Computer Vision
Module aims
In this module you will learn how images are formed, how they are represented on computers and how they can be processed by computers to extract semantic information. As part of the module you will have the opportunity to develop algorithms for detecting interesting features in images, design neural networks to perform natural image classification and explore algorithms for solving real-world problems such as hand-written digit recognition and object detection.
Recommended: Essential skills on programming and mathematics
Learning outcomes
Upon successful completion of this module you will be able to:
- Describe the process of image formation
- Design filters for image processing, edge detection and interest point detection
- Understand features and classifiers in the context of image classification
- Implement neural networks for image classfication
- Understand ideas underlying object detection and image segmentation
- Recall commonly used methods for motion estimation
Module syllabus
This module covers the following topics:
- Image formation
- Image filtering
- Edge detection and interest point detection
- Feature descriptors
- Image classification
- Object detection and image segmentation
- Neural networks
- Motion estimation
Teaching methods
The teaching approach is centred around the desire to solve real-world visual information processing problems, such as natural image classification, hand-written digit recognition and object detection. Such examples are used throughout to demonstrate how the principles taught can be applied in practice.
The concepts that you have learnt in lectures will be reinforced by unassessed, formative, tutorial exercises and assessed computer-based courseworks. The courseworks will cover both low-level and high-level image processing. The lab sessions are supervised, so you will receive technical support from Graduate Teaching Assistants (GTAs).
An online service will be used as a discussion forum for the module.
Assessments
The two computer-based courseworks count for 20% of the marks and the exam counts for the remaining 80% of the marks. The courseworks are in the format of jupyter notebook, which enables you to fill in source code, discuss your solutions and display results as a pdf file for submission.
There will be detailed written feedback for each of the assessed courseworks and class-wide feedback explaining common pitfalls and suggestions for improvement.
Reading list
Section 1
-
Computer vision : a modern approach
2nd ed., International ed. / contributions by Soumen Mukherjee, Arub Kumar Bhattacharjee., Pearson
-
Concise computer vision : an introduction into theory and algorithms
Springer
-
Computer Vision [electronic resource] : Algorithms and Applications
2nd ed. 2022., Springer International Publishing ; Imprint Springer
-
Multiple view geometry in computer vision
2nd ed, Cambridge University Press
-
Image processing, analysis, and machine vision / Vaclav Hlavac, Milan Sonka, Roger Boyle.
4th edition. [international ed.], Cengage Learning
-
Deep learning
The MIT Press