Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Vinao-Carl M, Gal-Shohet Y, Rhodes E, Li J, Hampshire A, Sharp D, Grossman Net al., 2024,

    Just a phase? Causal probing reveals spurious phasic dependence of sustained attention

    , NeuroImage, Vol: 285, ISSN: 1053-8119

    For over a decade, electrophysiological studies have reported correlations between attention / perception and the phase of spontaneous brain oscillations. To date, these findings have been interpreted as evidence that the brain uses neural oscillations to sample and predict upcoming stimuli. Yet, evidence from simulations have shown that analysis artefacts could also lead to spurious pre-stimulus oscillations that appear to predict future brain responses. To address this discrepancy, we conducted an experiment in which visual stimuli were presented in time to specific phases of spontaneous alpha and theta oscillations. This allowed us to causally probe the role of ongoing neural activity in visual processing independent of the stimulus-evoked dynamics. Our findings did not support a causal link between spontaneous alpha / theta rhythms and behaviour. However, spurious correlations between theta phase and behaviour emerged offline using gold-standard time-frequency analyses. These findings are a reminder that care should be taken when inferring causal relationships between neural activity and behaviour using acausal analysis methods.

  • Journal article
    Rintoul JL, Neufeld E, Butler C, Cleveland RO, Grossman Net al., 2023,

    Remote focused encoding and decoding of electric fields through acoustoelectric heterodyning

    , Communications Physics, Vol: 6, ISSN: 2399-3650

    Heterodyning of signals through physical multiplication is the building block of numerous modern technologies. Yet, it has been mostly limited to the interaction between electromagnetic fields. Here, we report that heterodyning occurs also between acoustic and electric fields in liquid electrolytes. We predict acoustoelectric heterodyning via computational field modelling, which accounts for the vector nature of the electrolytic acoustoelectric interaction. We then experimentally validate the spatiotemporal characteristics of the field emerging from the acoustoelectric heterodyning effect. The electric field distribution generated by the applied fields can be controlled by the propagating acoustic field and the orientation of the applied electric field, enabling the focusing of the resulting electric field at remote locations. Finally, we demonstrate detection of multi-frequency ionic currents at a distant focal location via signal demodulation using pressure waves in electrolytic liquids. As such, acoustoelectric heterodyning could open possibilities in non-invasive biomedical and bioelectronics applications.

  • Journal article
    Grossman N, 2018,

    Modulation without surgical intervention Noninvasive deep brain stimulation can be achieved via temporally interfering electric fields

    , SCIENCE, Vol: 361, Pages: 461-462, ISSN: 0036-8075
  • Journal article
    Grossman N, Bono D, Dedic N, Kodandaramaiah SB, Rudenko A, Suk H-J, Cassara AM, Neufeld E, Kuster N, Tsai L-H, Pascual-Leone A, Boyden ESet al., 2017,

    Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields

    , CELL, Vol: 169, Pages: 1029-1041.e16, ISSN: 0092-8674

    We report a noninvasive strategy for electrically stimulating neurons at depth. By delivering to the brain multiple electric fields at frequencies too high to recruit neural firing, but which differ by a frequency within the dynamic range of neural firing, we can electrically stimulate neurons throughout a region where interference between the multiple fields results in a prominent electric field envelope modulated at the difference frequency. We validated this temporal interference (TI) concept via modeling and physics experiments, and verified that neurons in the living mouse brain could follow the electric field envelope. We demonstrate the utility of TI stimulation by stimulating neurons in the hippocampus of living mice without recruiting neurons of the overlying cortex. Finally, we show that by altering the currents delivered to a set of immobile electrodes, we can steerably evoke different motor patterns in living mice.

  • Journal article
    Grossman N, Simiaki V, Martinet C, Toumazou C, Schultz SR, Nikolic Ket al., 2013,

    The spatial pattern of light determines the kinetics and modulates backpropagation of optogenetic action potentials

    , JOURNAL OF COMPUTATIONAL NEUROSCIENCE, Vol: 34, Pages: 477-488, ISSN: 0929-5313

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=1050&limit=5&page=1&respub-action=search.html Current Millis: 1730785671952 Current Time: Tue Nov 05 05:47:51 GMT 2024

General enquiries


Dr Nir Grossman
Senior Lecturer in Dementia Research and Group Leader at the UK DRI

nirg@imperial.ac.uk
+44 (0)20 7594 6805