BibTex format
@article{Michniewicz:2024:10.1063/5.0207162,
author = {Michniewicz, J and Kim, MS},
doi = {10.1063/5.0207162},
journal = {Applied Physics Letters},
title = {Leveraging off-the-shelf silicon chips for quantum computing},
url = {http://dx.doi.org/10.1063/5.0207162},
volume = {124},
year = {2024}
}
RIS format (EndNote, RefMan)
TY - JOUR
AB - There is a growing demand for quantum computing across various sectors, including finance, materials, and studying chemical reactions. A promising implementation involves semiconductor qubits utilizing quantum dots within transistors. While academic research labs currently produce their own devices, scaling this process is challenging, requires expertise, and results in devices of varying quality. Some initiatives are exploring the use of commercial transistors, offering scalability, improved quality, affordability, and accessibility for researchers. This paper delves into potential realizations and the feasibility of employing off-the-shelf commercial devices for qubits. It addresses challenges such as noise, coherence, limited customizability in large industrial fabs, and scalability issues. The exploration includes discussions on potential manufacturing approaches for early versions of small qubit chips. The use of state-of-the-art transistors as hosts for quantum dots, incorporating readout techniques based on charge sensing or reflectometry, and methods like electron shuttling for qubit connectivity are examined. Additionally, more advanced designs, including 2D arrays and crossbar or DRAM-like access arrays, are considered for the path toward accessible quantum computing.
AU - Michniewicz,J
AU - Kim,MS
DO - 10.1063/5.0207162
PY - 2024///
SN - 0003-6951
TI - Leveraging off-the-shelf silicon chips for quantum computing
T2 - Applied Physics Letters
UR - http://dx.doi.org/10.1063/5.0207162
VL - 124
ER -