Fluids 22, 603 – 634.

Khronos OpenCL Working Group 2009 The OpenCL Specification. Online:

http://www.khronos.org/registry/cl/specs/opencl-1.0.43.pdf.

Kreienmeyer, M. & Stein, E. 1995 Parallel implementation of the bound-

ary element method for linear elastic problems on a MIMD parallel computer.

Computational Mechanics 15, 342 – 349.

235

References

Kybic, J., Clerc, M., Faugeras, O., Keriven, R. & Papadopoulo, T.

2005 Fast multipole acceleration of the MEG/EEG boundary element method.

Physics in Medicine and Biology 50 (19), 4695 – 4710.

Lawson, C. L., Hanson, R. J., Kincaid, D. R. & Krogh, F. T. 1979 Basic

Linear Algebra Subprograms for Fortran Usage. ACM Trans. Math. Softw. 5 (3),

308 – 323.

Lawton, G. 2001 Monsters of the deep (the perfect wave). New Scientist, Issue

2297, pp28 - 32.

Liu, Y., Xue, M. & Yue, D. K. P. 2001 Computations of fully nonlinear three-

dimensional wave-wave and wave-body interactions. Part 2. Nonlinear wave and

forces on a body. Journal of Fluid Mechanics 438, 41 – 66.

Longuet-Higgins, M. S. 1963 The effect of non-linearities on statistical distri-

butions in the theory of sea waves. Journal of Fluid Mechanics 17 (03), 459 –

480.

Longuet-Higgins, M. S. & Cokelet, E. D. 1976 The Deformation of Steep

Surface Waves on Water. I. A Numerical Method of Computation 350 (1660),

1 – 26.

Longuet-Higgins, M. S. & Stewart, R. W. 1960 Changes in the form of

short gravity waves. Journal of Fluid Mechanics 8, 565 – 583.

Markall, G. 2010 Making Faster FEM Solvers, Faster. MPhil Transfer Report.

Internal Publication of Imperial College London.

Mitsuyasu, H. 1975 Observations of directional spectrum of ocean waves using

a cloverleaf buoy. Journal of Physical Oceanography 16, 750 – 760.

Moore, G. E. 1965 Cramming more components onto integrated circuits. Elec-

tronics Magazine.

Morison, J. R., O’Brien, M. P., Johnson, J. W. & Schaaf, S. A. 1950

The forces exerted by surface waves on piles. Journal of Petroleum Technology,

AIME 189, 149 – 157.

236

References

Natarajan, R. & Krishnaswamy, D. 1995 A Case Study in Parallel Sci-

entific Computing: The Boundary Element Method on a Distributed-Memory

Multicomputer. In Supercomputing, 1995. Proceedings of the IEEE/ACM SC95

Conference, pp. 33 – 33.

New, A. L., McIver, P. & Peregrine, D. H. 1985 Computations of Over-

turning Waves. Journal of Fluid Mechanics 150, 233 – 251.

NVIDIA 2008a CUDA CUBLAS Library , 2nd edn. NVIDIA PLC.

NVIDIA 2008b NVIDIA CUDA Compute Unified Device Architecture Program-

ming Guide, 2nd edn.

NVIDIA 2009 http://www.nvidia.com/object/cuda home.html. On line.

Ortiz, J. & Douglass, S. 1993 Boundary Elements XV Vol 1 Fluid Flow and

Computational Aspects , chap. Boundary element solution of water particle ve-

locities of waves breaking on mild slopes., pp. 221 – 232. Worcester Polytechnic

Institute, Worcester, MA.: Worcester Polytechnic Institute.

Peric, M. 2010 Nonlinear wave interactions of multiple bodies in close proximity.

(Unpublished PhD thesis).

Pfister, G. F. 1998 In search of clusters . Upper Saddle River, NJ : Prentice

Hall PTR.

Press, W., Teukolsky, S., Vetterling, W. & Flannery, B. 1990 Nu-

merical Recipes in C . Cambridge, UK: Cambridge University Press.

Saad, Y. & Schultz, M. H. 1986 GMRES: A generalized minimum residual

algorithm for solving nonsymmetric linear systems. SIAM Journal of Statistical

and Scientific Computing 7 (3), 856 – 869.

Saad, Y. & Vorst, H. A. V. D. 2000 Iterative Solution of Linear Systems in

the 20th Century. Journal of Computational and Applied Mathematics 123, 1 –

33.

237

References

Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M.,

Dubey, P., Junkins, S., Lake, A., Sugerman, J., Cavin, R., Espasa,

R., Grochowski, E., Juan, T. & Hanrahan, P. 2008 Larrabee: a many-

core x86 architecture for visual computing. ACM Trans. Graph. 27 (3), 1 –

15.

