Notable Recent Publications

These are some recent publications which give a flavour of the research from the Barclay lab. For a complete list of publications, please see below.


Species difference in ANP32A underlies influenza A virus polymerase host restriction. Nature (2016).
Jason S. Long, Efstathios S. Giotis, Olivier Moncorgé, Rebecca Frise, Bhakti Mistry, Joe James, Mireille Morisson, Munir Iqbal, Alain Vignal, Michael A. Skinner & Wendy S. Barclay

This paper identified a key factor that explained why the polymerases from avian influenza viruses are restricted in humans.  For more, please see the associated New and Views.

See our latest ANP32 papers here: eLIFE, Journal of Virology, Journal of Virology.


The mechanism of resistance to favipiravir in influenza. PNAS (2018).
Daniel H. GoldhillAartjan J. W. te VelthuisRobert A. FletcherPinky LangatMaria ZambonAngie Lackenby & Wendy S. Barclay

This paper showed how influenza could evolve resistance to favipiravir, an antiviral that may be used to treat influenza. The residue that mutated to give resistance was highly conserved suggesting that the mechanism of resistance may be applicable to other RNA viruses.


Internal genes of a highly pathogenic H5N1 influenza virus determine high viral replication in myeloid cells and severe outcome of infection in mice. Plos Path. (2018).
Hui Li*, Konrad C. Bradley*, Jason S. Long, Rebecca Frise, Jonathan W. Ashcroft, Lorian C. Hartgroves, Holly Shelton, Spyridon Makris, Cecilia Johansson, Bin Cao & Wendy S. Barclay

Why do avian influenza viruses like H5N1 cause such severe disease in humans? This paper demonstrated that H5N1 viruses replicate better than human viruses in myeloid cells from mice leading to a cytokine storm and more severe disease.


Citation

BibTex format

@article{Staller:2020:10.1101/2020.04.06.027482,
author = {Staller, E and Baillon, L and Frise, R and Peacock, T and Sheppard, C and Sancho-Shimizu, V and Barclay, W},
doi = {10.1101/2020.04.06.027482},
journal = {biorxiv},
title = {A rare variant in ANP32B impairs influenza virus replication in human cells},
url = {http://dx.doi.org/10.1101/2020.04.06.027482},
year = {2020}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Viruses require host factors to support their replication, and genetic variation in such factors can affect susceptibility to infectious disease. Influenza virus replication in human cells relies on ANP32 proteins, which are involved in assembly of replication-competent dimeric influenza virus polymerase (FluPol) complexes. Here, we investigate naturally occurring single nucleotide variants (SNV) in the human Anp32A and Anp32B genes. We note that variant rs182096718 in Anp32B is found at a higher frequency than other variants in either gene. This SNV results in a D130A substitution in ANP32B, which is less able to support FluPol activity than wildtype ANP32B and binds FluPol with lower affinity. Interestingly, ANP32B-D130A exerts a dominant negative effect over wildtype ANP32B and interferes with the functionally redundant paralogue ANP32A. FluPol activity and virus replication are attenuated in CRISPR-edited cells expressing wildtype ANP32A and mutant ANP32B-D130A. We propose a model in which the D130A mutation impairs FluPol dimer formation, thus resulting in compromised replication. We suggest that both homozygous and heterozygous carriers of rs182096718 may have some genetic protection against influenza viruses.
AU - Staller,E
AU - Baillon,L
AU - Frise,R
AU - Peacock,T
AU - Sheppard,C
AU - Sancho-Shimizu,V
AU - Barclay,W
DO - 10.1101/2020.04.06.027482
PY - 2020///
TI - A rare variant in ANP32B impairs influenza virus replication in human cells
T2 - biorxiv
UR - http://dx.doi.org/10.1101/2020.04.06.027482
ER -

Contact us


For any enquiries related to this group, please contact:

Professor Wendy Barclay
Chair in Influenza Virology 
+44 (020) 7594 5035
w.barclay@imperial.ac.uk