Main content blocks

Head of Group

Prof Ferdinando Rodriguez y Baena

B415C Bessemer Building

South Kensington Campus

 

About us

The MIM Lab develops robotic and mechatronics surgical systems for a variety of procedures.

Research lab info

What we do

The Mechatronics in Medicine Laboratory develops robotic and mechatronics surgical systems for a variety of procedures including neuro, cardiovascular, orthopaedic surgeries, and colonoscopies. Examples include bio-inspired catheters that can navigate along complex paths within the brain (such as EDEN2020), soft robots to explore endoluminal anatomies (such as the colon), and virtual reality solutions to support surgeons during knee replacement surgeries.

Why it is important?

...

How can it benefit patients?

......

Meet the team

No results found

Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Athwal K, El Daou, Lord B, Davies AJ, Manning W, Rodriguez y Baena, Deehan DJ, Amiset al., 2016,

    Lateral soft-tissue structures contribute to cruciate-retaining total knee arthroplasty stability.

    , Journal of Orthopaedic Science, Vol: 35, Pages: 1902-1909, ISSN: 0949-2658

    Little information is available to surgeons regarding how the lateral structures prevent instability in the replaced knee. The aim of this study was to quantify the lateral soft‐tissue contributions to stability following cruciate‐retaining total knee arthroplasty (CR TKA). Nine cadaveric knees were tested in a robotic system at full extension, 30°, 60°, and 90° flexion angles. In both native and CR implanted states, ±90 N anterior–posterior force, ±8 Nm varus–valgus, and ±5 Nm internal–external torque were applied. The anterolateral structures (ALS, including the iliotibial band), the lateral collateral ligament (LCL), the popliteus tendon complex (Pop T), and the posterior cruciate ligament (PCL) were transected and their relative contributions to stabilizing the applied loads were quantified. The LCL was found to be the primary restraint to varus laxity (an average 56% across all flexion angles), and was significant in internal–external rotational stability (28% and 26%, respectively) and anterior drawer (16%). The ALS restrained 25% of internal rotation, while the PCL was significant in posterior drawer only at 60° and 90° flexion. The Pop T was not found to be significant in any tests. Therefore, the LCL was confirmed as the major lateral structure in CR TKA stability throughout the arc of flexion and deficiency could present a complex rotational laxity that cannot be overcome by the other passive lateral structures or the PCL. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1902–1909, 2017.

  • Conference paper
    Blyth WA, Barr DRW, Rodriguez Y Baena F, 2016,

    A reduced actuation mecanum wheel platform for pipe inspection

    , 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Publisher: IEEE, Pages: 419-424

    This paper focuses on the design, development and assessment of a novel, 2 degrees-of-freedom magnetic pipe inspection robot. It consists of 4 mecanum wheels, with the diagonals functionally coupled and the system rotation constrained by the surface geometry, maintaining full translational mobility with reduced control and actuation requirements. The system uses positional encoding that is decoupled from the transmission system to overcome the main sources of positional/positioning errors when using mecanum wheels. The kinematic and dynamic models of the system are derived and integrated within the controller. The prototype robot is then tested and shown to follow a scan path at 20mm/s within ±1.5mm whilst correcting for gravitational drift and slip events.

  • Journal article
    Forte AE, Galvan S, Manieri F, Rodriguez y Baena F, Dini Det al., 2016,

    A composite hydrogel for brain tissue phantoms

    , Materials and Design, Vol: 112, Pages: 227-238, ISSN: 0264-1275

    Synthetic phantoms are valuable tools for training, research and development in traditional and computer aided surgery, but complex organs, such as the brain, are difficult to replicate. Here, we present the development of a new composite hydrogel capable of mimicking the mechanical response of brain tissue under loading. Our results demonstrate how the combination of two different hydrogels, whose synergistic interaction results in a highly tunable blend, produces a hybrid material that closely matches the strongly dynamic and non-linear response of brain tissue. The new synthetic material is inexpensive, simple to prepare, and its constitutive components are both widely available and biocompatible. Our investigation of the properties of this engineered tissue, using both small scale testing and life-sized brain phantoms, shows that it is suitable for reproducing the brain shift phenomenon and brain tissue response to indentation and palpation.