Sharma, J. N. & Dean, R. G. 1981 Second-Order Directional Seas and Asso-

ciated Wave Forces. Society of Petroleum Engineering Journal 4, 129 – 140.

Sobey, R. J. 2006 Wave kinematic fields from the boundary integral method.

International Journal for Numerical Methods in Fluids 51, 773 – 790.

Sobey, R. J., Goodwin, P., Thieke, R. & Westberg, R. 1987 Application

of Stokes, cnoidal and Fourier wave theories. Journal of Waterway, Port, Coastal

and Ocean Engineering , ASCE 113, 565 – 580.

Sommerfeld, A. 1949 Partial Differential Equations in Physics . New York: Aca-

demic Press.

Sonneveld, P. & van Gijzen, M. B. 2008 IDR(s): A Family of Simple and

Fast Algorithms for Solving Large Nonsymmetric Systems of Linear Equations.

SIAM Journal on Scientific Computing 31 (2), 1035 – 1062.

Stokes, G. G. 1847 On the theory of oscillatory waves. Transcripts of the Cam-

bridge Philosophical Society 8, 441 – 455.

Strating, P. & De Haas, P. C. A. 1997 High-Performance Computing and

Networking . London, UK: Springer-Verlag.

Swan, C. 2007 Calculation of the Nonlinear Water Particle Kinematics at the

Ekofisk Field - Stage 1. Tech. Rep.. Imperial College London.

Trefethen, L. N. & Bau, D. 1996 Numerical linear algebra. SIAM.

Trevelyan, J. 1994 Boundary Elements for Engineers: Theory and Application.

Computational Mechanics Publications.

238

References

Tromans, P. S., Anaturk, A. & Hagemeijer, P. 1991 A new model for

the kinematics of large ocean wavesapplication as a design wave. In Proc. 1st

Offshore and Polar Engineering Conf. (ISOPE), , vol. 3, pp. 64 – 71. Edinburgh.

van Gijzen, M. B. & Sonneveld, P. 2008 An elegant idr(s) variant that

efficiently exploits bi-orthogonality properties. Tech. Rep.. Reports of the De-

partment of Applied Mathematical Analysis, Delft University of Technology.

Vardon, P., Banicescu, I., Cleall, P., Thomas, H. & Philp, R. 2009

Coupled thermo-hydro-mechanical modelling: A new parallel approach. Parallel

and Distributed Processing Symposium, International 0, 1 – 9.

Volkov, V. & Demmel, J. W. 2008 Benchmarking GPUs to tune dense linear

algebra. In SC ’08: Proceedings of the 2008 ACM/IEEE conference on Super-

computing , pp. 1 – 11. Piscataway, NJ, USA: IEEE Press.

van der Vorst, H. A. 1992 Bi-CGSTAB: A Fast and Smoothly Converging Vari-

ant of Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM Journal

on Scientific and Statistical Computing 13 (2), 631 – 644.

Wesseling, P. & Sonneveld, P. 1980 Approximation Methods for Navier-

Stokes Problems , , vol. Volume 771/1980. Springer Berlin / Heidelberg.

Wheeler, J. D. 1970 Method for calculating forces produced by irregular waves.

Journal of Petroleum Technology 249, 359 – 367.

Xue, M., Xu, H., Liu, Y. & Yue, D. 2001 Computations of fully nonlinear

three-dimensional wave-wave and wave-body interactions. Part 1. Dynamics of

steep three-dimensional waves. Journal of Fluid Mechanics 438, 11 – 39.

Yan, H., Liu, Y. & Yue, D. K. P. 2006 An efficient computational method

for nonlinear three-dimensional wave-wave and wave-body interactions. Jour-

nal of Hydrodynamics, Series. B , Volume 18, Issue 3, Supplement 1,

Proceedings of the Conference of Global Chinese Scholars on Hydro-

dynamics (Issue 3, Supplement 1, Proceedings of the Conference of Global

Chinese Scholars on Hydrodynamics), 84 – 88.

239

References

Yan, S. & Ma, Q. W. 2010 QALE-FEM for modelling 3D overturning waves.

International Journal for Numerical Methods in Fluids 63 (6), 743 – 768.

Young, D. M. 1950 Iterative methods for solving partial difference equations of

elliptical type. PhD thesis, Harvard University.

240

Appendix A

IDR(s) theory

This appendix outlines the IDR theorem of Sonneveld & van Gijzen (2008). For

completeness and easy of reading, some parts of §4.3.2 are repeated in the sections

that follow. Additional information on some of the concepts involved in the IDR(s)

theory can also be found in Appendix B.

