HEAT

Sustainable Energy Futures, Annual Conference 2016

Maria Briola Axelle Delangle Maria-Aliki Efstratiadi Aspasia Georgakopoulou Panagiotis Ladas Adrian Regueira-Lopez

Group 7 Poster No: 09-14

> Imperial College London

Simulating Heat and Electricity Demand in Urban Areas

Panagiotis LADAS

Supervisors:

Dr. Koen H. van Dam Gonzalo Bustos-Turu, PhD Dr. Salvador Acha

Aim & Research Motivation

Background

- 54% of the world's population currently lives in urban areas
- Cities account for around 75% of global energy demand

Challenge: Understanding of the dynamics behind the energy demand in urban areas

City of London

Aim: Simulate the spatial and temporal energy loads in

- Residential buildings
- Non-residential buildings

Imperial College London

Agent-Based Model (ABM) following a bottom-up approach

Methodology

Case Study

Isle of Dogs area (East London)

- London Borough of Tower Hamlets
- 42,000 residents
- 93,000 people work in the area

Simulation of the greater area of London from SmartCity Model

Results: Daily Profiles Residential Buildings

Winter - Weekday

energy futures lab

Tower Hamlets

Peak Demand

- 7-8am: wake-up
- **5-6pm**: back from work/school
- **10pm**: all agents at residences

Results: Daily Profiles Non-Residential Buildings

Winter - Weekday

Tower Hamlets

London

Results: Annual Demand

Validation

Annual Demand VS DECC data

energy futures lab

Imperial College London

Conclusions

Agent-Based Modelling of Residential Heat Demand in a District Heating Network

Maria BRIOLA

Supervisors: Dr. Koen H. van Dam Dr. Christoph Mazur

District Heating Networks (DHN)

- Heat for an area is produced centrally
- Heat is distributed through pipes

Challenges of DHN

- Demand side barriers
- Residents' mistakes when using thermostats
- Faults in secondary consumer systems

Aim

Investigate different strategies that could be applied to achieve optimal operation and maximum efficiency of DHNs.

Layout of the DHN

Layout of the DH block examined in this model

Tertiary or demand side of DHN

• Under-floor space heating

۲

Domestic Hot Water system

Case study

Queen Elizabeth Olympic Park

East Village (residential area)

Problem with the DHN

- High return temperatures
- High heat losses

Solution

- Apply the ABM
- Test three scenarios
 - Scenario 1: Tank resizing scenario
 - Scenario 2: DSM scenario (improved and ideal case)
 - Scenario 3: Alteration of boosting periods scenario

Baseline scenario results

	Change in heat losses	Change in difference between supply and return temperature	Change in fuel consumption	Change in primary return temperature
Scenario 1	-0.7%	+0.96%	-0.07%	-0.32%
Scenario 2 (improved case)	-3.16%	+3.3%	-0.76%	-1.3%
Scenario 2 (ideal case)	-1.8%	+13%	-1.38%	-4.6%
Scenario 3	-12.3%	-	-2.7%	-

- Scenario 1: lowest improvement
- Scenario 2: lowest return temperatures and higher difference between supply and return temperatures
- Scenario 3 lowest fuel consumption and heat losses

Conclusions

Modelling and optimisation of a district energy centre

Adrian REGUEIRA-LOPEZ

Supervisors: Prof. Nilay Shah Dr. Romain Lambert

Overview

District energy schemes:

- Centralized energy production
- Economies of scale

Energy centers:

Efficiency + CO₂ savings

→ System more complex than a domestic boiler

Queen Elizabeth Olympic Park

→ Too many factors to operate "manually" = <u>Model</u>

Imperial College London

energy

			Heat carbon ii (gCO2/kWh)	nt.)	CO ₂	emissions (tons)	Profi (£)	it
	Profit	opt.	90.5			12.7k	5.73r	n
	Carbon	opt.	83.3			11.7k	5.36r	n
	Actual so	cheme	103			-	-	
100% - 90% - 80% - 70% - 60% - 50% - 30% - 20% - 10% -	Profit +100	optim	-350 %	Heat Output (%)	100% - 90% - 80% - 70% - 60% - 50% - 30% - 20% - 10% -	Carb	on opti	mization
0% -	Biomass	СНР	NG Boiler		0% -	Biomass	CHP	NG Boiler
Actu	al Scheme	Profi	t-Optimization		P	Profit opt.	Ca	rbon opt.
								Imperial Colle
itures	lab				21/46	5		London

Results: daily profiles

Conclusions

Energy Center Operation

• In order to achieve maximum efficiency in DE schemes, energy centers operation should be based on an optimization model.

Model

• Carbon emissions savings and higher profits can be realized through the optimised operation

Operation-support tool

• The proposed model could be used and further developed as an effective decision support tool for the energy centres operation

Imperial College London

Modelling and optimisation of a district heating network's marginal extension

Axelle DELANGLE

Supervisors:

Prof. Nilay Shah Dr. Romain Lambert Dr. Salvador Acha

Aim & Research Motivation

District heating networks (DHN):

- Well known & mature technologies
- Expansion already considered in several DHNs

→ Limited research on DHN expansion

Main objectives:

- Modelling approach
- Strategy to design & operate the energy centre
- Connection scenario to select

Case study: Barkantine

Existing network:

- 22 buildings connected
- 2.4 km of pipes
- One existing energy centre

Extension considered:

- 31 buildings to connect
- 3.5 km of pipes
- 12 years horizon time

Main results

Optimisation performed	Objective function	Scenario 1 (slow connections first)	Scenario 2 (quick connections first)
Profit maximisation	Net Present Value (£)	£10,101,800	£13,173,700
GHG emissions minimisation (DUKES)	GHG emissions (t _{co2eq})	1,670	1,920

Conclusions

DHN expansion:

- Financial & environmental advantages
- Planning strategies are essential
- Using an optimisation approach is crucial

Barkantine case study:

- Costs optimisation performed: Scenario 2.
 Financially viable
- GHG emissions minimisation: Scenario 1.
 - ➔ Additional subsidies required

The model developed can be applied to other DHNs.

