

Urban Energy Systems

Sustainable Energy Futures Annual Conference | 16 Sep. 2016

Group 4

erial College Urban Energy Systems (UES)

- Global Population over ½ urban
- Cities responsible for ¾ of global energy
- Challenges of UES
 - o Economics
 - o Increasing demands
 - Managing complexity

Analysis of community energy schemes

Hayden Dahmm

Supervisors: Professor Nilay Shah, Professor Timothy Green, and Dr Salvador Acha

erial College Community Energy (CE)

- 5,000 UK communities participating or considering CE
- 2015 Energy Restart disruptive
- 90% of CE groups reconsidering
- Research questions
 - Alternatives for community participation?
 - Role for energy integration?
 - Use of Renewable Heat Incentives (RHI)?

erial College Methods

- Created generic community from London data
- Divided into sectors, time of day, and time of year
- Modeled economics for each sector
- Nash Bargaining from 'Game Theory'

erial College Levels of cooperation

- No Sharing
- Share Electricity
- Share Heat
- Share Electricity and Heat
- Cooperation magnifies environmental benefits

erial College Scenario details

- Sharing both energy resources together captures greater value
- More of both energy vectors traded
- Some sectors profit

erial College Effect of government payments

- Increasing payments discourages cooperation
- More options through independent action
- Cooperation makes communities resilient to policy changes

Urban AC grid with embedded HVDC network for reliable, efficient and economic power distribution

Myrto Thoma

Supervisor: Professor Timothy Green

erial College Motivation and Objective

Application of AC and DC on an urban grid and comparison in terms of **power losses, volume** of the equipment and **cost**

Residential Area

erial College AC and DC Scenarios

Conventional AC Scenario

Smart DC Scenario

previous distribution level

1: Switchgear equipment 2: AC feeder 3: Transformer 1: Switchgear equipment 2: DC Substation 3: DC link

erial College Results

erial College Conclusions

- DC systems are competitive to AC in terms of power losses, volume and cost.
- <u>However</u>, the results of the scenarios examined here depend on the generation pattern and the assumptions made.
- In real applications the feasibility of AC and DC systems depends on the <u>availability and the cost of land</u>, which vary significantly with the intended installation location.

Demand Side Management & Distributed Generation: challenges for UES design and operation

Stephane Cremel

Supervisor: Dr Miao Guo

erial College Two disruptive concepts

erial College Approach developed & model description

erial College Case study, results & conclusions don

STUDY

Simulation and Characterisation of Charging Infrastructure for Electric Taxis in London

Wei Xin

Supervisor: Dr Salvador Acha, Dr Koen H. van Dam, Mr Gonzalo Bustos-Turu

erial College Why we want electric taxis?

Challenges of electric vehicle uptakes

Drivers

Nowhere to charge

Investors and Operators of Charging Infrastructure

• Limited number of users

Electric taxis with rapid charging network could be the solution

- Have stable travelling demand
- Relatively simple management needed
- Grow public's confidence in this new technology

erial College Charge Point Locating

erial College A Brief Modelling Framework

erial College Results and Discussions

erial College Conclusions

- Charging network in the case study: can uptake more taxis
- Imbalanced utilisation rate
- Unexpected energy demand and congestion in central area
- More detailed behaviour rules and behaviour-adaption can be integrated in the model
- Optimisations of strategic planning on the charging network expansions would be insightful

Commercial Framework and Risk Management of VPP

Orkhan Karimzada Supervisor: Dr Danny Pudjianto

erial College Virtual Power Pant (VPP)

A virtual power plant is a way of linking up small and distributed power stations into a single operational network that is controlled to form one integrated central place.

erial College Uncertainties

erial College Methodology

Case Studies:

- Conventional generation
- Renewable generation
- Aggregated generation

Several optimization methods were investigated to deals with the problems of making optimal decisions under uncertainty and solve of profit maximization problems

For How Long?

erial College Result & Conclusion

- The proposed optimization strategy of VPP operation planning model is intended to help the VPP owner maximize its profit in a daily time-frame, and it is more capable of handling the situations with high forecast uncertainties in both supply and demand sides
- Combining the portfolio of conventional and intermittent generation in the VPP portfolio increases the expected profit of system.
- Investigating of energy storage technologies is beneficial in terms of maximization of profit and choosing the best strategy to optimize VPP portfolio.

Urban renewables and energy resilience

Veronica Uribe

Supervisors: Dr Miao Guo, Dr Koen Van Dam, and Mr Gonzalo Bustos-Turu

erial College Energy resilience is important for countrie

erial College Distributed energy and resilience

Distributed energy provides diversity in energy sources and locations

Could be, but...

- How significant is the contribution?
- Is it sustainable?

erial College Method

100 -

Simplified Supply Demand Index (SSDI) to evaluate resilience

- Low energy intensities
- Electricity capacity exceeding the peak load
- Diversity in primary energy sources
- No imports

Life Cycle Approach for sustainability

0 🗌 🗶

erial College Case study: Colombian energy resilience

The challenge

Distributed generation strategy

Colombian SSDI will decrease

Solar PV in the main cities

Results

- Solar increased resilience by 2%
- Solar + lower energy intensities increased resilience by 7%
- Sustainability impacts increased by adding solar
- If solar displaces a portion^o of coal the impacts are reduced

erial College Conclusions

- The method was effective to evaluate resilience and sustainability.
- The impact of urban renewables on resilience depends on technoeconomic feasibility.
- Grid and commercial strategies are fundamental for success.

We want to thank our supervisors

- Professor Nilay Shah (Department of Chemical Engineering)
- Professor Timothy Green (Director of the Energy Futures Laboratory)
- Dr Miao Guo (Department of Chemical Engineering)
- Dr Koen Van Dam (Department of Chemical Engineering)
- Mr Gonzalo Bustos Turu (Department of Chemical Engineering)
- Dr Salvador Acha (Department of Chemical Engineering)
- **Dr Danny Pudjianto** (Department of Electrical and Electronic Engineering)

Your questions are welcome

Poster # 29

Poster #31

Poster #28

Poster #33

Poster #30

Poster #32

Thank you!