A.1 IDR theorem

The basic concept of the IDR(s) method is that it generates residuals that are

forced to be in subspaces of Gj of decreasing dimension. These subspaces are

nested and are related as given in equation (A.1). An indication as to how this

relation arises is given in Appendix B.1. The development of the IDR theorem,

presented in the following sections, follows the arguments originally outlined by

Sonneveld & van Gijzen (2008). In the present case the methodology is applied

to the solution of an equation set defined by Ax = b.

Let A be any matrix in CN×N , let v0 be any non-zero vector in CN , and let G0

be the full Krylov space KN(A, v0). Let S denote any (proper) subspace of CN

such that S and G0 do not share a nontrivial invariant subspace of A, and define

the sequence Gj, j = 1, 2, ..., as

Gj = (I − wjA)(S ∩ Gj−1). (A.1)

241

Chapter A: IDR(s) theory

Within this solution, I is the identity matrix, ωj are weightings and S is a fixed

proper subspace of CN .

A Krylov based solver produces iterations xn for which the residuals rn =

b − Axn are in the Krylov spaces Kn(A, r0); with x0 being an initial estimate of

the solution. Given a recursion for the residuals rn, it must be possible to produce

a corresponding recursion for xn. As a result, the residuals, rn, can be written

as Φn(A)r0, where Φn is an nth degree polynomial: Φn ∈ Pn \ Pn−1 (\ is the set

difference operator and P polynomial space). Assuming this has to be possible for

the residuals up to the nth step; it must then be possible to calculate xn+1 from

the equation

A∆xn = −∆rn = [Φn(A)− Φn+1(A)]r0, (A.2)

without actually solving an equation with the matrix A. In formulating this solu-

tion, the forward difference operator ∆uk = uk+1 − uk is used. Additional infor-

mation surrounding the nature of this polynomial can be found in Appendix B.2.

Adopting this approach, a general Krylov-type solver can be described by

recursions of the following form:

rn+1 = rn − αAvn −
l̂∑

l=1

γl∆rn−l, (A.3)

xn+1 = xn + αvn −
l̂∑

l=1

γl∆rn−l, (A.4)

where vn is any computable vector in Kn(A, r0) \ Kn−1(A, r0), the integer l̂ is the

depth of recursion, α is a weighting parameter and γl are unknown coefficients.

Additional information relating to the form of the generic Krylov recursions is

given in Appendix B.1. If l̂ = n then the method has a so-called long recurrence

implying that the amount of work and memory grow with n. On the other hand,

if l̂ is fixed and small (compared to N), then the method has a so-called short

recurrence, which is what makes it attractive with respect to computational effort

and the limited availability of memory on a GPU.

The IDR theorem can be applied by generating residuals, rn, that are forced

to be in subspaces Gj, where j is non-decreasing with increasing n. Under the

242

A.1 IDR theorem

assumptions of equation (A.1) the system will be solved after, at most, N dimen-

sional reduction steps.

The residual rn+1 lies in Gj+1 if

rn+1 = (I − wj+1A)vn with vn ∈ Gj ∩ S. (A.5)

If vn is chosen as

vn = rn −
l̂∑

l=1

γl∆rn−l, (A.6)

the expression for rn+1 becomes

rn+1 = rn − ωj+1Avn −
l̂∑

l=1

γl∆rn−l, (A.7)

which has been seen before as the general Krylov-solver recursion in equation

(A.3).

Without loss of generality, it can be assumed that the space, S, is the left

nullspace of some N × s matrix P :

P = (p1, p2, ..., ps), S = N (PH), (A.8)

where the superscript H indicates the Hermitian transpose (transpose with con-

jugate negation). Since vn is also in S = N (PH), it additionally satisfies

PHvn = 0. (A.9)

Combining equations (A.6) and (A.9) yields an s× l̂ linear system for the l̂ coef-

ficients γ. Under normal circumstances this system is uniquely solvable if l̂ = s.

Consequently, computing the first vector in Gj+1 requires s+ 1 vectors in Gj, and

rn can be expected to be in Gj+1 if and only if n ≥ (j + 1)(s+ 1).

Defining the matrices

∆Rn = (∆rn−1,∆rn−2, · · · ,∆rn−s), (A.10)

∆Xn = (∆xn−1,∆xn−2, · · · ,∆xn−s), (A.11)

the computation of rn+1 ∈ Gj+1 can be implemented by the following algorithm,

Calculate : c ∈ Cs from (PH∆Rn)c = PHrn, (A.12)

v = rn −∆Rnc, (A.13)

rn+1 = v − ωj+1Av. (A.14)

243

Chapter A: IDR(s) theory

Since Gj+1 ⊂ Gj, repeating these calculations will produce new residuals rn+2, rn+3,

. . . in Gj+1. Once s + 1 residuals in Gj+1 have been computed, the next residual

can be expected to be in Gj+2. In the calculation of the first residual in Gj+1,

ωj+1 can be chosen freely but the same value must be used in the calculations for

subsequent residuals in Gj+1. A suitable choice for ωj+1 is the value that minimises

the 2-norm of rn+1; a similar approach having been adopted in the Bi-CGSTAB

algorithm (van der Vorst, 1992).

