

Urban Energy Systems

Sustainable Energy Futures Annual Conference | 16 Sep. 2016

Group 4

erial College Urban Energy Systems (UES) don

- Global Population over ½ urban
- Cities responsible for 34 of global energy
- Challenges of UES
	- o Economics
	- o Increasing demands
	- o Managing complexity

Analysis of community energy schemes

Hayden Dahmm

Supervisors: Professor Nilay Shah, Professor Timothy Green, and Dr Salvador Acha

erial College Community Energy (CE) don

- 5,000 UK communities participating o r considering CE
	- 2015 Energy Restart disruptive
- 90% of CE groups reconsidering
- Research questions
	- o Alternatives for community participation?
	- \bigcap Role for energy integration?
	- o Use of Renewable Heat Incentives (RHI)?

erial College Methodsdon

- Created generic community from London data
- Divided into sectors, time of day, and time of year
- Modeled economics for each sector
- Nash Bargaining from 'Game Theory'

erial College Levels of cooperation don

- No Sharing
- Share Electricity
- Share Heat
- Share Electricity and Heat
- Cooperation magnifies environmental benefits

erial College Scenario detailsdon

- Sharing both energy resources together captures greater value
- More of both energy vectors traded
- Some sectors profit

erial College Effect of government payments don

- Increasing payments discourages cooperation
- More options through independent action
- Cooperation makes communities resilient to policy changes

Urban AC grid with embedded HVDC network for reliable, efficient and economic power distribution

Myrto Thoma

Supervisor: Professor Timothy Green

erial College Motivation and Objective don

Application of AC and DC on an urban grid and comparison in terms of **power losses, volume** of the equipment and cost

Residential Area

erial College AC and DC Scenarios don

Conventional AC Scenario

Smart DC Scenario

previous distribution level

1: Switchgear equipment 2: AC feeder 3: Transformer

1: Switchgear equipment 2: DC Substation 3: DC link

erial College Results don

erial College Conclusionsdon

- DC systems are competitive to AC in terms of power losses, volume and cost.
- However, the results of the scenarios examined here depend on the generation pattern and the assumptions made.
- In real applications the feasibility of AC and DC systems depends on the availability and the cost of land, which vary significantly with the intended installation location.

Demand Side Management & Distributed Generation: challenges for UES design and operation

Stephane Cremel

Supervisor: Dr Miao Guo

erial College Two disruptive concepts don

erial College Approach developed & model descriptio n don

erial College Case study, results & conclusions don

STUDY

Simulation and Characterisationof Charging Infrastructure for Electric Taxis in London

Wei Xin

Supervisor: Dr Salvador Acha, Dr Koen H. van Dam, Mr Gonzalo Bustos-Turu

erial College Why we want electric taxis? don

Challenges of electric vehicle uptakes

Drivers

•Nowhere to charge

Investors and Operators of Charging Infrastructure

•Limited number of users

Electric taxis with rapid charging network could be the solution

- •Have stable travelling demand
- •Relatively simple management needed
- •Grow public's confidence in this new technology

erial College Charge Point Locating don

erial College A Brief Modelling Framework don

erial College Results and Discussions don

erial College Conclusionsdon

- •Charging network in the case study: can uptake more taxis
- •Imbalanced utilisation rate
- •Unexpected energy demand and congestion in central area
- •More detailed behaviour rules and behaviour-adaption can be integrated in the model
- •Optimisations of strategic planning on the charging network expansions would be insightfu

Commercial Framework and Risk Management of VPP

Orkhan KarimzadaSupervisor: Dr Danny Pudjianto

erial College Virtual Power Pant (VPP) don

A virtual power plant is a way of linking up small and distributed power stations into a single operational network that is controlled to form one integrated central place.

erial College Uncertaintiesdon

erial College Methodology don

Case Studies:

- •Conventional generation
- •Renewable generation
- •Aggregated generation

Several optimization methods were investigated to deals with the problems of making optimal decisions under uncertainty and solve of profit maximization problems

For How Long?

erial College Result & Conclusiondon

- The proposed optimization strategy of VPP operation planning model is intended to help the VPP owner maximize its profit in a daily time-frame, and it is more capable of handling the situations with high forecast uncertainties in both supply and demand sides
- Combining the portfolio of conventional and intermittent generation in the VPP portfolio increases the expected profit of system.
- Investigating of energy storage technologies is beneficial in terms of maximization of profit and choosing the best strategy to optimize VPP portfolio.

Urban renewables and energy resilience

Veronica Uribe

Supervisors: Dr Miao Guo, Dr Koen Van Dam, and Mr Gonzalo Bustos-Turu

erial College Energy resilience is important for countrie don

ا
ا

erial College Distributed energy and resilience don

Distributed energy provides **diversity** in **energy sources** and **locations**

Could be, but…

- How significant is the contribution?
- Is it sustainable?

erial College Methoddon

Simplified Supply Demand Index (SSDI) to evaluate resilience

- \checkmark • Low energy intensities
	- • Electricity capacity exceeding the peak load
	- • Diversity in primary energy sources
	- \bullet No imports

Life Cycle Approach for sustainability

 0 \perp \times

100

erial College Case study: Colombian energy resilience don

The challenge

Colombian SSDI will decrease

Solar PV in the main cities

Results

- Solar increased resilience by 2%
- Solar + lower energy intensities increased resilience by 7%
- Sustainability impacts increased by adding solar
- If solar displaces a portion^o of coal the impacts are reduced

erial College Conclusionsdon

- The method was effective to evaluate resilience and sustainability.
- The impact of urban renewables on resilience depends on technoeconomic feasibility.
- Grid and commercial strategies are fundamental for success.

We want to thank our supervisors

- **Professor Nilay Shah** (Department of Chemical Engineering)
- **Professor Timothy Green** (Director of the Energy Futures Laboratory)
- **Dr Miao Guo** (Department of Chemical Engineering)
- **Dr Koen Van Dam** (Department of Chemical Engineering)
- **Mr Gonzalo Bustos Turu** (Department of Chemical Engineering)
- **Dr Salvador Acha** (Department of Chemical Engineering)
- **Dr Danny Pudjianto** (Department of Electrical and Electronic Engineering)

Your questions are welcome

Poster # 29 Poster #31 Poster #28 Poster #33 Poster #30

Poster #32

Thank you!