Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Johnston I, Hoffmann T, Greenbury S, Cominetti O, Jallow M, Kwiatkowski D, Barahona M, Jones N, Casals-Pascual Cet al., 2019,

    Precision identification of high-risk phenotypes and progression pathways in severe malaria without requiring longitudinal data

    , npj Digital Medicine, Vol: 2, ISSN: 2398-6352

    More than 400,000 deaths from severe malaria (SM) are reported every year, mainly in African children. The diversity of clinical presentations associated with SM indicates important differences in disease pathogenesis that require specific treatment, and this clinical heterogeneity of SM remains poorly understood. Here, we apply tools from machine learning and model-based inference to harness large-scale data and dissect the heterogeneity in patterns of clinical features associated with SM in 2904 Gambian children admitted to hospital with malaria. This quantitative analysis reveals features predicting the severity of individual patient outcomes, and the dynamic pathways of SM progression, notably inferred without requiring longitudinal observations. Bayesian inference of these pathways allows us assign quantitative mortality risks to individual patients. By independently surveying expert practitioners, we show that this data-driven approach agrees with and expands the current state of knowledge on malaria progression, while simultaneously providing a data-supported framework for predicting clinical risk.

  • Journal article
    Maes A, Barahona M, Clopath C, 2019,

    Learning spatiotemporal signals using a recurrent spiking network that discretizes time

    , PLOS Computational Biology, Vol: 16, Pages: e1007606-e1007606

    <jats:title>Abstract</jats:title><jats:p>Learning to produce spatiotemporal sequences is a common task the brain has to solve. The same neural substrate may be used by the brain to produce different sequential behaviours. The way the brain learns and encodes such tasks remains unknown as current computational models do not typically use realistic biologically-plausible learning. Here, we propose a model where a spiking recurrent network of excitatory and inhibitory biophysical neurons drives a read-out layer: the dynamics of the recurrent network is constrained to encode time while the read-out neurons encode space. Space is then linked with time through plastic synapses that follow common Hebbian learning rules. We demonstrate that the model is able to learn spatiotemporal dynamics on a timescale that is behaviourally relevant. Learned sequences are robustly replayed during a regime of spontaneous activity.</jats:p><jats:sec><jats:title>Author summary</jats:title><jats:p>The brain has the ability to learn flexible behaviours on a wide range of time scales. Previous studies have successfully build spiking network models that learn a variety of computational tasks. However, often the learning involved is not local. Here, we investigate a model using biological-plausible plasticity rules for a specific computational task: spatiotemporal sequence learning. The architecture separates time and space into two different parts and this allows learning to bind space to time. Importantly, the time component is encoded into a recurrent network which exhibits sequential dynamics on a behavioural time scale. This network is then used as an engine to drive spatial read-out neurons. We demonstrate that the model can learn complicated spatiotemporal spiking dynamics, such as the song of a bird, and replay the song robustly.</jats:p></jats:sec>

  • Journal article
    Burgstaller J, Kolbe T, Havlicek V, Hembach S, Poulton J, Piálek J, Steinborn R, Rulicke T, Brem G, Jones NS, Johnston Iet al., 2019,

    Large-scale genetic analysis reveals mammalian mtDNA heteroplasmy dynamics and variance increase through lifetimes and generations

    , Nature Communications, Vol: 9, ISSN: 2041-1723

    Vital mitochondrial DNA (mtDNA) populations exist in cells and may consist of heteroplasmic mixtures of mtDNA types. The evolution of these heteroplasmic populations through development, ageing, and generations is central to genetic diseases, but is poorly understood in mammals. Here we dissect these population dynamics using a dataset of unprecedented size and temporal span, comprising 1947 single-cell oocyte and 899 somatic measurements of heteroplasmy change throughout lifetimes and generations in two genetically distinct mouse models. We provide a novel and detailed quantitative characterisation of the linear increase in heteroplasmy variance throughout mammalian life courses in oocytes and pups. We find that differences in mean heteroplasmy are induced between generations, and the heteroplasmy of germline and somatic precursors diverge early in development, with a haplotype-specific direction of segregation. We develop stochastic theory predicting the implications of these dynamics for ageing and disease manifestation and discuss its application to human mtDNA dynamics.

  • Journal article
    Schaub MT, Delvenne JC, Lambiotte R, Barahona Met al., 2019,

    Multiscale dynamical embeddings of complex networks

    , Physical Review E, Vol: 99, Pages: 062308-1-062308-18, ISSN: 1539-3755

    Complex systems and relational data are often abstracted as dynamical processes on networks. To understand, predict, and control their behavior, a crucial step is to extract reduced descriptions of such networks. Inspired by notions from control theory, we propose a time-dependent dynamical similarity measure between nodes, which quantifies the effect a node-input has on the network. This dynamical similarity induces an embedding that can be employed for several analysis tasks. Here we focus on (i) dimensionality reduction, i.e., projecting nodes onto a low-dimensional space that captures dynamic similarity at different timescales, and (ii) how to exploit our embeddings to uncover functional modules. We exemplify our ideas through case studies focusing on directed networks without strong connectivity and signed networks. We further highlight how certain ideas from community detection can be generalized and linked to control theory, by using the here developed dynamical perspective.