Following some detailed experimentation conerning the optimal values for ma-

trix P consistent with maximising the rate of convergence, Sonneveld & van Gijzen

(2008) chose the matrix P to be an orthogonal matrix of random vectors as this

seemed to work well in a wide range of cases.

A.2 Explanation of the IDR(s) method

Having outlined the IDR theorem, some further explanation is required regarding

the algorithmic implementation of each part of the theorem. To begin, a number

of concepts are discussed that are key to understanding the implementation of the

IDR(s) method given in section A.3.

Application of s minimum norm steps

To begin the IDR(s) method, the columns of the matrices ∆Rn and ∆Xn must be

populated, respectively, with the differences found between subsequent iterations

of the residual and solution vectors (∆rn and ∆xn). To assemble these vectors, s

minimum norm steps are used to build sufficient vectors in G0 such that if the IDR

theorem is applied, the next residual vector will be in G1; the process of subspace

nesting having been initialised. Clearly, vectors generated in the s minimum norm

steps must also be members of the Krylov subspace, Kn(A, r0).

244

A.2 Explanation of the IDR(s) method

Minimising the residual norm

The value of ωj+1 is chosen such that the 2-norm of the residual rn+1 is minimised

and is given by

ωj+1 =
vHrn

vHv
, (A.15)

where v = Arn. The derivation of this weighting is rather elusive. However, by

noting that it takes a form similar to that of the Rayleigh quotient (Trefethen &

Bau, 1996), a similar path to its derivation can be pursued. First, by expressing

the 2-norm of the residual in terms of the previous iteration’s residual, the system

matrix and the unknown value ωj+1,

||rn+1||2 = ||rn − ωj+1Arn||2, (A.16)

it can be seen that this is simply a [n× 1] least squares problem of the form,

rn ≈ ωj+1Arn. (A.17)

Using the substitution t = Arn the true nature of the system can be seen,

rn ≈ ωj+1t (A.18)

[N×1] [1×1][N×1]

where the content of the subscripted brackets indicates the dimension of the vari-

able directly above. Clearly equation (A.18) is over determined and so a least

squares approximation is required to find an appropriate solution for ωj+1. To

obtain this solution, the normal equations can be applied with ωj+1 as the free

variable,

tHrn = ωj+1t
Ht, (A.19)

which can be simply rearranged to yield ωj+1,

ωj+1 =
tHrn

tHt
. (A.20)

Computing vn

From the IDR theorem, vn ∈ Gj ∩ S, where S is a subspace that is effectively free

to be chosen for performance or convenience subject to the condition that S only

245

Chapter A: IDR(s) theory

shares trivial invariant subspaces1 of A (such as {0}). As vn was previously defined

as being composed of known values relating to rn, all multiplied by unknowns (γl),

an intelligent choice of subspace S would be one that allows the solution of the

system in which the unknowns reside such that the next iterates can be computed.

This is accomplished by assuming that S is the left nullspace of some N×s matrix

P ,

P = (p1, p2, · · · , ps), S = N (PH). (A.21)

By definition, the left nullspace of matrix P consists of all vectors m such that

mHP = 0H , or equally, PHm = 0. Since vn is in S and S = N (PH) it is clear

that,

PHvn = 0. (A.22)

As equation (A.22) gives a relation between vn and some fixed value (in this case

the zero vector), it is now possible to build a method to compute the unknowns

(γl) present in vn.

If equation (A.6) is substituted into equation (A.22) and rearranged the fol-

lowing is found,

PHrn = PH

l̂∑
l=1

γl∆rn−l, (A.23)

[s×N][N] [s×N][N×l̂]

where the square brackets beneath each component again indicate its size. From

this system it is evident that the dimension l̂ must be s to create a uniquely solvable

system, hence the choice of s sets the level of recursion. From this assertion it

can be deduced that, to enter subspace Gj+1 from Gj, s + 1 residual vectors are

needed. In other words, s residual vectors are required to build the [s× s] system

in the current subspace so that, upon application of its solution, the next residual

vector computed will be in the next subspace.

1A subspace M is invariant under the operator A if Ax ∈ M for every x ∈ M .

246

A.3 The IDR(s) algorithm

A.3 The IDR(s) algorithm

Algorithm (1) is taken from Sonneveld & van Gijzen (2008) and is presented

with the view of aiding an explanation of the method. The IDR(s) method has

been derived as a direct method as noted in §4.3.2. It can be shown that in

infinite precision arithmetic the solution will be found in 2N iterations (Sonneveld

& van Gijzen, 2008). Unfortunately, computers can only employ finite precision

arithmetic and therefore the method must be programmed as an iterative scheme

such that the solution to the system is considered satisfactory only if it meets

some specified criteria based upon the properties of the residual, rn.

