BibTex format
@article{Shaukat-Jali:2021:10.2196/32656,
author = {Shaukat-Jali, R and Van, Zalk N and Boyle, DE},
doi = {10.2196/32656},
journal = {JMIR Formative Research},
title = {Detecting subclinical social anxiety using physiological data from a wrist-worn wearable: a small-scale feasibility study},
url = {http://dx.doi.org/10.2196/32656},
volume = {5},
year = {2021}
}
RIS format (EndNote, RefMan)
TY - JOUR
AB - Background: Subclinical (ie, threshold) social anxiety can greatly affect young people’s lives, but existing solutions appear inadequate considering its rising prevalence. Wearable sensors may provide a novel way to detect social anxiety and result in new opportunities for monitoring and treatment, which would be greatly beneficial for persons with social anxiety, society, and health care services. Nevertheless, indicators such as skin temperature measured by wrist-worn sensors have not been used in prior work on physiological social anxiety detection.Objective: This study aimed to investigate whether subclinical social anxiety in young adults can be detected using physiological data obtained from wearable sensors, including heart rate, skin temperature, and electrodermal activity (EDA).Methods: Young adults (N=12) with self-reported subclinical social anxiety (measured using the widely used self-reported version of the Liebowitz Social Anxiety Scale) participated in an impromptu speech task. Physiological data were collected using an E4 Empatica wearable device. Using the preprocessed data and following a supervised machine learning approach, various classification algorithms such as Support Vector Machine, Decision Tree, Random Forest, and K-Nearest Neighbours (KNN) were used to develop models for 3 different contexts. Models were trained to differentiate (1) between baseline and socially anxious states, (2) among baseline, anticipation anxiety, and reactive anxiety states, and (3) social anxiety among individuals with social anxiety of differing severity. The predictive capability of the singular modalities was also explored in each of the 3 supervised learning experiments. The generalizability of the developed models was evaluated using 10-fold cross-validation as a performance index.Results: With modalities combined, the developed models yielded accuracies between 97.54% and 99.48% when differentiating between baseline and socially anxious states. Models
AU - Shaukat-Jali,R
AU - Van,Zalk N
AU - Boyle,DE
DO - 10.2196/32656
PY - 2021///
SN - 2561-326X
TI - Detecting subclinical social anxiety using physiological data from a wrist-worn wearable: a small-scale feasibility study
T2 - JMIR Formative Research
UR - http://dx.doi.org/10.2196/32656
UR - http://hdl.handle.net/10044/1/92316
VL - 5
ER -