Citation

BibTex format

@article{Aas:2009:10.1016/j.marpetgeo.2009.10.014,
author = {Aas, TE and Howell, JA and Janocko, M and Jackson, CA-L},
doi = {10.1016/j.marpetgeo.2009.10.014},
journal = {Marine and Petroleum Geology},
pages = {412--434},
title = {Control of Aptian palaeobathymetry on turbidite distribution in the Buchan Graben, Outer Moray Firth, Central North Sea},
url = {http://dx.doi.org/10.1016/j.marpetgeo.2009.10.014},
volume = {27},
year = {2009}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - It is widely recognized that palaeobathymetry is a key control on the distribution of turbidite deposits. Thus, the utilisation of palaeobathymetric surfaces as an input for numerical turbidity current modelling offers a potentially powerful method to predict the distribution of deep marine sands in ancient (subsurface or outcrop) successions. Such an approach has been tested on an Aptian turbidite deposit from the Buchan Graben, UK Central North Sea, where modelled sand distributions could be quality controlled against available well data. Palaeobathymetric (base Aptian sand) surfaces are re-created from a surface-based 3D model by stepwise backstripping of post-Aptian overburden and removal of the post-depositional structural overprint. Key input parameters such as; (i) initial porosity and compaction factor assigned to the overburden and underburden; (ii) the restoration of structural overprint; and (iii) and the crustal response to removal of overburden (Airy vs. Flexural Isostasy), are associated with significant uncertainty. Thus, to assess this uncertainty, various palaeobathymetric surfaces are re-created by systematically modelling extreme values of individual input parameters. The effects of single input parameter variability on output surface morphology are quantified by spatial comparison of appropriate surfaces. Out of the 20 palaeobathymetric surfaces that were re-created, 3 were selected as input for process-based, numerical turbidity current simulations. The simulation software (Flow 3D™) uses computational fluid-dynamics (CFD) to model depositional patterns, while the effects of flow turbulence are simulated using the Renormalization-Group (RNG) model. The location of flow introduction into the model (sediment input point) as well as flow input parameters (volume of sediment, duration of flow, velocity, height and width) are fixed for all three surfaces to ensure that differences in flow behaviour and sand distribution can be attributed to spa
AU - Aas,TE
AU - Howell,JA
AU - Janocko,M
AU - Jackson,CA-L
DO - 10.1016/j.marpetgeo.2009.10.014
EP - 434
PY - 2009///
SP - 412
TI - Control of Aptian palaeobathymetry on turbidite distribution in the Buchan Graben, Outer Moray Firth, Central North Sea
T2 - Marine and Petroleum Geology
UR - http://dx.doi.org/10.1016/j.marpetgeo.2009.10.014
VL - 27
ER -