Solar Energy *Steps towards a brighter future*

Group 1:

Phoebe Pearce Konstantinos Kalogeropoulos Arthur Mariaud Andreas Livera Liav Harel Pedro Augusto de Araujo Falcao Pessoa

Introduction – Solar energy

1% of global electricity demand^[1]

227 GW global installed capacity^[2]

50 GW capacity installed in 2015^[2]

Costs fell from $C4/W_p$ in 2008 to $C1.3/W_p$ in 2015^[3]

A journey to tackle key hurdles for Solar

Rooftop solar panels in Great Britain *An evaluation of past and future support policy*

Phoebe Pearce

Domestic solar PV in the UK: 2010-2016

Assessing policy effectiveness: Agent-based model

- Compare reality against alternative scenarios
- Make projections
- Beyond optimisation: Agent-Based Model
- Agents based on real UK data
- Calibration

Policy scenarios

Historical policy scenarios

- 1. Baseline: real historical FiT policy
- 2. Linearly decreasing FiTs

Compared to the baseline, **scenario 2** has:

- 20% lower deployment
- 45% lower annual cost

Future policy scenarios

- 1. Planned policy: deployment caps up to March 2019
- 2. No subsidies from May 2016
- Low FiTs only encourage earlier adoption
- No difference in deployment by 2023

Conclusions & Policy recommendations

- Need a nuanced cost control framework to avoid escalating costs
- Current FiTs are too low to encourage adoption in the short term
- Current **policy should be reevaluated** around 2018 considering PV prices

Optimising connections of PV farms in constrained feeders

Konstantinos Kalogeropoulos

Immense growth

of PV in the UK

over the past 6

years

PV Growth and Impact

Cumulative solar photovoltaics deployment in the UK

- This puts high stress to the Distribution Grid
- Issue of focus in this project: **Overvoltage**
- Conventionally resolved with grid reinforcement ٠

Alternative Solutions

Simulation Model

Techno-economic Results and Conclusions

Net Pogseracyalue

Integrated optimisation for PV and storage systems in UK commercial buildings

Arthur Mariaud

Background

Climate Change

BOB

- Decarbonisation agenda
- Rising electricity prices
- Boost corporate green image

Necessity for a user friendly optimisation model as a guidance for decision makers

The optimisation model

Case Study - Parameters

Case Study - Results

Case Study - Results

Yearly costs for Battery System

Conclusion

Live solar minigrids storage analysis and implementation of demand response

Andreas Livera

Background

Electricity Access

Nearly 2 out of 10 people are living in the dark.

Renewable Energy based Minigrids

Clean, affordable and sustainable energy option.

Solar mini grids

System architecture

Main challenge

Solution

The computer program

Stage 1: State of Charge (SOC) estimation

The computer program

Stage 2: Generation and Demand model

• This model predicts energy shortfalls within the next five days based on historic customer usage data and seasonal generation data.

Stage 3: Demand Response (DR) algorithm

- The goal of this stage is to keep supply and demand balanced and avoid the prospects of supply shortages.
- The algorithm proposes a strategy for reducing the amount of electricity consumed during peak demand periods.

Conclusions

- Battery storage analysis and implementation of DR are of extreme importance for solar powered minigrids operation.
- The computer program was successfully tested on data from MeshPower existing systems.
- The proposed program works sufficiently and it can be easily adapted and used in real time applications.

Emissivity of photovoltaic devices *Shedding light on the behaviour of solar cells in the infrared*

Background

Photovoltaic technologies

Background

Optical properties of substrates

Spectral emissivity

3rd generation solar cell

- Antireflection coating (ARC) dominates thermal emissivity
- Additional cover glass further increases emittance

Results

Organic PV solar cell

• Substrate dominates the emissivity

Potential applications

Hybrid PV-thermal^[2]

Wearables & appliances^[4]

energy futures lab

Space^[1]

Buildings & agriculture^[3]

Solar Chimneys *Energy without the smoke*

Pedro Augusto de Araujo Falcao Pessoa

Main Components

Collector

Transparent roof

Chimney

 Connects warm air at ground level to the cold air at the top of the chimney

Turbines

Convert kinetic energy from airflow into electricity

How it works:

Findings and Conclusions

Collector Roof Materials

• Roof material selection can greatly impact the thermal and economic performance of the plant

COSTS OF ENERGY

Semi-Transparent Organic Photovoltaics

 Inclusion of OPVs can increase energy output but decreases profitability

GENERATION

If you want to discuss further...

