Results
- Showing results for:
- Reset all filters
Search results
-
Conference paperPotyka N, Yin X, Toni F, 2022,
On the tradeoff between correctness and completeness in argumentative explainable AI
, 1st International Workshop on Argumentation for eXplainable AI, Publisher: CEUR Workshop Proceedings, Pages: 1-8, ISSN: 1613-0073Explainable AI aims at making the decisions of autonomous systems human-understandable. Argumentation frameworks are a natural tool for this purpose. Among them, bipolar abstract argumentation frameworks seem well suited to explain the effect of features on a classification decision and their formal properties can potentially be used to derive formal guarantees for explanations. Two particular interesting properties are correctness (if the explanation says that X affects Y, then X affects Y ) and completeness (if X affects Y, then the explanation says that X affects Y ). The reinforcement property of bipolar argumentation frameworks has been used as a natural correctness counterpart in previous work. Applied to the classification context, it basically states that attacking features should decrease and supporting features should increase the confidence of a classifier. In this short discussion paper, we revisit this idea, discuss potential limitations when considering reinforcement without a corresponding completeness property and how these limitations can potentially be overcome.
-
Conference paperIrwin B, Rago A, Toni F, 2022,
Forecasting argumentation frameworks
, 19th International Conference on Principles of Knowledge Representation and Reasoning (KR 2022), Publisher: IJCAI Organisation, Pages: 533-543, ISSN: 2334-1033We introduce Forecasting Argumentation Frameworks(FAFs), a novel argumentation-based methodology forforecasting informed by recent judgmental forecastingresearch. FAFs comprise update frameworks which empower(human or artificial) agents to argue over time about theprobability of outcomes, e.g. the winner of a politicalelection or a fluctuation in inflation rates, whilst flaggingperceived irrationality in the agents’ behaviour with a viewto improving their forecasting accuracy. FAFs include fiveargument types, amounting to standard pro/con arguments,as in bipolar argumentation, as well as novel proposalarguments and increase/decrease amendment arguments. Weadapt an existing gradual semantics for bipolar argumen-tation to determine the aggregated dialectical strength ofproposal arguments and define irrational behaviour. We thengive a simple aggregation function which produces a finalgroup forecast from rational agents’ individual forecasts.We identify and study properties of FAFs and conductan empirical evaluation which signals FAFs’ potential toincrease the forecasting accuracy of participants.
-
Conference paperJiang J, Rago A, Toni F, 2022,
Should counterfactual explanations always be data instances?
, XLoKR 2022: The Third Workshop on Explainable Logic-Based Knowledge RepresentationCounterfactual explanations (CEs) are an increasingly popular way of explaining machine learning classifiers. Predominantly, they amount to data instances pointing to potential changes to the inputs that would lead to alternative outputs. In this position paper we question the widespread assumption that CEs should always be data instances, and argue instead that in some cases they may be better understood in terms of special types of relations between input features and classification variables. We illustrate how a special type of these relations, amounting to critical influences, can characterise and guide the search for data instances deemed suitable as CEs. These relations also provide compact indications of which input features - rather than their specific values in data instances - have counterfactual value.
-
Conference paperRago A, Baroni P, Toni F, 2022,
Explaining causal models with argumentation: the case of bi-variate reinforcement
, 19th International Conference on Principles of Knowledge Representation and Reasoning (KR 2022), Publisher: IJCAI Organisation, Pages: 505-509, ISSN: 2334-1033Causal models are playing an increasingly important role inmachine learning, particularly in the realm of explainable AI.We introduce a conceptualisation for generating argumenta-tion frameworks (AFs) from causal models for the purposeof forging explanations for the models’ outputs. The concep-tualisation is based on reinterpreting desirable properties ofsemantics of AFs as explanation moulds, which are meansfor characterising the relations in the causal model argumen-tatively. We demonstrate our methodology by reinterpretingthe property of bi-variate reinforcement as an explanationmould to forge bipolar AFs as explanations for the outputs ofcausal models. We perform a theoretical evaluation of theseargumentative explanations, examining whether they satisfy arange of desirable explanatory and argumentative propertie
-
Conference paperGaskell A, Miao Y, Toni F, et al., 2022,
Logically consistent adversarial attacks for soft theorem provers
, 31st International Joint Conference on Artificial Intelligence and the 25th European Conference on Artificial Intelligence, Publisher: International Joint Conferences on Artificial Intelligence, Pages: 4129-4135Recent efforts within the AI community haveyielded impressive results towards “soft theoremproving” over natural language sentences using lan-guage models. We propose a novel, generativeadversarial framework for probing and improvingthese models’ reasoning capabilities. Adversarialattacks in this domain suffer from the logical in-consistency problem, whereby perturbations to theinput may alter the label. Our Logically consis-tent AdVersarial Attacker, LAVA, addresses this bycombining a structured generative process with asymbolic solver, guaranteeing logical consistency.Our framework successfully generates adversarialattacks and identifies global weaknesses commonacross multiple target models. Our analyses revealnaive heuristics and vulnerabilities in these mod-els’ reasoning capabilities, exposing an incompletegrasp of logical deduction under logic programs.Finally, in addition to effective probing of thesemodels, we show that training on the generatedsamples improves the target model’s performance.
