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Aim & Research Motivation

Background
• 54% of the world’s population 

currently lives in urban areas
• Cities account for around 75% of 

global energy demand 

Challenge: Understanding of the 
dynamics behind the energy demand 
in urban areas

Aim: Simulate the spatial and temporal energy loads in 
• Residential buildings
• Non-residential buildings

City of London
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Methodology

Agent-Based Model (ABM) following a bottom-up approach

Activity Schedule

Non-Residential Buildings

Residential Buildings

Heat Demand

Electricity Demand

Occupancy Levels

Full/part 
time worker

Student

Pensioner

Unemployed

Distribute Simulate
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Case Study

Isle of Dogs area (East London)

Simulation of the greater area of London from SmartCity Model

• London Borough of Tower Hamlets
• 42,000 residents
• 93,000 people work in the area



energy futures lab 6/46

Results: Daily Profiles
Residential Buildings
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Results: Daily Profiles
Non-Residential Buildings
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Results: Annual Demand
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Conclusions

Process
• Reproduces trends of real demand
• Test different scenarios
• Re-usable

Non-Residential Demand
• Lack of adequate data
• Calibration of the results

Computational Tool
• Decision support tool for key stakeholders
• Incorporates end-user behaviour
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Challenges of DHN
• Demand side barriers
• Residents’ mistakes when using thermostats
• Faults in secondary consumer systems

Aim
Investigate different strategies that could be applied to achieve optimal 
operation and maximum efficiency of DHNs.

District Heating Networks (DHN)
• Heat for an area is produced centrally
• Heat is distributed through pipes 

Scope of the thesis
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Agent-
Based 
Model

Simulates residential 
heat demand

Studies secondary and 
tertiary network

Tests different 
operational strategies

Agent-
Based 
Model

Simulates residential 
heat demand

Studies secondary and 
tertiary network

Tests different 
operational strategies

Methodology
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Layout of the DH 
block examined in 
this model

Substation

Flats

CHP

Primary side Secondary side

Tertiary side

Layout of the DHN

Tertiary or demand side of DHN

Water 
tank

• Domestic Hot Water system

CHP

• Under-floor space heating
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Problem with the DHN
• High return temperatures
• High heat losses

Solution
• Apply the ABM
• Test three scenarios

- Scenario 1: Tank resizing 
scenario

- Scenario 2: DSM scenario 
(improved and ideal case)

- Scenario 3: Alteration of 
boosting periods scenario

Queen Elizabeth Olympic Park

Case study

East Village (residential area)

Case study

East Village (residential area)
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• Scenario 1: lowest improvement

Comparison of scenarios

Change in 
heat losses

Change in difference 
between supply and 
return temperature

Change in fuel 
consumption

Change in 
primary return 
temperature

Scenario 1 -0.7% +0.96% -0.07% -0.32%
Scenario 2 
(improved 

case)
-3.16% +3.3% -0.76% -1.3%

Scenario 2 
(ideal case) -1.8% +13% -1.38% -4.6%

Scenario 3 -12.3% - -2.7% -

+13% -4.6%

-12.3%

• Scenario 2: lowest return temperatures and higher difference between supply and 
return temperatures

• Scenario 3 lowest fuel consumption and heat losses

-2.7%
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Case study
• Combination of scenario 2 and 3 could be the 

best solution

Stakeholders
• Effective collaboration must be achieved

Model
• Could be used as a decision support tool for DHN operators

ConclusionsConclusions
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Overview

System more complex than a domestic boiler

District energy schemes:

• Centralized energy production
• Economies of scale

Energy centers:

“Big” equipment
Several technologies

Efficiency + CO2 savings
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Need for an optimisation?

Too many factors to operate “manually” = Model

Queen Elizabeth Olympic Park
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Results: annual
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Results: daily profiles

Actual operation
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Conclusions

Energy Center Operation
• In order to achieve maximum efficiency in DE schemes, 

energy centers operation should be based on an 
optimization model.