Modelling and Optimisation of Distributed Energy Resources in Food Retail Buildings: An Investment and Management Approach

Aspasia GEORGAKOPOULOU

Supervisors:

Dr. Salvador Acha Dr. Christos N. Markides Prof. Nilay Shah

Research motivation and aim of the project

Combined Heat and Power (CHP)

Aim of the project:

"Optimal implementation and operation of gas-fired internal combustion CHP units, when integrated with heat recovery and conversion technologies."

Method: 1-1-1 frin **Optimisation Model** ✓ Gas & Electricity prices ✓ Optimal technology ✓ Technology options **Operational strategy** \checkmark ✓ Energy demand \checkmark Total cost ✓ Fuel employed \checkmark Total emissions

CHP 530kW ORC 100kW	Average savings per year (£)	Savings (%)	Average carbon emissions reduction per year (tn CO ₂ eq)	Reduction (%)
Minimum cost NG vs Baseline	£193,500	32.5%	430	18.8%
Minimum cost BM vs Baseline	£227,400	38.2%	2260	99.3%

Technology	CHP 1280kWe & ORC 150kWe	CHP 1520kWe & AC 600kWth		
Fuel	Biomethane	Biomethane		Total cost for CHD+AC
Average annual cost savings	37.8%	37.1%		1.25% higher than for CHP+ORC
Average annual carbon savings	99.8%	99.8%		
IRR	37.8%	29.3%]	
ROI	277%	186%]	
Payback period	4 years	5 years		

Imperial College

London

Conclusions

Water-Cooled Refrigeration Systems in the Food Retail Industry

Maria-Aliki EFSTRATIADI

Supervisors:

Dr. Christos N. Markides Dr. Salvador Acha Prof. Nilay Shah

Aim & Research Motivation

Supermarket refrigeration: **30%-60%** of total energy consumed in the stores

- ➔ High amounts of low-grade heat rejected by the air-cooled condensers to the ambient air
- → Current status: Air-cooled condensers situated on the rooftop of the stores

Typical commercial air-cooled condenser

Could a water-cooled condenser rejecting heat to the soil via an intermediate closed water-circuit address this problem?

Modelling Results(1/2)

Modelling Results (2/2)

Marginal energy savings

65% of the year the air-cooled system consumes less energy than the water-cooled system

Main reason: Low average temperature throughout the year

	Retrofit with a Hybrid System	Water-cooled System in a new store	Hybrid system in a new store	
CAPEX	£ 83,000	-£ 40,000 relative to BAU	+£ 7,000 relative to BAU	Systems
OPEX relative to BAU	+200%	+150%	+200%	downsized upon design
Energy costs per year relative to BAU	-£ 3,500	-£ 1,800	-£ 3,500	
Total annual savings relative to BAU	£ 1,800	£ 1,100	£ 1,800	
Payback Period	>10 years	Immediate payback	4.8 years	
				mperial Colleg
energy futures lab	C	43/46		London

Conclusions

Imperial College

London

Air-cooled systems Highly dependent on external conditions Show higher performance levels in cold ambient conditions Show higher performance levels in cold ambient conditions Water-cooled systems Less sensitive to external temperature variations Systems downsized Attractive economics for new stores applications

Model: Reliable but Case specific

Needs to be applied in other systems for a general understanding

Dr. Salvador Acha

Gonzalo Bustus-Turu, PhD

Dr. Romain Lambert

Dr. Christos N. Markides

Dr. Christoph Mazur

Dr. Koen H. van Dam

Prof. Nilay Shah

APPENDICES

Layout of the DHN

Baseline scenario results

Comparison of scenarios

	Change in heat losses (%)	Fuel consu mption change (%)	Change in cost of fuel consump tion (%)	Change in carbon emissio ns (%)	Change in temperature difference between supply and return (%)	Water tank return temperatu re change (%)	Primary return temperatu re change (%)	Secondary temperatu re change (%)
Scena rio 1	-0.7	-0.07	0	-0.086	+ 0.96	-1.8 (for non zero values)	-0.32	- 0.16
Scena rio 2 (impr oved case)	-3.16	-0.76	-0.88	-0.76	+ 3.3	No change	-1.3	-0.5
Scena rio 2 (ideal case)	-1.8	-1.38	-1.55	-1.38	+ 13	No change	-4.6	-2.4
Scena rio 3	-12.3	-2.7	-2.7	-2.7	Not consistent during the day	Negligible	Not consistent during the day	Not consistent during the day

Results: heat

Daily half-hourly profiles

a (_ m_ x a =

Electricity balance

	Heat carbon int. (gCO2/kWh)	CO ₂ emissions (tons)	Profit (£)
Profit opt.	90.5	12.7k	5.73m
Carbon opt.	83.3	11.7k	5.36m
Actual scheme	103	-	-

Gathering of loads into clusters

Imperial College London

Comparison of the NPV obtained in each model

Costs optimisation

approaches

Optimisation program

GHG emissions

minimisation

approaches

Optimisation program

Comparison of the emissions obtained in each model

Heat production profiles, costs optimisation model (V3), day 1

Year 2

Year 5

Heat production profiles, emissions minimisation model (V3T), day 1

Case Study: Leicester North

CAPEX of air-cooled and water-cooled systems

Costs of the heat rejection system increase the CAPEX

Imperial College London