-
Conference paperSukpanichnant P, Rago A, Lertvittayakumjorn P, et al., 2022,
Neural QBAFs: explaining neural networks under LRP-based argumentation frameworks
, International Conference of the Italian Association for Artificial Intelligence, Publisher: Springer International Publishing, Pages: 429-444, ISSN: 0302-9743In recent years, there have been many attempts to combine XAI with the field of symbolic AI in order to generate explanations for neural networks that are more interpretable and better align with human reasoning, with one prominent candidate for this synergy being the sub-field of computational argumentation. One method is to represent neural networks with quantitative bipolar argumentation frameworks (QBAFs) equipped with a particular semantics. The resulting QBAF can then be viewed as an explanation for the associated neural network. In this paper, we explore a novel LRP-based semantics under a new QBAF variant, namely neural QBAFs (nQBAFs). Since an nQBAF of a neural network is typically large, the nQBAF must be simplified before being used as an explanation. Our empirical evaluation indicates that the manner of this simplification is all important for the quality of the resulting explanation.
-
Conference paperIrwin B, Rago A, Toni F, 2022,
Argumentative forecasting
, AAMAS 2022, Publisher: ACM, Pages: 1636-1638We introduce the Forecasting Argumentation Framework (FAF), anovel argumentation framework for forecasting informed by re-cent judgmental forecasting research. FAFs comprise update frame-works which empower (human or artificial) agents to argue overtime with and about probability of scenarios, whilst flagging per-ceived irrationality in their behaviour with a view to improvingtheir forecasting accuracy. FAFs include three argument types withfuture forecasts and aggregate the strength of these arguments toinform estimates of the likelihood of scenarios. We describe animplementation of FAFs for supporting forecasting agents.
-
Conference paperRago A, Russo F, Albini E, et al., 2022,
Forging argumentative explanations from causal models
, Proceedings of the 5th Workshop on Advances in Argumentation in Artificial Intelligence 2021 co-located with the 20th International Conference of the Italian Association for Artificial Intelligence (AIxIA 2021), Publisher: CEUR Workshop Proceedings, Pages: 1-15, ISSN: 1613-0073We introduce a conceptualisation for generating argumentation frameworks (AFs) from causal models for the purpose of forging explanations for models' outputs. The conceptualisation is based on reinterpreting properties of semantics of AFs as explanation moulds, which are means for characterising argumentative relations. We demonstrate our methodology by reinterpreting the property of bi-variate reinforcement in bipolar AFs, showing how the extracted bipolar AFs may be used as relation-based explanations for the outputs of causal models.
-
Conference paperSukpanichnant P, Rago A, Lertvittayakumjorn P, et al., 2021,
LRP-based argumentative explanations for neural networks
, XAI.it 2021 - Italian Workshop on Explainable Artificial Intelligence, Pages: 71-84, ISSN: 1613-0073In recent years, there have been many attempts to combine XAI with the field of symbolic AI in order to generate explanations for neural networks that are more interpretable and better align with human reasoning, with one prominent candidate for this synergy being the sub-field of computational argumentation. One method is to represent neural networks with quantitative bipolar argumentation frameworks (QBAFs) equipped with a particular semantics. The resulting QBAF can then be viewed as an explanation for the associated neural network. In this paper, we explore a novel LRP-based semantics under a new QBAF variant, namely neural QBAFs (nQBAFs). Since an nQBAF of a neural network is typically large, the nQBAF must be simplified before being used as an explanation. Our empirical evaluation indicates that the manner of this simplification is all important for the quality of the resulting explanation.