Phoebe Pearce – Poster 51

Konstantinos Kalogeropoulos – Poster 48

Arthur Mariaud – Poster 50

Andreas Livera – Poster 49

Liav Harel – Poster 47

Pedro Augusto de Araujo Falcao Pessoa - Poster 46

Thanks for your attention

Special thanks to our supervisors Dr Salvador Acha Dr N. J. Ekins-Daukes Prof Timothy Green Dr Alexander Mellor Prof Jenny Nelson Dr Raphael Slade

Questions?

References

Slide 2

[1] – PV Tech (2015) Solar Power Passes 1% Global Threshold. Available at:

https://cleantechnica.com/2015/06/12/solar-power-passes-1-global-threshold/

[2] - IEA International Energy Agency (2016). 2015 Snapshot of global photovoltaic markets, Available at: http://www.ieapvps.org/fileadmin/dam/public/report/PICS/IEA-PVPS_-__A_Snapshot_of_Global_PV_-_1992-2015_-_Final_2_02.pdf.

[3] – Fraunhofer Institute for Solar Energy Systems(2016) PHOTOVOLTAICS REPORT. Available at:

https://ise.fraunhofer.de/de/downloads/pdf-files/aktuelles/photovoltaics-report-in-englischer-sprache.pdf Slide 6

Ofgem, 2016g. Feed-in Tariff Installation Report 31 March 2016. Available at: https://www.ofgem.gov.uk/publications-and-updates/feed-tariff-installation-report-31-march-2016 [Accessed July 1, 2016].

Slide 32

[1] – Qioptiq.com. (2016). Qioptiq Space | Cover glass | Optical solar reflector OSR. [online] Available at: http://www.qioptiq.com/space.html [Accessed 12 Sep. 2016].

[2] – Naked Energy, (2016). [online] Nakedenergy.co.uk. Available at: http://www.nakedenergy.co.uk/wpcontent/uploads/2012/03/tiled_roof.jpeg [Accessed 12 Sep. 2016].

[3] – solarbuildingtech.com, (2016). Greenhouse Solar Photovoltaic Remodeling. [online] Solarbuildingtech.com. Available at: http://www.solarbuildingtech.com/Greenhouse_Sunroof_Remodeling/greenhouse_solar_pv_sunroof_remodeling.htm [Accessed 13 Sep. 2016].

[4] – The Daily Mail, (2015). Solar-powered T-shirt can charge your phone on the go. [online] The Daily Mail. Available at: http://www.dailymail.co.uk/femail/article-3023396/Fashion-meets-function-solar-powered-T-shirt-charge-phone-go.html [Accessed 12 Sep. 2016].

Slide 34

[1] – Grose, Thomas (2014) Solar Chimneys Can Convert Hot Air to Energy, But Is Funding a Mirage?

http://news.nationalgeographic.com/news/energy/2014/04/140416-solar-updraft-towers-convert-hot-air-to-energy/

[2] - http://www.sbp.de/cn/projekt/aufwindkraftwerk-demonstrationsanlage-manzanares/

[3] – https://upload.wikimedia.org/wikipedia/commons/b/b5/Solar_Chimney_Manzanares-

view_of_the_tower_through_the_collector_glass_roof.JPG

[4] - http://www.sbp.de/cn/projekt/aufwindkraftwerk-demonstrationsanlage-manzanares/

Slide 35

https://upload.wikimedia.org/wikipedia/commons/1/17/SolarChimneyManzanares_view_from_8km_south_direction.JPG_