

Energy Systems for Developing Regions

Group 5

1

Nursita S. Pramono Simon Meunier Claire Burtin Dimitrios Vardouniotis Artemis Pountoureli

16th September 2016

Structure of the presentation

Assessing the social, political, economic impacts of renewable energy systems in developing regions

Developing countries	•	Indonesia Bolivia	
Developing market	•	Fuel cells	
Developing economic sector	•	Agriculture Dairy sector	

Developing countries : Indonesia

Business Model for Decentralised Power Generation in Rural Indonesia

Nursita S. Pramono

Poster #37

Imperial College Developing countries: Indonesia/Bolivia London Developing market: Fuel cells Background: Developing economic sector: Agriculture/Dairy sector Indonesia's Problem in Electricity Sector

A <u>BUSINESS MODEL</u> focused in <u>RURAL AREAS</u> that applies to <u>DECENTRALISED POWER GENERATION</u> and <u>RENEWABLE ENERGY</u> (<u>RE</u>) and enables <u>OTHER SECTORS' DEVELOPMENT</u>

Criteria for Business Model

VALUE PROPOSITION

Electricity for rural areas that emphasises on the impacts on local community improvement

CUSTOMER INTERFACE

Distribution company

INFRASTRUCTURE

Machines, devices, and activities

REVENUE MODEL

Commercial price based on value proposition

Developing business model

Case Study: Electrifying Rante Angin

Case Study: Electrifying Rante Angin

energy futures lab

Imperial College London

Developing countries: Indonesia/Bolivia

Developing market: Fuel cells Developing economic sector: Agriculture/Dairy sector

Results

40%

30%

20%

10% 0%

SOLAR is the most optimal solution !

N. Pramono #37

Imperial College London

Developing countries: Indonesia/Bolivia Developing market: Fuel cells Developing economic sector: Agriculture/Dairy sector

Results

ECONOMICALLY FEASIBLE (in 20 years) 0.12 USD/kWh Rate of return > 10 % Net Present Value > 0 Payback Period 14 years

 CAN HELP PRIVATE COMPANIES TO ESTABLISH A BUSINESS USING
 DECENTRALISED POWER GENERATION
 IN RURAL AREAS, WHICH SUPPORTS
 LOCAL LIFE QUALITY IMPROVEMENT

Developing countries : Bolivia

Distributed electricity generation from renewable energy in grid-connected rural villages

The case of Bolivia

Simon Meunier

Poster #36

Imperial College London

Developing countries: Indonesia/Bolivia Developing market: Fuel cells Developing economic sector: Agriculture/Dairy sector

Situation in grid-connected villages in developing countries

Imperial College London

Developing countries: Indonesia/Bolivia Developing market: Fuel cells Developing economic sector: Agriculture/Dairy sector

Solution : Distributed Electricity Generation (DEG) from Renewable Energy (RE) ?

Aim & Approach

Aim : Quantifying the potential impacts of developing DEG from RE

Approach :

2 scenarios to be compared:

Alternative scenario : DEG from RE

- Scenarios compared along two parameters :
 - 1. Cost of providing electricity to the village
 - 2. Impact on global warming

Developing countries: Indonesia/Bolivia Developing market: Fuel cells

Developing economic sector: Agriculture/Dairy sector

Case study: Totora

Imperial College London

Developing countries: Indonesia/Bolivia Developing market: Fuel cells

Developing economic sector: Agriculture/Dairy sector

Results

Cost of providing electricity to the village

Impact on global warming

96 tCO₂eq saved yearly by using DEG from PV instead of only the grid

45 % reduction of the impact on global warming by using DEG

Imperial College London

Developing countries: Indonesia/Bolivia Developing market: Fuel cells Developing economic sector: Agriculture/Dairy sector

Conclusion

Currently

	Aspect	Economic	Global warming	
	Most beneficial solution	Grid	DEG	
Š	Currently, the motivation for DEG from RE is environmental			

In the future : A possible economic motivation ?

Developing market : fuel cells

Do fuel cells present a solution for backup power for telecoms? Case studies of Ghana, Japan and Brazil

Claire Burtin

Poster #34

Context and objectives

What is BUP ? Why is it important ?