-
Conference paperKotonya N, Spooner T, Magazzeni D, et al., 2021,
Graph reasoning with context-aware linearization for interpretable fact extraction and verification
, FEVER 2021, Publisher: Association for Computational Linguistics, Pages: 21-30This paper presents an end-to-end system for fact extraction and verification using textual and tabular evidence, the performance of which we demonstrate on the FEVEROUS dataset. We experiment with both a multi-task learning paradigm to jointly train a graph attention network for both the task of evidence extraction and veracity prediction, as well as a single objective graph model for solely learning veracity prediction and separate evidence extraction. In both instances, we employ a framework for per-cell linearization of tabular evidence, thus allowing us to treat evidence from tables as sequences. The templates we employ for linearizing tables capture the context as well as the content of table data. We furthermore provide a case study to show the interpretability our approach. Our best performing system achieves a FEVEROUS score of 0.23 and 53% label accuracy on the blind test data.
-
Conference paperAlbini E, Rago A, Baroni P, et al., 2021,
Influence-driven explanations for bayesian network classifiers
, PRICAI 2021, Publisher: Springer Verlag, Pages: 88-100, ISSN: 0302-9743We propose a novel approach to buildinginfluence-driven ex-planations(IDXs) for (discrete) Bayesian network classifiers (BCs). IDXsfeature two main advantages wrt other commonly adopted explanationmethods. First, IDXs may be generated using the (causal) influences between intermediate, in addition to merely input and output, variables within BCs, thus providing adeep, rather than shallow, account of theBCs’ behaviour. Second, IDXs are generated according to a configurable set of properties, specifying which influences between variables count to-wards explanations. Our approach is thusflexible and can be tailored to the requirements of particular contexts or users. Leveraging on this flexibility, we propose novel IDX instances as well as IDX instances cap-turing existing approaches. We demonstrate IDXs’ capability to explainvarious forms of BCs, and assess the advantages of our proposed IDX instances with both theoretical and empirical analyses.
-
Conference paperRago A, Cocarascu O, Bechlivanidis C, et al., 2020,
Argumentation as a framework for interactive explanations for recommendations
, KR 2020, 17th International Conference on Principles of Knowledge Representation and Reasoning, Publisher: IJCAI, Pages: 805-815, ISSN: 2334-1033As AI systems become ever more intertwined in our personallives, the way in which they explain themselves to and inter-act with humans is an increasingly critical research area. Theexplanation of recommendations is, thus a pivotal function-ality in a user’s experience of a recommender system (RS),providing the possibility of enhancing many of its desirablefeatures in addition to itseffectiveness(accuracy wrt users’preferences). For an RS that we prove empirically is effective,we show how argumentative abstractions underpinning rec-ommendations can provide the structural scaffolding for (dif-ferent types of) interactive explanations (IEs), i.e. explana-tions empowering interactions with users. We prove formallythat these IEs empower feedback mechanisms that guaranteethat recommendations will improve with time, hence render-ing the RSscrutable. Finally, we prove experimentally thatthe various forms of IE (tabular, textual and conversational)inducetrustin the recommendations and provide a high de-gree oftransparencyin the RS’s functionality.
-
Conference paperCyras K, Rago A, Emanuele A, et al., 2021,
Argumentative XAI: a survey
, The 30th International Joint Conference on Artificial Intelligence (IJCAI-21), Publisher: International Joint Conferences on Artificial Intelligence, Pages: 4392-4399Explainable AI (XAI) has been investigated for decades and, together with AI itself, has witnessed unprecedented growth in recent years. Among various approaches to XAI, argumentative models have been advocated in both the AI and social science literature, as their dialectical nature appears to match some basic desirable features of the explanation activity. In this survey we overview XAI approaches built using methods from the field of computational argumentation, leveraging its wide array of reasoning abstractions and explanation delivery methods. We overview the literature focusing on different types of explanation (intrinsic and post-hoc), different models with which argumentation-based explanations are deployed, different forms of delivery, and different argumentation frameworks they use. We also lay out a roadmap for future work.