  • Conference paper
    Tan Z, Forte AE, Galvan S, Dini D, Rodriguez Y Baena Fet al., 2016,

    Composite Hydrogel: a New Tool for Reproducing the Mechanical Behaviour of Soft Human Tissues

    , Biotribology 2016
  • Conference paper
    Virdyawan V, Oldfield, Rodriguez y Baena, 2016,

    Laser Doppler based sensing for blood vessel detection with a steerable needle

    , 6th Joint Workshop on New Technologies for Computer/Robot Assisted Surgery
  • Journal article
    Darwood A, Secoli R, Bowyer SA, Leibinger A, Richards R, Reilly P, Darwood A, Tambe A, Emery R, Rodriguez y Baena Fet al., 2016,

    Intraoperative manufacturing of patient specific instrumentation for shoulder arthroplasty: a novel mechatronic approach

    , Journal of Medical Robotics Research, Vol: 1, ISSN: 2424-905X

    Optimal orthopaedic implant placement is a major contributing factor to the long term success of all common joint arthroplasty procedures. Devicessuch as three-dimensional (3D) printed, bespoke guides and orthopaedic robots are extensively described in the literature and have been shownto enhance prosthesis placement accuracy. These technologies, however, have significant drawbacks, such as logistical and temporal inefficiency,high cost, cumbersome nature and difficult theatre integration. A new technology for the rapid intraoperative production of patient specific instrumentation,which overcomes many of the disadvantages of existing technologies, is presented here. The technology comprises a reusable table sidemachine, bespoke software and a disposable element comprising a region of standard geometry and a body of mouldable material. Anatomicaldata from Computed Tomography (CT) scans of 10 human scapulae was collected and, in each case, the optimal glenoid guidewire position wasdigitally planned and recorded. The achieved accuracy compared to the preoperative bespoke plan was measured in all glenoids, from both a conventionalgroup and a guided group. The technology was successfully able to intraoperatively produce sterile, patient specific guides according toa pre-operative plan in 5 minutes, with no additional manufacturing required prior to surgery. Additionally, the average guide wire placement accuracywas 1.58 mm and 6.82◦ degrees in the manual group, and 0.55 mm and 1.76◦ degrees in the guided group, also demonstrating a statisticallysignificant improvement.

  • Conference paper
    Secoli R, Rodriguez y Baena F, 2016,

    Adaptive path-following control for bio-inspired steerable needles

    , 6th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, Publisher: IEEE

    Needle steering systems have shown potential ad-vantages in minimally invasive surgery in soft-tissue due to theirability to reach deep-seated targets while avoiding obstacles. Ingeneral, the control strategies employed to drive the insertionuse simplified kinematic models, providing limited control ofthe trajectory between an entry site and a deep seated targetin cases of unmodelled tissue-needle dynamics. In this work,we present the first Adaptive Path-Following (APF) controllerfor a bio-inspired multi-part needle, able to steer along three-dimensional (3D) paths within a compliant medium by meansof the cyclical motion of interlocked segments and without theneed for duty-cycle spinning along the insertion axis.The control strategy is outlined in two parts: a high-level con-troller, which provides driving commands to follow a predefined3D path smoothly; and a low-level controller, able to counteractunmodelled tissue-needle nonlinearities and kinematic modeluncertainties. A simulation that mimics the needle’s mechanicalbehavior during insertion is achieved by using an ExperimentalFitting Model (EFM), obtained from previous experimentaltrials. The Simulation results demonstrate the robustness andadaptability of the proposed control strategy.

