Citation

BibTex format

@article{Rood:2021:10.1002/chem.202004623,
author = {Rood, SC and Pastor-Algaba, O and Tosca-Princep, A and Pinho, B and Isaacs, M and Torrente-Murciano, L and Eslava, S},
doi = {10.1002/chem.202004623},
journal = {Chemistry: A European Journal},
pages = {2165--2174},
title = {Synergistic effect of simultaneous doping of ceria nanorods with Cu and Cr on CO oxidation and NO reduction},
url = {http://dx.doi.org/10.1002/chem.202004623},
volume = {27},
year = {2021}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Ceria particles play a key role in catalytic applications such as automotive three-way catalytic systems in which toxic CO and NO are oxidized and reduced to safe CO2 and N2, respectively. In this work, we explore the incorporation of Cu and Cr metals as dopants in the crystal structure of ceria nanorods prepared by a single-step hydrothermal synthesis. XRD, Raman and XPS confirm the incorporation of Cu and Cr in the ceria crystal lattices, offering ceria nanorods with a higher concentration of oxygen vacancies. XPS also confirms the presence of Cr and Cu surface species. H2-TPR and XPS analysis show that the simultaneous Cu and Cr co-doping results in a catalyst with a higher surface Cu concentration and a much-enhanced surface reducibility, in comparison with either undoped or singly doped (Cu or Cr) ceria nanorods. While single Cu doping enhances catalytic CO oxidation and Cr doping improves catalytic NO reduction, co-doping with both Cu and Cr enhances the benefits of both dopants in a synergistic manner employing roughly a quarter of dopant weight.
AU - Rood,SC
AU - Pastor-Algaba,O
AU - Tosca-Princep,A
AU - Pinho,B
AU - Isaacs,M
AU - Torrente-Murciano,L
AU - Eslava,S
DO - 10.1002/chem.202004623
EP - 2174
PY - 2021///
SN - 0947-6539
SP - 2165
TI - Synergistic effect of simultaneous doping of ceria nanorods with Cu and Cr on CO oxidation and NO reduction
T2 - Chemistry: A European Journal
UR - http://dx.doi.org/10.1002/chem.202004623
UR - http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000602501800001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
UR - https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202004623
UR - http://hdl.handle.net/10044/1/85875
VL - 27
ER -