-
ReportPaulino-Passos G, Toni F, 2021,
Monotonicity and Noise-Tolerance in Case-Based Reasoning with Abstract Argumentation (with Appendix)
Recently, abstract argumentation-based models of case-based reasoning($AA{\text -} CBR$ in short) have been proposed, originally inspired by thelegal domain, but also applicable as classifiers in different scenarios.However, the formal properties of $AA{\text -} CBR$ as a reasoning systemremain largely unexplored. In this paper, we focus on analysing thenon-monotonicity properties of a regular version of $AA{\text -} CBR$ (that wecall $AA{\text -} CBR_{\succeq}$). Specifically, we prove that $AA{\text -}CBR_{\succeq}$ is not cautiously monotonic, a property frequently considereddesirable in the literature. We then define a variation of $AA{\text -}CBR_{\succeq}$ which is cautiously monotonic. Further, we prove that suchvariation is equivalent to using $AA{\text -} CBR_{\succeq}$ with a restrictedcasebase consisting of all "surprising" and "sufficient" cases in the originalcasebase. As a by-product, we prove that this variation of $AA{\text -}CBR_{\succeq}$ is cumulative, rationally monotonic, and empowers a principledtreatment of noise in "incoherent" casebases. Finally, we illustrate $AA{\text-} CBR$ and cautious monotonicity questions on a case study on the U.S. TradeSecrets domain, a legal casebase.
-
Journal articleRago A, Cocarascu O, Bechlivanidis C, et al., 2021,
Argumentative explanations for interactive recommendations
, Artificial Intelligence, Vol: 296, Pages: 1-22, ISSN: 0004-3702A significant challenge for recommender systems (RSs), and in fact for AI systems in general, is the systematic definition of explanations for outputs in such a way that both the explanations and the systems themselves are able to adapt to their human users' needs. In this paper we propose an RS hosting a vast repertoire of explanations, which are customisable to users in their content and format, and thus able to adapt to users' explanatory requirements, while being reasonably effective (proven empirically). Our RS is built on a graphical chassis, allowing the extraction of argumentation scaffolding, from which diverse and varied argumentative explanations for recommendations can be obtained. These recommendations are interactive because they can be questioned by users and they support adaptive feedback mechanisms designed to allow the RS to self-improve (proven theoretically). Finally, we undertake user studies in which we vary the characteristics of the argumentative explanations, showing users' general preferences for more information, but also that their tastes are diverse, thus highlighting the need for our adaptable RS.
-
Journal articleLertvittayakumjorn P, Toni F, 2021,
Explanation-based human debugging of nlp models: a survey
, Transactions of the Association for Computational Linguistics, Vol: 9, Pages: 1508-1528, ISSN: 2307-387XDebugging a machine learning model is hard since the bug usually involves the training data and the learning process. This becomes even harder for an opaque deep learning model if we have no clue about how the model actually works. In this survey, we review papers that exploit explanations to enable humans to give feedback and debug NLP models. We call this problem explanation-based human debugging (EBHD). In particular, we categorize and discuss existing work along three dimensions of EBHD (the bug context, the workflow, and the experimental setting), compile findings on how EBHD components affect the feedback providers, and highlight open problems that could be future research directions.
-
Conference paperPaulino-Passos G, Toni F, 2021,
Monotonicity and Noise-Tolerance in Case-Based Reasoning with Abstract Argumentation
, Pages: 508-518 -
Conference paperKotonya N, Toni F, 2020,
Explainable Automated Fact-Checking: A Survey
, Barcelona. Spain, 28th International Conference on Computational Linguistics (COLING 2020), Publisher: International Committee on Computational Linguistics, Pages: 5430-5443A number of exciting advances have been made in automated fact-checkingthanks to increasingly larger datasets and more powerful systems, leading toimprovements in the complexity of claims which can be accurately fact-checked.However, despite these advances, there are still desirable functionalitiesmissing from the fact-checking pipeline. In this survey, we focus on theexplanation functionality -- that is fact-checking systems providing reasonsfor their predictions. We summarize existing methods for explaining thepredictions of fact-checking systems and we explore trends in this topic.Further, we consider what makes for good explanations in this specific domainthrough a comparative analysis of existing fact-checking explanations againstsome desirable properties. Finally, we propose further research directions forgenerating fact-checking explanations, and describe how these may lead toimprovements in the research area.v
-
Conference paperKotonya N, Toni F, 2020,
Explainable Automated Fact-Checking for Public Health Claims
, 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP(1) 2020), Publisher: ACL, Pages: 7740-7754Fact-checking is the task of verifying the veracity of claims by assessing their assertions against credible evidence. The vast major-ity of fact-checking studies focus exclusively on political claims. Very little research explores fact-checking for other topics, specifically subject matters for which expertise is required. We present the first study of explainable fact-checking for claims which require specific expertise. For our case study we choose the setting of public health. To support this case study we construct a new datasetPUBHEALTHof 11.8K claims accompanied by journalist crafted, gold standard explanations(i.e., judgments) to support the fact-check la-bels for claims1. We explore two tasks: veracity prediction and explanation generation. We also define and evaluate, with humans and computationally, three coherence properties of explanation quality. Our results indicate that,by training on in-domain data, gains can be made in explainable, automated fact-checking for claims which require specific expertise.