With regards to Algorithm (1), the Require statement, as expected, dictates

the space in which each variable must exist. All the variables have been defined

previously with the exception of TOL and MAXIT . In relation to the previously

explained issue around finite precision arithmetic, the variable TOL holds a value

that is used to determine if the accuracy of the solution is acceptable (TOL is

usually set to the limit of near arithmetic precision for a given data type, typically

1×10−6 for a 32 bit float). The variable MAXIT is simply the maximum number

of iterations deemed acceptable in the search for a solution. In infinite precision

arithmetic this value would be 2N . However, in finite precision arithmetic 4N is

sufficient in practice. The following Ensure statement explicitly expresses that

the 2-norm of the residual must be less than the defined tolerance, TOL, for

the algorithm to be successful. This feature is regularly incorporated in Krylov

subspace based methods for solving linear systems. The excellent reference text by

Golub & Van Loan (1996) provides further discussion on this and several related

issues.

As explained in Appendix A.2, to initialise the scheme enough residual vectors

must be formed in G0 to allow the next residual to reside in the G1 subspace. This

operation is carried out in lines 4-9. Evidently, this initialisation is very similar

to the “Modified Richardson Iteration” (see Appendix B, equation (B.6)) with

ω chosen to minimise the 2-norm of the (n+ 1)th residual. After each of the s

initialisation steps, the arrays ∆Rn+1 and ∆Xn+1 can have the respective residual

and solution differences (∆rn and ∆xn) inserted into their nth columns (assuming

247

Chapter A: IDR(s) theory

Algorithm 1 The IDR(s) algorithm. Taken verbatim from Sonneveld & van

Gijzen (2008).

Require: A ∈ CN×N ; x0,b ∈ CN ;P ∈ CN×s;TOL ∈ (0, 1); MAXIT > 0

Ensure: xn such that ||b−Axn|| < TOL

1: {Initialisation}
2: Calculate r0 = b−Ax0

3: {Apply s minimum norm steps, to build enough vectors in G0}
4: for n = 0 to s− 1 do

5: v = Arn;ω = (vHrn)/(vHv);

6: ∆xn = ωrn; ∆rn = −ωv

7: rn+1 = rn + ∆rn;xn+1 = xn + ∆xn;

8: end for

9: ∆Rn+1 = (∆rn . . .∆r0); ∆Xn+1 = (∆xn . . .∆x0);

10:

11: {Building Gj spaces for j = 1, 2, 3, . . . }
12: n = s

13: {Loop over Gj spaces}
14: while ||rn|| > TOL and n < MAXIT do

15: {Loop inside Gj space}
16: for k = 0 to s do

17: Solve c from PH∆Rnc = PHrn

18: v = rn −∆Rnc;

19: if k = 0 then

20: {Entering Gj+1}
21: t = Av;

22: ω = (tHv)/(tHt);

23: ∆rn = −∆Rnc− ωt;

24: ∆xn = −∆Xnc + ωv;

25: else

26: {Subsequent vectors in Gj+1}
27: ∆xn = −∆Xnc + ωv;

28: ∆rn = −A∆xn;

29: end if

30: rn+1 = rn + ∆rn

31: xn+1 = xn + ∆xn

32: n = n+ 1

33: ∆Rn = (∆rn−1 . . .∆rn−s);

34: ∆Xn = (∆xn−1 . . .∆xn−s);

35: end for

36: end while

248

A.3 The IDR(s) algorithm

zero-based indexing).

Once the method is initialised using s iterations, the iteration index variable,

n, is set to s as the residual and solution indexes are zero-based (line 12). Next, a

while-loop is formed in which all further computation takes place (lines 14-36).

The conditions for exiting the while loop are instances when the 2-norm of the

residual is less than TOL or the number of iterations, n, equals or exceeds the

maximum number of iterations MAXIT . A for loop is then created that loops

inside the Gj subspaces (lines 16-35). The purpose of this loop is to generate the

residual and solution differences needed to update the residual and the solution

and also to allow the creation of new information in ∆Rn and ∆Xn which are

critical for advancing the solution to the next subspace.

The loop iterates using k as its induction variable from 0 to s, obviously this

is one iteration greater than the level of recurrence. The reason for this extra

iteration is that s residuals are required in the current subspace to allow the com-

putation of a new residual which will be in the next subspace (see the paragraph

proceeding equation (A.9)). It is therefore clear that a branch in execution is

needed to create a new vector in the Gj+1 subspace, this occurs when k = 0 (lines

19-25). Furthermore, the proceeding else condition (lines 25-29) catches all other

indices and is used to assemble s residual and solution differences in the Gj+1 sub-

space to allow the solution to advance to the next subspace when k loops back to

zero.