Model
• Carbon emissions savings and higher profits can be realized through 

the optimised operation

Operation-support tool
• The proposed model could be used and further developed as an effective 

decision support tool for the energy centres operation



energy futures lab

Modelling and optimisation of a district heating 
network’s marginal extension

Poster 11

Axelle DELANGLE

Supervisors:
Prof. Nilay Shah
Dr. Romain Lambert
Dr. Salvador Acha

24/46



energy futures lab 25/46

Aim & Research Motivation

District heating networks (DHN):

• Well known & mature technologies
• Expansion already considered in several 

DHNs

Limited research on DHN expansion

Main objectives:

• Modelling approach
• Strategy to design & operate the energy 

centre
• Connection scenario to select
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Case study: Barkantine

Existing network: 
• 22 buildings connected
• 2.4 km of pipes
• One existing energy centre

Extension considered:
• 31 buildings to connect
• 3.5 km of pipes
• 12 years horizon time
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Methodology

Spatial network 
extension costs

Model key 
outputsProductsConstraintsProblem 

statement
Model key 

inputs

Heat demand 
analysis

Design of the energy centre

Maximise net present 
value or minimise GHG 
emissions under given 
constraints.

• Scenario 1
• Scenario 2
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Main results

Optimisation 
performed

Objective function Scenario 1 (slow 
connections first)

Scenario 2 (quick 
connections first)

Profit maximisation Net Present Value 
(£) £10,101,800 £13,173,700

GHG emissions 
minimisation (DUKES)

GHG emissions 
(tCO2eq) 1,670 1,920

Pumping�costs

Connection�costs

Heat�revenue

Boiler�costs

Electricity�residue

O&M

Investments

Financially viableNot financially viable

Table 1: Design of the energy centre
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Conclusions

DHN expansion:

• Financial & environmental advantages
• Planning strategies are essential
• Using an optimisation approach is crucial

Barkantine case study:

• Costs optimisation performed: Scenario 2.
Financially viable

• GHG emissions minimisation: Scenario 1.
Additional subsidies required

The model developed can be applied to other DHNs.
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Research motivation and 
aim of the project

Investments 
on low-
carbon 

technologies

6000 buildings

1% of total UK 
emissions

High energy 
demand

Cost and emissions’
reduction;
Potential to maximise
savings with waste heat-
conversion technologies.

Combined Heat and Power (CHP)

Aim of the project:
“Optimal implementation and operation of gas-fired internal combustion CHP units,
when integrated with heat recovery and conversion technologies.”
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Method: 
Optimisation Model

Optimal technology 
Operational strategy
Total cost
Total emissions

Gas & Electricity prices
Technology options
Energy demand
Fuel employed
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Method: Case studies

First case study: 
Supermarkets

Single-CHP

CHP+ORC

Second case study: 
Distribution 

Centres

Single-CHP

CHP+ORC

CHP+Absorption
chillers (AC)

Electric demand

Heat demand

Cooling demand

Business-as-usual scenario
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Results: first case study

Average savings 
per year (£) Savings (%)

Average carbon 
emissions reduction 
per year (tn CO2eq)

Reduction (%)

Minimum cost NG 
vs Baseline £193,500 32.5% 430 18.8%
Minimum cost BM 
vs Baseline

£227,400 38.2% 2260 99.3%

CHP 530kW 
ORC 100kW

0 5000 10000 15000

Average annual power
produced

Average annual heat
produced

Average annual gas
consumption

Average annual excess
heat

MWh

CHP 530kW & ORC 100kW CHP 500kW

-5.5%

-10%

Payback period: 4 years
ROI: 321%
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Results: second case study

Technology CHP 1280kWe & ORC 
150kWe 

CHP 1520kWe & AC 
600kWth 

Fuel Biomethane Biomethane

Average annual cost 
savings

37.8% 37.1%

Average annual 
carbon savings

99.8% 99.8%

IRR 37.8% 29.3%

ROI 277% 186%

Payback period 4 years 5 years

Total cost for CHP+AC 
1.25% higher than for 

CHP+ORC
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Results: second case study

+70% export 
revenues

+25% gas cost 
+30% capital cost

CHP+AC Operational strategy:

• No grid-imported electricity;
• 40% of electricity is exported;
• AC covers 40% of cooling demand;
• Boiler provides 15% of heat required.