  • Journal article
    Attard M, Dawes T, Simoes Monteiro de Marvao A, Biffi C, Shi W, Wharton J, Rhodes C, Ghataorhe P, Gibbs J, Howard L, Rueckert D, Wilkins M, O'Regan Det al., 2019,

    Metabolic pathways associated with right ventricular adaptation to pulmonary hypertension: Three dimensional analysis of cardiac magnetic resonance imaging

    , EHJ Cardiovascular Imaging / European Heart Journal - Cardiovascular Imaging, Vol: 20, Pages: 668-676, ISSN: 2047-2412

    AimsWe sought to identify metabolic pathways associated with right ventricular (RV) adaptation to pulmonary hypertension (PH). We evaluated candidate metabolites, previously associated with survival in pulmonary arterial hypertension, and used automated image segmentation and parametric mapping to model their relationship to adverse patterns of remodelling and wall stress.Methods and resultsIn 312 PH subjects (47.1% female, mean age 60.8 ± 15.9 years), of which 182 (50.5% female, mean age 58.6 ± 16.8 years) had metabolomics, we modelled the relationship between the RV phenotype, haemodynamic state, and metabolite levels. Atlas-based segmentation and co-registration of cardiac magnetic resonance imaging was used to create a quantitative 3D model of RV geometry and function—including maps of regional wall stress. Increasing mean pulmonary artery pressure was associated with hypertrophy of the basal free wall (β = 0.29) and reduced relative wall thickness (β = −0.38), indicative of eccentric remodelling. Wall stress was an independent predictor of all-cause mortality (hazard ratio = 1.27, P = 0.04). Six metabolites were significantly associated with elevated wall stress (β = 0.28–0.34) including increased levels of tRNA-specific modified nucleosides and fatty acid acylcarnitines, and decreased levels (β = −0.40) of sulfated androgen.ConclusionUsing computational image phenotyping, we identify metabolic profiles, reporting on energy metabolism and cellular stress-response, which are associated with adaptive RV mechanisms to PH.

  • Journal article
    Warren L, Clarke J, Arora S, Barahona M, Arebi N, Darzi Aet al., 2019,

    Transitions of care across hospital settings in patients with inflammatory bowel disease

    , World Journal of Gastroenterology, Vol: 25, Pages: 2122-2132, ISSN: 1007-9327

    BACKGROUNDInflammatory bowel disease (IBD) is a chronic, inflammatory disorder characterised by both intestinal and extra-intestinal pathology. Patients may receive both emergency and elective care from several providers, often in different hospital settings. Poorly managed transitions of care between providers can lead to inefficiencies in care and patient safety issues. To ensure that the sharing of patient information between providers is appropriate, timely, accurate and secure, effective data-sharing infrastructure needs to be developed. To optimise inter-hospital data-sharing for IBD patients, we need to better understand patterns of hospital encounters in this group.AIMTo determine the type and location of hospital services accessed by IBD patients in England.METHODSThis was a retrospective observational study using Hospital Episode Statistics, a large administrative patient data set from the National Health Service in England. Adult patients with a diagnosis of IBD following admission to hospital were followed over a 2-year period to determine the proportion of care accessed at the same hospital providing their outpatient IBD care, defined as their ‘home provider’. Secondary outcome measures included the geographic distribution of patient-sharing, regional and age-related differences in accessing services, and type and frequency of outpatient encounters.RESULTSOf 95055 patients accessed hospital services on 1760156 occasions over a 2-year follow-up period. The proportion of these encounters with their identified IBD ‘home provider’ was 73.3%, 87.8% and 83.1% for accident and emergency, inpatient and outpatient encounters respectively. Patients living in metropolitan centres and younger patients were less likely to attend their ‘home provider’ for hospital services. The most commonly attended specialty services were gastroenterology, general surgery and ophthalmology.CONCLUSIONTransitions of care between secondary care sett

  • Journal article
    Kuntz J, Thomas P, Stan G-B, Barahona Met al., 2019,

    The exit time finite state projection scheme: bounding exit distributions and occupation measures of continuous-time Markov chains

    , SIAM Journal on Scientific Computing, Vol: 41, Pages: A748-A769, ISSN: 1064-8275

    We introduce the exit time finite state projection (ETFSP) scheme, a truncation- based method that yields approximations to the exit distribution and occupation measure associated with the time of exit from a domain (i.e., the time of first passage to the complement of the domain) of time-homogeneous continuous-time Markov chains. We prove that: (i) the computed approximations bound the measures from below; (ii) the total variation distances between the approximations and the measures decrease monotonically as states are added to the truncation; and (iii) the scheme converges, in the sense that, as the truncation tends to the entire state space, the total variation distances tend to zero. Furthermore, we give a computable bound on the total variation distance between the exit distribution and its approximation, and we delineate the cases in which the bound is sharp. We also revisit the related finite state projection scheme and give a comprehensive account of its theoretical properties. We demonstrate the use of the ETFSP scheme by applying it to two biological examples: the computation of the first passage time associated with the expression of a gene, and the fixation times of competing species subject to demographic noise.