Having outlined the logic behind implementing the IDR(s) method, the manner

in which the mathematics is implemented can be discussed. Each time the for

loop executes a new residual difference and a new solution difference are computed,

these are inserted into ∆Rn and ∆Xn respectively such that these arrays only

contain the s most recently generated differences. As this update takes place in

every loop, the small [s×s] system (see equation A.23 and proceeding text) changes

with every loop. Therefore, the first action of the loop is to compute the vector

c which contains the solution for the unknowns γl (equation (A.12)). Following

this, the vector v, corresponding to vn in equation (A.13), can be computed. Both

this and the previously mentioned computations can be seen on lines (17-18). In

practice, the small s × s system is solved using the classic LU decomposition by

249

Chapter A: IDR(s) theory

Press et al. (1990), which was modified by the author to use zero based indexing

that is common to the C language.

Once v and c are computed, all the information needed to compute rn+1 (equa-

tion (A.14)), and consequently xn+1, is available with the exception of the weight-

ing parameter ωj+1. The variable ωj+1 is effectively used to accelerate the conver-

gence of the iterations and is chosen to minimise the 2-norm of the rn+1
th residual

as explained previously in Appendix A.2. The value of ωj+1 is only updated when

k = 0 such that it relates solely to the first residual vector computed in a given

subspace (line 22). Clearly the minimisation of a 2-norm is, computationally,

relatively cheap, as it is just inner products of length N vectors, such that the

rn+1
th residual could be minimised for each vector in a given subspace. However,

in practice this approach leads to severe cancellations, as noted by van der Vorst

(1992), and experimentation by the author confirms this to be the case.

To update the residual and solution vectors the corresponding residual and

solution difference vectors are used (lines 30-31). As noted previously, there is

considerable freedom available in the choice of formation of the s residuals re-

quired to compute a residual in the Gj+1 subspace. It would be advantageous if

the method of forming the new residuals was computationally cheap and indeed

this is possible through the use of relations between rn and xn. In the k = 0

execution branch, as the Gj+1 subspace is entered, the new value for ωj+1 is com-

puted and then the residual and solution differences are computed explicitly using

information from the previous subspace (lines 23-24). For all other values of k

the residual and solution difference vectors are computed in the Gj+1 subspace.

Therefore, all that is required is that the residuals are members of the Gj+1 sub-

space and a cheap method of computing this is through a relationship between

the residual difference and the solution difference (lines 27-28).

Finally, lines 32-34 simply perform housekeeping tasks by incrementing the

subscript value (which effectively causes different columns of arrays to be ad-

dressed), and inserts the residual and solution difference vectors to the correct

positions in their respective storage matrices.

250

Appendix B

Further information relating to IDR(s)

This appendix contains additional information and explanation regarding the

IDR(s) method presented in Chapter 4.

B.1 An indication of how the general Krylov re-

cursion is formed

For solving the system Ax = b, a number of simple methods can be derived

from a technique based on matrix splitting. If the system is scaled such that the

diagonal components of matrix A are set equal to unity (aii = 1), then A can be

decomposed as,

A = −L + I−U, (B.1)

where L and U are respectively the strictly lower and upper triangular parts

of A and I is the identity matrix. Substituting this identity into Ax = b and

rearranging,

x = (L + U)x + b. (B.2)

If x is known then this equation holds true. However, in the usual case x is

unknown and so equation (B.2) can have subscripts added for the purposes of

creating an iterative scheme in the variable x,

xn+1 = (L + U)xn + b, (B.3)

251

Chapter B: Further information relating to IDR(s)

where subscripts indicate the iteration number and n ∈ Z+, where Z+ defines the

set of positive integers. If the residual, rn, of the iterate xn is given by,

rn = b−Axn, (B.4)

then equation (B.3) can be expressed as,

xn+1 = xn + rn, (B.5)

by recalling that (I−A) = (L + U).

The convergence of such an iterative scheme can often be improved by multi-

plying the residual by a weight, ω. In the present case such a modification leads

to the well know method, the “modified Richardson iteration”,

xn+1 = xn + ωrn. (B.6)

A similar expression can be obtained for the residual by using the (n+ 1)th term

of equation (B.4),

rn+1 = b−Axn+1. (B.7)

In the interests of forming expressions similar to the general IDR relation (equation

(4.4)), substitution of xn+1 from equation (B.6) into the above equation yields,

rn+1 = b−A(xn + ωrn), (B.8)

and further substituting the nth residual, rn, from equation (B.4) yields,

rn+1 = rn − ωArn. (B.9)

This expression can be rearranged as,

rn+1 = (I− ωA)rn, (B.10)

which has a very similar form to that of equation (4.4). Equally, if equation (B.6)

is combined with equation (B.4) and rearranged,

xn+1 = (I− ωA)xn + ωb, (B.11)

the relation between solution iterates can also be seen to take a very similar form

to that of equation (4.4).