-
Conference paperCocarascu O, Stylianou A, Cyras K, et al., 2020,
Data-empowered argumentation for dialectically explainable predictions
, 24th European Conference on Artificial Intelligence (ECAI 2020), Publisher: IOS Press, Pages: 2449-2456Today’s AI landscape is permeated by plentiful data anddominated by powerful data-centric methods with the potential toimpact a wide range of human sectors. Yet, in some settings this po-tential is hindered by these data-centric AI methods being mostlyopaque. Considerable efforts are currently being devoted to defin-ing methods for explaining black-box techniques in some settings,while the use of transparent methods is being advocated in others,especially when high-stake decisions are involved, as in healthcareand the practice of law. In this paper we advocate a novel transpar-ent paradigm of Data-Empowered Argumentation (DEAr in short)for dialectically explainable predictions. DEAr relies upon the ex-traction of argumentation debates from data, so that the dialecticaloutcomes of these debates amount to predictions (e.g. classifications)that can be explained dialectically. The argumentation debates con-sist of (data) arguments which may not be linguistic in general butmay nonetheless be deemed to be ‘arguments’ in that they are dialec-tically related, for instance by disagreeing on data labels. We illus-trate and experiment with the DEAr paradigm in three settings, mak-ing use, respectively, of categorical data, (annotated) images and text.We show empirically that DEAr is competitive with another transpar-ent model, namely decision trees (DTs), while also providing natu-rally dialectical explanations.
-
Journal articleCalvo RA, Peters D, Cave S, 2020,
Advancing impact assessment for intelligent systems
, Nature Machine Intelligence, Vol: 2, Pages: 89-91, ISSN: 2522-5839 -
Conference paperLertvittayakumjorn P, Toni F, 2019,
Human-grounded evaluations of explanation methods for text classification
, 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Publisher: ACL Anthology, Pages: 5195-5205Due to the black-box nature of deep learning models, methods for explaining the models’ results are crucial to gain trust from humans and support collaboration between AIsand humans. In this paper, we consider several model-agnostic and model-specific explanation methods for CNNs for text classification and conduct three human-grounded evaluations, focusing on different purposes of explanations: (1) revealing model behavior, (2)justifying model predictions, and (3) helping humans investigate uncertain predictions.The results highlight dissimilar qualities of thevarious explanation methods we consider andshow the degree to which these methods couldserve for each purpose.
-
Conference paperČyras K, Letsios D, Misener R, et al., 2019,
Argumentation for explainable scheduling
, Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19), Publisher: AAAI, Pages: 2752-2759Mathematical optimization offers highly-effective tools for finding solutions for problems with well-defined goals, notably scheduling. However, optimization solvers are often unexplainable black boxes whose solutions are inaccessible to users and which users cannot interact with. We define a novel paradigm using argumentation to empower the interaction between optimization solvers and users, supported by tractable explanations which certify or refute solutions. A solution can be from a solver or of interest to a user (in the context of 'what-if' scenarios). Specifically, we define argumentative and natural language explanations for why a schedule is (not) feasible, (not) efficient or (not) satisfying fixed user decisions, based on models of the fundamental makespan scheduling problem in terms of abstract argumentation frameworks (AFs). We define three types of AFs, whose stable extensions are in one-to-one correspondence with schedules that are feasible, efficient and satisfying fixed decisions, respectively. We extract the argumentative explanations from these AFs and the natural language explanations from the argumentative ones.
This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.