  • Journal article
    Bello G, Dawes T, Duan J, Biffi C, Simoes Monteiro de Marvao A, Howard L, Gibbs S, Wilkins M, Cook S, Rueckert D, O'Regan Det al., 2019,

    Deep learning cardiac motion analysis for human survival prediction

    , Nature Machine Intelligence, Vol: 1, Pages: 95-104, ISSN: 2522-5839

    Motion analysis is used in computer vision to understand the behaviour of moving objects in sequences of images. Optimizing the interpretation of dynamic biological systems requires accurate and precise motion tracking as well as efficient representations of high-dimensional motion trajectories so that these can be used for prediction tasks. Here we use image sequences of the heart, acquired using cardiac magnetic resonance imaging, to create time-resolved three-dimensional segmentations using a fully convolutional network trained on anatomical shape priors. This dense motion model formed the input to a supervised denoising autoencoder (4Dsurvival), which is a hybrid network consisting of an autoencoder that learns a task-specific latent code representation trained on observed outcome data, yielding a latent representation optimized for survival prediction. To handle right-censored survival outcomes, our network used a Cox partial likelihood loss function. In a study of 302 patients, the predictive accuracy (quantified by Harrell’s C-index) was significantly higher (P = 0.0012) for our model C = 0.75 (95% CI: 0.70–0.79) than the human benchmark of C = 0.59 (95% CI: 0.53–0.65). This work demonstrates how a complex computer vision task using high-dimensional medical image data can efficiently predict human survival.

  • Journal article
    Tonn M, Thomas P, Barahona M, Oyarzun Det al., 2019,

    Stochastic modelling reveals mechanisms of metabolic heterogeneity

    , Communications Biology, Vol: 2, ISSN: 2399-3642

    Phenotypic variation is a hallmark of cellular physiology. Metabolic heterogeneity, in particular, underpins single-cell phenomena such as microbial drug tolerance and growth variability. Much research has focussed on transcriptomic and proteomic heterogeneity, yet it remains unclear if such variation permeates to the metabolic state of a cell. Here we propose a stochastic model to show that complex forms of metabolic heterogeneity emerge from fluctuations in enzyme expression and catalysis. The analysis predicts clonal populations to split into two or more metabolically distinct subpopulations. We reveal mechanisms not seen in deterministic models, in which enzymes with unimodal expression distributions lead to metabolites with a bimodal or multimodal distribution across the population. Based on published data, the results suggest that metabolite heterogeneity may be more pervasive than previously thought. Our work casts light on links between gene expression and metabolism, and provides a theory to probe the sources of metabolite heterogeneity.

  • Journal article
    Altuncu MT, Mayer E, Yaliraki SN, Barahona Met al., 2019,

    From free text to clusters of content in health records: An unsupervised graph partitioning approach

    , Applied Network Science, Vol: 4, ISSN: 2364-8228

    Electronic Healthcare records contain large volumes of unstructured data in different forms. Free text constitutes a large portion of such data, yet this source of richly detailed information often remains under-used in practice because of a lack of suitable methodologies to extract interpretable contentin a timely manner. Here we apply network-theoretical tools to the analysis of free text in Hospital Patient Incident reports in the English National Health Service, to find clusters of reports in an unsupervised manner and at different levels of resolution based directly on the free text descriptions contained within them. To do so, we combine recently developed deep neural network text-embedding methodologies based on paragraph vectors with multi-scale Markov Stability community detection applied to a similarity graph of documents obtained from sparsified text vector similarities. We showcase the approach with the analysis of incident reports submitted in Imperial College Healthcare NHS Trust, London. The multiscale community structure reveals levels of meaning with different resolution in the topics of the dataset, as shown by relevant descriptive terms extracted from thegroups of records, as well as by comparing a posteriori against hand-coded categories assigned by healthcare personnel. Our content communities exhibit good correspondence with well-defined hand-coded categories, yet our results also provide further medical detail in certain areas as well asrevealing complementary descriptors of incidents beyond the external classification. We also discuss how the method can be used to monitor reports over time and across different healthcare providers, and to detect emerging trends that fall outside of pre-existing categories.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=916&limit=10&page=5&respub-action=search.html Current Millis: 1732188482596 Current Time: Thu Nov 21 11:28:02 GMT 2024