Citation

BibTex format

@inbook{Cocarascu:2020:10.1007/978-3-030-28367-4_17,
author = {Cocarascu, O and Toni, F},
booktitle = {Argumentation Library},
doi = {10.1007/978-3-030-28367-4_17},
pages = {269--285},
title = {Deploying Machine Learning Classifiers for Argumentative Relations “in the Wild”},
url = {http://dx.doi.org/10.1007/978-3-030-28367-4_17},
year = {2020}
}

RIS format (EndNote, RefMan)

TY  - CHAP
AB - Argument Mining (AM) aims at automatically identifying arguments and components of arguments in text, as well as at determining the relations between these arguments, on various annotated corpora using machine learning techniques (Lippi & Torroni, 2016).
AU - Cocarascu,O
AU - Toni,F
DO - 10.1007/978-3-030-28367-4_17
EP - 285
PY - 2020///
SP - 269
TI - Deploying Machine Learning Classifiers for Argumentative Relations “in the Wild”
T1 - Argumentation Library
UR - http://dx.doi.org/10.1007/978-3-030-28367-4_17
ER -

Contact us

Artificial Intelligence Network
South Kensington Campus
Imperial College London
SW7 2AZ

To reach the elected speaker of the network, Dr Rossella Arcucci, please contact:

ai-speaker@imperial.ac.uk

To reach the network manager, Diana O'Malley - including to join the network - please contact:

ai-net-manager@imperial.ac.uk