Publications

You can also access our individual websites (via the Members page) for further information about our research and lists of our publications.

Citation

BibTex format

@article{Fulcher:2020:10.1038/s41597-020-0553-0,
author = {Fulcher, B and Lubba, C and Sethi, S and Jones, N},
doi = {10.1038/s41597-020-0553-0},
journal = {Scientific Data},
title = {A self-organizing, living library of time-series data},
url = {http://dx.doi.org/10.1038/s41597-020-0553-0},
volume = {7},
year = {2020}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Time-series data are measured across the sciences, from astronomy to biomedicine, but meaningful cross-disciplinary interactions are limited by the challenge of identifying fruitful connections. Here we introduce the web platform, CompEngine, a self-organizing, living library of time-series data, that lowers the barrier to forming meaningful interdisciplinary connections between time series. Using a canonical feature-based representation, CompEngine places all time series in a common feature space, regardless of their origin, allowing users to upload their data and immediately explore diverse data with similar properties, and be alerted when similar data is uploaded in future. In contrast to conventional databases which are organized by assigned metadata, CompEngine incentivizes data sharing by automatically connecting experimental and theoretical scientists across disciplines based on the empirical structure of the data they measure. CompEngine’s growing library of interdisciplinary time-series data also enables the comprehensive characterization of time-series analysis algorithms across diverse types of empirical data.
AU - Fulcher,B
AU - Lubba,C
AU - Sethi,S
AU - Jones,N
DO - 10.1038/s41597-020-0553-0
PY - 2020///
SN - 2052-4463
TI - A self-organizing, living library of time-series data
T2 - Scientific Data
UR - http://dx.doi.org/10.1038/s41597-020-0553-0
UR - http://hdl.handle.net/10044/1/80914
VL - 7
ER -

Useful Links