  • Journal article
    Leibinger A, Oldfield M, Rodriguez y Baena F, 2016,

    Minimally disruptive needle insertion: a biologically inspired solution

    , Interface Focus, Vol: 6, ISSN: 2042-8898

    The mobility of soft tissue can cause inaccurate needle insertions. Particularly in steering applications that employ thin and flexible needles, l arge deviationscan occur between preoperative images of the patient, from which a procedure is planned, and the intraoperative scene, where a procedure is executed. Whereas many approaches for reducing tissue motion focus on external constraining or manipulation, little attention has been paid to the way the needle is inserted and actuated within soft tissue. Using our biologically inspiredsteerable needle, we present a methodof reducing the disruptivenessof insertionsby mimicking the burrowing mechanism of ovipositing wasps. Internal displacements and strains in three dimensionswithin a soft tissue phantom are measured at the needle interface,using ascanninglaser basedimage correlation technique.Compared to a conventional insertion methodwith an equally sized needle,overall displacementsand strainsin the needle vicinity arereduced by 30% and 41%, respectively.The results show that, for a given net speed,needle insertion can be made significantly less disruptive with respect to its surroundings by employing our biologically inspired solution. This will have significant impact on both the safety and targeting accuracy of percutaneous interventions along both straight and curved trajectories

  • Journal article
    Liu F, Garriga-Casanovas A, Secoli R, Baena FRYet al., 2016,

    Fast and adaptive fractal tree-based path planning for programmable bevel tip steerable needles

    , IEEE Robotics and Automation Letters, Vol: 1, Pages: 601-608, ISSN: 2377-3766

    Steerable needles are a promising technology for minimally invasive surgery, as they can provide access to difficult to reach locations while avoiding delicate anatomical regions. However, due to the unpredictable tissue deformation associated with needle insertion and the complexity of many surgical scenarios, a real-time path planning algorithm with high update frequency would be advantageous. Real-time path planning for nonholonomic systems is commonly used in a broad variety of fields, ranging from aerospace to submarine navigation. In this letter, we propose to take advantage of the architecture of graphics processing units (GPUs) to apply fractal theory and thus parallelize real-time path planning computation. This novel approach, termed adaptive fractal trees (AFT), allows for the creation of a database of paths covering the entire domain, which are dense, invariant, procedurally produced, adaptable in size, and present a recursive structure. The generated cache of paths can in turn be analyzed in parallel to determine the most suitable path in a fraction of a second. The ability to cope with nonholonomic constraints, as well as constraints in the space of states of any complexity or number, is intrinsic to the AFT approach, rendering it highly versatile. Three-dimensional (3-D) simulations applied to needle steering in neurosurgery show that our approach can successfully compute paths in real-time, enabling complex brain navigation.

  • Journal article
    Petersen J, Bowyer S, Rodriguez y Baena F, 2016,

    Mass and friction optimization for natural motion in hands-on robotic surgery

    , IEEE Transactions on Robotics, Vol: 32, Pages: 201-213, ISSN: 1552-3098

    In hands-on robotic surgery, the surgical tool is mounted on the end-effector of a robot and is directly manipulated by the surgeon. This simultaneously exploits the strengths of both humans and robots, such that the surgeon directly feels tool-tissue interactions and remains in control of the procedure, while taking advantage of the robot's higher precision and accuracy. A crucial challenge in hands-on robotics for delicate manipulation tasks, such as surgery, is that the user must interact with the dynamics of the robot at the end-effector, which can reduce dexterity and increase fatigue. This paper presents a null-space-based optimization technique for simultaneously minimizing the mass and friction of the robot that is experienced by the surgeon. By defining a novel optimization technique for minimizing the projection of the joint friction onto the end-effector, and integrating this with our previous techniques for minimizing the belted mass/inertia as perceived by the hand, a significant reduction in dynamics felt by the user is achieved. Experimental analyses in both simulation and human user trials demonstrate that the presented method can reduce the user-experienced dynamic mass and friction by, on average, 44% and 41%, respectively. The results presented robustly demonstrate that optimizing a robots pose can result in a more natural tool motion, potentially allowing future surgical robots to operate with increased usability, improved surgical outcomes, and wider clinical uptake.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=1303&limit=10&page=11&respub-action=search.html Current Millis: 1726879000671 Current Time: Sat Sep 21 01:36:40 BST 2024

Contact Us

General enquiries
hamlyn@imperial.ac.uk

Facility enquiries
hamlyn.facility@imperial.ac.uk


The Hamlyn Centre
Bessemer Building
South Kensington Campus
Imperial College
London, SW7 2AZ
Map location