252

B.2 The nature of the polynomial Φn

B.2 The nature of the polynomial Φn

It was noted in §4.3.2 and Appendix A.1 that given a recursion for the residuals

rn it must be possible to produce a corresponding recursion for xn. This is clearly

a result of the relation rn = b−Axn. As a result the residuals, rn, can be written

as Φn(A)r0, where Φn is an nth degree polynomial: Φn ∈ Pn \ Pn−1 (\ is the set

difference operator and P indicates the set of polynomials). This can easily be

shown to be true through an example using iterations of equation (B.10),

r1 = (I− ωA)r0 (B.12)

r2 = (I− ωA)r1 = (I− ωA)(I− ωA)r0 (B.13)

...

rn = (I− ωA)nr0. (B.14)

Assuming this has to be possible for the residuals up to the nth step, it must

then be possible to calculate xn+1 from the equation

A∆xn = −∆rn = [Φn(A)− Φn+1(A)]r0, (B.15)

without actually solving an equation with the matrix A. Here the forward differ-

ence operator ∆uk = uk+1 − uk is used. A simple expansion of terms including

the forward difference operator show that this is correct. It also highlights the re-

liance of the IDR(s) method on the computation of successive residual and solution

differences.

Expressing the residual in this way is always possible if the polynomial dif-

ference Φn+1(τ) − Φn(τ) is divisible by τ , i.e. Φn+1(τ) = Φn(τ) + τΨn(τ), with

Ψn ∈ Pn \ Pn−1. Additionally, with Φ0 ≡ 1, this implies that Φn(0) = 1 ∀n ≥ 0,

which is clearly necessary to generate the first member of the Krylov subspace

Kn(A, r0).

253

Chapter B: Further information relating to IDR(s)

B.3 Explaining general Krylov recursions

The general Kylov recursions are given by

xn+1 = xn + αvn︸ ︷︷ ︸
Richardson iteration

−
l̂∑

l=1

γl∆xn−l︸ ︷︷ ︸
Correction

, (B.16)

rn+1 = rn − αAvn︸ ︷︷ ︸
Richardson iteration

−
l̂∑

l=1

γl∆rn−l︸ ︷︷ ︸
Correction

, (B.17)

where vn is some vector related to rn, α is some weighting and the summation

terms are composed of differences between successive iterations that are scaled by

some parameters γl. If these equations are modified such that they are limited

to a single term recurrence (i.e. rn+1 = f(rn), where f is some generic function)

and vn is chosen to be simply rn, then these equations reduce to the “modified

Richardson iteration” as described previously in Appendix B.1 and indicated by

the underbraces on the above equations. However, in the interest of creating a

more efficient scheme, it would make sense to use information from more than

just the present iterate when assembling the next iterate. It is this notion of

combining information from a number of previous steps that leads to the idea of

recurrence levels. The recurrence level simply refers to the number of successively

previous iterations that contribute information to the computation of the next

iteration (indicated by “correction” in the underbrace in the equations). The

IDR(s) method is particularly attractive because the level of recurrence is fixed

by the dimension of subspace S. Other methods, for example GMRES, have so

called “long recurrences” meaning that information from every previous iteration

is required to compute the next iteration. Long recurrence methods obviously

have storage requirements that increase with the number of iterations performed

and so are not particularly well suited for computing systems in which storage is

limited.

On the assumption that a more optimal iteration can be performed if infor-

mation from more than one recurrence level is used, the variable vn is chosen

254

B.3 Explaining general Krylov recursions

as,

vn = rn −
l̂∑

l=1

γl∆rn−l, (B.18)

where ∆rn−l is a matrix made from columns created from the differences between

successive residuals and γ is a weighting function specific to each residual difference

(each column). If l̂ is chosen to be value s, the recurrence level becomes fixed as

s and this is the base on which the IDR(s) method is formed.