'Ensure the continuous supply of power for sensitive loads during outages'

Telecoms

Data centres Banks Hospitals Companies Cost of downtime \$9,000/min in data centre

Loyalty Security Social

How to choose a backup power solution ?

Where fuel cells ARE the best solution?

Developing countries: Indonesia/Bolivia Developing market: Fuel cells

Developing economic sector: Agriculture/Dairy sector

How to choose a Backup Power solution?

Case studies : Ghana, Japan and Brazil

Brazil and Japan

Results

Batteries and PV : cheapest and clean technologies Subsidies needed to make FC competitive : \$5,000-10,000/kW

Markets not suitable for fuel cells

Ghana

Fuel cells compete with DG

FC are cleaner DG are cheaper

Potential market for fuel cells

Annualized costs of operation and capital for different solutions.

* = includes PV and batteries

Conclusions

	Japan	Brazil	Ghana
Outages	short	medium	long & frequent
Country representative of	N.America Europe	Latin Americo	a Africa
Potential market for FC	X	X	

Telecoms market in Africa ~300,000 sites by 2020 BUT issues with supply chains for hydrogen

Developing economic sector : Agriculture

Policy designs for Renewable Energy in the UK Agribusiness

Dimitrios Vardouniotis

Poster #39

Aim & Background

Approach

How can the unique features of agriculture influence the energy future of the UK?

Results

Case study results and conclusions

Developing economic sector : Dairy sector

The potential of renewable energy deployment in the UK dairy sector

Artemis Pountoureli

Poster #38

UK dairy industry

- Largest agricultural sector (17% share of total agricultural production by value)
- Most energy-intensive livestock sector (3,012 GWh p.a.)

Farm-scale renewables

Could farm-scale renewable energy installations be the **solution** to the increasing energy costs?

Renewable intensification

40% increase in the share of renewables

Decarbonisation

30% reduction in GHG emissions over the 1990 levels.

Scope of research

Case study

The technology selection depends on each farm's <u>assets and</u> <u>needs</u>. No such thing as a "one solutions fits all".

> 150-cow dairy farm located near Reading

Case study - Results

Comparison between the optimal system and the baseline scenario

Extrapolation of results - Conclusions

Case study farm ----- Aggregate of UK dairy farms

*As reported for the majority of the respective variable combinations

... BUT the final decision depends strongly on the main aim of the investment.

Conclusion of the presentation

Not only can renewable energy contribute to the attainment of environmental goals but it can also stimulate the social and economic growth of developing regions.

Developing countries

Developing market

Indonesia: Nursita S. Pramono, poster 37 Bolivia: Simon Meunier, poster 36

Fuel cells: Claire Burtin, poster 34

Developing economic sector

Agriculture: Dimitrios Vardouniotis, poster 39 Dairy sector: Artemis Pountoureli, poster 38

Aknowledgements

We would like to thank our supervisors: Dr. Judith A. Cherni Dr. Jacqueline Edge Dr. Johannes Spinneken Dr. Kurban Zeynep

Imperial College London

References

Literature:

Department for Environment, Food & Rural Affairs (2012) Dairy farming and schemes.

Gobierno Autómo Municipal de Totora (2013). Plan de Desarollo Municipal de Totora 2014-2018.

GSMA (2014) Tower Power Africa : Energy Challenges and Opportunities for the Mobile Industry in Africa.

National Farmers Union, Agriculture and Horticulture Development Board Dairy & Dairy UK (2015) Dairy Roadmap.

Ponemon Institute LLC (2016) Cost of Data Center Outages.

Warwick HRI (2007) AC0401: Direct energy use in agriculture: opportunities for reducing fossil fuel inputs. Final report to Defra.

World Resources Institute (2012) Country Greenhouse Gas Emissions Data.

Images and icons:

Britannica Online for Kids (2016) <u>http://kids.britannica.com/comptons/art-118470</u>

Pie Chart, Icon made by Madebyoliver from www.flaticon.com

Telecom tower, <u>http://serenergy.com/demo/forside-test/telecom-power/</u>

Thank you !

Questions?