CHP+ORC Operational strategy:

• No grid-imported electricity;
• 10% of electricity is exported;
• Electric chiller covering cooling demand
• Boiler not contributing to heat generation;

-£6m -£4m -£2m £m £2m £4m

Total cost

Capital cost

Maintenance cost

Fuel cost

Carbon cost

Export Revenue

GBP

CHP 1520kW & AC 600kW CHP 1280kW & ORC 150kW
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Conclusions

Optimisation model:
Generic tool for selection of technology portfolios in commercial 

buildings

Waste heat conversion technologies: 
Reduced gas consumption
Increased CAPEX

Fuel employed: 
Biomethane for full decarbonisation
Natural gas CHP+ORC: 19% emissions 
reduction

CHP coupled with ORC or AC: 
Comparable benefits
Applications in buildings with high cooling 
demand
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Aim & Research Motivation

Supermarket refrigeration: 30%-60% of total energy consumed in the stores

High amounts of low-grade heat rejected by
the air-cooled condensers to the ambient air

Current status: Air-cooled condensers
situated on the rooftop of the stores

Typical commercial air-cooled condenser

Could a water-cooled condenser rejecting heat to the soil via an intermediate closed 
water-circuit address this problem?
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Methodology

Model 
Development

Model 
Validation

Model 
Modification

Performance 
Comparison

Financial 
Evaluation

Case Study
Direct–expansion transcritical CO2 system

Area: Leicester North, UK
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Modelling Results(1/2)
Re

je
ct

ed
 H

ea
t (

kW
)

External temperature (degC)

Air-cooled system
Water-cooled system

High external temperature: Up 
to 5 times less heat rejected by 
the water-cooled condenser
Low external temperature: 
Marginally higher performance 
of the air-cooled system

Air-cooled 
condenser

Water-
cooled 

condenser

Hybrid 
system

Optimum 
performance
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Modelling Results (2/2)

65% of the year the 
air-cooled system 
consumes less energy 
than the water-cooled 
system

Main reason: Low 
average temperature 
throughout the year

Air-cooled system Water-cooled 
system Hybrid system

Yearly energy 
consumption 
(MWh/year)

696 673 656

Yearly electricity 
cost

£ 59,200 £ 57,500 £ 55,900

Yearly emissions 
(tnCO2/year)

321 311 303

-3.5%
-5.5%

Marginal energy savings

Air-cooled system
Water-cooled system

External temperature
Cold aisle temperature
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Financial Evaluation

Retrofit with a 
Hybrid System

Water-cooled 
System in a new 

store

Hybrid system 
in a new store

CAPEX £ 83,000 -£ 40,000 
relative to BAU

+£ 7,000 
relative to BAU 

OPEX relative to 
BAU

+200% +150% +200%

Energy costs 
per year 

relative to BAU

-£ 3,500 -£ 1,800 -£ 3,500

Total annual
savings relative 

to BAU

£ 1,800 £ 1,100 £ 1,800

Payback Period >10 years Immediate 
payback

4.8 years

Systems 
downsized 
upon design
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Conclusions

Air-cooled systems
• Highly dependent on external conditions
• Show higher performance levels in cold ambient conditions

Water-cooled systems
• Less sensitive to external temperature variations
• Systems downsized
• Attractive economics for new stores applications

Model: Reliable but Case specific
Needs to be applied in other systems for a general understanding
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Thank you 
for your attention!
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Substation

CHP

Flats

HIUHIUHIU

Primary side Secondary side

Tertiary side

Layout of the DH block 
examined in this model

S
Under-floor 

heating system

HE

Manifold

Hot 
water 
tank

2-port valve

3-port 
valve

HIU

Simplified representation of the 
tertiary side studied in this model

Layout of the DHN
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Comparison of scenarios
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Results: heat

Daily half-hourly profiles
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Results: other outputs

Cooling operation
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Gathering of loads into 
clusters 
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Costs optimisation 
approaches

GHG emissions 
minimisation 
approaches

Comparison of the NPV 
obtained in each model
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Comparison of the emissions 
obtained in each model
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Year 2 Year 5

Year 10 Year 12

Heat production profiles, costs 
optimisation model (V3), day 1
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Heat production profiles, emissions Heat productio
minimisation

on profiles, emissionctio
nn model (V3T), day 1

Year 2 Year 5

Year 10 Year 12
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Case Study: Leicester North

Air-Cooled Condenser 
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Low temperature cabinets

LT Compressor
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Thermal duty of the cabinets variable 
according to the cold aisle 
temperature in the store

Temperature difference at the outlet 
side of the condenser: 3 K

Minimum condensation 
pressure: 45 bar

ηis=80%

Isenthalpic 
expansion in 

the valves
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CAPEX of air-cooled and
water-cooled systems
Air-cooled system
Total cost:  £ 193,000

Costs of the heat rejection system increase the CAPEX

Water-cooled system
Total cost:  £ 200,000