255

	Declaration of originality
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Listings
	Glossary
	1 Introduction
	1.1 Motivation
	1.2 Aims
	1.3 Layout
	1.4 Context
	1.5 Achievements

	2 Boundary Element Method (BEM); a Generic Formulation
	2.1 Introduction
	2.2 Governing equations
	2.3 Free surface boundary conditions
	2.3.1 General expressions
	2.3.2 Frames of reference
	2.3.3 Generic Lagrangian boundary conditions
	2.3.4 One-third-Lagrangian frame of reference
	2.3.5 Two-thirds-Lagrangian frame of reference
	2.3.6 Fully-Lagrangian frame of reference

	2.4 Numerical implementation
	2.4.1 Computational domain
	2.4.2 Boundary value problem
	2.4.3 Application of the free surface boundary conditions
	2.4.4 Discretising the BIE
	2.4.5 Rigid mode technique
	2.4.6 Numerical integration
	2.4.7 The treatment of corners and geometric discontinuities
	2.4.8 Sliding elements for gradients and velocities
	2.4.9 Shape functions and their hierarchical nature
	2.4.10 Time marching

	2.5 Algorithmic implementation
	2.5.1 Computational challenges

	2.6 Conclusion

	3 Parallel Implementation of Matrix Formation
	3.1 Introduction
	3.2 Parallel implementation of the BEM

	On the use of distributed computing in a boundary element method with applications to free surface waves
	Abstract
	3.3 Introduction
	3.4 Previous methods
	3.5 Computational profiling
	3.6 Developing a fast algorithm
	3.7 The BEM algorithm
	3.8 The test bed
	3.9 Discussion of results
	3.10 Further considerations
	3.11 Concluding remarks
	3.12 HPC systems
	3.13 Conclusions

	4 Matrix Solving on GPUs
	4.1 Introduction to matrix solving
	4.2 Using CUDA architecture
	4.2.1 CUDA hardware
	4.2.2 CUDA programming model

	4.3 CUDA Induced Dimensional Reduction Solver
	4.3.1 Appropriate solvers
	4.3.2 IDR(s) theory
	4.3.3 Preconditioners

	4.4 Using CUDA
	4.4.1 Write and optimise the algorithm in Fortran
	4.4.2 Convert the Fortran algorithm into C/C++
	4.4.3 Prototype naïve kernels
	4.4.4 Move working prototypes into main C/C++ code
	4.4.5 Allocate memory on the GPU
	4.4.6 Remove `helper' functions and just call the kernels.
	4.4.7 Rewrite naïve kernels optimising efficiency
	4.4.8 Using streams and interleaving
	4.4.9 Bounce buffering and page locked memory
	4.4.10 Map large arrays to textures for cached access
	4.4.11 Deal with the memory limit of a single GPU.

	4.5 Problems using CUDA for GPU accelerated matrix solvers
	4.5.1 Data precision
	4.5.2 Internal precision
	4.5.3 Memory

	4.6 Test bed
	4.7 Discussion of results
	4.8 Outstanding issues.
	4.9 Concluding remarks

	5 Efficient BEM Algorithm
	5.1 Introduction
	5.2 Code with multi-level parallelism
	5.3 Compiling code comprising multiple languages
	5.4 Mixing Fortran with C/C++
	5.5 The test bed
	5.6 Discussion of results
	5.7 Conclusion

	6 Kinematics Calculations, Code Validation and Practical Application; Non-breaking waves.
	6.1 Introduction
	6.2 Calculating the internal water particle kinematics
	6.2.1 Method for computing internal kinematics
	6.2.2 Mitigating the so-called ``boundary layer'' problem
	6.2.3 A self scheduling adaptive integration scheme for computing internal kinematics

	6.3 Model validation
	6.3.1 Prediction of the water surface elevation
	6.3.2 Predictions of the water particle kinematics

	6.4 Calculations of a 10-4 design wave case
	6.4.1 Properties of real seas
	6.4.2 Model configuration for the 10-4 design conditions
	6.4.3 Discussion of results

	6.5 Practical application: load predictions
	6.5.1 Fundamentals of fluid loading
	6.5.2 Loading recipes
	6.5.3 Loading calculations
	6.5.4 Loading trends
	6.5.5 Load comparisons

	6.6 Conclusions

	7 Overturning Wave Groups
	7.1 Introduction
	7.2 Models of wave breaking
	7.3 A re-assessment of boundary kinematics
	7.4 Computational domain and model set-up
	7.4.1 Second-order random wave theory; an efficient calculation procedure

	7.5 Discussion of results
	7.5.1 Breaking wave profiles
	7.5.2 Kinematics predictions beneath the breaking wave

	7.6 Conclusions

	8 Concluding Remarks
	8.1 Principal achievements
	8.2 Engineering significance
	8.3 Further work
	8.3.1 Wave modelling
	8.3.2 Computing techniques and hardware

	8.4 Final thoughts

	References
	Appendices
	A IDR(s) theory
	A.1 IDR theorem
	A.2 Explanation of the IDR(s) method
	A.3 The IDR(s) algorithm

	B Further information relating to IDR(s)
	B.1 An indication of how the general Krylov recursion is formed
	B.2 The nature of the polynomial n
	B.3 Explaining general Krylov recursions

